WO2018115787A1 - Methode et installation de reglage du pas des spires d'une carcasse metallique - Google Patents

Methode et installation de reglage du pas des spires d'une carcasse metallique Download PDF

Info

Publication number
WO2018115787A1
WO2018115787A1 PCT/FR2017/053814 FR2017053814W WO2018115787A1 WO 2018115787 A1 WO2018115787 A1 WO 2018115787A1 FR 2017053814 W FR2017053814 W FR 2017053814W WO 2018115787 A1 WO2018115787 A1 WO 2018115787A1
Authority
WO
WIPO (PCT)
Prior art keywords
turns
pitch
zone
carcass
upstream
Prior art date
Application number
PCT/FR2017/053814
Other languages
English (en)
Inventor
Mickael Guignon
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of WO2018115787A1 publication Critical patent/WO2018115787A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/127Tube treating or manipulating combined with or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/121Making tubes or metal hoses with helically arranged seams with non-welded and non-soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/128Control or regulating devices

Definitions

  • the present invention relates to a method and an installation for implementing said method for adjusting the pitch of the turns of a metal carcass.
  • One envisioned field of application includes, but is not limited to, flexible hydrocarbon delivery lines as defined by API 17J and API RP 17B published by the American Petroleum Institute.
  • a metal carcass is typically made by profiling an S-shaped strip and winding it helically to form turns which successively engage one another.
  • the carcass is covered with a hydrocarbon-proof sheath made from a polymeric material.
  • the core formed by the waterproof sheath and the carcass is then covered with various additional polymeric and metallic layers.
  • the metal layers, said reinforcement comprise a plurality of armor son wound helically around the core and allow to resume external pressure forces and tensile forces experienced by the pipe.
  • intermediate and / or protective polymeric layers may also be disposed around the core and reinforcing layers.
  • Such pipes are called "rough bore" in English, and the carcass then prevents the waterproof sheath from collapsing on itself when the pipe is in depression.
  • the carcass is extensible in its longitudinal direction between a minimum pitch, where the turns that constitute it are close to each other and a maximum pitch where these turns are spaced apart from each other.
  • minimum pitch the event where the axial clearance between two successive turns is minimal.
  • maximum pitch the event where the axial clearance between two successive turns is maximal.
  • JP 2003-285360 describes such an implementation. However, it has a number of disadvantages.
  • the endless screws do not fit well with the discontinuities of the carcass inherent to the abutments, at which one generally finds a weld.
  • the metal contacts between the worm and the carcass generate metal chips harmful to the waterproof sheath that comes to cover it. Indeed, the presence of metal chips can lead to the creation of volume defects in the thickness of the previously extruded waterproof sheath and thus cause damage by cracks and / or tears during use of the pipe.
  • a problem that arises and that aims to solve the present invention is to provide a method that allows to adjust the pitch of the turns of a metal carcass, more easily, and without damaging the carcass itself.
  • a method of adjusting the pitch of the turns of a metal carcass to form a flexible pipe for transporting hydrocarbons said method being of the type comprising the following steps a) there is provided a metal carcass having turns of a helical winding of an S-shaped strip successively stapled, said carcass being extensible longitudinally between a minimum pitch and a maximum pitch of said turns; b) translating said metal carcass in translation along its longitudinal direction from an upstream zone to a downstream zone; c) successively, between said upstream zone and said downstream zone, the turns at a given pitch; and, d) maintaining said turns at said given pitch in said downstream zone.
  • step b) said turns are held in said upstream zone at a predetermined pitch; and in step c) at least partially said turns are released between said upstream zone and said downstream zone in order to be able to translate said turns held in said downstream zone in translation at a speed differentiated from the translational driving speed of said turns maintained in said upstream zone, so as to be able to bring said turns of said predetermined pitch to said given pitch.
  • step b) maintain in said upstream zone said turns at a predetermined pitch
  • step c) at least partially release said turns between said upstream zone and said downstream zone, it also provides organs guiding and holding device comprising sets of tracks.
  • a feature of the invention lies in translational drive of the carcass at different speeds between the upstream zone and the downstream zone and releasing at least half a turn between the two zones. In this way, given the determined pitch of the turns and the given pitch, to which it is desired to wear them, the relative translation speed of the turns of the downstream zone and the upstream zone are adjusted.
  • said determined step is said maximum step.
  • the turns of the carcass from their construction and stapling them have a functional play and they are movable in pairs relative to each other between a close position and a position apart from each other . Also, and as will be explained below, it is easier to wear the turns of the carcass at their maximum pitch, naturally causing the stretching of the carcass.
  • said turns of said upstream zone are carried at said maximum pitch. And they are maintained at this step in the upstream zone before it is released between the upstream zone and the downstream zone before entering precisely, in the downstream zone.
  • step c) said turns held in said downstream zone are translated in translation at a speed less than the translational drive speed of said turns held in said upstream zone.
  • the driving speed of the turns in the downstream zone being lower than that of the spiral drive in the upstream zone, the pitch of the turns is reduced between the downstream zone and the upstream zone.
  • step c) said given step is substantially equal to the average value of said maximum and minimum steps.
  • said given step is substantially equal to the average value of said maximum and minimum steps.
  • step c) a single turn is released between said upstream zone and said downstream zone.
  • the turns are carried successively between the upstream zone and the downstream zone at a step corresponding to the given pitch. It is of course possible to release several turns between the upstream zone and the downstream zone, depending on the rigidity of the profiled strip and the turns.
  • said turns having an extrados opposite to a lower surface, it is supported by a radial component on the extrados of said turns to maintain them.
  • the S profile strip has an outer portion facing outwardly of the carcass and an inner complementary portion facing inwardly.
  • the outer portion of a turn intermesh in the inner portion of a contiguous turn by defining a gap between the outer portions of the two turns.
  • the carcass is supported on said turns in at least three support points angularly spaced from each other in a regular manner.
  • the carcass is enclosed at three points angularly offset by 120 ° around the carcass so as to maintain it in a fixed position along a radial component and by applying radial forces distributed symmetrically. In this way, the carcass does not deform despite pressure points of support.
  • the method further comprises a step e) after step d) in which a sealed sheath is formed on the carcass having turns at said given pitch.
  • a sealed sheath is formed on the carcass having turns at said given pitch.
  • a pitch adjustment installation of the turns of a metal carcass to form a flexible hydrocarbon transport pipe said metal carcass having turns of a helical winding of an S profile strip successively stapled, said carcass being extensible longitudinally between a minimum pitch and a maximum pitch of said turns
  • said installation comprising a drive device for translational driving said metal carcass in its longitudinal direction of a upstream zone towards a downstream zone, said driving device comprising guiding and holding members for carrying successively, between said upstream zone and said downstream zone, the turns at a given pitch and for maintaining said turns at said given pitch in said zone downstream.
