WO2018116823A1 - Natural energy power generation system, reactive power controller, or natural energy power generation system control method - Google Patents

Natural energy power generation system, reactive power controller, or natural energy power generation system control method Download PDF

Info

Publication number
WO2018116823A1
WO2018116823A1 PCT/JP2017/043736 JP2017043736W WO2018116823A1 WO 2018116823 A1 WO2018116823 A1 WO 2018116823A1 JP 2017043736 W JP2017043736 W JP 2017043736W WO 2018116823 A1 WO2018116823 A1 WO 2018116823A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
reactive power
reactive
power generation
generation system
Prior art date
Application number
PCT/JP2017/043736
Other languages
French (fr)
Japanese (ja)
Inventor
正親 中谷
近藤 真一
智道 伊藤
満 佐伯
坂本 潔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018116823A1 publication Critical patent/WO2018116823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • Patent Document 1 discloses a method for controlling a power converter so as to detect the output of the power converter and compensate for the voltage fluctuation at the interconnection point caused by the effective power output of the power converter. .
  • R L and X L represent the resistance component and reactance component of the impedance of the interconnection line, respectively.
  • a predetermined power factor command value PF P / ⁇ (P 2 + Q 2 ) at the interconnection point is corrected by using a power factor correction amount set for each wind power generation system.
  • a method for determining a power factor command value for each wind power generation system is disclosed.
  • P and Q represent the active power output and reactive power output of the wind power generation system, respectively.
  • the power factor correction amount is determined based on the reactance component existing between each wind power generation system and the interconnection point.
  • a natural energy power generation system of the present invention includes a power generation device that generates power by receiving natural energy, a power converter electrically connected to the power generation device and a power system, and the power converter.
  • An interconnection transformer disposed between the power grids, and a reactive power controller that generates a reactive power command output by the power converter, the reactive power controller comprising: the power converter and the power grid.
  • the reactive power command is determined such that a sum of a fluctuation component due to active power at the interconnection point voltage and a fluctuation component due to reactive power at the interconnection point voltage is substantially constant.
  • FIG. It is a figure which shows the whole structure of the wind power generation system in Example 1.
  • FIG. It is a figure which shows the structure of the reactive power controller in Example 1.
  • FIG. It is a graph for demonstrating the voltage fluctuation of the connection point in Example 1, (A) is the time change of the active power of a connection point, (B) is the time change of the current of a connection point, (C) is The time change of the reactive power output of the power converter, (D) is the time change of the voltage fluctuation at the interconnection point.
  • the wind power generation system 1 includes a wind turbine 11, a generator 12 connected to the wind turbine 11 via a main shaft (and a speed increaser as necessary), and a side of the generator 12 opposite to the wind turbine 11 side.
  • a power converter 13 that is electrically connected to adjust the generated power of the generator 11, a sensor 14 that is installed between the power converter 13 and the interconnection transformer 2, an active power controller 15, and a reactive power controller 16. Composed. Wind energy received by the wind turbine 11 is converted into electrical energy by the generator 12 and sent to the power converter 13.
  • RL is a resistance value determined by the line type and length of the interconnection line, although it changes somewhat with temperature change, is substantially constant, and V PCC also suppresses voltage fluctuation within a range of several percent. It is usually necessary and still considered to be substantially constant. Therefore, from the equations (A), (D), and (5) in FIG. 3, the voltage fluctuation component ⁇ V PCC 1 has a waveform that is substantially proportional to the active power output P CON .
  • the voltage fluctuation ⁇ V PCC is a waveform obtained by combining the voltage fluctuation components ⁇ V PCC 1 and ⁇ V PCC 2.
  • Voltage control amount of the interconnection point 5 Y is a (7) the second term of ((X L / V PCC) Q CON), obtained by substituting (9) to (11) below.
  • the voltage control amount Y under the conditions (I) to (III) is shown in the equations (12) to (13) and FIG. 5 (B).
  • the reactive power command determination unit 162b of the reactive power controller 16b determines the total reactive power output command Q REF_TOTAL.
  • the equation (8) in the first embodiment corresponds to a plurality of wind power generation systems 1 and a plurality of interconnection transformers 2 as shown in the equation (20). A modified function is used.
  • the first term of the equation (20) is the reactive power obtained from the impedance (R L , X L ) of the interconnection line 3 and the active power (P CON_A + P CON_B + P CON_C + P CON_D ) flowing through the interconnection line 3. It is a directive.
  • the second and third terms are derived from the primary and secondary reactances ( XTR1_I , XTR2_I ) of the interconnection transformer 2I and the current flowing through the primary and secondary sides of the interconnection transformer 2I. This is a reactive power command obtained from (I CON_A + I CON_B , (I CON_A + I CON_B ) / ⁇ I ).
  • the reactive power distribution determination unit 169 of the reactive power controller 16b shown in FIG. 9 sends the reactive power commands Q REF (Q REF_A , Q REF_B , Q REF_C , Q ) to the individual wind power generation systems 1 from the total reactive power output command Q REF_TOTAL .
  • Q REF reactive power commands
  • the reactive power controller 16c detects the active power output P CON and the current output I CON of the wind power generation system 1 when a predetermined update time (T1 and T2) is reached (FIG. 12 (A) ( B)), reactive power command Q REF is determined from active power output P CON and current output I CON (FIG. 12C).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The purpose of the invention is to provide a natural energy power generation system, a reactive power controller, and a natural energy power generation system control method for suppressing voltage fluctuation at an interconnection point due to reactive power loss of an interconnection transformer. The natural energy power generation system is provided with: a power generation device 12 receiving a natural energy to generate power; a power converter 13 electrically connected to the power generation device 12 and a power system 4; an interconnection transformer 2 disposed between the power converter 13 and the power system 4; and a reactive power controller 16 generating a reactive power command to be output by the power converter 13. Using at least the reactance of the interconnection transformer 2 disposed between the power converter 13 and the power system 4 or the current or the active power output by the power converter 13, the reactive power controller 16 determines the reactive power command so that a sum of the fluctuation component of the voltage at the interconnection point between the power converter 13 and the power system 4 due to the active power and the fluctuation component of the voltage at the interconnection point due to the reactive power becomes substantially constant.

