WO2018116655A1 - Magnetoresistance effect device - Google Patents

Magnetoresistance effect device Download PDF

Info

Publication number
WO2018116655A1
WO2018116655A1 PCT/JP2017/039665 JP2017039665W WO2018116655A1 WO 2018116655 A1 WO2018116655 A1 WO 2018116655A1 JP 2017039665 W JP2017039665 W JP 2017039665W WO 2018116655 A1 WO2018116655 A1 WO 2018116655A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive
effect element
magnetoresistive effect
spin torque
torque resonance
Prior art date
Application number
PCT/JP2017/039665
Other languages
French (fr)
Japanese (ja)
Inventor
順一郎 占部
柴田 哲也
健量 山根
鈴木 健司
淳 志村
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2018557591A priority Critical patent/JPWO2018116655A1/en
Publication of WO2018116655A1 publication Critical patent/WO2018116655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetoresistive effect device using a magnetoresistive effect element.
  • the magnetoresistive effect element may be applied to a high frequency device using a spin torque resonance phenomenon, but a specific configuration for applying to a high frequency device such as a high frequency filter has not been shown conventionally.
  • An object of this invention is to provide the magnetoresistive effect device which can implement
  • a magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port to which a high frequency signal is input, and a high frequency signal.
  • the second magnetoresistive effect element is connected to the signal line in parallel with the second port, and the first magnetoresistive effect element and the second magnetoresistive effect element are respectively fixed in magnetization.
  • the first magnetoresistive element and the second magnetoresistive element are input from the direct current application terminal and the first magnetic resistance element includes a layer, a magnetization free layer, and a spacer layer disposed therebetween.
  • Resistive effect element And the relationship between the direction of the direct current flowing through each of the second magnetoresistive elements and the order of arrangement of the magnetization fixed layer, the spacer layer, and the magnetization free layer, The effect element and the second magnetoresistive effect element are formed to be reversed, and the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are mutually different. The difference is the first feature.
  • a direct current input from the direct current application terminal flows in the first magnetoresistive effect element in the direction from the magnetization fixed layer to the magnetization free layer, and the second magnetoresistive effect.
  • the high-frequency signal input from the first port is changed to a second frequency at a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element. It can be passed to the port side and can be blocked from the second port at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive element. That is, the magnetoresistive device having the above characteristics functions as a high-frequency filter (a band-pass filter or a band cutoff filter).
  • the band near the spin torque resonance frequency of the first magnetoresistive effect element is the passband. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the second magnetoresistive effect element is the first magnetoresistive effect element). Therefore, the high frequency signal can be blocked from the second port on the high frequency side or the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the effect element can be made steep.
  • the band in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element is the cutoff band. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the first magnetoresistive effect element is the second magnetoresistive effect element). Therefore, the high frequency signal can be passed to the second port side on the high frequency side or the low frequency side of the spin torque resonance frequency of the second magnetoresistive effect element.
  • the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the cutoff band can be further reduced.
  • the shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the element can be made steep. That is, the magnetoresistive device having the above characteristics can function as a bandpass filter or a bandcut filter having a steep shoulder characteristic on the high frequency side or the low frequency side of the pass band or the stop band.
  • a direct current input from the direct current application terminal flows in the first magnetoresistive effect element from the magnetization free layer to the magnetization fixed layer, and the second magnetism
  • the high-frequency signal input from the first port is changed to the first in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element.
  • the second port can be blocked, and at the frequency near the spin torque resonance frequency of the second magnetoresistive element, it can be passed to the second port side. That is, the magnetoresistive effect device having the above characteristics functions as a high-frequency filter (a band cutoff filter or a band pass filter).
  • the band in the vicinity of the spin torque resonance frequency of the first magnetoresistive element is the cutoff band. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the second magnetoresistive effect element is the first magnetoresistive effect element). Therefore, the high frequency signal can be passed to the second port side on the high frequency side or the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element.
  • the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the cutoff band can be further reduced.
  • the shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the element can be made steep.
  • the band in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element is the passband. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the first magnetoresistive effect element is the second magnetoresistive effect element). Therefore, the high frequency signal can be cut off from the second port on the high frequency side or the low frequency side of the spin torque resonance frequency of the second magnetoresistive effect element.
  • the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the effect element can be made steep. That is, the magnetoresistive effect device having the above characteristics can function as a band cut filter or a band pass filter having a steep shoulder characteristic on the high frequency side or the low frequency side of the cut band or the pass band.
  • a magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port to which a high frequency signal is input, a high frequency A second port from which a signal is output; a signal line; a DC application terminal capable of applying a DC current or a DC voltage to the magnetoresistive effect element; and a reference potential terminal.
  • the first magnetoresistive effect element and the second magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween, and the first magnetoresistance effect element and the second magnetoresistive effect element Second magnetism
  • the anti-effect element is connected to the DC application terminal and the reference potential terminal so that one end side is the DC application terminal side and the other end side is the reference potential terminal side, and the first magnetic element
  • the resistance effect element and the second magnetoresistive effect element have a relationship between a direction from the one end side to the other end side and a direction from the magnetization free layer to the magnetization fixed layer, respectively.
  • the first magnetoresistive element and the second magnetoresistive element are formed so as to be reversed, and the spin torque resonance frequency of the first magnetoresistive element and the spin torque of the second magnetoresistive element
  • a second feature is that the resonance frequencies are different from each other.
  • the magnetoresistive effect device having the above characteristics is similar to the magnetoresistive effect device having the first feature described above. It becomes possible to function as a band cutoff filter.
  • a magnetoresistance effect device capable of realizing a high frequency device such as a high frequency filter using a magnetoresistance effect element.
  • FIG. 1 is a schematic cross-sectional view of a magnetoresistive device 100 according to a first embodiment of the present invention.
  • the magnetoresistance effect device 100 includes a magnetization fixed layer 102 (first magnetization fixed layer), a magnetization free layer 104 (first magnetization free layer), and a spacer layer 103 (first spacer layer) disposed therebetween.
  • First magnetoresistive effect elements 101a and 101b having magnetic field, magnetization fixed layer 102 (second magnetization fixed layer), magnetization free layer 104 (second magnetization free layer), and spacers disposed therebetween
  • a second magnetoresistive element 101c having a layer 103 (second spacer layer), a first port 109a to which a high-frequency signal is input, a second port 109b to which a high-frequency signal is output, and a signal line 107
  • a direct current input terminal 110 as an example of a direct current application terminal.
  • the first port 109 a and the second port 109 b are connected via the signal line 107.
  • the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b. More specifically, the magnetoresistive effect device 100 has a reference potential terminal 114, the two first magnetoresistive effect elements 101a and 101b are connected in series, and the first magnetoresistive effect element 101a. Is connected to the signal line 107 between the first port 109a and the second port 109b, and the magnetization free layer 104 side of the first magnetoresistance effect element 101b is connected to the reference potential terminal 114.
  • the magnetization free layer 104 side of the second magnetoresistive effect element 101c is a signal between the first port 109a and the second port 109b.
  • the magnetization fixed layer 102 side of the second magnetoresistance effect element 101c is connected to the reference potential terminal 114 via the reference potential terminal 114. It has to be connected to the ground 108 Te.
  • the ground 108 can be external to the magnetoresistive device 100.
  • the magnetoresistive effect device 100 is used with the reference potential terminal 114 connected to the ground 108 and the direct current source 112 connected to the direct current input terminal 110 and the ground 108.
  • the magnetoresistive effect device 100 By connecting the direct current source 112 to the direct current input terminal 110 and the ground 108, the magnetoresistive effect device 100 has two first magnetoresistive elements 101a and 101b, a signal line 107, a ground 108, and a direct current input.
  • a closed circuit including the terminal 110 can be formed, and a closed circuit including the second magnetoresistance effect element 101c, the signal line 107, the ground 108, and the direct current input terminal 110 can be formed.
  • Each of the first magnetoresistive elements 101a and 101b has one end side (in this example, the magnetization fixed layer 102 side) on the DC current input terminal 110 side and each other end side (in this example, the magnetization free layer 104 side). ) Is connected to the DC current input terminal 110 and the reference potential terminal 114 so that the reference potential terminal 114 is on the side.
  • One end side (in this example, the magnetization free layer 104 side) of the second magnetoresistance effect element 101c is the DC current input terminal 110 side
  • the other end side in this example, the magnetization fixed layer 102 side
  • the DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side.
  • the first magnetoresistive effect elements 101 a and 101 b and the second magnetoresistive effect element 101 c are oriented from one end side to the other end side and from each magnetization free layer 104.
  • the first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c are formed so that the relationship with the direction to the magnetization fixed layer 102 is opposite.
  • the direction from one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 are opposite to each other.
  • the second magnetoresistance effect element 101c the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 are in the same relationship. Yes.
  • the first magnetoresistance effect element 101a is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistance effect element 101a in the direction from the magnetization fixed layer 102 to the magnetization free layer 104.
  • the first magnetoresistance effect element 101b is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistance effect element 101b in the direction from the magnetization fixed layer 102 to the magnetization free layer 104.
  • the second magnetoresistive effect element 101c is formed such that a direct current input from the direct current input terminal 110 flows in the second magnetoresistive effect element 101c in the direction from the magnetization free layer 104 to the magnetization fixed layer 102. Has been.
  • the direct current is a current whose direction does not change with time, and includes a current whose magnitude changes with time.
  • the DC voltage is a voltage whose direction does not change with time, and includes a voltage whose magnitude changes with time.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101a, the spin torque resonance frequency of the first magnetoresistance effect element 101b, and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other.
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is greater than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. Or higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
  • the first port 109a is an input port to which a high-frequency signal that is an AC signal is input
  • the second port 109b is an output port to which a high-frequency signal is output.
  • the high frequency signal input to the first port 109a and the high frequency signal output from the second port 109b are, for example, signals having a frequency of 100 MHz or more.
  • the first magnetoresistive element 101a is electrically connected to the signal line 107 via the upper electrode 105, and is electrically connected to the first magnetoresistive element 101b via the lower electrode 106.
  • One magnetoresistive element 101b is electrically connected to the first magnetoresistive element 101a via the upper electrode 105, and electrically connected to the ground 108 via the lower electrode 106 and the reference potential terminal 114. Yes.
  • the second magnetoresistance effect element 101 c is electrically connected to the signal line 107 via the lower electrode 106 and electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114.
  • a part of the high-frequency signal input from the first port 109a is passed to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c, and the remaining high-frequency signals are transmitted to the second high-frequency signal.
  • the attenuation (S21) which is the dB value of the power ratio (output power / input power) when the high-frequency signal passes from the first port 109a to the second port 109b, is measured by a high-frequency measuring instrument such as a network analyzer. It can be measured.
  • the upper electrode 105 and the lower electrode 106 serve as a pair of electrodes, and are disposed via the magnetoresistive elements in the stacking direction of the layers constituting the magnetoresistive elements. That is, the upper electrode 105 and the lower electrode 106 form a signal (current) in a direction intersecting the surface of each layer constituting each magnetoresistive effect element, for example, each magnetoresistive effect element. It functions as a pair of electrodes for flowing in a direction (stacking direction) perpendicular to the surface of each layer.
  • the upper electrode 105 and the lower electrode 106 are preferably made of Ta, Cu, Au, AuCu, Ru, or any two or more films of these materials.
  • each of the two first magnetoresistance effect elements 101a and 101b is electrically connected to the signal line 107 via the upper electrode 105, and the other end side (magnetization free layer 104 side). ) Is electrically connected to the ground 108 via the lower electrode 106.
  • the second magnetoresistive element 101c has one end side (magnetization free layer 104 side) electrically connected to the signal line 107 via the lower electrode 106, and the other end side (magnetization fixed layer 102 side) is the upper side. It is electrically connected to the ground 108 via the electrode 105.
  • the ground 108 functions as a reference potential.
  • the shapes of the signal line 107 and the ground 108 are preferably defined as a microstrip line (MSL) type or a coplanar waveguide (CPW) type.
  • MSL microstrip line
  • CPW coplanar waveguide
  • the signal line width of the signal line 107 and the distance between the grounds are designed so that the characteristic impedance of the signal line 107 is equal to the impedance of the circuit system.
  • the direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a.
  • direct current is applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c in the respective stacking directions. It becomes possible to apply.
  • an inductor or a resistance element for cutting a high frequency signal may be connected in series between the DC current input terminal 110 and the DC current source 112.
  • the direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110.
  • a closed circuit including the second magnetoresistance effect element 101c, the signal line 107, the ground 108, and the direct current input terminal 110 is formed.
  • the direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit.
  • the direct current source 112 is configured by, for example, a circuit of a combination of a variable resistor and a direct current voltage source, and is configured to be able to change the current value of the direct current.
  • the direct current source 112 may be configured by a circuit of a combination of a fixed resistor and a direct current voltage source that can generate a constant direct current.
  • the magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c, and the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c.
  • a magnetic field static magnetic field
  • the magnetic field application mechanism 111 is configured as an electromagnet type or a stripline type that can variably control the applied magnetic field intensity by either voltage or current.
  • the magnetic field application mechanism 111 may be configured by a combination of an electromagnet type or stripline type and a permanent magnet that supplies only a constant magnetic field.
  • the magnetic field application mechanism 111 may be arranged individually for each magnetoresistive effect element, and the spin torque resonance frequency of each magnetoresistive effect element may be set independently.
  • the magnetic field application mechanism 111 can change the effective magnetic field in the magnetization free layer 104 and change the spin torque resonance frequency of each magnetoresistive effect element by changing the magnetic field applied to each magnetoresistive effect element.
  • the magnetization fixed layer 102 is made of a ferromagnetic material, and its magnetization direction is substantially fixed in one direction.
  • the magnetization fixed layer 102 is preferably made of a high spin polarizability material such as Fe, Co, Ni, an alloy of Ni and Fe, an alloy of Fe and Co, or an alloy of Fe, Co and B. Thereby, a high magnetoresistance change rate can be obtained.
  • the magnetization fixed layer 102 may be made of a Heusler alloy.
  • the film thickness of the magnetization fixed layer 102 is preferably 1 to 10 nm. Further, an antiferromagnetic layer may be added so as to be in contact with the magnetization fixed layer 102 in order to fix the magnetization of the magnetization fixed layer 102.
  • the magnetization of the magnetization fixed layer 102 may be fixed using magnetic anisotropy due to the crystal structure, shape, or the like.
  • FeO, CoO, NiO, CuFeS 2 , IrMn, FeMn, PtMn, Cr, Mn, or the like can be used.
  • the spacer layer 103 is disposed between the magnetization fixed layer 102 and the magnetization free layer 104, and the magnetization of the magnetization fixed layer 102 and the magnetization of the magnetization free layer 104 interact to obtain a magnetoresistance effect.
  • the spacer layer 103 includes a layer formed of a conductor, an insulator, and a semiconductor, or a layer including a conduction point formed of a conductor in the insulator.
  • the spacer layer 103 When a nonmagnetic conductive material is applied as the spacer layer 103, examples of the material include Cu, Ag, Au, and Ru, and the magnetoresistive effect element exhibits a giant magnetoresistance (GMR) effect.
  • GMR giant magnetoresistance
  • the thickness of the spacer layer 103 is preferably about 0.5 to 3.0 nm.
  • the spacer layer 103 When a nonmagnetic insulating material is applied as the spacer layer 103, examples of the material include Al 2 O 3 or MgO, and the magnetoresistive element exhibits a tunnel magnetoresistance (TMR) effect.
  • TMR tunnel magnetoresistance
  • a high magnetoresistance change rate can be obtained by adjusting the film thickness of the spacer layer 103 so that a coherent tunnel effect appears between the magnetization fixed layer 102 and the magnetization free layer 104.
  • the thickness of the spacer layer 103 is preferably about 0.5 to 3.0 nm.
  • the spacer layer 103 When a nonmagnetic semiconductor material is used for the spacer layer 103, examples of the material include ZnO, In 2 O 3 , SnO 2 , ITO, GaO x, and Ga 2 O x, and the thickness of the spacer layer 103 is 1.0. It is preferable that the thickness is about 4.0 nm.
  • the spacer layer 103 When a layer including a conduction point constituted by a conductor in a nonmagnetic insulator is applied as the spacer layer 103, in the nonmagnetic insulator constituted by Al 2 O 3 or MgO, CoFe, CoFeB, CoFeSi, CoMnGe, A structure including a conduction point constituted by a conductor such as CoMnSi, CoMnAl, Fe, Co, Au, Cu, Al, or Mg is preferable. In this case, the thickness of the spacer layer 103 is preferably about 0.5 to 2.0 nm.
  • the magnetization free layer 104 can change the magnetization direction and is made of a ferromagnetic material.
  • the direction of magnetization of the magnetization free layer 104 can be changed by, for example, an externally applied magnetic field or spin-polarized electrons.
  • the magnetization free layer 104 is a material having an easy axis in the in-plane direction of the film
  • examples of the material include CoFe, CoFeB, CoFeSi, CoMnGe, CoMnSi, and CoMnAl, and the thickness is about 1 to 30 nm. preferable.
  • the magnetization free layer 104 is a material having an axis of easy magnetization in the normal direction of the film surface
  • the material is Co, CoCr alloy, Co multilayer film, CoCrPt alloy, FePt alloy, SmCo alloy containing rare earth, or TbFeCo. An alloy etc. are mentioned.
  • the magnetization free layer 104 may be made of a Heusler alloy.
  • a high spin polarizability material may be inserted between the magnetization free layer 104 and the spacer layer 103. This makes it possible to obtain a high magnetoresistance change rate.
  • the high spin polarizability material include a CoFe alloy and a CoFeB alloy.
  • the film thickness of either the CoFe alloy or the CoFeB alloy is preferably about 0.2 to 1.0 nm.
  • a cap layer, a seed layer, or a buffer layer may be provided between the upper electrode 105 and each magnetoresistive element and between the lower electrode 106 and each magnetoresistive element.
  • examples of the cap layer, seed layer, or buffer layer include Ru, Ta, Cu, Cr, or a laminated film thereof. The thickness of these layers is preferably about 2 to 10 nm.
  • each magnetoresistive effect element when a planar view shape is a rectangle (a square is included), it is desirable for a long side to be about 100 nm or 100 nm or less.
  • the long side of the rectangle circumscribing the planar view shape with the minimum area is defined as the long side of each magnetoresistive element.
  • the long side is as small as about 100 nm, the magnetic domain of the magnetization free layer 104 can be made into a single domain, and a highly efficient spin torque resonance phenomenon can be realized.
  • the “planar shape” is a shape viewed in a plane perpendicular to the stacking direction of each layer constituting each magnetoresistive element.
  • the magnetization of the magnetization free layer vibrates at the spin torque resonance frequency.
  • This phenomenon is called a spin torque resonance phenomenon.
  • the element resistance value of the magnetoresistive effect element is determined by the relative angle of magnetization between the magnetization fixed layer and the magnetization free layer. Therefore, the resistance value of the magnetoresistive element at the time of spin torque resonance changes periodically with the vibration of the magnetization of the magnetization free layer. That is, the magnetoresistive effect element can be handled as a resistance vibration element whose resistance value periodically changes at the spin torque resonance frequency.
  • a high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing through each magnetoresistive effect element in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 to each magnetoresistive effect element.
  • the resistance value periodically changes at the spin torque resonance frequency in a state where the phase differs from the input high frequency signal by 180 °, and the impedance to the high frequency signal increases. That is, in the magnetoresistive effect device 100, the two first magnetoresistive elements 101a and 101b can be handled as resistance elements in which the impedance of the high-frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • each magnetoresistive effect element has the same frequency as the spin torque resonance frequency.
  • the resistance value of each magnetoresistive element changes periodically at the spin torque resonance frequency in the same phase as the input high frequency signal, and the impedance to the high frequency signal decreases. That is, in the magnetoresistive effect device 100, the second magnetoresistive effect element 101c can be handled as a resistance element in which the impedance of the high frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • the spin torque resonance frequency changes depending on the effective magnetic field in the magnetization free layer 104.
  • the effective magnetic field H eff in the magnetization free layer 104 includes an external magnetic field H E applied to the magnetization free layer 104, an anisotropic magnetic field H k in the magnetization free layer 104, a demagnetizing field H D in the magnetization free layer 104, and a magnetization free layer 104.
  • Magnetic field applying mechanism 111 by two first magnetoresistance effect elements 101a, a magnetic field is applied to 101b and second magnetoresistive elements 101c, applying an external magnetic field H E to each magnetization free layer 104, the This is an effective magnetic field setting mechanism capable of setting an effective magnetic field H eff in the magnetization free layer 104.
  • the magnetic field application mechanism 111 which is an effective magnetic field setting mechanism changes the magnetic field applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c, thereby enabling effective in each magnetization free layer 104.
  • the spin torque resonance frequency of each of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c can be changed by changing the magnetic field.
  • the magnetic field applied to the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c is changed, the first magnetoresistive effect elements 101a and 101b are changed.
  • the spin torque resonance frequency of each of the 2nd magnetoresistive effect element 101c changes.
  • the spin torque resonance frequencies of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c change the magnetic field from the magnetic field application mechanism 111 or from the direct current input terminal 110, respectively.
  • the current density of the direct current applied to each of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is smaller than the oscillation threshold current density.
  • the oscillation threshold current density of the magnetoresistive effect element is the precession of the magnetization of the magnetization free layer of the magnetoresistive effect element at a constant frequency and a constant amplitude by applying a direct current with a current density equal to or higher than this value. This is the threshold current density at which the magnetoresistive effect element oscillates (the output (resistance value) of the magnetoresistive effect element fluctuates at a constant frequency and a constant amplitude).
  • the spin torque resonance of the magnetoresistive effect element increases as the aspect ratio of the magnetoresistive effect element in plan view increases.
  • the frequency increases.
  • the “aspect ratio of the planar shape” is the ratio of the length of the long side to the length of the short side of the rectangle circumscribing the planar shape of the magnetoresistive element with a minimum area.
  • the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c have the same film configuration and are rectangular in plan view.
  • the spin torque resonance frequency of the first magnetoresistive effect element 101a, the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c The spin torque resonance frequencies can be different from each other.
  • “the film configuration is the same” means that the material and film thickness of each layer constituting the magnetoresistive effect element are the same, and the stacking order of each layer is the same.
  • the frequency components that coincide with the spin torque resonance frequency of the first magnetoresistive effect element 101a or in the vicinity of the spin torque resonance frequency Is cut off from the ground 108 by the first magnetoresistive element 101a in a high impedance state connected in parallel to the second port 109b, and is easily output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a in the high frequency component of the high frequency signal passes through the first magnetoresistive effect element 101a in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult.
  • the frequency components that match the spin torque resonance frequency of the first magnetoresistive effect element 101b or in the vicinity of the spin torque resonance frequency are The second magneto-resistive element 101b connected in parallel to the second port 109b is cut off from the ground 108 and easily output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b in the high frequency component of the high frequency signal passes through the first magnetoresistive effect element 101b in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult.
  • the high frequency component of the high frequency signal input from the first port 109a coincides with the spin torque resonance frequency of the second magnetoresistive effect element 101c or in the vicinity of the spin torque resonance frequency.
  • the frequency component passes through the low-impedance state second magnetoresistive element 101c connected in parallel to the second port 109b, flows to the ground 108, and is not easily output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c in the high frequency component of the high frequency signal is cut off from the ground 108 by the second magnetoresistive effect element 101c in the high impedance state. 2 is easily output to the second port 109b.
  • FIG. 2 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 100 and the attenuation.
  • the vertical axis in FIG. 2 represents the attenuation amount, and the horizontal axis represents the frequency.
  • the plot line 220 in FIG. 2 is a graph when the magnetic field applied to the first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c is constant and the applied DC current is constant. is there.
  • fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a
  • fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b
  • fc is the spin torque resonance of the second magnetoresistance effect element 101c. Is the frequency.
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
  • An example is shown
  • the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b are passbands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the low torque side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the low passband is reduced). On the frequency side), the high-frequency signal can be blocked from the second port 109b.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 100 in this case functions as a band pass filter having a steep shoulder characteristic on the low frequency side of the pass band, as indicated by the plot line 120 in FIG.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is It is preferable to match the lower limit frequency of the pass band to be used.
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
  • the magnetoresistance effect device 100 functions as a band-pass filter having a steep shoulder characteristic on the high frequency side of the pass band. In this case, it is preferable to match the spin torque resonance frequency of the second magnetoresistive element 101c with the upper limit frequency of the pass band to be used.
  • FIG. 3 and 4 are graphs showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 100 and the attenuation. 3 and 4, the vertical axis represents attenuation, and the horizontal axis represents frequency.
  • FIG. 3 is a graph when the magnetic fields applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are constant.
  • the plot line 131 in FIG. 3 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia1, and is applied to the second magnetoresistive element 101c.
  • FIG. 4 is a graph when the direct current applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is constant.
  • a line 142 is obtained when the magnetic field strength applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb2.
  • the relationship between the magnetic field strengths at this time is Hb1 ⁇ Hb2.
  • the magnetoresistive effect device 101 can realize a high-frequency filter having a large range of cutoff characteristics and pass characteristics and a steep shoulder characteristic.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fd1 to fd2
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b is changed from fe1 to fe2
  • the second The spin torque resonance frequency of the magnetoresistive effect element 101c is shifted from fg1 to fg2. That is, the pass band shifts to the low frequency side. That is, the magnetoresistive effect device 100 can also function as a high-frequency filter having a steep shoulder characteristic that can change the passband frequency.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fh1 to fh2.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b is shifted from fi1 to fi2
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is shifted from fj1 to fj2. That is, the pass band shifts to the high frequency side.
  • changing the magnetic field strength can shift the passband more greatly than changing the direct current value. That is, the magnetoresistive effect device 100 can function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the pass band.
  • the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
  • the magnetoresistive effect device 100 includes the two first magnetoresistive effect elements 101a and 101b, the second magnetoresistive effect element 101c, the first port 109a to which the high frequency signal is input, and the high frequency signal. Is output to the second port 109b, the signal line 107, and the DC current input terminal 110 (DC application terminal).
  • the first port 109a and the second port 109b are connected via the signal line 107.
  • the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b and are connected to the two first magnetoresistive elements.
  • the elements 101a and 101b and the second magnetoresistive element 101c are respectively disposed in the magnetization fixed layer 102, the magnetization free layer 104, and between them.
  • Each of the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element 101c has a spacer layer 103, and one end side thereof becomes a DC current input terminal 110 (DC application terminal) side, and the other
  • the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element are connected to the direct current input terminal 110 (direct current application terminal) and the reference potential terminal 114 so that the end side becomes the reference potential terminal 114 side.
  • the relationship between the direction from each one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 is the same as that of the first magnetoresistive effect element 101a (101b) and the second 101c.
  • the magnetoresistive effect element 101c is formed so as to be reversed.
  • a direct current input from a direct current input terminal 110 DC application terminal
  • the direct current input from the direct current input terminal 110 (direct current application terminal) is fixed in the first magnetoresistive effect element 101b by magnetization.
  • the second magnetoresistive effect element 101c is formed so as to flow in the direction from the layer 102 to the magnetization free layer 104.
  • the second magnetoresistive effect element 101c has a direct current input from the direct current input terminal 110 (direct current application terminal).
  • the element 101c is formed so as to flow in the direction from the magnetization free layer 104 to the magnetization fixed layer 102, and the spin torque resonance frequency of the first magnetoresistance effect element 101a and the second Spin torque resonance frequency of the magnetoresistive element 101c are different from each other, the spin torque resonance frequency of the spin torque resonance frequency and the second magnetoresistive element 101c of the first magnetoresistive element 101b are different from each other.
  • the element impedance of the first magnetoresistance effect element 101a with respect to the same frequency as the spin torque resonance frequency increases, and the element of the first magnetoresistance effect element 101b with respect to the same frequency as the spin torque resonance frequency of the first magnetoresistance effect element 101b. Impedance increases.
  • the spin torque of the second magnetoresistance effect element 101c is obtained.
  • the element impedance of the second magnetoresistance effect element 101c with respect to the same frequency as the resonance frequency decreases.
  • the two first magnetoresistive elements 101a and 101b are connected to the signal line 107 in parallel to the second port 109b, so that the first magnetoresistive elements 101a and 101b have a low impedance.
  • the second port 109b can be blocked at the non-resonant frequency that is in the state, and the first magnetoresistive effect elements 101a and 101b can be passed to the second port 109b side at the resonance frequency in the high impedance state.
  • the second magnetoresistance effect element 101c is connected to the signal line 107 in parallel with the second port 109b, so that the second magnetoresistance effect element 101c is in a low impedance state.
  • the second port 109b can be blocked, and at the non-resonance frequency where the second magnetoresistive element 101c is in a high impedance state, the second port 109b can be passed.
  • the magnetoresistive effect device 100 converts the high-frequency signal input from the first port 109a to a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b. Can be passed to the second port 109b side at a frequency in the vicinity of the spin torque resonance frequency, and at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c, Can be blocked.
  • the magnetoresistive effect device 100 has a maximum value of the passing amount of the high-frequency signal at the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b.
  • the magnetoresistive effect element 101c has a minimum value of the passing amount of the high frequency signal at the spin torque resonance frequency, and functions as a high frequency filter.
  • the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a or the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b is a pass band. Since the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is the first Since the spin torque resonance frequency of the magnetoresistive effect element 101a is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101a, a high frequency signal is sent to the second port 109b on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is The high frequency signal is sent to the second port on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (because it is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b). 109b can be blocked.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistive effect element 101a or in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b may be steep. It becomes possible. That is, the magnetoresistive effect device 100 can function as a band pass filter having a steep shoulder characteristic on the high frequency side or low frequency side of the pass band.
  • the magnetoresistive effect device 100 includes two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, and the spin torque resonance frequency of the second magnetoresistive effect element 101c is two 1 is higher than the spin torque resonance frequency of each of the magnetoresistive effect elements 101a and 101b or lower than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b. It becomes possible to function as a band-pass filter having a steep shoulder characteristic on the high frequency side or low frequency side of the band.
  • the magnetization free layer 104 has a magnetization easy axis in the film surface normal direction, and the magnetization fixed layer 102 is magnetized in the film surface direction.
  • a configuration having an easy axis is preferable.
  • the magnetoresistive effect device 100 can also function as a frequency variable filter.
  • the magnetoresistive effect device 100 has a magnetic field application mechanism 111 as a frequency setting mechanism capable of setting the spin torque resonance frequency of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c. Therefore, the spin torque resonance frequencies of the two first magnetoresistance effect elements 101a and 101b and the second magnetoresistance effect element 101c can be set to arbitrary frequencies. Therefore, the magnetoresistive effect device 100 can function as a filter of an arbitrary frequency band.
  • the magnetoresistive effect device 100 is an effective magnetic field setting mechanism in which the magnetic field application mechanism 111 can set an effective magnetic field in the magnetization free layer 104.
  • the effective magnetic field in the magnetization free layer 104 is changed to change the two first magnetic fields. Since the spin torque resonance frequency of the resistance effect elements 101a and 101b and the second magnetoresistance effect element 101c can be changed, it can function as a frequency variable filter.
  • the two first magnetoresistive elements 101a and 101b are described as being connected in series with each other.
  • the number of the first magnetoresistive elements may be three or more.
  • a plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the case of the magnetoresistive effect device in these cases, each first magnetoresistive effect element is connected to the signal line 107 in parallel to the second port 109b, so that it is the same as the magnetoresistive effect device 100. It is possible to have frequency characteristics as a high frequency filter.
  • the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected in parallel to each other.
  • the two first magnetoresistive elements 101c and 101b are connected in parallel to each other.
  • At least one of the resistance effect elements 101a and 101b and the second magnetoresistance effect element 101c may be connected in series.
  • FIG. 5 is a schematic cross-sectional view of a magnetoresistive effect device 200 according to the second embodiment of the present invention.
  • the magnetoresistive effect device 200 further includes a third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 100 of the first embodiment.
  • the third magnetoresistance effect element 101d includes a magnetization fixed layer 102 (third magnetization fixed layer), a magnetization free layer 104 (third magnetization free layer), and a spacer layer 103 (third Spacer layer).
  • the third magnetoresistance effect element 101d is connected to the signal line 107 in parallel with the second port 109b. More specifically, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected in series, and one end side (the magnetization free layer 104 side) of the third magnetoresistive effect element 101d is connected.
  • the third magnetoresistive element 101d has one end side (in this example, the magnetization free layer 104 side) on the DC current input terminal 110 side, and the other end side (in this example, the magnetization fixed layer 102 side) on the reference potential terminal.
  • the DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side. That is, in the magnetoresistive effect device 200, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are fixed in the direction from the respective one end side to the other end side and from the respective magnetization free layers 104.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are formed to have the same relationship with the direction to the layer 102.
  • both the second magnetoresistive element 101c and the third magnetoresistive element 101d have the same orientation.
  • the third magnetoresistance effect element 101d is formed such that a DC current input from the DC current input terminal 110 flows in the third magnetoresistance effect element 101d in the direction from the magnetization free layer 104 to the magnetization fixed layer 102.
  • the direction of the direct current flowing in each of the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d, the respective magnetization fixed layer 102, the spacer layer 103, and the magnetization The relationship with the arrangement order of the free layer 104 is the same between the second magnetoresistive element 101c and the third magnetoresistive element 101d.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque of the third magnetoresistive effect element 101d.
  • the torque resonance frequency is lower than the spin torque resonance frequency of each of the two first magnetoresistance effect elements 101a and 101b.
  • a part of the high-frequency signal input from the first port 109a flows to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c and the third magnetoresistive element 101d.
  • the remaining high-frequency signal is output to the second port 109b.
  • One end side (magnetization free layer 104 side) of the third magnetoresistance effect element 101d is electrically connected to the signal line 107 (second magnetoresistance effect element 101c) via the lower electrode 106, and the other end side ( The magnetization fixed layer 102 side) is electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114.
  • the direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a.
  • a direct current source 112 By connecting a direct current source 112 to the direct current input terminal 110, a direct current is applied to the two first magnetoresistive elements 101a, 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. Can be applied.
  • the direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110.
  • a closed circuit including the second magnetoresistive element 101c, the third magnetoresistive element 101d, the signal line 107, the ground 108, and the direct current input terminal 110 is formed.
  • the direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit.
  • the magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d, and the two first magnetoresistive elements 101a and 101b.
  • the spin torque resonance frequency of each magnetoresistive effect element can be set.
  • magnetoresistive effect device 200 are the same as those of the magnetoresistive effect device 100 of the first embodiment.
  • the third magnetoresistive effect element 101 d has a direct current input from the direct current input terminal 110 so that the third magnetoresistive effect element 101 d passes through the third magnetoresistive effect element 101 d from the magnetization free layer 104 to the magnetization fixed layer 102.
  • the second magnetoresistance effect element 101c it can be handled as a resistance element in which the impedance of the high frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • the frequency components that coincide with the spin torque resonance frequency of the third magnetoresistive effect element 101d or in the vicinity of the spin torque resonance frequency Is likely to flow to the ground 108 by the third impedance element 101d in a low impedance state connected in parallel to the second port 109b, and is difficult to be output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in the high frequency component of the high frequency signal is blocked from the ground 108 by the third magnetoresistive effect element 101d in the high impedance state, 2 is easily output to the second port 109b.
  • FIG. 6 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 200 and the amount of attenuation.
  • the vertical axis represents attenuation
  • the horizontal axis represents frequency.
  • a plot line 220 in FIG. 6 indicates that the magnetic fields applied to the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d are constant and applied. It is a graph when the direct current made is constant.
  • fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a
  • fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b
  • fc is the spin torque resonance of the second magnetoresistance effect element 101c.
  • Frequency, and fe is the spin torque resonance frequency of the third magnetoresistive element 101d.
  • the band near the spin torque resonance frequency of the first magnetoresistance effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistance effect element 101b are passbands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the high frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-described high pass band). On the frequency side), the high-frequency signal can be blocked from the second port 109b.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the high frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep.
  • the third magnetoresistive effect element 101d allows the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b to be on the low frequency side (the above-mentioned low pass band).
  • the high-frequency signal can be blocked from the second port 109b.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased.
  • the shoulder characteristics on the low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 200 functions as a band pass filter having steep shoulder characteristics on both the low frequency side and the high frequency side of the pass band, as indicated by the plot line 220 in FIG.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is matched with the upper limit frequency of the pass band to be used, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is set to the lower limit frequency of the pass band to be used. It is preferable to match.
  • the number of the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
  • the magnetoresistance effect device 200 further includes the third magnetoresistance effect element 101d with respect to the magnetoresistance effect device 100, and the third magnetoresistance effect element 101d is connected to the second port 109b.
  • the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in parallel to the signal line 107 are a fixed magnetization layer 102 and a free magnetization layer, respectively.
  • the second magnetoresistive effect element 1 is connected to the DC current input terminal 110 (DC application terminal) and the reference potential terminal 114 so as to be on the side.
  • the relationship between the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 is determined by the second magnetoresistance effect.
  • the element 101c and the third magnetoresistance effect element 101d are formed to be the same. Further, in the third magnetoresistance effect element 101d, a direct current input from the direct current input terminal 110 (DC application terminal) causes the third magnetoresistance effect element 101d to pass through the magnetization free layer 104 to the magnetization fixed layer 102.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the third magnetoresistive effect element 101d
  • the spin torque resonance frequency is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is that of the first magnetoresistance effect element 101b.
  • the spin torque resonance frequency of the third magnetoresistive element 101d is higher than the spin torque resonance frequency. It is lower than the spin torque resonance frequency of 101b.
  • the third magnetoresistive effect element 101d is connected to the signal line 107 in parallel with the second port 109b, so that a high frequency signal is generated and the resonance frequency at which the third magnetoresistive effect element 101d is in a low impedance state. Then, the second port 109b can be blocked, and the third magnetoresistive element 101d can pass through the second port 109b side at a non-resonant frequency in a high impedance state.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first magnetic resistance. Since it is lower than the spin torque resonance frequency of the resistance effect element 101a, the high frequency signal can be blocked from the second port on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistance effect element 101a. it can.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first.
  • the high frequency signal is blocked from the second port on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b. be able to.
  • the attenuation with respect to the attenuation amount of the high frequency signal in the pass band In the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c and the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in which the high frequency signal is blocked, the attenuation with respect to the attenuation amount of the high frequency signal in the pass band.
  • the shoulder characteristics on both the high frequency side and the low frequency side can be made steep. That is, the magnetoresistive effect device 200 can function as a band pass filter having steep shoulder characteristics on both the high frequency side and the low frequency side of the pass band.
  • the magnetoresistive effect device 200 since the magnetoresistive effect device 200 includes the two first magnetoresistive elements 101a and 101b having different spin torque resonance frequencies, the magnetoresistive effect device 200 has a wide pass band and the spin torque resonance of the second magnetoresistive element 101c.
  • the frequency is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is two first magnetoresistive effect elements. Since it is lower than the spin torque resonance frequency of each of 101a and 101b, it can function as a band pass filter having steep shoulder characteristics on both the high frequency side and low frequency side of the pass band.
  • the two first magnetoresistive elements 101a and 101b are described as being connected in series with each other.
  • the number of the first magnetoresistive elements may be three or more.
  • a plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the case of the magnetoresistive effect device in these cases, each of the first magnetoresistive effect elements is connected in parallel to the second port 109b. As a frequency characteristic.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are described as being connected in series.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101c The magnetoresistive effect elements 101d may be connected in parallel to each other. Even in the magnetoresistive effect device in this case, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected to the signal line 107 in parallel to the second port 109b. Similar to the magnetoresistive effect device 200, it can have frequency characteristics as a high frequency filter.
  • the two first magnetoresistive elements 101a and 101b connected in series with each other, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in series with each other. Are connected in parallel to each other, but at least one of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. At least one of these may be connected in series.
  • the second magnetism that makes the shoulder characteristics steep.
  • the Q value of the resistance effect element 101c (third magnetoresistance effect element 101d) is larger than the Q value of at least one of the first magnetoresistance effect element 101a and the first magnetoresistance effect element 101b forming the pass band. It is preferable to do.
  • the Q value means that the absolute value of the impedance of the magnetoresistive effect element is decreased or increased by 3 dB from the absolute value of the impedance at the spin torque resonance frequency f0 of the magnetoresistive effect element.
  • the Q value of the magnetoresistive effect element at the time of spin torque resonance is proportional to the current density of the direct current applied to the magnetoresistive effect element, for example, the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d have the same film configuration and area in plan view, the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101a
  • the magnetoresistive effect element 101b is connected in series with each other, and the first magnetoresistive effect element 101a, 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d are connected in parallel to each other.
  • the Q value of the second magnetoresistive effect element 101c (third magnetoresistive effect element 101d), the Q value of the first magnetoresistive effect element 101a and the first magnetoresistive effect element It can be larger than the Q value of 01b. Further, for example, when the first magnetoresistance effect element 101a, the first magnetoresistance effect element 101b, the second magnetoresistance effect element 101c, and the third magnetoresistance effect element 101d are connected in series with each other.
  • the Q value of the magnetoresistive effect element 101c can be made larger than the Q value of the first magnetoresistive effect element 101a (first magnetoresistive effect element 101b), and the plane of the third magnetoresistive effect element 101d
  • the third magnetoresistive effect element 10 The Q value of d, can be made larger than the Q value of the first magnetoresistance effect element 101a (first magnetoresistive element 101b).
  • FIG. 7 is a schematic cross-sectional view of a magnetoresistive effect device 300 according to the third embodiment of the present invention.
  • the magnetoresistive effect device 300 will be described mainly with respect to differences from the magnetoresistive effect device 100 of the first embodiment, and description of common matters will be omitted as appropriate. Elements common to the magnetoresistive effect device 100 of the first embodiment are denoted by the same reference numerals, and description of the common elements is omitted.
  • the magnetoresistive effect device 300 is different from the magnetoresistive effect device 100 of the first embodiment in the direction of the direct current flowing through the two first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c. The direction of the direct current that flows through is different.
  • the direct current input from the direct current input terminal 110 causes the first magnetoresistive effect element 101a to pass through the magnetization free layer 104 and the magnetization fixed layer 102. It is formed to flow in the direction of.
  • the first magnetoresistive effect element 101b is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistive effect element 101b in the direction from the magnetization free layer 104 to the magnetization fixed layer 102.
  • the second magnetoresistive effect element 101c is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistive effect element 101c in the direction from the fixed magnetization layer 102 to the free magnetization layer 104.
  • the magnetoresistive effect device 300 has been. That is, in the magnetoresistive effect device 300, the direction of the direct current flowing through each of the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c, and the respective magnetizations.
  • the relationship between the arrangement order of the fixed layer 102, the spacer layer 103, and the magnetization free layer 104 is reversed between the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c.
  • Other configurations of the magnetoresistive effect device 300 are the same as those of the magnetoresistive effect device 100 of the first embodiment.
  • a high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing in each magnetoresistive effect element from the magnetization free layer 104 to the magnetization fixed layer 102 to each magnetoresistive effect element.
  • the resistance value periodically changes at the spin torque resonance frequency, and the impedance to the high-frequency signal decreases. That is, in the magnetoresistive effect device 300, the two first magnetoresistive elements 101a and 101b can be handled as resistance elements in which the impedance of the high-frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • a high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing through each magnetoresistive effect element in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 to each magnetoresistive effect element.
  • the resistance value periodically changes at the spin torque resonance frequency in a state in which the phase differs from the input high frequency signal by 180 °, and the impedance to the high frequency signal increases. That is, in the magnetoresistive effect device 300, the second magnetoresistive effect element 101c can be handled as a resistance element in which the impedance of the high frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • the frequency components that coincide with the spin torque resonance frequency of the first magnetoresistive effect element 101a or in the vicinity of the spin torque resonance frequency Passes through the first magnetoresistive effect element 101a connected in parallel to the second port 109b and in the low impedance state, flows to the ground 108, and is not easily output to the second port 109b.
  • frequency components that are not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a among the high frequency components of the high frequency signal are blocked from the ground 108 by the first magnetoresistive effect element 101a in the high impedance state. 2 is easily output to the second port 109b.
  • the frequency components that match the spin torque resonance frequency of the first magnetoresistive effect element 101b or in the vicinity of the spin torque resonance frequency are 2 passes through the first magnetoresistive effect element 101b connected in parallel to the second port 109b in a low impedance state, flows to the ground 108, and is difficult to be output to the second port 109b.
  • frequency components that are not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b in the high frequency component of the high frequency signal are blocked from the ground 108 by the first magnetoresistive effect element 101b in the high impedance state, 2 is easily output to the second port 109b.
  • the high frequency component of the high frequency signal input from the first port 109a coincides with the spin torque resonance frequency of the second magnetoresistive effect element 101c or in the vicinity of the spin torque resonance frequency.
  • the frequency component is cut off from the ground 108 by the second magnetoresistive effect element 101c connected in parallel to the second port 109b and is easily output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c in the high frequency component of the high frequency signal passes through the second magnetoresistive effect element 101c in the low impedance state and flows to the ground 108.
  • the output to the second port 109b becomes difficult.
  • FIG. 8 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 300 and the amount of attenuation.
  • the vertical axis represents attenuation
  • the horizontal axis represents frequency.
  • a plot line 320 in FIG. 8 is a graph when the magnetic field applied to the first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c is constant and the applied DC current is constant. is there.
  • fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a
  • fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b
  • fc is the spin torque resonance of the second magnetoresistance effect element 101c. Is the frequency.
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
  • An example is shown.
  • the band near the spin torque resonance frequency of the first magnetoresistance effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistance effect element 101b are cut off bands. It becomes.
  • the second magnetoresistive effect element 101c causes the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-mentioned low cutoff band). On the frequency side), a high-frequency signal can be passed to the second port 109b side.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance
  • the shoulder characteristics on the low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 300 in this case functions as a band cutoff filter having a steep shoulder characteristic on the low frequency side of the cutoff band, as indicated by a plot line 320 in FIG.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is It is preferable to match the lower limit frequency of the cutoff band to be used.
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
  • the magnetoresistive effect device 300 functions as a band cutoff filter having a steep shoulder characteristic on the high frequency side of the cutoff band. In this case, it is preferable to match the spin torque resonance frequency of the second magnetoresistive element 101c with the upper limit frequency of the cutoff band to be used.
  • FIG. 9 and 10 are graphs showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 300 and the amount of attenuation.
  • the vertical axis represents attenuation
  • the horizontal axis represents frequency.
  • FIG. 9 is a graph when the magnetic fields applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are constant.
  • a plot line 331 in FIG. 9 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia1, and is applied to the second magnetoresistive element 101c.
  • FIG. 10 is a graph when the direct current applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is constant.
  • a plot line 341 in FIG. 10 is obtained when the magnetic field intensity applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb1.
  • a line 342 is obtained when the magnetic field strength applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb2.
  • the relationship between the magnetic field strengths at this time is Hb1 ⁇ Hb2.
  • the value of the direct current applied from the direct current input terminal 110 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is increased, As the value changes, the amount of change in element impedance at a frequency in the vicinity of the spin torque resonance frequency of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c increases.
  • the high-frequency signal output from the second port 109b in the band near the spin torque resonance frequency of the magnetoresistive effect element 101a and the band (cut-off band) near the spin torque resonance frequency of the first magnetoresistive effect element 101b Is further reduced and the passage loss is increased.
  • the magnetoresistive effect device 300 can realize a high-frequency filter having a large range of cutoff characteristics and pass characteristics and having a steep shoulder characteristic.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fd1 to fd2
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b is changed from fe1 to fe2
  • the second The spin torque resonance frequency of the magnetoresistive effect element 101c is shifted from fg1 to fg2. That is, the cutoff band shifts to the low frequency side. That is, the magnetoresistive effect device 100 can also function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the cutoff band.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fh1 to fh2.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b is shifted from fi1 to fi2
  • the spin torque resonance frequency of the second magnetoresistance effect element 101c is shifted from fj1 to fj2. That is, the cutoff band shifts to the high frequency side.
  • changing the magnetic field strength can shift the cutoff band more greatly than changing the direct current value. That is, the magnetoresistive effect device 300 can function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the cutoff band.
  • the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
  • the magnetoresistive effect device 300 includes the two first magnetoresistive effect elements 101a and 101b, the second magnetoresistive effect element 101c, the first port 109a to which the high frequency signal is input, and the high frequency signal. Is output to the second port 109b, the signal line 107, and the DC current input terminal 110 (DC application terminal).
  • the first port 109a and the second port 109b are connected via the signal line 107.
  • the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b and are connected to the two first magnetoresistive elements.
  • the elements 101a and 101b and the second magnetoresistive effect element 101c are respectively disposed in the magnetization fixed layer 102, the magnetization free layer 104, and between them.
  • Each of the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element 101c has a spacer layer 103, and one end side thereof becomes a DC current input terminal 110 (DC application terminal) side, and the other
  • the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element are connected to the direct current input terminal 110 (direct current application terminal) and the reference potential terminal 114 so that the end side becomes the reference potential terminal 114 side.
  • the relationship between the direction from each one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 is the same as that of the first magnetoresistive effect element 101a (101b) and the second 101c.
  • the magnetoresistive effect element 101c is formed so as to be reversed.
  • a direct current input from the direct current input terminal 110 DC application terminal
  • the direct current input from the direct current input terminal 110 (direct current application terminal) is free from magnetization in the first magnetoresistive effect element 101b.
  • the second magnetoresistive effect element 101c is formed so as to flow in the direction from the layer 104 to the magnetization fixed layer 102.
  • the second magnetoresistive effect element 101c has a direct current input from the direct current input terminal 110 (direct current application terminal) as the second magnetoresistive effect.
  • the element 101c is formed so as to flow in the direction from the magnetization fixed layer 102 to the magnetization free layer 104, and the spin torque resonance frequency of the first magnetoresistance effect element 101a and the second Spin torque resonance frequency of the magnetoresistive element 101c are different from each other, the spin torque resonance frequency of the spin torque resonance frequency and the second magnetoresistive element 101c of the first magnetoresistive element 101b are different from each other.
  • a direct current flows in the direction from the magnetization free layer 104 to the magnetization fixed layer 102 in the two first magnetoresistance effect elements 101a and 101b, so that the first magnetoresistance effect element 101a has
  • the element impedance of the first magnetoresistance effect element 101a with respect to the same frequency as the spin torque resonance frequency decreases, and the element of the first magnetoresistance effect element 101b with respect to the same frequency as the spin torque resonance frequency of the first magnetoresistance effect element 101b. Impedance decreases.
  • the two first magnetoresistive elements 101a and 101b are connected to the signal line 107 in parallel to the second port 109b, so that the first magnetoresistive elements 101a and 101b have high impedance.
  • the non-resonant frequency that is in the state can be passed to the second port 109b side, and the first magnetoresistive elements 101a and 101b can be blocked from the second port 109b at the resonance frequency that is in the low impedance state.
  • the second magnetoresistive element 101c is connected to the signal line 107 in parallel with the second port 109b, so that the second magnetoresistive element 101c is in a high impedance state.
  • the resonance frequency can be passed to the second port 109b side, and the second magnetoresistance effect element 101c can be blocked from the second port 109b at a non-resonance frequency where the impedance is low.
  • the magnetoresistive effect device 100 converts the high-frequency signal input from the first port 109a to a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b.
  • the second port 109b can be cut off at a frequency in the vicinity of the spin torque resonance frequency, and the second port 109b side at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive element 101c. Can pass through.
  • the magnetoresistive effect device 300 has a minimum value of the passing amount of the high-frequency signal at the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b.
  • the magnetoresistive effect element 101c has a maximum value of the passing amount of the high-frequency signal at the spin torque resonance frequency, and functions as a high-frequency filter.
  • a band near the spin torque resonance frequency of the first magnetoresistive effect element 101a or a band near the spin torque resonance frequency of the first magnetoresistive effect element 101b is a cutoff band. Since the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is the first Since the spin torque resonance frequency of the first magnetoresistive element 101a is higher or lower than the spin torque resonance frequency of the magnetoresistive effect element 101a), the high frequency signal is sent to the second port 109b side on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a.
  • the spin torque resonance frequency of the first magnetoresistance effect element 101b and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is The high frequency signal is sent to the second port on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (because it is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b). 109b can be passed.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance
  • the shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a or in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b can be made steep. become. That is, the magnetoresistive effect device 300 can function as a band cutoff filter having a steep shoulder characteristic on the high frequency side or low frequency side of the cutoff band.
  • the magnetoresistive effect device 300 includes two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, and the spin torque resonance frequency of the second magnetoresistive effect element 101c is two 1 is higher than the spin torque resonance frequency of each of the magnetoresistive effect elements 101a and 101b, or lower than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b. It is possible to function as a band cut-off filter having a steep shoulder characteristic on the high frequency side or low frequency side of the band.
  • each first magnetoresistive effect element is connected to the signal line 107 in parallel to the second port 109b, so that it is the same as the magnetoresistive effect device 300. It can have frequency characteristics as a high frequency filter.
  • the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c have been described as being connected in parallel to each other. However, in the first embodiment, Similarly to the case described, at least one of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c may be connected in series.
  • FIG. 11 is a schematic cross-sectional view of a magnetoresistive effect device 400 according to the fourth embodiment of the present invention.
  • the magnetoresistive effect device 400 differences from the magnetoresistive effect device 300 of the third embodiment will be mainly described, and description of common matters will be omitted as appropriate.
  • Elements common to the magnetoresistive effect device 300 of the third embodiment are denoted by the same reference numerals, and description of the common elements is omitted.
  • the magnetoresistive effect device 400 further includes a third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 300 of the third embodiment.
  • the third magnetoresistance effect element 101d includes a magnetization fixed layer 102 (third magnetization fixed layer), a magnetization free layer 104 (third magnetization free layer), and a spacer layer 103 (third Spacer layer).
  • the third magnetoresistance effect element 101d is connected to the signal line 107 in parallel with the second port 109b. More specifically, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected in series, and one end side (the magnetization free layer 104 side) of the third magnetoresistive effect element 101d is connected.
  • the third magnetoresistive element 101d has one end side (in this example, the magnetization free layer 104 side) on the DC current input terminal 110 side, and the other end side (in this example, the magnetization fixed layer 102 side) on the reference potential terminal.
  • the DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side. That is, in the magnetoresistive effect device 400, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are fixed in the direction from the respective one end side to the other end side and from the respective magnetization free layers 104.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are formed to have the same relationship with the direction to the layer 102.
  • both the second magnetoresistive element 101c and the third magnetoresistive element 101d have the same orientation.
  • the third magnetoresistive element 101d is formed such that a direct current input from the direct current input terminal 110 flows in the third magnetoresistive element 101d in the direction from the fixed magnetization layer 102 to the free magnetization layer 104.
  • a direct current input from the direct current input terminal 110 flows in the third magnetoresistive element 101d in the direction from the fixed magnetization layer 102 to the free magnetization layer 104.
  • the relationship with the arrangement order of the free layer 104 is the same between the second magnetoresistive element 101c and the third magnetoresistive element 101d.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque of the third magnetoresistive effect element 101d.
  • the torque resonance frequency is lower than the spin torque resonance frequency of each of the two first magnetoresistance effect elements 101a and 101b.
  • a part of the high-frequency signal input from the first port 109a flows to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c and the third magnetoresistive element 101d.
  • the remaining high-frequency signal is output to the second port 109b.
  • One end side (magnetization free layer 104 side) of the third magnetoresistance effect element 101d is electrically connected to the signal line 107 (second magnetoresistance effect element 101c) via the lower electrode 106, and the other end side ( The magnetization fixed layer 102 side) is electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114.
  • the direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a.
  • a direct current source 112 By connecting a direct current source 112 to the direct current input terminal 110, a direct current is applied to the two first magnetoresistive elements 101a, 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. Can be applied.
  • the direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110.
  • a closed circuit including the second magnetoresistive element 101c, the third magnetoresistive element 101d, the signal line 107, the ground 108, and the direct current input terminal 110 is formed.
  • the direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit.
  • the magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d, and the two first magnetoresistive elements 101a and 101b.
  • the spin torque resonance frequency of each magnetoresistive effect element can be set.
  • magnetoresistive effect device 400 are the same as those of the magnetoresistive effect device 300 of the third embodiment.
  • the third magnetoresistive effect element 101d has a direct current input from the direct current input terminal 110 so that the third magnetoresistive effect element 101d passes through the third magnetoresistive effect element 101d from the magnetization fixed layer 102 to the magnetization free layer 104.
  • the second magnetoresistance effect element 101c it can be handled as a resistance element in which the impedance of the high-frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
  • a frequency that matches or is close to the spin torque resonance frequency of the third magnetoresistive effect element 101d Due to the spin torque resonance phenomenon, among the high frequency components of the high frequency signal input from the first port 109a, a frequency that matches or is close to the spin torque resonance frequency of the third magnetoresistive effect element 101d.
  • the component is cut off from the ground 108 by the third magnetoresistive effect element 101d in a high impedance state connected in parallel to the second port 109b, and is easily output to the second port 109b.
  • a frequency component that is not in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in the high frequency component of the high frequency signal passes through the third magnetoresistive effect element 101d in the low impedance state and flows to the ground 108.
  • the output to the second port 109b becomes difficult.
  • FIG. 12 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 400 and the attenuation.
  • the vertical axis in FIG. 12 represents the attenuation amount, and the horizontal axis represents the frequency.
  • the plot line 420 in FIG. 12 indicates that the magnetic field applied to the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d is constant and applied. It is a graph when the direct current made is constant.
  • fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a
  • fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b
  • fc is the spin torque resonance of the second magnetoresistance effect element 101c.
  • Frequency, and fe is the spin torque resonance frequency of the third magnetoresistive element 101d.
  • the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b are cut off bands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the high frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-described high cutoff band). On the frequency side), a high-frequency signal can be passed to the second port 109b side.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance
  • the shoulder characteristics on the high frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep.
  • the third magnetoresistive effect element 101d causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-mentioned low cutoff band).
  • a high-frequency signal can be passed to the second port 109b side.
  • the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced.
  • the shoulder characteristics on the low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 400 functions as a band cutoff filter having a steep shoulder characteristic on both the low frequency side and the high frequency side of the cutoff band, as indicated by the plot line 420 in FIG.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is matched with the upper limit frequency of the cutoff band to be used, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is set to the lower limit frequency of the cutoff band to be used. It is preferable to match.
  • the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
  • the magnetoresistive effect device 400 further includes the third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 300, and the third magnetoresistive effect element 101d is connected to the second port 109b.
  • the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in parallel to the signal line 107 are a fixed magnetization layer 102 and a free magnetization layer, respectively.
  • the second magnetoresistive effect element 1 is connected to the DC current input terminal 110 (DC application terminal) and the reference potential terminal 114 so as to be on the side.
  • the relationship between the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 is determined by the second magnetoresistance effect.
  • the element 101c and the third magnetoresistance effect element 101d are formed to be the same.
  • a direct current input from the direct current input terminal 110 (DC application terminal) causes the third magnetoresistive effect element 101d to pass through the magnetization fixed layer 102 to the magnetization free layer 104.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the third magnetoresistive effect element 101d
  • the spin torque resonance frequency is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is that of the first magnetoresistance effect element 101b.
  • the spin torque resonance frequency of the third magnetoresistive element 101d is higher than the spin torque resonance frequency. It is lower than the spin torque resonance frequency of 101b.
  • the third magnetoresistive effect element 101d is connected to the signal line 107 in parallel with the second port 109b, so that a high frequency signal is generated and the resonance frequency at which the third magnetoresistive effect element 101d is in a high impedance state. Then, it can be passed to the second port 109b side, and can be blocked from the second port 109b at the non-resonant frequency where the third magnetoresistive element 101d is in a low impedance state.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first magnetic resistance. Since it is lower than the spin torque resonance frequency of the resistance effect element 101a, a high frequency signal can be passed to the second port side on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistance effect element 101a. it can.
  • the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first.
  • the spin torque resonance frequency of the magnetoresistive effect element 101b is lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b, the high frequency signal is passed to the second port side on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b. be able to.
  • the attenuation amount With respect to the attenuation amount of the high frequency signal in the cutoff band.
  • the magnetoresistive effect device 200 can function as a band cutoff filter having a steep shoulder characteristic on both the high frequency side and the low frequency side of the cutoff band.
  • the magnetoresistive effect device 400 since the magnetoresistive effect device 400 includes the two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, the magnetoresistive effect device 400 has a wide cutoff band and the spin torque resonance of the second magnetoresistive effect element 101c.
  • the frequency is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is two first magnetoresistive effect elements. Since it is lower than the spin torque resonance frequency of each of 101a and 101b, it becomes possible to function as a band cutoff filter having a steep shoulder characteristic on both the high frequency side and the low frequency side of the cutoff band.
  • each of the first magnetoresistive effect elements is connected to the signal line 107 in parallel with the second port 109b, so that the magnetoresistive effect device 400 is the same. It can have frequency characteristics as a high frequency filter.
  • the example in which the second magnetoresistive element 101c and the third magnetoresistive element 101d are connected in series with each other has been described.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d may be connected in parallel to each other.
  • the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected to the signal line 107 in parallel to the second port 109b. Similar to the magnetoresistive effect device 400, it can have frequency characteristics as a high frequency filter.
  • at least one of the two first magnetoresistive elements 101a and 101b and the second At least one of the magnetoresistive effect element 101c and the third magnetoresistive effect element 101d may be connected in series.
  • the second magnetism that makes the shoulder characteristics steep in order to further widen the cutoff band and make the shoulder characteristics steep, the second magnetism that makes the shoulder characteristics steep.
  • the Q value of the resistance effect element 101c (third magnetoresistance effect element 101d) is larger than the Q value of at least one of the first magnetoresistance effect element 101a and the first magnetoresistance effect element 101b forming the cutoff band. It is preferable to do.
  • a capacitor for cutting a direct current signal may be connected in series to the signal line 107 between 109a.
  • the second magnetoresistive element 101c according to the first to fourth embodiments is connected to the signal line 107 and the second portion.
  • a capacitor for cutting a DC signal may be connected in series to the signal line 107 between the second port 109b.
  • each magnetoresistive element may be formed so as to be opposite to the direction.
  • the first magnetoresistance effect elements 101a and 101b have the magnetization fixed layer 102 side connected to the first port 109a side, and the second magnetoresistance effect element 101c ( And the third magnetoresistance effect element 101d) is connected to the first port 109a on the magnetization free layer 104 side, but the first magnetoresistance effect elements 101a and 101b are connected to the first magnetization free layer 104 side on the first magnetization resistance layer 101d).
  • the second magnetoresistive element 101c (and the third magnetoresistive element 101d) may be connected to the port 109a side so that the magnetization fixed layer 102 side is connected to the first port 109a side.
  • the direction of the direct current input from the direct current source 112 to the direct current input terminal 110 may be opposite to the direction shown in the description of each embodiment.
  • each of the first magnetoresistance effect elements 101a and 101b has the magnetization fixed layer 102 side on the DC current input terminal 110 side and each magnetization free layer 104 side on the reference potential terminal.
  • the second magnetoresistive element 101c (and the third magnetoresistive element 101d) are connected to the DC current input terminal 110 and the reference potential terminal 114 so as to be on the 114 side, and the magnetization free layer 104
  • the first magnetoresistive effect is connected to the DC current input terminal 110 and the reference potential terminal 114 such that the side is the DC current input terminal 110 side and the magnetization fixed layer 102 side is the reference potential terminal 114 side.
  • the magnetization free layer 104 side becomes the direct current input terminal 110 side
  • the magnetization fixed layer 1 The second magnetoresistive effect element 101c (and the third magnetoresistive effect element 101d) are connected to the direct current input terminal 110 and the reference potential terminal 114 so that the second side becomes the reference potential terminal 114 side.
  • the fixed layer 102 side may be connected to the direct current input terminal 110 and the reference potential terminal 114 such that the fixed layer 102 side becomes the direct current input terminal 110 side and each magnetization free layer 104 side becomes the reference potential terminal 114 side.
  • a direct current from the direct current source 112 is input from a direct current input terminal 110 which is an example of a direct current application terminal, and each magnetoresistive effect element (first to third).
  • a DC voltage source is connected to the DC application terminal instead of the DC current source 112, and a DC voltage is supplied from the DC application terminal to each magnetoresistive effect element (first to second). 3 magnetoresistive effect elements) in the respective stacking directions so that a direct current flows through each magnetoresistive effect element. That is, the DC application terminal only needs to be able to apply a DC current or a DC voltage to each magnetoresistive element (first to third magnetoresistive elements).
  • the DC voltage source may be a DC voltage source capable of generating a constant DC voltage, or a DC voltage source capable of changing the magnitude of the generated DC voltage value.
  • the magnetoresistive effect device 100 (200, 300, 400) is described as an example having the magnetic field application mechanism 111 as a frequency setting mechanism (effective magnetic field setting mechanism).
  • the setting mechanism (effective magnetic field setting mechanism) may be another example as shown below.
  • a mechanism for applying an electric field to the magnetoresistive effect element is a frequency setting mechanism (effective magnetic field setting mechanism).
  • the piezoelectric body is provided in the vicinity of the magnetization free layer, the piezoelectric deforming the piezoelectric element by applying an electric field to, by distorting the magnetization free layer, changing the anisotropy field H k in the magnetization free layer
  • the effective magnetic field in the magnetization free layer can be changed, and the spin torque resonance frequency of the magnetoresistive effect element can be changed.
  • the mechanism for applying an electric field to the piezoelectric body and the piezoelectric body serve as a frequency setting mechanism (effective magnetic field setting mechanism).
  • a control film that is an antiferromagnetic material or a ferrimagnetic material having an electromagnetic effect is provided so as to be magnetically coupled to the magnetization free layer, and a magnetic field and an electric field are applied to the control film, By changing at least one of the electric fields, the exchange coupling magnetic field H EX in the magnetization free layer can be changed to change the effective magnetic field in the magnetization free layer, thereby changing the spin torque resonance frequency of the magnetoresistive element.
  • the mechanism for applying a magnetic field to the control film, the mechanism for applying an electric field to the control film, and the control film serve as a frequency setting mechanism (effective magnetic field setting mechanism).
  • the frequency setting mechanism (magnetic field)
  • the application mechanism 111) may be omitted.

