WO2018117025A1 - Observation optical system and observation device having same - Google Patents

Observation optical system and observation device having same Download PDF

Info

Publication number
WO2018117025A1
WO2018117025A1 PCT/JP2017/045313 JP2017045313W WO2018117025A1 WO 2018117025 A1 WO2018117025 A1 WO 2018117025A1 JP 2017045313 W JP2017045313 W JP 2017045313W WO 2018117025 A1 WO2018117025 A1 WO 2018117025A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
fresnel lens
optical system
conditional expression
fresnel
Prior art date
Application number
PCT/JP2017/045313
Other languages
French (fr)
Japanese (ja)
Inventor
裕基 江部
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017234844A external-priority patent/JP7086581B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018117025A1 publication Critical patent/WO2018117025A1/en
Priority to US16/445,526 priority Critical patent/US11487050B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an observation optical system suitable for, for example, a head mounted display for displaying an enlarged original image displayed on an image display element such as liquid crystal and observing the same.
  • observation optical system Conventionally, an original image displayed using an image display element such as a CRT or an LCD is enlarged and displayed through the observation optical system, and a large screen image is given to the user, so that realistic observation can be performed.
  • An observation device such as a head mounted display has been proposed.
  • observation devices it has been desired that a higher sense of reality can be obtained, and for that reason, observation optical systems used in observation devices are required to be compatible with wide viewing angles and have high optical performance. ing.
  • the observation optical system when used in a head-mounted or hand-held type observation apparatus, it is required that the observation optical system be compact and lightweight.
  • an eyepiece image display apparatus in which a Fresnel lens is disposed in an optical path is known as an observation optical system which achieves a wide viewing angle and weight reduction (Patent Document 1).
  • a resin lens is used to reduce the weight of the observation optical system, and at this time, a diffractive lens structure is provided in the peripheral portion of the lens to suppress shift in focus due to temperature fluctuations of the resin lens.
  • An objective lens for a head is known (Patent Document 2).
  • a Fresnel lens having a sawtooth shape and having a concave surface directed to the observation side is disposed at a position closest to the eye (observation surface). And it is aiming at wide viewing angle and weight reduction of the whole system.
  • the Fresnel grating of the Fresnel lens according to Patent Document 1 has a tendency that the incident light becomes unnecessary light (ghost) when the light is incident on the molding defect (surface sag) or the like of the wall surface or the projection, and the image quality is deteriorated.
  • the Fresnel lens of Patent Document 1 forms a Fresnel surface from the central area of the Fresnel lens, the image quality of the observation image tends to be deteriorated in the central area of the observation screen where the observer can easily watch.
  • the objective lens of Patent Document 2 uses the central area of the lens as a lens surface of a continuous shape as a refractive action, and the peripheral part as a sawtooth-shaped diffractive lens configuration, utilizing a first-order diffraction action. In this way, it is intended to suppress the focus position shift due to the temperature change. Since the objective lens of Patent Document 2 is configured of a single lens, it tends to be difficult to obtain high optical performance.
  • the present invention is an observation optical system capable of observing image information displayed on an image display surface with high optical performance while having a wide viewing angle while achieving downsizing and weight reduction of the entire system, and observation having the same
  • the purpose is to provide a device.
  • the optical system according to the present invention has a Fresnel lens and a lens LP of positive refractive power provided on the light incident side or the light output side of the Fresnel lens, and the center annular zone from the vertex of the central annular zone of the Fresnel lens
  • h0 be the length in the optical axis direction to the end of the frame
  • h1 be the length in the optical axis direction of the grating wall surface of the first annular zone adjacent to the central annular zone, 0.01 ⁇ h1 / h0 ⁇ 0.80 It is characterized by satisfying the following conditional expression.
  • an observation optical system capable of observing image information displayed on an image display surface with high optical performance while having a wide viewing angle while achieving downsizing and weight reduction of the entire system, and the same An observation device is obtained.
  • FIG. 1 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 1 of the present invention.
  • the lens sectional view of the observation apparatus which has an observation optical system of Example 2 of this invention.
  • FIG. 7 is a longitudinal aberration diagram of the observation optical system of the second embodiment of the present invention at an eye relief of 20 mm.
  • the lens sectional view of the observation apparatus which has an observation optical system of Example 3 of this invention.
  • FIG. 7 is a longitudinal aberration diagram of the observation optical system of the Example 3 of the present invention at an eye relief of 10 mm.
  • FIG. 7 is a longitudinal aberration diagram of the observation optical system of Example 3 of the present invention at an eye relief of 20 mm.
  • the lens sectional view of the observation apparatus which has an observation optical system of Example 4 of this invention.
  • FIG. 7 is a longitudinal aberration diagram of the observation optical system of the fourth embodiment of the present invention at an eye relief of 10 mm.
  • FIG. 7 is a longitudinal aberration diagram of the observation optical system of the fourth embodiment of the present invention at an eye relief of 20 mm.
  • the lens sectional view of the observation apparatus which has an observation optical system of Example 5 of this invention.
  • FIG. 7 is a longitudinal aberration diagram at an eye relief of 10 mm of an observation optical system of Example 5 of the present invention.
  • FIG. 7 shows longitudinal aberration at eye relief of 20 mm of the observation optical system of Example 5 of the present invention.
  • the optical system of each embodiment is an observation optical system for observing an image displayed on the image display surface, and has a Fresnel lens LF and a lens (positive lens) LP of positive refractive power.
  • the Fresnel lens refers to an optical element having a Fresnel grating.
  • the surface shapes of the optical surface on the light incident side of the Fresnel lens and the optical surface on the light output side (when the optical surface has a Fresnel grating, it is a curved surface even if it is a flat surface) Also good.
  • the Fresnel lens has a curved optical surface
  • the curved optical surface is not limited to a spherical shape, and may be a free curved surface.
  • FIG. 1 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 1 of the present invention.
  • FIG. 2A and FIG. 2B are respectively longitudinal aberration diagrams at eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 1 of the present invention.
  • FIG. 3 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 2 of the present invention.
  • FIG. 4A and FIG. 4B are respectively longitudinal aberration diagrams in eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 2 of this invention.
  • FIG. 5 is a lens sectional view of an observation apparatus having an observation optical system according to a third embodiment of the present invention.
  • FIGS. 6A and 6B are respectively longitudinal aberration diagrams at an eye relief of 10 mm and an eye relief of 20 mm of the observation optical system of Example 3 of the present invention.
  • FIG. 7 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 4 of the present invention.
  • FIGS. 8A and 8B are respectively longitudinal aberration diagrams at an eye relief of 10 mm and an eye relief of 20 mm of the observation optical system of Example 4 of the present invention.
  • FIG. 9 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 5 of the present invention.
  • FIG. 10A and FIG. 10B are respectively longitudinal aberration diagrams in eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 5 of this invention.
  • 11A and 11B illustrate the definition of the length in the optical axis direction from the surface vertex of the central ring zone of the Fresnel lens to the end of the central ring zone in the present specification and the length in the optical axis direction of the grating wall surface
  • FIG. 12A, 12B and 12C are explanatory views of a Fresnel lens.
  • L0 is an observation optical system, and has a lens (positive lens) LP of positive refractive power and a Fresnel lens LF.
  • Fre is a Fresnel surface of the Fresnel lens LF.
  • the positive lens LP is a positive lens having the largest refractive power when the observation optical system L0 has a plurality of positive lenses.
  • the positive lens LP is a curved surface having a curvature on the lens surface, and the curved surface is a refractive lens, and does not include a Fresnel lens.
  • ID is an image display surface, and, for example, a liquid crystal display element ID1 is disposed.
  • SP is a viewing plane, where the observer's pupil is located.
  • a stop (SP1) may be disposed on the observation surface SP.
  • the eye relief represents the distance between the eye point on the optical axis and the lens surface closest to the viewing surface SP.
  • Each aberration diagram shows, in order from the left, spherical aberration, astigmatism, distortion, and lateral chromatic aberration.
  • the spherical aberration diagrams show spherical aberration for d-line (wavelength 587.6 nm) and g-line (wavelength 435.8 nm).
  • S and M respectively indicate astigmatism on the sagittal image plane and the meridional image plane.
  • the distortion is shown for d-line.
  • the chromatic aberration diagram shows the chromatic aberration at the g-line.
  • the aberration on the viewing surface SP side where the light beam is blown from the image display surface ID and the aberration on the image display surface ID where the light beam is blown from the observation surface SP side correspond one to one.
  • the aberration at the image display surface ID is evaluated for convenience.
  • the aperture stop diameter of the stop SP1 of each embodiment is set to 3.5 mm as an example of the human pupil diameter.
  • the aberration diagrams typically show aberrations when the eye relief is 10 mm and the eye relief 20 mm.
  • Fre is a Fresnel surface, and a plurality of concentric Fresnel gratings FP are arranged at a predetermined grating pitch.
  • F0 is a central annular zone, is a continuous surface, and is formed of a spherical surface, an aspheric surface, and the like.
  • La is an optical axis.
  • ⁇ 1 is the effective diameter of the Fresnel lens LF.
  • ⁇ 0 is the effective diameter of the central annular zone F 0 of the Fresnel lens F 0. That is, it is the diameter from one end FL2 of the central annular zone F0 to the other end FL2.
  • Fr is a Fresnel ring zone in which a Fresnel grating is formed.
  • the nth Fresnel grating (a ring from the optical axis La in the direction of the optical axis La from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF)
  • the length of the wall of the band is hn.
  • the observation optical system L0 of the present invention has a positive lens LP and a Fresnel lens LF.
  • the observation optical system L0 is composed of a plurality of lenses.
  • the length in the optical axis direction from the surface vertex FL1 of the central annular zone F0 of the Fresnel lens LF to the end portion FL2 of the central annular zone F0 is h0.
  • Length in the optical axis direction of the grating wall surface of the first annular zone counted from the optical axis center of the Fresnel annular zone Fr of the Fresnel lens LF (optical axis of the grating wall surface of the first annular zone adjacent to the central annular zone F0
  • h1 be the length of the direction). At this time, 0.01 ⁇ h1 / h0 ⁇ 0.80 (1) Satisfy the following conditional expression.
  • the conditional expression (1) is the length h1 in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel annular zone Fr of the Fresnel lens LF and the light from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF
  • the ratio of the axial length h0 is defined.
  • the length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF is made larger than the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF .
  • the ratio of the continuously shaped area (central annular zone) F0 in the radial direction of the Fresnel lens LF is increased, and the image quality deterioration factor due to the sawtooth shape of the Fresnel lens LF is reduced in the screen central area where the observer easily gazes To improve the optical performance.
  • the length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 becomes too long, and the weight increases.
  • the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF becomes too short, flare due to diffraction increases, and optical performance deteriorates.
  • the refractive power of the Fresnel lens LF is strong, the length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 becomes too short. As a result, the sawtooth shape of the Fresnel lens LF is formed in the screen central area where the observer can easily gaze, and the optical performance is degraded. If the refractive power of the Fresnel lens LF is weak, the refractive powers of the other lenses that constitute it become too strong, and various off-axis aberrations increase.
  • the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF becomes too long, the unnecessary light (ghost) reflected by the wall surface increases, and the optical performance is degraded.
  • the numerical range of the conditional expression (1) is set as follows. 0.02 ⁇ h1 / h0 ⁇ 0.65 (1a) More preferably, the numerical range of the conditional expression (1a) may be set as follows. 0.03 ⁇ h1 / h0 ⁇ 0.50 (1b) With the above configuration, an observation optical system having a wide field of view and high optical performance, and having a lightweight overall system is obtained.
  • the observation optical system L0 may satisfy the following conditional expression (2) instead of the above-mentioned conditional expression (1).
  • conditional expression (2) ⁇ 0 is the diameter of the central annular zone F0 of the Fresnel lens LF
  • ⁇ 1 is the effective diameter of the Fresnel lens LF.
  • Conditional expression (2) defines the ratio of the effective diameter (diameter) 0 0 of the central annular zone F 0 of the Fresnel lens LF to the effective diameter ⁇ 1 of the Fresnel lens LF.
  • the numerical range of the conditional expression (2) is set as follows. 0.32 ⁇ 0 / ⁇ 1 ⁇ 0.65 (2a) More preferably, the numerical range of the conditional expression (2a) may be set as follows. 0.34 ⁇ 0 / ⁇ 1 ⁇ 0.62 (2b)
  • the observation optical system L0 may satisfy both the conditional expression (1) and the conditional expression (2).
  • the focal length of the Fresnel lens LF is fh
  • the focal length of the observation optical system L0 is F.
  • the lens with the largest refractive power is a positive lens LP
  • the focal length of the positive lens LP is fp.
  • the distance on the optical axis from the lens surface on the observation surface side of the lens closest to the observation side to the lens surface on the image display surface side of the lens closest to the image display surface Let d be.
  • the distance on the optical axis from the lens surface on the observation surface side of the lens positioned closest to the observation surface side of the observation optical system L0 to the image display surface is L.
  • the curvature radius of the surface on the observation surface side of the Fresnel lens LF is Rp11
  • the curvature radius of the surface on the image display surface side of the Fresnel lens LF is Rp12.
  • the curvature radius of the surface on the observation surface side of the Fresnel lens LF is Rn11
  • the curvature radius of the surface on the image display surface side of the Fresnel lens LF is Rn12.
  • the curvature radius of the lens surface of the positive lens LP on the observation surface side is R21
  • the curvature radius of the lens surface of the positive lens LP on the image display surface side is R22.
  • the average value of the length in the optical axis direction of the grating wall surface in the effective surface of the Fresnel lens LF is set to have (mm), and the length of the wavelength of the d-line is set to ⁇ (mm).
  • the grating pitch of the first annular zone of the Fresnel lens LF is w1
  • the grating pitch of the outermost annular zone in the effective surface of the Fresnel lens LF is we.
  • the ideal image height of the image display surface at a half viewing angle of 45 degrees is 10 mm with an eye relief of 10 mm
  • the actual image height of the image display surface at a half viewing angle of 45 degrees is y with an eye relief of 10 mm.
  • the "actual image height y" is the height in the direction perpendicular to the optical axis at the paraxial imaging position of the chief ray incident on the observation optical system L0 at an eye relief of 10 mm and a half viewing angle of 45 degrees.
  • Conditional expression (3) defines the ratio of the focal length of the Fresnel lens LF to the focal length of the observation optical system L0. If the refractive power of the Fresnel lens LF is too strong (the absolute value of the refractive power is large) beyond the lower limit of the conditional expression (3), the grating pitch of each Fresnel grating forming the sawtooth shape becomes too fine. As a result, the angle at which diffracted light diffracts becomes too large, and flare increases.