Description

自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法Natural energy power generation system, reactive power controller, or control method of natural energy power generation system
 本発明は、風や太陽光等の自然エネルギーを利用して発電した電力を電力系統に供給する自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法に関する。 The present invention relates to a natural energy power generation system, a reactive power controller, or a control method for a natural energy power generation system that supplies power generated by using natural energy such as wind or sunlight to an electric power system.
 地球温暖化の原因と考えられている二酸化炭素の排出量削減が大きな課題になっている。二酸化炭素排出量削減の手段の一つとして、太陽光発電や風力発電などの自然エネルギー発電の導入が盛んになっている。これらの自然エネルギー発電は電力系統に連系されて用いられることが多いが、日射量や風速の変動により、発電出力が変動し、連系している系統の電圧に悪影響を及ぼすことが懸念されている。 削減 Reducing carbon dioxide emissions, which is thought to cause global warming, has become a major issue. As one means of reducing carbon dioxide emissions, the introduction of natural energy power generation such as solar power generation and wind power generation has become popular. These natural energy power generations are often used in conjunction with the power grid, but there is a concern that the power generation output will fluctuate due to fluctuations in the amount of solar radiation and wind speed, adversely affecting the voltage of the grid. ing.
 電圧変動の抑制方法については、無効電力を利用する提案がなされている。風力発電機が電力変換器を介して電力系統に連系された場合の連系点での電圧変動を抑制する方法として、特許文献1~3がある。 A proposal has been made to use reactive power as a method for suppressing voltage fluctuation. As methods for suppressing voltage fluctuation at the connection point when the wind power generator is connected to the power system via the power converter, there are Patent Documents 1 to 3.
 特許文献1では、電力変換器の出力を検出し、この電力変換器の有効電力出力に起因する連系点の電圧変動分を補償するように、電力変換器を制御する方法が開示されている。具体的には、電力変換器の有効電力出力PCONと、それにより生じた電力変換器の連系点の電圧変動ΔVPCCから系統パラメータα=R/Xを推定し、電力変換器にQCON=-αPCONで求まる無効電力QCONを出力させる。ここで、RとXは、それぞれ連系線のインピーダンスの抵抗分とリアクタンス分を表している。 Patent Document 1 discloses a method for controlling a power converter so as to detect the output of the power converter and compensate for the voltage fluctuation at the interconnection point caused by the effective power output of the power converter. . Specifically, the system parameter α = R L / X L is estimated from the effective power output P CON of the power converter and the voltage fluctuation ΔV PCC at the connection point of the power converter generated thereby, and the power converter Reactive power Q CON obtained by Q CON = −αP CON is output. Here, R L and X L represent the resistance component and reactance component of the impedance of the interconnection line, respectively.
 特許文献2では、連系点における所定の力率指令値PF=P/√(P+Q)を各風力発電システムに対してそれぞれ設定されている力率補正量を用いて補正することで、各風力発電システムの力率指令値を決定する方法が開示されている。ここで、PとQは、それぞれ風力発電システムの有効電力出力と無効電力出力を表している。さらに、力率補正量は、各風力発電システムと連系点との間に存在するリアクタンス成分に基づいて決定する。 In Patent Document 2, a predetermined power factor command value PF = P / √ (P 2 + Q 2 ) at the interconnection point is corrected by using a power factor correction amount set for each wind power generation system. A method for determining a power factor command value for each wind power generation system is disclosed. Here, P and Q represent the active power output and reactive power output of the wind power generation system, respectively. Further, the power factor correction amount is determined based on the reactance component existing between each wind power generation system and the interconnection point.
 特許文献3では、連系点における無効電力計測値、電圧計測値、または力率計測値に基づいて、電圧目標値もしくは力率目標値が求められ、これら目標値を達成するために必要な無効電力を風力発電システムから出力させる方法が開示されている。 In Patent Literature 3, a voltage target value or a power factor target value is obtained based on a reactive power measurement value, a voltage measurement value, or a power factor measurement value at a connection point, and invalidity necessary to achieve these target values. A method for outputting electric power from a wind power generation system is disclosed.
特開2007-124779JP2007-1224779 WO2009/078076WO2009 / 078076 WO2013/128986WO2013 / 128986
 特許文献1の技術に関しては、電力変換器の有効電力出力に起因する連系点の電圧変動の抑制を対象としているため、電力変換器と連系線をつなぐ連系変圧器で消費される無効電損失に起因する連系点の電圧変動を抑制できない。 With regard to the technique of Patent Document 1, since it is intended to suppress voltage fluctuations at the interconnection point caused by the active power output of the power converter, the invalidity consumed by the interconnection transformer connecting the power converter and the interconnection line It is impossible to suppress voltage fluctuations at the interconnection point due to power loss.
 特許文献2の技術に関しては、力率指令によって無効電力出力を制御するため、無効電力出力は有効電力出力に比例して変化する。特許文献1の課題でもある連系変圧器の無効電損失を補償するためには、有効電力出力(または、電流出力)の2乗に比例するように無効電力出力を制御する必要がある。そのため、力率指令では、連系変圧器の無効電損失に起因する連系点の電圧変動を抑制できない。 Regarding the technique of Patent Document 2, since the reactive power output is controlled by the power factor command, the reactive power output changes in proportion to the active power output. In order to compensate for the reactive power loss of the interconnection transformer, which is also a problem of Patent Document 1, it is necessary to control the reactive power output so as to be proportional to the square of the active power output (or current output). Therefore, the power factor command cannot suppress voltage fluctuations at the interconnection point due to reactive power loss of the interconnection transformer.
 特許文献3の技術に関しては、連系変圧器で消費される無効電力損失を考慮して、各風力発電システムの無効電力指令を決定していないため、連系点の無効電力を目標値に一致させることができない。 Regarding the technology of Patent Document 3, the reactive power command of each wind power generation system is not determined in consideration of the reactive power loss consumed by the interconnection transformer, so the reactive power at the interconnection point matches the target value. I can't let you.
 本発明では、連系変圧器の無効電力損失に起因する連系点の電圧変動を抑制する自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法を提供することを目的とする。 An object of the present invention is to provide a natural energy power generation system, a reactive power controller, or a control method for a natural energy power generation system that suppresses voltage fluctuations at a connection point caused by a reactive power loss of an interconnection transformer.
 前記目的を達成するため、本発明の自然エネルギー発電システムは、自然エネルギーを受けて発電する発電装置と、前記発電装置及び電力系統に電気的に接続される電力変換器と、前記電力変換器と前記電力系統の間に配置される連系変圧器と、前記電力変換器が出力する無効電力指令を生成する無効電力コントローラを備え、前記無効電力コントローラは、前記電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記無効電力指令を決定することを特徴とする。 In order to achieve the object, a natural energy power generation system of the present invention includes a power generation device that generates power by receiving natural energy, a power converter electrically connected to the power generation device and a power system, and the power converter. An interconnection transformer disposed between the power grids, and a reactive power controller that generates a reactive power command output by the power converter, the reactive power controller comprising: the power converter and the power grid. The reactive power command is determined such that a sum of a fluctuation component due to active power at the interconnection point voltage and a fluctuation component due to reactive power at the interconnection point voltage is substantially constant.
 また、本発明に係る無効電力コントローラは、自然エネルギーを受けて発電する発電装置及び電力系統に電気的に接続される電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記電力変換器が出力する無効電力指令を生成する演算装置を備えることを特徴とする。 Further, the reactive power controller according to the present invention includes a power generation device that receives natural energy to generate power, a power converter that is electrically connected to the power system, and a fluctuation component due to active power in a connection point voltage between the power system and An arithmetic unit is provided that generates a reactive power command output by the power converter so that a sum of fluctuation components due to reactive power in the interconnection point voltage becomes substantially constant.
 さらに、本発明に係る自然エネルギー発電システムの制御方法は、自然エネルギーを受けて発電する発電装置と、前記発電装置及び電力系統に電気的に接続される電力変換器と、 前記電力変換器と前記電力系統の間に配置される連系変圧器と、前記電力変換器が出力する無効電力指令を生成する無効電力コントローラを備える自然エネルギー発電システムの制御方法であって、前記電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記無効電力指令を決定することを特徴とする。 Furthermore, the control method of the natural energy power generation system according to the present invention includes a power generation device that generates power by receiving natural energy, a power converter electrically connected to the power generation device and a power system, the power converter, and the A method for controlling a natural energy power generation system, comprising: an interconnected transformer disposed between power systems; and a reactive power controller that generates a reactive power command output from the power converter, wherein the power converter and the power The reactive power command is determined so that a sum of a fluctuation component due to active power at a connection point voltage with a system and a fluctuation component due to reactive power at the connection point voltage is substantially constant.
 本発明によれば、連系変圧器の無効電力損失に起因する連系点の電圧変動を抑制する自然エネルギー発電システム、無効電力コントローラまたは自然エネルギー発電システムの制御方法を提供することができる。 According to the present invention, it is possible to provide a natural energy power generation system, a reactive power controller, or a control method for a natural energy power generation system that suppresses voltage fluctuations at a connection point caused by a reactive power loss of an interconnection transformer.