Abstract

A magnetoresistance effect device 100 is characterized by being provided with first magnetoresistance effect elements 101a, 101b, a second magnetoresistance effect element 101c, a first port 109a, a second port 109b, a signal line 107, and a DC application terminal 110, wherein: the first port 109a and the second port 109b are connected via the signal line 107; the first magnetoresistance effect elements 101a, 101b, and the second magnetoresistance effect element 101c are connected to the signal line 107 in parallel with respect to the second port 109b; the first magnetoresistance effect element 101a (101b) and the second magnetoresistance effect element 101c are formed such that the first magnetoresistance effect element 101a (101b) and the second magnetoresistance effect element 101c have inverse relations between directions of a DC current, which is inputted from the DC application terminal 110 and flows in the first magnetoresistance effect element 101a (101b) and also flows in the second magnetoresistance effect element 101c, and the respective arrangement orders of a magnetization fixed layer 102, a spacer layer 103, and a magnetization free layer 104; and the spin torque resonance frequency of the first magnetoresistance effect element 101a (101b) and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other.

Description

磁気抵抗効果デバイスMagnetoresistive device
 本発明は、磁気抵抗効果素子を利用した磁気抵抗効果デバイスに関するものである。 The present invention relates to a magnetoresistive effect device using a magnetoresistive effect element.
 近年、携帯電話等の移動通信端末の高機能化に伴い、無線通信の高速化が進められている。通信速度は使用する周波数の帯域幅に比例するため、通信に必要な周波数バンドは増加し、それに伴って、移動通信端末に必要な高周波フィルタの搭載数も増加している。また、近年新しい高周波用部品に応用できる可能性のある分野として研究されているのがスピントロニクスであり、その中で注目されている現象の一つが、磁気抵抗効果素子によるスピントルク共鳴現象である(非特許文献1参照)。磁気抵抗効果素子に交流電流を流すことで、磁気抵抗効果素子にスピントルク共鳴を起こすことが出来、スピントルク共鳴周波数に対応した周波数で周期的に磁気抵抗効果素子の抵抗値が振動する。磁気抵抗効果素子に印加される磁場の強さによって、磁気抵抗効果素子のスピントルク共鳴周波数は変化し、一般的にその共鳴周波数は数~数十GHzの高周波帯域である。 In recent years, with the enhancement of functions of mobile communication terminals such as mobile phones, the speed of wireless communication has been increased. Since the communication speed is proportional to the bandwidth of the frequency to be used, the frequency band necessary for communication has increased, and accordingly, the number of high-frequency filters required for mobile communication terminals has also increased. In recent years, spintronics has been studied as a field that can be applied to new high-frequency components, and one of the phenomena attracting attention is spin torque resonance due to magnetoresistive elements ( Non-patent document 1). By passing an alternating current through the magnetoresistive effect element, spin torque resonance can be caused in the magnetoresistive effect element, and the resistance value of the magnetoresistive effect element oscillates periodically at a frequency corresponding to the spin torque resonance frequency. The spin torque resonance frequency of the magnetoresistive effect element changes depending on the strength of the magnetic field applied to the magnetoresistive effect element, and the resonance frequency is generally in a high frequency band of several to several tens GHz.
 磁気抵抗効果素子は、スピントルク共鳴現象を利用して高周波デバイスに応用することが考えられるが、高周波フィルタ等の高周波デバイスに応用するための具体的な構成は従来示されていない。本発明は、磁気抵抗効果素子を利用した高周波フィルタ等の高周波デバイスを実現できる磁気抵抗効果デバイスを提供することを目的とする。 The magnetoresistive effect element may be applied to a high frequency device using a spin torque resonance phenomenon, but a specific configuration for applying to a high frequency device such as a high frequency filter has not been shown conventionally. An object of this invention is to provide the magnetoresistive effect device which can implement | achieve high frequency devices, such as a high frequency filter using a magnetoresistive effect element.
 上記目的を達成するための本発明に係る磁気抵抗効果デバイスは、第1の磁気抵抗効果素子と、第2の磁気抵抗効果素子と、高周波信号が入力される第1のポートと、高周波信号が出力される第2のポートと、信号線路と、直流印加端子とを有し、前記第1のポートおよび前記第2のポートが前記信号線路を介して接続され、前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記直流印加端子から入力され前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子のそれぞれの中を流れる直流電流の向きと、それぞれの前記磁化固定層、前記スペーサ層および前記磁化自由層の配置順との関係が、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とで逆になるように形成され、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数と前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は互いに異なることを第1の特徴とする。 In order to achieve the above object, a magnetoresistive effect device according to the present invention includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port to which a high frequency signal is input, and a high frequency signal. An output second port; a signal line; and a direct current application terminal, wherein the first port and the second port are connected via the signal line, and the first magnetoresistive element And the second magnetoresistive effect element is connected to the signal line in parallel with the second port, and the first magnetoresistive effect element and the second magnetoresistive effect element are respectively fixed in magnetization. The first magnetoresistive element and the second magnetoresistive element are input from the direct current application terminal and the first magnetic resistance element includes a layer, a magnetization free layer, and a spacer layer disposed therebetween. Resistive effect element And the relationship between the direction of the direct current flowing through each of the second magnetoresistive elements and the order of arrangement of the magnetization fixed layer, the spacer layer, and the magnetization free layer, The effect element and the second magnetoresistive effect element are formed to be reversed, and the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are mutually different. The difference is the first feature.
 上記特徴の磁気抵抗効果デバイスによれば、直流印加端子から入力される直流電流が、第1の磁気抵抗効果素子の中を磁化固定層から磁化自由層の方向に流れ、第2の磁気抵抗効果素子の中を磁化自由層から磁化固定層の方向に流れる場合、第1のポートから入力された高周波信号を、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の周波数では、第2のポート側に通過させることが出来、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の周波数では、第2のポートに対して遮断することが出来る。つまり、上記特徴の磁気抵抗効果デバイスは、高周波フィルタ(帯域通過型フィルタまたは帯域遮断型フィルタ)として機能する。 According to the magnetoresistive effect device having the above characteristics, a direct current input from the direct current application terminal flows in the first magnetoresistive effect element in the direction from the magnetization fixed layer to the magnetization free layer, and the second magnetoresistive effect. When flowing through the element in the direction from the magnetization free layer to the magnetization fixed layer, the high-frequency signal input from the first port is changed to a second frequency at a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element. It can be passed to the port side and can be blocked from the second port at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive element. That is, the magnetoresistive device having the above characteristics functions as a high-frequency filter (a band-pass filter or a band cutoff filter).
 この場合の磁気抵抗効果デバイスを帯域通過型フィルタとして考える場合には、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の帯域が通過帯域となる。第1の磁気抵抗効果素子のスピントルク共鳴周波数と第2の磁気抵抗効果素子のスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子のスピントルク共鳴周波数が第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子のスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポートに対し遮断することができる。高周波信号が遮断される第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍で形成される通過帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。 When considering the magnetoresistive effect device in this case as a bandpass filter, the band near the spin torque resonance frequency of the first magnetoresistive effect element is the passband. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the second magnetoresistive effect element is the first magnetoresistive effect element). Therefore, the high frequency signal can be blocked from the second port on the high frequency side or the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element. In the vicinity of the spin torque resonance frequency of the second magnetoresistive element in which the high-frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased. The shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the effect element can be made steep.
 この場合の磁気抵抗効果デバイスを帯域遮断型フィルタとして考える場合には、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の帯域が遮断帯域となる。第1の磁気抵抗効果素子のスピントルク共鳴周波数と第2の磁気抵抗効果素子のスピントルク共鳴周波数が互いに異なるため(第1の磁気抵抗効果素子のスピントルク共鳴周波数が第2の磁気抵抗効果素子のスピントルク共鳴周波数よりも高いまたは低いため)、第2の磁気抵抗効果素子のスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート側に通過させることができる。高周波信号が通過する第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍で形成される遮断帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。つまり、上記特徴の磁気抵抗効果デバイスは、通過帯域または遮断帯域の高周波数側または低周波数側において急峻な肩特性を持つ帯域通過型フィルタまたは帯域遮断型フィルタとして機能することが可能となる。 When considering the magnetoresistive effect device in this case as a band cutoff filter, the band in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element is the cutoff band. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the first magnetoresistive effect element is the second magnetoresistive effect element). Therefore, the high frequency signal can be passed to the second port side on the high frequency side or the low frequency side of the spin torque resonance frequency of the second magnetoresistive effect element. In the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element through which the high frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the cutoff band can be further reduced. The shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the element can be made steep. That is, the magnetoresistive device having the above characteristics can function as a bandpass filter or a bandcut filter having a steep shoulder characteristic on the high frequency side or the low frequency side of the pass band or the stop band.
 また、上記特徴の磁気抵抗効果デバイスによれば、直流印加端子から入力される直流電流が、第1の磁気抵抗効果素子の中を磁化自由層から磁化固定層の方向に流れ、第2の磁気抵抗効果素子の中を磁化固定層から磁化自由層の方向に流れる場合、第1のポートから入力された高周波信号を、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の周波数では、第2のポートに対し遮断することが出来、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の周波数では、第2のポート側に通過させることが出来る。つまり、上記特徴の磁気抵抗効果デバイスは、高周波フィルタ(帯域遮断型フィルタまたは帯域通過型フィルタ)として機能する。 Further, according to the magnetoresistive effect device having the above characteristics, a direct current input from the direct current application terminal flows in the first magnetoresistive effect element from the magnetization free layer to the magnetization fixed layer, and the second magnetism When flowing in the direction from the magnetization fixed layer to the magnetization free layer in the resistance effect element, the high-frequency signal input from the first port is changed to the first in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element. The second port can be blocked, and at the frequency near the spin torque resonance frequency of the second magnetoresistive element, it can be passed to the second port side. That is, the magnetoresistive effect device having the above characteristics functions as a high-frequency filter (a band cutoff filter or a band pass filter).
 この場合の磁気抵抗効果デバイスを帯域遮断型フィルタとして考える場合には、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の帯域が遮断帯域となる。第1の磁気抵抗効果素子のスピントルク共鳴周波数と第2の磁気抵抗効果素子のスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子のスピントルク共鳴周波数が第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子のスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート側に通過させることができる。高周波信号が通過する第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍で形成される遮断帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。 When considering the magnetoresistive effect device in this case as a band cutoff filter, the band in the vicinity of the spin torque resonance frequency of the first magnetoresistive element is the cutoff band. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the second magnetoresistive effect element is the first magnetoresistive effect element). Therefore, the high frequency signal can be passed to the second port side on the high frequency side or the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element. In the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element through which the high frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the cutoff band can be further reduced. The shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the element can be made steep.
 この場合の磁気抵抗効果デバイスを帯域通過型フィルタとして考える場合には、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍の帯域が通過帯域となる。第1の磁気抵抗効果素子のスピントルク共鳴周波数と第2の磁気抵抗効果素子のスピントルク共鳴周波数が互いに異なるため(第1の磁気抵抗効果素子のスピントルク共鳴周波数が第2の磁気抵抗効果素子のスピントルク共鳴周波数よりも高いまたは低いため)、第2の磁気抵抗効果素子のスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポートに対し遮断することができる。高周波信号が遮断される第1の磁気抵抗効果素子のスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第2の磁気抵抗効果素子のスピントルク共鳴周波数の近傍で形成される通過帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。つまり、上記特徴の磁気抵抗効果デバイスは、遮断帯域または通過帯域の高周波数側または低周波数側において急峻な肩特性を持つ帯域遮断型フィルタまたは帯域通過型フィルタとして機能することが可能となる。 When considering the magnetoresistive effect device in this case as a bandpass filter, the band in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element is the passband. Since the spin torque resonance frequency of the first magnetoresistive effect element and the spin torque resonance frequency of the second magnetoresistive effect element are different from each other (the spin torque resonance frequency of the first magnetoresistive effect element is the second magnetoresistive effect element). Therefore, the high frequency signal can be cut off from the second port on the high frequency side or the low frequency side of the spin torque resonance frequency of the second magnetoresistive effect element. In the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element in which the high frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high frequency signal in the pass band can be further increased. The shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the effect element can be made steep. That is, the magnetoresistive effect device having the above characteristics can function as a band cut filter or a band pass filter having a steep shoulder characteristic on the high frequency side or the low frequency side of the cut band or the pass band.
 また、上記目的を達成するための本発明に係る磁気抵抗効果デバイスは、第1の磁気抵抗効果素子と、第2の磁気抵抗効果素子と、高周波信号が入力される第1のポートと、高周波信号が出力される第2のポートと、信号線路と、磁気抵抗効果素子に直流電流または直流電圧を印加可能な直流印加端子と、基準電位端子とを有し、前記第1のポートおよび前記第2のポートが前記信号線路を介して接続され、前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子は、それぞれの一端側が前記直流印加端子側になり、それぞれの他端側が前記基準電位端子側になるように、前記直流印加端子および前記基準電位端子に接続され、前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子は、それぞれの前記一端側から前記他端側への向きと、それぞれの前記磁化自由層から前記磁化固定層への向きとの関係が、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とで逆になるように形成され、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数と前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は互いに異なることを第2の特徴とする。 In order to achieve the above object, a magnetoresistive effect device according to the present invention includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port to which a high frequency signal is input, a high frequency A second port from which a signal is output; a signal line; a DC application terminal capable of applying a DC current or a DC voltage to the magnetoresistive effect element; and a reference potential terminal. Two ports are connected via the signal line, and the first magnetoresistive element and the second magnetoresistive element are connected to the signal line in parallel with the second port, The first magnetoresistive effect element and the second magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween, and the first magnetoresistance effect element and the second magnetoresistive effect element Second magnetism The anti-effect element is connected to the DC application terminal and the reference potential terminal so that one end side is the DC application terminal side and the other end side is the reference potential terminal side, and the first magnetic element The resistance effect element and the second magnetoresistive effect element have a relationship between a direction from the one end side to the other end side and a direction from the magnetization free layer to the magnetization fixed layer, respectively. The first magnetoresistive element and the second magnetoresistive element are formed so as to be reversed, and the spin torque resonance frequency of the first magnetoresistive element and the spin torque of the second magnetoresistive element A second feature is that the resonance frequencies are different from each other.
 上記特徴の磁気抵抗効果デバイスは、上述した第1の特徴を有する磁気抵抗効果デバイスと同様に、通過帯域または遮断帯域の高周波数側または低周波数側において急峻な肩特性を持つ帯域通過型フィルタまたは帯域遮断型フィルタとして機能することが可能となる。 The magnetoresistive effect device having the above characteristics is similar to the magnetoresistive effect device having the first feature described above. It becomes possible to function as a band cutoff filter.
 本発明によれば、磁気抵抗効果素子を利用した高周波フィルタ等の高周波デバイスを実現できる磁気抵抗効果デバイスを提供することが出来る。 According to the present invention, it is possible to provide a magnetoresistance effect device capable of realizing a high frequency device such as a high frequency filter using a magnetoresistance effect element.
第1の実施形態に係る磁気抵抗効果デバイスの構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the magnetoresistive effect device which concerns on 1st Embodiment. 第1の実施形態に係る磁気抵抗効果デバイスの周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency of the magnetoresistive effect device which concerns on 1st Embodiment, and attenuation amount. 第1の実施形態に係る磁気抵抗効果デバイスの直流電流に対する周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency with respect to the direct current of the magnetoresistive effect device concerning 1st Embodiment, and attenuation amount. 第1の実施形態に係る磁気抵抗効果デバイスの磁場強度に対する周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency with respect to the magnetic field intensity of the magnetoresistive effect device which concerns on 1st Embodiment, and attenuation amount. 第2の実施形態に係る磁気抵抗効果デバイスの構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the magnetoresistive effect device which concerns on 2nd Embodiment. 第2の実施形態に係る磁気抵抗効果デバイスの周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency of the magnetoresistive effect device which concerns on 2nd Embodiment, and attenuation amount. 第3の実施形態に係る磁気抵抗効果デバイスの構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the magnetoresistive effect device which concerns on 3rd Embodiment. 第3の実施形態に係る磁気抵抗効果デバイスの周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency of the magnetoresistive effect device which concerns on 3rd Embodiment, and attenuation amount. 第3の実施形態に係る磁気抵抗効果デバイスの直流電流に対する周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency with respect to the direct current of the magnetoresistive effect device which concerns on 3rd Embodiment, and attenuation amount. 第3の実施形態に係る磁気抵抗効果デバイスの磁場強度に対する周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency with respect to the magnetic field intensity of the magnetoresistive effect device which concerns on 3rd Embodiment, and attenuation amount. 第4の実施形態に係る磁気抵抗効果デバイスの構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the magnetoresistive effect device concerning 4th Embodiment. 第4の実施形態に係る磁気抵抗効果デバイスの周波数と減衰量との関係を示したグラフである。It is the graph which showed the relationship between the frequency of the magnetoresistive effect device which concerns on 4th Embodiment, and attenuation amount.
 本発明を実施するための好適な形態につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことが出来る。 Preferred embodiments for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are equivalent. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る磁気抵抗効果デバイス100の断面模式図である。磁気抵抗効果デバイス100は、磁化固定層102(第1の磁化固定層)、磁化自由層104(第1の磁化自由層)およびこれらの間に配置されたスペーサ層103(第1のスペーサ層)を有する2つの第1の磁気抵抗効果素子101a、101bと、磁化固定層102(第2の磁化固定層)、磁化自由層104(第2の磁化自由層)およびこれらの間に配置されたスペーサ層103(第2のスペーサ層)を有する第2の磁気抵抗効果素子101cと、高周波信号が入力される第1のポート109aと、高周波信号が出力される第2のポート109bと、信号線路107と、直流印加端子の一例としての直流電流入力端子110とを有している。第1のポート109aおよび第2のポート109bが信号線路107を介して接続されている。2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cは、第2のポート109bに対して並列に信号線路107に接続されている。より具体的には、磁気抵抗効果デバイス100は基準電位端子114を有しており、2つの第1の磁気抵抗効果素子101a、101bは互いに直列接続されており、第1の磁気抵抗効果素子101aの磁化固定層102側が、第1のポート109aと第2のポート109bとの間の信号線路107に接続され、第1の磁気抵抗効果素子101bの磁化自由層104側が、基準電位端子114に接続されて基準電位端子114を介してグラウンド108に接続可能になっており、第2の磁気抵抗効果素子101cの磁化自由層104側が、第1のポート109aと第2のポート109bとの間の信号線路107に接続され、第2の磁気抵抗効果素子101cの磁化固定層102側が、基準電位端子114に接続されて基準電位端子114を介してグラウンド108に接続可能になっている。グラウンド108は磁気抵抗効果デバイス100の外部のものとすることができる。磁気抵抗効果デバイス100は、基準電位端子114がグラウンド108に接続され、直流電流源112が直流電流入力端子110とグラウンド108に接続されて用いられる。直流電流源112が直流電流入力端子110とグラウンド108に接続されることにより、磁気抵抗効果デバイス100は、2つの第1の磁気抵抗効果素子101a、101b、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路を形成可能となっており、第2の磁気抵抗効果素子101c、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路を形成可能となっている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a magnetoresistive device 100 according to a first embodiment of the present invention. The magnetoresistance effect device 100 includes a magnetization fixed layer 102 (first magnetization fixed layer), a magnetization free layer 104 (first magnetization free layer), and a spacer layer 103 (first spacer layer) disposed therebetween. First magnetoresistive effect elements 101a and 101b having magnetic field, magnetization fixed layer 102 (second magnetization fixed layer), magnetization free layer 104 (second magnetization free layer), and spacers disposed therebetween A second magnetoresistive element 101c having a layer 103 (second spacer layer), a first port 109a to which a high-frequency signal is input, a second port 109b to which a high-frequency signal is output, and a signal line 107 And a direct current input terminal 110 as an example of a direct current application terminal. The first port 109 a and the second port 109 b are connected via the signal line 107. The two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b. More specifically, the magnetoresistive effect device 100 has a reference potential terminal 114, the two first magnetoresistive effect elements 101a and 101b are connected in series, and the first magnetoresistive effect element 101a. Is connected to the signal line 107 between the first port 109a and the second port 109b, and the magnetization free layer 104 side of the first magnetoresistance effect element 101b is connected to the reference potential terminal 114. Thus, it can be connected to the ground 108 via the reference potential terminal 114, and the magnetization free layer 104 side of the second magnetoresistive effect element 101c is a signal between the first port 109a and the second port 109b. Connected to the line 107, the magnetization fixed layer 102 side of the second magnetoresistance effect element 101c is connected to the reference potential terminal 114 via the reference potential terminal 114. It has to be connected to the ground 108 Te. The ground 108 can be external to the magnetoresistive device 100. The magnetoresistive effect device 100 is used with the reference potential terminal 114 connected to the ground 108 and the direct current source 112 connected to the direct current input terminal 110 and the ground 108. By connecting the direct current source 112 to the direct current input terminal 110 and the ground 108, the magnetoresistive effect device 100 has two first magnetoresistive elements 101a and 101b, a signal line 107, a ground 108, and a direct current input. A closed circuit including the terminal 110 can be formed, and a closed circuit including the second magnetoresistance effect element 101c, the signal line 107, the ground 108, and the direct current input terminal 110 can be formed.
 第1の磁気抵抗効果素子101a、101bは、それぞれの一端側(この例では磁化固定層102側)が直流電流入力端子110側になり、それぞれの他端側(この例では磁化自由層104側)が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されている。第2の磁気抵抗効果素子101cは、その一端側(この例では磁化自由層104側)が直流電流入力端子110側になり、その他端側(この例では磁化固定層102側)が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されている。つまり、磁気抵抗効果デバイス100では、第1の磁気抵抗効果素子101a、101b及び第2の磁気抵抗効果素子101cは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、2つの第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cとで逆になるように形成されている。この例では、第1の磁気抵抗効果素子101a、101bでは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとが、逆向きの関係になっており、第2の磁気抵抗効果素子101cでは、その一端側から他端側への向きと、その磁化自由層104から磁化固定層102への向きとが、同じ向きの関係になっている。 Each of the first magnetoresistive elements 101a and 101b has one end side (in this example, the magnetization fixed layer 102 side) on the DC current input terminal 110 side and each other end side (in this example, the magnetization free layer 104 side). ) Is connected to the DC current input terminal 110 and the reference potential terminal 114 so that the reference potential terminal 114 is on the side. One end side (in this example, the magnetization free layer 104 side) of the second magnetoresistance effect element 101c is the DC current input terminal 110 side, and the other end side (in this example, the magnetization fixed layer 102 side) is the reference potential terminal. The DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side. That is, in the magnetoresistive effect device 100, the first magnetoresistive effect elements 101 a and 101 b and the second magnetoresistive effect element 101 c are oriented from one end side to the other end side and from each magnetization free layer 104. The first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c are formed so that the relationship with the direction to the magnetization fixed layer 102 is opposite. In this example, in the first magnetoresistive effect elements 101a and 101b, the direction from one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 are opposite to each other. In the second magnetoresistance effect element 101c, the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 are in the same relationship. Yes.
 第1の磁気抵抗効果素子101aは、直流電流入力端子110から入力される直流電流が、第1の磁気抵抗効果素子101aの中を磁化固定層102から磁化自由層104の方向に流れるように形成されている。第1の磁気抵抗効果素子101bは、直流電流入力端子110から入力される直流電流が、第1の磁気抵抗効果素子101bの中を磁化固定層102から磁化自由層104の方向に流れるように形成されている。第2の磁気抵抗効果素子101cは、直流電流入力端子110から入力される直流電流が、第2の磁気抵抗効果素子101cの中を磁化自由層104から磁化固定層102の方向に流れるように形成されている。つまり、磁気抵抗効果デバイス100では、第1の磁気抵抗効果素子101a、第1の磁気抵抗効果素子101b及び第2の磁気抵抗効果素子101cのそれぞれの中を流れる直流電流の向きと、それぞれの磁化固定層102、スペーサ層103および磁化自由層104の配置順との関係が、2つの第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cとで逆になっている。なお、本明細書において直流電流とは、時間によって方向が変化しない電流であり、時間によって大きさが変化する電流を含む。また、本明細書において直流電圧とは、時間によって方向が変化しない電圧であり、時間によって大きさが変化する電圧を含む。 The first magnetoresistance effect element 101a is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistance effect element 101a in the direction from the magnetization fixed layer 102 to the magnetization free layer 104. Has been. The first magnetoresistance effect element 101b is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistance effect element 101b in the direction from the magnetization fixed layer 102 to the magnetization free layer 104. Has been. The second magnetoresistive effect element 101c is formed such that a direct current input from the direct current input terminal 110 flows in the second magnetoresistive effect element 101c in the direction from the magnetization free layer 104 to the magnetization fixed layer 102. Has been. That is, in the magnetoresistive effect device 100, the direction of the direct current flowing through each of the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c, and the respective magnetizations The relationship between the arrangement order of the fixed layer 102, the spacer layer 103, and the magnetization free layer 104 is reversed between the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c. In this specification, the direct current is a current whose direction does not change with time, and includes a current whose magnitude changes with time. Further, in this specification, the DC voltage is a voltage whose direction does not change with time, and includes a voltage whose magnitude changes with time.
 さらに、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数および第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は互いに異なっている。磁気抵抗効果デバイス100では、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高い、または、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも低くなっている。 Furthermore, the spin torque resonance frequency of the first magnetoresistance effect element 101a, the spin torque resonance frequency of the first magnetoresistance effect element 101b, and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other. In the magnetoresistance effect device 100, the spin torque resonance frequency of the second magnetoresistance effect element 101c is greater than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. Or higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b.
 第1のポート109aは交流信号である高周波信号が入力される入力ポートであり、第2のポート109bは高周波信号が出力される出力ポートである。第1のポート109aに入力される高周波信号及び第2のポート109bから出力される高周波信号は、例えば、100MHz以上の周波数を有する信号である。第1の磁気抵抗効果素子101aは、上部電極105を介して信号線路107と電気的に接続され、下部電極106を介して第1の磁気抵抗効果素子101bと電気的に接続されており、第1の磁気抵抗効果素子101bは、上部電極105を介して第1の磁気抵抗効果素子101aと電気的に接続され、下部電極106と基準電位端子114を介してグラウンド108と電気的に接続されている。第2の磁気抵抗効果素子101cは、下部電極106を介して信号線路107と電気的に接続され、上部電極105と基準電位端子114を介してグラウンド108と電気的に接続されている。第1のポート109aから入力される高周波信号は、その一部が2つの第1の磁気抵抗効果素子101a、101bまたは第2の磁気抵抗効果素子101cに流され、残りの高周波信号は第2のポート109bに出力される。また、高周波信号が第1のポート109aから第2のポート109bに通過する際の電力比(出力電力/入力電力)のdB値である減衰量(S21)は、ネットワークアナライザなどの高周波測定器により測定することが出来る。 The first port 109a is an input port to which a high-frequency signal that is an AC signal is input, and the second port 109b is an output port to which a high-frequency signal is output. The high frequency signal input to the first port 109a and the high frequency signal output from the second port 109b are, for example, signals having a frequency of 100 MHz or more. The first magnetoresistive element 101a is electrically connected to the signal line 107 via the upper electrode 105, and is electrically connected to the first magnetoresistive element 101b via the lower electrode 106. One magnetoresistive element 101b is electrically connected to the first magnetoresistive element 101a via the upper electrode 105, and electrically connected to the ground 108 via the lower electrode 106 and the reference potential terminal 114. Yes. The second magnetoresistance effect element 101 c is electrically connected to the signal line 107 via the lower electrode 106 and electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114. A part of the high-frequency signal input from the first port 109a is passed to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c, and the remaining high-frequency signals are transmitted to the second high-frequency signal. Output to port 109b. The attenuation (S21), which is the dB value of the power ratio (output power / input power) when the high-frequency signal passes from the first port 109a to the second port 109b, is measured by a high-frequency measuring instrument such as a network analyzer. It can be measured.
 上部電極105および下部電極106は、一対の電極としての役目を有し、各磁気抵抗効果素子を構成する各層の積層方向に各磁気抵抗効果素子を介して配設されている。つまり、上部電極105および下部電極106は、信号(電流)を各磁気抵抗効果素子に対して、各磁気抵抗効果素子を構成する各層の面と交差する方向、例えば、各磁気抵抗効果素子を構成する各層の面に対して垂直な方向(積層方向)に流すための一対の電極としての機能を有している。上部電極105および下部電極106は、Ta、Cu、Au、AuCu、Ru、またはこれらの材料のいずれか2つ以上の膜で構成されることが好ましい。2つの第1の磁気抵抗効果素子101a、101bはそれぞれ、一端側(磁化固定層102側)が上部電極105を介して信号線路107に電気的に接続され、他端側(磁化自由層104側)が下部電極106を介してグラウンド108に電気的に接続されている。また、第2の磁気抵抗効果素子101cは、一端側(磁化自由層104側)が下部電極106を介して信号線路107に電気的に接続され、他端側(磁化固定層102側)が上部電極105を介してグラウンド108に電気的に接続されている。 The upper electrode 105 and the lower electrode 106 serve as a pair of electrodes, and are disposed via the magnetoresistive elements in the stacking direction of the layers constituting the magnetoresistive elements. That is, the upper electrode 105 and the lower electrode 106 form a signal (current) in a direction intersecting the surface of each layer constituting each magnetoresistive effect element, for example, each magnetoresistive effect element. It functions as a pair of electrodes for flowing in a direction (stacking direction) perpendicular to the surface of each layer. The upper electrode 105 and the lower electrode 106 are preferably made of Ta, Cu, Au, AuCu, Ru, or any two or more films of these materials. One end side (magnetization fixed layer 102 side) of each of the two first magnetoresistance effect elements 101a and 101b is electrically connected to the signal line 107 via the upper electrode 105, and the other end side (magnetization free layer 104 side). ) Is electrically connected to the ground 108 via the lower electrode 106. The second magnetoresistive element 101c has one end side (magnetization free layer 104 side) electrically connected to the signal line 107 via the lower electrode 106, and the other end side (magnetization fixed layer 102 side) is the upper side. It is electrically connected to the ground 108 via the electrode 105.
 グラウンド108は、基準電位として機能する。信号線路107とグラウンド108との形状は、マイクロストリップライン(MSL)型やコプレーナウェーブガイド(CPW)型に規定することが好ましい。マイクロストリップライン形状やコプレーナウェーブガイド形状を設計する際、信号線路107の特性インピーダンスと回路系のインピーダンスが等しくなるように信号線路107の信号線幅やグラウンド間距離を設計することにより、信号線路107を伝送損失の少ない伝送線路とすることが可能となる。 The ground 108 functions as a reference potential. The shapes of the signal line 107 and the ground 108 are preferably defined as a microstrip line (MSL) type or a coplanar waveguide (CPW) type. When designing the microstrip line shape or the coplanar waveguide shape, the signal line width of the signal line 107 and the distance between the grounds are designed so that the characteristic impedance of the signal line 107 is equal to the impedance of the circuit system. Can be a transmission line with a small transmission loss.
 直流電流入力端子110は、第1の磁気抵抗効果素子101aの信号線路107への接続部と第1のポート109aとの間の信号線路107に接続されている。直流電流入力端子110に直流電流源112が接続されることで、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに対して、それぞれの積層方向に直流電流を印加することが可能になる。また、直流電流入力端子110と直流電流源112との間に、高周波信号をカットするための、インダクタまたは抵抗素子が直列に接続されてもよい。 The direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a. By connecting the direct current source 112 to the direct current input terminal 110, direct current is applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c in the respective stacking directions. It becomes possible to apply. Further, an inductor or a resistance element for cutting a high frequency signal may be connected in series between the DC current input terminal 110 and the DC current source 112.
 直流電流源112は、グラウンド108及び直流電流入力端子110に接続され、2つの第1の磁気抵抗効果素子101a、101b、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成され、第2の磁気抵抗効果素子101c、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成される。直流電流源112は、直流電流入力端子110から、上記の閉回路に直流電流を印加する。直流電流源112は、例えば、可変抵抗と直流電圧源との組み合わせの回路により構成され、直流電流の電流値を変化可能に構成されている。直流電流源112は、一定の直流電流を発生可能な、固定抵抗と直流電圧源との組み合わせの回路により構成されてもよい。 The direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110. A closed circuit including the second magnetoresistance effect element 101c, the signal line 107, the ground 108, and the direct current input terminal 110 is formed. The direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit. The direct current source 112 is configured by, for example, a circuit of a combination of a variable resistor and a direct current voltage source, and is configured to be able to change the current value of the direct current. The direct current source 112 may be configured by a circuit of a combination of a fixed resistor and a direct current voltage source that can generate a constant direct current.