  • conditional expression (3) if the upper limit of conditional expression (3) is exceeded, the refractive power of each lens becomes too strong when the number of other lenses being configured is small, and various off-axis aberrations increase. If the number of other lenses being configured is large, the weight of the entire system increases.
  • Condition (4) defines the ratio of the focal length of the positive lens LP to the focal length of the observation optical system L0. If the lower limit of the conditional expression (4) is exceeded, the refractive power of the positive lens LP becomes too strong, and mainly curvature of field and astigmatism increase. Conversely, if the upper limit of conditional expression (4) is exceeded, the refractive power of each lens becomes too strong when the number of other lenses being configured is small, and various off-axis aberrations increase. If the number of other lenses being configured is large, the weight of the entire system increases.
  • the conditional expression (5) is that of the positive lens LP and the Fresnel lens LF, from the lens surface on the observation surface side of the lens closest to the observation surface SP side to the image display surface side of the lens closest to the image display surface ID Assuming that the distance on the optical axis to the lens surface is d, the ratio of the distance from the lens surface on the viewing surface side of the lens closest to the viewing surface SP to the image display surface ID to the distance d is defined.
  • the distance between the lenses becomes too short, and it becomes difficult to mechanically hold each lens. Alternatively, the thickness of the lens is too thin, the lens surface is easily deformed, and the optical performance is easily reduced. Conversely, when the upper limit of conditional expression (5) is exceeded, the distance between lenses becomes too long, and the effective diameter of the lens positioned on the image display surface side becomes large, and the weight increases. Alternatively, the thickness of the lens becomes too thick and the weight increases.
  • Conditional expression (6) defines the form factor of the Fresnel lens LF when the Fresnel lens LF has positive refractive power. If the lower limit of the conditional expression (6) is exceeded, the curvature of the surface on the image display surface side of the Fresnel lens LF becomes too strong, and mainly the curvature of field and astigmatism increase. Conversely, when the upper limit of conditional expression (6) is exceeded, the curvature of the surface on the observation surface side of the Fresnel lens LF becomes too strong, and distortion mainly increases.
  • the conditional expression (7) defines the form factor of the Fresnel lens LF when the Fresnel lens LF has negative refractive power. If the lower limit of the conditional expression (7) is exceeded, the curvature of the surface on the image display surface side of the Fresnel lens LF becomes too strong, and field curvature and astigmatism mainly increase. On the contrary, when the upper limit of the conditional expression (7) is exceeded, the curvature of the surface on the observation surface side of the Fresnel lens LF becomes too strong, and mainly the field curvature and astigmatism increase.
  • Condition (8) defines the form factor of the positive lens LP. If the lower limit of the conditional expression (8) is exceeded, the curvature of the surface on the image display surface side of the positive lens LP becomes too strong, and field curvature and astigmatism mainly increase. Conversely, if the upper limit of conditional expression (8) is exceeded, the curvature of the surface on the observation surface side of the positive lens LP becomes too strong, and distortion mainly increases.
  • the conditional expression (9) defines the ratio of the average of the wall heights of the Fresnel grating in the effective system of the Fresnel lens LF to the length of the wavelength of the d-line. If the lower limit of the conditional expression (9) is exceeded, the wall height of the Fresnel grating in the effective system of the Fresnel lens LF becomes too small, the intensity of the diffracted light increases, and the optical performance decreases. Conversely, when the upper limit of conditional expression (9) is exceeded, the wall length of the Fresnel grating of the Fresnel lens LF becomes too long, unnecessary light (ghost) reflected by the wall increases, and the optical performance decreases. .
  • Conditional expression (10) defines the ratio of the grating pitch of the Fresnel grating in the first annular zone of the Fresnel lens LF to the grating pitch of the Fresnel grating in the outermost annular zone in the light beam effective diameter ⁇ 1 of the Fresnel lens LF ing. If the lower limit of conditional expression (10) is exceeded, the grating pitch of the Fresnel grating in the first orbicular zone becomes too small, the diffraction angle of light to be diffracted becomes too large, flare effects occur at the screen center, and optical performance It is falling.
  • Conditional expression (11) defines the distortion amount on the image display surface ID at an eye relief of 10 mm and a half viewing angle of 45 degrees. If the lower limit of the conditional expression (11) is exceeded, the positive refractive power is too strong, so light rays around the screen are strongly bent in the optical axis direction, and various off-axis aberrations increase. Conversely, if the upper limit of conditional expression (11) is exceeded, the positive refractive power is too small, so the incident height of the marginal rays at each lens position becomes too high, and the effective diameter increases, so the weight of the entire system increases. Do.
  • the conditional expression (12) is the actual image height of the chief ray at a half viewing angle of 45 degrees in the observation optical system L0 at an eye relief of 10 mm (the height in the direction perpendicular to the optical axis at the paraxial imaging position
  • the ratio of y) to the focal length F of the observation optical system L0 is defined. This represents the refractive power of the peripheral portion corresponding to the viewing angle of 45 degrees of the observation optical system L0. Since y becomes smaller as the refractive power of the peripheral portion becomes stronger, satisfying the conditional expression (12) makes it possible to widen the viewing angle while configuring the image display element in a small size.
  • the focal length F of the observation optical system L0 is too long beyond the lower limit of the conditional expression (12)
  • the total length of the observation optical system L0 is elongated and enlarged.
  • the refractive power at the periphery of the observation optical system becomes too strong, and in particular astigmatism and field curvature increase.
  • y exceeds the upper limit of the conditional expression (12) and y is too large, the image display surface becomes too large, and the image display element becomes large. According to the above-described configuration, it is possible to obtain an observation optical system which has high optical performance and a light whole system while having a wide field of view.
  • the numerical ranges of the conditional expressions (3) to (12) may be set as follows. 1.6 ⁇
  • the numerical ranges of the conditional expressions (3a) to (12a) may be set as follows. 1.7 ⁇
  • Example 1 of the observation optical system L0 of the present invention will be described below with reference to FIG.
  • the observation optical system L0 of Example 1 includes, in order from the observation surface side to the image display surface side, a Fresnel lens LF of positive refractive power and a lens (positive lens) LP of positive refractive power.
  • a Fresnel lens LF of positive refractive power By sharing the positive refractive power between the two lenses, the curvature on each surface is loosened, thereby reducing the occurrence of various aberrations.
  • the Fresnel lens LF of positive refractive power has the image display surface ID side as the Fresnel surface.
  • the length h0 in the optical axis direction from the surface vertex FL1 to the end portion FL2 of the central annular zone of the Fresnel lens LF is increased in an appropriate range that satisfies the conditional expression (1).
  • the ratio of the continuously shaped area in the radial direction of the Fresnel lens LF is increased, and the optical performance in the screen range in which the observer can easily gaze is improved.
  • the region of continuous shape is set within an appropriate range satisfying the conditional expression (2), and the optical performance is improved and the weight is reduced.
  • the focal length of the Fresnel lens LF is loosened in an appropriate range satisfying the conditional expression (3) to prevent the grating pitch of the Fresnel grating from becoming too small, and flare due to diffraction is reduced.
  • the focal length of the positive lens LP is reduced within an appropriate range that satisfies the conditional expression (4) to mainly reduce the occurrence of field curvature and astigmatism.
  • the weight reduction of the entire system is achieved by reducing the thickness of each of the Fresnel lens LF and the positive lens LP within an appropriate range that satisfies the conditional expression (5).
  • the curvature of the surface on the image display surface side is intensified relative to the curvature of the surface on the observation surface SP side of the Fresnel lens LF, and the convex shape is directed to the image display surface side.
  • the observation surface SP the incident angle of the off-axis light beam is relaxed, and the occurrence of various off-axis aberrations is reduced.
  • the curvature of the surface on the image display surface ID side is intensified with respect to the curvature of the surface on the observation surface SP side of the positive lens LP so as to satisfy the conditional expression (8), and the convex shape is directed to the image display surface ID.
  • the convex shape is directed to the image display surface ID.
  • it has a concentric shape with respect to the viewing surface SP.
  • the grating pitch of the Fresnel grating in the first annular zone of the Fresnel lens LF and the grating pitch of the Fresnel grating in the outermost annular zone in the light beam effective diameter 11 are set so as to satisfy the conditional expression (10) This prevents the generation of diffracted light on the entire screen and improves optical performance.
  • Example 2 of the observation optical system L0 of the present invention will be described below with reference to FIG.
  • the observation optical system L0 of Example 2 includes, in order from the observation surface side to the image display surface side, a lens of positive refractive power (positive lens) LP, a lens of negative refractive power (negative lens) L3, and positive refractive power. It comprises a Fresnel lens LF. By sharing the positive refractive power between the two lenses, the curvature on each surface is relaxed, thereby reducing the occurrence of various aberrations.
  • Example 3 of the observation optical system L0 of the present invention will be described below with reference to FIG.
  • the observation optical system L0 of Example 3 includes, in order from the observation surface side to the image display surface side, a parallel flat plate (optical member) Lt, a lens of positive refractive power (positive lens) LP, and a Fresnel lens LF of positive refractive power. It is configured. If the positive lens LP is in the exposed (exposed to the outside) state, the lens may be deformed or cracked if oil or the like is touched.
  • the flat lens Lt plays a role of protecting the positive lens LP.
  • the Fresnel lens LF of positive refractive power is arranged at the position closest to the image display surface, that is, the position where the effective diameter becomes large among the three lenses described above, weight reduction of the entire system is achieved. .
  • the other configuration is the same as that of the first embodiment.
  • Example 4 of the observation optical system L0 of the present invention will be described below with reference to FIG.
  • the observation optical system L0 of Example 4 includes, in order from the observation surface side to the image display surface side, a Fresnel lens LF of negative refractive power, a lens (positive lens) LP of positive refractive power, and a lens L3 of positive refractive power. It is configured. By sharing the positive refractive power between the two lenses, the curvature on each surface is relaxed, thereby reducing the occurrence of various aberrations. In addition, the chromatic aberration of magnification and the curvature of field are reduced by disposing the Fresnel lens LF of negative refractive power.
  • the curvature of the surface on the observation surface side is intensified with respect to the curvature of the surface on the image display surface side of the Fresnel lens LF, and the concave shape is directed to the observation surface SP.
  • the incident angle of the off-axis light beam is relaxed in a concentric form with respect to the observation surface SP, and the occurrence of various off-axis aberrations is reduced.
  • the other configuration is the same as that of the first embodiment.
  • Example 5 of the observation optical system L0 of the present invention will be described below with reference to FIG.
  • the observation optical system L0 of Example 5 includes, in order from the observation surface side to the image display surface side, a lens of positive refractive power (positive lens) LP, a Fresnel lens of negative refractive power LF, a lens of positive refractive power (positive
  • the lens L3 is composed of a lens (positive lens) L4 of positive refractive power.
  • the curvature of the surface on the observation surface side is increased relative to the curvature of the surface on the image display surface side of the Fresnel lens LF, and the concave shape is directed to the observation surface SP. It is in the form of a concentric form for the SP. As a result, the incident angle of the off-axis ray is relaxed and the occurrence of off-axis aberrations is reduced.
  • the other configuration is the same as that of the first embodiment.
  • a Fresnel lens has a shape in which a lens surface having a radius of curvature r is divided into a plurality of concentric regions.
  • the cross-sectional shape is a shape in which a Fresnel grating (prism) FP having a sawtooth shape is arranged concentrically on a plane.
  • the plurality of concentric Fresnel gratings have different or identical angles.
  • the grating pitch of the Fresnel grating is different or identical from the center (optical axis) to the periphery.
  • the radius of curvature r at the Fresnel lens surface Fre corresponds to the radius of curvature r of the lens surface shown in FIG. 12A.
  • One of the parameters for determining the focal length of the Fresnel lens surface uses the radius of curvature r as in the case of determining the focal length of a normal lens.
  • the focal length f of the Fresnel lens, the plate thickness (center thickness), the effective diameter 11, etc. are as shown in FIGS. 12B and 12C.
  • the radius of curvature of the Fresnel lens surface in the conditional expression to be described later uses the radius of curvature of the lens surface before forming the Fresnel shape (that is, the radius of curvature of the central annular zone).
  • i indicates the order of the surface from the observation surface
  • ri indicates the radius of curvature of the i-th optical surface
  • di indicates the lens thickness and air gap between the i-th surface and the (i + 1) -th surface
  • ni, ii Represents the refractive index and Abbe number of the optical member between the i-th surface and the (i + 1) -th surface with respect to the d-line, respectively.
  • K, A4, A6, A8, A10, etc. described on the aspheric surface are aspheric coefficients.
  • the aspheric surface shape is defined by the following equation when the displacement in the optical axis direction at the position of height h from the optical axis is x with respect to the surface vertex.
  • x (h 2 / R) / [1 + ⁇ 1-(1 + K) (h / R) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
  • R is a curvature radius here.
  • the Fresnel surface represents an ideal thin-walled state having an aspheric effect, and the actual shape is a Fresnel shape within the written center thickness d.
  • the Fresnel surface is described as * Fre next to the surface number. In the surface numbers of each numerical data, 1 corresponds to the observation surface (aperture), and the image surface corresponds to the image display surface.
  • the surface numbers 2 and 3 correspond to the Fresnel lens LF, and the surface numbers 4 and 5 correspond to the positive lens LP.
  • the surface numbers 2 and 3 correspond to the positive lens LP
  • the surface numbers 6 and 7 correspond to the Fresnel lens LF.
  • the surface numbers 4 and 5 correspond to the positive lens LP
  • the surface numbers 6 and 7 correspond to the Fresnel lens LF.
  • the surface numbers 2 and 3 correspond to the Fresnel lens LF
  • the surface numbers 4 and 5 correspond to the positive lens LP.
  • the surface numbers 2 and 3 correspond to the positive lens LP
  • the surface numbers 4 and 5 correspond to the Fresnel lens LF.
  • the total lens length is the distance from the first lens surface on the viewing surface side to the image display surface ID.
  • BF is a distance from the surface of the image display surface ID to the image display surface.
  • Tables 1 and 2 show the relationship between parameters based on the above-mentioned numerical data and each conditional expression.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An observation optical system according to the present invention comprises a Fresnel lens, and a lens LP having positive refractive power and provided on the light incidence side or light emission side of the Fresnel lens, wherein the length in an optical axis direction from a surface vertex of a central zone of the Fresnel lens to an end of the central zone thereof is denoted by h0, the length in the optical axis direction of a grating wall surface of a first zone adjacent to the central zone is denoted by h1, and both the lengths are appropriately set.