実施例1における風力発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the wind power generation system in Example 1. FIG. 実施例1における無効電力コントローラの構成を示す図である。It is a figure which shows the structure of the reactive power controller in Example 1. FIG. 実施例1における連系点の電圧変動を説明するためのグラフであり、(A)は連系点の有効電力の時間変化、(B)は連系点の電流の時間変化、(C)は電力変換器の無効電力出力の時間変化、(D)は連系点の電圧変動の時間変化である。It is a graph for demonstrating the voltage fluctuation of the connection point in Example 1, (A) is the time change of the active power of a connection point, (B) is the time change of the current of a connection point, (C) is The time change of the reactive power output of the power converter, (D) is the time change of the voltage fluctuation at the interconnection point. 実施例1における無効電力指令値の決定方法を説明するためのグラフであり、(A)は電力変換器の有効電力出力の時間変化、(B)は電力変換器の電流出力の時間変化、(C)は電力変換器の無効電力指令である。It is a graph for demonstrating the determination method of the reactive power command value in Example 1, (A) is the time change of the active power output of a power converter, (B) is the time change of the current output of a power converter, ( C) is a reactive power command for the power converter. 実施例1における連系点の電圧変動抑制効果を説明するためのグラフであり、(A)は電力変換器の無効電力出力の時間変化、(B)は連系点の電力制御量の時間変化、(C)は連系点の電圧変動の時間変化である。It is a graph for demonstrating the voltage fluctuation suppression effect of the connection point in Example 1, (A) is the time change of the reactive power output of a power converter, (B) is the time change of the power control amount of a connection point. , (C) is the time change of voltage fluctuation at the interconnection point. 実施例1の変形例2における無効電力コントローラの構成を示す図である。It is a figure which shows the structure of the reactive power controller in the modification 2 of Example 1. FIG. 実施例1の変形例2における無効電力指令値テーブル記憶部に保存されるテーブルの一例を示す図である。It is a figure which shows an example of the table preserve | saved at the reactive power command value table memory | storage part in the modification 2 of Example 1. FIG. 実施例2におけるウィンドファームの全体構成を示す図である。It is a figure which shows the whole structure of the wind farm in Example 2. FIG. 実施例2における無効電力センターコントローラの構成を示す図である。It is a figure which shows the structure of the reactive power center controller in Example 2. FIG. 実施例2における集電構成記憶部に保存されるテーブルの一例を示す図である。It is a figure which shows an example of the table preserve | saved in the current collection structure memory | storage part in Example 2. FIG. 実施例3における発電出力予測手段を備えたウィンドファームの全体構成を示す図である。It is a figure which shows the whole structure of the wind farm provided with the electric power generation output prediction means in Example 3. FIG. 実施例3における無効電力指令の課題を説明するためのグラフであり、(A)は電力変換器の有効電力出力時間変化、(B)は電力変換器の電流出力時間変化、(C)は電力変換器の無効電力指令値の時間変化である。It is a graph for demonstrating the subject of the reactive power command in Example 3, (A) is active power output time change of a power converter, (B) is current output time change of a power converter, (C) is electric power. It is a time change of the reactive power command value of a converter. 実施例3における無効電力指令値の決定方法を説明するためのグラフであり、(A)は電力変換器の有効電力出力時間変化、(B)は電力変換器の電流出力時間変化、(C)は電力変換器の無効電力指令値の時間変化である。It is a graph for demonstrating the determination method of the reactive power command value in Example 3, (A) is the active power output time change of a power converter, (B) is the current output time change of a power converter, (C). Is the time change of the reactive power command value of the power converter. 実施例3における無効電力指令を説明するためのテーブルである。It is a table for demonstrating the reactive power command in Example 3. FIG. 実施例4における太陽光発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the solar energy power generation system in Example 4. FIG. 実施例4におけるソーラファームの全体構成を示す図である。It is a figure which shows the whole structure of the solar farm in Example 4. FIG. 実施例4における発電出力予測手段を備えたソーラファームの全体構成を示す図である。It is a figure which shows the whole structure of the solar farm provided with the power generation output prediction means in Example 4.
 発明を実施するための形態について、適宜図面を参照しながら詳細に説明する。 DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the invention will be described in detail with reference to the drawings as appropriate.
 図1は、第1実施例における自然エネルギー発電システムである風力発電システムの全体構成を示す図である。風力発電システム1は、連系変圧器2および連系線3を介して電力系統4に連系される。連系線3のインピーダンスの抵抗分をR、リアクタンス分をXとする。連系変圧器2と連系線3が接続される地点を連系点5とする。 FIG. 1 is a diagram showing an overall configuration of a wind power generation system which is a natural energy power generation system in the first embodiment. The wind power generation system 1 is connected to the power system 4 via the connection transformer 2 and the connection line 3. The resistance of the impedance of the interconnection line 3 R L, the reactance and X L. A point where the interconnection transformer 2 and the interconnection line 3 are connected is defined as an interconnection point 5.
 風力発電システム1を構成する各部について説明する。風力発電システム1は、風力タービン11、風力タービン11と主軸(更には必要に応じて増速機等)を介して接続される発電機12、発電機12における風力タービン11側とは反対側と電気的に接続されて発電機11の発電電力を調整する電力変換器13、電力変換器13と連系変圧器2の間に設置されるセンサ14、有効電力コントローラ15、および無効電力コントローラ16で構成される。風力タービン11で受けた風力エネルギーは、発電機12によって電気エネルギーに変換され、電力変換器13へ送られる。有効電力コントローラ15は、風力タービン11のピッチ角や風速などから発電機12が発電可能な有効電力指令値PREFを決定し、有効電力指令値PREFを電力変換器13へ送信する。無効電力コントローラ16は、センサ14で計測される電力変換器13の有効電力出力PCONおよび電流出力ICONから連系点5の電圧変動を抑制する無効電力指令値QREFを決定し、無効電力指令値QREFを電力変換器13へ送信する。電力変換器13は、有効電力指令値PREFおよび無効電力指令値QREFに追従するように、有効電力出力PCONおよび無効電力出力QCONを制御する。 Each part which comprises the wind power generation system 1 is demonstrated. The wind power generation system 1 includes a wind turbine 11, a generator 12 connected to the wind turbine 11 via a main shaft (and a speed increaser as necessary), and a side of the generator 12 opposite to the wind turbine 11 side. A power converter 13 that is electrically connected to adjust the generated power of the generator 11, a sensor 14 that is installed between the power converter 13 and the interconnection transformer 2, an active power controller 15, and a reactive power controller 16. Composed. Wind energy received by the wind turbine 11 is converted into electrical energy by the generator 12 and sent to the power converter 13. The active power controller 15 determines an active power command value P REF that can be generated by the power generator 12 from the pitch angle or wind speed of the wind turbine 11, and transmits the active power command value P REF to the power converter 13. The reactive power controller 16 determines a reactive power command value Q REF that suppresses voltage fluctuations at the interconnection point 5 from the active power output P CON and the current output I CON of the power converter 13 measured by the sensor 14, and reacts with the reactive power. Command value Q REF is transmitted to power converter 13. The power converter 13 controls the active power output P CON and the reactive power output Q CON so as to follow the active power command value P REF and the reactive power command value Q REF .
 図2は、無効電力コントローラ16の構成図である。無効電力コントローラ16は、センサ14で計測される電力変換器13の有効電力出力PCONおよび電流出力ICONを受信部161によって取得する。無効電力指令決定部162は、有効電力出力PCON、電流出力ICON、連系線パラメータ記憶部163に保存された連系線3のインピーダンスの抵抗RとリアクタンスX、連系変圧器パラメータ記憶部164に保存されたリアクタンスの1次側XTR1および2次側XTR2と巻数比αTRから、無効電力指令QREFを求める。無効電力指令QREFは、送信部165を介して、電力変換器13へ出力される。 FIG. 2 is a configuration diagram of the reactive power controller 16. The reactive power controller 16 acquires the active power output P CON and the current output I CON of the power converter 13 measured by the sensor 14 by the receiving unit 161. The reactive power command determination unit 162 includes an active power output P CON , a current output I CON , an impedance resistance RL and reactance X L of the interconnection line 3 stored in the interconnection line parameter storage unit 163, and an interconnection transformer parameter. The reactive power command Q REF is obtained from the primary side X TR1 and secondary side X TR2 of the reactance stored in the storage unit 164 and the turn ratio α TR . The reactive power command Q REF is output to the power converter 13 via the transmission unit 165.
 無効電力指令QREFは、図1に示す連系点5における電圧VPCCの変動(ΔVPCCとする)を抑制するように決定する。無効電力指令QREFの演算は後述する式(8)によって行う。無効電力指令QREFの具体的な演算方法を説明する前に、電圧変動ΔVPCCの発生原理について説明する。 Reactive power command Q REF is determined so as to suppress fluctuations in voltage V PCC (referred to as ΔV PCC ) at interconnection point 5 shown in FIG. The calculation of the reactive power command Q REF is performed by the equation (8) described later. Before describing a specific calculation method of reactive power command Q REF, the principle of generation of voltage fluctuation ΔV PCC will be described.
 電圧変動ΔVPCCの発生原理を数式で表す。図1に示すように連系変圧器2から連系点5に有効電力PPCCと無効電力QPCCが流れた場合、連系点5の電圧VPCCにおける有効電力PPCCによる変動成分ΔVPCC1と、無効電力QPCCによる変動成分ΔVPCC2は、それぞれ(1)(2)式のように表せる。なお、無効電力の正負については、電力変換器13から連系変圧器2へ進みの無効電力が流れる場合を正とする。 The generation principle of the voltage fluctuation ΔV PCC is expressed by a mathematical expression. As shown in FIG. 1, when active power P PCC and reactive power Q PCC flow from interconnection transformer 2 to interconnection point 5, variation component ΔV PCC 1 due to active power P PCC at voltage V PCC at interconnection point 5. Then, the fluctuation component ΔV PCC 2 due to the reactive power Q PCC can be expressed by the equations (1) and (2), respectively. In addition, about the positive / negative of reactive power, when the reactive power which advances from the power converter 13 to the interconnection transformer 2 flows, it is set as positive.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、RとXは、それぞれ連系線5のインピーダンスの抵抗成分とリアクタンス成分である。 Here, R L and X L are a resistance component and a reactance component of the impedance of the interconnection line 5, respectively.
 連系点5の有効電力PPCCおよび無効電力QPCCは、それぞれ電力変換器13の有効電力出力PCONおよび無効電力出力QCONから、連系変圧器2で消費される有効電力損失PLOSSおよび無効電力損失QLOSSを引いた値となり、(3)(4)式のように表せる。なお、有効電力出力PCONに対して有効電力損失PLOSSが十分に小さい場合、有効電力損失PLOSSを省略しても良い。 The active power P PCC and the reactive power Q PCC of the interconnection point 5 are respectively obtained from the active power output P CON and the reactive power output Q CON of the power converter 13 from the active power loss P LOSS and the power consumed by the interconnection transformer 2. The value is obtained by subtracting the reactive power loss Q LOSS and can be expressed as the following equations (3) and (4). Incidentally, when the active power loss P LOSS the effective power output P CON is sufficiently small, it may be omitted active power loss P LOSS.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
ここで、ICONは電力変換器13の電流出力、RTR1およびRTR2はそれぞれ連系変圧器2の1次側(風力発電システム1に近い方)および2次側(連系点5に近い方)のインピーダンスの抵抗成分、XTR1およびXTR2はそれぞれ連系変圧器2の1次側および2次側のインピーダンスのリアクタンス成分、αTRは連系変圧器2の巻数比である。 Here, I CON is the current output of the power converter 13, and R TR1 and R TR2 are the primary side (closer to the wind power generation system 1) and the secondary side (closer to the interconnection point 5) of the interconnection transformer 2, respectively. resistance component, the primary side and the secondary side of the reactance component of the impedance of the X TR1 and X TR2 are each interconnection transformer 2 of the impedance of the way), the alpha TR is the turns ratio of the interconnection transformer 2.
 (1)式に(3)式を、(2)式に(4)式をそれぞれ代入することで(5)(6)式が得られる。 (5) (6) is obtained by substituting (3) into (1) and (4) into (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そして、(5)(6)式から、連系点5の電圧変動ΔVPCCは(7)式で表される。 From the equations (5) and (6), the voltage fluctuation ΔV PCC at the interconnection point 5 is expressed by the equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (7)式の電圧変動ΔVPCCの時系列波形の一例を図3に示す。(7)式において、自然エネルギーの風速の変動に応じて変動する変数は、電力変換器13の有効電力出力PCONおよび電流出力ICONである。そこで、図3には、有効電力出力PCONと電流出力ICONが変動したときの例を示した。また、無効電力QCONは0Varで一定とした。 An example of a time-series waveform of the voltage fluctuation ΔV PCC in the equation (7) is shown in FIG. In the equation (7), the variables that vary according to the fluctuation of the natural energy wind speed are the active power output P CON and the current output I CON of the power converter 13. Therefore, FIG. 3 shows an example when the active power output P CON and the current output I CON fluctuate. The reactive power Q CON is constant at 0 Var.
 ここで、Rは温度変化で多少変化するものの連系線の線種と長さで決まる抵抗値であり、略一定であり、またVPCCも電圧変動を数%の範囲内に変動を抑える必要があるのが通常であり、やはり略一定と考えられる。従って、図3(A)(D)および(5)式から、電圧変動成分ΔVPCC1は、有効電力出力PCONに略比例した波形となる。 Here, RL is a resistance value determined by the line type and length of the interconnection line, although it changes somewhat with temperature change, is substantially constant, and V PCC also suppresses voltage fluctuation within a range of several percent. It is usually necessary and still considered to be substantially constant. Therefore, from the equations (A), (D), and (5) in FIG. 3, the voltage fluctuation component ΔV PCC 1 has a waveform that is substantially proportional to the active power output P CON .