 磁場印加機構111は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cの近傍に配設され、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに磁場(静磁場)を印加して、各磁気抵抗効果素子のスピントルク共鳴周波数を設定可能となっている。例えば、磁場印加機構111は、電圧もしくは電流のいずれかにより、印加磁場強度を可変制御できる電磁石型またはストリップライン型で構成される。また、磁場印加機構111は、電磁石型またはストリップライン型と一定の磁場のみを供給する永久磁石との組み合わせにより構成されていてもよい。また、磁場印加機構111は、各磁気抵抗効果素子に個別に配置され、各磁気抵抗効果素子のスピントルク共鳴周波数を、独立に設定可能な構造でもよい。磁場印加機構111は、各磁気抵抗効果素子に印加する磁場を変化させることで、磁化自由層104における有効磁場を変化させて各磁気抵抗効果素子のスピントルク共鳴周波数を変化可能となっている。 The magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c, and the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c. By applying a magnetic field (static magnetic field) to the magnetoresistive effect element 101c, the spin torque resonance frequency of each magnetoresistive effect element can be set. For example, the magnetic field application mechanism 111 is configured as an electromagnet type or a stripline type that can variably control the applied magnetic field intensity by either voltage or current. The magnetic field application mechanism 111 may be configured by a combination of an electromagnet type or stripline type and a permanent magnet that supplies only a constant magnetic field. Further, the magnetic field application mechanism 111 may be arranged individually for each magnetoresistive effect element, and the spin torque resonance frequency of each magnetoresistive effect element may be set independently. The magnetic field application mechanism 111 can change the effective magnetic field in the magnetization free layer 104 and change the spin torque resonance frequency of each magnetoresistive effect element by changing the magnetic field applied to each magnetoresistive effect element.
 磁化固定層102は、強磁性体材料で構成されており、その磁化方向が実質的に一方向に固定されている。磁化固定層102は、Fe、Co、Ni、NiとFeの合金、FeとCoの合金、またはFeとCoとBの合金などの高スピン分極率材料から構成されることが好ましい。これにより、高い磁気抵抗変化率を得ることが出来る。また、磁化固定層102は、ホイスラー合金で構成されても良い。また、磁化固定層102の膜厚は、1~10nmとすることが好ましい。また、磁化固定層102の磁化を固定するために磁化固定層102に接するように反強磁性層を付加してもよい。或いは、結晶構造、形状などに起因する磁気異方性を利用して磁化固定層102の磁化を固定してもよい。反強磁性層には、FeO、CoO、NiO、CuFeS、IrMn、FeMn、PtMn、CrまたはMnなどを用いることが出来る。 The magnetization fixed layer 102 is made of a ferromagnetic material, and its magnetization direction is substantially fixed in one direction. The magnetization fixed layer 102 is preferably made of a high spin polarizability material such as Fe, Co, Ni, an alloy of Ni and Fe, an alloy of Fe and Co, or an alloy of Fe, Co and B. Thereby, a high magnetoresistance change rate can be obtained. The magnetization fixed layer 102 may be made of a Heusler alloy. The film thickness of the magnetization fixed layer 102 is preferably 1 to 10 nm. Further, an antiferromagnetic layer may be added so as to be in contact with the magnetization fixed layer 102 in order to fix the magnetization of the magnetization fixed layer 102. Alternatively, the magnetization of the magnetization fixed layer 102 may be fixed using magnetic anisotropy due to the crystal structure, shape, or the like. For the antiferromagnetic layer, FeO, CoO, NiO, CuFeS 2 , IrMn, FeMn, PtMn, Cr, Mn, or the like can be used.
 スペーサ層103は、磁化固定層102と磁化自由層104の間に配置され、磁化固定層102の磁化と磁化自由層104の磁化が相互作用して磁気抵抗効果が得られる。スペーサ層103としては、導電体、絶縁体、半導体によって構成される層、または、絶縁体中に導体によって構成される通電点を含む層で構成される。 The spacer layer 103 is disposed between the magnetization fixed layer 102 and the magnetization free layer 104, and the magnetization of the magnetization fixed layer 102 and the magnetization of the magnetization free layer 104 interact to obtain a magnetoresistance effect. The spacer layer 103 includes a layer formed of a conductor, an insulator, and a semiconductor, or a layer including a conduction point formed of a conductor in the insulator.
 スペーサ層103として非磁性導電材料を適用する場合、材料としてはCu、Ag、AuまたはRuなどが挙げられ、磁気抵抗効果素子には巨大磁気抵抗(GMR)効果が発現する。GMR効果を利用する場合、スペーサ層103の膜厚は、0.5~3.0nm程度とすることが好ましい。 When a nonmagnetic conductive material is applied as the spacer layer 103, examples of the material include Cu, Ag, Au, and Ru, and the magnetoresistive effect element exhibits a giant magnetoresistance (GMR) effect. When using the GMR effect, the thickness of the spacer layer 103 is preferably about 0.5 to 3.0 nm.
 スペーサ層103として非磁性絶縁材料を適用する場合、材料としてはAlまたはMgOなどが挙げられ、磁気抵抗効果素子にはトンネル磁気抵抗(TMR)効果が発現する。磁化固定層102と磁化自由層104との間にコヒーレントトンネル効果が発現するように、スペーサ層103の膜厚を調整することで高い磁気抵抗変化率が得られる。TMR効果を利用する場合、スペーサ層103の膜厚は、0.5~3.0nm程度とすることが好ましい。 When a nonmagnetic insulating material is applied as the spacer layer 103, examples of the material include Al 2 O 3 or MgO, and the magnetoresistive element exhibits a tunnel magnetoresistance (TMR) effect. A high magnetoresistance change rate can be obtained by adjusting the film thickness of the spacer layer 103 so that a coherent tunnel effect appears between the magnetization fixed layer 102 and the magnetization free layer 104. When utilizing the TMR effect, the thickness of the spacer layer 103 is preferably about 0.5 to 3.0 nm.
 スペーサ層103として非磁性半導体材料を適用する場合、材料としてはZnO、In、SnO、ITO、GaOまたはGaなどが挙げられ、スペーサ層103の膜厚は1.0~4.0nm程度とすることが好ましい。 When a nonmagnetic semiconductor material is used for the spacer layer 103, examples of the material include ZnO, In 2 O 3 , SnO 2 , ITO, GaO x, and Ga 2 O x, and the thickness of the spacer layer 103 is 1.0. It is preferable that the thickness is about 4.0 nm.
 スペーサ層103として非磁性絶縁体中の導体によって構成される通電点を含む層を適用する場合、AlまたはMgOによって構成される非磁性絶縁体中に、CoFe、CoFeB、CoFeSi、CoMnGe、CoMnSi、CoMnAl、Fe、Co、Au、Cu、AlまたはMgなどの導体によって構成される通電点を含む構造とすることが好ましい。この場合、スペーサ層103の膜厚は、0.5~2.0nm程度とすることが好ましい。 When a layer including a conduction point constituted by a conductor in a nonmagnetic insulator is applied as the spacer layer 103, in the nonmagnetic insulator constituted by Al 2 O 3 or MgO, CoFe, CoFeB, CoFeSi, CoMnGe, A structure including a conduction point constituted by a conductor such as CoMnSi, CoMnAl, Fe, Co, Au, Cu, Al, or Mg is preferable. In this case, the thickness of the spacer layer 103 is preferably about 0.5 to 2.0 nm.
 磁化自由層104は、その磁化の方向が変化可能であり、強磁性材料で構成されている。磁化自由層104の磁化の方向は、例えば、外部印加磁場またはスピン偏極電子によって変化可能である。磁化自由層104は、膜面内方向に磁化容易軸を有する材料の場合、材料としてはCoFe、CoFeB、CoFeSi、CoMnGe、CoMnSiまたはCoMnAlなどが挙げられ、厚さは1~30nm程度とすることが好ましい。磁化自由層104は、膜面法線方向に磁化容易軸を有する材料の場合、材料としてはCo、CoCr系合金、Co多層膜、CoCrPt系合金、FePt系合金、希土類を含むSmCo系合金またはTbFeCo合金などが挙げられる。また、磁化自由層104は、ホイスラー合金で構成されても良い。また、磁化自由層104とスペーサ層103との間に、高スピン分極率材料を挿入しても良い。これによって、高い磁気抵抗変化率を得ることが可能となる。高スピン分極率材料としては、CoFe合金またはCoFeB合金などが挙げられる。CoFe合金またはCoFeB合金いずれの膜厚も0.2~1.0nm程度とすることが好ましい。 The magnetization free layer 104 can change the magnetization direction and is made of a ferromagnetic material. The direction of magnetization of the magnetization free layer 104 can be changed by, for example, an externally applied magnetic field or spin-polarized electrons. In the case where the magnetization free layer 104 is a material having an easy axis in the in-plane direction of the film, examples of the material include CoFe, CoFeB, CoFeSi, CoMnGe, CoMnSi, and CoMnAl, and the thickness is about 1 to 30 nm. preferable. When the magnetization free layer 104 is a material having an axis of easy magnetization in the normal direction of the film surface, the material is Co, CoCr alloy, Co multilayer film, CoCrPt alloy, FePt alloy, SmCo alloy containing rare earth, or TbFeCo. An alloy etc. are mentioned. Further, the magnetization free layer 104 may be made of a Heusler alloy. Further, a high spin polarizability material may be inserted between the magnetization free layer 104 and the spacer layer 103. This makes it possible to obtain a high magnetoresistance change rate. Examples of the high spin polarizability material include a CoFe alloy and a CoFeB alloy. The film thickness of either the CoFe alloy or the CoFeB alloy is preferably about 0.2 to 1.0 nm.
 また、上部電極105と各磁気抵抗効果素子との間、および下部電極106と各磁気抵抗効果素子との間にキャップ層、シード層またはバッファー層を配設しても良い。キャップ層、シード層またはバッファー層としては、Ru、Ta、Cu、Crまたはこれらの積層膜などが挙げられ、これらの層の膜厚は2~10nm程度とすることが好ましい。 Further, a cap layer, a seed layer, or a buffer layer may be provided between the upper electrode 105 and each magnetoresistive element and between the lower electrode 106 and each magnetoresistive element. Examples of the cap layer, seed layer, or buffer layer include Ru, Ta, Cu, Cr, or a laminated film thereof. The thickness of these layers is preferably about 2 to 10 nm.
 尚、各磁気抵抗効果素子の大きさは、平面視形状が長方形(正方形を含む)の場合、長辺を100nm程度、或いは100nm以下にすることが望ましい。また、平面視形状が長方形ではない場合は、平面視形状に最小の面積で外接する長方形の長辺を、各磁気抵抗効果素子の長辺と定義する。長辺が100nm程度と小さい場合、磁化自由層104の磁区の単磁区化が可能となり、高効率なスピントルク共鳴現象の実現が可能となる。ここで、「平面視形状」とは、各磁気抵抗効果素子を構成する各層の積層方向に垂直な平面で見た形状のことである。 In addition, as for the magnitude | size of each magnetoresistive effect element, when a planar view shape is a rectangle (a square is included), it is desirable for a long side to be about 100 nm or 100 nm or less. When the planar view shape is not a rectangle, the long side of the rectangle circumscribing the planar view shape with the minimum area is defined as the long side of each magnetoresistive element. When the long side is as small as about 100 nm, the magnetic domain of the magnetization free layer 104 can be made into a single domain, and a highly efficient spin torque resonance phenomenon can be realized. Here, the “planar shape” is a shape viewed in a plane perpendicular to the stacking direction of each layer constituting each magnetoresistive element.
 ここで、スピントルク共鳴現象について説明する。 Here, the spin torque resonance phenomenon will be described.
 磁気抵抗効果素子に、磁気抵抗効果素子の固有のスピントルク共鳴周波数と同じ周波数の高周波信号を入力すると、磁化自由層の磁化がスピントルク共鳴周波数で振動する。この現象をスピントルク共鳴現象と呼ぶ。磁気抵抗効果素子の素子抵抗値は、磁化固定層と磁化自由層との磁化の相対角で決まる。そのため、スピントルク共鳴時の磁気抵抗効果素子の抵抗値は、磁化自由層の磁化の振動に伴い、周期的に変化する。つまり、磁気抵抗効果素子は、スピントルク共鳴周波数で抵抗値が周期的に変化する抵抗振動素子として取り扱うことが出来る。 When a high-frequency signal having the same frequency as the intrinsic spin torque resonance frequency of the magnetoresistive effect element is input to the magnetoresistive effect element, the magnetization of the magnetization free layer vibrates at the spin torque resonance frequency. This phenomenon is called a spin torque resonance phenomenon. The element resistance value of the magnetoresistive effect element is determined by the relative angle of magnetization between the magnetization fixed layer and the magnetization free layer. Therefore, the resistance value of the magnetoresistive element at the time of spin torque resonance changes periodically with the vibration of the magnetization of the magnetization free layer. That is, the magnetoresistive effect element can be handled as a resistance vibration element whose resistance value periodically changes at the spin torque resonance frequency.
 各磁気抵抗効果素子の中を磁化固定層102から磁化自由層104の方向に流れる直流電流を各磁気抵抗効果素子に印加しながら、各磁気抵抗効果素子にスピントルク共鳴周波数と同じ周波数の高周波信号を入力すると、各磁気抵抗効果素子は、入力された高周波信号とは位相が180°異なる状態で、スピントルク共鳴周波数で抵抗値が周期的に変化し、この高周波信号に対するインピーダンスは増加する。つまり、磁気抵抗効果デバイス100において、2つの第1の磁気抵抗効果素子101a、101bは、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが増加する抵抗素子として取り扱うことが出来る。 A high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing through each magnetoresistive effect element in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 to each magnetoresistive effect element. When each of the magnetoresistive effect elements is input, the resistance value periodically changes at the spin torque resonance frequency in a state where the phase differs from the input high frequency signal by 180 °, and the impedance to the high frequency signal increases. That is, in the magnetoresistive effect device 100, the two first magnetoresistive elements 101a and 101b can be handled as resistance elements in which the impedance of the high-frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 また、各磁気抵抗効果素子の中を磁化自由層104から磁化固定層102の方向に流れる直流電流を各磁気抵抗効果素子に印加しながら、各磁気抵抗効果素子にスピントルク共鳴周波数と同じ周波数の高周波信号を入力すると、各磁気抵抗効果素子は、入力された高周波信号と同位相の状態で、スピントルク共鳴周波数で抵抗値が周期的に変化し、この高周波信号に対するインピーダンスは減少する。つまり、磁気抵抗効果デバイス100において、第2の磁気抵抗効果素子101cは、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが減少する抵抗素子として取り扱うことが出来る。 Further, while applying a direct current flowing through each magnetoresistive effect element from the magnetization free layer 104 to the magnetization fixed layer 102 to each magnetoresistive effect element, each magnetoresistive effect element has the same frequency as the spin torque resonance frequency. When a high frequency signal is input, the resistance value of each magnetoresistive element changes periodically at the spin torque resonance frequency in the same phase as the input high frequency signal, and the impedance to the high frequency signal decreases. That is, in the magnetoresistive effect device 100, the second magnetoresistive effect element 101c can be handled as a resistance element in which the impedance of the high frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 スピントルク共鳴周波数は、磁化自由層104における有効磁場によって変化する。磁化自由層104における有効磁場Heffは、磁化自由層104に印加される外部磁場H、磁化自由層104における異方性磁場H、磁化自由層104における反磁場H、磁化自由層104における交換結合磁場HEXを用いて、
eff=H+H+H+HEX
で表される。磁場印加機構111は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに磁場を印加し、各磁化自由層104に外部磁場Hを印加することにより、各磁化自由層104における有効磁場Heffを設定可能な有効磁場設定機構である。有効磁場設定機構である磁場印加機構111は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加する磁場を変化させることで、各磁化自由層104における有効磁場を変化させて、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのそれぞれのスピントルク共鳴周波数を変化させることが出来る。このように、第1の磁気抵抗効果素子101a、第1の磁気抵抗効果素子101bおよび第2の磁気抵抗効果素子101cに印加される磁場を変化させると、第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのそれぞれのスピントルク共鳴周波数は変化する。
The spin torque resonance frequency changes depending on the effective magnetic field in the magnetization free layer 104. The effective magnetic field H eff in the magnetization free layer 104 includes an external magnetic field H E applied to the magnetization free layer 104, an anisotropic magnetic field H k in the magnetization free layer 104, a demagnetizing field H D in the magnetization free layer 104, and a magnetization free layer 104. Using the exchange coupling magnetic field H EX at
H eff = H E + H k + H D + H EX
It is represented by Magnetic field applying mechanism 111, by two first magnetoresistance effect elements 101a, a magnetic field is applied to 101b and second magnetoresistive elements 101c, applying an external magnetic field H E to each magnetization free layer 104, the This is an effective magnetic field setting mechanism capable of setting an effective magnetic field H eff in the magnetization free layer 104. The magnetic field application mechanism 111 which is an effective magnetic field setting mechanism changes the magnetic field applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c, thereby enabling effective in each magnetization free layer 104. The spin torque resonance frequency of each of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c can be changed by changing the magnetic field. Thus, when the magnetic field applied to the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c is changed, the first magnetoresistive effect elements 101a and 101b are changed. And the spin torque resonance frequency of each of the 2nd magnetoresistive effect element 101c changes.
 また、スピントルク共鳴時に2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに直流電流が印加されることにより、スピントルクが増加して、振動する抵抗値の振幅が増加する。振動する抵抗値の振幅が増加することにより、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのそれぞれの素子インピーダンスの変化量が増加する。また、印加される直流電流の電流密度を変化させると、スピントルク共鳴周波数は変化する。したがって、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのそれぞれのスピントルク共鳴周波数は、磁場印加機構111からの磁場を変化させるか、直流電流入力端子110からの印加直流電流を変化させることにより変化させることが出来る。2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのそれぞれに印加される直流電流の電流密度は、それぞれの発振閾値電流密度よりも小さいことが好ましい。磁気抵抗効果素子の発振閾値電流密度とは、この値以上の電流密度の直流電流の印加により、磁気抵抗効果素子の磁化自由層の磁化が一定周波数及び一定の振幅で歳差運動を開始し、磁気抵抗効果素子が発振する(磁気抵抗効果素子の出力(抵抗値)が一定周波数及び一定の振幅で変動する)閾値の電流密度のことである。 In addition, when a direct current is applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c at the time of spin torque resonance, the spin torque increases and the amplitude of the resistance value that vibrates is increased. Will increase. As the amplitude of the oscillating resistance value increases, the amount of change in the element impedance of each of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c increases. Further, when the current density of the applied direct current is changed, the spin torque resonance frequency is changed. Therefore, the spin torque resonance frequencies of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c change the magnetic field from the magnetic field application mechanism 111 or from the direct current input terminal 110, respectively. Can be changed by changing the applied DC current. It is preferable that the current density of the direct current applied to each of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is smaller than the oscillation threshold current density. The oscillation threshold current density of the magnetoresistive effect element is the precession of the magnetization of the magnetization free layer of the magnetoresistive effect element at a constant frequency and a constant amplitude by applying a direct current with a current density equal to or higher than this value. This is the threshold current density at which the magnetoresistive effect element oscillates (the output (resistance value) of the magnetoresistive effect element fluctuates at a constant frequency and a constant amplitude).
 また、同一の磁場および同一の電流密度の直流電流が磁気抵抗効果素子に印加された状態で考えると、磁気抵抗効果素子の平面視形状のアスペクト比が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は高くなる。ここで「平面視形状のアスペクト比」とは、磁気抵抗効果素子の平面視形状に最小の面積で外接する長方形の、短辺の長さに対する長辺の長さの比率のことである。例えば、第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bと第2の磁気抵抗効果素子101cについて、膜構成が互いに同じで、平面視形状はいずれも長方形であるが、平面視形状のアスペクト比が互いに異なるようにすることで、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数および第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が互いに異なるようにすることができる。ここで「膜構成が同じ」とは、磁気抵抗効果素子を構成する各層の材料および膜厚が同じであり、さらに各層の積層順が同じであることを意味する。 Further, when a direct current having the same magnetic field and the same current density is applied to the magnetoresistive effect element, the spin torque resonance of the magnetoresistive effect element increases as the aspect ratio of the magnetoresistive effect element in plan view increases. The frequency increases. Here, the “aspect ratio of the planar shape” is the ratio of the length of the long side to the length of the short side of the rectangle circumscribing the planar shape of the magnetoresistive element with a minimum area. For example, the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c have the same film configuration and are rectangular in plan view. By making the aspect ratios of the shapes different from each other, the spin torque resonance frequency of the first magnetoresistive effect element 101a, the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c The spin torque resonance frequencies can be different from each other. Here, “the film configuration is the same” means that the material and film thickness of each layer constituting the magnetoresistive effect element are the same, and the stacking order of each layer is the same.
 スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、高インピーダンス状態の第1の磁気抵抗効果素子101aによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。一方、高周波信号の高周波成分の中で第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍でない周波数成分は、低インピーダンス状態の第1の磁気抵抗効果素子101aを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。同様に、第1のポート109aから入力された高周波信号の高周波成分の中で第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、高インピーダンス状態の第1の磁気抵抗効果素子101bによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。一方、高周波信号の高周波成分の中で第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍でない周波数成分は、低インピーダンス状態の第1の磁気抵抗効果素子101bを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。 Due to the spin torque resonance phenomenon, among the high frequency components of the high frequency signal input from the first port 109a, the frequency components that coincide with the spin torque resonance frequency of the first magnetoresistive effect element 101a or in the vicinity of the spin torque resonance frequency Is cut off from the ground 108 by the first magnetoresistive element 101a in a high impedance state connected in parallel to the second port 109b, and is easily output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a in the high frequency component of the high frequency signal passes through the first magnetoresistive effect element 101a in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult. Similarly, among the high-frequency components of the high-frequency signal input from the first port 109a, the frequency components that match the spin torque resonance frequency of the first magnetoresistive effect element 101b or in the vicinity of the spin torque resonance frequency are The second magneto-resistive element 101b connected in parallel to the second port 109b is cut off from the ground 108 and easily output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b in the high frequency component of the high frequency signal passes through the first magnetoresistive effect element 101b in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult.
 さらに、スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で第2の磁気抵抗効果素子101cのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、低インピーダンス状態の第2の磁気抵抗効果素子101cを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。一方、高周波信号の高周波成分の中で第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍でない周波数成分は、高インピーダンス状態の第2の磁気抵抗効果素子101cによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。 Further, due to the spin torque resonance phenomenon, the high frequency component of the high frequency signal input from the first port 109a coincides with the spin torque resonance frequency of the second magnetoresistive effect element 101c or in the vicinity of the spin torque resonance frequency. The frequency component passes through the low-impedance state second magnetoresistive element 101c connected in parallel to the second port 109b, flows to the ground 108, and is not easily output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c in the high frequency component of the high frequency signal is cut off from the ground 108 by the second magnetoresistive effect element 101c in the high impedance state. 2 is easily output to the second port 109b.
 図2に、磁気抵抗効果デバイス100に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図2の縦軸は減衰量、横軸は周波数を表している。図2のプロット線220は、第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された磁場が一定で、且つ、印加された直流電流が一定の時のグラフである。faは第1の磁気抵抗効果素子101aのスピントルク共鳴周波数であり、fbは第1の磁気抵抗効果素子101bのスピントルク共鳴周波数であり、fcは第2の磁気抵抗効果素子101cのスピントルク共鳴周波数である。図2では、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数より低い場合の例を示している。 FIG. 2 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 100 and the attenuation. The vertical axis in FIG. 2 represents the attenuation amount, and the horizontal axis represents the frequency. The plot line 220 in FIG. 2 is a graph when the magnetic field applied to the first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c is constant and the applied DC current is constant. is there. fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a, fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b, and fc is the spin torque resonance of the second magnetoresistance effect element 101c. Is the frequency. In FIG. 2, the spin torque resonance frequency of the second magnetoresistance effect element 101c is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. An example is shown.
 図2のプロット線120に示されるように、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が通過帯域となる。また、第2の磁気抵抗効果素子101cにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の低周波数側(上記の通過帯域の低周波数側)において、高周波信号を第2のポート109bに対し遮断することができる。高周波信号が遮断される第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される通過帯域の低周波数側の肩特性を急峻にすることが可能になる。つまり、この場合の磁気抵抗効果デバイス100は、図2のプロット線120に示されるような、通過帯域の低周波数側において急峻な肩特性を持つ帯域通過型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、高周波信号の減衰量の周波数に対する変化が急峻であるため、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する通過帯域の下限周波数に一致させることが好ましい。 As indicated by the plot line 120 in FIG. 2, the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b are passbands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the low torque side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the low passband is reduced). On the frequency side), the high-frequency signal can be blocked from the second port 109b. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c where the high-frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased. The shoulder characteristics on the low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 100 in this case functions as a band pass filter having a steep shoulder characteristic on the low frequency side of the pass band, as indicated by the plot line 120 in FIG. In this case, in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c, since the change of the attenuation amount of the high frequency signal with respect to the frequency is steep, the spin torque resonance frequency of the second magnetoresistive effect element 101c is It is preferable to match the lower limit frequency of the pass band to be used.
 同様にして、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数より高い場合には、磁気抵抗効果デバイス100は、通過帯域の高周波数側において急峻な肩特性を持つ帯域通過型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する通過帯域の上限周波数に一致させることが好ましい。 Similarly, when the spin torque resonance frequency of the second magnetoresistance effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. The magnetoresistance effect device 100 functions as a band-pass filter having a steep shoulder characteristic on the high frequency side of the pass band. In this case, it is preferable to match the spin torque resonance frequency of the second magnetoresistive element 101c with the upper limit frequency of the pass band to be used.
 図3および図4に、磁気抵抗効果デバイス100に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図3および図4の縦軸は減衰量、横軸は周波数を表している。図3は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された磁場が一定の時のグラフである。図3のプロット線131は、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bに印加される直流電流値がIa1であり、第2の磁気抵抗効果素子101cに印加される直流電流値がIb1の時のものであり、プロット線132は、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bに印加される直流電流値がIa2であり、第2の磁気抵抗効果素子101cに印加される直流電流値がIb2の時のものである。この時の直流電流値の関係は、Ia1<Ia2およびIb1<Ib2である。また、図4は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された直流電流が一定の時のグラフである。図4のプロット線141は、磁場印加機構111から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される磁場強度がHb1の時のものであり、プロット線142は磁場印加機構111から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される磁場強度がHb2の時のものである。この時の磁場強度の関係は、Hb1<Hb2である。 3 and 4 are graphs showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 100 and the attenuation. 3 and 4, the vertical axis represents attenuation, and the horizontal axis represents frequency. FIG. 3 is a graph when the magnetic fields applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are constant. The plot line 131 in FIG. 3 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia1, and is applied to the second magnetoresistive element 101c. When the direct current value is Ib1, the plot line 132 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia2, and the second line This is when the direct current applied to the magnetoresistive effect element 101c is Ib2. The relationship between the direct current values at this time is Ia1 <Ia2 and Ib1 <Ib2. FIG. 4 is a graph when the direct current applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is constant. A plot line 141 in FIG. 4 is obtained when the magnetic field strength applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb1, and is plotted. A line 142 is obtained when the magnetic field strength applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb2. The relationship between the magnetic field strengths at this time is Hb1 <Hb2.
 例えば、図3に示されるように、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される直流電流値を大きくした場合、電流値の変化に伴い2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の周波数での素子インピーダンスの変化量が増加することで、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域(通過帯域)において、第2のポート109bから出力される高周波信号がさらに大きくなり、通過損失が小さくなる。それと同時に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の帯域において、第2のポート109bから出力される高周波信号がさらに小さくなる。したがって、磁気抵抗効果デバイス101は、遮断特性と通過特性のレンジが大きく、さらに急峻な肩特性を持つ高周波フィルタを実現することが可能となる。また、直流電流値を大きくすると、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数はfd1からfd2に、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数はfe1からfe2に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数はfg1からfg2にシフトする。すなわち通過帯域は低周波数側へシフトする。つまり、磁気抵抗効果デバイス100は、通過帯域の周波数を変化可能な急峻な肩特性を持つ高周波フィルタとして機能することも出来る。 For example, as shown in FIG. 3, when the value of the direct current applied from the direct current input terminal 110 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is increased, As the value changes, the amount of change in element impedance at a frequency in the vicinity of the spin torque resonance frequency of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c increases. High-frequency signal output from the second port 109b in a band near the spin torque resonance frequency of the magnetoresistive effect element 101a and a band (pass band) near the spin torque resonance frequency of the first magnetoresistive effect element 101b. Becomes larger and the passage loss becomes smaller. At the same time, the high-frequency signal output from the second port 109b is further reduced in the band near the spin torque resonance frequency of the second magnetoresistance effect element 101c. Therefore, the magnetoresistive effect device 101 can realize a high-frequency filter having a large range of cutoff characteristics and pass characteristics and a steep shoulder characteristic. When the direct current value is increased, the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fd1 to fd2, the spin torque resonance frequency of the first magnetoresistance effect element 101b is changed from fe1 to fe2, and the second The spin torque resonance frequency of the magnetoresistive effect element 101c is shifted from fg1 to fg2. That is, the pass band shifts to the low frequency side. That is, the magnetoresistive effect device 100 can also function as a high-frequency filter having a steep shoulder characteristic that can change the passband frequency.
 さらに、例えば、図4に示されるように、磁場印加機構111から印加される磁場強度をHb1からHb2に強くした場合、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数はfh1からfh2に、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数はfi1からfi2に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数はfj1からfj2にシフトする。すなわち、通過帯域は高周波数側へシフトする。また、磁場強度(磁化自由層104における有効磁場Heff)を変化させる方が、直流電流値を変化させるよりも大きく通過帯域をシフトさせることができる。つまり、磁気抵抗効果デバイス100は、通過帯域の周波数を変化可能な急峻な肩特性を持つ高周波フィルタとして機能することが出来る。 Furthermore, for example, as shown in FIG. 4, when the magnetic field strength applied from the magnetic field application mechanism 111 is increased from Hb1 to Hb2, the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fh1 to fh2. The spin torque resonance frequency of the first magnetoresistance effect element 101b is shifted from fi1 to fi2, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is shifted from fj1 to fj2. That is, the pass band shifts to the high frequency side. Further, changing the magnetic field strength (effective magnetic field H eff in the magnetization free layer 104) can shift the passband more greatly than changing the direct current value. That is, the magnetoresistive effect device 100 can function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the pass band.
 なお、各磁気抵抗効果素子に印加される外部磁場H(磁化自由層104における有効磁場Heff)が大きくなるに従って、各磁気抵抗効果素子の振動する抵抗値の振幅が小さくなるので、各磁気抵抗効果素子に印加される外部磁場H(磁化自由層104における有効磁場Heff)を大きくするのに伴い、各磁気抵抗効果素子に印加される直流電流の電流密度を大きくすることが好ましい。 As the external magnetic field H E applied to each magnetoresistive element (effective magnetic field H eff in the magnetization free layer 104) increases, the amplitude of the resistance value that vibrates each magnetoresistive element decreases. As the external magnetic field H E (effective magnetic field H eff in the magnetization free layer 104) applied to the resistive element is increased, it is preferable to increase the current density of the direct current applied to each magnetoresistive element.
 また、磁気抵抗効果デバイス100では、第1の磁気抵抗効果素子は1個(第1の磁気抵抗効果素子101a、101bのいずれか一方)としてもよい。 Further, in the magnetoresistive effect device 100, the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
 このように、磁気抵抗効果デバイス100は、2つの第1の磁気抵抗効果素子101a、101bと、第2の磁気抵抗効果素子101cと、高周波信号が入力される第1のポート109aと、高周波信号が出力される第2のポート109bと、信号線路107と、直流電流入力端子110(直流印加端子)とを有し、第1のポート109aおよび第2のポート109bが信号線路107を介して接続され、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cは、第2のポート109bに対して並列に信号線路107に接続され、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cは、それぞれ磁化固定層102、磁化自由層104およびこれらの間に配置されたスペーサ層103を有し、第1の磁気抵抗効果素子101a(101b)及び第2の磁気抵抗効果素子101cは、それぞれの一端側が直流電流入力端子110(直流印加端子)側になり、それぞれの他端側が基準電位端子114側になるように、直流電流入力端子110(直流印加端子)および基準電位端子114に接続され、第1の磁気抵抗効果素子101a(101b)及び第2の磁気抵抗効果素子101cは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第1の磁気抵抗効果素子101a(101b)と第2の磁気抵抗効果素子101cとで逆になるように形成されている。また、第1の磁気抵抗効果素子101aは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第1の磁気抵抗効果素子101aの中を磁化固定層102から磁化自由層104の方向に流れるように形成され、第1の磁気抵抗効果素子101bは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第1の磁気抵抗効果素子101bの中を磁化固定層102から磁化自由層104の方向に流れるように形成され、第2の磁気抵抗効果素子101cは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第2の磁気抵抗効果素子101cの中を磁化自由層104から磁化固定層102の方向に流れるように形成され、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は互いに異なっており、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は互いに異なっている。 As described above, the magnetoresistive effect device 100 includes the two first magnetoresistive effect elements 101a and 101b, the second magnetoresistive effect element 101c, the first port 109a to which the high frequency signal is input, and the high frequency signal. Is output to the second port 109b, the signal line 107, and the DC current input terminal 110 (DC application terminal). The first port 109a and the second port 109b are connected via the signal line 107. The two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b and are connected to the two first magnetoresistive elements. The elements 101a and 101b and the second magnetoresistive element 101c are respectively disposed in the magnetization fixed layer 102, the magnetization free layer 104, and between them. Each of the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element 101c has a spacer layer 103, and one end side thereof becomes a DC current input terminal 110 (DC application terminal) side, and the other The first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element are connected to the direct current input terminal 110 (direct current application terminal) and the reference potential terminal 114 so that the end side becomes the reference potential terminal 114 side. The relationship between the direction from each one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 is the same as that of the first magnetoresistive effect element 101a (101b) and the second 101c. The magnetoresistive effect element 101c is formed so as to be reversed. Further, in the first magnetoresistive effect element 101a, a direct current input from a direct current input terminal 110 (DC application terminal) causes the first magnetoresistive effect element 101a to pass through the magnetization fixed layer 102 and the magnetization free layer 104. In the first magnetoresistive effect element 101b, the direct current input from the direct current input terminal 110 (direct current application terminal) is fixed in the first magnetoresistive effect element 101b by magnetization. The second magnetoresistive effect element 101c is formed so as to flow in the direction from the layer 102 to the magnetization free layer 104. The second magnetoresistive effect element 101c has a direct current input from the direct current input terminal 110 (direct current application terminal). The element 101c is formed so as to flow in the direction from the magnetization free layer 104 to the magnetization fixed layer 102, and the spin torque resonance frequency of the first magnetoresistance effect element 101a and the second Spin torque resonance frequency of the magnetoresistive element 101c are different from each other, the spin torque resonance frequency of the spin torque resonance frequency and the second magnetoresistive element 101c of the first magnetoresistive element 101b are different from each other.