Description

観察光学系及びそれを有する観察装置Observation optical system and observation apparatus having the same
本発明は、例えば液晶等の画像表示素子に表示された原画像を拡大表示し、観察するヘッドマウントディスプレイ等に好適な観察光学系に関するものである。 The present invention relates to an observation optical system suitable for, for example, a head mounted display for displaying an enlarged original image displayed on an image display element such as liquid crystal and observing the same.
従来より、CRTやLCD等の画像表示素子を用いて表示された原画像を、観察光学系を介して拡大表示し、大画面画像を使用者に与えることで、臨場感のある観察ができるようにしたヘッドマウントディスプレイ等の観察装置が提案されている。近年、観察装置に関しては、さらなる高臨場感が得られることが望まれており、そのために観察装置に用いられる観察光学系には広視野角に対応し、且つ高い光学性能を有することが求められている。更に頭部に装着する、或いは手で持つタイプの観察装置に用いるときには観察光学系が小型であり、かつ軽量であることが求められている。 Conventionally, an original image displayed using an image display element such as a CRT or an LCD is enlarged and displayed through the observation optical system, and a large screen image is given to the user, so that realistic observation can be performed. An observation device such as a head mounted display has been proposed. In recent years, with regard to observation devices, it has been desired that a higher sense of reality can be obtained, and for that reason, observation optical systems used in observation devices are required to be compatible with wide viewing angles and have high optical performance. ing. Furthermore, when used in a head-mounted or hand-held type observation apparatus, it is required that the observation optical system be compact and lightweight.
従来、広視野角且つ軽量化を図った観察光学系として光路中にフレネルレンズを配した接眼映像表示装置が知られている(特許文献1)。また、観察光学系の軽量化のために樹脂レンズを用い、このとき樹脂レンズの温度変動によるピント位置ずれの抑制のために、レンズの周辺部分に回折レンズ構造を設け一次回折作用を利用した光ヘッド用対物レンズが知られている(特許文献2)。 Conventionally, an eyepiece image display apparatus in which a Fresnel lens is disposed in an optical path is known as an observation optical system which achieves a wide viewing angle and weight reduction (Patent Document 1). In addition, a resin lens is used to reduce the weight of the observation optical system, and at this time, a diffractive lens structure is provided in the peripheral portion of the lens to suppress shift in focus due to temperature fluctuations of the resin lens. An objective lens for a head is known (Patent Document 2).
特開平07-244246号公報Japanese Patent Application Publication No. 07-244246 特開2002-122780号公報JP 2002-122780 A
広視野角でありながら、高い光学性能を有し、且つ全体が軽量な観察光学系を得るには、レンズ構成、特にフレネルレンズを用いるときにはフレネルレンズの形状やレンズ構成等を適切に設定する必要がある。 In order to obtain an observation optical system having high optical performance and a light weight as a whole while having a wide viewing angle, it is necessary to appropriately set the lens configuration, in particular, the shape and lens configuration of the Fresnel lens when using a Fresnel lens. There is.
特許文献1の接眼光学系は、最も眼(観察面)に近い位置に、鋸歯形状を有し、凹面を観察側に向けたフレネルレンズを配している。そして、広視野角且つ全系の軽量化を図っている。特許文献1に係るフレネルレンズのフレネル格子は、その壁面、或いは突起部の成形不良(面ダレ)等に光が入射すると、入射した光が不要光(ゴースト)となり、画質を劣化させる傾向があった。また、特許文献1のフレネルレンズは、フレネルレンズの中心域からフレネル面を形成しているため、観察者が特に注視しやすい観察画面中心域において観察像の画質が劣化しやすい傾向があった。 In the eyepiece optical system of Patent Document 1, a Fresnel lens having a sawtooth shape and having a concave surface directed to the observation side is disposed at a position closest to the eye (observation surface). And it is aiming at wide viewing angle and weight reduction of the whole system. The Fresnel grating of the Fresnel lens according to Patent Document 1 has a tendency that the incident light becomes unnecessary light (ghost) when the light is incident on the molding defect (surface sag) or the like of the wall surface or the projection, and the image quality is deteriorated. The Further, since the Fresnel lens of Patent Document 1 forms a Fresnel surface from the central area of the Fresnel lens, the image quality of the observation image tends to be deteriorated in the central area of the observation screen where the observer can easily watch.
特許文献2の対物レンズは、レンズの中心領域を連続形状のレンズ面として屈折作用とし、周辺部分を鋸歯形状の回折レンズ構成として一次回折作用を利用している。これにより、温度変動によるピント位置ずれの抑制を図っている。特許文献2の対物レンズは、1枚のレンズより構成されているため、高い光学性能を得るのが難しい傾向があった。 The objective lens of Patent Document 2 uses the central area of the lens as a lens surface of a continuous shape as a refractive action, and the peripheral part as a sawtooth-shaped diffractive lens configuration, utilizing a first-order diffraction action. In this way, it is intended to suppress the focus position shift due to the temperature change. Since the objective lens of Patent Document 2 is configured of a single lens, it tends to be difficult to obtain high optical performance.
本発明は、画像表示面に表示される画像情報を、全系の小型化及び軽量化を図りつつ、広視野角でありながら高い光学性能で観察することができる観察光学系及びそれを有する観察装置の提供を目的とする。 The present invention is an observation optical system capable of observing image information displayed on an image display surface with high optical performance while having a wide viewing angle while achieving downsizing and weight reduction of the entire system, and observation having the same The purpose is to provide a device.
本発明の光学系は、フレネルレンズと、該フレネルレンズの光入射側または光出射側に設けられた正の屈折力のレンズLPを有し、フレネルレンズの中心輪帯の面頂点から中心輪帯の端部までの光軸方向の長さをh0、中心輪帯に隣接する第1輪帯の格子壁面の光軸方向の長さをh1とするとき、
0.01<h1/h0<0.80
なる条件式を満足することを特徴としている。
The optical system according to the present invention has a Fresnel lens and a lens LP of positive refractive power provided on the light incident side or the light output side of the Fresnel lens, and the center annular zone from the vertex of the central annular zone of the Fresnel lens Let h0 be the length in the optical axis direction to the end of the frame, and h1 be the length in the optical axis direction of the grating wall surface of the first annular zone adjacent to the central annular zone,
0.01 <h1 / h0 <0.80
It is characterized by satisfying the following conditional expression.
本発明によれば、画像表示面に表示される画像情報を、全系の小型化及び軽量化を図りつつ、広視野角でありながら高い光学性能で観察することができる観察光学系及びそれを有する観察装置が得られる。 According to the present invention, an observation optical system capable of observing image information displayed on an image display surface with high optical performance while having a wide viewing angle while achieving downsizing and weight reduction of the entire system, and the same An observation device is obtained.
本発明の実施例1の観察光学系を有する観察装置のレンズ断面図。FIG. 1 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 1 of the present invention. 本発明の実施例1の観察光学系のアイレリーフ10mmにおける縦収差図。Longitudinal aberration figure in eye relief 10 mm of the observation optical system of Example 1 of this invention. 本発明の実施例1の観察光学系のアイレリーフ20mmにおける縦収差図。Longitudinal aberration figure in eye relief 20 mm of the observation optical system of Example 1 of this invention. 本発明の実施例2の観察光学系を有する観察装置のレンズ断面図。The lens sectional view of the observation apparatus which has an observation optical system of Example 2 of this invention. 本発明の実施例2の観察光学系のアイレリーフ10mmにおける縦収差図。The longitudinal aberration figure in 10 mm of eye reliefs of the observation optical system of Example 2 of this invention. 本発明の実施例2の観察光学系のアイレリーフ20mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram of the observation optical system of the second embodiment of the present invention at an eye relief of 20 mm. 本発明の実施例3の観察光学系を有する観察装置のレンズ断面図。The lens sectional view of the observation apparatus which has an observation optical system of Example 3 of this invention. 本発明の実施例3の観察光学系のアイレリーフ10mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram of the observation optical system of the Example 3 of the present invention at an eye relief of 10 mm. 本発明の実施例3の観察光学系のアイレリーフ20mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram of the observation optical system of Example 3 of the present invention at an eye relief of 20 mm. 本発明の実施例4の観察光学系を有する観察装置のレンズ断面図。The lens sectional view of the observation apparatus which has an observation optical system of Example 4 of this invention. 本発明の実施例4の観察光学系のアイレリーフ10mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram of the observation optical system of the fourth embodiment of the present invention at an eye relief of 10 mm. 本発明の実施例4の観察光学系のアイレリーフ20mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram of the observation optical system of the fourth embodiment of the present invention at an eye relief of 20 mm. 本発明の実施例5の観察光学系を有する観察装置のレンズ断面図。The lens sectional view of the observation apparatus which has an observation optical system of Example 5 of this invention. 本発明の実施例5の観察光学系のアイレリーフ10mmにおける縦収差図。FIG. 7 is a longitudinal aberration diagram at an eye relief of 10 mm of an observation optical system of Example 5 of the present invention. 本発明の実施例5の観察光学系のアイレリーフ20mmにおける縦収差図。FIG. 7 shows longitudinal aberration at eye relief of 20 mm of the observation optical system of Example 5 of the present invention. 本発明の観察光学系のフレネルレンズの中心輪帯の面頂点から、端部までの光軸方向の長さとフレネル格子の壁面の長さ、及びフレネルレンズの中心輪帯の面頂点から、端部までの直径、フレネルレンズの有効径等の定義説明図。The length from the surface vertex of the central ring of the Fresnel lens of the observation optical system of the present invention to the end, the length of the wall surface of the Fresnel grating and the surface vertex of the central ring of the Fresnel lens Definition explanatory drawing of the diameter up to, the effective diameter of a Fresnel lens, etc. FIG. 本発明の観察光学系のフレネルレンズの中心輪帯の面頂点から、端部までの光軸方向の長さとフレネル格子の壁面の長さ、及びフレネルレンズの中心輪帯の面頂点から、端部までの直径、フレネルレンズの有効径等の定義説明図。The length from the surface vertex of the central ring of the Fresnel lens of the observation optical system of the present invention to the end, the length of the wall surface of the Fresnel grating and the surface vertex of the central ring of the Fresnel lens Definition explanatory drawing of the diameter up to, the effective diameter of a Fresnel lens, etc. FIG. フレネルレンズの説明図。Explanatory drawing of a Fresnel lens. フレネルレンズの説明図。Explanatory drawing of a Fresnel lens. フレネルレンズの説明図。Explanatory drawing of a Fresnel lens. 半視野角45°での像高の説明図。Explanatory drawing of the image height in 45 degrees of half viewing angles.
以下に、本発明の好ましい実施例を添付の図面に基づいて説明する。各実施例の光学系は、画像表示面に表示された画像を観察するための観察光学系であって、フレネルレンズLF、正の屈折力のレンズ(正レンズ)LPを有している。
なお、本願明細書において、フレネルレンズとは、フレネル格子を有する光学素子を言う。フレネルレンズの光入射側の光学面および光出射側の光学面の面形状(光学面がフレネル格子を有する場合にはフレネル格子の頂点を結んだ包絡面)は平面であっても曲面であっても良い。フレネルレンズが曲面状の光学面を有する場合、曲面状の光学面は球面形状に限らず自由曲面形状であっても良い。
Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings. The optical system of each embodiment is an observation optical system for observing an image displayed on the image display surface, and has a Fresnel lens LF and a lens (positive lens) LP of positive refractive power.
In the present specification, the Fresnel lens refers to an optical element having a Fresnel grating. The surface shapes of the optical surface on the light incident side of the Fresnel lens and the optical surface on the light output side (when the optical surface has a Fresnel grating, it is a curved surface even if it is a flat surface) Also good. When the Fresnel lens has a curved optical surface, the curved optical surface is not limited to a spherical shape, and may be a free curved surface.
図1は、本発明の実施例1の観察光学系を有する観察装置のレンズ断面図である。図2A及び図2Bはそれぞれ、本発明の実施例1の観察光学系のアイレリーフ10mm及びアイレリーフ20mmにおける縦収差図である。図3は、本発明の実施例2の観察光学系を有する観察装置のレンズ断面図である。図4A及び図4Bはそれぞれ、本発明の実施例2の観察光学系のアイレリーフ10mm及びアイレリーフ20mmにおける縦収差図である。 FIG. 1 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 1 of the present invention. FIG. 2A and FIG. 2B are respectively longitudinal aberration diagrams at eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 1 of the present invention. FIG. 3 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 2 of the present invention. FIG. 4A and FIG. 4B are respectively longitudinal aberration diagrams in eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 2 of this invention.
図5は、本発明の実施例3の観察光学系を有する観察装置のレンズ断面図である。図6A及び図6Bはそれぞれ、本発明の実施例3の観察光学系のアイレリーフ10mm及びアイレリーフ20mmにおける縦収差図である。図7は、本発明の実施例4の観察光学系を有する観察装置のレンズ断面図である。図8A及び図8Bはそれぞれ、本発明の実施例4の観察光学系のアイレリーフ10mm及びアイレリーフ20mmにおける縦収差図である。 FIG. 5 is a lens sectional view of an observation apparatus having an observation optical system according to a third embodiment of the present invention. FIGS. 6A and 6B are respectively longitudinal aberration diagrams at an eye relief of 10 mm and an eye relief of 20 mm of the observation optical system of Example 3 of the present invention. FIG. 7 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 4 of the present invention. FIGS. 8A and 8B are respectively longitudinal aberration diagrams at an eye relief of 10 mm and an eye relief of 20 mm of the observation optical system of Example 4 of the present invention.
図9は、本発明の実施例5の観察光学系を有する観察装置のレンズ断面図である。図10A及び図10Bはそれぞれ、本発明の実施例5の観察光学系のアイレリーフ10mm及びアイレリーフ20mmにおける縦収差図である。図11A及び図11Bは、本願明細書におけるフレネルレンズの中心輪帯の面頂点から中心輪帯の端部までの光軸方向の長さと、格子壁面の光軸方向の長さの定義を説明する説明図である。図12A、図12B及び図12Cは、フレネルレンズの説明図である。 FIG. 9 is a lens cross-sectional view of an observation apparatus having an observation optical system of Example 5 of the present invention. FIG. 10A and FIG. 10B are respectively longitudinal aberration diagrams in eye relief 10 mm and eye relief 20 mm of the observation optical system of Example 5 of this invention. 11A and 11B illustrate the definition of the length in the optical axis direction from the surface vertex of the central ring zone of the Fresnel lens to the end of the central ring zone in the present specification and the length in the optical axis direction of the grating wall surface FIG. 12A, 12B and 12C are explanatory views of a Fresnel lens.
レンズ断面図において、L0は観察光学系であり、正の屈折力のレンズ(正レンズ)LPと、フレネルレンズLFを有する。FreはフレネルレンズLFのフレネル面である。正レンズLPは観察光学系L0が複数の正レンズを有するときは、最も屈折力の大きい正レンズである。ここで正レンズLPはレンズ面が曲率を有した曲面であり、該曲面で屈折作用のあるレンズであって、フレネルレンズは含まれない。IDは画像表示面であり、例えば液晶表示素子ID1が配置される。SPは観察面であり、観察者の瞳が位置する。観察面SPには絞り(SP1)が配置される場合もある。 In the lens sectional view, L0 is an observation optical system, and has a lens (positive lens) LP of positive refractive power and a Fresnel lens LF. Fre is a Fresnel surface of the Fresnel lens LF. The positive lens LP is a positive lens having the largest refractive power when the observation optical system L0 has a plurality of positive lenses. Here, the positive lens LP is a curved surface having a curvature on the lens surface, and the curved surface is a refractive lens, and does not include a Fresnel lens. ID is an image display surface, and, for example, a liquid crystal display element ID1 is disposed. SP is a viewing plane, where the observer's pupil is located. A stop (SP1) may be disposed on the observation surface SP.