 また、巻数比αTRは連系変圧器2によって定まっている正の定数であり、連系線5のインピーダンスの抵抗成分Rは正の定数であり,リアクタンス成分Xはインダクタンスが支配的なため正の定数である。連系変圧器2のインピーダンスのリアクタンス成分XTR1とXTR2についても,インダクタンス成分が支配的なため正の定数である。そして、(6)式のQCON=0とし、IPCCは図3(B)の波形で表されることから、図3(B)(C)(D)および(6)式により、電圧変動成分ΔVPCC2は、電流出力ICONを2乗して位相を反転した(波形の上下を逆にした)波形となる。 The turn ratio α TR is a positive constant determined by the interconnection transformer 2, the resistance component RL of the impedance of the interconnection line 5 is a positive constant, and the reactance component X L is dominated by the inductance. Therefore, it is a positive constant. The reactance components XTR1 and XTR2 of the impedance of the interconnection transformer 2 are also positive constants because the inductance component is dominant. Since Q CON = 0 in equation (6) and I PCC is represented by the waveform in FIG. 3 (B), voltage fluctuations are obtained by equations (B), (C), (D), and (6) in FIG. The component ΔV PCC 2 has a waveform in which the current output I CON is squared and the phase is inverted (the waveform is reversed upside down).
 そして、電圧変動に関する図3(D)および(7)式から、電圧変動ΔVPCCは電圧変動成分ΔVPCC1とΔVPCC2を合成した波形となる。 3D and 7 regarding the voltage fluctuation, the voltage fluctuation ΔV PCC is a waveform obtained by combining the voltage fluctuation components ΔV PCC 1 and ΔV PCC 2.
 次に、演算装置として働く無効電力指令決定部162が無効電力指令値QREFを決定する具体的な方法について説明する。次の関係式が成り立つような無効電力指令値QREFを求めることで、図3(D)および(7)式に示す連系点5の電圧変動ΔVPCCを抑制できる。尚、本実施例では特に好適な例として連系点5の電圧変動ΔVPCCがおよそゼロになる場合を説明しているが、変動抑制と言う観点からはΔVPCCが略一定となれば良い。
ΔVPCC=ΔVPCC1+ΔVPCC2=(5)式+(6)式=0
 具体的には、(8)式で求められる無効電力指令値QREFに電力変換器13の無効電力出力QCONを制御すれば良い。つまり、図2に示す無効電力指令決定部162は、(8)式を用いて無効電力指令値QREFを求めれば良い。なお、(8)式において、連系線3のインピーダンス比(R/X)が小さいことで、第1項が第2項および第3項に対して十分小さい場合には、第1項を省略しても良い。
Next, a specific method for determining the reactive power command value Q REF by the reactive power command determination unit 162 serving as an arithmetic device will be described. By obtaining the reactive power command value Q REF that satisfies the following relational expression, the voltage fluctuation ΔV PCC at the interconnection point 5 shown in the expressions (D) and (7) of FIG. 3 can be suppressed. In the present embodiment, a case where the voltage fluctuation ΔV PCC at the interconnection point 5 becomes approximately zero has been described as a particularly preferable example. However, from the viewpoint of suppressing fluctuation, ΔV PCC may be substantially constant.
ΔV PCC = ΔV PCC 1 + ΔV PCC 2 = (5) equation + (6) equation = 0
Specifically, the reactive power output Q CON of the power converter 13 may be controlled to the reactive power command value Q REF obtained by the equation (8). That is, the reactive power command determination unit 162 shown in FIG. 2 may obtain the reactive power command value Q REF using the equation (8). Note that in equation (8), that the impedance ratio of the interconnection line 3 (R L / X L) is small, when the first term is sufficiently small relative to the second and third terms, the first term May be omitted.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 (8)式の無効電力指令値QREFの時系列波形の一例を図4に示す。図4の(A)(B)に示す有効電力出力PCONおよび電流出力ICONは、図3と同じ条件とした。図4(A)に示す有効電力出力PCONと(8)式の第1項によって求められる無効電力指令の一部は、図4(C)に示すように有効電力出力PCONの位相を反転した(波形の上限を逆にした)波形となる。また、図4(B)に示す電流出力ICONと(8)式の第2項および第3項によって求められる無効電力指令の一部は、電流出力ICONの2乗に比例した波形となる。そして、それらの波形を合成した波形が最終的な無効電力指令である。 An example of the time series waveform of the reactive power command value Q REF in the equation (8) is shown in FIG. The active power output P CON and current output I CON shown in (A) and (B) of FIG. A part of the reactive power command obtained by the active power output P CON shown in FIG. 4A and the first term of the equation (8) inverts the phase of the active power output P CON as shown in FIG. It becomes a waveform (with the upper limit of the waveform reversed). Further, a part of the reactive power command obtained by the current output I CON shown in FIG. 4B and the second and third terms of the equation (8) has a waveform proportional to the square of the current output I CON. . A waveform obtained by synthesizing these waveforms is the final reactive power command.
 最後に、図5および数式を用いて、本実施例1の無効電力コントローラ16による連系点5の電圧変動ΔVPCCの抑制効果を説明する。図5(A)~(C)には、次の(I)~(III)および(9)~(11)式に示す、それぞれの条件での、電力変換器13の無効電力出力QCON、連系点5の電圧制御量Yおよび電圧変動ΔVPCCの波形を示した。 Finally, the effect of suppressing the voltage fluctuation ΔV PCC at the interconnection point 5 by the reactive power controller 16 of the first embodiment will be described with reference to FIG. 5A to 5C show the reactive power output Q CON of the power converter 13 under the respective conditions shown in the following equations (I) to (III) and (9) to (11). The waveforms of the voltage control amount Y and the voltage fluctuation ΔV PCC at the interconnection point 5 are shown.
 (I)無効電力QCONを0Varで一定とした条件である。 (I) This is a condition in which the reactive power Q CON is constant at 0 Var.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
    (II)特許文献1の無効電力制御手法を適用した条件である。 (II) A condition to which the reactive power control method of Patent Document 1 is applied.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
    (II)本実施例1による無効電力制御手法を適用した条件である。 (II) Conditions for applying the reactive power control method according to the first embodiment.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 連系点5の電圧制御量Yは、(7)式の第2項((X/VPCC)QCON)に、(9)~(11)式を代入することで求められる。(I)~(III)の条件での、電圧制御量Yを(12)~(13)式および図5(B)に示す。 Voltage control amount of the interconnection point 5 Y is a (7) the second term of ((X L / V PCC) Q CON), obtained by substituting (9) to (11) below. The voltage control amount Y under the conditions (I) to (III) is shown in the equations (12) to (13) and FIG. 5 (B).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 電圧制御量Yによって抑制された電圧変動ΔVPCCは、(7)式の第2項((X/VPCC)QCON)を(12)~(14)式に置き換えることで求められる。(I)~(III)の条件での、電圧変動ΔVPCCを(15)~(17)式および図5(C)に示す。 The voltage fluctuation ΔV PCC suppressed by the voltage control amount Y can be obtained by replacing the second term ((X L / V PCC ) Q CON ) in the equation (7) with the equations (12) to (14). The voltage fluctuation ΔV PCC under the conditions (I) to (III) is shown in the equations (15) to (17) and FIG. 5 (C).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 (15)~(17)式および図5(C)を用いて、(I)~(III)の無効電力制御手法による電圧変動ΔVPCCの抑制効果を比較する。(I)および(II)では無効電力の制御後も電圧変動ΔVPCCが残るのに対し、(III)では電圧変動ΔVPCCを0Vに抑制できることがわかる。 Using (15) to (17) and FIG. 5C, the effect of suppressing the voltage fluctuation ΔV PCC by the reactive power control methods (I) to (III) is compared. In (I) and (II), the voltage fluctuation ΔV PCC remains even after the reactive power control, whereas in (III), the voltage fluctuation ΔV PCC can be suppressed to 0V.
 そこで本実施例1によれば、連系点5の電圧変動を抑制するために、電力変換器13の有効電力出力と電流出力、連系線3のインピーダンス比、連系変圧器2のリアクタンスおよび巻数比を用いることで、電力変換器13の無効電力出力を適正値に制御できる。これにより、連系点5の電圧変動を抑制するための無効電力補償装置またはタップ切替付き変圧器などの特別な機器が不要になる。尚、上述の如く、連系線3のインピーダンス比については、値が小さく、結果として(8)式の第1項が第2項および第3項に対して十分小さい場合には、第1項を省略しても良いため、考慮しないことも可能である。 Therefore, according to the first embodiment, in order to suppress the voltage fluctuation at the interconnection point 5, the active power output and current output of the power converter 13, the impedance ratio of the interconnection line 3, the reactance of the interconnection transformer 2, and By using the turn ratio, the reactive power output of the power converter 13 can be controlled to an appropriate value. This eliminates the need for a special device such as a reactive power compensator or a tap-switching transformer for suppressing voltage fluctuations at the interconnection point 5. As described above, the impedance ratio of the interconnection line 3 is small, and as a result, when the first term of the equation (8) is sufficiently smaller than the second term and the third term, the first term Can be omitted, and can be omitted.
 なお、本実施例1の無効電力指令値QREFを次のように求めても良い。 In addition, you may obtain | require the reactive power command value QREF of the present Example 1 as follows.
 <実施例1の変形例1>
電流出力ICONを(18)式に示すように有効電力出力PCONとセンサ14の設置点の基準線間電圧VBASEで近似する。
<Modification 1 of Example 1>
The current output I CON is approximated by the effective power output P CON and the reference line voltage V BASE at the installation point of the sensor 14 as shown in the equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
(8)式に(18)式を代入すると(19)式となる。(19)式を用いて無効電力指令値QREFを求めることで、(8)式に対して電流出力ICONを省略できる。 Substituting equation (18) into equation (8) yields equation (19). By obtaining the reactive power command value Q REF using the equation (19), the current output I CON can be omitted from the equation (8).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 <実施例1の変形例2>
 有効電力出力PCONと無効電力指令値QREFを対応づけたテーブルを事前に作成し、そのテーブルを参照して無効電力指令値QREFを決定する。具体的には、図6に示すように無効電力コントローラ16aは、無効電力コントローラ16に対して、無効電力指令値テーブル作成部166と無効電力指令値テーブル記憶部167が追加された構成となる。無効電力指令値テーブル作成部166は、(19)式を用いて、有効電力出力PCONを0kWから最大出力まで所定の刻みで変化させたときの無効電力指令QREFを計算する。そして、図7に示すような有効電力出力PCONと無効電力指令QREFを対応づけたテーブルを無効電力指令値テーブル記憶部167に保存する。無効電力指令値決定部162は、有効電力出力PCONが更新される度に、無効電力指令値テーブル記憶部167のテーブルを参照して無効電力指令値QREFを決定する。
<Modification 2 of Example 1>
A table in which the active power output P CON is associated with the reactive power command value Q REF is created in advance, and the reactive power command value Q REF is determined with reference to the table. Specifically, as illustrated in FIG. 6, the reactive power controller 16 a has a configuration in which a reactive power command value table creation unit 166 and a reactive power command value table storage unit 167 are added to the reactive power controller 16. The reactive power command value table creation unit 166 calculates the reactive power command Q REF when the active power output P CON is changed from 0 kW to the maximum output in predetermined increments using the equation (19). Then, a table associating the active power output P CON and the reactive power command Q REF as shown in FIG. 7 is stored in the reactive power command value table storage unit 167. The reactive power command value determination unit 162 determines the reactive power command value Q REF with reference to the table of the reactive power command value table storage unit 167 every time the active power output P CON is updated.