 したがって、2つの第1の磁気抵抗効果素子101a、101b及び第2の磁気抵抗効果素子101cに第1のポート109aから信号線路107を介して高周波信号が入力されることにより、2つの第1の磁気抵抗効果素子101a、101b及び第2の磁気抵抗効果素子101cにスピントルク共鳴を誘起させることが出来る。このスピントルク共鳴と同時に、2つの第1の磁気抵抗効果素子101a、101bの中を磁化固定層102から磁化自由層104の方向に直流電流が流れることにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と同じ周波数に対する第1の磁気抵抗効果素子101aの素子インピーダンスが増加し、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と同じ周波数に対する第1の磁気抵抗効果素子101bの素子インピーダンスが増加する。同様に、スピントルク共鳴と同時に、第2の磁気抵抗効果素子101cの中を磁化自由層104から磁化固定層102の方向に直流電流が流れることにより、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数と同じ周波数に対する第2の磁気抵抗効果素子101cの素子インピーダンスが減少する。 Accordingly, when a high frequency signal is input to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c from the first port 109a via the signal line 107, Spin torque resonance can be induced in the magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c. Simultaneously with this spin torque resonance, a direct current flows in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 in the two first magnetoresistive effect elements 101a and 101b. The element impedance of the first magnetoresistance effect element 101a with respect to the same frequency as the spin torque resonance frequency increases, and the element of the first magnetoresistance effect element 101b with respect to the same frequency as the spin torque resonance frequency of the first magnetoresistance effect element 101b. Impedance increases. Similarly, when a direct current flows in the direction from the magnetization free layer 104 to the magnetization fixed layer 102 in the second magnetoresistance effect element 101c simultaneously with the spin torque resonance, the spin torque of the second magnetoresistance effect element 101c is obtained. The element impedance of the second magnetoresistance effect element 101c with respect to the same frequency as the resonance frequency decreases.
 2つの第1の磁気抵抗効果素子101a、101bが第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第1の磁気抵抗効果素子101a、101bが低インピーダンス状態である非共鳴周波数では第2のポート109bに対して遮断し、第1の磁気抵抗効果素子101a、101bが高インピーダンス状態である共鳴周波数では第2のポート109b側に通過させることが出来る。さらに、第2の磁気抵抗効果素子101cが、第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第2の磁気抵抗効果素子101cが低インピーダンス状態である共鳴周波数では第2のポート109bに対し遮断し、第2の磁気抵抗効果素子101cが高インピーダンス状態である非共鳴周波数では第2のポート109b側に通過させることが出来る。このように、磁気抵抗効果デバイス100は、第1のポート109aから入力された高周波信号を、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の周波数では、第2のポート109b側に通過させることが出来、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の周波数では、第2のポート109bに対して遮断することが出来る。つまり、磁気抵抗効果デバイス100は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数で高周波信号の通過量の極大値を持ち、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数で高周波信号の通過量の極小値を持ち、高周波フィルタとして機能する。 The two first magnetoresistive elements 101a and 101b are connected to the signal line 107 in parallel to the second port 109b, so that the first magnetoresistive elements 101a and 101b have a low impedance. The second port 109b can be blocked at the non-resonant frequency that is in the state, and the first magnetoresistive effect elements 101a and 101b can be passed to the second port 109b side at the resonance frequency in the high impedance state. Further, the second magnetoresistance effect element 101c is connected to the signal line 107 in parallel with the second port 109b, so that the second magnetoresistance effect element 101c is in a low impedance state. At the resonance frequency, the second port 109b can be blocked, and at the non-resonance frequency where the second magnetoresistive element 101c is in a high impedance state, the second port 109b can be passed. As described above, the magnetoresistive effect device 100 converts the high-frequency signal input from the first port 109a to a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b. Can be passed to the second port 109b side at a frequency in the vicinity of the spin torque resonance frequency, and at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c, Can be blocked. That is, the magnetoresistive effect device 100 has a maximum value of the passing amount of the high-frequency signal at the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b. The magnetoresistive effect element 101c has a minimum value of the passing amount of the high frequency signal at the spin torque resonance frequency, and functions as a high frequency filter.
 磁気抵抗効果デバイス100では、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が通過帯域となる。第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート109bに対し遮断することができる。また、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート109bに対し遮断することができる。高周波信号が遮断される第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される通過帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス100は、通過帯域の高周波数側または低周波数側において急峻な肩特性を持つ帯域通過型フィルタとして機能することが可能となる。 In the magnetoresistive effect device 100, the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a or the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b is a pass band. Since the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is the first Since the spin torque resonance frequency of the magnetoresistive effect element 101a is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101a, a high frequency signal is sent to the second port 109b on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a. It can be blocked. In addition, since the spin torque resonance frequency of the first magnetoresistance effect element 101b and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is The high frequency signal is sent to the second port on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (because it is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b). 109b can be blocked. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c where the high-frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased. The shoulder characteristics on the high frequency side or low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistive effect element 101a or in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b may be steep. It becomes possible. That is, the magnetoresistive effect device 100 can function as a band pass filter having a steep shoulder characteristic on the high frequency side or low frequency side of the pass band.
 さらに、磁気抵抗効果デバイス100は、スピントルク共鳴周波数が互いに異なる2つの第1の磁気抵抗効果素子101a、101bを有し、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数より高い、または2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数より低いので、広い通過帯域を持ち、通過帯域の高周波数側または低周波数側における肩特性が急峻である帯域通過型フィルタとして機能することが可能となる。 Further, the magnetoresistive effect device 100 includes two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, and the spin torque resonance frequency of the second magnetoresistive effect element 101c is two 1 is higher than the spin torque resonance frequency of each of the magnetoresistive effect elements 101a and 101b or lower than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b. It becomes possible to function as a band-pass filter having a steep shoulder characteristic on the high frequency side or low frequency side of the band.
 さらに、遮断特性と通過特性のレンジを大きく、肩特性を急峻にするためには、磁化自由層104が膜面法線方向に磁化容易軸を有し、磁化固定層102が膜面方向に磁化容易軸を有する構成とすることが好ましい。 Furthermore, in order to increase the range of the cut-off characteristics and the pass characteristics and make the shoulder characteristics steep, the magnetization free layer 104 has a magnetization easy axis in the film surface normal direction, and the magnetization fixed layer 102 is magnetized in the film surface direction. A configuration having an easy axis is preferable.
 また、直流電流入力端子110から印加される直流電流を変化させることにより、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を可変制御することができるため、磁気抵抗効果デバイス100は、周波数可変フィルタとして機能することも可能となる。 Further, by changing the direct current applied from the direct current input terminal 110, the spin torque resonance frequencies of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are variably controlled. Therefore, the magnetoresistive effect device 100 can also function as a frequency variable filter.
 さらに、磁気抵抗効果デバイス100は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を設定可能な周波数設定機構としての磁場印加機構111を有するので、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を任意の周波数にすることができる。したがって、磁気抵抗効果デバイス100は、任意の周波数帯のフィルタとして機能することが可能となる。 Furthermore, the magnetoresistive effect device 100 has a magnetic field application mechanism 111 as a frequency setting mechanism capable of setting the spin torque resonance frequency of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c. Therefore, the spin torque resonance frequencies of the two first magnetoresistance effect elements 101a and 101b and the second magnetoresistance effect element 101c can be set to arbitrary frequencies. Therefore, the magnetoresistive effect device 100 can function as a filter of an arbitrary frequency band.
 さらに、磁気抵抗効果デバイス100は、磁場印加機構111が、磁化自由層104における有効磁場を設定可能な有効磁場設定機構であり、磁化自由層104における有効磁場を変化させて2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を変化可能であるので、周波数可変フィルタとして機能することが可能となる。 Further, the magnetoresistive effect device 100 is an effective magnetic field setting mechanism in which the magnetic field application mechanism 111 can set an effective magnetic field in the magnetization free layer 104. The effective magnetic field in the magnetization free layer 104 is changed to change the two first magnetic fields. Since the spin torque resonance frequency of the resistance effect elements 101a and 101b and the second magnetoresistance effect element 101c can be changed, it can function as a frequency variable filter.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bが互いに直列に接続されている例で説明したが、第1の磁気抵抗効果素子は3個以上であってもよい。また、複数の第1の磁気抵抗効果素子同士が互いに並列に接続されていても良い。これらの場合の磁気抵抗効果デバイスであっても、各々の第1の磁気抵抗効果素子が第2のポート109bに対して並列に信号線路107に接続されることにより、磁気抵抗効果デバイス100と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the two first magnetoresistive elements 101a and 101b are described as being connected in series with each other. However, the number of the first magnetoresistive elements may be three or more. A plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the case of the magnetoresistive effect device in these cases, each first magnetoresistive effect element is connected to the signal line 107 in parallel to the second port 109b, so that it is the same as the magnetoresistive effect device 100. It is possible to have frequency characteristics as a high frequency filter.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cとが、互いに並列に接続されている例で説明したが、2つの第1の磁気抵抗効果素子101a、101bの少なくとも一方と第2の磁気抵抗効果素子101cとが直列に接続されていても良い。 In the above description, the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected in parallel to each other. However, the two first magnetoresistive elements 101c and 101b are connected in parallel to each other. At least one of the resistance effect elements 101a and 101b and the second magnetoresistance effect element 101c may be connected in series.
(第2の実施形態)
 図5は、本発明の第2の実施形態に係る磁気抵抗効果デバイス200の断面模式図である。磁気抵抗効果デバイス200において、第1の実施形態の磁気抵抗効果デバイス100と異なる点について主に説明し、共通する事項は適宜説明を省略する。第1の実施形態の磁気抵抗効果デバイス100と共通している要素は同じ符号を用いており、共通している要素の説明は省略する。磁気抵抗効果デバイス200は、第1の実施形態の磁気抵抗効果デバイス100に対し、さらに第3の磁気抵抗効果素子101dを有している。第3の磁気抵抗効果素子101dは、磁化固定層102(第3の磁化固定層)、磁化自由層104(第3の磁化自由層)およびこれらの間に配置されたスペーサ層103(第3のスペーサ層)を有している。第3の磁気抵抗効果素子101dは、第2のポート109bに対して並列に信号線路107に接続されている。より具体的には、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dは互いに直列接続されており、第3の磁気抵抗効果素子101dの一端側(磁化自由層104側)が、第2の磁気抵抗効果素子101cに接続され、第3の磁気抵抗効果素子101dの他端側(磁化固定層102側)が、基準電位端子114に接続されて基準電位端子114を介してグラウンド108に接続可能になっている。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view of a magnetoresistive effect device 200 according to the second embodiment of the present invention. In the magnetoresistive effect device 200, differences from the magnetoresistive effect device 100 of the first embodiment will be mainly described, and description of common matters will be omitted as appropriate. Elements common to the magnetoresistive effect device 100 of the first embodiment are denoted by the same reference numerals, and description of the common elements is omitted. The magnetoresistive effect device 200 further includes a third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 100 of the first embodiment. The third magnetoresistance effect element 101d includes a magnetization fixed layer 102 (third magnetization fixed layer), a magnetization free layer 104 (third magnetization free layer), and a spacer layer 103 (third Spacer layer). The third magnetoresistance effect element 101d is connected to the signal line 107 in parallel with the second port 109b. More specifically, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected in series, and one end side (the magnetization free layer 104 side) of the third magnetoresistive effect element 101d is connected. Are connected to the second magnetoresistive effect element 101c, and the other end side (the magnetization fixed layer 102 side) of the third magnetoresistive effect element 101d is connected to the reference potential terminal 114 and connected to the ground via the reference potential terminal 114. 108 can be connected.
 第3の磁気抵抗効果素子101dは、その一端側(この例では磁化自由層104側)が直流電流入力端子110側になり、その他端側(この例では磁化固定層102側)が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されている。つまり、磁気抵抗効果デバイス200では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになるように形成されている。この例では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dのそれぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとが、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101d共に、同じ向きの関係になっている。 The third magnetoresistive element 101d has one end side (in this example, the magnetization free layer 104 side) on the DC current input terminal 110 side, and the other end side (in this example, the magnetization fixed layer 102 side) on the reference potential terminal. The DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side. That is, in the magnetoresistive effect device 200, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are fixed in the direction from the respective one end side to the other end side and from the respective magnetization free layers 104. The second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are formed to have the same relationship with the direction to the layer 102. In this example, the direction from one end side to the other end side of each of the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d, and the direction from each magnetization free layer 104 to the magnetization fixed layer 102, However, both the second magnetoresistive element 101c and the third magnetoresistive element 101d have the same orientation.
 第3の磁気抵抗効果素子101dは、直流電流入力端子110から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化自由層104から磁化固定層102の方向に流れるように形成されている。つまり、磁気抵抗効果デバイス200では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dのそれぞれの中を流れる直流電流の向きと、それぞれの磁化固定層102、スペーサ層103および磁化自由層104の配置順との関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになっている。さらに、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも低くなっている。 The third magnetoresistance effect element 101d is formed such that a DC current input from the DC current input terminal 110 flows in the third magnetoresistance effect element 101d in the direction from the magnetization free layer 104 to the magnetization fixed layer 102. Has been. That is, in the magnetoresistive effect device 200, the direction of the direct current flowing in each of the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d, the respective magnetization fixed layer 102, the spacer layer 103, and the magnetization The relationship with the arrangement order of the free layer 104 is the same between the second magnetoresistive element 101c and the third magnetoresistive element 101d. Further, the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque of the third magnetoresistive effect element 101d. The torque resonance frequency is lower than the spin torque resonance frequency of each of the two first magnetoresistance effect elements 101a and 101b.
 第1のポート109aから入力される高周波信号は、その一部が2つの第1の磁気抵抗効果素子101a、101bまたは、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに流され、残りの高周波信号は第2のポート109bに出力される。 A part of the high-frequency signal input from the first port 109a flows to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c and the third magnetoresistive element 101d. The remaining high-frequency signal is output to the second port 109b.
 第3の磁気抵抗効果素子101dは、一端側(磁化自由層104側)が下部電極106を介して信号線路107(第2の磁気抵抗効果素子101c)に電気的に接続され、他端側(磁化固定層102側)が上部電極105と基準電位端子114を介してグラウンド108に電気的に接続されている。 One end side (magnetization free layer 104 side) of the third magnetoresistance effect element 101d is electrically connected to the signal line 107 (second magnetoresistance effect element 101c) via the lower electrode 106, and the other end side ( The magnetization fixed layer 102 side) is electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114.
 直流電流入力端子110は、第1の磁気抵抗効果素子101aの信号線路107への接続部と第1のポート109aとの間の信号線路107に接続されている。直流電流入力端子110に直流電流源112が接続されることで、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに直流電流を印加することが可能になる。 The direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a. By connecting a direct current source 112 to the direct current input terminal 110, a direct current is applied to the two first magnetoresistive elements 101a, 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. Can be applied.
 直流電流源112は、グラウンド108及び直流電流入力端子110に接続され、2つの第1の磁気抵抗効果素子101a、101b、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成され、第2の磁気抵抗効果素子101c、第3の磁気抵抗効果素子101d、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成される。直流電流源112は、直流電流入力端子110から、上記の閉回路に直流電流を印加する。 The direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110. A closed circuit including the second magnetoresistive element 101c, the third magnetoresistive element 101d, the signal line 107, the ground 108, and the direct current input terminal 110 is formed. The direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit.
 磁場印加機構111は、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dの近傍に配設され、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに磁場を印加して、各磁気抵抗効果素子のスピントルク共鳴周波数を設定可能となっている。 The magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d, and the two first magnetoresistive elements 101a and 101b. By applying a magnetic field to the effect elements 101a and 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d, the spin torque resonance frequency of each magnetoresistive effect element can be set.
 磁気抵抗効果デバイス200のその他の構成は、第1の実施形態の磁気抵抗効果デバイス100と同じである。 Other configurations of the magnetoresistive effect device 200 are the same as those of the magnetoresistive effect device 100 of the first embodiment.
 磁気抵抗効果デバイス200において、第3の磁気抵抗効果素子101dは、直流電流入力端子110から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化自由層104から磁化固定層102の方向に流れるように形成されているので、第2の磁気抵抗効果素子101cと同様に、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが減少する抵抗素子として取り扱うことが出来る。 In the magnetoresistive effect device 200, the third magnetoresistive effect element 101 d has a direct current input from the direct current input terminal 110 so that the third magnetoresistive effect element 101 d passes through the third magnetoresistive effect element 101 d from the magnetization free layer 104 to the magnetization fixed layer 102. Thus, like the second magnetoresistance effect element 101c, it can be handled as a resistance element in which the impedance of the high frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で第3の磁気抵抗効果素子101dのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、低インピーダンス状態の第3の磁気抵抗効果素子101dによりグラウンド108に流れやすくなり、第2のポート109bに出力されにくくなる。一方、高周波信号の高周波成分の中で第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍でない周波数成分は、高インピーダンス状態の第3の磁気抵抗効果素子101dによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。 Due to the spin torque resonance phenomenon, among the high frequency components of the high frequency signal input from the first port 109a, the frequency components that coincide with the spin torque resonance frequency of the third magnetoresistive effect element 101d or in the vicinity of the spin torque resonance frequency Is likely to flow to the ground 108 by the third impedance element 101d in a low impedance state connected in parallel to the second port 109b, and is difficult to be output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in the high frequency component of the high frequency signal is blocked from the ground 108 by the third magnetoresistive effect element 101d in the high impedance state, 2 is easily output to the second port 109b.
 図6に、磁気抵抗効果デバイス200に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図6の縦軸は減衰量、横軸は周波数を表している。図6のプロット線220は、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに印加された磁場が一定で、且つ、印加された直流電流が一定の時のグラフである。faは第1の磁気抵抗効果素子101aのスピントルク共鳴周波数であり、fbは第1の磁気抵抗効果素子101bのスピントルク共鳴周波数であり、fcは第2の磁気抵抗効果素子101cのスピントルク共鳴周波数であり、feは第3の磁気抵抗効果素子101dのスピントルク共鳴周波数である。 FIG. 6 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 200 and the amount of attenuation. In FIG. 6, the vertical axis represents attenuation, and the horizontal axis represents frequency. A plot line 220 in FIG. 6 indicates that the magnetic fields applied to the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d are constant and applied. It is a graph when the direct current made is constant. fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a, fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b, and fc is the spin torque resonance of the second magnetoresistance effect element 101c. Frequency, and fe is the spin torque resonance frequency of the third magnetoresistive element 101d.
 図6のプロット線220に示されるように、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が通過帯域となる。また、第2の磁気抵抗効果素子101cにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側(上記の通過帯域の高周波数側)において、高周波信号を第2のポート109bに対し遮断することができる。高周波信号が遮断される第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される通過帯域の高周波数側の肩特性を急峻にすることが可能になる。また、第3の磁気抵抗効果素子101dにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の低周波数側(上記の通過帯域の低周波数側)において、高周波信号を第2のポート109bに対し遮断することができる。高周波信号が遮断される第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される通過帯域の低周波数側の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス200は、図6のプロット線220に示されるような、通過帯域の低周波数側および高周波数側の両方において急峻な肩特性を持つ帯域通過型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍および第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、高周波信号の減衰量の周波数に対する変化が急峻であるため、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する通過帯域の上限周波数に一致させ、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数を、使用する通過帯域の下限周波数に一致させることが好ましい。 As indicated by the plot line 220 in FIG. 6, the band near the spin torque resonance frequency of the first magnetoresistance effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistance effect element 101b are passbands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the high frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-described high pass band). On the frequency side), the high-frequency signal can be blocked from the second port 109b. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c where the high-frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased. The shoulder characteristics on the high frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. Further, the third magnetoresistive effect element 101d allows the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b to be on the low frequency side (the above-mentioned low pass band). On the frequency side), the high-frequency signal can be blocked from the second port 109b. In the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d where the high-frequency signal is blocked, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the pass band can be further increased. The shoulder characteristics on the low frequency side of the pass band formed in the vicinity of the spin torque resonance frequency of the resistance effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 200 functions as a band pass filter having steep shoulder characteristics on both the low frequency side and the high frequency side of the pass band, as indicated by the plot line 220 in FIG. In this case, in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c and in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d, the change of the attenuation amount of the high frequency signal with respect to the frequency is steep. Therefore, the spin torque resonance frequency of the second magnetoresistive effect element 101c is matched with the upper limit frequency of the pass band to be used, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is set to the lower limit frequency of the pass band to be used. It is preferable to match.
 また、磁気抵抗効果デバイス200では、第1の磁気抵抗効果素子は1個(第1の磁気抵抗効果素子101a、101bのいずれか一方)としてもよい。 Further, in the magnetoresistive effect device 200, the number of the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
 このように、磁気抵抗効果デバイス200は、第3の磁気抵抗効果素子101dを磁気抵抗効果デバイス100に対してさらに有し、第3の磁気抵抗効果素子101dは、第2のポート109bに対して並列に信号線路107に接続され、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dは、それぞれ磁化固定層102、磁化自由層104およびこれらの間に配置されたスペーサ層103を有し、第3の磁気抵抗効果素子101dは、その一端側が直流電流入力端子110(直流印加端子)側になり、その他端側が基準電位端子114側になるように、直流電流入力端子110(直流印加端子)および基準電位端子114に接続され、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになるように形成されている。また、第3の磁気抵抗効果素子101dは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化自由層104から磁化固定層102の方向に流れるように形成され、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも低くなっており、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも低くなっている。 Thus, the magnetoresistance effect device 200 further includes the third magnetoresistance effect element 101d with respect to the magnetoresistance effect device 100, and the third magnetoresistance effect element 101d is connected to the second port 109b. The two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in parallel to the signal line 107 are a fixed magnetization layer 102 and a free magnetization layer, respectively. 104 and a spacer layer 103 disposed therebetween, and the third magnetoresistive element 101d has one end side thereof which is a DC current input terminal 110 (DC application terminal) side and the other end side which is a reference potential terminal 114. The second magnetoresistive effect element 1 is connected to the DC current input terminal 110 (DC application terminal) and the reference potential terminal 114 so as to be on the side. In the first magnetoresistance effect element 101d and the third magnetoresistance effect element 101d, the relationship between the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 is determined by the second magnetoresistance effect. The element 101c and the third magnetoresistance effect element 101d are formed to be the same. Further, in the third magnetoresistance effect element 101d, a direct current input from the direct current input terminal 110 (DC application terminal) causes the third magnetoresistance effect element 101d to pass through the magnetization free layer 104 to the magnetization fixed layer 102. The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the third magnetoresistive effect element 101d The spin torque resonance frequency is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is that of the first magnetoresistance effect element 101b. The spin torque resonance frequency of the third magnetoresistive element 101d is higher than the spin torque resonance frequency. It is lower than the spin torque resonance frequency of 101b.
 したがって、第3の磁気抵抗効果素子101dに第1のポート109aから信号線路107を介して高周波信号が入力されることにより、第3の磁気抵抗効果素子101dにスピントルク共鳴を誘起させることが出来る。このスピントルク共鳴と同時に、第3の磁気抵抗効果素子101dの中を磁化自由層104から磁化固定層102の方向に直流電流が流れることにより、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数と同じ周波数に対する第3の磁気抵抗効果素子101dの素子インピーダンスが減少する。 Therefore, when a high frequency signal is input to the third magnetoresistance effect element 101d from the first port 109a via the signal line 107, spin torque resonance can be induced in the third magnetoresistance effect element 101d. . Simultaneously with this spin torque resonance, a direct current flows in the direction from the magnetization free layer 104 to the magnetization fixed layer 102 in the third magnetoresistive effect element 101d, whereby the spin torque resonance frequency of the third magnetoresistive effect element 101d. The element impedance of the third magnetoresistive effect element 101d for the same frequency is reduced.
 第3の磁気抵抗効果素子101dが、第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第3の磁気抵抗効果素子101dが低インピーダンス状態である共鳴周波数では第2のポート109bに対し遮断し、第3の磁気抵抗効果素子101dが高インピーダンス状態である非共鳴周波数では第2のポート109b側に通過させることが出来る。 The third magnetoresistive effect element 101d is connected to the signal line 107 in parallel with the second port 109b, so that a high frequency signal is generated and the resonance frequency at which the third magnetoresistive effect element 101d is in a low impedance state. Then, the second port 109b can be blocked, and the third magnetoresistive element 101d can pass through the second port 109b side at a non-resonant frequency in a high impedance state.
 第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも低いため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の高周波数側および低周波数側において、高周波信号を第2のポートに対し遮断することができる。また、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも低いため、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側および低周波数側において、高周波信号を第2のポートに対し遮断することができる。高周波信号が遮断される第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍および第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、通過帯域における高周波信号の減衰量に対する減衰量の比をさらに大きくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される通過帯域の高周波数側および低周波数側の両方の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス200は、通過帯域の高周波数側および低周波数側の両方において急峻な肩特性を持つ帯域通過型フィルタとして機能することが可能となる。 The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first magnetic resistance. Since it is lower than the spin torque resonance frequency of the resistance effect element 101a, the high frequency signal can be blocked from the second port on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistance effect element 101a. it can. The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first. Since this is lower than the spin torque resonance frequency of the magnetoresistive effect element 101b, the high frequency signal is blocked from the second port on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b. be able to. In the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c and the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in which the high frequency signal is blocked, the attenuation with respect to the attenuation amount of the high frequency signal in the pass band. Since the ratio of the amounts can be further increased, the pass band formed in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a or in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b. The shoulder characteristics on both the high frequency side and the low frequency side can be made steep. That is, the magnetoresistive effect device 200 can function as a band pass filter having steep shoulder characteristics on both the high frequency side and the low frequency side of the pass band.
 さらに、磁気抵抗効果デバイス200は、スピントルク共鳴周波数が互いに異なる2つの第1の磁気抵抗効果素子101a、101bを有するので、広い通過帯域を持ち、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも低いため、通過帯域の高周波数側及び低周波数側の両方において急峻な肩特性を持つ帯域通過型フィルタとして機能することが可能となる。 Furthermore, since the magnetoresistive effect device 200 includes the two first magnetoresistive elements 101a and 101b having different spin torque resonance frequencies, the magnetoresistive effect device 200 has a wide pass band and the spin torque resonance of the second magnetoresistive element 101c. The frequency is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is two first magnetoresistive effect elements. Since it is lower than the spin torque resonance frequency of each of 101a and 101b, it can function as a band pass filter having steep shoulder characteristics on both the high frequency side and low frequency side of the pass band.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bが互いに直列に接続されている例で説明したが、第1の磁気抵抗効果素子は3個以上であってもよい。また、複数の第1の磁気抵抗効果素子同士が互いに並列に接続されていても良い。これらの場合の磁気抵抗効果デバイスであっても、各々の第1の磁気抵抗効果素子が第2のポート109bに対して並列に接続されることにより、磁気抵抗効果デバイス200と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the two first magnetoresistive elements 101a and 101b are described as being connected in series with each other. However, the number of the first magnetoresistive elements may be three or more. A plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the case of the magnetoresistive effect device in these cases, each of the first magnetoresistive effect elements is connected in parallel to the second port 109b. As a frequency characteristic.
 また、以上の説明では、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dが互いに直列に接続されている例で説明したが、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dが互いに並列に接続されていても良い。この場合の磁気抵抗効果デバイスであっても、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dが、第2のポート109bに対して並列に信号線路107に接続されることにより、磁気抵抗効果デバイス200と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are described as being connected in series. However, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101c The magnetoresistive effect elements 101d may be connected in parallel to each other. Even in the magnetoresistive effect device in this case, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected to the signal line 107 in parallel to the second port 109b. Similar to the magnetoresistive effect device 200, it can have frequency characteristics as a high frequency filter.
 また、以上の説明では、互いに直列に接続された2つの第1の磁気抵抗効果素子101a、101bと、互いに直列に接続された第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dとが、互いに並列に接続されている例で説明したが、2つの第1の磁気抵抗効果素子101a、101bの少なくとも一方と、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dの少なくとも一方とが、直列に接続されていても良い。 In the above description, the two first magnetoresistive elements 101a and 101b connected in series with each other, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in series with each other. Are connected in parallel to each other, but at least one of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. At least one of these may be connected in series.
 第1実施形態の磁気抵抗効果デバイス100および第2実施形態の磁気抵抗効果デバイス200において、さらに、通過帯域を広く、肩特性を急峻にするためには、肩特性を急峻にする第2の磁気抵抗効果素子101c(第3の磁気抵抗効果素子101d)のQ値を、通過帯域を形成する第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bの少なくとも一方のQ値よりも大きくすることが好ましい。ここでQ値とは、磁気抵抗効果素子のインピーダンスの絶対値が、磁気抵抗効果素子のスピントルク共鳴周波数f0におけるインピーダンスの絶対値から3dB減少または増加する、周波数f0の両側の周波数f1、f2(f1<f2)を用いて、
Q=f0/(f2-f1)
で表される。スピントルク共鳴時の磁気抵抗効果素子のQ値は、磁気抵抗効果素子に印加される直流電流の電流密度に比例するため、例えば、第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bと第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dについて、膜構成および平面視形状の面積が互いに同じである場合には、第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bとを互いに直列接続し、第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとを互いに並列接続することにより、第2の磁気抵抗効果素子101c(第3の磁気抵抗効果素子101d)のQ値を、第1の磁気抵抗効果素子101aのQ値及び第1の磁気抵抗効果素子101bのQ値よりも大きくすることができる。また、例えば、第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bと第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとが互いに直列接続されている場合には、第2の磁気抵抗効果素子101cの平面視形状の面積を、第1の磁気抵抗効果素子101a(第1の磁気抵抗効果素子101b)の平面視形状の面積よりも小さくすることにより、第2の磁気抵抗効果素子101cのQ値を、第1の磁気抵抗効果素子101a(第1の磁気抵抗効果素子101b)のQ値よりも大きくすることができ、第3の磁気抵抗効果素子101dの平面視形状の面積を、第1の磁気抵抗効果素子101a(第1の磁気抵抗効果素子101b)の平面視形状の面積よりも小さくすることにより、第3の磁気抵抗効果素子101dのQ値を、第1の磁気抵抗効果素子101a(第1の磁気抵抗効果素子101b)のQ値よりも大きくすることができる。
In the magnetoresistive effect device 100 of the first embodiment and the magnetoresistive effect device 200 of the second embodiment, in order to further widen the pass band and make the shoulder characteristics steep, the second magnetism that makes the shoulder characteristics steep. The Q value of the resistance effect element 101c (third magnetoresistance effect element 101d) is larger than the Q value of at least one of the first magnetoresistance effect element 101a and the first magnetoresistance effect element 101b forming the pass band. It is preferable to do. Here, the Q value means that the absolute value of the impedance of the magnetoresistive effect element is decreased or increased by 3 dB from the absolute value of the impedance at the spin torque resonance frequency f0 of the magnetoresistive effect element. Using f1 <f2)
Q = f0 / (f2-f1)