各実施例のレンズ断面図において、アイレリーフは、光軸上におけるアイポイントと最も観察面SP側のレンズ面の間隔を表す。各収差図は、左から順に、球面収差、非点収差、歪曲収差、倍率色収差を示している。球面収差図では、d線(波長587.6nm)、g線(波長435.8nm)に対する球面収差を示している。非点収差図において、S、Mはそれぞれ、サジタル像面、メリディオナル像面における非点収差を示している。歪曲収差はd線について示している。色収差図ではg線における色収差を示している。 In the lens cross-sectional view of each embodiment, the eye relief represents the distance between the eye point on the optical axis and the lens surface closest to the viewing surface SP. Each aberration diagram shows, in order from the left, spherical aberration, astigmatism, distortion, and lateral chromatic aberration. The spherical aberration diagrams show spherical aberration for d-line (wavelength 587.6 nm) and g-line (wavelength 435.8 nm). In the astigmatism diagrams, S and M respectively indicate astigmatism on the sagittal image plane and the meridional image plane. The distortion is shown for d-line. The chromatic aberration diagram shows the chromatic aberration at the g-line.
なお、収差の評価においては、画像表示面IDから光線を飛ばした観察面SP側での収差と、観察面SP側から光線を飛ばした画像表示面ID上での収差は一対一で対応するため、便宜上、画像表示面IDでの収差を評価している。また、各実施例の絞りSP1の開口絞り径は、人間の瞳径の一例として3.5mmに設定している。また、アイレリーフが観察者によって異なったり、眼鏡をかけた状態に対応するため、アイレリーフによる収差の変動を抑えている。よって、収差図には代表的にアイレリーフ10mmとアイレリーフ20mmの際の収差について図示している。 In the evaluation of the aberration, the aberration on the viewing surface SP side where the light beam is blown from the image display surface ID and the aberration on the image display surface ID where the light beam is blown from the observation surface SP side correspond one to one. The aberration at the image display surface ID is evaluated for convenience. Further, the aperture stop diameter of the stop SP1 of each embodiment is set to 3.5 mm as an example of the human pupil diameter. In addition, since the eye relief differs depending on the observer or corresponds to a state where glasses are worn, the variation of the aberration due to the eye relief is suppressed. Therefore, the aberration diagrams typically show aberrations when the eye relief is 10 mm and the eye relief 20 mm.
図11A及び図11Bは本発明に係るフレネルレンズLFの各要素を定義するための説明図である。Freはフレネル面であり、同心円状の複数のフレネル格子FPが所定の格子ピッチで配列されている。F0は中心輪帯であり、連続した面であり、球面や非球面等からなっている。Laは光軸である。Φ1はフレネルレンズLFの有効径である。Φ0はフレネルレンズF0の中心輪帯F0の有効径である。即ち中心輪帯F0の一方の端部FL2から他方の端部FL2までの直径である。Frはフレネル格子が形成されたフレネル輪帯である。 11A and 11B are explanatory diagrams for defining each element of the Fresnel lens LF according to the present invention. Fre is a Fresnel surface, and a plurality of concentric Fresnel gratings FP are arranged at a predetermined grating pitch. F0 is a central annular zone, is a continuous surface, and is formed of a spherical surface, an aspheric surface, and the like. La is an optical axis. Φ 1 is the effective diameter of the Fresnel lens LF. Φ 0 is the effective diameter of the central annular zone F 0 of the Fresnel lens F 0. That is, it is the diameter from one end FL2 of the central annular zone F0 to the other end FL2. Fr is a Fresnel ring zone in which a Fresnel grating is formed.
図11A及び図11BではフレネルレンズLFの中心輪帯F0の面頂点FL1から端部FL2までの光軸La方向の長さをh0、光軸Laから数えたときの第n番目のフレネル格子(輪帯)の壁面の長さをhnとしている。 In FIG. 11A and FIG. 11B, the nth Fresnel grating (a ring from the optical axis La in the direction of the optical axis La from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF) The length of the wall of the band is hn.
次に本発明の観察光学系L0の構成について説明する。本発明の観察光学系L0は、正レンズLPと、フレネルレンズLFを有する。観察光学系L0を複数のレンズで構成している。これによって、フレネルレンズLFが正の屈折力を有する場合、各面の曲率を緩めることができ、各面での収差発生量を減らし、全体としての収差量も減らしている。また、フレネルレンズLFが負の屈折力を有する場合、全体としてのペッツバール和を減らすことができ、像面湾曲を減らすことができる。また、倍率色収差も低減している。 Next, the configuration of the observation optical system L0 of the present invention will be described. The observation optical system L0 of the present invention has a positive lens LP and a Fresnel lens LF. The observation optical system L0 is composed of a plurality of lenses. Thereby, when the Fresnel lens LF has positive refractive power, the curvature of each surface can be relaxed, the amount of aberration generation on each surface is reduced, and the amount of aberration as a whole is also reduced. In addition, when the Fresnel lens LF has negative refractive power, the Petzval sum as a whole can be reduced, and field curvature can be reduced. In addition, chromatic aberration of magnification is also reduced.
フレネルレンズLFの中心輪帯F0の面頂点FL1から中心輪帯F0の端部FL2までの光軸方向の長さをh0とする。フレネルレンズLFのフレネル輪帯Frの光軸中心から順に数えたときの第1輪帯の格子壁面の光軸方向の長さ(中心輪帯F0に隣接する第1輪帯の格子壁面の光軸方向の長さ)をh1とする。このとき、
0.01<h1/h0<0.80 ・・・(1)
なる条件式を満足する。
The length in the optical axis direction from the surface vertex FL1 of the central annular zone F0 of the Fresnel lens LF to the end portion FL2 of the central annular zone F0 is h0. Length in the optical axis direction of the grating wall surface of the first annular zone counted from the optical axis center of the Fresnel annular zone Fr of the Fresnel lens LF (optical axis of the grating wall surface of the first annular zone adjacent to the central annular zone F0 Let h1 be the length of the direction). At this time,
0.01 <h1 / h0 <0.80 (1)
Satisfy the following conditional expression.
条件式(1)はフレネルレンズLFのフレネル輪帯Frの第1輪帯の格子壁面の光軸方向の長さh1とフレネルレンズLFの中心輪帯F0の面頂点FL1から端部FL2までの光軸方向の長さh0の比を規定している。フレネルレンズLFの中心輪帯F0の面頂点FL1から端部FL2までの光軸方向の長さをフレネルレンズLFの第1輪帯の格子壁面の光軸方向の長さに対して大きくしている。 The conditional expression (1) is the length h1 in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel annular zone Fr of the Fresnel lens LF and the light from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF The ratio of the axial length h0 is defined. The length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 of the Fresnel lens LF is made larger than the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF .
それにより、フレネルレンズLFの径方向の連続的な形状の領域(中心輪帯)F0の割合を増加させ、フレネルレンズLFの鋸歯形状による画質劣化要素を観察者が注視しやすい画面中心域で軽減し、光学性能を向上させている。 As a result, the ratio of the continuously shaped area (central annular zone) F0 in the radial direction of the Fresnel lens LF is increased, and the image quality deterioration factor due to the sawtooth shape of the Fresnel lens LF is reduced in the screen central area where the observer easily gazes To improve the optical performance.
条件式(1)の下限を超えると、中心輪帯F0の面頂点FL1から端部FL2までの光軸方向の長さが長くなりすぎて、重量が増大する。或いは、フレネルレンズLFの第1輪帯の格子壁面の光軸方向の長さが短くなりすぎ、回折によるフレアが増大して光学性能が低下してくる。 If the lower limit of the conditional expression (1) is exceeded, the length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 becomes too long, and the weight increases. Alternatively, the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF becomes too short, flare due to diffraction increases, and optical performance deteriorates.
逆に条件式(1)の上限を超えると、フレネルレンズLFの屈折力が強い場合、中心輪帯F0の面頂点FL1から端部FL2までの光軸方向の長さが短くなりすぎる。この結果、観察者が注視しやすい画面中心域にフレネルレンズLFの鋸歯形状が形成され、光学性能が低下してくる。フレネルレンズLFの屈折力が弱い場合、構成する他のレンズの屈折力が強くなりすぎて、軸外の諸収差が増加してくる。逆に、フレネルレンズLFの第1輪帯の格子壁面の光軸方向の長さが長くなりすぎて、壁面で反射した不要光(ゴースト)が増加し、光学性能が低下してくる。 Conversely, if the upper limit of the conditional expression (1) is exceeded, if the refractive power of the Fresnel lens LF is strong, the length in the optical axis direction from the surface vertex FL1 to the end FL2 of the central annular zone F0 becomes too short. As a result, the sawtooth shape of the Fresnel lens LF is formed in the screen central area where the observer can easily gaze, and the optical performance is degraded. If the refractive power of the Fresnel lens LF is weak, the refractive powers of the other lenses that constitute it become too strong, and various off-axis aberrations increase. On the contrary, the length in the optical axis direction of the grating wall surface of the first annular zone of the Fresnel lens LF becomes too long, the unnecessary light (ghost) reflected by the wall surface increases, and the optical performance is degraded.
さらに好ましくは、条件式(1)の数値範囲を次の如く設定するのが良い。
0.02<h1/h0<0.65 ・・・(1a)
さらに好ましくは、条件式(1a)の数値範囲を次の如く設定するのが良い。
0.03<h1/h0<0.50 ・・・(1b)
以上の構成により、広視野でありながら高い光学性能を有し、且つ全系が軽量な観察光学系を得ている。
More preferably, the numerical range of the conditional expression (1) is set as follows.
0.02 <h1 / h0 <0.65 (1a)
More preferably, the numerical range of the conditional expression (1a) may be set as follows.
0.03 <h1 / h0 <0.50 (1b)
With the above configuration, an observation optical system having a wide field of view and high optical performance, and having a lightweight overall system is obtained.
なお、観察光学系L0は上述した条件式(1)に代えて、以下の条件式(2)を満足しても良い。式(2)を満たすことによっても広視野でありながら高い光学性能を有し、且つ全系が軽量な観察光学系を得ることができる。
0.3<Φ0/Φ1<0.7 ・・・(2)
条件式(2)において、Φ0はフレネルレンズLFの中心輪帯F0の直径、Φ1はフレネルレンズLFの有効径である。
条件式(2)はフレネルレンズLFの中心輪帯F0の有効径(直径)Φ0とフレネルレンズLFの有効径Φ1との比を規定している。条件式(2)の下限を超えると、観察者が注視しやすい画面中心域にフレネルレンズLFの鋸歯形状が形成され、光学性能が低下してくる。逆に、条件式(2)の上限を超えると、連続形状を形成する領域(レンズ面)が大きくなりすぎ、全系の重量が増大する。
さらに好ましくは、条件式(2)の数値範囲を次の如く設定するのが良い。
0.32<Φ0/Φ1<0.65 ・・・(2a)
さらに好ましくは、条件式(2a)の数値範囲を次の如く設定するのが良い。
0.34<Φ0/Φ1<0.62 ・・・(2b)
なお、観察光学系L0は条件式(1)と条件式(2)を共に満たしていても良い。
The observation optical system L0 may satisfy the following conditional expression (2) instead of the above-mentioned conditional expression (1). By satisfying the formula (2), it is possible to obtain an observation optical system having a wide optical field while having a wide field of view, and having a lightweight system as a whole.
0.3 <Φ0 / Φ1 <0.7 (2)
In conditional expression (2), Φ0 is the diameter of the central annular zone F0 of the Fresnel lens LF, and Φ1 is the effective diameter of the Fresnel lens LF.
Conditional expression (2) defines the ratio of the effective diameter (diameter) 0 0 of the central annular zone F 0 of the Fresnel lens LF to the effective diameter Φ 1 of the Fresnel lens LF. If the lower limit of the conditional expression (2) is exceeded, the sawtooth shape of the Fresnel lens LF is formed in the screen central area where the observer can easily gaze, and the optical performance is lowered. Conversely, if the upper limit of the conditional expression (2) is exceeded, the region (lens surface) forming the continuous shape becomes too large, and the weight of the entire system increases.
More preferably, the numerical range of the conditional expression (2) is set as follows.
0.32 <Φ0 / Φ1 <0.65 (2a)
More preferably, the numerical range of the conditional expression (2a) may be set as follows.
0.34 <Φ0 / Φ1 <0.62 (2b)
The observation optical system L0 may satisfy both the conditional expression (1) and the conditional expression (2).
さらに、次の条件式のうち1つ以上を満足するのが良い。ここで、フレネルレンズLFの焦点距離をfh、観察光学系L0の焦点距離をFとする。観察光学系L0が1つ以上の正の屈折力のレンズを有するときは、最も屈折力の大きいレンズを正レンズLPとし、正レンズLPの焦点距離をfpとする。正レンズLPとフレネルレンズLFの中で、最も観察側に位置するレンズの観察面側のレンズ面から最も画像表示面側に位置するレンズの画像表示面側のレンズ面までの光軸上の距離をdとする。 Furthermore, it is preferable to satisfy one or more of the following conditional expressions. Here, the focal length of the Fresnel lens LF is fh, and the focal length of the observation optical system L0 is F. When the observation optical system L0 has one or more lenses with positive refractive power, the lens with the largest refractive power is a positive lens LP, and the focal length of the positive lens LP is fp. Of the positive lens LP and the Fresnel lens LF, the distance on the optical axis from the lens surface on the observation surface side of the lens closest to the observation side to the lens surface on the image display surface side of the lens closest to the image display surface Let d be.
また、観察光学系L0の最も観察面側に位置するレンズの観察面側のレンズ面から、画像表示面までの光軸上の距離をLとする。フレネルレンズLFが正の屈折力を有するとき、フレネルレンズLFの観察面側の面の曲率半径をRp11、フレネルレンズLFの画像表示面側の面の曲率半径をRp12とする。フレネルレンズLFが負の屈折力を有するとき、フレネルレンズLFの観察面側の面の曲率半径をRn11、フレネルレンズLFの画像表示面側の面の曲率半径をRn12とする。正レンズLPの観察面側のレンズ面の曲率半径をR21、正レンズLPの画像表示面側のレンズ面の曲率半径をR22とする。 Further, the distance on the optical axis from the lens surface on the observation surface side of the lens positioned closest to the observation surface side of the observation optical system L0 to the image display surface is L. When the Fresnel lens LF has positive refractive power, the curvature radius of the surface on the observation surface side of the Fresnel lens LF is Rp11, and the curvature radius of the surface on the image display surface side of the Fresnel lens LF is Rp12. When the Fresnel lens LF has negative refractive power, the curvature radius of the surface on the observation surface side of the Fresnel lens LF is Rn11, and the curvature radius of the surface on the image display surface side of the Fresnel lens LF is Rn12. The curvature radius of the lens surface of the positive lens LP on the observation surface side is R21, and the curvature radius of the lens surface of the positive lens LP on the image display surface side is R22.
また、フレネルレンズLFの有効面内における格子壁面の光軸方向の長さの平均値をhave(mm)、d線の波長の長さをλ(mm)とする。フレネルレンズLFの第1輪帯の格子ピッチをw1、フレネルレンズLFの有効面内の最も外側の輪帯の格子ピッチをweとする。 Further, the average value of the length in the optical axis direction of the grating wall surface in the effective surface of the Fresnel lens LF is set to have (mm), and the length of the wavelength of the d-line is set to λ (mm). The grating pitch of the first annular zone of the Fresnel lens LF is w1, and the grating pitch of the outermost annular zone in the effective surface of the Fresnel lens LF is we.
また、アイレリーフ10mmで、半視野角45度における画像表示面の理想像高をy0、アイレリーフ10mmで、半視野角45度における画像表示面の実際の像高をyとする。なお、アイレリーフ10mm、半視野角45度における理想像高y0は、y0=F×tan45°で与えられる値である。また、「実際の像高y」とは、観察光学系L0にアイレリーフ10mm、半視野角45度で入射した主光線の近軸結像位置での光軸に垂直な方向の高さである。図13は観察光学系L0におけるyを説明する図である。図13では、絞りSPから観察光学系L0に入射した視野角θ(=45°)の主光線が、観察光学系L0の近軸結像位置上で高さyの位置に到達していることが表されている。 The ideal image height of the image display surface at a half viewing angle of 45 degrees is 10 mm with an eye relief of 10 mm, and the actual image height of the image display surface at a half viewing angle of 45 degrees is y with an eye relief of 10 mm. The ideal image height y0 at an eye relief of 10 mm and a half viewing angle of 45 degrees is a value given by y0 = F × tan 45 °. The "actual image height y" is the height in the direction perpendicular to the optical axis at the paraxial imaging position of the chief ray incident on the observation optical system L0 at an eye relief of 10 mm and a half viewing angle of 45 degrees. . FIG. 13 is a diagram for explaining y in the observation optical system L0. In FIG. 13, the chief ray of the viewing angle θ (= 45 °) incident on the observation optical system L0 from the stop SP has reached the position of height y on the paraxial imaging position of the observation optical system L0. Is represented.
1.5<|fh|/F<5.0   ・・・(3)
1.2<fp/F<2.0     ・・・(4)
0.1<d/L<0.4      ・・・(5)
-1.6<(Rp12+Rp11)/(Rp12-Rp11)<-0.5 ・・・(6)
0.8<(Rn12+Rn11)/(Rn12-Rn11)<1.7   ・・・(7)
-1.6<(R22+R21)/(R22-R21)<-0.4     ・・・(8)
50.0<have/λ<500.0  ・・・(9)
1.2<w1/we<10.0     ・・・(10)
-0.35<(y-y0)/y0<-0.10   ・・・(11)
0.5<y/F<1.1   ・・・(12)
1.5 <| fh | / F <5.0 (3)
1.2 <fp / F <2.0 (4)
0.1 <d / L <0.4 (5)
-1.6 <(Rp12 + Rp11) / (Rp12-Rp11) <-0.5 (6)
0.8 <(Rn12 + Rn11) / (Rn12-Rn11) <1.7 (7)
-1.6 <(R22 + R21) / (R22-R21) <-0.4 (8)
50.0 <have / λ <500.0 (9)
1.2 <w1 / we <10.0 (10)
−0.35 <(y−y0) / y0 <−0.10 (11)
0.5 <y / F <1.1 (12)