 図8は、本発明の実施例2による風力発電システム1における無効電力コントローラ16bの構成図である。この実施例2が、実施例1と異なる点は、風力発電システム1(1A、1B、1C、1D)および連系変圧器2(2I、2J、2K)が複数台となった点である。さらに、それぞれの風力発電システム1の無効電力指令QREF(QREF_A、QREF_B、QREF_C、QREF_D)を、無効電力コントローラ16bが決定するようにした点が実施例1と異なる。なお、以降では、A、B、C、Dは個々の風力発電システム1を区別する記号とし、I、J、Kは個々の連系変圧器2を区別する記号とする。 FIG. 8 is a configuration diagram of the reactive power controller 16b in the wind power generation system 1 according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that the wind power generation system 1 (1A, 1B, 1C, 1D) and the interconnection transformers 2 (2I, 2J, 2K) are plural. Further, the reactive power command Q REF (Q REF_A , Q REF_B , Q REF_C , Q REF_D ) of each wind power generation system 1 is different from that of the first embodiment in that the reactive power controller 16b determines. In the following description, A, B, C, and D are symbols that distinguish individual wind power generation systems 1, and I, J, and K are symbols that distinguish individual interconnection transformers 2.
 本実施例では、風力発電システム1A及び風力発電システム1Bの各電力変換器の電力系統側が連系され、連系後(当該2つの風力発電システムの連系点よりも電力系統側)に連系変圧器2Iが設けられている。また、風力発電システム1C及び風力発電システム1Dの各電力変換器の電力系統側が連系され、連系後(当該2つの風力発電システムの連系点よりも電力系統側)に連系変圧器2Jが設けられている。そして、両連系変圧器2I、2Jの電力系統側に更に連系変圧器2Kが設けられている。また、無効電力コントローラ16bは、各風力発電システム1A~1Dを一括に制御する。 In this embodiment, the power system side of each power converter of the wind power generation system 1A and the wind power generation system 1B is interconnected, and is interconnected after the connection (the power system side from the connection point of the two wind power generation systems). A transformer 2I is provided. Moreover, the power system side of each power converter of the wind power generation system 1C and the wind power generation system 1D is connected, and after the connection (the power system side from the connection point of the two wind power generation systems), the connection transformer 2J Is provided. An interconnection transformer 2K is further provided on the power system side of both interconnection transformers 2I and 2J. The reactive power controller 16b controls the wind power generation systems 1A to 1D collectively.
 無効電力コントローラ16bの構成は、実施例1の無効電力コントローラ16と異なり、図9の構成となる。無効電力コントローラ16bでは、連系変圧器2と風力発電システム1の集電構成を表すテーブルを保存する集電構成記憶部168と、電力変換器13の定格出力を保存する電力変換器定格出力記憶部170と、風力発電システム1に無効電力出力指令QREFを配分する無効電力配分決定部169が追加される。 The configuration of the reactive power controller 16b is different from the reactive power controller 16 of the first embodiment and has the configuration of FIG. In the reactive power controller 16b, a power collection configuration storage unit 168 that stores a table representing a current collection configuration of the interconnection transformer 2 and the wind power generation system 1, and a power converter rated output storage that stores a rated output of the power converter 13. And a reactive power distribution determining unit 169 that distributes the reactive power output command Q REF to the wind power generation system 1.
 風力発電システム1の無効電力出力指令QREFを求める方法について説明する。 A method for obtaining the reactive power output command Q REF of the wind power generation system 1 will be described.
 まず、無効電力コントローラ16bの無効電力指令決定部162bが合計無効電力出力指令QREF_TOTALを求める方法について説明する。合計無効電力出力指令QREF_TOTALの決定には、実施例1での(8)式を、(20)式に示すように複数台の風力発電システム1と複数台の連系変圧器2に対応するように変形した関数を用いる。 First, a method in which the reactive power command determination unit 162b of the reactive power controller 16b determines the total reactive power output command Q REF_TOTAL will be described. In determining the total reactive power output command Q REF_TOTAL, the equation (8) in the first embodiment corresponds to a plurality of wind power generation systems 1 and a plurality of interconnection transformers 2 as shown in the equation (20). A modified function is used.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、(20)式の第1項は、連系線3のインピーダンス(R、X)と、連系線3に流れる有効電力(PCON_A+PCON_B+PCON_C+PCON_D)から求まる無効電力指令である。また、第2項および第3項は、連系変圧器2Iの一次側と2次側のリアクタンス(XTR1_I、XTR2_I)と、連系変圧器2Iの一次側と2次側に流れる電流から(ICON_A+ICON_B、(ICON_A+ICON_B)/αI)から求まる無効電力指令である。第2項および第3項と同様に、第4項~第7項は、連系変圧器2Jおよび連系変圧器2Kに対応する無効電力指令値である。そして、第1項~第7項で求まる無効電力指令を合算した値が合計無効電力出力指令QREF_TOTALとなる。 Here, the first term of the equation (20) is the reactive power obtained from the impedance (R L , X L ) of the interconnection line 3 and the active power (P CON_A + P CON_B + P CON_C + P CON_D ) flowing through the interconnection line 3. It is a directive. The second and third terms are derived from the primary and secondary reactances ( XTR1_I , XTR2_I ) of the interconnection transformer 2I and the current flowing through the primary and secondary sides of the interconnection transformer 2I. This is a reactive power command obtained from (I CON_A + I CON_B , (I CON_A + I CON_B ) / α I ). Similar to the second and third terms, the fourth to seventh terms are reactive power command values corresponding to the interconnection transformer 2J and the interconnection transformer 2K. A value obtained by adding the reactive power commands obtained in the first to seventh terms becomes a total reactive power output command Q REF_TOTAL .
 (20)式のように、複数台の風力発電システム1と複数台の連系変圧器2がある場合に、各連系変圧器2にどの風力発電システム1の電流出力ICONが流れているかを決める必要がある。そこで、無効電力コントローラ16aの無効電力指令決定部162bは、集電構成記憶部168から、連系変圧器2と風力発電システム1の集電構成を表す集電構成テーブルを読み込む。集電構成テーブルの一例を図10に示す。図10では、個々の風力発電システム1と個々の連系変圧器2が交差する欄に●で示されているとき、その連系変圧器2に風力発電システム1の電流出力ICONが流れることを意味している。本実施例では、図8に示す様な連系の態様を取っているが、異なる連系の仕方を採用しても良い。その場合でも、集電構成テーブルを参照することで、各連系変圧器2にどの風力発電システム1の電流出力ICONが流れているかを決定することができる。 (20) When there are a plurality of wind power generation systems 1 and a plurality of interconnection transformers 2 as in the equation (20), which wind power generation system 1 current output I CON flows through each interconnection transformer 2 It is necessary to decide. Therefore, the reactive power command determination unit 162b of the reactive power controller 16a reads the current collection configuration table representing the current collection configuration of the interconnection transformer 2 and the wind power generation system 1 from the current collection configuration storage unit 168. An example of the current collection configuration table is shown in FIG. In FIG. 10, when the individual wind power generation system 1 and the individual interconnection transformer 2 intersect with each other, the current output I CON of the wind power generation system 1 flows through the interconnection transformer 2. Means. In this embodiment, an interconnection mode as shown in FIG. 8 is employed, but a different interconnection method may be adopted. Even in that case, it is possible to determine which wind power generation system 1 current output I CON flows through each interconnection transformer 2 by referring to the current collection configuration table.
 次に、図9に示す無効電力コントローラ16bの無効電力配分決定部169が、合計無効電力出力指令QREF_TOTALから個々の風力発電システム1に無効電力指令QREF(QREF_A、QREF_B、QREF_C、QREF_D)を配分する方法について説明する。 Next, the reactive power distribution determination unit 169 of the reactive power controller 16b shown in FIG. 9 sends the reactive power commands Q REF (Q REF_A , Q REF_B , Q REF_C , Q ) to the individual wind power generation systems 1 from the total reactive power output command Q REF_TOTAL . A method for allocating Q REF — D ) will be described.
 無効電力配分決定部169は、電力変換器定格出力記憶部170に保存された個々の風力発電システム1(1A、1B、1C、1D)の電力変換器13の定格皮相電力SRAT(SRAT_A、SRAT_B、SRAT_C、SRAT_D)と有効電力出力PCON(PCON_A、PCON_B、PCON_C、PCON_D)から、(21)式を用いて風力発電システム1の電力変換器13の無効電力出力可能量QUL(QUL_A、QUL_B、QUL_C、QUL_D)を求める。 The reactive power distribution determining unit 169 includes the rated apparent power S RAT (S RAT_A ) of the power converter 13 of each wind power generation system 1 (1A, 1B, 1C, 1D) stored in the power converter rated output storage unit 170. S RAT_B , S RAT_C , S RAT_D ) and active power output P CON (P CON_A , P CON_B , P CON_C , P CON_D ), the reactive power output of the power converter 13 of the wind power generation system 1 using the equation (21) The possible amount Q UL (Q UL_A , Q UL_B , Q UL_C , Q UL_D ) is obtained.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 そして、各風力発電システム1の無効電力指令QREF≦QULとなるように、合計無効電力出力指令QREF_TOTALを各風力発電システムに配分する。 Then, the total reactive power output command Q REF_TOTAL is distributed to each wind power generation system so that the reactive power command Q REF ≦ Q UL of each wind power generation system 1 is satisfied .
 本実施例2によれば、複数台の風力発電システム1および複数台の連系変圧器2で構成されるウィンドファームにおいて、個々の風力発電システムの有効電力出力および電流出力を検出し、連系線3のインピーダンスと、個々の連系変圧器のリアクタンスと、連系変圧器2と風力発電システム1の集電構成を示すテーブルとを用いて風力発電システムの合計無効電力出力指令QREF_TOTALを決定することで、連系点5の電圧変動を抑制することができる。さらに、個々の風力発電システム1の無効電力指令QREFが無効電力出力可能量QUL以下となるように、合計無効電力出力指令QREF_TOTALを個々の風力発電システム1に配分することで、風力発電システム1の電力変換器13の容量不足によって連系点5に電圧変動が生じることを回避できる。 According to the second embodiment, in a wind farm composed of a plurality of wind power generation systems 1 and a plurality of interconnection transformers 2, the active power output and the current output of each wind power generation system are detected, and the interconnection is performed. The total reactive power output command Q REF_TOTAL of the wind power generation system is determined using the impedance of the line 3, the reactance of each interconnection transformer, and the table indicating the current collection configuration of the interconnection transformer 2 and the wind power generation system 1. By doing so, the voltage fluctuation of the connection point 5 can be suppressed. Further, by distributing the total reactive power output command Q REF_TOTAL to the individual wind power generation systems 1 so that the reactive power command Q REF of the individual wind power generation systems 1 is less than or equal to the reactive power output possible amount Q UL , wind power generation It is possible to avoid voltage fluctuation at the interconnection point 5 due to insufficient capacity of the power converter 13 of the system 1.
 図11は、本発明の実施例3によるウィンドファームにおける無効電力コントローラ16cの構成図である。実施例3が実施例2と異なる点は、無効電力コントローラ16cに、発電出力予測手段6から出力される各風力発電システム1の有効電力出力予測PPRE(PPRE_A、PPRE_B、PPRE_C、PPRE_D)および電流出力予測IPRE(IPRE_A、IPRE_B、IPRE_C、IPRE_D)を入力する点である。 FIG. 11 is a configuration diagram of the reactive power controller 16c in the wind farm according to the third embodiment of the present invention. The third embodiment is different from the second embodiment in that the reactive power controller 16c allows the wind power generation system 1 to output the active power output P PRE (P PRE_A , P PRE_B , P PRE_C , P PRE_D) and the current output prediction I PRE (I PRE_A, I PRE_B , I PRE_C, in that inputting the I PRE_D).
 無効電力コントローラ16cは、図12に示すように、所定の更新時刻(T1およびT2)に達すると風力発電システム1の有効電力出力PCONおよび電流出力ICONを検出し(図12(A)(B))、有効電力出力PCONおよび電流出力ICONから無効電力指令QREFを決定する(図12(C))。 As shown in FIG. 12, the reactive power controller 16c detects the active power output P CON and the current output I CON of the wind power generation system 1 when a predetermined update time (T1 and T2) is reached (FIG. 12 (A) ( B)), reactive power command Q REF is determined from active power output P CON and current output I CON (FIG. 12C).