It is represented by Since the Q value of the magnetoresistive effect element at the time of spin torque resonance is proportional to the current density of the direct current applied to the magnetoresistive effect element, for example, the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d have the same film configuration and area in plan view, the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101a The magnetoresistive effect element 101b is connected in series with each other, and the first magnetoresistive effect element 101a, 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d are connected in parallel to each other. Q value of the second magnetoresistive effect element 101c (third magnetoresistive effect element 101d), the Q value of the first magnetoresistive effect element 101a and the first magnetoresistive effect element It can be larger than the Q value of 01b. Further, for example, when the first magnetoresistance effect element 101a, the first magnetoresistance effect element 101b, the second magnetoresistance effect element 101c, and the third magnetoresistance effect element 101d are connected in series with each other. By making the area of the second magnetoresistive element 101c in plan view smaller than the area of the first magnetoresistive element 101a (first magnetoresistive element 101b) in plan view, The Q value of the magnetoresistive effect element 101c can be made larger than the Q value of the first magnetoresistive effect element 101a (first magnetoresistive effect element 101b), and the plane of the third magnetoresistive effect element 101d By making the area of the view shape smaller than the area of the plan view shape of the first magnetoresistive effect element 101a (first magnetoresistive effect element 101b), the third magnetoresistive effect element 10 The Q value of d, can be made larger than the Q value of the first magnetoresistance effect element 101a (first magnetoresistive element 101b).
(第3の実施形態)
 図7は、本発明の第3の実施形態に係る磁気抵抗効果デバイス300の断面模式図である。磁気抵抗効果デバイス300において、第1の実施形態の磁気抵抗効果デバイス100と異なる点について主に説明し、共通する事項は適宜説明を省略する。第1の実施形態の磁気抵抗効果デバイス100と共通している要素は同じ符号を用いており、共通している要素の説明は省略する。磁気抵抗効果デバイス300は、第1の実施形態の磁気抵抗効果デバイス100に対し、2つの第1の磁気抵抗効果素子101a、101bの中を流れる直流電流の向きおよび第2の磁気抵抗効果素子101cの中を流れる直流電流の向きが異なる。磁気抵抗効果デバイス300では、第1の磁気抵抗効果素子101aは、直流電流入力端子110から入力される直流電流が、第1の磁気抵抗効果素子101aの中を磁化自由層104から磁化固定層102の方向に流れるように形成されている。第1の磁気抵抗効果素子101bは、直流電流入力端子110から入力される直流電流が、第1の磁気抵抗効果素子101bの中を磁化自由層104から磁化固定層102の方向に流れるように形成されている。第2の磁気抵抗効果素子101cは、直流電流入力端子110から入力される直流電流が、第1の磁気抵抗効果素子101cの中を磁化固定層102から磁化自由層104の方向に流れるように形成されている。つまり、磁気抵抗効果デバイス300では、第1の磁気抵抗効果素子101a、第1の磁気抵抗効果素子101b及び第2の磁気抵抗効果素子101cのそれぞれの中を流れる直流電流の向きと、それぞれの磁化固定層102、スペーサ層103および磁化自由層104の配置順との関係が、2つの第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cとで逆になっている。磁気抵抗効果デバイス300のその他の構成は、第1の実施形態の磁気抵抗効果デバイス100と同じである。
(Third embodiment)
FIG. 7 is a schematic cross-sectional view of a magnetoresistive effect device 300 according to the third embodiment of the present invention. The magnetoresistive effect device 300 will be described mainly with respect to differences from the magnetoresistive effect device 100 of the first embodiment, and description of common matters will be omitted as appropriate. Elements common to the magnetoresistive effect device 100 of the first embodiment are denoted by the same reference numerals, and description of the common elements is omitted. The magnetoresistive effect device 300 is different from the magnetoresistive effect device 100 of the first embodiment in the direction of the direct current flowing through the two first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c. The direction of the direct current that flows through is different. In the magnetoresistive effect device 300, in the first magnetoresistive effect element 101a, the direct current input from the direct current input terminal 110 causes the first magnetoresistive effect element 101a to pass through the magnetization free layer 104 and the magnetization fixed layer 102. It is formed to flow in the direction of. The first magnetoresistive effect element 101b is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistive effect element 101b in the direction from the magnetization free layer 104 to the magnetization fixed layer 102. Has been. The second magnetoresistive effect element 101c is formed such that a direct current input from the direct current input terminal 110 flows in the first magnetoresistive effect element 101c in the direction from the fixed magnetization layer 102 to the free magnetization layer 104. Has been. That is, in the magnetoresistive effect device 300, the direction of the direct current flowing through each of the first magnetoresistive effect element 101a, the first magnetoresistive effect element 101b, and the second magnetoresistive effect element 101c, and the respective magnetizations. The relationship between the arrangement order of the fixed layer 102, the spacer layer 103, and the magnetization free layer 104 is reversed between the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c. Other configurations of the magnetoresistive effect device 300 are the same as those of the magnetoresistive effect device 100 of the first embodiment.
 各磁気抵抗効果素子の中を磁化自由層104から磁化固定層102の方向に流れる直流電流を各磁気抵抗効果素子に印加しながら、各磁気抵抗効果素子にスピントルク共鳴周波数と同じ周波数の高周波信号を入力すると、各磁気抵抗効果素子は、入力された高周波信号と同位相の状態で、スピントルク共鳴周波数で抵抗値が周期的に変化し、この高周波信号に対するインピーダンスは減少する。つまり、磁気抵抗効果デバイス300において、2つの第1の磁気抵抗効果素子101a、101bは、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが減少する抵抗素子として取り扱うことが出来る。 A high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing in each magnetoresistive effect element from the magnetization free layer 104 to the magnetization fixed layer 102 to each magnetoresistive effect element. When each of the magnetoresistive elements is in the same phase as the input high-frequency signal, the resistance value periodically changes at the spin torque resonance frequency, and the impedance to the high-frequency signal decreases. That is, in the magnetoresistive effect device 300, the two first magnetoresistive elements 101a and 101b can be handled as resistance elements in which the impedance of the high-frequency signal decreases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 各磁気抵抗効果素子の中を磁化固定層102から磁化自由層104の方向に流れる直流電流を各磁気抵抗効果素子に印加しながら、各磁気抵抗効果素子にスピントルク共鳴周波数と同じ周波数の高周波信号を入力すると、各磁気抵抗効果素子は、入力された高周波信号と位相が180°異なる状態で、スピントルク共鳴周波数で抵抗値が周期的に変化し、この高周波信号に対するインピーダンスは増加する。つまり、磁気抵抗効果デバイス300において、第2の磁気抵抗効果素子101cは、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが増加する抵抗素子として取り扱うことが出来る。 A high-frequency signal having the same frequency as the spin torque resonance frequency is applied to each magnetoresistive effect element while applying a direct current flowing through each magnetoresistive effect element in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 to each magnetoresistive effect element. When each of the magnetoresistive effect elements is input, the resistance value periodically changes at the spin torque resonance frequency in a state in which the phase differs from the input high frequency signal by 180 °, and the impedance to the high frequency signal increases. That is, in the magnetoresistive effect device 300, the second magnetoresistive effect element 101c can be handled as a resistance element in which the impedance of the high frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、低インピーダンス状態の第1の磁気抵抗効果素子101aを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。一方、高周波信号の高周波成分の中で第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍でない周波数成分は、高インピーダンス状態の第1の磁気抵抗効果素子101aによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。同様に、第1のポート109aから入力された高周波信号の高周波成分の中で第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、低インピーダンス状態の第1の磁気抵抗効果素子101bを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。一方、高周波信号の高周波成分の中で第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍でない周波数成分は、高インピーダンス状態の第1の磁気抵抗効果素子101bによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。 Due to the spin torque resonance phenomenon, among the high frequency components of the high frequency signal input from the first port 109a, the frequency components that coincide with the spin torque resonance frequency of the first magnetoresistive effect element 101a or in the vicinity of the spin torque resonance frequency Passes through the first magnetoresistive effect element 101a connected in parallel to the second port 109b and in the low impedance state, flows to the ground 108, and is not easily output to the second port 109b. On the other hand, frequency components that are not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a among the high frequency components of the high frequency signal are blocked from the ground 108 by the first magnetoresistive effect element 101a in the high impedance state. 2 is easily output to the second port 109b. Similarly, among the high-frequency components of the high-frequency signal input from the first port 109a, the frequency components that match the spin torque resonance frequency of the first magnetoresistive effect element 101b or in the vicinity of the spin torque resonance frequency are 2 passes through the first magnetoresistive effect element 101b connected in parallel to the second port 109b in a low impedance state, flows to the ground 108, and is difficult to be output to the second port 109b. On the other hand, frequency components that are not in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b in the high frequency component of the high frequency signal are blocked from the ground 108 by the first magnetoresistive effect element 101b in the high impedance state, 2 is easily output to the second port 109b.
 さらに、スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で第2の磁気抵抗効果素子101cのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、高インピーダンス状態の第2の磁気抵抗効果素子101cによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。一方、高周波信号の高周波成分の中で第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍でない周波数成分は、低インピーダンス状態の第2の磁気抵抗効果素子101cを通過してグラウンド108に流れ、第2のポート109bに出力されにくくなる。 Further, due to the spin torque resonance phenomenon, the high frequency component of the high frequency signal input from the first port 109a coincides with the spin torque resonance frequency of the second magnetoresistive effect element 101c or in the vicinity of the spin torque resonance frequency. The frequency component is cut off from the ground 108 by the second magnetoresistive effect element 101c connected in parallel to the second port 109b and is easily output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c in the high frequency component of the high frequency signal passes through the second magnetoresistive effect element 101c in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult.
 図8に、磁気抵抗効果デバイス300に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図8の縦軸は減衰量、横軸は周波数を表している。図8のプロット線320は、第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された磁場が一定で、且つ、印加された直流電流が一定の時のグラフである。faは第1の磁気抵抗効果素子101aのスピントルク共鳴周波数であり、fbは第1の磁気抵抗効果素子101bのスピントルク共鳴周波数であり、fcは第2の磁気抵抗効果素子101cのスピントルク共鳴周波数である。図8では、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数より低い場合の例を示している。 FIG. 8 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 300 and the amount of attenuation. In FIG. 8, the vertical axis represents attenuation, and the horizontal axis represents frequency. A plot line 320 in FIG. 8 is a graph when the magnetic field applied to the first magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c is constant and the applied DC current is constant. is there. fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a, fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b, and fc is the spin torque resonance of the second magnetoresistance effect element 101c. Is the frequency. In FIG. 8, the spin torque resonance frequency of the second magnetoresistance effect element 101c is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. An example is shown.
 図8のプロット線320に示されるように、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が遮断帯域となる。また、第2の磁気抵抗効果素子101cにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の低周波数側(上記の遮断帯域の低周波数側)において、高周波信号を第2のポート109b側に通過させることができる。高周波信号が通過する第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される遮断帯域の低周波数側の肩特性を急峻にすることが可能になる。つまり、この場合の磁気抵抗効果デバイス300は、図8のプロット線320に示されるような、遮断帯域の低周波数側において急峻な肩特性を持つ帯域遮断型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、高周波信号の減衰量の周波数に対する変化が急峻であるため、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する遮断帯域の下限周波数に一致させることが好ましい。 As indicated by the plot line 320 in FIG. 8, the band near the spin torque resonance frequency of the first magnetoresistance effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistance effect element 101b are cut off bands. It becomes. In addition, the second magnetoresistive effect element 101c causes the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-mentioned low cutoff band). On the frequency side), a high-frequency signal can be passed to the second port 109b side. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c through which the high-frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance The shoulder characteristics on the low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 300 in this case functions as a band cutoff filter having a steep shoulder characteristic on the low frequency side of the cutoff band, as indicated by a plot line 320 in FIG. In this case, in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c, since the change of the attenuation amount of the high frequency signal with respect to the frequency is steep, the spin torque resonance frequency of the second magnetoresistive effect element 101c is It is preferable to match the lower limit frequency of the cutoff band to be used.
 同様にして、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数より高い場合には、磁気抵抗効果デバイス300は、遮断帯域の高周波数側において急峻な肩特性を持つ帯域遮断型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する遮断帯域の上限周波数に一致させることが好ましい。 Similarly, when the spin torque resonance frequency of the second magnetoresistance effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the first magnetoresistance effect element 101b. The magnetoresistive effect device 300 functions as a band cutoff filter having a steep shoulder characteristic on the high frequency side of the cutoff band. In this case, it is preferable to match the spin torque resonance frequency of the second magnetoresistive element 101c with the upper limit frequency of the cutoff band to be used.
 図9および図10に、磁気抵抗効果デバイス300に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図9および図10の縦軸は減衰量、横軸は周波数を表している。図9は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された磁場が一定の時のグラフである。図9のプロット線331は、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bに印加される直流電流値がIa1であり、第2の磁気抵抗効果素子101cに印加される直流電流値がIb1の時のものであり、プロット線332は、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bに印加される直流電流値がIa2であり、第2の磁気抵抗効果素子101cに印加される直流電流値がIb2の時のものである。この時の直流電流値の関係は、Ia1<Ia2およびIb1<Ib2である。また、図10は、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加された直流電流が一定の時のグラフである。図10のプロット線341は、磁場印加機構111から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される磁場強度がHb1の時のものであり、プロット線342は磁場印加機構111から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される磁場強度がHb2の時のものである。この時の磁場強度の関係は、Hb1<Hb2である。 9 and 10 are graphs showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive effect device 300 and the amount of attenuation. 9 and 10, the vertical axis represents attenuation, and the horizontal axis represents frequency. FIG. 9 is a graph when the magnetic fields applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are constant. A plot line 331 in FIG. 9 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia1, and is applied to the second magnetoresistive element 101c. When the direct current value is Ib1, the plot line 332 indicates that the direct current value applied to the two first magnetoresistive elements 101a and 101b from the direct current input terminal 110 is Ia2, and the second line This is when the direct current applied to the magnetoresistive effect element 101c is Ib2. The relationship between the direct current values at this time is Ia1 <Ia2 and Ib1 <Ib2. FIG. 10 is a graph when the direct current applied to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is constant. A plot line 341 in FIG. 10 is obtained when the magnetic field intensity applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb1. A line 342 is obtained when the magnetic field strength applied from the magnetic field application mechanism 111 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is Hb2. The relationship between the magnetic field strengths at this time is Hb1 <Hb2.
 例えば、図9に示されるように、直流電流入力端子110から2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cに印加される直流電流値を大きくした場合、電流値の変化に伴い2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の周波数での素子インピーダンスの変化量が増加することで、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域(遮断帯域)において、第2のポート109bから出力される高周波信号がさらに小さくなり、通過損失が大きくなる。それと同時に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の帯域において、第2のポート109bから出力される高周波信号がさらに大きくなる。したがって、磁気抵抗効果デバイス300は、遮断特性と通過特性のレンジが大きく、さらに急峻な肩特性を持つ高周波フィルタを実現することが可能となる。また、直流電流値を大きくすると、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数はfd1からfd2に、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数はfe1からfe2に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数はfg1からfg2にシフトする。すなわち遮断帯域は低周波数側へシフトする。つまり、磁気抵抗効果デバイス100は、遮断帯域の周波数を変化可能な急峻な肩特性を持つ高周波フィルタとして機能することも出来る。 For example, as shown in FIG. 9, when the value of the direct current applied from the direct current input terminal 110 to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c is increased, As the value changes, the amount of change in element impedance at a frequency in the vicinity of the spin torque resonance frequency of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c increases. The high-frequency signal output from the second port 109b in the band near the spin torque resonance frequency of the magnetoresistive effect element 101a and the band (cut-off band) near the spin torque resonance frequency of the first magnetoresistive effect element 101b Is further reduced and the passage loss is increased. At the same time, the high-frequency signal output from the second port 109b further increases in the band near the spin torque resonance frequency of the second magnetoresistive element 101c. Therefore, the magnetoresistive effect device 300 can realize a high-frequency filter having a large range of cutoff characteristics and pass characteristics and having a steep shoulder characteristic. When the direct current value is increased, the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fd1 to fd2, the spin torque resonance frequency of the first magnetoresistance effect element 101b is changed from fe1 to fe2, and the second The spin torque resonance frequency of the magnetoresistive effect element 101c is shifted from fg1 to fg2. That is, the cutoff band shifts to the low frequency side. That is, the magnetoresistive effect device 100 can also function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the cutoff band.
 さらに、例えば、図10に示されるように、磁場印加機構111から印加される磁場強度をHb1からHb2に強くした場合、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数はfh1からfh2に、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数はfi1からfi2に、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数はfj1からfj2にシフトする。すなわち、遮断帯域は高周波数側へシフトする。また、磁場強度(磁化自由層104における有効磁場Heff)を変化させる方が、直流電流値を変化させるよりも大きく遮断帯域をシフトさせることができる。つまり、磁気抵抗効果デバイス300は、遮断帯域の周波数を変化可能な急峻な肩特性を持つ高周波フィルタとして機能することが出来る。 Furthermore, for example, as shown in FIG. 10, when the magnetic field strength applied from the magnetic field application mechanism 111 is increased from Hb1 to Hb2, the spin torque resonance frequency of the first magnetoresistance effect element 101a is changed from fh1 to fh2. The spin torque resonance frequency of the first magnetoresistance effect element 101b is shifted from fi1 to fi2, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is shifted from fj1 to fj2. That is, the cutoff band shifts to the high frequency side. Also, changing the magnetic field strength (effective magnetic field H eff in the magnetization free layer 104) can shift the cutoff band more greatly than changing the direct current value. That is, the magnetoresistive effect device 300 can function as a high frequency filter having a steep shoulder characteristic that can change the frequency of the cutoff band.
 なお、各磁気抵抗効果素子に印加される外部磁場H(磁化自由層104における有効磁場Heff)が大きくなるに従って、各磁気抵抗効果素子の振動する抵抗値の振幅が小さくなるので、各磁気抵抗効果素子に印加される外部磁場H(磁化自由層104における有効磁場Heff)を大きくするのに伴い、各磁気抵抗効果素子に印加される直流電流の電流密度を大きくすることが好ましい。 As the external magnetic field H E applied to each magnetoresistive element (effective magnetic field H eff in the magnetization free layer 104) increases, the amplitude of the resistance value that vibrates each magnetoresistive element decreases. As the external magnetic field H E (effective magnetic field H eff in the magnetization free layer 104) applied to the resistive element is increased, it is preferable to increase the current density of the direct current applied to each magnetoresistive element.
 また、磁気抵抗効果デバイス300では、第1の磁気抵抗効果素子は1個(第1の磁気抵抗効果素子101a、101bのいずれか一方)としてもよい。 In the magnetoresistive effect device 300, the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
 このように、磁気抵抗効果デバイス300は、2つの第1の磁気抵抗効果素子101a、101bと、第2の磁気抵抗効果素子101cと、高周波信号が入力される第1のポート109aと、高周波信号が出力される第2のポート109bと、信号線路107と、直流電流入力端子110(直流印加端子)とを有し、第1のポート109aおよび第2のポート109bが信号線路107を介して接続され、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cは、第2のポート109bに対して並列に信号線路107に接続され、2つの第1の磁気抵抗効果素子101a、101bおよび第2の磁気抵抗効果素子101cは、それぞれ磁化固定層102、磁化自由層104およびこれらの間に配置されたスペーサ層103を有し、第1の磁気抵抗効果素子101a(101b)及び第2の磁気抵抗効果素子101cは、それぞれの一端側が直流電流入力端子110(直流印加端子)側になり、それぞれの他端側が基準電位端子114側になるように、直流電流入力端子110(直流印加端子)および基準電位端子114に接続され、第1の磁気抵抗効果素子101a(101b)及び第2の磁気抵抗効果素子101cは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第1の磁気抵抗効果素子101a(101b)と第2の磁気抵抗効果素子101cとで逆になるように形成されている。また、第1の磁気抵抗効果素子101aは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第1の磁気抵抗効果素子101aの中を磁化自由層104から磁化固定層102の方向に流れるように形成され、第1の磁気抵抗効果素子101bは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第1の磁気抵抗効果素子101bの中を磁化自由層104から磁化固定層102の方向に流れるように形成され、第2の磁気抵抗効果素子101cは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第2の磁気抵抗効果素子101cの中を磁化固定層102から磁化自由層104の方向に流れるように形成され、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は互いに異なっており、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は互いに異なっている。 Thus, the magnetoresistive effect device 300 includes the two first magnetoresistive effect elements 101a and 101b, the second magnetoresistive effect element 101c, the first port 109a to which the high frequency signal is input, and the high frequency signal. Is output to the second port 109b, the signal line 107, and the DC current input terminal 110 (DC application terminal). The first port 109a and the second port 109b are connected via the signal line 107. The two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c are connected to the signal line 107 in parallel to the second port 109b and are connected to the two first magnetoresistive elements. The elements 101a and 101b and the second magnetoresistive effect element 101c are respectively disposed in the magnetization fixed layer 102, the magnetization free layer 104, and between them. Each of the first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element 101c has a spacer layer 103, and one end side thereof becomes a DC current input terminal 110 (DC application terminal) side, and the other The first magnetoresistive effect element 101a (101b) and the second magnetoresistive effect element are connected to the direct current input terminal 110 (direct current application terminal) and the reference potential terminal 114 so that the end side becomes the reference potential terminal 114 side. The relationship between the direction from each one end side to the other end side and the direction from each magnetization free layer 104 to the magnetization fixed layer 102 is the same as that of the first magnetoresistive effect element 101a (101b) and the second 101c. The magnetoresistive effect element 101c is formed so as to be reversed. Further, in the first magnetoresistance effect element 101a, a direct current input from the direct current input terminal 110 (DC application terminal) causes the first magnetoresistance effect element 101a to pass through the magnetization free layer 104 to the magnetization fixed layer 102. In the first magnetoresistive effect element 101b, the direct current input from the direct current input terminal 110 (direct current application terminal) is free from magnetization in the first magnetoresistive effect element 101b. The second magnetoresistive effect element 101c is formed so as to flow in the direction from the layer 104 to the magnetization fixed layer 102. The second magnetoresistive effect element 101c has a direct current input from the direct current input terminal 110 (direct current application terminal) as the second magnetoresistive effect. The element 101c is formed so as to flow in the direction from the magnetization fixed layer 102 to the magnetization free layer 104, and the spin torque resonance frequency of the first magnetoresistance effect element 101a and the second Spin torque resonance frequency of the magnetoresistive element 101c are different from each other, the spin torque resonance frequency of the spin torque resonance frequency and the second magnetoresistive element 101c of the first magnetoresistive element 101b are different from each other.
 したがって、2つの第1の磁気抵抗効果素子101a、101b及び第2の磁気抵抗効果素子101cに第1のポート109aから信号線路107を介して高周波信号が入力されることにより、2つの第1の磁気抵抗効果素子101a、101b及び第2の磁気抵抗効果素子101cにスピントルク共鳴を誘起させることが出来る。このスピントルク共鳴と同時に、2つの第1の磁気抵抗効果素子101a、101bの中を磁化自由層104から磁化固定層102の方向に直流電流が流れることにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と同じ周波数に対する第1の磁気抵抗効果素子101aの素子インピーダンスが減少し、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と同じ周波数に対する第1の磁気抵抗効果素子101bの素子インピーダンスが減少する。同様に、スピントルク共鳴と同時に、第2の磁気抵抗効果素子101cの中を磁化固定層102から磁化自由層104の方向に直流電流が流れることにより、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数と同じ周波数に対する第2の磁気抵抗効果素子101cの素子インピーダンスが増加する。 Accordingly, when a high frequency signal is input to the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c from the first port 109a via the signal line 107, Spin torque resonance can be induced in the magnetoresistive effect elements 101a and 101b and the second magnetoresistive effect element 101c. Simultaneously with this spin torque resonance, a direct current flows in the direction from the magnetization free layer 104 to the magnetization fixed layer 102 in the two first magnetoresistance effect elements 101a and 101b, so that the first magnetoresistance effect element 101a has The element impedance of the first magnetoresistance effect element 101a with respect to the same frequency as the spin torque resonance frequency decreases, and the element of the first magnetoresistance effect element 101b with respect to the same frequency as the spin torque resonance frequency of the first magnetoresistance effect element 101b. Impedance decreases. Similarly, when a direct current flows in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 in the second magnetoresistance effect element 101c simultaneously with the spin torque resonance, the spin torque of the second magnetoresistance effect element 101c is obtained. The element impedance of the second magnetoresistance effect element 101c with respect to the same frequency as the resonance frequency increases.
 2つの第1の磁気抵抗効果素子101a、101bが第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第1の磁気抵抗効果素子101a、101bが高インピーダンス状態である非共鳴周波数では第2のポート109b側に通過させ、第1の磁気抵抗効果素子101a、101bが低インピーダンス状態である共鳴周波数では第2のポート109bに対して遮断することが出来る。さらに、第2の磁気抵抗効果素子101cが、第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第2の磁気抵抗効果素子101cが高インピーダンス状態である共鳴周波数では第2のポート109b側に通過させ、第2の磁気抵抗効果素子101cが低インピーダンス状態である非共鳴周波数では第2のポート109bに対して遮断することが出来る。このように、磁気抵抗効果デバイス100は、第1のポート109aから入力された高周波信号を、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の周波数では、第2のポート109bに対して遮断することが出来、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍の周波数では、第2のポート109b側に通過させることが出来る。つまり、磁気抵抗効果デバイス300は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数で高周波信号の通過量の極小値を持ち、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数で高周波信号の通過量の極大値を持ち、高周波フィルタとして機能する。 The two first magnetoresistive elements 101a and 101b are connected to the signal line 107 in parallel to the second port 109b, so that the first magnetoresistive elements 101a and 101b have high impedance. The non-resonant frequency that is in the state can be passed to the second port 109b side, and the first magnetoresistive elements 101a and 101b can be blocked from the second port 109b at the resonance frequency that is in the low impedance state. Further, the second magnetoresistive element 101c is connected to the signal line 107 in parallel with the second port 109b, so that the second magnetoresistive element 101c is in a high impedance state. The resonance frequency can be passed to the second port 109b side, and the second magnetoresistance effect element 101c can be blocked from the second port 109b at a non-resonance frequency where the impedance is low. As described above, the magnetoresistive effect device 100 converts the high-frequency signal input from the first port 109a to a frequency in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101a and the first magnetoresistive effect element 101b. The second port 109b can be cut off at a frequency in the vicinity of the spin torque resonance frequency, and the second port 109b side at a frequency in the vicinity of the spin torque resonance frequency of the second magnetoresistive element 101c. Can pass through. That is, the magnetoresistive effect device 300 has a minimum value of the passing amount of the high-frequency signal at the spin torque resonance frequency of the first magnetoresistive effect element 101a and the spin torque resonance frequency of the first magnetoresistive effect element 101b. The magnetoresistive effect element 101c has a maximum value of the passing amount of the high-frequency signal at the spin torque resonance frequency, and functions as a high-frequency filter.
 磁気抵抗効果デバイス300では、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が遮断帯域となる。第1の磁気抵抗効果素子101aのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート109b側に通過させることができる。また、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数と第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が互いに異なるため(第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高いまたは低いため)、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側または低周波数側において、高周波信号を第2のポート109b側に通過させることができる。高周波信号が通過する第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される遮断帯域の高周波数側または低周波数側の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス300は、遮断帯域の高周波数側または低周波数側において急峻な肩特性を持つ帯域遮断型フィルタとして機能することが可能となる。 In the magnetoresistive effect device 300, a band near the spin torque resonance frequency of the first magnetoresistive effect element 101a or a band near the spin torque resonance frequency of the first magnetoresistive effect element 101b is a cutoff band. Since the spin torque resonance frequency of the first magnetoresistance effect element 101a and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is the first Since the spin torque resonance frequency of the first magnetoresistive element 101a is higher or lower than the spin torque resonance frequency of the magnetoresistive effect element 101a), the high frequency signal is sent to the second port 109b side on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101a. Can be passed through. In addition, since the spin torque resonance frequency of the first magnetoresistance effect element 101b and the spin torque resonance frequency of the second magnetoresistance effect element 101c are different from each other (the spin torque resonance frequency of the second magnetoresistance effect element 101c is The high frequency signal is sent to the second port on the high frequency side or low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (because it is higher or lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b). 109b can be passed. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c through which the high-frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance The shoulder characteristics on the high frequency side or low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a or in the vicinity of the spin torque resonance frequency of the first magnetoresistive effect element 101b can be made steep. become. That is, the magnetoresistive effect device 300 can function as a band cutoff filter having a steep shoulder characteristic on the high frequency side or low frequency side of the cutoff band.
 さらに、磁気抵抗効果デバイス300は、スピントルク共鳴周波数が互いに異なる2つの第1の磁気抵抗効果素子101a、101bを有し、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数より高い、または2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数より低いので、広い遮断帯域を持ち、遮断帯域の高周波数側または低周波数側における肩特性が急峻である帯域遮断型フィルタとして機能することが可能となる。 Furthermore, the magnetoresistive effect device 300 includes two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, and the spin torque resonance frequency of the second magnetoresistive effect element 101c is two 1 is higher than the spin torque resonance frequency of each of the magnetoresistive effect elements 101a and 101b, or lower than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b. It is possible to function as a band cut-off filter having a steep shoulder characteristic on the high frequency side or low frequency side of the band.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bが互いに直列に接続されている例で説明したが、第1の実施形態で説明した場合と同様にして、第1の磁気抵抗効果素子は3個以上であってもよい。また、複数の第1の磁気抵抗効果素子同士が互いに並列に接続されていても良い。これらの場合の磁気抵抗効果デバイスであっても、各々の第1の磁気抵抗効果素子が第2のポート109bに対して並列に信号線路107に接続されることにより、磁気抵抗効果デバイス300と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the example in which the two first magnetoresistive elements 101a and 101b are connected to each other in series has been described. There may be three or more magnetoresistive elements. A plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the case of the magnetoresistive effect device in these cases, each first magnetoresistive effect element is connected to the signal line 107 in parallel to the second port 109b, so that it is the same as the magnetoresistive effect device 300. It can have frequency characteristics as a high frequency filter.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bと第2の磁気抵抗効果素子101cとが、互いに並列に接続されている例で説明したが、第1の実施形態で説明した場合と同様にして、2つの第1の磁気抵抗効果素子101a、101bの少なくとも一方と第2の磁気抵抗効果素子101cとが直列に接続されていても良い。 In the above description, the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c have been described as being connected in parallel to each other. However, in the first embodiment, Similarly to the case described, at least one of the two first magnetoresistive elements 101a and 101b and the second magnetoresistive element 101c may be connected in series.
(第4の実施形態)
 図11は、本発明の第4の実施形態に係る磁気抵抗効果デバイス400の断面模式図である。磁気抵抗効果デバイス400において、第3の実施形態の磁気抵抗効果デバイス300と異なる点について主に説明し、共通する事項は適宜説明を省略する。第3の実施形態の磁気抵抗効果デバイス300と共通している要素は同じ符号を用いており、共通している要素の説明は省略する。磁気抵抗効果デバイス400は、第3の実施形態の磁気抵抗効果デバイス300に対し、さらに第3の磁気抵抗効果素子101dを有している。第3の磁気抵抗効果素子101dは、磁化固定層102(第3の磁化固定層)、磁化自由層104(第3の磁化自由層)およびこれらの間に配置されたスペーサ層103(第3のスペーサ層)を有している。第3の磁気抵抗効果素子101dは、第2のポート109bに対して並列に信号線路107に接続されている。より具体的には、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dは互いに直列接続されており、第3の磁気抵抗効果素子101dの一端側(磁化自由層104側)が、第2の磁気抵抗効果素子101cに接続され、第3の磁気抵抗効果素子101dの他端側(磁化固定層102側)が、基準電位端子114に接続されて基準電位端子114を介してグラウンド108に接続可能になっている。
(Fourth embodiment)
FIG. 11 is a schematic cross-sectional view of a magnetoresistive effect device 400 according to the fourth embodiment of the present invention. In the magnetoresistive effect device 400, differences from the magnetoresistive effect device 300 of the third embodiment will be mainly described, and description of common matters will be omitted as appropriate. Elements common to the magnetoresistive effect device 300 of the third embodiment are denoted by the same reference numerals, and description of the common elements is omitted. The magnetoresistive effect device 400 further includes a third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 300 of the third embodiment. The third magnetoresistance effect element 101d includes a magnetization fixed layer 102 (third magnetization fixed layer), a magnetization free layer 104 (third magnetization free layer), and a spacer layer 103 (third Spacer layer). The third magnetoresistance effect element 101d is connected to the signal line 107 in parallel with the second port 109b. More specifically, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected in series, and one end side (the magnetization free layer 104 side) of the third magnetoresistive effect element 101d is connected. Are connected to the second magnetoresistive effect element 101c, and the other end side (the magnetization fixed layer 102 side) of the third magnetoresistive effect element 101d is connected to the reference potential terminal 114 and connected to the ground via the reference potential terminal 114. 108 can be connected.