次に前述の各条件式の技術的意味について説明する。条件式(3)はフレネルレンズLFの焦点距離と観察光学系L0の焦点距離の比を規定している。条件式(3)の下限を超えてフレネルレンズLFの屈折力が強く(屈折力の絶対値が大きく)なりすぎると、鋸歯形状を形成する各フレネル格子の格子ピッチが細かくなりすぎる。その結果、回折光の回折する角度が大きくなりすぎて、フレアが増大する。逆に、条件式(3)の上限を超えると、構成しているその他のレンズの枚数が少ない場合、各々のレンズの屈折力が強くなりすぎ、軸外の諸収差が増大する。構成しているその他のレンズの枚数が多い場合、全系の重量が増大する。 Next, technical meanings of the above-mentioned conditional expressions will be described. Conditional expression (3) defines the ratio of the focal length of the Fresnel lens LF to the focal length of the observation optical system L0. If the refractive power of the Fresnel lens LF is too strong (the absolute value of the refractive power is large) beyond the lower limit of the conditional expression (3), the grating pitch of each Fresnel grating forming the sawtooth shape becomes too fine. As a result, the angle at which diffracted light diffracts becomes too large, and flare increases. Conversely, if the upper limit of conditional expression (3) is exceeded, the refractive power of each lens becomes too strong when the number of other lenses being configured is small, and various off-axis aberrations increase. If the number of other lenses being configured is large, the weight of the entire system increases.
条件式(4)は正レンズLPの焦点距離と観察光学系L0の焦点距離の比を規定している。条件式(4)の下限を超えると正レンズLPの屈折力が強くなりすぎて、主に、像面湾曲、非点収差が増大する。逆に、条件式(4)の上限を超えると、構成しているその他のレンズの枚数が少ない場合、各々のレンズの屈折力が強くなりすぎ、軸外の諸収差が増大する。構成しているその他のレンズの枚数が多い場合、全系の重量が増大する。 Condition (4) defines the ratio of the focal length of the positive lens LP to the focal length of the observation optical system L0. If the lower limit of the conditional expression (4) is exceeded, the refractive power of the positive lens LP becomes too strong, and mainly curvature of field and astigmatism increase. Conversely, if the upper limit of conditional expression (4) is exceeded, the refractive power of each lens becomes too strong when the number of other lenses being configured is small, and various off-axis aberrations increase. If the number of other lenses being configured is large, the weight of the entire system increases.
条件式(5)は正レンズLPとフレネルレンズLFの中で、最も観察面SP側に位置するレンズの観察面側のレンズ面から最も画像表示面ID側に位置するレンズの画像表示面側のレンズ面までの光軸上の距離をdとしたとき、距離dに対する最も観察面SP側のレンズの観察面側のレンズ面から画像表示面IDまでの距離の比を規定している。 The conditional expression (5) is that of the positive lens LP and the Fresnel lens LF, from the lens surface on the observation surface side of the lens closest to the observation surface SP side to the image display surface side of the lens closest to the image display surface ID Assuming that the distance on the optical axis to the lens surface is d, the ratio of the distance from the lens surface on the viewing surface side of the lens closest to the viewing surface SP to the image display surface ID to the distance d is defined.
条件式(5)の下限を超えると、レンズ間の間隔が短くなりすぎ、各レンズをメカで保持することが困難となる。或いは、レンズの厚みが薄くなりすぎて、レンズ面が変形しやすくなり、光学性能が低下しやすい。逆に、条件式(5)の上限を超えると、レンズ間の間隔が長くなりすぎて、画像表示面側に位置するレンズの有効径が大きくなり、重量が増大する。或いは、レンズの厚みが厚くなりすぎて、重量が増大する。 If the lower limit of the conditional expression (5) is exceeded, the distance between the lenses becomes too short, and it becomes difficult to mechanically hold each lens. Alternatively, the thickness of the lens is too thin, the lens surface is easily deformed, and the optical performance is easily reduced. Conversely, when the upper limit of conditional expression (5) is exceeded, the distance between lenses becomes too long, and the effective diameter of the lens positioned on the image display surface side becomes large, and the weight increases. Alternatively, the thickness of the lens becomes too thick and the weight increases.
条件式(6)はフレネルレンズLFが正の屈折力を有する場合のフレネルレンズLFの形状因子を規定している。条件式(6)の下限を超えると、フレネルレンズLFの画像表示面側の面の曲率が強くなりすぎて主に像面湾曲、非点収差が増大する。逆に、条件式(6)の上限を超えると、フレネルレンズLFの観察面側の面の曲率が強くなりすぎて、主に歪曲収差が増大する。 Conditional expression (6) defines the form factor of the Fresnel lens LF when the Fresnel lens LF has positive refractive power. If the lower limit of the conditional expression (6) is exceeded, the curvature of the surface on the image display surface side of the Fresnel lens LF becomes too strong, and mainly the curvature of field and astigmatism increase. Conversely, when the upper limit of conditional expression (6) is exceeded, the curvature of the surface on the observation surface side of the Fresnel lens LF becomes too strong, and distortion mainly increases.
条件式(7)はフレネルレンズLFが負の屈折力を有する場合のフレネルレンズLFの形状因子を規定している。条件式(7)の下限を超えると、フレネルレンズLFの画像表示面側の面の曲率が強くなりすぎて主に像面湾曲、非点収差が増大する。逆に、条件式(7)の上限を超えると、フレネルレンズLFの観察面側の面の曲率が強くなりすぎて、主に像面湾曲、非点収差が増大する。 The conditional expression (7) defines the form factor of the Fresnel lens LF when the Fresnel lens LF has negative refractive power. If the lower limit of the conditional expression (7) is exceeded, the curvature of the surface on the image display surface side of the Fresnel lens LF becomes too strong, and field curvature and astigmatism mainly increase. On the contrary, when the upper limit of the conditional expression (7) is exceeded, the curvature of the surface on the observation surface side of the Fresnel lens LF becomes too strong, and mainly the field curvature and astigmatism increase.
条件式(8)は正レンズLPの形状因子を規定している。条件式(8)の下限を超えると、正レンズLPの画像表示面側の面の曲率が強くなりすぎて主に像面湾曲、非点収差が増大する。逆に、条件式(8)の上限を超えると、正レンズLPの観察面側の面の曲率が強くなりすぎて、主に歪曲収差が増大する。 Condition (8) defines the form factor of the positive lens LP. If the lower limit of the conditional expression (8) is exceeded, the curvature of the surface on the image display surface side of the positive lens LP becomes too strong, and field curvature and astigmatism mainly increase. Conversely, if the upper limit of conditional expression (8) is exceeded, the curvature of the surface on the observation surface side of the positive lens LP becomes too strong, and distortion mainly increases.
条件式(9)は、フレネルレンズLFの有効系内におけるフレネル格子の壁面高さの平均値とd線の波長の長さの比を規定している。条件式(9)の下限を超えると、フレネルレンズLFの有効系内におけるフレネル格子の壁面高さが小さくなりすぎて、回折光の強度が増し、光学性能が低下してくる。逆に、条件式(9)の上限を超えると、フレネルレンズLFのフレネル格子の壁面の長さが長くなりすぎ、壁面で反射した不要光(ゴースト)が増加し、光学性能が低下してくる。 The conditional expression (9) defines the ratio of the average of the wall heights of the Fresnel grating in the effective system of the Fresnel lens LF to the length of the wavelength of the d-line. If the lower limit of the conditional expression (9) is exceeded, the wall height of the Fresnel grating in the effective system of the Fresnel lens LF becomes too small, the intensity of the diffracted light increases, and the optical performance decreases. Conversely, when the upper limit of conditional expression (9) is exceeded, the wall length of the Fresnel grating of the Fresnel lens LF becomes too long, unnecessary light (ghost) reflected by the wall increases, and the optical performance decreases. .
条件式(10)は、フレネルレンズLFの第1輪帯部のフレネル格子の格子ピッチとフレネルレンズLFの光線有効径Φ1内の最も外側の輪帯部のフレネル格子の格子ピッチの比を規定している。条件式(10)の下限を超えると、第1輪帯部のフレネル格子の格子ピッチが小さくなりすぎ、回折する光の回折角が大きくなりすぎ、画面中心にフレアの影響が及び、光学性能が低下してくる。 Conditional expression (10) defines the ratio of the grating pitch of the Fresnel grating in the first annular zone of the Fresnel lens LF to the grating pitch of the Fresnel grating in the outermost annular zone in the light beam effective diameter Φ1 of the Fresnel lens LF ing. If the lower limit of conditional expression (10) is exceeded, the grating pitch of the Fresnel grating in the first orbicular zone becomes too small, the diffraction angle of light to be diffracted becomes too large, flare effects occur at the screen center, and optical performance It is falling.
逆に、条件式(10)の上限を超えると、光線有効径Φ1内の最も外側の輪帯部のフレネル格子の格子ピッチが小さくなりすぎ、回折する光の回折角が大きくなりすぎ、画面中心にフレアの影響が及び、光学性能が低下してくる。 Conversely, when the upper limit of conditional expression (10) is exceeded, the grating pitch of the Fresnel grating in the outermost annular zone in the effective beam diameter Φ1 becomes too small, and the diffraction angle of light to be diffracted becomes too large. The effect of flare is the cause of deterioration in optical performance.
条件式(11)は、アイレリーフ10mm、半視野角45度における画像表示面IDでの歪曲量を規定している。条件式(11)の下限を超えると、正の屈折力が強すぎるため、画面周辺の光線を強く光軸方向に曲げることになり、軸外の諸収差が増大する。逆に、条件式(11)の上限を超えると、正の屈折力が小さすぎるため、各レンズ位置における画面周辺光線の入射高が高くなりすぎ、有効径が増すので、全系の重量が増大する。 Conditional expression (11) defines the distortion amount on the image display surface ID at an eye relief of 10 mm and a half viewing angle of 45 degrees. If the lower limit of the conditional expression (11) is exceeded, the positive refractive power is too strong, so light rays around the screen are strongly bent in the optical axis direction, and various off-axis aberrations increase. Conversely, if the upper limit of conditional expression (11) is exceeded, the positive refractive power is too small, so the incident height of the marginal rays at each lens position becomes too high, and the effective diameter increases, so the weight of the entire system increases. Do.
条件式(12)は、アイレリーフ10mmでの、観察光学系L0における、半視野角45度の主光線の実際の像高(近軸結像位置上での光軸に垂直な方向の高さ)yと観察光学系L0の焦点距離Fの比を規定している。これは、観察光学系L0の視野角45度に相当する周辺部の屈折力を表したものである。周辺部の屈折力が強いほどyは小さくなるため、条件式(12)を満足することで、画像表示素子を小型に構成しながら広視野角化することができる。
条件式(12)の下限を超えて観察光学系L0の焦点距離Fが長くなりすぎると、観察光学系L0の全長が伸び、大型化してしまう。あるいは、観察光学系の周辺部の屈折力が強くなりすぎて、特に非点収差と像面湾曲が増大してしまう。
逆に、条件式(12)の上限を超えてyが大きくなりすぎると、画像表示面が大きくなりすぎ、画像表示素子が大型化してしまう。
以上の構成により、広視野でありながら、高い光学性能を有し、且つ全系が軽量な観察光学系が得られる。
The conditional expression (12) is the actual image height of the chief ray at a half viewing angle of 45 degrees in the observation optical system L0 at an eye relief of 10 mm (the height in the direction perpendicular to the optical axis at the paraxial imaging position The ratio of y) to the focal length F of the observation optical system L0 is defined. This represents the refractive power of the peripheral portion corresponding to the viewing angle of 45 degrees of the observation optical system L0. Since y becomes smaller as the refractive power of the peripheral portion becomes stronger, satisfying the conditional expression (12) makes it possible to widen the viewing angle while configuring the image display element in a small size.
If the focal length F of the observation optical system L0 is too long beyond the lower limit of the conditional expression (12), the total length of the observation optical system L0 is elongated and enlarged. Alternatively, the refractive power at the periphery of the observation optical system becomes too strong, and in particular astigmatism and field curvature increase.
On the other hand, if y exceeds the upper limit of the conditional expression (12) and y is too large, the image display surface becomes too large, and the image display element becomes large.
According to the above-described configuration, it is possible to obtain an observation optical system which has high optical performance and a light whole system while having a wide field of view.
さらに好ましくは、条件式(3)乃至(12)の数値範囲を次の如く設定するのが良い。
1.6<|fh|/F<4.8  ・・・(3a)
1.23<fp/F<1.95  ・・・(4a)
0.12<d/L<0.35   ・・・(5a)
-1.5<(Rp12+Rp11)/(Rp12-Rp11)<-0.6
・・・(6a)
0.9<(Rn12+Rn11)/(Rn12-Rn11)<1.6
・・・(7a)
-1.5<(R22+R21)/(R22-R21)<-0.5
・・・(8a)
75.0<have/λ<400.0      ・・・(9a)
1.4<w1/we<8.0          ・・・(10a)
-0.34<(y-y0)/y0<-0.15  ・・・(11a)
0.6<y/F<1.0   ・・・(12a)
More preferably, the numerical ranges of the conditional expressions (3) to (12) may be set as follows.
1.6 <| fh | / F <4.8 ... (3a)
1.23 <fp / F <1.95 (4a)
0.12 <d / L <0.35 (5a)
-1.5 <(Rp12 + Rp11) / (Rp12-Rp11) <-0.6
... (6a)
0.9 <(Rn12 + Rn11) / (Rn12-Rn11) <1.6
... (7a)
-1.5 <(R22 + R21) / (R22-R21) <-0.5
... (8a)
75.0 <have / λ <400.0 (9a)
1.4 <w1 / we <8.0 (10a)
-0.34 <(y-y0) / y0 <-0.15 (11a)
0.6 <y / F <1.0 (12a)
さらに好ましくは、条件式(3a)乃至(12a)の数値範囲を次の如く設定するのが良い。
1.7<|fh|/F<4.6  ・・・(3b)
1.25<fp/F<1.90  ・・・(4b)
0.14<d/L<0.33   ・・・(5b)
-1.4<(Rp12+Rp11)/(Rp12-Rp11)<-0.7
・・・(6b)
0.95<(Rn12+Rn11)/(Rn12-Rn11)<1.55
・・・(7b)
-1.4<(R22+R21)/(R22-R21)<-0.6
・・・(8b)
100.0<have/λ<300.0     ・・・(9b)
1.6<w1/we<7.0          ・・・(10b)
-0.33<(y-y0)/y0<-0.19  ・・・(11b)
0.7<y/F<0.9   ・・・(12b)
More preferably, the numerical ranges of the conditional expressions (3a) to (12a) may be set as follows.
1.7 <| fh | / F <4.6 (3b)
1.25 <fp / F <1.90 ・ ・ ・ (4b)
0.14 <d / L <0.33 (5b)
-1.4 <(Rp12 + Rp11) / (Rp12-Rp11) <-0.7
... (6b)
0.95 <(Rn12 + Rn11) / (Rn12-Rn11) <1.55
... (7b)
-1.4 <(R22 + R21) / (R22-R21) <-0.6
... (8b)
100.0 <have / λ <300.0 (9b)
1.6 <w1 / we <7.0 (10b)
−0.33 <(y−y0) / y0 <−0.19 (11 b)
0.7 <y / F <0.9 (12 b)
次に各実施例の観察光学系L0について説明する。 Next, the observation optical system L0 of each embodiment will be described.
[実施例1]
以下、図1を参照して、本発明の観察光学系L0の実施例1について説明する。実施例1の観察光学系L0は、観察面側より画像表示面側へ順に、正の屈折力のフレネルレンズLF、正の屈折力のレンズ(正レンズ)LPから構成されている。2枚のレンズが正の屈折力を分担することにより、各面での曲率を緩めて、これにより諸収差の発生を軽減している。正の屈折力のフレネルレンズLFは、画像表示面ID側をフレネル面としている。
Example 1
Example 1 of the observation optical system L0 of the present invention will be described below with reference to FIG. The observation optical system L0 of Example 1 includes, in order from the observation surface side to the image display surface side, a Fresnel lens LF of positive refractive power and a lens (positive lens) LP of positive refractive power. By sharing the positive refractive power between the two lenses, the curvature on each surface is loosened, thereby reducing the occurrence of various aberrations. The Fresnel lens LF of positive refractive power has the image display surface ID side as the Fresnel surface.
そして条件式(1)を満足する適切な範囲で、フレネルレンズLFの中心輪帯の面頂点FL1から端部FL2までの光軸方向の長さh0を長くしている。これによって、フレネルレンズLFの径方向の連続的な形状の領域の割合を増加させ、観察者が注視しやすい画面範囲の光学性能を向上させている。 The length h0 in the optical axis direction from the surface vertex FL1 to the end portion FL2 of the central annular zone of the Fresnel lens LF is increased in an appropriate range that satisfies the conditional expression (1). As a result, the ratio of the continuously shaped area in the radial direction of the Fresnel lens LF is increased, and the optical performance in the screen range in which the observer can easily gaze is improved.
さらに、条件式(2)を満足する適切な範囲で、連続的な形状の領域を設定し、光学性能の向上と軽量化を図っている。さらに、条件式(3)を満足する適切な範囲で、フレネルレンズLFの焦点距離を緩め、フレネル格子の格子ピッチが小さくなりすぎることを防ぎ、回折によるフレアを低減している。さらに、条件式(4)を満足する適切な範囲で、正レンズLPの焦点距離を緩め、主に像面湾曲や非点収差の発生を軽減している。さらに、条件式(5)を満足する適切な範囲で、フレネルレンズLFと正レンズLPの各々の厚みを薄くすることによって、全系の軽量化を図っている。 Furthermore, the region of continuous shape is set within an appropriate range satisfying the conditional expression (2), and the optical performance is improved and the weight is reduced. Furthermore, the focal length of the Fresnel lens LF is loosened in an appropriate range satisfying the conditional expression (3) to prevent the grating pitch of the Fresnel grating from becoming too small, and flare due to diffraction is reduced. Furthermore, the focal length of the positive lens LP is reduced within an appropriate range that satisfies the conditional expression (4) to mainly reduce the occurrence of field curvature and astigmatism. Furthermore, the weight reduction of the entire system is achieved by reducing the thickness of each of the Fresnel lens LF and the positive lens LP within an appropriate range that satisfies the conditional expression (5).