 図12(C)を参照して、更新時刻T1に決定した無効電力指令QREFを、次の更新時刻T2まで持続させた場合について説明する。時々刻々と変化する風速に応じて、風力発電システム1の有効電力出力PCONおよび電流出力ICONは変化する。それらの変化によって、理想的な無効電力指令QREF_IDEALも変化する。理想的な無効電力指令QREF_IDEALとは、有効電力出力PCONおよび電流出力ICONの変化に合わせて無効電力指令を逐次更新したものである。そのため、更新時刻T1より後では、理想的な無効電力指令QREF_IDEALと時刻T1から持続させた無効電力指令QREFに乖離が生じる。その乖離によって電圧変動の抑制効果は低下する。 A case where reactive power command Q REF determined at update time T1 is continued until next update time T2 will be described with reference to FIG. The active power output P CON and the current output I CON of the wind power generation system 1 change according to the wind speed that changes every moment. Due to these changes, the ideal reactive power command Q REF_IDEAL also changes. The ideal reactive power command Q REF_IDEAL is obtained by sequentially updating the reactive power command in accordance with changes in the active power output P CON and the current output I CON . Therefore, after the update time T1, there is a difference between the ideal reactive power command Q REF_IDEAL and the reactive power command Q REF maintained from time T1. The effect of suppressing voltage fluctuation is reduced due to the deviation.
 そこで本実施例3では、図13に示すように、更新時刻T1において、発電出力予測手段6から、次の更新時刻T2までの将来の有効電力出力予測値PPREおよび電流出力予測値IPREを取得する。そして、有効電力出力および電流出力の検出値(PCON、ICON)と予測値(PPRE、IPRE)のそれぞれに対して無効電力指令値QREFを求める。このように更新時刻T1において、将来を含めた複数時間断面の無効電力指令値QREFを決定することで、理想的な無効電力指令QREF_IDEALとの乖離を小さくできる。なお、発電出力予測手段6は、有効電力出力PCONおよび電流出力ICONの過去の検出値から線形外挿することで、有効電力出力予測値PPREおよび電流出力予測値IPREを予測する。しかし、予測方法は線形外挿に限らなくて良い。 Therefore, in the third embodiment, as shown in FIG. 13, at the update time T1, the future active power output prediction value P PRE and the current output prediction value I PRE from the power generation output prediction means 6 until the next update time T2 are obtained. get. Then, the reactive power command value Q REF is obtained for each of the detected values (P CON , I CON ) and the predicted values (P PRE , I PRE ) of the active power output and the current output. As described above, by determining the reactive power command value Q REF in a cross section including the future at the update time T1, the deviation from the ideal reactive power command Q REF_IDEAL can be reduced. The power generation output prediction means 6 predicts the active power output predicted value P PRE and the current output predicted value I PRE by linear extrapolation from the past detected values of the active power output P CON and the current output I CON . However, the prediction method is not limited to linear extrapolation.
 時刻T1に、無効電力コントローラ16cから、個々の風力発電システム1(1A、1B、1C、1D)へ送られる無効電力指令値QREFの一例を図14に示す。図14で、時刻T1(0時00分00秒)に対する無効電力指令値QREF(30kVar)は、時刻T1に検出した有効電力出力PCONおよび電流出力ICONから求めた値である。時刻T1.25(0時02分30秒)、時刻T1.5(0時05分00秒)、時刻T1.75(0時07分30秒)のそれぞれに対する無効電力指令値QREF(35kVar、40kVar、45kVar)は、時刻T1に取得した有効電力出力予測値PPREおよび電流出力予測値IPREから求めた値である。 FIG. 14 shows an example of the reactive power command value Q REF sent from the reactive power controller 16c to each wind power generation system 1 (1A, 1B, 1C, 1D) at time T1. In FIG. 14, the reactive power command value Q REF (30 kVar) for time T1 (0:00:00) is a value obtained from the active power output P CON and the current output I CON detected at time T1. Reactive power command value Q REF (35 kVar, for time T1.25 (0:02:30), time T1.5 (0:05:00), and time T1.75 (0:07:30) 40 kVar and 45 kVar) are values obtained from the predicted active power output value P PRE and the current output predicted value I PRE acquired at time T1.
 そして、風力発電システム1は、図14に示す時刻毎の無効電力指令値QREFと無効電力出力QCONが一致するように動作する。例えば、時刻T1の直後(0時00分01秒)から時刻T1.25の直前(0時02分29秒)までの期間の無効電力指令値QREFは、時刻T1(0時00分00秒)の無効電力指令値QREF(30Var)を持続させても良い。また、時刻T1(0時00分00秒)と時刻T1.25(0時02分30秒)の無効電力指令値QREF(30Var、35Var)を線形補完して求めても良い。 And the wind power generation system 1 operate | moves so that the reactive power command value QREF for every time shown in FIG. 14 and the reactive power output QCON may correspond. For example, the reactive power command value Q REF in the period immediately after time T1 (0:00:01) to immediately before time T1.25 (0:02:29) is equal to time T1 (0:00:00). ) Reactive power command value Q REF (30Var) may be maintained. Alternatively, the reactive power command value Q REF (30Var, 35Var) at time T1 (0:00:00) and time T1.25 (0:02:30) may be obtained by linear interpolation.
 なお、本実施例3の特徴は、風力発電システム1の有効電力出力および電流出力の検出値に加え将来の予測値を用いて複数時間断面の無効電力指令QREFを求める点にあり、時間断面毎の無効電力指令値QREFを求める方法は実施例1、2と同様である。 The feature of the third embodiment is that a reactive power command Q REF of a plurality of time sections is obtained by using future predicted values in addition to detected values of the active power output and current output of the wind power generation system 1, and the time section The method for obtaining each reactive power command value Q REF is the same as in the first and second embodiments.
 本実施例3によれば、無効電力指令値を更新してから次の更新まで持続させる方法と比べ、将来の風力発電システムの出力予測値を用いて、将来の複数時間断面の無効電力指令値を求めるようにしたことで、電圧変動抑制制御の性能を向上させることができる。 According to the third embodiment, compared to a method of updating the reactive power command value and maintaining it until the next update, using the predicted output value of the future wind power generation system, the reactive power command value in the future multiple time sections Therefore, the performance of the voltage fluctuation suppression control can be improved.
 第1~3の実施例として、自然エネルギー発電システムの風力発電システム1について説明したが、これに限定されるわけではない。図15~17を用いて、実施例4として、自然エネルギー発電システムを太陽光発電システム7とする場合について説明する。尚、自然エネルギー発電システムとしては、風力発電システム、太陽光発電システムが代表的なものである為、実施例を示しているが、それらに限定されるものでない。 Although the wind power generation system 1 of the natural energy power generation system has been described as the first to third embodiments, the present invention is not limited to this. A case where the natural energy power generation system is a solar power generation system 7 will be described as a fourth embodiment with reference to FIGS. In addition, as a natural energy power generation system, since a wind power generation system and a solar power generation system are typical, the Example is shown, However, It is not limited to them.
 図15は、第4実施例における太陽光発電システム7の全体構成を示す図である。図16は、図15の太陽光発電システムを複数台配置し、各太陽光発電システムの無効電力指令を決定する無効電力センターコントローラを備えたソーラーファームの全体構成を示す図である。図17は、図16に発電出力予測手段を追加した全体構成を示す図である。 FIG. 15 is a diagram showing an overall configuration of the solar power generation system 7 in the fourth embodiment. FIG. 16 is a diagram illustrating an overall configuration of a solar farm that includes a plurality of the photovoltaic power generation systems of FIG. 15 and includes a reactive power center controller that determines a reactive power command of each photovoltaic power generation system. FIG. 17 is a diagram showing an overall configuration in which power generation output prediction means is added to FIG.
 図15は、図1(実施例1)に対応する太陽光発電システムの構成を示す。図16は、図8(実施例2)に対応するソーラーファームの構成を示す。図17は、図11(実施例3)に対応するソーラーファームの構成を示す。 FIG. 15 shows a configuration of a photovoltaic power generation system corresponding to FIG. 1 (Example 1). FIG. 16 shows a configuration of a solar farm corresponding to FIG. 8 (Example 2). FIG. 17 shows a configuration of a solar farm corresponding to FIG. 11 (Example 3).
 図1と図15の差異は、自然エネルギー発電システム内に設置される発電システムが、風力発電システム1であるか太陽光発電システム7であるかの違いである。図1の風力タービン11および発電機12は、図15の太陽電池71に相当する。図1の風力発電機用電力変換器12は、図15の太陽光発電装置用電力変換器72に相当する。図1の風力発電用有効電力コントローラ15は、図15の太陽光発電用有効電力コントローラ74に相当する。図1の風力発電用有効電力コントローラ15が風力タービン11から得ていたピッチ角や風速などは、図15の太陽電池71から発生する電圧および電流に相当する。図1の風力発電用無効電力コントローラ16は、図15の太陽光発電用無効電力コントローラ75に相当する。図1の風力発電用センサ14は、図15の太陽光発電用センサ73に相当する。同様に、図8と図16の差異および図11と図17の差異も、風力発電システム1であるか太陽光発電システム7であるかの違いである。その他、同一の符号を付与しているものについては、同様のものであり、ここでの説明は行わない。 The difference between FIG. 1 and FIG. 15 is the difference in whether the power generation system installed in the natural energy power generation system is the wind power generation system 1 or the solar power generation system 7. The wind turbine 11 and the generator 12 in FIG. 1 correspond to the solar cell 71 in FIG. The wind power generator 12 in FIG. 1 corresponds to the solar power converter 72 in FIG. The wind power generation active power controller 15 in FIG. 1 corresponds to the photovoltaic power generation active power controller 74 in FIG. 15. The pitch angle, wind speed, and the like obtained from the wind turbine 11 by the active power controller 15 for wind power generation in FIG. 1 correspond to the voltage and current generated from the solar cell 71 in FIG. The wind power reactive power controller 16 in FIG. 1 corresponds to the solar power reactive power controller 75 in FIG. The wind power generation sensor 14 in FIG. 1 corresponds to the solar power generation sensor 73 in FIG. 15. Similarly, the difference between FIGS. 8 and 16 and the difference between FIGS. 11 and 17 are also differences between the wind power generation system 1 and the solar power generation system 7. The other parts having the same reference numerals are the same and will not be described here.
 図15~図17の各図の構成およびそれらの作用効果は、第1~3実施例において述べた内容と重複するため、詳細な説明は省略するが、第1~3実施例において説明した風力発電システムの作用効果は、本実施例の太陽光発電システムにおいても同様である。 The configurations in FIGS. 15 to 17 and the operation and effects thereof are the same as those described in the first to third embodiments, and thus detailed description thereof is omitted, but the wind power described in the first to third embodiments is omitted. The effect of the power generation system is the same in the photovoltaic power generation system of the present embodiment.
 なお、本発明は上記した実施例1~4に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the first to fourth embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(SolId-State-DrIve)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function may be placed in a memory, a hard disk, a recording device such as an SSD (SolId-State-DrIve), or a recording medium such as an IC card, SD card, or DVD. it can.
 1    風力発電システム
 2    連系変圧器
 3    連系線
 4    電力系統
 5    連系点
 6    発電出力予測手段
 7    太陽光発電システム
 11   風力タービン
 12   発電機
 13   電力変換器
 14   センサ
 15   有効電力コントローラ
 16   無効電力コントローラ
 71   太陽電池
 72   太陽項発電装置用電力変換器
 73   太陽項発電装置用センサ
 74   太陽光発電用有効電力コントローラ
 75   太陽光発電用無効電力コントローラ
 161  受信部
 162  無効電力指令決定部
 163  連系線パラメータ記憶部
 164  連系変圧器パラメータ記憶部
 165  送信部
 166  無効電力指令値テーブル作成部
 167  無効電力指令値テーブル記憶部
 168  集電構成記憶部
 169  無効電力配分決定部
 170  電力変換器定格出力記憶部
DESCRIPTION OF SYMBOLS 1 Wind power generation system 2 Connection transformer 3 Connection line 4 Electric power system 5 Connection point 6 Power generation output prediction means 7 Solar power generation system 11 Wind turbine 12 Generator 13 Power converter 14 Sensor 15 Active power controller 16 Reactive power controller DESCRIPTION OF SYMBOLS 71 Solar cell 72 Power converter for solar power generation devices 73 Sensor for solar power generation devices 74 Active power controller for solar power generation 75 Reactive power controller for solar power generation 161 Receiving unit 162 Reactive power command determining unit 163 Interconnection line parameter storage Unit 164 interconnection transformer parameter storage unit 165 transmission unit 166 reactive power command value table creation unit 167 reactive power command value table storage unit 168 current collection configuration storage unit 169 reactive power distribution determination unit 170 power converter rated output storage unit