  • Said guiding and holding members comprise upstream guiding and holding members for maintaining in said upstream zone said turns at a predetermined pitch, and downstream guiding and holding members independent of said upstream guiding and holding members, in order to be able to translationally driving said turns held in said downstream zone at a speed differentiated from the translational drive speed of said turns held in said upstream zone, so as to be able to bring said turns of said predetermined pitch to said given pitch, while being released at least partially said turns between said upstream zone and said downstream zone.
  • it further comprises supports located upstream of said upstream zone in order to be able to extend said catenary carcass so as to bring said turns of said upstream zone to said predetermined pitch corresponding to said step. maximum.
  • it causes the stretching of the carcass, extending catenary, or chain between two supports.
  • the carcass is wound on a drum, and it extends in catenary from the drum to a support made of rollers located upstream of said upstream zone.
  • said upstream guiding and holding members comprise a set of upstream tracks.
  • a set of three caterpillars around the carcass.
  • Each of the tracks comprises at least two end wheels and a belt mounted on the two wheels, the belt being applied along a generatrix of the carcass to bear on a plurality of successive turns, while the wheel rotation shaft extends perpendicularly to the axis of the carcass.
  • the wheel rotation shaft extends perpendicularly to the axis of the carcass.
  • it implements three upstream tracks arranged around the carcass so as to be able to clamp between the caterpillar belts.
  • downstream guiding and holding members comprise a set of downstream tracks.
  • the tracks of the downstream track set are similar to those of the upstream track set and can also be implemented in three as will be explained hereinafter.
  • the caterpillars are replaced by sets of wheels that directly drive the carcass.
  • the number of tracks per game is increased so as to provide better guidance and better support.
  • the adjustment installation further comprises an annular extrusion head to be able to form a sealed sheath on the carcass having turns to said not given.
  • FIG. 1 is a schematic side view of an adjustment installation according to the invention.
  • FIG. 2 is a partial schematic perspective view of a portion of the installation shown in Figure 1;
  • FIG 3 is a partial schematic side view of the installation portion shown in Figure 2;
  • FIG. 4 is a schematic detail view of the part of the installation illustrated in Figure 3 in a first phase
  • FIG. 5 is a schematic detail view of the part of the installation shown in Figure 3 in a second phase; and, - Figure 6 is a schematic radial sectional view of the object shown in Figure 2.
  • Figure 1 schematically illustrates a setting installation 10 for implementing the method according to the invention.
  • Figure 1 shows a metal carcass 12 of circular cylindrical symmetry extended along its axis of symmetry A.
  • the carcass 12 has an internal diameter of 150 mm.
  • the adjusting device 10 comprises guiding and holding members 15 comprising guiding and upstream holding members 14 for holding and guiding the carcass 12 in an upstream zone 16 and downstream guiding and holding members 18 for maintaining and guide the carcass 12 in a downstream zone 20.
  • the guiding and holding members 14, 18 make it possible in particular to drive the carcass 12 in translation along its axis of symmetry A, and in a direction from the upstream zone.
  • the carcass 12 is here driven through an annular extrusion head 21 for directly extruding a sealed sheath 23 on the carcass 12, as will be explained in the following description .
  • the carcass 12 has turns 22 engaged successively one into the other.
  • Each turn 22 has according to the example shown in Figure, a total width of 55 mm.
  • the carcass 12 is made of turns 22 obtained by helical winding of a strip 24 S-shaped.
  • each of the turns 22 has an outer portion 26 and an opposite inner portion 28.
  • the two opposite free edges of the strip 24 are curved U-shaped, one with a profiled rib 32 projecting inwardly of the U, the other 34 without rib.
  • each of the turns 22 has a pitch P, resulting from the helical winding of the S profile strip 24.
  • Two contiguous turns 22 define by construction a gap 36 and therefore, the turns are deformable along the axis of the carcass A between a position close to each other and a position spaced from each other, in which positions they respectively have a minimum pitch and a maximum pitch.
  • An object of the invention is precisely to adjust the pitch of the turns 22 of the carcass 12 to a value between the value of the minimum pitch and the value of the maximum pitch, and advantageously, to an intermediate pitch value Pi corresponding to the average the two steps, minimum and maximum, before the carcass 12 penetrates inside the annular extrusion head 21. Indeed, after the carcass 12 has been covered with the sealed sheath, the turns 22 are to a certain extent maintained in a fixed position relative to each other at the intermediate pitch Pi above. This configuration gives the resulting pipe optimal bending possibilities with less strain on the carcass 12.
  • the principle of the method aims first of all to carry the turns 22 of the carcass 12 in a predetermined relative position at a predetermined pitch.
  • the easiest is to stretch the carcass longitudinally to bring the turns 22 in positions spaced from each other and therefore at a maximum pitch.
  • two carcass supports spaced apart from one another are installed in line in the axis of symmetry A of the carcass 12. These supports are not here represented. They are equipped with guide means in translation to allow the sliding of the carcass 12. The latter is then maintained catenary, or chain, between the two supports so that, under the effect of its own weight, the turns 'Spread apart to their maximum pitch.
  • the supports are spaced from each other by a sufficient distance allowing this separation of the turns. It is also possible to provide preliminary stretching during manufacture of the carcass 12. Being driven in translation along the axis of symmetry A, the carcass 12 then enters the upstream zone 16 with turns 22 at their maximum pitch.
  • the guiding and upstream holding members 14 comprise a first set of first three tracks, a first first track 40, a second first track 42 and a third first track 44 which will be described in more detail for reference. in Figure 2.
  • the first first track 40 comprises two first first driving end wheels, a first first upstream wheel 46 opposite a first first downstream wheel 48, and a belt 50 installed on the first two first upstream wheels 46, and downstream 48.
  • the drive shaft of the first first upstream end wheels 46, and downstream 48 of the first first track 40 extend perpendicularly to the axis of symmetry A of the carcass 12 and the belt 50 is then applied in pressure on the carcass 12 according to a generator.
  • the belt 50 is applied to the outer portion 26 of the turns 22, and it does not extend either in the interstices 36 or in contact with the inner portion 28. It will be observed that the support length of the belt 50 is substantially equal to the distance between the two drive shafts of the first first upstream end wheels 46, and downstream 48.
  • the first two first end wheels 48, 46 and the belt 50 define an axial middle plane .
  • the other two tracks, the second first 42 and the third first 44 are similar and they respectively have a second first downstream wheel 48 'and a second first upstream wheel 46', and a third first downstream wheel 48 "and a third first wheel upstream 46 ".
  • the second 42 and third 44 first tracks are also each equipped with a belt 50 bearing longitudinally on the outer portion 26 of the turns 22 of the carcass 12. They are respectively angularly offset by + 2/3 ⁇ and - 2/3 ⁇ relative to the first first track 40.
  • the first three tracks 40, 42, 44 are well obviously installed on a first frame not shown through which the carcass 12, which is then guided inside said frame.
  • the first upstream end 46 and downstream end wheels 48 are rotated so as to drive the belt 50 bearing against the carcass 12 of the upstream zone 16 towards the downstream zone 20 along the arrow F.