 第3の磁気抵抗効果素子101dは、その一端側(この例では磁化自由層104側)が直流電流入力端子110側になり、その他端側(この例では磁化固定層102側)が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されている。つまり、磁気抵抗効果デバイス400では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになるように形成されている。この例では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dのそれぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとが、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101d共に、同じ向きの関係になっている。 The third magnetoresistive element 101d has one end side (in this example, the magnetization free layer 104 side) on the DC current input terminal 110 side, and the other end side (in this example, the magnetization fixed layer 102 side) on the reference potential terminal. The DC current input terminal 110 and the reference potential terminal 114 are connected so as to be on the 114 side. That is, in the magnetoresistive effect device 400, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are fixed in the direction from the respective one end side to the other end side and from the respective magnetization free layers 104. The second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are formed to have the same relationship with the direction to the layer 102. In this example, the direction from one end side to the other end side of each of the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d, and the direction from each magnetization free layer 104 to the magnetization fixed layer 102, However, both the second magnetoresistive element 101c and the third magnetoresistive element 101d have the same orientation.
 第3の磁気抵抗効果素子101dは、直流電流入力端子110から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化固定層102から磁化自由層104の方向に流れるように形成されている。つまり、磁気抵抗効果デバイス400では、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dのそれぞれの中を流れる直流電流の向きと、それぞれの磁化固定層102、スペーサ層103および磁化自由層104の配置順との関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになっている。さらに、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも低くなっている。 The third magnetoresistive element 101d is formed such that a direct current input from the direct current input terminal 110 flows in the third magnetoresistive element 101d in the direction from the fixed magnetization layer 102 to the free magnetization layer 104. Has been. That is, in the magnetoresistive effect device 400, the direction of the direct current flowing through each of the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d, the respective magnetization fixed layer 102, the spacer layer 103, and the magnetization The relationship with the arrangement order of the free layer 104 is the same between the second magnetoresistive element 101c and the third magnetoresistive element 101d. Further, the spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque of the third magnetoresistive effect element 101d. The torque resonance frequency is lower than the spin torque resonance frequency of each of the two first magnetoresistance effect elements 101a and 101b.
 第1のポート109aから入力される高周波信号は、その一部が2つの第1の磁気抵抗効果素子101a、101bまたは、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに流され、残りの高周波信号は第2のポート109bに出力される。 A part of the high-frequency signal input from the first port 109a flows to the two first magnetoresistive elements 101a and 101b or the second magnetoresistive element 101c and the third magnetoresistive element 101d. The remaining high-frequency signal is output to the second port 109b.
 第3の磁気抵抗効果素子101dは、一端側(磁化自由層104側)が下部電極106を介して信号線路107(第2の磁気抵抗効果素子101c)に電気的に接続され、他端側(磁化固定層102側)が上部電極105と基準電位端子114を介してグラウンド108に電気的に接続されている。 One end side (magnetization free layer 104 side) of the third magnetoresistance effect element 101d is electrically connected to the signal line 107 (second magnetoresistance effect element 101c) via the lower electrode 106, and the other end side ( The magnetization fixed layer 102 side) is electrically connected to the ground 108 via the upper electrode 105 and the reference potential terminal 114.
 直流電流入力端子110は、第1の磁気抵抗効果素子101aの信号線路107への接続部と第1のポート109aとの間の信号線路107に接続されている。直流電流入力端子110に直流電流源112が接続されることで、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに直流電流を印加することが可能になる。 The direct current input terminal 110 is connected to the signal line 107 between the connection portion of the first magnetoresistive element 101a to the signal line 107 and the first port 109a. By connecting a direct current source 112 to the direct current input terminal 110, a direct current is applied to the two first magnetoresistive elements 101a, 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d. Can be applied.
 直流電流源112は、グラウンド108及び直流電流入力端子110に接続され、2つの第1の磁気抵抗効果素子101a、101b、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成され、第2の磁気抵抗効果素子101c、第3の磁気抵抗効果素子101d、信号線路107、グラウンド108および直流電流入力端子110を含む閉回路が形成される。直流電流源112は、直流電流入力端子110から、上記の閉回路に直流電流を印加する。 The direct current source 112 is connected to the ground 108 and the direct current input terminal 110 to form a closed circuit including the two first magnetoresistive elements 101a and 101b, the signal line 107, the ground 108, and the direct current input terminal 110. A closed circuit including the second magnetoresistive element 101c, the third magnetoresistive element 101d, the signal line 107, the ground 108, and the direct current input terminal 110 is formed. The direct current source 112 applies a direct current from the direct current input terminal 110 to the closed circuit.
 磁場印加機構111は、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dの近傍に配設され、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに磁場を印加して、各磁気抵抗効果素子のスピントルク共鳴周波数を設定可能となっている。 The magnetic field application mechanism 111 is disposed in the vicinity of the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d, and the two first magnetoresistive elements 101a and 101b. By applying a magnetic field to the effect elements 101a and 101b, the second magnetoresistive effect element 101c, and the third magnetoresistive effect element 101d, the spin torque resonance frequency of each magnetoresistive effect element can be set.
 磁気抵抗効果デバイス400のその他の構成は、第3の実施形態の磁気抵抗効果デバイス300と同じである。 Other configurations of the magnetoresistive effect device 400 are the same as those of the magnetoresistive effect device 300 of the third embodiment.
 磁気抵抗効果デバイス400において、第3の磁気抵抗効果素子101dは、直流電流入力端子110から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化固定層102から磁化自由層104の方向に流れるように形成されているので、第2の磁気抵抗効果素子101cと同様に、スピントルク共鳴現象により、スピントルク共鳴周波数で高周波信号のインピーダンスが増加する抵抗素子として取り扱うことが出来る。 In the magnetoresistive effect device 400, the third magnetoresistive effect element 101d has a direct current input from the direct current input terminal 110 so that the third magnetoresistive effect element 101d passes through the third magnetoresistive effect element 101d from the magnetization fixed layer 102 to the magnetization free layer 104. Thus, like the second magnetoresistance effect element 101c, it can be handled as a resistance element in which the impedance of the high-frequency signal increases at the spin torque resonance frequency due to the spin torque resonance phenomenon.
 スピントルク共鳴現象により、第1のポート109aから入力された高周波信号の高周波成分の中で、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数と一致する、またはスピントルク共鳴周波数の近傍の周波数成分は、第2のポート109bに並列に接続された、高インピーダンス状態の第3の磁気抵抗効果素子101dによりグラウンド108から遮断され、第2のポート109bに出力されやすくなる。一方、高周波信号の高周波成分の中で第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍でない周波数成分は、低インピーダンス状態の第3の磁気抵抗効果素子101dを通過し、グラウンド108に流れ、第2のポート109bに出力されにくくなる。 Due to the spin torque resonance phenomenon, among the high frequency components of the high frequency signal input from the first port 109a, a frequency that matches or is close to the spin torque resonance frequency of the third magnetoresistive effect element 101d. The component is cut off from the ground 108 by the third magnetoresistive effect element 101d in a high impedance state connected in parallel to the second port 109b, and is easily output to the second port 109b. On the other hand, a frequency component that is not in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d in the high frequency component of the high frequency signal passes through the third magnetoresistive effect element 101d in the low impedance state and flows to the ground 108. The output to the second port 109b becomes difficult.
 図12に、磁気抵抗効果デバイス400に入力される高周波信号の周波数と減衰量との関係を示したグラフを示す。図12の縦軸は減衰量、横軸は周波数を表している。図12のプロット線420は、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dに印加された磁場が一定で、且つ、印加された直流電流が一定の時のグラフである。faは第1の磁気抵抗効果素子101aのスピントルク共鳴周波数であり、fbは第1の磁気抵抗効果素子101bのスピントルク共鳴周波数であり、fcは第2の磁気抵抗効果素子101cのスピントルク共鳴周波数であり、feは第3の磁気抵抗効果素子101dのスピントルク共鳴周波数である。 FIG. 12 is a graph showing the relationship between the frequency of the high-frequency signal input to the magnetoresistive device 400 and the attenuation. The vertical axis in FIG. 12 represents the attenuation amount, and the horizontal axis represents the frequency. The plot line 420 in FIG. 12 indicates that the magnetic field applied to the two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c, and the third magnetoresistive element 101d is constant and applied. It is a graph when the direct current made is constant. fa is the spin torque resonance frequency of the first magnetoresistance effect element 101a, fb is the spin torque resonance frequency of the first magnetoresistance effect element 101b, and fc is the spin torque resonance of the second magnetoresistance effect element 101c. Frequency, and fe is the spin torque resonance frequency of the third magnetoresistive element 101d.
 図12のプロット線420に示されるように、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍の帯域および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍の帯域が遮断帯域となる。また、第2の磁気抵抗効果素子101cにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側(上記の遮断帯域の高周波数側)において、高周波信号を第2のポート109b側に通過させることができる。高周波信号が通過する第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される遮断帯域の高周波数側の肩特性を急峻にすることが可能になる。また、第3の磁気抵抗効果素子101dにより、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の低周波数側(上記の遮断帯域の低周波数側)において、高周波信号を第2のポート109b側に通過させることができる。高周波信号が通過する第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍および第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される遮断帯域の低周波数側の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス400は、図12のプロット線420に示されるような、遮断帯域の低周波数側および高周波数側の両方において急峻な肩特性を持つ帯域遮断型フィルタとして機能する。この場合、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍および第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、高周波信号の減衰量の周波数に対する変化が急峻であるため、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数を、使用する遮断帯域の上限周波数に一致させ、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数を、使用する遮断帯域の下限周波数に一致させることが好ましい。 As shown by the plot line 420 in FIG. 12, the band near the spin torque resonance frequency of the first magnetoresistive effect element 101a and the band near the spin torque resonance frequency of the first magnetoresistive effect element 101b are cut off bands. It becomes. Further, the second magnetoresistive effect element 101c causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the high frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-described high cutoff band). On the frequency side), a high-frequency signal can be passed to the second port 109b side. In the vicinity of the spin torque resonance frequency of the second magnetoresistance effect element 101c through which the high-frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced, so that the first magnetoresistance The shoulder characteristics on the high frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. Further, the third magnetoresistive effect element 101d causes the spin torque resonance frequency of the first magnetoresistive effect element 101a and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b (the above-mentioned low cutoff band). On the frequency side), a high-frequency signal can be passed to the second port 109b side. In the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d through which the high-frequency signal passes, the ratio of the attenuation amount to the attenuation amount of the high-frequency signal in the cutoff band can be further reduced. The shoulder characteristics on the low frequency side of the cutoff band formed in the vicinity of the spin torque resonance frequency of the effect element 101a and in the vicinity of the spin torque resonance frequency of the first magnetoresistance effect element 101b can be made steep. That is, the magnetoresistive effect device 400 functions as a band cutoff filter having a steep shoulder characteristic on both the low frequency side and the high frequency side of the cutoff band, as indicated by the plot line 420 in FIG. In this case, in the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c and in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d, the change of the attenuation amount of the high frequency signal with respect to the frequency is steep. Therefore, the spin torque resonance frequency of the second magnetoresistive effect element 101c is matched with the upper limit frequency of the cutoff band to be used, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is set to the lower limit frequency of the cutoff band to be used. It is preferable to match.
 また、磁気抵抗効果デバイス400では、第1の磁気抵抗効果素子は1個(第1の磁気抵抗効果素子101a、101bのいずれか一方)としてもよい。 Further, in the magnetoresistive effect device 400, the first magnetoresistive effect element may be one (one of the first magnetoresistive effect elements 101a and 101b).
 このように、磁気抵抗効果デバイス400は、第3の磁気抵抗効果素子101dを磁気抵抗効果デバイス300に対してさらに有し、第3の磁気抵抗効果素子101dは、第2のポート109bに対して並列に信号線路107に接続され、2つの第1の磁気抵抗効果素子101a、101b、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dは、それぞれ磁化固定層102、磁化自由層104およびこれらの間に配置されたスペーサ層103を有し、第3の磁気抵抗効果素子101dは、その一端側が直流電流入力端子110(直流印加端子)側になり、その他端側が基準電位端子114側になるように、直流電流入力端子110(直流印加端子)および基準電位端子114に接続され、第2の磁気抵抗効果素子101c及び第3の磁気抵抗効果素子101dは、それぞれの一端側から他端側への向きと、それぞれの磁化自由層104から磁化固定層102への向きとの関係が、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dとで同じになるように形成されている。また、第3の磁気抵抗効果素子101dは、直流電流入力端子110(直流印加端子)から入力される直流電流が、第3の磁気抵抗効果素子101dの中を磁化固定層102から磁化自由層104の方向に流れるように形成され、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも低くなっており、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数は、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも低くなっている。 As described above, the magnetoresistive effect device 400 further includes the third magnetoresistive effect element 101d with respect to the magnetoresistive effect device 300, and the third magnetoresistive effect element 101d is connected to the second port 109b. The two first magnetoresistive elements 101a and 101b, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in parallel to the signal line 107 are a fixed magnetization layer 102 and a free magnetization layer, respectively. 104 and a spacer layer 103 disposed therebetween, and the third magnetoresistive element 101d has one end side thereof which is a DC current input terminal 110 (DC application terminal) side and the other end side which is a reference potential terminal 114. The second magnetoresistive effect element 1 is connected to the DC current input terminal 110 (DC application terminal) and the reference potential terminal 114 so as to be on the side. In the first magnetoresistance effect element 101d and the third magnetoresistance effect element 101d, the relationship between the direction from one end side to the other end side and the direction from the magnetization free layer 104 to the magnetization fixed layer 102 is determined by the second magnetoresistance effect. The element 101c and the third magnetoresistance effect element 101d are formed to be the same. Further, in the third magnetoresistive effect element 101d, a direct current input from the direct current input terminal 110 (DC application terminal) causes the third magnetoresistive effect element 101d to pass through the magnetization fixed layer 102 to the magnetization free layer 104. The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the third magnetoresistive effect element 101d The spin torque resonance frequency is lower than the spin torque resonance frequency of the first magnetoresistance effect element 101a, and the spin torque resonance frequency of the second magnetoresistance effect element 101c is that of the first magnetoresistance effect element 101b. The spin torque resonance frequency of the third magnetoresistive element 101d is higher than the spin torque resonance frequency. It is lower than the spin torque resonance frequency of 101b.
 したがって、第3の磁気抵抗効果素子101dに第1のポート109aから信号線路107を介して高周波信号が入力されることにより、第3の磁気抵抗効果素子101dにスピントルク共鳴を誘起させることが出来る。このスピントルク共鳴と同時に、第3の磁気抵抗効果素子101dの中を磁化固定層102から磁化自由層104の方向に直流電流が流れることにより、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数と同じ周波数に対する第3の磁気抵抗効果素子101dの素子インピーダンスが増加する。 Therefore, when a high frequency signal is input to the third magnetoresistance effect element 101d from the first port 109a via the signal line 107, spin torque resonance can be induced in the third magnetoresistance effect element 101d. . Simultaneously with this spin torque resonance, a direct current flows in the direction from the magnetization fixed layer 102 to the magnetization free layer 104 in the third magnetoresistive effect element 101d, whereby the spin torque resonance frequency of the third magnetoresistive effect element 101d. The element impedance of the third magnetoresistive element 101d for the same frequency increases.
 第3の磁気抵抗効果素子101dが、第2のポート109bに対して並列に信号線路107に接続されることにより、高周波信号を、第3の磁気抵抗効果素子101dが高インピーダンス状態である共鳴周波数では第2のポート109b側に通過させ、第3の磁気抵抗効果素子101dが低インピーダンス状態である非共鳴周波数では第2のポート109bに対して遮断することが出来る。 The third magnetoresistive effect element 101d is connected to the signal line 107 in parallel with the second port 109b, so that a high frequency signal is generated and the resonance frequency at which the third magnetoresistive effect element 101d is in a high impedance state. Then, it can be passed to the second port 109b side, and can be blocked from the second port 109b at the non-resonant frequency where the third magnetoresistive element 101d is in a low impedance state.
 第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が第1の磁気抵抗効果素子101aのスピントルク共鳴周波数よりも低いため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の高周波数側および低周波数側において、高周波信号を第2のポート側に通過させることができる。また、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が第1の磁気抵抗効果素子101bのスピントルク共鳴周波数よりも低いため、第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の高周波数側および低周波数側において、高周波信号を第2のポート側に通過させることができる。高周波信号が通過する第2の磁気抵抗効果素子101cのスピントルク共鳴周波数の近傍および第3の磁気抵抗効果素子101dのスピントルク共鳴周波数の近傍においては、遮断帯域における高周波信号の減衰量に対する減衰量の比をさらに小さくすることができるため、第1の磁気抵抗効果素子101aのスピントルク共鳴周波数の近傍または第1の磁気抵抗効果素子101bのスピントルク共鳴周波数の近傍で形成される遮断帯域の高周波数側および低周波数側の両方の肩特性を急峻にすることが可能になる。つまり、磁気抵抗効果デバイス200は、遮断帯域の高周波数側および低周波数側の両方において急峻な肩特性を持つ帯域遮断型フィルタとして機能することが可能となる。 The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101a, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first magnetic resistance. Since it is lower than the spin torque resonance frequency of the resistance effect element 101a, a high frequency signal can be passed to the second port side on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistance effect element 101a. it can. The spin torque resonance frequency of the second magnetoresistive effect element 101c is higher than the spin torque resonance frequency of the first magnetoresistive effect element 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is the first. Since the spin torque resonance frequency of the magnetoresistive effect element 101b is lower than the spin torque resonance frequency of the first magnetoresistive effect element 101b, the high frequency signal is passed to the second port side on the high frequency side and the low frequency side of the spin torque resonance frequency of the first magnetoresistive effect element 101b. be able to. In the vicinity of the spin torque resonance frequency of the second magnetoresistive effect element 101c through which the high frequency signal passes and in the vicinity of the spin torque resonance frequency of the third magnetoresistive effect element 101d, the attenuation amount with respect to the attenuation amount of the high frequency signal in the cutoff band. Since the ratio of the first and second magnetoresistive elements 101a and 101b is close to the spin torque resonance frequency or the spin torque resonance frequency of the first magnetoresistive effect element 101b, The shoulder characteristics on both the frequency side and the low frequency side can be made steep. That is, the magnetoresistive effect device 200 can function as a band cutoff filter having a steep shoulder characteristic on both the high frequency side and the low frequency side of the cutoff band.
 さらに、磁気抵抗効果デバイス400は、スピントルク共鳴周波数が互いに異なる2つの第1の磁気抵抗効果素子101a、101bを有するので、広い遮断帯域を持ち、第2の磁気抵抗効果素子101cのスピントルク共鳴周波数が、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも高く、第3の磁気抵抗効果素子101dのスピントルク共鳴周波数が、2つの第1の磁気抵抗効果素子101a、101bの各々のスピントルク共鳴周波数よりも低いため、遮断帯域の高周波数側及び低周波数側の両方において急峻な肩特性を持つ帯域遮断型フィルタとして機能することが可能となる。 Furthermore, since the magnetoresistive effect device 400 includes the two first magnetoresistive effect elements 101a and 101b having different spin torque resonance frequencies, the magnetoresistive effect device 400 has a wide cutoff band and the spin torque resonance of the second magnetoresistive effect element 101c. The frequency is higher than the spin torque resonance frequency of each of the two first magnetoresistive effect elements 101a and 101b, and the spin torque resonance frequency of the third magnetoresistive effect element 101d is two first magnetoresistive effect elements. Since it is lower than the spin torque resonance frequency of each of 101a and 101b, it becomes possible to function as a band cutoff filter having a steep shoulder characteristic on both the high frequency side and the low frequency side of the cutoff band.
 また、以上の説明では、2つの第1の磁気抵抗効果素子101a、101bが互いに直列に接続されている例で説明したが、第1の実施形態で説明した場合と同様にして、第1の磁気抵抗効果素子は3個以上であってもよい。また、複数の第1の磁気抵抗効果素子同士が互いに並列に接続されていても良い。これらの場合の磁気抵抗効果デバイスであっても、各々の第1の磁気抵抗効果素子が第2のポート109bに対して並列に信号線路107に接続されることにより、磁気抵抗効果デバイス400と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the example in which the two first magnetoresistive elements 101a and 101b are connected to each other in series has been described. There may be three or more magnetoresistive elements. A plurality of first magnetoresistive elements may be connected in parallel to each other. Even in the magnetoresistive effect device in these cases, each of the first magnetoresistive effect elements is connected to the signal line 107 in parallel with the second port 109b, so that the magnetoresistive effect device 400 is the same. It can have frequency characteristics as a high frequency filter.
 また、以上の説明では、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dが互いに直列に接続されている例で説明したが、第2の実施形態で説明した場合と同様にして、第2の磁気抵抗効果素子101cと第3の磁気抵抗効果素子101dが互いに並列に接続されていても良い。この場合の磁気抵抗効果デバイスであっても、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dが、第2のポート109bに対して並列に信号線路107に接続されることにより、磁気抵抗効果デバイス400と同様の、高周波フィルタとしての周波数特性をもつことができる。 In the above description, the example in which the second magnetoresistive element 101c and the third magnetoresistive element 101d are connected in series with each other has been described. However, as in the case of the second embodiment. The second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d may be connected in parallel to each other. Even in the magnetoresistive effect device in this case, the second magnetoresistive effect element 101c and the third magnetoresistive effect element 101d are connected to the signal line 107 in parallel to the second port 109b. Similar to the magnetoresistive effect device 400, it can have frequency characteristics as a high frequency filter.
 また、以上の説明では、互いに直列に接続された2つの第1の磁気抵抗効果素子101a、101bと、互いに直列に接続された第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dとが、互いに並列に接続されている例で説明したが、第2の実施形態で説明した場合と同様にして、2つの第1の磁気抵抗効果素子101a、101bの少なくとも一方と、第2の磁気抵抗効果素子101cおよび第3の磁気抵抗効果素子101dの少なくとも一方とが、直列に接続されていても良い。 In the above description, the two first magnetoresistive elements 101a and 101b connected in series with each other, the second magnetoresistive element 101c and the third magnetoresistive element 101d connected in series with each other. However, as in the case described in the second embodiment, at least one of the two first magnetoresistive elements 101a and 101b and the second At least one of the magnetoresistive effect element 101c and the third magnetoresistive effect element 101d may be connected in series.
 第3実施形態の磁気抵抗効果デバイス300および第4実施形態の磁気抵抗効果デバイス400において、さらに、遮断帯域を広く、肩特性を急峻にするためには、肩特性を急峻にする第2の磁気抵抗効果素子101c(第3の磁気抵抗効果素子101d)のQ値を、遮断帯域を形成する第1の磁気抵抗効果素子101aと第1の磁気抵抗効果素子101bの少なくとも一方のQ値よりも大きくすることが好ましい。 In the magnetoresistive effect device 300 of the third embodiment and the magnetoresistive effect device 400 of the fourth embodiment, in order to further widen the cutoff band and make the shoulder characteristics steep, the second magnetism that makes the shoulder characteristics steep. The Q value of the resistance effect element 101c (third magnetoresistance effect element 101d) is larger than the Q value of at least one of the first magnetoresistance effect element 101a and the first magnetoresistance effect element 101b forming the cutoff band. It is preferable to do.
 以上、本発明の好適な実施形態について説明したが、上記で説明した実施形態以外にも変更や構成要素の追加を行うことが可能である。例えば、第1のポート109aに接続された高周波回路に直流信号が流れるのを防ぐために、第1~第4の実施形態における直流電流入力端子110の信号線路107への接続部と第1のポート109aとの間の信号線路107に、直流信号をカットするためのコンデンサを直列に接続してもよい。また、第2のポート109bに接続された高周波回路に直流信号が流れるのを防ぐために、第1~第4の実施形態における第2の磁気抵抗効果素子101cの信号線路107への接続部と第2のポート109bとの間の信号線路107に、直流信号をカットするためのコンデンサを直列に接続してもよい。 The preferred embodiments of the present invention have been described above, but it is possible to make changes and additions of components in addition to the embodiments described above. For example, in order to prevent a direct current signal from flowing through the high-frequency circuit connected to the first port 109a, the connection portion of the direct current input terminal 110 to the signal line 107 and the first port in the first to fourth embodiments. A capacitor for cutting a direct current signal may be connected in series to the signal line 107 between 109a. Further, in order to prevent a direct current signal from flowing through the high-frequency circuit connected to the second port 109b, the second magnetoresistive element 101c according to the first to fourth embodiments is connected to the signal line 107 and the second portion. A capacitor for cutting a DC signal may be connected in series to the signal line 107 between the second port 109b.
 また、第1~第4の実施形態において、各磁気抵抗効果素子の中を流れる高周波信号の各磁気抵抗効果素子に対する向きが、第1~第4の実施形態の説明の中で図示されている向きとは反対になるように各磁気抵抗効果素子が形成されていても良い。例えば、第1~第4の実施形態では、第1の磁気抵抗効果素子101a、101bは、磁化固定層102側が第1のポート109a側に接続されており、第2の磁気抵抗効果素子101c(および第3の磁気抵抗効果素子101d)は、磁化自由層104側が第1のポート109a側に接続されているが、第1の磁気抵抗効果素子101a、101bは、磁化自由層104側が第1のポート109a側に接続され、第2の磁気抵抗効果素子101c(および第3の磁気抵抗効果素子101d)は、磁化固定層102側が第1のポート109a側に接続されるようにしてもよい。これらの場合は、直流電流源112から直流電流入力端子110に入力される直流電流の向きを、各実施形態の説明の中で図示されている向きとは反対になるようにすればよい。 In the first to fourth embodiments, the direction of the high-frequency signal flowing through each magnetoresistive element with respect to each magnetoresistive element is illustrated in the description of the first to fourth embodiments. Each magnetoresistive element may be formed so as to be opposite to the direction. For example, in the first to fourth embodiments, the first magnetoresistance effect elements 101a and 101b have the magnetization fixed layer 102 side connected to the first port 109a side, and the second magnetoresistance effect element 101c ( And the third magnetoresistance effect element 101d) is connected to the first port 109a on the magnetization free layer 104 side, but the first magnetoresistance effect elements 101a and 101b are connected to the first magnetization free layer 104 side on the first magnetization resistance layer 101d). The second magnetoresistive element 101c (and the third magnetoresistive element 101d) may be connected to the port 109a side so that the magnetization fixed layer 102 side is connected to the first port 109a side. In these cases, the direction of the direct current input from the direct current source 112 to the direct current input terminal 110 may be opposite to the direction shown in the description of each embodiment.
 また、第1~第4の実施形態において、第1の磁気抵抗効果素子101a、101bは、それぞれの磁化固定層102側が直流電流入力端子110側になり、それぞれの磁化自由層104側が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されており、第2の磁気抵抗効果素子101c(および第3の磁気抵抗効果素子101d)は、それぞれの磁化自由層104側が直流電流入力端子110側になり、それぞれの磁化固定層102側が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されているが、第1の磁気抵抗効果素子101a、101bは、それぞれの磁化自由層104側が直流電流入力端子110側になり、それぞれの磁化固定層102側が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続され、第2の磁気抵抗効果素子101c(および第3の磁気抵抗効果素子101d)は、それぞれの磁化固定層102側が直流電流入力端子110側になり、それぞれの磁化自由層104側が基準電位端子114側になるように、直流電流入力端子110および基準電位端子114に接続されるようにしてもよい。 In the first to fourth embodiments, each of the first magnetoresistance effect elements 101a and 101b has the magnetization fixed layer 102 side on the DC current input terminal 110 side and each magnetization free layer 104 side on the reference potential terminal. The second magnetoresistive element 101c (and the third magnetoresistive element 101d) are connected to the DC current input terminal 110 and the reference potential terminal 114 so as to be on the 114 side, and the magnetization free layer 104 The first magnetoresistive effect is connected to the DC current input terminal 110 and the reference potential terminal 114 such that the side is the DC current input terminal 110 side and the magnetization fixed layer 102 side is the reference potential terminal 114 side. In the elements 101a and 101b, the magnetization free layer 104 side becomes the direct current input terminal 110 side, and the magnetization fixed layer 1 The second magnetoresistive effect element 101c (and the third magnetoresistive effect element 101d) are connected to the direct current input terminal 110 and the reference potential terminal 114 so that the second side becomes the reference potential terminal 114 side. The fixed layer 102 side may be connected to the direct current input terminal 110 and the reference potential terminal 114 such that the fixed layer 102 side becomes the direct current input terminal 110 side and each magnetization free layer 104 side becomes the reference potential terminal 114 side.
 また、第1~第4の実施形態では、直流電流源112からの直流電流が、直流印加端子の一例である直流電流入力端子110から入力され、各磁気抵抗効果素子(第1~第3の磁気抵抗効果素子)に印加される例で説明したが、直流電流源112にかえて直流電圧源を直流印加端子に接続し、直流印加端子から直流電圧が各磁気抵抗効果素子(第1~第3の磁気抵抗効果素子)に対してそれぞれの積層方向に印加されて、各磁気抵抗効果素子の中を直流電流が流れるようにしてもよい。つまり、直流印加端子は、各磁気抵抗効果素子(第1~第3の磁気抵抗効果素子)に直流電流または直流電圧を印加可能であればよい。直流電圧源は、一定の直流電圧を発生可能な直流電圧源でもよく、発生する直流電圧値の大きさが変化可能な直流電圧源でもよい。 In the first to fourth embodiments, a direct current from the direct current source 112 is input from a direct current input terminal 110 which is an example of a direct current application terminal, and each magnetoresistive effect element (first to third). In the example applied to the magnetoresistive effect element), a DC voltage source is connected to the DC application terminal instead of the DC current source 112, and a DC voltage is supplied from the DC application terminal to each magnetoresistive effect element (first to second). 3 magnetoresistive effect elements) in the respective stacking directions so that a direct current flows through each magnetoresistive effect element. That is, the DC application terminal only needs to be able to apply a DC current or a DC voltage to each magnetoresistive element (first to third magnetoresistive elements). The DC voltage source may be a DC voltage source capable of generating a constant DC voltage, or a DC voltage source capable of changing the magnitude of the generated DC voltage value.
 また、第1~第4の実施形態では、磁気抵抗効果デバイス100(200、300、400)が周波数設定機構(有効磁場設定機構)として磁場印加機構111を有する例で説明しているが、周波数設定機構(有効磁場設定機構)は、以下に示すような他の例でも良い。例えば、磁気抵抗効果素子に電場を印加し、その電場を変化させることにより、磁化自由層における異方性磁場Hを変化させて磁化自由層における有効磁場を変化させ、磁気抵抗効果素子のスピントルク共鳴周波数を変化させることができる。この場合、磁気抵抗効果素子に電場を印加する機構が、周波数設定機構(有効磁場設定機構)となる。また、磁化自由層の近傍に圧電体を設け、その圧電体に電場を印加して圧電体を変形させ、磁化自由層を歪ませることにより、磁化自由層における異方性磁場Hを変化させて磁化自由層における有効磁場を変化させ、磁気抵抗効果素子のスピントルク共鳴周波数を変化させることができる。この場合、圧電体に電場を印加する機構および圧電体が、周波数設定機構(有効磁場設定機構)となる。また、電気磁気効果を有する反強磁性体またはフェリ磁性体である制御膜を磁化自由層に磁気的に結合するように設け、制御膜に磁場および電場を印加し、制御膜に印加する磁場および電場の少なくとも一方を変化させることにより、磁化自由層における交換結合磁場HEXを変化させて磁化自由層における有効磁場を変化させ、磁気抵抗効果素子のスピントルク共鳴周波数を変化させることができる。この場合、制御膜に磁場を印加する機構、制御膜に電場を印加する機構および制御膜が、周波数設定機構(有効磁場設定機構)となる。 In the first to fourth embodiments, the magnetoresistive effect device 100 (200, 300, 400) is described as an example having the magnetic field application mechanism 111 as a frequency setting mechanism (effective magnetic field setting mechanism). The setting mechanism (effective magnetic field setting mechanism) may be another example as shown below. For example, by applying an electric field to the magnetoresistive effect element and changing the electric field, the effective magnetic field in the magnetization free layer is changed by changing the anisotropic magnetic field H k in the magnetization free layer, and the spin of the magnetoresistive effect element The torque resonance frequency can be changed. In this case, a mechanism for applying an electric field to the magnetoresistive effect element is a frequency setting mechanism (effective magnetic field setting mechanism). Also, the piezoelectric body is provided in the vicinity of the magnetization free layer, the piezoelectric deforming the piezoelectric element by applying an electric field to, by distorting the magnetization free layer, changing the anisotropy field H k in the magnetization free layer Thus, the effective magnetic field in the magnetization free layer can be changed, and the spin torque resonance frequency of the magnetoresistive effect element can be changed. In this case, the mechanism for applying an electric field to the piezoelectric body and the piezoelectric body serve as a frequency setting mechanism (effective magnetic field setting mechanism). Also, a control film that is an antiferromagnetic material or a ferrimagnetic material having an electromagnetic effect is provided so as to be magnetically coupled to the magnetization free layer, and a magnetic field and an electric field are applied to the control film, By changing at least one of the electric fields, the exchange coupling magnetic field H EX in the magnetization free layer can be changed to change the effective magnetic field in the magnetization free layer, thereby changing the spin torque resonance frequency of the magnetoresistive element. In this case, the mechanism for applying a magnetic field to the control film, the mechanism for applying an electric field to the control film, and the control film serve as a frequency setting mechanism (effective magnetic field setting mechanism).
 また、周波数設定機構が無くても(磁場印加機構111からの磁場が印加されなくても)、各磁気抵抗効果素子のスピントルク共鳴周波数が所望の周波数である場合には、周波数設定機構(磁場印加機構111)は無くてもよい。 Further, even if there is no frequency setting mechanism (even if the magnetic field from the magnetic field applying mechanism 111 is not applied), if the spin torque resonance frequency of each magnetoresistive effect element is a desired frequency, the frequency setting mechanism (magnetic field) The application mechanism 111) may be omitted.
101a、101b 第1の磁気抵抗効果素子
101c 第2の磁気抵抗効果素子
101d 第3の磁気抵抗効果素子
102 磁化固定層
103 スペーサ層
104 磁化自由層
105 上部電極
106 下部電極
107 信号線路
108 グラウンド
109a 第1のポート
109b 第2のポート
110 直流電流入力端子
111 磁場印加機構
112 直流電流源
114 基準電位端子
100、200、300、400 磁気抵抗効果デバイス
101a, 101b First magnetoresistive effect element 101c Second magnetoresistive effect element 101d Third magnetoresistive effect element 102 Magnetization fixed layer 103 Spacer layer 104 Magnetization free layer 105 Upper electrode 106 Lower electrode 107 Signal line 108 Ground 109a First 1 port 109b 2nd port 110 DC current input terminal 111 Magnetic field application mechanism 112 DC current source 114 Reference potential terminal 100, 200, 300, 400 Magnetoresistive device