さらに、条件式(6)を満足するように、フレネルレンズLFの観察面SP側の面の曲率に比して画像表示面側の面の曲率を強め、画像表示面側に凸形状を向けることによって、観察面SPに対してコンセントリックな形としている。これにより、軸外の光線の入射角を緩くし、軸外の諸収差の発生を軽減している。 Furthermore, to satisfy the conditional expression (6), the curvature of the surface on the image display surface side is intensified relative to the curvature of the surface on the observation surface SP side of the Fresnel lens LF, and the convex shape is directed to the image display surface side. Of the observation surface SP. Thereby, the incident angle of the off-axis light beam is relaxed, and the occurrence of various off-axis aberrations is reduced.
さらに、条件式(8)を満足するように、正レンズLPの観察面SP側の面の曲率に比して画像表示面ID側の面の曲率を強め、画像表示面IDに凸形状を向けることによって、観察面SPに対してコンセントリックな形となっている。これにより、軸外の光線の入射角を緩くし、軸外の諸収差の発生を軽減している。 Furthermore, the curvature of the surface on the image display surface ID side is intensified with respect to the curvature of the surface on the observation surface SP side of the positive lens LP so as to satisfy the conditional expression (8), and the convex shape is directed to the image display surface ID. Thus, it has a concentric shape with respect to the viewing surface SP. Thereby, the incident angle of the off-axis light beam is relaxed, and the occurrence of various off-axis aberrations is reduced.
さらに、条件式(9)を満足する適切な範囲で、フレネルレンズLFの有効系内におけるフレネル格子の壁面高さの平均値を大きくすることで、不要光である回折光の発生を防ぎ、光学性能の向上を図っている。さらに、条件式(10)を満足するように、フレネルレンズLFの第1輪帯部のフレネル格子の格子ピッチと光線有効径Φ1内の最も外側の輪帯部のフレネル格子の格子ピッチを設定することで、画面全体での回折光の発生を防ぎ、光学性能の向上を図っている。 Furthermore, by increasing the average value of the wall heights of the Fresnel gratings in the effective system of the Fresnel lens LF within an appropriate range that satisfies the conditional expression (9), the generation of diffracted light, which is unnecessary light, is prevented. I am trying to improve the performance. Further, the grating pitch of the Fresnel grating in the first annular zone of the Fresnel lens LF and the grating pitch of the Fresnel grating in the outermost annular zone in the light beam effective diameter 11 are set so as to satisfy the conditional expression (10) This prevents the generation of diffracted light on the entire screen and improves optical performance.
さらに、条件式(11)を満足するように、歪曲量を適切に設定することで、画面周辺の光線を強く光軸方向に曲げることを防ぎ、光学性能の向上を達成している。
さらに、条件式(12)を満足するように、屈折力を適切に設定することで、画像表示素子を小型化と観察光学系L0の広視野角化を達成している。
Further, by appropriately setting the distortion amount so as to satisfy the conditional expression (11), it is possible to prevent the light ray in the periphery of the screen from being strongly bent in the optical axis direction, and to improve the optical performance.
Further, by appropriately setting the refractive power so as to satisfy the conditional expression (12), downsizing of the image display element and widening of viewing angle of the observation optical system L0 are achieved.
[実施例2]
以下、図3を参照して、本発明の観察光学系L0の実施例2について説明する。実施例2の観察光学系L0は、観察面側より画像表示面側へ順に、正の屈折力のレンズ(正レンズ)LP、負の屈折力のレンズ(負レンズ)L3、正の屈折力のフレネルレンズLFから構成されている。正の屈折力を2枚のレンズが分担することにより、各面での曲率を緩めて、これにより諸収差の発生を軽減している。
Example 2
Example 2 of the observation optical system L0 of the present invention will be described below with reference to FIG. The observation optical system L0 of Example 2 includes, in order from the observation surface side to the image display surface side, a lens of positive refractive power (positive lens) LP, a lens of negative refractive power (negative lens) L3, and positive refractive power. It comprises a Fresnel lens LF. By sharing the positive refractive power between the two lenses, the curvature on each surface is relaxed, thereby reducing the occurrence of various aberrations.
また、負レンズL3を配すことで、倍率色収差や像面湾曲を軽減している。また、正の屈折力のフレネルレンズLFを前述した3枚レンズの中で、最も画像表示面側に位置、つまり有効径が大きくなる位置に配置させることで、全系の軽量化を図っている。この他の構成は実施例1と同じである。 Further, by disposing the negative lens L3, lateral chromatic aberration and field curvature are reduced. In addition, by arranging the Fresnel lens LF of positive refractive power at the position closest to the image display surface, that is, the position where the effective diameter becomes large among the three lenses described above, weight reduction of the entire system is achieved. . The other configuration is the same as that of the first embodiment.
[実施例3]
以下、図5を参照して、本発明の観察光学系L0の実施例3について説明する。実施例3の観察光学系L0は、観察面側より画像表示面側へ順に、平行平板(光学部材)Lt、正の屈折力のレンズ(正レンズ)LP、正の屈折力のフレネルレンズLFから構成されている。正レンズLPが、剥き出し(外界にさらした)状態であると、油等が触れた場合、レンズに変形・亀裂が生じる可能性がある。平板のレンズLtは正レンズLPを保護する役割を担っている。
[Example 3]
Example 3 of the observation optical system L0 of the present invention will be described below with reference to FIG. The observation optical system L0 of Example 3 includes, in order from the observation surface side to the image display surface side, a parallel flat plate (optical member) Lt, a lens of positive refractive power (positive lens) LP, and a Fresnel lens LF of positive refractive power. It is configured. If the positive lens LP is in the exposed (exposed to the outside) state, the lens may be deformed or cracked if oil or the like is touched. The flat lens Lt plays a role of protecting the positive lens LP.
また、正の屈折力のフレネルレンズLFを前述した3枚レンズの中で、最も画像表示面側に位置、つまり有効径が大きくなる位置に配置させることで、全系の軽量化を図っている。この他の構成は実施例1と同じである。 In addition, by arranging the Fresnel lens LF of positive refractive power at the position closest to the image display surface, that is, the position where the effective diameter becomes large among the three lenses described above, weight reduction of the entire system is achieved. . The other configuration is the same as that of the first embodiment.
[実施例4]
以下、図7を参照して、本発明の観察光学系L0の実施例4について説明する。実施例4の観察光学系L0は、観察面側より画像表示面側へ順に、負の屈折力のフレネルレンズLF、正の屈折力のレンズ(正レンズ)LP、正の屈折力のレンズL3から構成されている。正の屈折力を2枚のレンズが分担することにより、各面での曲率を緩めて、これにより、諸収差の発生を軽減している。また、負の屈折力のフレネルレンズLFを配すことで、倍率色収差や像面湾曲を軽減している。
Example 4
Example 4 of the observation optical system L0 of the present invention will be described below with reference to FIG. The observation optical system L0 of Example 4 includes, in order from the observation surface side to the image display surface side, a Fresnel lens LF of negative refractive power, a lens (positive lens) LP of positive refractive power, and a lens L3 of positive refractive power. It is configured. By sharing the positive refractive power between the two lenses, the curvature on each surface is relaxed, thereby reducing the occurrence of various aberrations. In addition, the chromatic aberration of magnification and the curvature of field are reduced by disposing the Fresnel lens LF of negative refractive power.
条件式(7)を満足するように、フレネルレンズLFの画像表示面側の面の曲率に比して観察面側の面の曲率を強め、観察面SPに凹形状を向けている。これによって、観察面SPに対してコンセントリックな形として、軸外の光線の入射角を緩くし、軸外の諸収差の発生を軽減している。この他の構成は実施例1と同じである。 In order to satisfy the conditional expression (7), the curvature of the surface on the observation surface side is intensified with respect to the curvature of the surface on the image display surface side of the Fresnel lens LF, and the concave shape is directed to the observation surface SP. As a result, the incident angle of the off-axis light beam is relaxed in a concentric form with respect to the observation surface SP, and the occurrence of various off-axis aberrations is reduced. The other configuration is the same as that of the first embodiment.
[実施例5]
以下、図9を参照して、本発明の観察光学系L0の実施例5について説明する。実施例5の観察光学系L0は、観察面側より画像表示面側へ順に、正の屈折力のレンズ(正レンズ)LP、負の屈折力のフレネルレンズLF、正の屈折力のレンズ(正レンズ)L3、正の屈折力のレンズ(正レンズ)L4から構成されている。正の屈折力を3枚のレンズが分担することにより、より各面での曲率を緩めて、これにより、諸収差の発生を軽減している。また、負の屈折力のフネルレンズLFを配すことで、倍率色収差や像面湾曲を軽減している。
[Example 5]
Example 5 of the observation optical system L0 of the present invention will be described below with reference to FIG. The observation optical system L0 of Example 5 includes, in order from the observation surface side to the image display surface side, a lens of positive refractive power (positive lens) LP, a Fresnel lens of negative refractive power LF, a lens of positive refractive power (positive The lens L3 is composed of a lens (positive lens) L4 of positive refractive power. By sharing the positive refractive power with the three lenses, the curvature on each surface is further relaxed, thereby reducing the occurrence of various aberrations. Further, by arranging a funnel lens LF of negative refractive power, lateral chromatic aberration and field curvature are reduced.
条件式(7)を満足するように、フレネルレンズLFの画像表示面側の面の曲率に比して観察面側の面の曲率を強め、観察面SPに凹形状を向けることによって、観察面SPに対してコンセントリックな形としている。これによって軸外の光線の入射角を緩くし、軸外の諸収差の発生を軽減している。この他の構成は実施例1と同じである。 In order to satisfy the conditional expression (7), the curvature of the surface on the observation surface side is increased relative to the curvature of the surface on the image display surface side of the Fresnel lens LF, and the concave shape is directed to the observation surface SP. It is in the form of a concentric form for the SP. As a result, the incident angle of the off-axis ray is relaxed and the occurrence of off-axis aberrations is reduced. The other configuration is the same as that of the first embodiment.
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、CRTやLCD等の画像表示素子と組み合わせた際、歪曲収差量や倍率色収差量によっては電気的な処理を画像表示素子に加えても良い。 As mentioned above, although the preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary. For example, when combined with an image display element such as a CRT or LCD, electrical processing may be added to the image display element depending on the amount of distortion and the amount of lateral chromatic aberration.
次に図12A乃至図12Cを用いてフレネルレンズについて説明する。一般にフレネルレンズは、図12Aに示すように、曲率半径rのレンズ面を同心円状の複数の領域に分割した形状を有する。このとき曲率半径rの値に応じて断面形状が鋸歯型のフレネル格子(プリズム)FPを平面上に同心円状に並べた形状よりなっている。同心円状の複数のフレネル格子は角度が異なるか、又は同一である。またフレネル格子の格子ピッチは中心(光軸)から周辺に従って異なるか又は同一である。 Next, a Fresnel lens will be described with reference to FIGS. 12A to 12C. Generally, as shown in FIG. 12A, a Fresnel lens has a shape in which a lens surface having a radius of curvature r is divided into a plurality of concentric regions. At this time, according to the value of the radius of curvature r, the cross-sectional shape is a shape in which a Fresnel grating (prism) FP having a sawtooth shape is arranged concentrically on a plane. The plurality of concentric Fresnel gratings have different or identical angles. Also, the grating pitch of the Fresnel grating is different or identical from the center (optical axis) to the periphery.
フレネルレンズ面Freにおける曲率半径rは図12Aに示すレンズ面の曲率半径rに相当する。フレネルレンズ面の焦点距離を求めるときのパラメータの1つは通常のレンズの焦点距離を求めるのと同様に曲率半径rを用いている。フレネルレンズの焦点距離fと板厚(中心厚)、有効径Φ1等は図12B及び図12Cに示すとおりである。後述する条件式におけるフレネルレンズ面の曲率半径はフレネル形状とする前のレンズ面の曲率半径(すなわち中心輪帯の曲率半径)を用いている。 The radius of curvature r at the Fresnel lens surface Fre corresponds to the radius of curvature r of the lens surface shown in FIG. 12A. One of the parameters for determining the focal length of the Fresnel lens surface uses the radius of curvature r as in the case of determining the focal length of a normal lens. The focal length f of the Fresnel lens, the plate thickness (center thickness), the effective diameter 11, etc. are as shown in FIGS. 12B and 12C. The radius of curvature of the Fresnel lens surface in the conditional expression to be described later uses the radius of curvature of the lens surface before forming the Fresnel shape (that is, the radius of curvature of the central annular zone).
次に、各実施例における数値データを以下に示す。数値データにおいてiは観察面からの面の順序を示し、riは第i番目の光学面の曲率半径、diは第i面と第i+1面との間のレンズ肉厚および空気間隔、ni,νiはそれぞれd線に対する第i面と第i+1面との間の光学部材の屈折率およびアッベ数を表す。また、非球面に記載されている、K,A4,A6,A8,A10などは非球面係数である。非球面形状は光軸からの高さhの位置での光軸方向の変位を、面頂点を基準にしてxとするとき以下の式で定義される。
x=(h/R)/[1+{1-(1+K)(h/R)1/2]+A4h+A6h+A8h+A10h10
ただし、ここでRは曲率半径である。フレネル面は非球面効果を有する理想的な薄肉状態を表しており、実形状としては、表記した中心厚d内でフレネル形状とする。フレネル面は面番号の右隣に*Freと表記している。各数値データの面番号において1は観察面(絞り)、像面は画像表示面に相当している。
Next, numerical data in each example are shown below. In the numerical data, i indicates the order of the surface from the observation surface, ri indicates the radius of curvature of the i-th optical surface, di indicates the lens thickness and air gap between the i-th surface and the (i + 1) -th surface, ni, ii Represents the refractive index and Abbe number of the optical member between the i-th surface and the (i + 1) -th surface with respect to the d-line, respectively. Also, K, A4, A6, A8, A10, etc. described on the aspheric surface are aspheric coefficients. The aspheric surface shape is defined by the following equation when the displacement in the optical axis direction at the position of height h from the optical axis is x with respect to the surface vertex.
x = (h 2 / R) / [1 + {1-(1 + K) (h / R) 2 } 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
However, R is a curvature radius here. The Fresnel surface represents an ideal thin-walled state having an aspheric effect, and the actual shape is a Fresnel shape within the written center thickness d. The Fresnel surface is described as * Fre next to the surface number. In the surface numbers of each numerical data, 1 corresponds to the observation surface (aperture), and the image surface corresponds to the image display surface.
数値データ1において面番号2、3はフレネルレンズLF、面番号4、5は正レンズLPに相当している。数値データ2において面番号2、3は正レンズLP、面番号6、7はフレネルレンズLFに相当している。数値データ3において面番号4、5は正レンズLP、面番号6、7はフレネルレンズLFに相当している。数値データ4において面番号2、3はフレネルレンズLF、面番号4、5は正レンズLPに相当している。数値データ5において面番号2、3は正レンズLP、面番号4、5はフレネルレンズLFに相当している。 In the numerical data 1, the surface numbers 2 and 3 correspond to the Fresnel lens LF, and the surface numbers 4 and 5 correspond to the positive lens LP. In the numerical data 2, the surface numbers 2 and 3 correspond to the positive lens LP, and the surface numbers 6 and 7 correspond to the Fresnel lens LF. In the numerical data 3, the surface numbers 4 and 5 correspond to the positive lens LP, and the surface numbers 6 and 7 correspond to the Fresnel lens LF. In the numerical data 4, the surface numbers 2 and 3 correspond to the Fresnel lens LF, and the surface numbers 4 and 5 correspond to the positive lens LP. In the numerical data 5, the surface numbers 2 and 3 correspond to the positive lens LP, and the surface numbers 4 and 5 correspond to the Fresnel lens LF.
レンズ全長は観察面側の第1レンズ面から画像表示面IDまでの距離である。BFは画像表示面IDの面から画像表示面までの距離である。また前述した数値データに基づくパラメータと各条件式との関係を表1、表2に示す。 The total lens length is the distance from the first lens surface on the viewing surface side to the image display surface ID. BF is a distance from the surface of the image display surface ID to the image display surface. Tables 1 and 2 show the relationship between parameters based on the above-mentioned numerical data and each conditional expression.
(数値データ1)
単位 mm
 