  • the belts 50 of the tracks 40, 42, 44 are then driven concomitantly at the same speed V1 so as to drive in translation the turns 22 of the carcass 12 in the upstream zone 16 at this speed V1 by maintaining them in a fixed position relative to each other and to the not maximum.
  • the belts 50 are pressurized on the carcass 12 with a large radial force to prevent slipping of the belts 50 relative to the turns 22 of the carcass 12, without deforming it.
  • first tracks 40, 42, 44 of the first set are offset axially relative to each other and successively, substantially a third of a maximum pitch. It will be explained below what implies this axial offset at the support of the belts 50 on the turns. In this way, the belts 50 of the first set of tracks 40, 42, 44 successively release the turns 22 of the upstream zone 16, towards the downstream zone 20.
  • these guide and downstream maintenance members 18 comprise a second set of three second tracks, a first second 52, a second second 54, and a third second 56, all structurally similar to those of FIG. first set.
  • the three second tracks 52, 54 and 56 are arranged angularly offset from the first set, 1/3 ⁇ . In this way, the three second tracks 52, 54, 56 respectively extend diametrically opposite to the first three tracks 44, 40, 42.
  • the three second tracks 52, 54, and 56 have second belts 58 also installed on two second wheels driving end, a second upstream wheel 60 opposite a second downstream wheel 62.
  • the drive shaft of the two second wheels 60, 62 also extends perpendicular to the axis of symmetry A of the carcass.
  • the three second tracks 52, 54, and 56 are installed on a second independent frame, not shown.
  • This second frame is mounted adjustable in translation and rotation along the axis A of the carcass 12, relative to the first frame.
  • the three second belts 58 extending in contact with the turns 22 of the downstream zone 20 along the generatrices of the carcass 12.
  • the belts 58 of the tracks 52, 54, 56 are then driven concomitantly at the same speed V2, lower at V1, so as to be able to take the pitch of the turns, their maximum pitch at their intermediate pitch Pi, and to drive in translation the turns 22 of the carcass 12 in the downstream zone 20 at the speed V2 while maintaining them in a fixed position the ones compared to the others audit not intermediate Pi as one will explain it hereinafter.
  • the guiding and downstream holding members 18 are offset axially with respect to the upstream guiding and holding members 14. This figure is partly found in the carcass 12 having its turns 22.
  • two, the second 42 and the third 44, of the first three tracks of the first game are represented while the first 40 does not appear for clarity, and thus only two, the second 54 and the third 56 of the three second tracks of the second game appear in Figure 3.
  • the second set of three tracks 52, 54, 56 is offset axially from the first set of three tracks 40, 42, 44, a distance allowing to leave between the two, substantially a half turn 22 free at its maximum pitch as it will explain below.
  • the first belt 50 of the second first crawler 42 extends towards the downstream zone 20 bearing against the turns 22 to a second first point 64 of the carcass 12 located in line with the axis of rotation of the second first downstream wheel 48 '.
  • the second belt 58 of the third third track 56 extends towards the upstream zone 16 against the turns 22, to a third second point 66 of the carcass 12 located at the axis of rotation of the third second upstream wheel 60 ".
  • Figure 6 is a sectional view of the upstream to downstream of the carcass 12, the turns rotating in the trigonometric direction T, from upstream to downstream also.
  • the second first track 42 angularly shifted by 2/3 ⁇ with respect to the first first track 40, is axially offset towards the downstream zone along the axis of symmetry A by a distance corresponding to one third of the maximum pitch Pm of the turns maintained in the upstream zone 16, with respect to the first crawler 40.
  • the third first track 44 it is angularly shifted by 2/3 ⁇ with respect to the second first track 42, always in the trigonometric direction T and is shifted axially by a distance corresponding to two thirds of the maximum pitch Pm of the turns held in the upstream zone 16, relative to the first track 40.
  • the latter axial offset extends along the axis of symmetry A of the first first bearing point 65 of the first belt 50 of the first first caterpillar 40 to the third first fulcrum 68 of the first belt 50 of the third first crawler 44 located in line with the third first downstream wheel 48 ".
  • the first second track 52 is offset angularly 1/3 ⁇ relative to the first first track 40, in the trigonometric direction T. It is axially offset by a distance corresponding to 7/6 of the maximum pitch Pm, in the direction from the upstream zone 16 to the downstream zone 20, with respect to the first first track 40. Also, this axial offset extends along the axis of symmetry A, the first first bearing point 65 of the first belt 50 of the first first track 40 until at the first second support point 70 of the second belt 58 of the first second track 52, located at the axis of rotation of the first second upstream wheel 60.
  • first second track 52 is shifted axially from a distance corresponding to 1 ⁇ 2 maximum pitch Pm relative to the third first track 44. Therefore, only half a turn is completely free between the second set of tracks 52, 54, 56 and the first set of tracks 42, 44, 46.
  • the second second track 54 is angularly offset by 2/3 ⁇ relative to the first second track 52, in the trigonometrical direction T. It is axially offset, with respect to the first second track 52, a distance corresponding to 1/3 of the maximum pitch Pm, in the direction from the upstream zone 16 to the downstream zone 20. Also, this axial offset extends along the axis of symmetry A, the first second point d support 70, to a second second support point 72 of the second belt 58 of the second second track 54, located in line with the axis of rotation of the second second upstream wheel 60 '.
  • the third third track 56 it is angularly offset by 2/3 ⁇ relative to the second second track 54, in the trigonometric direction T. It is axially offset, with respect to the second second track 54 by a corresponding distance at 1/3 of the maximum pitch Pm, in the direction from the upstream zone 16 to the downstream zone 20. Also, this axial offset extends along the axis of symmetry A, the second second support point 72, up to at the third second bearing point 66 of the second belt 58 of the second second track 54, located at the axis of rotation of the third second upstream wheel 60 ".
  • the carcass 12 extends freely between the first set of tracks 40, 42, 44 and the second set of tracks 52, 54, 56, over a distance corresponding to half a turn, between the third first track 44 and the first second caterpillar 52.
  • the adjustment of the second frame supporting the second set of tracks 52, 54, 56 makes it possible to shift it angularly by + 2/3 ⁇ , and to distance it axially from the first set by a distance equivalent to 2/3 of the maximum pitch Pm. Therefore, the carcass 12 then extends freely between the first set of tracks 40, 42, 44 and the second set of tracks 52, 54, 56, over a distance corresponding to 7/6 of the maximum pitch Pm of a turn.
  • a first turn 80 engages the second belt 58 of the second second track 54, while a second turn 82 remains fully engaged with the first belt 50 of the second first track 42.
  • tangential velocity of the first belt 50 of the second first caterpillar 42 is V1
  • the tangential speed of the second belt 58 of the second second crawler 54 is V2 less than V1 (V2 ⁇ V1). Therefore, the first turn 80 will be driven at the speed V2, while the second turn 82 is driven at the speed V1.
  • the first turn 80, engaged with the second belt 58 is driven in translation at the speed V2, while the second turn 82 is driven in translation at the speed V1.
  • the setting of the pitch of the turns then takes place during the movement of the two turns 80, 82 with two different speeds.
  • the carcass 12 is thus compressed between the upstream zone 16 and the downstream zone 20, of a ratio equal to V2 / V1.
  • the speed V2 of the second set of tracks 52, 54, 56 is kept constant so as to maintain the adjustment of the parameters of the annular extrusion head 21.
  • the speed V1 of the first set of tracks 40, 42, 44 is adjusted according to the dimensional characteristics of the carcass.
  • the first frame is movable relative to the second frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