Claims (11)

  1.  自然エネルギーを受けて発電する発電装置と、
     前記発電装置及び電力系統に電気的に接続される電力変換器と、
     前記電力変換器と前記電力系統の間に配置される連系変圧器と、
     前記電力変換器が出力する無効電力指令を生成する無効電力コントローラを備え、
     前記無効電力コントローラは、
     前記電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記無効電力指令を決定することを特徴とする自然エネルギー発電システム
    A power generation device that receives natural energy to generate power,
    A power converter electrically connected to the power generator and the power system;
    An interconnection transformer disposed between the power converter and the power system;
    A reactive power controller that generates a reactive power command output by the power converter;
    The reactive power controller is:
    Determining the reactive power command so that a sum of a fluctuation component due to active power in a connection point voltage between the power converter and the power system and a fluctuation component due to reactive power in the connection point voltage are substantially constant. Natural energy power generation system characterized by
  2.  請求項1に記載の自然エネルギー発電システムであって、
     前記無効電力コントローラは、
     前記電力変換器と前記電力系統の間に配置される前記連系変圧器のリアクタンスと、前記電力変換器が出力する電流または有効電力の少なくともいずれかを用いて、前記無効電力指令を決定することを特徴とする自然エネルギー発電システム
    The natural energy power generation system according to claim 1,
    The reactive power controller is:
    Determining the reactive power command using reactance of the interconnection transformer disposed between the power converter and the power system and at least one of current and active power output by the power converter; Natural energy power generation system characterized by
  3.  請求項1または2に記載の自然エネルギー発電システムであって、
     前記無効電力コントローラは、
     更に前記電力変換器と前記電力系統の連系線のインピーダンス比を用いて、前記無効電力指令を決定することを特徴とする自然エネルギー発電システム
    The natural energy power generation system according to claim 1 or 2,
    The reactive power controller is:
    Further, the reactive power command is determined using an impedance ratio between the power converter and the interconnection line of the power system.
  4.  請求項3に記載の自然エネルギー発電システムであって、
     前記有効電力と前記リアクタンスと前記インピーダンス比から、前記電流または前記有効電力の少なくともいずれかと無効電力指令値を対応づけた制御テーブルを作成する制御テーブル作成部と、
     前記制御テーブルを記憶する制御テーブル記憶部を備え、
     前記無効電力指令決定部は、前記制御テーブルと前記電流または前記有効電力の少なくともいずれかを用いて無効電力指令値を決定することを特徴とする自然エネルギー発電システム
    The natural energy power generation system according to claim 3,
    From the active power, the reactance, and the impedance ratio, a control table creating unit that creates a control table that associates at least one of the current or the active power with a reactive power command value;
    A control table storage unit for storing the control table;
    The reactive power command determination unit determines a reactive power command value by using the control table and at least one of the current and the active power.
  5.  請求項3または4に記載の自然エネルギー発電システムであって、
     複数の前記発電装置と、複数の前記電力変換器と、複数台の前記連系変圧器を備え、
     前記無効電力コントローラは、
     前記連系変圧器と前記電力変換器の集電構成を示すテーブルを記憶する集電構成テーブル記憶部を備え、
     前記無効電力指令値決定部は、前記電流または前記有効電力の少なくともいずれかと、前記連系変圧器リアクタンスと、前記連系線インピーダンス比と、前記集電構成テーブルを用いて無効電力指令値を決定することを特徴とする自然エネルギー発電システム
    A natural energy power generation system according to claim 3 or 4,
    A plurality of the power generation devices, a plurality of the power converters, and a plurality of the interconnected transformers,
    The reactive power controller is:
    A current collection configuration table storage unit for storing a table showing a current collection configuration of the interconnection transformer and the power converter;
    The reactive power command value determining unit determines a reactive power command value using at least one of the current and the active power, the interconnection transformer reactance, the interconnection impedance ratio, and the current collection configuration table. Natural energy power generation system characterized by
  6.  請求項5に記載の自然エネルギー発電システムであって、
     前記無効電力コントローラは、
     前記電力変換器の最大皮相電力と前記有効電力から、前記電力変換器の無効電力出力可能量を算出し、前記無効電力指令値が前記無効電力出力可能量以下となるように複数台の前記電力変換器に無効電力指令値の配分を決定する無効電力出力配分決定部を備えることを特徴とする自然エネルギー発電システム
    The natural energy power generation system according to claim 5,
    The reactive power controller is:
    From the maximum apparent power of the power converter and the active power, a reactive power output possible amount of the power converter is calculated, and a plurality of the powers so that the reactive power command value is equal to or less than the reactive power output possible amount. A renewable energy power generation system comprising a reactive power output distribution determining unit that determines a distribution of reactive power command values in a converter
  7.  前記無効電力コントローラは、
     前記電力変換器の電流予測値または有効電力予測値の少なくとも片方を取得する手段を備え、
     前記無効電力指令値決定部は、前記有効電力予測値から、複数時間断面の無効電力指令値を決定する、
     ことを特徴とする自然エネルギー発電システム
    The reactive power controller is:
    Means for obtaining at least one of a predicted current value or a predicted active power value of the power converter;
    The reactive power command value determining unit determines a reactive power command value of a cross section for a plurality of times from the active power predicted value.
    Natural energy power generation system characterized by
  8.  請求項1ないし7のいずれか1項に記載の自然エネルギー発電システムであって、
     前記発電装置は、風力発電装置であることを特徴とする自然エネルギー発電システム
    A natural energy power generation system according to any one of claims 1 to 7,
    A natural energy power generation system, wherein the power generation device is a wind power generation device
  9.  請求項1ないし7のいずれか1項に記載の自然エネルギー発電システムであって、
     前記発電装置は、太陽光発電装置であることを特徴とする自然エネルギー発電システム
    A natural energy power generation system according to any one of claims 1 to 7,
    Natural power generation system characterized in that the power generation device is a solar power generation device
  10.  自然エネルギーを受けて発電する発電装置及び電力系統に電気的に接続される電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記電力変換器が出力する無効電力指令を生成する演算装置を備えることを特徴とする無効電力コントローラ Fluctuation component due to active power in a connection point voltage between the power system and a power converter electrically connected to the power system receiving natural energy and the power system, and a fluctuation component due to reactive power in the connection point voltage A reactive power controller comprising: an arithmetic unit that generates a reactive power command output from the power converter so that a sum of
  11.  自然エネルギーを受けて発電する発電装置と、
     前記発電装置及び電力系統に電気的に接続される電力変換器と、
     前記電力変換器と前記電力系統の間に配置される連系変圧器と、
     前記電力変換器が出力する無効電力指令を生成する無効電力コントローラを備える自然エネルギー発電システムの制御方法であって、
     前記電力変換器と前記電力系統との連系点電圧における有効電力による変動成分及び前記連系点電圧における無効電力による変動成分の和が略一定になる様に、前記無効電力指令を決定することを特徴とする自然エネルギー発電システムの制御方法
    A power generation device that receives natural energy to generate power,
    A power converter electrically connected to the power generator and the power system;
    An interconnection transformer disposed between the power converter and the power system;
    A control method of a natural energy power generation system including a reactive power controller that generates a reactive power command output by the power converter,
    Determining the reactive power command so that a sum of a fluctuation component due to active power in a connection point voltage between the power converter and the power system and a fluctuation component due to reactive power in the connection point voltage are substantially constant. Control method for natural energy power generation system
PCT/JP2017/043736 2016-12-22 2017-12-06 Natural energy power generation system, reactive power controller, or natural energy power generation system control method WO2018116823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016248589A JP6925123B2 (en) 2016-12-22 2016-12-22 How to control renewable energy power generation system, reactive power controller or renewable energy power generation system
JP2016-248589 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116823A1 true WO2018116823A1 (en) 2018-06-28