面データ
面番号       r        d       nd        νd       有効径
1(絞り)    ∞      (可変)                         3.50
2      100000.000   3.50   1.53110    56.0       48.76
3*Fre     -80.546   0.70                         52.00
4*        237.548  15.00   1.53110    56.0       53.30
5*        -36.019  40.89                         55.34
像面        ∞   
 
非球面データ
第3面
K = 0.00000e+000  A 4=-1.35561e-005  A 6= 2.66207e-008
A 8=-1.06533e-011
 
第4面
K = 0.00000e+000  A 4=-2.18599e-005  A 6= 4.07744e-008
A 8=-2.04247e-011  A10= 1.57785e-015  
 
第5面
K = 0.00000e+000  A 4= 2.20301e-006  A 6=-7.68945e-009
A 8= 1.19113e-011
 
各種データ
ズーム比     1.00 
 
焦点距離      44.99    44.99
Fナンバー     12.85    12.85
半画角(度)  55.00    45.00
像高          43.00    36.35
レンズ全長    70.09    70.09
BF            40.89    40.89
 
d 1           10.00    20.00
 
入射瞳位置     0.00     0.00
射出瞳位置   -37.93   -88.19
前側主点位置  19.31    29.31
後側主点位置  -4.10    -4.10
 
ズームレンズ群データ
群  始面    焦点距離  レンズ構成長  前側主点位置  後側主点位置
 1    1       ∞           0.00         0.00         -0.00
 2    2      44.99        19.20         9.31         -4.10
 
単レンズデータ
レンズ  始面  焦点距離
  1       1    151.54
  2       4     60.03
 
(Numerical data 1)
Unit mm

Surface data surface number r d nd d d effective diameter
1 (aperture) ∞ (variable) 3.50
2 10000.000 3.50 1.53110 56.0 48.76
3 * Fre -80.546 0.70 52.00
4 * 237.548 15.00 1.53110 56.0 53.30
5 *-36.019 40.89 55.34
Image plane ∞

Aspheric surface data surface 3
K = 0.00000e + 000 A 4 = -1. 35561 e-005 A 6 = 2. 66207 e-008
A 8 = -1.06533 e-011

Fourth side
K = 0.00000e + 000A 4 =-2.18599e-005 A 6 = 4.07744e-008
A 8 = -2.04247e-011 A10 = 1.57785e-015

Fifth side
K = 0.00000e + 000 A 4 = 2.20301e-006 A 6 =-7.68945e-009
A 8 = 1.19113e-011

Various data zoom ratio 1.00

Focal length 44.99 44.99
F number 12.85 12.85
Half angle of view (degrees) 55.00 45.00
Image height 43.00 36.35
Lens total length 70.09 70.09
BF 40.89 40.89

d 1 10.00 20.00

Entrance pupil position 0.00 0.00
Exit pupil position -37.93 -88.19
Front principal point position 19.31 29.31
Rear principal point position -4.10 -4.10

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear side principal point position 1 1 ∞ 0.00 0.00 -0.00
2 2 44.99 19.20 9.31-4.10

Single lens data lens Start surface Focal length 1 1 151.54
2 4 60.03
(数値データ2)
単位 mm
 
面データ
面番号       r        d       nd        νd       有効径
1(絞り)    ∞      (可変)                         3.50
2*         ∞      11.72   1.48749    70.4       47.52
3*       -39.013    0.50                         49.92
4       -104.408    3.20   1.63400    23.9       55.12
5       -550.468    0.50                         61.09
6       -550.000    5.00   1.53110    56.0       62.00
7*Fre    -55.766   60.66                         68.33
像面        ∞   
 
非球面データ
第2面
K = 0.00000e+000  A 4= 1.89729e-006  A 6=-8.84019e-010
A 8=-1.25103e-012  A10= 1.57785e-015
 
第3面
K = 0.00000e+000  A 4= 8.01465e-006  A 6=-1.13123e-008
A 8= 6.33741e-012
 
第7面
K = 0.00000e+000  A 4=-1.82721e-006  A 6= 2.98900e-009
A 8=-7.03142e-013
 
各種データ
ズーム比      1.00 
 
焦点距離      63.48    63.48
Fナンバー     18.14    18.14
半画角(度)  60.00    47.00
像高          66.68    53.16
レンズ全長    91.58    91.58
BF            60.66    60.66
 
d 1           10.00    20.00
 
入射瞳位置     0.00     0.00
射出瞳位置   -35.24   -65.18
前側主点位置  21.46    31.46
後側主点位置  -2.82    -2.82
 
ズームレンズ群データ
群  始面    焦点距離  レンズ構成長  前側主点位置  後側主点位置
1    1       ∞           0.00         0.00         -0.00
2    2      63.48        20.92        11.46         -2.82
 
単レンズデータ
レンズ  始面  焦点距離
1       1     80.00
2       4   -203.79
3       6    116.44
 
(Numerical data 2)
Unit mm

Surface data surface number r d nd d d effective diameter
1 (aperture) ∞ (variable) 3.50
2 * 11. 11.72 1.48749 70.4 47.52
3 *-39.013 0.50 49.92
4 -104.408 3.20 1.63400 23.9 55.12
5-550.468 0.50 61.09
6-550.000 5.00 1.53110 56.0 62.00
7 * Fre-55.766 60.66 68.33
Image plane ∞

Aspheric data second surface
K = 0.00000e + 000 A 4 = 1.89729e-006 A 6 = -8.84019e-010
A8 = -1.250103e-012 A10 = 1.57785e-015

Third side
K = 0.00000e + 000 A 4 = 8.01465e-006 A 6 = -1. 13123e-008
A 8 = 6.33741e-012

Seventh side
K = 0.00000e + 000 A 4 = -1.82721e-006 A 6 = 2.98900e-009
A 8 = -7.03142e-013

Various data zoom ratio 1.00

Focal length 63.48 63.48
F number 18.14 18.14
Half angle of view (degrees) 60.00 47.00
Image height 66.68 53.16
Lens total length 91.58 91.58
BF 60.66 60.66

d 1 10.00 20.00

Entrance pupil position 0.00 0.00
Exit pupil position -35.24 -65.18
Front principal point position 21.46 31.46
Rear principal point position -2.82 -2.82

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear side principal point position
1 1 ∞ 0.00 0.00-0.00
2 2 63.48 20.92 11.46-2.82

Single lens data lens Start surface Focal length
1 1 80.00
2 4 -203.79
3 6 116.44
(数値データ3)
単位 mm
 
面データ
面番号       r        d       nd        νd       有効径
1(絞り)    ∞     (可変)                          3.50
2          ∞       0.80   1.49000    55.0       47.43
3          ∞       1.00                         48.00
4*      -265.909   13.39   1.53110    56.0       49.38
5*       -36.393    0.20                         54.33
6       1964.346    3.00   1.53110    56.0       67.88
7*Fre   -105.000   54.56                         69.90
像面        ∞   
 
非球面データ
第4面
K = 0.00000e+000  A 4=-6.79879e-007  A 6= 4.81597e-009
A 8=-1.81252e-012
 
第5面
K = 0.00000e+000  A 4= 2.76286e-006  A 6=-4.27243e-009
A 8= 8.19904e-012
 
各種データ
ズーム比     1.00
 
焦点距離      55.16    55.16
Fナンバー     15.76    15.76
半画角(度)  57.50    47.50
像高          55.41    47.21
レンズ全長    82.96    82.96
BF            54.56    54.56
 
d 1           10.00    20.00
 
入射瞳位置     0.00     0.00
射出瞳位置   -36.31   -75.00
前側主点位置  21.68    31.68
後側主点位置  -0.60    -0.60
 
ズームレンズ群データ
群  始面    焦点距離  レンズ構成長  前側主点位置  後側主点位置
1    1       ∞           0.00         0.00         -0.00
2    2      55.16        18.39        11.68         -0.60
 
単レンズデータ
レンズ  始面  焦点距離
1       1      0.00
2       4     77.81
3       6    187.76
 
(Numerical data 3)
Unit mm

Surface data surface number r d nd d d effective diameter
1 (aperture) ∞ (variable) 3.50
2 0.8 0.80 1.49000 55.0 47.43
3 1.00 48.00
4 * -265.909 13.39 1.53110 56.0 49.38
5 * -36.393 0.20 54.33
6 1964.346 3.00 1.53110 56.0 67.88
7 * Fre-105.000 54.56 69.90
Image plane ∞

Aspheric surface data surface 4
K = 0.00000e + 000 A 4 = -6.79879e-007 A 6 = 4.81597e-009
A 8 = -1.81252e-012

Fifth side
K = 0.00000e + 000 A 4 = 2.76286e-006 A 6 = -4.27243e-009
A 8 = 8.19904e-012

Various data zoom ratio 1.00

Focal length 55.16 55.16
F number 15.76 15.76
Half angle of view (degrees) 57.50 47.50
Image height 55.41 47.21
Lens total length 82.96 82.96
BF 54.56 54.56

d 1 10.00 20.00

Entrance pupil position 0.00 0.00
Exit pupil position -36.31 -75.00
Front principal point position 21.68 31.68
Rear principal point position -0.60 -0.60

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear side principal point position
1 1 ∞ 0.00 0.00-0.00
2 2 55.16 18.39 11.68-0.60

Single lens data lens Start surface Focal length
1 1 0.00
2 4 77.81
3 6 187.76
(数値データ4)
単位 mm
 
面データ
面番号       r        d        nd      νd       有効径
1(絞り)    ∞      (可変)                         3.50
2*Fre   -129.970    1.20   1.63400    23.9       49.15
3          ∞       0.46                         50.00
4*       976.710   20.02   1.53110    56.0       51.22
5        -37.804    1.00                         58.00
6       1140.401   17.35   1.53110    56.0       73.16
7*       -58.000   47.34                         75.91
像面        ∞
 
非球面データ
第4面
K = 0.00000e+000  A 4= 3.80662e-006  A 6=-1.60330e-008
A 8= 1.45886e-011
 
第7面
K = 0.00000e+000  A 4= 2.75248e-006  A 6=-1.49902e-009
A 8= 1.96913e-013
 
各種データ
ズーム比     1.00 
 
焦点距離      51.11    51.11
Fナンバー     14.60    14.60
半画角(度)  50.00    40.00
像高          45.06    37.39
レンズ全長    97.38    97.38
BF            47.34    47.34
 
d 1           10.00    20.00
 
入射瞳位置     0.00     0.00     0.00
射出瞳位置   -88.54  -235.84   3414.02
前側主点位置  31.88    41.88    51.88
後側主点位置  -3.77    -3.77    -3.77
 
ズームレンズ群データ
群  始面    焦点距離  レンズ構成長  前側主点位置  後側主点位置
1    1       ∞           0.00         0.00         -0.00
2    2      51.11        40.04        21.88         -3.77
 
単レンズデータ
レンズ  始面  焦点距離
  1       1   -204.97
  2       4     69.00
  3       6    104.45
 
(Numerical data 4)
Unit mm

Surface data surface number r d nd d d effective diameter
1 (aperture) ∞ (variable) 3.50
2 * Fre-129.970 1.20 1.63400 23.9 49.15
3 0.4 0.46 50.00
4 * 976.710 20.02 1.53110 56.0 51.22
5-37.804 1.00 58.00
6 1140.401 17.35 1.53110 56.0 73.16
7 * -58.000 47.34 75.91
Image plane ∞

Aspheric surface data surface 4
K = 0.00000e + 000 A 4 = 3.00662e-006 A 6 =-1. 60330e-008
A 8 = 1.45886e-011

Seventh side
K = 0.00000e + 000 A 4 = 2.75248e-006 A 6 = -1. 49902e-009
A 8 = 1.96913e-013

Various data zoom ratio 1.00

Focal length 51.11 51.11
F number 14.60 14.60
Half angle of view (degree) 50.00 40.00
Image height 45.06 37.39
Lens total length 97.38 97.38
BF 47.34 47.34

d 1 10.00 20.00

Entrance pupil position 0.00 0.00 0.00
Exit pupil position -88.54 -235.84 3414.02
Front principal point position 31.88 41.88 51.88
Back side principal point position -3.77 -3.77 -3.77

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear side principal point position
1 1 ∞ 0.00 0.00-0.00
2 2 51.11 40.04 21.88-3.77

Single lens data lens Start surface Focal length 1 1 -204.97
2 4 69.00
3 6 104.45
(数値データ5)
単位 mm
 
面データ
面番号       r        d      nd         νd       有効径
 1(絞り)    ∞      (可変)                         3.50
 2*      4627.206   11.83   1.53110    56.0       48.02
 3        -45.008    1.00                         49.95
 4*Fre   -102.526    2.50   1.64000    23.5       57.04
 5       -500.000    1.20                         58.01
 6*       122.504    9.67   1.53110    56.0       61.38
 7       -129.021    1.00                         64.47
 8        239.832   17.55   1.53110    56.0       71.66
 9*       -72.370   31.51                         73.45
像面        ∞   
 
非球面データ
第2面
 K = 0.00000e+000  A 4=-4.61041e-006  A 6= 1.21044e-008
A 8=-3.52960e-012  
 
第4面
 K = 0.00000e+000  A 4= 2.17893e-006  A 6=-2.20791e-010  
 
第6面
 K = 0.00000e+000  A 4=-1.56415e-006  A 6= 1.72159e-009
A 8=-2.99784e-012  
 
第9面
 K = 0.00000e+000  A 4= 6.74838e-007  A 6=-9.11601e-010
A 8= 6.34371e-014  
 
各種データ
  ズーム比     1.00 
 
焦点距離      45.59    45.59  
Fナンバー     13.03    13.03  
半画角(度)  50.00    41.00  
像高          38.30    30.80  
レンズ全長    86.26    86.26  
BF            31.51    31.51  
 
d 1           10.00    20.00  
 
入射瞳位置     0.00     0.00  
射出瞳位置   -89.84  -260.05  
前側主点位置  28.46    38.46  
後側主点位置 -14.08   -14.08  
 
ズームレンズ群データ
群  始面    焦点距離  レンズ構成長  前側主点位置  後側主点位置
 1    1       ∞           0.00         0.00         -0.00
 2    2      45.59        44.75        18.46        -14.08
 
単レンズデータ
レンズ  始面  焦点距離
  1       1     84.00
  2       4   -202.01
  3       6    119.92
  4       8    106.76
 
(Numerical data 5)
Unit mm

Surface data Surface number r d nd d d Effective diameter 1 (aperture) ∞ (variable) 3.50
2 * 4627.206 11.83 1.53110 56.0 48.02
3-45.008 1.00 49.95
4 * Fre-102.526 2.50 1.64000 23.5 57.04
5-500.000 1.20 58.01
6 * 122.504 9.67 1.53110 56.0 61.38
7-129.021 1.00 64. 47
8 239.832 17.55 1.53110 56.0 71.66
9 * -72.370 31.51 73.45
Image plane ∞

Aspheric surface data second surface K = 0.00000e + 000 A 4 = -4.61041e-006 A 6 = 1.21044e-008
A 8 = -3.52960e-012

Fourth surface K = 0.00000e + 000 A 4 = 2.17893e-006 A 6 =-2.20791e-010

Sixth surface K = 0.00000e + 000 A 4 = -1.56415e-006 A 6 = 1.72159e-009
A 8 = -2.99784e-012

The ninth face K = 0.00000e + 000 A 4 = 6.74838e-007 A 6 =-9.11601e-010
A 8 = 6.34371e-014

Various data zoom ratio 1.00

Focal length 45.59 45.59
F number 13.03 13.03
Half angle of view (degrees) 50.00 41.00
Image height 38.30 30.80
Lens total length 86.26 86.26
BF 31.51 31.51

d 1 10.00 20.00

Entrance pupil position 0.00 0.00
Exit pupil position -89.84 -260.05
Front principal point position 28.46 38.46
Rear principal point position -14.08 -14.08

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear side principal point position 1 1 ∞ 0.00 0.00 -0.00
2 2 45.59 44.75 18.46-14.08

Single lens data lens Start surface Focal length 1 1 84.00
2 4-202.01
3 6 119.92
4 8 106.76
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この出願は2016年12月21日に出願された日本国特許出願番号2016-247731および2017年12月7日に出願された日本国特許出願番号2017-234844の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。 This application claims the priority of Japanese Patent Application No. 2016-247731 filed on Dec. 21, 2016 and Japanese Patent Application No. 2017-234844 filed on Dec. 7, 2017, The contents thereof are cited as part of this application.
L0 観察光学系
LP 正レンズ
LF フレネルレンズ
SP 観察面
ID 画像表示面
Fre フレネル面

 
L0 Observation optical system LP Positive lens LF Fresnel lens SP Observation surface ID Image display surface Fre Fresnel surface

Claims (18)