La présente invention concerne une méthode de réglage du pas des spires (22) d'une carcasse métallique (12), et une installation de mise en œuvre. La méthode comprend les étapes suivantes: a) on fournit une carcasse métallique (12) présentant des spires (22), ladite carcasse étant extensible longitudinalement entre un pas minimal et un pas maximal desdites spires; b) on entraîne en translation ladite carcasse métallique (12) d'une zone amont (16) vers une zone aval (20); c) on porte successivement les spires (22) à un pas donné; et, d) on maintient lesdites spires (22) audit pas donné dans ladite zone aval (20). Aussi à l'étape b) on maintient lesdites spires (22) à un pas prédéterminé; et à l'étape c) on libère lesdites spires (22) pour pouvoir les entraîner en translation dans ladite zone aval (16) à une vitesse différenciée de la vitesse d'entraînement en translation.

Description

Méthode et installation de réglage du pas des spires d'une carcasse métallique
La présente invention se rapporte à une méthode et à une installation de mise en œuvre de ladite méthode pour le réglage du pas des spires d'une carcasse métallique.
Un domaine d'application envisagé est notamment, mais non exclusivement, celui des conduites flexibles de transport des hydrocarbures définies par les documents normatifs API 17J et API RP 17B publiés par l'American Petroleum Institute.
Une carcasse métallique est typiquement réalisée en profilant un feuillard en S et en l'enroulant hélicoïdalement pour former des spires qui viennent s'agrafer successivement les unes dans les autres. Dans les applications aux conduites flexibles de transport des hydrocarbures, la carcasse est recouverte d'une gaine étanche aux hydrocarbures et réalisée à partir d'un matériau polymère. Le noyau constitué par la gaine étanche et la carcasse est alors recouvert de différentes couches polymérique et métallique additionnelles. Les couches métalliques, dîtes de renforcement, comprennent une pluralité de fils d'armure enroulés hélicoïdalement autour du noyau et permettent de reprendre des efforts de pression externe et des efforts de traction subie par la conduite. En outre, des couches polymériques intermédiaires et/ou de protection peuvent également être disposées autour du noyau et des couches de renforcement. De telles conduites sont dénommées « rough bore » en langue anglaise, et la carcasse permet alors d'éviter que la gaine étanche ne s'effondre sur elle- même lorsque la conduite est en dépression.
De par sa construction, la carcasse est extensible selon sa direction longitudinale entre un pas minimal, où les spires qui la constituent sont rapprochées les unes des autres et un pas maximal où ces spires sont écartées les unes des autres. On entend par « pas minimal » de la carcasse, l'événement où le jeu axial entre deux spires successives est minimal. Inversement, on entend par « pas maximal » de la carcasse, l'événement où le jeu axial entre deux spires successives est maximal. Lorsque la carcasse est présente comme couche interne dans l'agencement structurel d'une conduite, il est nécessaire que cette dernière puisse être fléchie, soit pour être stockée par enroulement sur une bobine de réception après fabrication par profilage, soit lorsque la conduite est en service. Il est alors nécessaire que le pas des spires soit réglé à un pas intermédiaire entre le pas maximal et le pas minimal.
Pour ce faire, il a été imaginé de mettre en œuvre au moins deux vis sans fin à pas variable parallèlement à la carcasse et diamétralement opposées. Les deux vis viennent alors engrener avec la carcasse à l'intérieur des interstices situés entre les spires et elles permettent d'ajuster le pas des spires au pas requit. Le document JP 2003-285360 décrit une telle mise en œuvre. Elle présente toutefois un certain nombre d'inconvénients.
Tout d'abord, les vis sans fin s'accommodent mal des discontinuités de la carcasse inhérentes aux aboutements, au niveau desquels on trouve généralement une soudure. En outre, les contacts métalliques entre les vis sans fin et la carcasse génèrent des copeaux métalliques préjudiciables ensuite à la gaine étanche qui vient la recouvrir. En effet, la présence de copeaux métalliques peut conduire à la création de défauts volumiques dans l'épaisseur de la gaine étanche préalablement extrudée et partant, engendrer une détérioration par fissures et/ou déchirures lors de l'utilisation de la conduite. Au surplus, il est nécessaire que la carcasse présente, à l'entrée des vis sans fin, un pas précis et constant, égal à celui du pas d'entrée des vis sans fin. Partant, un réglage préalable fin et homogène du pas de la carcasse est nécessaire.
Ainsi, un problème qui se pose et que vise à résoudre la présente invention est de fournir une méthode qui permette de régler le pas des spires d'une carcasse métallique, plus aisément, et sans endommager la carcasse elle-même.
Dans le but de résoudre ce problème, et selon un premier objet, il est proposé une méthode de réglage du pas des spires d'une carcasse métallique pour former une conduite flexible de transport d'hydrocarbures, ladite méthode étant du type comprenant les étapes suivantes : a) on fournit une carcasse métallique présentant des spires d'un enroulement hélicoïdal d'un feuillard profilé en S successivement agrafées, ladite carcasse étant extensible longitudinalement entre un pas minimal et un pas maximal desdites spires ; b) on entraîne en translation ladite carcasse métallique selon sa direction longitudinale d'une zone amont vers une zone aval ; c) on porte successivement, entre ladite zone amont et ladite zone aval, les spires à un pas donné ; et, d) on maintient lesdites spires audit pas donné dans ladite zone aval. A l'étape b) on maintient dans ladite zone amont lesdites spires à un pas prédéterminé ; et à l'étape c) on libère au moins partiellement lesdites spires entre ladite zone amont et ladite zone aval pour pouvoir entraîner en translation lesdites spires maintenues dans ladite zone aval à une vitesse différenciée de la vitesse d'entraînement en translation desdites spires maintenues dans ladite zone amont, de manière à pouvoir porter lesdites spires dudit pas prédéterminé audit pas donné. Pour, à l'étape b), maintenir dans ladite zone amont lesdites spires à un pas prédéterminé, et à l'étape c), libérer au moins partiellement lesdites spires entre ladite zone amont et ladite zone aval, on fournit en outre des organes de guidage et de maintien comprenant des jeux de chenilles. Ainsi on peut entraîner en translation lesdites spires maintenues dans ladite zone aval à une vitesse différenciée de la vitesse d'entraînement en translation desdites spires maintenues dans ladite zone amont, et de façon à pouvoir porter lesdites spires dudit pas prédéterminé audit pas donné.
Ainsi, une caractéristique de l'invention réside dans l'entraînement en translation de la carcasse à des vitesses différentes entre la zone amont et la zone aval et en libérant au moins une demi-spire entre les deux zones. De la sorte compte tenu du pas déterminé des spires et le pas donné, auquel on souhaite les porter, on règle les vitesses relatives d'entraînement en translation des spires de la zone aval et de la zone amont.
Aussi, on fournit des organes de guidage et de maintien comprenant un jeu de chenilles amont. Et de la sorte on préserve la carcasse dans la zone amont par rapport à la mise en œuvre de vis sans fin. Au surplus, on fournit des organes de guidage et de maintien comprenant un jeu de chenilles aval. Et ainsi, on préserve la carcasse dans la zone aval. Selon une caractéristique de l'invention particulièrement avantageuse, ledit pas déterminé est ledit pas maximal. En effet, les spires de la carcasse de part leur construction et leur agrafage entre elles, présentent un jeu fonctionnel et elles sont mobiles deux à deux les unes par rapport aux autres entre une position rapprochée et une position écartée l'une de l'autre. Aussi, et comme on l'expliquera ci-après, il est plus aisé de porter les spires de la carcasse à leur pas maximal, tout naturellement en provoquant l'étirement de cette carcasse. Ainsi, à l'étape b), on porte lesdites spires de ladite zone amont audit pas maximal. Et on les maintient à ce pas dans la zone amont avant qu'elle ne soit libérée entre la zone amont et la zone aval avant d'entrer précisément, dans la zone aval.
En outre, préférentiellement, à l'étape c), on entraîne en translation lesdites spires maintenues dans ladite zone aval à une vitesse inférieure à la vitesse d'entraînement en translation desdites spires maintenues dans ladite zone amont. Ainsi, la vitesse d'entraînement des spires dans la zone aval étant inférieure à celle de l'entraînement des spires dans la zone amont, le pas des spires se réduit entre la zone aval et la zone amont.