Claims (8)

  1.  第1の磁気抵抗効果素子と、第2の磁気抵抗効果素子と、高周波信号が入力される第1のポートと、高周波信号が出力される第2のポートと、信号線路と、直流印加端子とを有し、
     前記第1のポートおよび前記第2のポートが前記信号線路を介して接続され、
     前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記直流印加端子から入力され前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子のそれぞれの中を流れる直流電流の向きと、それぞれの前記磁化固定層、前記スペーサ層および前記磁化自由層の配置順との関係が、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とで逆になるように形成され、
     前記第1の磁気抵抗効果素子のスピントルク共鳴周波数と前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は互いに異なることを特徴とする磁気抵抗効果デバイス。
    A first magnetoresistive element, a second magnetoresistive element, a first port to which a high-frequency signal is input, a second port from which a high-frequency signal is output, a signal line, and a DC application terminal; Have
    The first port and the second port are connected via the signal line;
    The first magnetoresistive element and the second magnetoresistive element are connected to the signal line in parallel to the second port,
    The first magnetoresistive element and the second magnetoresistive element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The first magnetoresistive effect element and the second magnetoresistive effect element are input from the direct current application terminal and flow through each of the first magnetoresistive effect element and the second magnetoresistive effect element. The relationship between the direction of current and the order of arrangement of the magnetization fixed layer, the spacer layer, and the magnetization free layer is reversed between the first magnetoresistive element and the second magnetoresistive element. Formed as
    A magnetoresistive effect device, wherein a spin torque resonance frequency of the first magnetoresistive effect element and a spin torque resonance frequency of the second magnetoresistive effect element are different from each other.
  2.  スピントルク共鳴周波数が互いに異なる複数の前記第1の磁気抵抗効果素子を有し、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数より高い、または前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数より低いことを特徴とする請求項1に記載の磁気抵抗効果デバイス。
    A plurality of the first magnetoresistance effect elements having different spin torque resonance frequencies;
    The spin torque resonance frequency of the second magnetoresistive effect element is higher than the spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements, or the spin of each of the plurality of first magnetoresistive effect elements. The magnetoresistive effect device according to claim 1, wherein the magnetoresistive effect device is lower than a torque resonance frequency.
  3.  第3の磁気抵抗効果素子をさらに有し、
     前記第3の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子、前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、前記直流印加端子から入力され前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子のそれぞれの中を流れる直流電流の向きと、それぞれの前記磁化固定層、前記スペーサ層および前記磁化自由層の配置順との関係が、前記第2の磁気抵抗効果素子と前記第3の磁気抵抗効果素子とで同じになるように形成され、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数が、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも高く、前記第3の磁気抵抗効果素子のスピントルク共鳴周波数が、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも低いことを特徴とする請求項1に記載の磁気抵抗効果デバイス。
    A third magnetoresistance effect element;
    The third magnetoresistance effect element is connected to the signal line in parallel with the second port,
    The first magnetoresistive effect element, the second magnetoresistive effect element, and the third magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The second magnetoresistive effect element and the third magnetoresistive effect element are input from the direct current application terminal and flow through each of the second magnetoresistive effect element and the third magnetoresistive effect element. The relationship between the direction of current and the order of arrangement of the magnetization fixed layer, the spacer layer, and the magnetization free layer is the same in the second magnetoresistive element and the third magnetoresistive element. Formed as
    The spin torque resonance frequency of the second magnetoresistive element is higher than the spin torque resonance frequency of the first magnetoresistive element, and the spin torque resonance frequency of the third magnetoresistive element is the first magnetoresistive element. The magnetoresistive effect device according to claim 1, wherein the magnetoresistive effect device is lower than a spin torque resonance frequency of the magnetoresistive effect element.
  4.  第3の磁気抵抗効果素子をさらに有し、
     前記第3の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子、前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、前記直流印加端子から入力され前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子のそれぞれの中を流れる直流電流の向きと、それぞれの前記磁化固定層、前記スペーサ層および前記磁化自由層の配置順との関係が、前記第2の磁気抵抗効果素子と前記第3の磁気抵抗効果素子とで同じになるように形成され、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数が、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数よりも高く、前記第3の磁気抵抗効果素子のスピントルク共鳴周波数が、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数よりも低いことを特徴とする請求項2に記載の磁気抵抗効果デバイス。
    A third magnetoresistance effect element;
    The third magnetoresistance effect element is connected to the signal line in parallel with the second port,
    The first magnetoresistive effect element, the second magnetoresistive effect element, and the third magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The second magnetoresistive effect element and the third magnetoresistive effect element are input from the direct current application terminal and flow through each of the second magnetoresistive effect element and the third magnetoresistive effect element. The relationship between the direction of current and the order of arrangement of the magnetization fixed layer, the spacer layer, and the magnetization free layer is the same in the second magnetoresistive element and the third magnetoresistive element. Formed as
    The spin torque resonance frequency of the second magnetoresistive effect element is higher than the spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements, and the spin torque resonance frequency of the third magnetoresistive effect element is The magnetoresistive effect device according to claim 2, wherein the magnetoresistive effect device is lower than a spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements.
  5.  第1の磁気抵抗効果素子と、第2の磁気抵抗効果素子と、高周波信号が入力される第1のポートと、高周波信号が出力される第2のポートと、信号線路と、磁気抵抗効果素子に直流電流または直流電圧を印加可能な直流印加端子と、基準電位端子とを有し、
     前記第1のポートおよび前記第2のポートが前記信号線路を介して接続され、
     前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子および前記第2の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子は、それぞれの一端側が前記直流印加端子側になり、それぞれの他端側が前記基準電位端子側になるように、前記直流印加端子および前記基準電位端子に接続され、
     前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子は、それぞれの前記一端側から前記他端側への向きと、それぞれの前記磁化自由層から前記磁化固定層への向きとの関係が、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とで逆になるように形成され、
     前記第1の磁気抵抗効果素子のスピントルク共鳴周波数と前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は互いに異なることを特徴とする磁気抵抗効果デバイス。
    1st magnetoresistive effect element, 2nd magnetoresistive effect element, 1st port into which a high frequency signal is input, 2nd port from which a high frequency signal is output, a signal line, and a magnetoresistive effect element A direct current application terminal capable of applying a direct current or direct current voltage, and a reference potential terminal,
    The first port and the second port are connected via the signal line;
    The first magnetoresistive element and the second magnetoresistive element are connected to the signal line in parallel to the second port,
    The first magnetoresistive element and the second magnetoresistive element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The first magnetoresistive effect element and the second magnetoresistive effect element have the DC application terminal so that one end side thereof is the DC application terminal side and the other end side thereof is the reference potential terminal side. And connected to the reference potential terminal,
    The first magnetoresistive element and the second magnetoresistive element have a direction from the one end side to the other end side and a direction from the magnetization free layer to the magnetization fixed layer, respectively. The relationship is formed so that the relationship is reversed between the first magnetoresistive element and the second magnetoresistive element,
    A magnetoresistive effect device, wherein a spin torque resonance frequency of the first magnetoresistive effect element and a spin torque resonance frequency of the second magnetoresistive effect element are different from each other.
  6.  スピントルク共鳴周波数が互いに異なる複数の前記第1の磁気抵抗効果素子を有し、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数は、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数より高い、または前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数より低いことを特徴とする請求項5に記載の磁気抵抗効果デバイス。
    A plurality of the first magnetoresistance effect elements having different spin torque resonance frequencies;
    The spin torque resonance frequency of the second magnetoresistive effect element is higher than the spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements, or the spin of each of the plurality of first magnetoresistive effect elements. The magnetoresistive effect device according to claim 5, wherein the magnetoresistive effect device is lower than a torque resonance frequency.
  7.  第3の磁気抵抗効果素子をさらに有し、
     前記第3の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子、前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第3の磁気抵抗効果素子は、その一端側が前記直流印加端子側になり、その他端側が前記基準電位端子側になるように、前記直流印加端子および前記基準電位端子に接続され、
     前記第2の磁気抵抗効果素子及び前記第3の磁気抵抗効果素子は、それぞれの前記一端側から前記他端側への向きと、それぞれの前記磁化自由層から前記磁化固定層への向きとの関係が、前記第2の磁気抵抗効果素子と前記第3の磁気抵抗効果素子とで同じになるように形成され、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数が、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも高く、前記第3の磁気抵抗効果素子のスピントルク共鳴周波数が、前記第1の磁気抵抗効果素子のスピントルク共鳴周波数よりも低いことを特徴とする請求項5に記載の磁気抵抗効果デバイス。
    A third magnetoresistance effect element;
    The third magnetoresistance effect element is connected to the signal line in parallel with the second port,
    The first magnetoresistive effect element, the second magnetoresistive effect element, and the third magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The third magnetoresistance effect element is connected to the DC application terminal and the reference potential terminal so that one end side thereof is the DC application terminal side and the other end side thereof is the reference potential terminal side.
    The second magnetoresistive effect element and the third magnetoresistive effect element have a direction from the one end side to the other end side and a direction from the magnetization free layer to the magnetization fixed layer, respectively. The relationship is formed so that the relationship is the same between the second magnetoresistive element and the third magnetoresistive element,
    The spin torque resonance frequency of the second magnetoresistive element is higher than the spin torque resonance frequency of the first magnetoresistive element, and the spin torque resonance frequency of the third magnetoresistive element is the first magnetoresistive element. The magnetoresistive effect device according to claim 5, wherein the magnetoresistive effect device is lower than a spin torque resonance frequency of the magnetoresistive effect element.
  8.  第3の磁気抵抗効果素子をさらに有し、
     前記第3の磁気抵抗効果素子は、前記第2のポートに対して並列に前記信号線路に接続され、
     前記第1の磁気抵抗効果素子、前記第2の磁気抵抗効果素子および前記第3の磁気抵抗効果素子は、それぞれ磁化固定層、磁化自由層およびこれらの間に配置されたスペーサ層を有し、
     前記第3の磁気抵抗効果素子は、その一端側が前記直流印加端子側になり、その他端側が前記基準電位端子側になるように、前記直流印加端子および前記基準電位端子に接続され、
     前記第2の磁気抵抗効果素子及び前記第3の磁気抵抗効果素子は、それぞれの前記一端側から前記他端側への向きと、それぞれの前記磁化自由層から前記磁化固定層への向きとの関係が、前記第2の磁気抵抗効果素子と前記第3の磁気抵抗効果素子とで同じになるように形成され、
     前記第2の磁気抵抗効果素子のスピントルク共鳴周波数が、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数よりも高く、前記第3の磁気抵抗効果素子のスピントルク共鳴周波数が、前記複数の第1の磁気抵抗効果素子の各々のスピントルク共鳴周波数よりも低いことを特徴とする請求項6に記載の磁気抵抗効果デバイス。
    A third magnetoresistance effect element;
    The third magnetoresistance effect element is connected to the signal line in parallel with the second port,
    The first magnetoresistive effect element, the second magnetoresistive effect element, and the third magnetoresistive effect element each have a magnetization fixed layer, a magnetization free layer, and a spacer layer disposed therebetween,
    The third magnetoresistance effect element is connected to the DC application terminal and the reference potential terminal so that one end side thereof is the DC application terminal side and the other end side thereof is the reference potential terminal side.
    The second magnetoresistive effect element and the third magnetoresistive effect element have a direction from the one end side to the other end side and a direction from the magnetization free layer to the magnetization fixed layer, respectively. The relationship is formed so that the relationship is the same between the second magnetoresistive element and the third magnetoresistive element,
    The spin torque resonance frequency of the second magnetoresistive effect element is higher than the spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements, and the spin torque resonance frequency of the third magnetoresistive effect element is The magnetoresistive effect device according to claim 6, wherein the magnetoresistive effect device is lower than a spin torque resonance frequency of each of the plurality of first magnetoresistive effect elements.
PCT/JP2017/039665 2016-12-20 2017-11-02 Magnetoresistance effect device WO2018116655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018557591A JPWO2018116655A1 (en) 2016-12-20 2017-11-02 Magnetoresistive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246569 2016-12-20
JP2016246569 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116655A1 true WO2018116655A1 (en) 2018-06-28