  1. フレネルレンズと、該フレネルレンズの光入射側または光出射側に設けられた正レンズLPを有し、
    前記フレネルレンズの中心輪帯の面頂点から該中心輪帯の端部までの光軸方向の長さをh0、前記中心輪帯に隣接する第1輪帯の格子壁面の光軸方向の長さをh1とするとき、
    0.01<h1/h0<0.80
    なる条件式を満足することを特徴とする光学系。
    A Fresnel lens, and a positive lens LP provided on the light incident side or the light output side of the Fresnel lens,
    The length in the optical axis direction from the surface vertex of the central annular zone of the Fresnel lens to the end of the central annular zone is h0, the length in the optical axis direction of the grating wall surface of the first annular zone adjacent to the central annular zone And let h1 be
    0.01 <h1 / h0 <0.80
    An optical system characterized by satisfying the following conditional expression.
  2. 前記中心輪帯の直径をΦ0、前記フレネルレンズの有効径をΦ1とするとき、
    0.3<Φ0/Φ1<0.7
    なる条件式を満足することを特徴とする請求項1に記載の光学系。
    When the diameter of the central annular zone is Φ0 and the effective diameter of the Fresnel lens is 11,
    0.3 <Φ0 / Φ1 <0.7
    An optical system according to claim 1, wherein the following conditional expression is satisfied.
  3. フレネルレンズと、該フレネルレンズの光入射側または光出射側に設けられた正レンズLPを有し、
    前記フレネルレンズの中心輪帯の直径をΦ0、前記フレネルレンズの有効径をΦ1とするとき、
    0.3<Φ0/Φ1<0.7
    なる条件式を満足することを特徴とする光学系。
    A Fresnel lens, and a positive lens LP provided on the light incident side or the light output side of the Fresnel lens,
    When the diameter of the central annular zone of the Fresnel lens is Φ0 and the effective diameter of the Fresnel lens is 11,
    0.3 <Φ0 / Φ1 <0.7
    An optical system characterized by satisfying the following conditional expression.
  4. 前記フレネルレンズの焦点距離をfh、前記光学系の焦点距離をFとするとき、
    1.5<|fh|/F<5.0
    なる条件式を満足することを特徴とする請求項1乃至3のいずれか一項に記載の光学系。
    When the focal length of the Fresnel lens is fh and the focal length of the optical system is F,
    1.5 <| fh | / F <5.0
    The optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
  5. 前記正レンズLPは、前記光学系の有する正レンズのうち最も屈折力の大きい正レンズであり、前記正レンズLPの焦点距離をfp、前記光学系の焦点距離をFとするとき、
    1.2<fp/F<2.0
    なる条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載の光学系。
    The positive lens LP is a positive lens having the largest refractive power among positive lenses of the optical system, and when the focal length of the positive lens LP is fp and the focal length of the optical system is F,
    1.2 <fp / F <2.0
    The optical system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
  6. 前記フレネルレンズの有効面内における格子壁面の光軸方向の長さの平均値をhave(mm)、d線の波長の長さをλ(mm)とするとき、
    50.0<have/λ<500.0
    なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載の光学系。
    Assuming that the average length of the grating wall in the optical axis direction in the effective surface of the Fresnel lens is have (mm), and the wavelength length of the d-line is λ (mm),
    50.0 <have / λ <500.0
    The optical system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
  7. 前記フレネルレンズの第1輪帯の格子ピッチをw1、前記フレネルレンズの有効面内の最も外側の輪帯の格子ピッチをweとするとき、
    1.2<w1/we<10.0
    なる条件式を満足することを特徴とする請求項1乃至6のいずれか1項に記載の光学系。
    Assuming that the grating pitch of the first orbicular zone of the Fresnel lens is w1, and the grating pitch of the outermost orbicular zone in the effective surface of the Fresnel lens is we:
    1.2 <w1 / we <10.0
    The optical system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
  8. 前記中心輪帯は連続した面より構成されていることを特徴とする請求項1乃至7のいずれか1項に記載の光学系。 The optical system according to any one of claims 1 to 7, wherein the central annular zone is formed of a continuous surface.
  9. 画像情報を表示する画像表示素子と、前記画像表示素子に表示される前記画像情報を観察するための請求項1乃至8のいずれか1項に記載の光学系を有することを特徴とする観察装置。 An observation apparatus comprising: an image display element for displaying image information; and the optical system according to any one of claims 1 to 8 for observing the image information displayed on the image display element. .
  10. アイレリーフ10mmで、半視野角45度における画像表示面の理想像高をy0、アイレリーフ10mmで、半視野角45度における画像表示面の実際の像高をyとするとき、
    -0.35<(y-y0)/y0<-0.10
    なる条件式を満足することを特徴とする請求項9に記載の観察装置。
    Assuming that the ideal image height of the image display surface at an eye relief of 10 mm and a half viewing angle of 45 degrees is y0, the eye relief of 10 mm, and the actual image height of an image display surface at a half viewing angle of 45 degrees is y.
    -0.35 <(y-y0) / y0 <-0.10
    The observation apparatus according to claim 9, wherein the following conditional expression is satisfied.
  11. 前記正レンズLPと前記フレネルレンズの中で、最も観察面側に位置するレンズの観察面側のレンズ面から最も画像表示面側に位置するレンズの画像表示面側のレンズ面までの光軸上の距離をd、最も観察面側に位置するレンズの観察面側のレンズ面から画像表示面までの光軸上の距離をLとするとき、
    0.1<d/L<0.4
    なる条件式を満足することを特徴とする請求項9または10に記載の観察装置。
    Of the positive lens LP and the Fresnel lens, the optical axis from the lens surface on the observation surface side of the lens closest to the observation surface to the lens surface on the image display surface side of the lens closest to the image display surface When the distance on the optical axis from the lens surface on the viewing surface side of the lens closest to the viewing surface to the image display surface is L,
    0.1 <d / L <0.4
    The observation apparatus according to claim 9 or 10, wherein the following conditional expression is satisfied.
  12. 前記フレネルレンズは正の屈折力を有し、前記フレネルレンズの観察面側の面の曲率半径をRp11、前記フレネルレンズの画像表示面側の面の曲率半径をRp12とするとき、
    -1.6<(Rp12+Rp11)/(Rp12-Rp11)<-0.5
    なる条件式を満足することを特徴とする請求項9乃至11のいずれか1項に記載の観察装置。
    The Fresnel lens has a positive refractive power, and the curvature radius of the surface on the observation surface side of the Fresnel lens is Rp11, and the curvature radius of the surface on the image display surface side of the Fresnel lens is Rp12,
    -1.6 <(Rp12 + Rp11) / (Rp12-Rp11) <-0.5
    The observation apparatus according to any one of claims 9 to 11, wherein the following conditional expression is satisfied.
  13. 前記フレネルレンズは負の屈折力を有し、前記フレネルレンズの観察面側の面の曲率半径をRn11、前記フレネルレンズの画像表示面側の面の曲率半径をRn12とするとき、
    0.8<(Rn12+Rn11)/(Rn12-Rn11)<1.7
    なる条件式を満足することを特徴とする請求項9乃至12のいずれか1項に記載の観察装置。
    The Fresnel lens has negative refractive power, and the curvature radius of the surface on the observation surface side of the Fresnel lens is Rn11, and the curvature radius of the surface on the image display surface side of the Fresnel lens is Rn12,
    0.8 <(Rn12 + Rn11) / (Rn12-Rn11) <1.7
    The observation apparatus according to any one of claims 9 to 12, wherein the following conditional expression is satisfied.
  14. 前記正レンズLPの観察面側のレンズ面の曲率半径をR21、前記正レンズLPの画像表示面側のレンズ面の曲率半径をR22とするとき、
    -1.6<(R22+R21)/(R22-R21)<-0.4
    なる条件式を満足することを特徴とする請求項9乃至13のいずれか1項に記載の観察装置。
    Assuming that the curvature radius of the lens surface on the observation surface side of the positive lens LP is R21, and the curvature radius of the lens surface on the image display surface side of the positive lens LP is R22,
    -1.6 <(R22 + R21) / (R22-R21) <-0.4
    The observation apparatus according to any one of claims 9 to 13, wherein the following conditional expression is satisfied.
  15.  前記光学系の焦点距離をF、アイレリーフ10mmで半視野角45度における画像表示面の実際の像高をyとするとき、
     0.5<y/F<1.1
    なる条件式を満足することを特徴とする請求項9乃至14のいずれか一項に記載の観察装置。
    Assuming that the focal length of the optical system is F, the actual image height of the image display surface at an eye relief of 10 mm and a half viewing angle of 45 degrees is y,
    0.5 <y / F <1.1
    The observation apparatus according to any one of claims 9 to 14, wherein the following conditional expression is satisfied.
  16. フレネル面を備えるフレネルレンズであって、
    前記フレネルレンズの中心輪帯の面頂点から該中心輪帯の端部までの光軸方向の長さをh0、前記中心輪帯に隣接する第1輪帯の格子壁面の光軸方向の長さをh1とするとき、
    0.01<h1/h0<0.80
    なる条件式を満足することを特徴とするフレネルレンズ。
    A Fresnel lens having a Fresnel surface,
    The length in the optical axis direction from the surface vertex of the central annular zone of the Fresnel lens to the end of the central annular zone is h0, the length in the optical axis direction of the grating wall surface of the first annular zone adjacent to the central annular zone And let h1 be
    0.01 <h1 / h0 <0.80
    A Fresnel lens characterized by satisfying the following conditional expression.
  17. 前記中心輪帯の直径をΦ0、前記フレネルレンズの有効径をΦ1とするとき、
    0.3<Φ0/Φ1<0.7
    なる条件式を満足することを特徴とする請求項16に記載のフレネルレンズ。
    When the diameter of the central annular zone is Φ0 and the effective diameter of the Fresnel lens is 11,
    0.3 <Φ0 / Φ1 <0.7
    The Fresnel lens according to claim 16, wherein the following conditional expression is satisfied.
  18. フレネル面を備えるフレネルレンズであって、
    前記フレネルレンズの中心輪帯の直径をΦ0、前記フレネルレンズの有効径をΦ1とするとき、
    0.3<Φ0/Φ1<0.7
    なる条件式を満足することを特徴とするフレネルレンズ。

     
    A Fresnel lens having a Fresnel surface,
    When the diameter of the central annular zone of the Fresnel lens is Φ0 and the effective diameter of the Fresnel lens is 11,
    0.3 <Φ0 / Φ1 <0.7
    A Fresnel lens characterized by satisfying the following conditional expression.

PCT/JP2017/045313 2016-12-21 2017-12-18 Observation optical system and observation device having same WO2018117025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/445,526 US11487050B2 (en) 2016-12-21 2019-06-19 Observation optical system and observation apparatus including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016247731 2016-12-21
JP2016-247731 2016-12-21
JP2017-234844 2017-12-07
JP2017234844A JP7086581B2 (en) 2016-12-21 2017-12-07 Observation optical system and observation equipment having it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/445,526 Continuation US11487050B2 (en) 2016-12-21 2019-06-19 Observation optical system and observation apparatus including same

Publications (1)

Publication Number Publication Date
WO2018117025A1 true WO2018117025A1 (en) 2018-06-28

Family

ID=62626335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045313 WO2018117025A1 (en) 2016-12-21 2017-12-18 Observation optical system and observation device having same

Country Status (1)

Country Link
WO (1) WO2018117025A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021916A1 (en) * 2018-07-24 2020-01-30 株式会社ニコン Ocular optical system and head mounted display
WO2020026749A1 (en) * 2018-07-31 2020-02-06 ソニー株式会社 Display device
JP2020024363A (en) * 2018-07-31 2020-02-13 ソニー株式会社 Display device
WO2020166390A1 (en) * 2019-02-14 2020-08-20 キヤノン株式会社 Observation optical system and image display device provided therewith
JP2021005079A (en) * 2019-06-26 2021-01-14 中強光電股▲ふん▼有限公司 Optical lens assembly and head-mounted display device
CN113167993A (en) * 2018-08-28 2021-07-23 索尼互动娱乐股份有限公司 Lens system and image observation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391708A (en) * 1989-09-05 1991-04-17 Olympus Optical Co Ltd Finder optical system
JPH05210054A (en) * 1991-09-23 1993-08-20 Hughes Aircraft Co Dual eyepiece lens optical system using diffraction and refraction optical ele- ments
JPH0829690A (en) * 1994-07-18 1996-02-02 Pioneer Electron Corp Virtual image observation device
JPH10186230A (en) * 1996-10-29 1998-07-14 Canon Inc Lens system and optical instrument
US20100024275A1 (en) * 2007-07-31 2010-02-04 David Lynn Crandall Sighting optics and methods for sighting
US20120243110A1 (en) * 2011-03-24 2012-09-27 Bobby Robinson Display Magnification and Protection Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391708A (en) * 1989-09-05 1991-04-17 Olympus Optical Co Ltd Finder optical system
JPH05210054A (en) * 1991-09-23 1993-08-20 Hughes Aircraft Co Dual eyepiece lens optical system using diffraction and refraction optical ele- ments
JPH0829690A (en) * 1994-07-18 1996-02-02 Pioneer Electron Corp Virtual image observation device
JPH10186230A (en) * 1996-10-29 1998-07-14 Canon Inc Lens system and optical instrument
US20100024275A1 (en) * 2007-07-31 2010-02-04 David Lynn Crandall Sighting optics and methods for sighting
US20120243110A1 (en) * 2011-03-24 2012-09-27 Bobby Robinson Display Magnification and Protection Device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021916A1 (en) * 2018-07-24 2020-01-30 株式会社ニコン Ocular optical system and head mounted display
JPWO2020021916A1 (en) * 2018-07-24 2021-06-24 株式会社ニコン Eyepiece optics and head-mounted display
JP6996631B2 (en) 2018-07-24 2022-01-17 株式会社ニコン Eyepiece optics and head-mounted display
JP7215220B2 (en) 2018-07-31 2023-01-31 ソニーグループ株式会社 Display device
WO2020026749A1 (en) * 2018-07-31 2020-02-06 ソニー株式会社 Display device
JP2020024363A (en) * 2018-07-31 2020-02-13 ソニー株式会社 Display device
US11467410B2 (en) 2018-07-31 2022-10-11 Sony Corporation Display apparatus with non-overlap image region
US11874448B2 (en) 2018-08-28 2024-01-16 Sony Interactive Entertainment Inc. Lens system and image observation apparatus
JP7285263B2 (en) 2018-08-28 2023-06-01 株式会社ソニー・インタラクティブエンタテインメント Eyepiece optical system and image observation device
CN113167993A (en) * 2018-08-28 2021-07-23 索尼互动娱乐股份有限公司 Lens system and image observation device
JPWO2020045518A1 (en) * 2018-08-28 2021-08-26 株式会社ソニー・インタラクティブエンタテインメント Eyepiece optical system and image observation device
JP2020134570A (en) * 2019-02-14 2020-08-31 キヤノン株式会社 Observation optical system and image display device having the same
JP7218202B2 (en) 2019-02-14 2023-02-06 キヤノン株式会社 OBSERVATION OPTICAL SYSTEM AND IMAGE DISPLAY DEVICE INCLUDING THE SAME
WO2020166390A1 (en) * 2019-02-14 2020-08-20 キヤノン株式会社 Observation optical system and image display device provided therewith
US12055703B2 (en) 2019-02-14 2024-08-06 Canon Kabushiki Kaisha Observation optical system and image display apparatus having the same
JP2021005079A (en) * 2019-06-26 2021-01-14 中強光電股▲ふん▼有限公司 Optical lens assembly and head-mounted display device
JP7474124B2 (en) 2019-06-26 2024-04-24 中強光電股▲ふん▼有限公司 Optical lens assembly and head-mounted display device
US12111513B2 (en) 2019-06-26 2024-10-08 Coretronic Corporation Optical lens and head-mounted display device

Similar Documents

Publication Publication Date Title
JP6954283B2 (en) Eyepiece optics and head-mounted display
WO2018117025A1 (en) Observation optical system and observation device having same
JP7086581B2 (en) Observation optical system and observation equipment having it
JP6800611B2 (en) Observation optical system and observation equipment having it
JP6579810B2 (en) Observation optical system and image display apparatus having the same
JP6824769B2 (en) Observation optical system and observation equipment having it
JP4380086B2 (en) Zoom lens
JP4756901B2 (en) Eyepiece lens and optical instrument using the same
JP5472801B2 (en) Diffraction optical system, optical instrument and observation optical system
JP5993604B2 (en) Infrared optical system
JPH07181391A (en) Image display device
WO2017195561A1 (en) Projection optical system and projector
JP2017211475A (en) Observation optical system and observation device including the same
JPWO2008010560A1 (en) Optical system and eyepiece
JP2007322986A (en) Optical system and optical device having the same
JP5039393B2 (en) Optical system and optical apparatus having the same
JPH10115777A (en) Photographic lens
JP6947282B2 (en) Eyepiece optics and head-mounted display
JPH11119097A (en) Zoom lens
JP2008170594A (en) Projector optical system, projector, and projecting method
WO2020166390A1 (en) Observation optical system and image display device provided therewith
JPH11305126A (en) Optical lens system
JPH06130298A (en) Compact zoom lens
JP3482396B2 (en) Video display device
JP2020197558A (en) Observation optical system and image display device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883572

Country of ref document: EP

Kind code of ref document: A1