Avantageusement, mais non limitativement, à l'étape c), ledit pas donné est sensiblement égal à la valeur moyenne desdits pas maximal et minimal. De la sorte, on obtiendra ultérieurement une carcasse recouverte selon des modalités expliquées ci-après, dont les capacités de flexion sont optimales. En effet, lorsque la carcasse est fléchie, les spires les plus proches du centre de courbure vont venir en butée dans une position minimale rapprochée, tandis qu'à l'opposé, les spires les plus éloignées du centre de courbure vont venir dans la position maximale écartée l'une de l'autre.
De plus, selon une caractéristique de l'invention particulièrement avantageuse mais non limitative, à l'étape c), on libère une seule spire entre ladite zone amont et ladite zone aval. Ainsi, les spires sont portées successivement entre la zone amont et la zone aval à un pas correspondant au pas donné. Il est bien évidemment possible de libérer plusieurs spires entre la zone amont et la zone aval, en fonction de la rigidité du feuillard profilé et des spires. Selon un mode de réalisation de l'invention préférentiel, lesdites spires présentant un extrados opposé à un intrados, on prend appui selon une composante radiale sur l'extrados desdites spires pour les maintenir. Plus précisément, le feuillard profilé en S présente une partie externe orientée vers l'extérieur de la carcasse et une partie complémentaire interne orientée vers l'intérieur. Aussi, la partie externe d'une spire vient en prise dans la partie interne d'une spire contiguë en définissant un interstice entre les parties externes des deux spires. Ainsi, on vient prendre appui sur l'extrados des spires et plus précisément sur les parties externes. De la sorte, les risques de génération de copeaux métalliques sont fortement atténués par rapport aux méthodes selon l'art antérieur puisqu'on ne prend pas appui à l'intérieur des interstices. Aussi, on s'affranchit des discontinuités de la carcasse inhérentes aux aboutements.
Préférentiellement, on prend appui sur lesdites spires en au moins trois points d'appui angulairement espacés les uns des autres de manière régulière. Ainsi, on enserre la carcasse en trois points décalés angulairement de 120° autour de la carcasse de manière à la maintenir en position fixe selon une composante radiale et en appliquant des efforts radiaux répartis de manière symétrique. De la sorte, la carcasse ne se déforme pas malgré la pression des points d'appui.
Selon un autre mode de réalisation de l'invention préférentiel, la méthode comprend en outre une étape e) après l'étape d) selon laquelle on forme une gaine étanche sur la carcasse présentant des spires audit pas donné. Ainsi, on extrude par exemple directement la gaine étanche autour de la carcasse dès après la zone aval, de manière à ce que la gaine vienne enserrer sensiblement la carcasse et maintenir la position relative des spires au pas donné. L'extrusion est ainsi réalisée de manière continue à mesure que la carcasse est entraînée en translation selon son axe longitudinal à la vitesse d'entraînement en translation des spires dans la zone aval.
Selon un autre objet, il est proposé une installation de réglage du pas des spires d'une carcasse métallique pour former une conduite flexible de transport d'hydrocarbure, ladite carcasse métallique présentant des spires d'un enroulement hélicoïdal d'un feuillard profilé en S successivement agrafées, ladite carcasse étant extensible longitudinalement entre un pas minimal et un pas maximal desdites spires, ladite installation comprenant un dispositif d'entraînement pour entraîner en translation ladite carcasse métallique selon sa direction longitudinale d'une zone amont vers une zone aval, ledit dispositif d'entraînement comportant des organes de guidage et de maintien pour porter successivement, entre ladite zone amont et ladite zone aval, les spires à un pas donné et pour maintenir lesdites spires audit pas donné dans ladite zone aval. Lesdits organes de guidage et de maintien comportent des organes de guidage et de maintien amont pour maintenir dans ladite zone amont lesdites spires à un pas prédéterminé, et des organes de guidage et de maintien aval indépendant desdits organes de guidage et de maintien amont, pour pouvoir entraîner en translation lesdites spires maintenues dans ladite zone aval à une vitesse différenciée de la vitesse d'entraînement en translation desdites spires maintenues dans ladite zone amont, de manière à pouvoir porter lesdites spires dudit pas prédéterminé audit pas donné, tandis qu'on libère au moins partiellement lesdites spires entre ladite zone amont et ladite zone aval.
Une telle installation, que l'on décrira plus en détail dans la suite de la description, permet de mettre en œuvre aisément la méthode de réglage décrite ci-dessus.
Selon une caractéristique de l'invention particulièrement avantageuse, mais nullement limitative, elle comprend en outre des supports situés en amont de ladite zone amont pour pouvoir étendre ladite carcasse en caténaire de manière à porter lesdites spires de ladite zone amont audit pas prédéterminé correspondant audit pas maximal. Ainsi, on provoque l'étirement de la carcasse, en l'étendant en caténaire, ou en chaînette entre deux supports. De la sorte, sous l'effet de son propre poids entre les deux supports, elle s'étire jusqu'au pas maximal des spires. Par exemple, la carcasse est enroulée sur un touret, et elle s'étend en caténaire, depuis le touret jusqu'à un support fait de galets roulants situé en amont de ladite zone amont.
Préférentiellement, lesdits organes de guidage et de maintien amont comprennent un jeu de chenilles amont. Ainsi, on met en œuvre par exemple un jeu de trois chenilles autour de la carcasse. Chacune des chenilles comporte au moins deux roues d'extrémité et une courroie montée sur les deux roues, la courroie étant appliquée selon une génératrice de la carcasse pour venir en appui sur une pluralité de spires successives, tandis que l'arbre de rotation des roues s'étend perpendiculairement à l'axe de la carcasse. Par exemple, on met en œuvre trois chenilles amont agencées autour de la carcasse de manière à pouvoir l'enserrer entre les courroies des chenilles.
Aussi, et de la même façon, lesdits organes de guidage et de maintien aval comprennent un jeu de chenilles aval. Les chenilles du jeu de chenilles aval sont analogues à celles du jeu de chenilles amont et elles peuvent également être mises en œuvre par trois comme on l'expliquera ci-après.
Selon un autre mode de réalisation, les chenilles sont remplacées par des jeux de roues venant directement entraîner la carcasse. De surcroît, lorsque la carcasse présente un diamètre important, le nombre de chenilles par jeu est augmenté de manière à assurer un meilleur guidage et un meilleur maintien.
De plus, l'installation de réglage comprend en outre une tête annulaire d'extrusion pour pouvoir former une gaine étanche sur la carcasse présentant des spires audit pas donné.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après d'un mode de réalisation particulier de l'invention, donné à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la Figure 1 est une vue schématique latérale d'une installation de réglage conforme à l'invention ;
- la Figure 2 est une vue schématique partielle en perspective d'une partie de l'installation illustrée sur la Figure 1 ;
- la Figure 3 est une vue schématique partielle de côté de la partie d'installation représenté sur la Figure 2 ;
- la Figure 4 est une vue schématique de détail de la partie de l'installation illustrée sur la Figure 3 dans une première phase ;
- la Figure 5 est une vue schématique de détail de la partie de l'installation illustrée sur la Figure 3 dans une deuxième phase ; et, - la Figure 6 est une vue schématique en coupe radiale de l'objet représenté sur la Figure 2.
La Figure 1 illustre schématiquement une installation de réglage 10 permettant de mettre en œuvre la méthode selon l'invention. La Figure 1 montre une carcasse métallique 12, de symétrie cylindrique circulaire, étendue selon son axe de symétrie A. Selon le mode de mise en œuvre représenté sur la Figure 1 , la carcasse 12 présente un diamètre intérieur de 150 mm. L'installation de réglage 10 comporte des organes de guidage et de maintien 15 comprenant des organes de guidage et de maintien amont 14 pour maintenir et guider la carcasse 12 dans une zone amont 16 et des organes de guidage et de maintien aval 18 pour maintenir et guider la carcasse 12 dans une zone aval 20. On observera que les organes de guidage et de maintien 14, 18 permettent notamment, d'entraîner la carcasse 12 en translation selon son axe de symétrie A, et selon un sens allant de la zone amont 16 vers la zone aval 20. En particulier, la carcasse 12 est ici entraînée à travers une tête annulaire d'extrusion 21 permettant d'extruder directement une gaine étanche 23 sur la carcasse 12, comme on l'expliquera dans la suite de la description.