Family

ID=62626191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039665 WO2018116655A1 (en) 2016-12-20 2017-11-02 Magnetoresistance effect device

Country Status (2)

Country Link
JP (1) JPWO2018116655A1 (en)
WO (1) WO2018116655A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195122A1 (en) * 2014-06-18 2015-12-23 Intel Corporation Coupled spin hall nano oscillators with tunable strength
JP2016143701A (en) * 2015-01-30 2016-08-08 Tdk株式会社 Magnetic resistance effective device
WO2016175249A1 (en) * 2015-04-30 2016-11-03 国立研究開発法人産業技術総合研究所 High-frequency phase-locked oscillator circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195122A1 (en) * 2014-06-18 2015-12-23 Intel Corporation Coupled spin hall nano oscillators with tunable strength
JP2016143701A (en) * 2015-01-30 2016-08-08 Tdk株式会社 Magnetic resistance effective device
WO2016175249A1 (en) * 2015-04-30 2016-11-03 国立研究開発法人産業技術総合研究所 High-frequency phase-locked oscillator circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONISHI, K. ET AL.: "Radio-frequency amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance", APPLIED PHYSICS LETTERS, vol. 102, 25 April 2013 (2013-04-25), pages 162409 - 1 -162409-4 *

Also Published As

Publication number Publication date
JPWO2018116655A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
CN107104181B (en) Magnetoresistance effect device
US10381997B2 (en) Magnetoresistive effect device
JP6738612B2 (en) Magnetoresistive device
US9966922B2 (en) Magnetoresistive effect device
CN107689363B (en) Magnetoresistance effect device
US10957962B2 (en) Magnetoresistive effect device
JP6511532B2 (en) Magnetoresistance effect device
JP2017153066A (en) Magnetoresistive effect device
WO2017056559A1 (en) Magnetoresistive device
JP6717137B2 (en) Resonant element, resonator and magnetoresistive device
CN106559039B (en) Magnetoresistance effect device
WO2018116655A1 (en) Magnetoresistance effect device
WO2018116656A1 (en) Magnetoresistance effect device
JP6642726B2 (en) Magnetoresistive device
JP2017216670A (en) Magnetic resistance effect device
JP2018026788A (en) Magnetic resistance effect device
US10756404B2 (en) Magnetoresistance effect device and magnetoresistance effect module
JP2022042734A (en) Magnetoresistance effect device
JP6822301B2 (en) Magnetoresistive device and high frequency device
JP2018085633A (en) amplifier
JP2018085632A (en) amplifier
JP2019134409A (en) Magnetoresistive effect device and magnetoresistive effect module
JP2018107344A (en) Magnetoresistive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885304

Country of ref document: EP

Kind code of ref document: A1