Family

ID=62627638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043736 WO2018116823A1 (en) 2016-12-22 2017-12-06 Natural energy power generation system, reactive power controller, or natural energy power generation system control method

Country Status (3)

Country Link
JP (2) JP6925123B2 (en)
TW (1) TWI665841B (en)
WO (1) WO2018116823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257839A1 (en) * 2018-10-23 2021-08-19 Mitsubishi Electric Corporation Grid system, control device, control method for grid system, and power conversion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921671B (en) * 2019-03-20 2020-09-04 中车青岛四方车辆研究所有限公司 Single-phase inverter parallel control method and system and inverter
JP7250632B2 (en) * 2019-06-27 2023-04-03 株式会社日立製作所 Integrated control device and integrated control method for renewable energy power generation system
JP7475773B2 (en) 2021-03-17 2024-04-30 株式会社Tmeic Power Conversion Equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system
JP2009239990A (en) * 2008-03-25 2009-10-15 Hitachi Ltd Control method and system of distributed power supply group
JP2012016150A (en) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The Photovoltaic power generation device
US20150295529A1 (en) * 2014-04-15 2015-10-15 General Electric Company Reactive power control for wind turbine generators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962318B2 (en) * 2002-11-26 2007-08-22 株式会社四国総合研究所 Distributed power system voltage control system
JP5509004B2 (en) * 2010-09-10 2014-06-04 株式会社日立製作所 Power sale adjustment server and method
US9612584B2 (en) * 2010-11-08 2017-04-04 Nec Corporation Electric power grid control system and method for electric power control
JP5705606B2 (en) * 2011-03-23 2015-04-22 関西電力株式会社 Voltage rise suppression device and distributed power interconnection system
JP5705076B2 (en) * 2011-09-27 2015-04-22 三菱電機株式会社 Distributed power controller and centralized voltage control system
DE102012212777A1 (en) * 2012-07-20 2014-01-23 Wobben Properties Gmbh Method for controlling a wind farm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system
JP2009239990A (en) * 2008-03-25 2009-10-15 Hitachi Ltd Control method and system of distributed power supply group
JP2012016150A (en) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The Photovoltaic power generation device
US20150295529A1 (en) * 2014-04-15 2015-10-15 General Electric Company Reactive power control for wind turbine generators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257839A1 (en) * 2018-10-23 2021-08-19 Mitsubishi Electric Corporation Grid system, control device, control method for grid system, and power conversion device

Also Published As

Publication number Publication date
TW201824683A (en) 2018-07-01
JP6925123B2 (en) 2021-08-25
JP2021168598A (en) 2021-10-21
JP2018102105A (en) 2018-06-28
TWI665841B (en) 2019-07-11
JP7304385B2 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP7304385B2 (en) Natural energy power generation system, reactive power controller or control method for natural energy power generation system
US9882386B2 (en) Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing
JP4306760B2 (en) Distributed power supply
US9318947B2 (en) Automatic AC bus voltage regulation for power distribution grids
US9640997B2 (en) Power system stabilization using distributed inverters
US7804183B2 (en) Power generating system
US9979193B2 (en) Generation plant control apparatus and method
US20130131878A1 (en) Reactive Following for Distributed Generation and Loads of Other Reactive Controller(s)
US10320315B2 (en) Method for controlling wind turbines
Dai et al. Security region of renewable energy integration: Characterization and flexibility
JP4968105B2 (en) Distributed power supply
CN107005049B (en) Power controller and power control method
Sun et al. Frequency‐based power management for photovoltaic/battery/fuel cell‐electrolyser stand‐alone microgrid
KR101644810B1 (en) Microgrid system, control apparatus for the system and control method for the system
JP7010690B2 (en) Power generation system
JP5556289B2 (en) Distributed power supply and distributed power supply control method
CN108964120B (en) Low-voltage distributed photovoltaic access capacity optimization control method
Hindocha et al. Improving the stability and damping of low-frequency oscillations in grid-connected microgrids with synchronous generators
Miao et al. Optimized energy-storage method based on deep-learning adaptive-dynamic programming
Ampofo et al. Autonomous adaptive Q (U) control for distributed generation in weak medium‐voltage distribution grids
KR101667594B1 (en) Microgrid system including variable speed diesel generator and control method thereof
JP6877053B2 (en) Output stabilizer
Cai et al. Model predictive control-based wind farm power control with energy storage
JP2023176137A (en) System stabilization device, system stabilization method, and system stabilization program
RAJESH Sensitivity-Analysis-Based Sliding Mode Control for Voltage Regulation in Microgrids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885023

Country of ref document: EP

Kind code of ref document: A1