La carcasse 12 présente des spires 22 en prise successivement les unes dans les autres. Chaque spire 22 présente selon l'exemple présenté sur la Figure, une largeur totale voisine de 55 mm. On se référera à la Figure 4 afin de décrire plus en détail la structure de la carcasse et des spires 22. La carcasse 12 est faite de spires 22 obtenues par enroulement hélicoïdal d'un feuillard 24 profilé en S. Ainsi, chacune des spires 22 présente une partie externe 26 et une partie interne opposée 28. Les deux bordures libres opposées du feuillard 24 sont recourbées en U, l'une 30 avec une nervure profilée 32 en saillie vers l'intérieur du U, l'autre 34, dépourvue de nervure. De la sorte, les spires 22 viennent successivement en prise les unes dans les autres, l'autre 34 des deux bordures libres opposées du feuillard 24 recourbée en U venant en prise dans ladite une bordure libre recourbée en U 30 munie d'une nervure profilée 32. L'autre 34 des deux bordures libres opposées du feuillard 24 recourbée en U est alors prise en étau dans ladite une bordure libre recourbée en U 30 grâce à la nervure profilée 32. Ainsi, chacune des spires 22 présente un pas P, résultant de l'enroulement hélicoïdal du feuillard 24 profilé en S. Deux spires contiguës 22 définissent par construction un interstice 36 et partant, les spires sont déformables selon l'axe de la carcasse A entre une position rapprochée les unes des autres et une position écartée les unes des autres, dans lesquelles positions elles présentent respectivement un pas minimal et un pas maximal.
Un objet de l'invention est précisément de régler le pas des spires 22 de la carcasse 12 à une valeur comprise entre la valeur du pas minimal et la valeur du pas maximal, et avantageusement, à une valeur de pas intermédiaire Pi correspondant à la moyenne des deux pas, minimal et maximal, avant que la carcasse 12 ne pénètre à l'intérieur de la tête annulaire d'extrusion 21 . En effet, après que la carcasse 12 a été recouverte de la gaine étanche, les spires 22 sont dans une certaine mesure maintenues en position fixe les unes par rapport aux autres au pas intermédiaire Pi précité. Cette configuration offre à la conduite qui en résultera, des possibilités de flexion optimales avec de moindre contrainte sur la carcasse 12.
On reviendra sur la Figure 1 pour pouvoir décrire la méthode de réglage selon l'invention. Le principe de la méthode vise tout d'abord à porter les spires 22 de la carcasse 12 dans une position relative prédéterminée à un pas prédéterminé. En l'espèce, le plus aisé est d'étirer la carcasse longitudinalement afin de porter les spires 22 dans des positions écartées les unes des autres et partant, à un pas maximal. Pour ce faire, et en amont des organes de guidage et de maintien 15, on installe deux supports de carcasse espacés l'un de l'autre en ligne dans l'axe de symétrie A de la carcasse 12. Ces supports ne sont ici pas représentés. Ils sont équipés de moyens de guidage en translation pour autoriser le glissement de la carcasse 12. Cette dernière est alors maintenue en caténaire, ou en chaînette, entre les deux supports de sorte que, sous l'effet de son propre poids, les spires s'écartent les unes des autres jusqu'à leur pas maximal. Ainsi, les supports sont espacés l'un de l'autre d'une distance suffisante permettant cet écartement des spires. On peut également prévoir un étirage préalable lors de la fabrication de la carcasse 12. Étant entraînée en translation selon l'axe de symétrie A, la carcasse 12 pénètre alors dans la zone amont 16 avec des spires 22 à leur pas maximal. Dans cette zone amont 16 les organes de guidage et de maintien amont 14 comprennent un premier jeu de trois premières chenilles, une première première chenille 40, une deuxième première chenille 42 et une troisième première chenille 44 que l'on décrira plus en détail en référence à la Figure 2.
Ainsi, les premières chenilles 40, 42, 44 sont représentées schématiquement et partiellement. La première première chenille 40 comporte deux premières premières roues d'extrémité motrices, une première première roue amont 46 opposée à une première première roue aval 48, ainsi qu'une courroie 50 installée sur les deux premières premières roues amont 46, et aval 48. L'arbre d'entraînement des premières premières roues d'extrémité amont 46, et aval 48 de la première première chenille 40 s'étendent perpendiculairement à l'axe de symétrie A de la carcasse 12 et la courroie 50 est alors appliquée en pression sur la carcasse 12 selon une génératrice. Aussi, la courroie 50 vient s'appliquer sur la partie externe 26 des spires 22, et elle ne vient s'étendre ni dans les interstices 36, ni au contact de la partie interne 28. On observera que la longueur d'appui de la courroie 50 est sensiblement égale à la distance qui sépare les deux arbres d'entraînement des premières premières roues d'extrémité amont 46, et aval 48. Les deux premières premières roues d'extrémité 48, 46 et la courroie 50 définissent un plan moyen axial.
Les deux autres chenilles, la deuxième première 42 et la troisième première 44 sont analogues et elles présentent respectivement, une deuxième première roue aval 48' et une deuxième première roue amont 46', et une troisième première roue aval 48" et une troisième première roue amont 46". Les deuxième 42 et troisième 44 premières chenilles sont également équipées chacune d'une courroie 50 prenant appui longitudinalement sur la partie externe 26 des spires 22 de la carcasse 12. Elles sont respectivement décalées angulairement de + 2/3 π et de - 2/3 π par rapport à la première première chenille 40. Les trois premières chenilles 40, 42, 44 sont bien évidemment installées sur un premier bâti non représenté que traverse la carcasse 12, laquelle est alors guidée à l'intérieur dudit bâti.
Ainsi, les premières roues d'extrémité amont 46 et aval 48 sont entraînées en rotation de manière à entraîner la courroie 50 en appui contre la carcasse 12 de la zone amont 16 vers la zone aval 20 selon la flèche F. Les courroies 50 des chenilles 40, 42, 44 sont alors entraînées concomitamment à une même vitesse V1 de manière à entraîner en translation les spires 22 de la carcasse 12 dans la zone amont 16 à cette vitesse V1 en les maintenant en position fixe les unes par rapport aux autres et au pas maximal. Pour ce faire, les courroies 50 sont portées en pression sur la carcasse 12 avec un effort radial important afin d'éviter le glissement des courroies 50 par rapport aux spires 22 de la carcasse 12, sans pour autant la déformer.
De plus, on observera que les premières chenilles 40, 42, 44 du premier jeu sont décalées axialement les unes par rapport aux autres et successivement, sensiblement d'un tiers de pas maximal. On expliquera ci- après ce qu'implique ce décalage axial au niveau des appuis des courroies 50 sur les spires. De la sorte, les courroies 50 du premier jeu de chenilles 40, 42, 44 libèrent successivement les spires 22 de la zone amont 16, vers la zone aval 20.
La carcasse 12 ainsi entraînée à une vitesse V1 par le premier jeu de chenilles 40, 42, 44 va ensuite être engagée dans la zone aval 20 à travers les organes de guidage et de maintien aval 18 représentés sur la Figure 1 . De retour sur la Figure 2, on observera que ces organes de guidage et de maintien aval 18 comprennent un second jeu de trois deuxièmes chenilles, une première deuxième 52, une deuxième deuxième 54, et une troisième deuxième 56, toutes structurellement analogues à celles du premier jeu. Les trois deuxièmes chenilles 52, 54 et 56 sont agencées de manière décalée angulairement par rapport au premier jeu, de 1/3 ττ. De la sorte, les trois deuxièmes chenilles 52, 54, 56 s'étendent respectivement de manière diamétralement opposée par rapport aux trois premières chenilles 44, 40, 42.
En outre, les trois deuxièmes chenilles 52, 54, et 56 présentent des deuxièmes courroies 58 également installées sur deux deuxièmes roues d'extrémité motrices, une deuxième roue amont 60 opposée à une deuxième roue aval 62. L'arbre d'entraînement des deux deuxièmes roues 60, 62 s'étend également perpendiculairement à l'axe de symétrie A de la carcasse.
De manière analogue aux trois premières chenilles 40, 42, 44, les trois deuxièmes chenilles 52, 54, et 56 sont installées sur un deuxième bâti indépendant, non représenté. Ce deuxième bâti est monté réglable en translation et en rotation selon l'axe A de la carcasse 12, par rapport au premier bâti.
Aussi, les trois deuxièmes courroies 58 s'étendant en appui sur les spires 22 de la zone aval 20 selon des génératrices de la carcasse 12. Les courroies 58 des chenilles 52, 54, 56 sont alors entraînées concomitamment à une même vitesse V2, inférieure à V1 , de manière à pouvoir porter le pas des spires, de leur pas maximal à leur pas intermédiaire Pi, et à entraîner en translation les spires 22 de la carcasse 12 dans la zone aval 20 à la vitesse V2 en les maintenant en position fixe les unes par rapport aux autres audit pas intermédiaire Pi comme on va l'expliquer ci-après.
Comme illustré sur la Figure 3 de manière schématique, les organes de guidage et de maintien aval 18 sont décalés axialement par rapport aux organes de guidage et de maintien amont 14. On retrouve sur cette Figure, partiellement, la carcasse 12 présentant ses spires 22. Par ailleurs, deux, la deuxième 42 et la troisième 44, des trois premières chenilles du premier jeu sont représentées tandis que la première 40 n'apparaît pas pour plus de clarté, et par là-même, seules deux, la deuxième 54 et la troisième 56 des trois deuxièmes chenilles du deuxième jeu apparaissent sur la Figure 3.
Le deuxième jeu de trois chenilles 52, 54, 56 est décalé axialement du premier jeu de trois chenilles 40, 42, 44, d'une distance permettant de laisser entre les deux, sensiblement une demi spire 22 libre à son pas maximal comme on l'expliquera ci-après. Ainsi, la première courroie 50 de la deuxième première chenille 42 s'étend vers la zone aval 20 en appui contre les spires 22 jusqu'à un deuxième premier point 64 de la carcasse 12 situé au droit de l'axe de rotation de la deuxième première roue aval 48'. Aussi, la deuxième courroie 58 de la troisième deuxième chenille 56 s'étend vers la zone amont 16 contre les spires 22, jusqu'à un troisième deuxième point 66 de la carcasse 12 situé au droit de l'axe de rotation de la troisième deuxième roue amont 60".
Ainsi, en tenant compte de ces décalages, on décrira plus en détail en référence à la Figure 6, non seulement les positions radiales relatives des deux jeux de trois chenilles, le premier jeu de trois chenilles 40, 42, 44 et le deuxième jeu de trois chenilles 52, 54, 56, mais aussi, leurs positions axiales.
La Figure 6 est une vue sectionnelle de l'amont vers l'aval de la carcasse 12, les spires tournant dans le sens trigonométrique T, de l'amont vers l'aval également. Ainsi, selon le sens trigonométrique T la deuxième première chenille 42, décalée angulairement de 2/3 π par rapport à la première première chenille 40, est décalée axialement vers la zone aval selon l'axe de symétrie A d'une distance correspondant à un tiers du pas maximal Pm des spires maintenues dans la zone amont 16, par rapport à la première chenille 40. Autrement dit, par rapport aux considérations ci-dessus, s'agissant du décalage axial de la deuxième première chenille 42 par rapport à la première première chenille 40, il s'étend selon l'axe de symétrie A, d'un premier premier point d'appui 65 de la première courroie 50 de la première première chenille 40 situé au droit de l'axe de rotation de la première première roue aval 48 jusqu'au deuxième premier point d'appui 64 de la première courroie 50 de la deuxième première chenille 42, situé au droit de l'axe de rotation de la deuxième première roue aval 48'. Quant à la troisième première chenille 44, elle est décalée angulairement de 2/3 π par rapport à la deuxième première chenille 42, toujours dans le sens trigonométrique T et elle est décalée axialement d'une distance correspondant à deux tiers du pas maximal Pm des spires maintenues dans la zone amont 16, par rapport à la première chenille 40. Autrement dit, ce dernier décalage axial s'étend selon l'axe de symétrie A du premier premier point d'appui 65 de la première courroie 50 de la première première chenille 40 jusqu'au troisième premier point d'appui 68 de la première courroie 50 de la troisième première chenille 44 situé au droit de la troisième première roue aval 48".
S'agissant maintenant du deuxième jeu de chenilles 52, 54, 56, toujours en référence à la Figure 6, la première deuxième chenille 52, est décalée angulairement de 1/3 π par rapport à la première première chenille 40, dans le sens trigonométrique T. Elle est décalée axialement d'une distance correspondant au 7/6 du pas maximal Pm, dans le sens allant de la zone amont 16 vers la zone aval 20, par rapport à la première première chenille 40. Aussi, ce décalage axial s'étend selon l'axe de symétrie A, du premier premier point d'appui 65 de la première courroie 50 de la première première chenille 40 jusqu'au premier deuxième point d'appui 70 de la deuxième courroie 58 de la première deuxième chenille 52, situé au droit de l'axe de rotation de la première deuxième roue amont 60. En revanche, on observera que la première deuxième chenille 52 est décalée axialement d'une distance correspondant à ½ pas maximal Pm par rapport à la troisième première chenille 44. Partant, seul une demie spire est entièrement libre entre le deuxième jeu de chenilles 52, 54, 56 et le premier jeu de chenilles 42, 44, 46.
Toujours en référence à la Figure 6, la deuxième deuxième chenille 54 est décalée angulairement de 2/3 π par rapport à la première deuxième chenille 52, dans le sens trigonométrique T. Elle est décalée axialement, par rapport à la première deuxième chenille 52, d'une distance correspondant au 1/3 du pas maximal Pm, dans le sens allant de la zone amont 16 vers la zone aval 20. Aussi, ce décalage axial s'étend selon l'axe de symétrie A, du premier deuxième point d'appui 70, jusqu'à un deuxième deuxième point d'appui 72 de la deuxième courroie 58 de la deuxième deuxième chenille 54, situé au droit de l'axe de rotation de la deuxième deuxième roue amont 60'.
Quant à la troisième deuxième chenille 56, elle est décalée angulairement de 2/3 π par rapport à la deuxième deuxième chenille 54, dans le sens trigonométrique T. Elle est décalée axialement, par rapport à la deuxième deuxième chenille 54 d'une distance correspondant au 1/3 du pas maximal Pm, dans le sens allant de la zone amont 16 vers la zone aval 20. Aussi, ce décalage axial s'étend selon l'axe de symétrie A, du deuxième deuxième point d'appui 72, jusqu'au troisième deuxième point d'appui 66 de la deuxième courroie 58 de la deuxième deuxième chenille 54, situé au droit de l'axe de rotation de la troisième deuxième roue amont 60". Ainsi, on comprend que la carcasse 12 s'étend librement entre le premier jeu de chenilles 40, 42, 44 et le deuxième jeu de chenilles 52, 54, 56, sur une distance correspondant à une demi spire, entre la troisième première chenille 44 et la première deuxième chenille 52.
On observera que le réglage du deuxième bâti supportant le deuxième jeu de chenilles 52, 54, 56, permet de le décaler angulairement de + 2/3 ττ, et de l'éloigner axialement du premier jeu d'une distance équivalente à 2/3 du pas maximal Pm. Partant, la carcasse 12 s'étend alors librement entre le premier jeu de chenilles 40, 42, 44 et le deuxième jeu de chenilles 52, 54, 56, sur une distance correspondant à 7/6 du pas maximal Pm d'une spire.
Ces différentes possibilités sont choisies en fonction des dimensions de la carcasse et des spires. En effet, ces dernières sont plus ou moins déformables en fonction de la dimension des feuillards, et la déformation de la carcasse faite d'un feuillard épais et large est plus aisée et requiert moins d'énergie lorsqu'elle s'effectue sur plus d'une spire.
On se reportera aux Figures 3 et 4 afin d'illustrer le principe de l'invention. Ainsi on y retrouve, en vue partielle, la carcasse 12 faite de ses spires 22. La carcasse est entraînée suivant son axe de symétrie A, de la zone amont 16 vers la zone aval 20. Sont également représentées, la deuxième première chenille 42 et dans un autre plan, la deuxième deuxième chenille 54. Ainsi, la deuxième deuxième chenille 54 est décalée axialement par rapport à la deuxième première chenille 42 d'une distance équivalente à 7/6 du pas maximal Pm d'une spire.
Ainsi, sur la Figure 4, une première spire 80 vient en prise sur la deuxième courroie 58 de la deuxième deuxième chenille 54, tandis qu'une deuxième spire 82 demeure totalement en prise avec la première courroie 50 de la deuxième première chenille 42. La vitesse tangentielle de la première courroie 50 de la deuxième première chenille 42 est V1 , tandis que la vitesse tangentielle de la deuxième courroie 58 de la deuxième deuxième chenille 54 est V2 inférieure à V1 (V2<V1 ). Partant, la première spire 80 va être entraînée à la vitesse V2, tandis que la deuxième spire 82 est entraînée à la vitesse V1 . Un instant plus tard, en référence à la Figure 5, la première spire 80, en prise avec la deuxième courroie 58, est entraînée en translation à la vitesse V2, tandis que la deuxième spire 82 est entraînée en translation à la vitesse V1 . Le réglage du pas des spires a alors lieu durant le mouvement des deux spires 80, 82 animées de deux vitesses différentes. La carcasse 12 est ainsi comprimée entre la zone amont 16 et la zone aval 20, d'un rapport égal à V2/V1 .
Ainsi, il est aisé de régler le pas des spires de la carcasse à toute valeur prédéfinie entre le pas maximal et le pas minimal en ajustant les vitesses relatives V1 et V2.
Selon un mode de réalisation préféré, la vitesse V2 du deuxième jeu de chenilles 52, 54, 56 est gardée constante, de manière à pouvoir conserver le réglage des paramètres de la tête d'extrusion annulaire 21 . En revanche, la vitesse V1 du premier jeu de chenilles 40, 42, 44 est ajustée elle, en fonction des caractéristiques dimensionnelles de la carcasse. Aussi, avantageusement, le premier bâti est mobile par rapport au deuxième bâti.

Claims

REVENDICATIONS
1 . Méthode de réglage du pas des spires (22) d'une carcasse métallique (12) pour former une conduite flexible de transport d'hydrocarbures, ladite méthode étant du type comprenant les étapes suivantes :
- a) on fournit une carcasse métallique (12) présentant des spires (22) d'un enroulement hélicoïdal d'un feuillard profilé en S successivement agrafées, ladite carcasse étant extensible longitudinalement entre un pas minimal et un pas maximal desdites spires ;
- b) on entraîne en translation ladite carcasse métallique (12) selon sa direction longitudinale A d'une zone amont (16) vers une zone aval (20) ;
- c) on porte successivement, entre ladite zone amont (16) et ladite zone aval (20), les spires (22) à un pas donné (Pi) ; et,
- d) on maintient lesdites spires (22) audit pas donné (Pi) dans ladite zone aval (20) ;
caractérisée en ce qu'on fournit en outre des organes de guidage et de maintien (14, 18) comprenant des jeux de chenilles (40, 42, 44, 52, 54, 56) pour, à l'étape b), maintenir dans ladite zone amont (16) lesdites spires (22) à un pas prédéterminé (Pm) ; et à l'étape c), libérer au moins partiellement lesdites spires (22) entre ladite zone amont (16) et ladite zone aval (20) de manière à pouvoir entraîner en translation lesdites spires (22) maintenues dans ladite zone aval (16) à une vitesse différenciée de la vitesse d'entraînement en translation desdites spires (22) maintenues dans ladite zone amont (16), et de façon à pouvoir porter lesdites spires (22) dudit pas prédéterminé (Pm) audit pas donné (Pi).
2. Méthode de réglage selon la revendication 1 , caractérisée en ce qu'on fournit des organes de guidage et de maintien (14) comprenant un jeu de chenilles amont (40, 42, 44).
3. Méthode de réglage selon la revendication 1 ou 2, caractérisée en ce qu'on fournit des organes de guidage et de maintien (18) comprenant un jeu de chenilles aval (52, 54, 56).
4. Méthode de réglage selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'à l'étape b) ledit pas déterminé (Pm) est ledit pas maximal.
5. Méthode de réglage selon la revendication 4, caractérisée en ce qu'à l'étape b), on porte lesdites spires (22) de ladite zone amont (16) audit pas maximal (Pm).
6. Méthode de réglage selon la revendication 4 ou 5, caractérisée en ce qu'à l'étape c), on entraîne en translation lesdites spires (22) maintenues dans ladite zone aval (20) à une vitesse (V2) inférieure à la vitesse d'entraînement en translation (V1 ) desdites spires maintenues dans ladite zone amont (16).
7. Méthode de réglage selon l'une quelconque des revendications 1 à
6, caractérisée en ce qu'à l'étape c), ledit pas donné (Pi) est sensiblement égal à la valeur moyenne desdits pas maximal et minimal.
8. Méthode de réglage selon l'une quelconque des revendications 1 à
7, caractérisée en ce qu'à l'étape c), on libère une seule spire (22) entre ladite zone amont (16) et ladite zone aval (20).
9. Méthode de réglage selon l'une quelconque des revendications 1 à
8, caractérisée en ce que, lesdites spires (22) présentant un extrados opposé à un intrados, on prend appui selon une composante radiale sur l'extrados desdites spires pour les maintenir.
10. Méthode de réglage selon la revendication 9, caractérisée en ce qu'on prend appui sur lesdites spires (22) en au moins trois points d'appui angulairement espacés les uns des autres de manière régulière.
1 1 . Méthode de réglage selon l'une quelconque des revendications 1 à
10, caractérisée en ce qu'elle comprend en outre une étape e) après l'étape d) selon laquelle on forme une gaine étanche (23) sur la carcasse (12) présentant des spires (22) audit pas donné.
12. Installation de réglage (10) du pas des spires (22) d'une carcasse métallique (12) pour former une conduite flexible de transport d'hydrocarbure, ladite carcasse métallique (12) présentant des spires (22) d'un enroulement hélicoïdal d'un feuillard profilé en S successivement agrafées, ladite carcasse (12) étant extensible longitudinalement entre un pas minimal et un pas maximal desdites spires (22), ladite installation comprenant un dispositif d'entraînement pour entraîner en translation ladite carcasse métallique (12) selon sa direction longitudinale d'une zone amont (16) vers une zone aval (20), ledit dispositif d'entraînement comportant des organes de guidage et de maintien (14, 18) pour porter successivement, entre ladite zone amont (16) et ladite zone aval (20), les spires (22) à un pas donné (Pi) et pour maintenir lesdites spires (22) audit pas donné (Pi) dans ladite zone aval (20) ;
caractérisée en ce que lesdits organes de guidage et de maintien comportent un jeu de chenilles amont (40, 42, 44) pour maintenir dans ladite zone amont (16) lesdites spires (22) à un pas prédéterminé et un jeu de chenilles aval (52, 54, 56) indépendant dudit jeu de chenilles amont (40, 42, 44), pour pouvoir entraîner en translation lesdites spires (22) maintenues dans ladite zone aval (20) à une vitesse (V2) différenciée de la vitesse (V1 ) d'entraînement en translation desdites spires (22) maintenues dans ladite zone amont (16), de manière à pouvoir porter lesdites spires (22) dudit pas prédéterminé audit pas donné (Pi), tandis qu'on libère au moins partiellement lesdites spires (22) entre ladite zone amont (16) et ladite zone aval (20).
13. Installation de réglage selon la revendication 12, caractérisée en ce qu'elle comprend en outre des supports situés en amont de ladite zone amont
(16) pour pouvoir étendre ladite carcasse (12) en caténaire de manière à porter lesdites spires (22) de ladite zone amont (16) audit pas prédéterminé correspondant audit pas maximal (Pm).
14. Installation de réglage selon la revendication 12 ou 13, caractérisée en ce qu'elle comprend en outre une tête annulaire d'extrusion (21 ) pour pouvoir former une gaine étanche (23) sur ladite carcasse (12) présentant des spires (22) audit pas donné (Pi).
PCT/FR2017/053814 2016-12-23 2017-12-22 Methode et installation de reglage du pas des spires d'une carcasse metallique WO2018115787A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663318A FR3061048B1 (fr) 2016-12-23 2016-12-23 Methode et installation de reglage du pas des spires d'une carcasse metallique
FR1663318 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018115787A1 true WO2018115787A1 (fr) 2018-06-28

Family

ID=58358682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053814 WO2018115787A1 (fr) 2016-12-23 2017-12-22 Methode et installation de reglage du pas des spires d'une carcasse metallique

Country Status (2)

Country Link
FR (1) FR3061048B1 (fr)
WO (1) WO2018115787A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008728A1 (fr) 2020-07-10 2022-01-13 National Oilwell Varco Denmark I/S Procédé et système de fabrication d'une carcasse à pas commandé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054823A (fr) * 1900-01-01
FR2442100A2 (fr) * 1978-11-27 1980-06-20 Saurin Emmanuel Procede de fabrication de corps tubulaires, notamment de boites de conserves, et dispositif pour l'execution de ce procede
US4597276A (en) * 1983-12-06 1986-07-01 Coflexip Apparatus for making helically wound interlocked tubular structure
JP2003285360A (ja) 2002-03-28 2003-10-07 Furukawa Electric Co Ltd:The 可撓性複合管の製造方法及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054823A (fr) * 1900-01-01
FR2442100A2 (fr) * 1978-11-27 1980-06-20 Saurin Emmanuel Procede de fabrication de corps tubulaires, notamment de boites de conserves, et dispositif pour l'execution de ce procede
US4597276A (en) * 1983-12-06 1986-07-01 Coflexip Apparatus for making helically wound interlocked tubular structure
JP2003285360A (ja) 2002-03-28 2003-10-07 Furukawa Electric Co Ltd:The 可撓性複合管の製造方法及び製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008728A1 (fr) 2020-07-10 2022-01-13 National Oilwell Varco Denmark I/S Procédé et système de fabrication d'une carcasse à pas commandé

Also Published As

Publication number Publication date
FR3061048B1 (fr) 2020-12-25
FR3061048A1 (fr) 2018-06-29

Similar Documents

Publication Publication Date Title
EP3641960B1 (fr) Installation pour la fabrication d&#39;une structure de renfort d&#39;une conduite flexible, procede associe et systeme comprenant ladite installation
EP3036467B1 (fr) Conduite flexible de transport de fluide et procédé associé
FR3017439A1 (fr) Conduite flexible de transport de fluide munie d&#39;un insert en forme de s etendu et procede de fabrication associe
EP2057394B1 (fr) Conduite flexible à haute résistance à la compression axiale et méthode de fabrication d&#39;une telle conduite
WO1997020162A1 (fr) Canalisation flexible a conduites multiples resistante a l&#39;ecrasement
FR2999466A1 (fr) Machine de placement de fibres comprenant un rouleau avec des bagues pivotantes
EP2691679B1 (fr) Conduite tubulaire flexible sous-marine pour grande profondeur et procede de fabrication
FR2837899A1 (fr) Dispositif pour limiter le flambage lateral des nappes d&#39;armures d&#39;une conduite flexible
FR2905685A1 (fr) Mandrin permettant le positionnement et le maintien d&#39;un tube support
WO2018115787A1 (fr) Methode et installation de reglage du pas des spires d&#39;une carcasse metallique
EP0201389B1 (fr) Pompe péristaltique linéaire pour véhiculer du béton ou autre
EP2331316B1 (fr) Méthode et installation de construction d&#39;une couche de fils d&#39;armure
EP0935505B1 (fr) Spiraleuse
WO2013079852A1 (fr) Dispositif pour le deplacement en continu de bouteilles de gaz en direction d&#39;une machine de remplissage
FR2876365A1 (fr) Procede et dispositif d&#39;enroulement en bobine d&#39;une bande
EP3548767A1 (fr) Lien pour mécanismes de transmission
FR3044955A1 (fr)
EP4153517B1 (fr) Dispositif de séparation permettant de prélever un profilé sur une surface de convoyage, et machine d&#39;extrusion pourvue d&#39;un tel dispositif de séparation
FR2922411A1 (fr) Procede de gestion de l&#39;entrainement des poulies d&#39;un dispositif de halage d&#39;un cable genre ligne palangre ou filiere de casier et dispositif de halage correspondant
FR2949450A1 (fr) Procede pour l&#39;enroulement d&#39;un cable, ou similaire sur un support d&#39;enroulement, et dispositif pour l&#39;enroulement d&#39;un cable, en tant que tel
EP3019328B1 (fr) Roue de guidage pour les ensembles de pose de couches de fils d&#39;armure et methode de montage associee
FR3051696A1 (fr) Dispositif et procede de traction et de dressage d&#39;un monofilament metallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17835859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17835859

Country of ref document: EP

Kind code of ref document: A1