WO2018113760A1 - 参考信号发送方法及基站,配置确定方法及终端 - Google Patents

参考信号发送方法及基站,配置确定方法及终端 Download PDF

Info

Publication number
WO2018113760A1
WO2018113760A1 PCT/CN2017/117886 CN2017117886W WO2018113760A1 WO 2018113760 A1 WO2018113760 A1 WO 2018113760A1 CN 2017117886 W CN2017117886 W CN 2017117886W WO 2018113760 A1 WO2018113760 A1 WO 2018113760A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
transmission
same
sequence set
sending
Prior art date
Application number
PCT/CN2017/117886
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
鲁照华
高波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018113760A1 publication Critical patent/WO2018113760A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for transmitting a reference signal, a method for determining a configuration, a device thereof, a base station, and a terminal.
  • reference signals In a wireless communication system, there are many different types of reference signals, each of which plays an important role in different aspects. There are mainly the following types of reference signals.
  • the first type is a synchronization signal
  • the synchronization signal is mainly used for synchronization between the transmitting end and the receiving end, including a downlink synchronization signal (Synchronization Signal, SS for short) and an uplink synchronization signal or a random access signal (Radom access signal, referred to as RAS).
  • the SS may be further divided into a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the former is mainly used for basic time interval synchronization, and the latter is used for time interval unit sequence number. Alignment.
  • the second type is the measurement reference signal, also known as the measurement pilot, which is mainly used for measurement and feedback at the receiving end. According to different measurement purposes, it can be divided into RRM measurement, beam measurement, channel state information (CSI) measurement, and large-scale properties measurement. There are mainly the following types of measurement pilots:
  • the downlink CSI measurement channel (CSI-RS) is mainly used for downlink channel information CSI measurement, but can also be used for beam measurement, mobility measurement, and large-scale characteristic measurement;
  • the uplink sounding reference signal is mainly used for uplink channel information CSI measurement, but can also be used for beam measurement, mobility measurement, and large-scale characteristic measurement;
  • Mobility reference signal mainly used for mobility-related measurement, may be an independent signal or a synchronization signal, a reference demodulation signal of a broadcast channel, or a beam measurement reference signal, and CSI-RS signal;
  • BRS Beam Reference Signal
  • Feature Measurement Pilot Used for large-scale characteristic measurements, including delay spread, Doppler spread, Doppler shift, average gain, and average gain (average gain and average) Measurement of characteristics such as delay), frequency shift, average received power, Received Timing, channel correlation, and arrival angle may be independent guides. Frequency, it is also possible to use other functions of the pilot to increase the density to take into account the measurement of large-scale characteristics.
  • the third type is a reference demodulation signal, which is also referred to as a reference demodulation pilot.
  • the transmitting end can perform precoding data/control transmission according to the channel information, and can adopt one or more layers of multi-antenna transmission. technology. Generally, each layer has a corresponding Demodulation Reference Signal (DMRS), and the data or control information is demodulated by demodulating the channel estimated by the reference pilot and combining the received signal;
  • DMRS Demodulation Reference Signal
  • Reference demodulation pilot for data Reference demodulation for data channels, which can be configured with multiple ports; reference demodulation pilots including uplink data and reference demodulation pilots for downlink data.
  • Controlled reference demodulation pilot reference demodulation for control channel, multiple ports can be configured; control channel can be divided into proprietary control channel, public control channel; proprietary/public control channel may be controlled according to transmission The information is divided into multiple sub-categories, and the control channels respectively need corresponding demodulation pilots; according to the uplink and downlink divisions, the reference demodulation pilots of the uplink and downlink control can be further divided.
  • the reference demodulation pilot of the broadcast channel may be an independent reference demodulation pilot, or may use a synchronization signal, or a BRS, for reference demodulation.
  • the DMRS can be used for measurement feedback of CSI (Channel State Information) in addition to demodulation.
  • CSI Channel State Information
  • the fourth type of pilot is a phase noise compensation reference signal (PNCRS), which is also called a phase noise compensation pilot.
  • PCRS phase noise compensation reference signal
  • This type of pilot is generally used for phase compensation when the phase noise is relatively large. It is used for frequency offset tracking, so it can also be considered as a frequency offset estimation pilot.
  • Some cases of this kind of pilot are appearing separately, and some cases appear as a step of DMRS, mainly because phase noise compensation is mainly used for data demodulation, which can also be understood as special demodulation pilot. If it is also defined on the transport layer, each layer corresponds to a phase noise supplemental pilot port, which can be considered as part of the DMRS.
  • the parameter configuration of the foregoing reference signal is generally determined by the base station, and then notified to the terminal by signaling.
  • Common reference signal configurations include reference signal density and time-frequency position, number of reference signal ports, and reference signal. Power and so on. These configurations generally adopt the configuration of explicit signaling, that is, the status bits in the signaling directly indicate the time-frequency location, the number of ports, the power, and the like.
  • a QCL Quadrature-co-location relationship indication between reference signals
  • QCB quadsi-co-beam relationship indication or other reference signal relationship indication
  • reference signal group indication a combined estimation capability indication of the reference signal, and the like.
  • the related configurations involving the above reference signals all involve relationship indication information between multiple reference signals.
  • the main idea of reference signal parameter configuration is also through explicit control. Signaling is configured, such as explicitly notifying which reference signals are related, and notifying what is the relationship between these reference signals.
  • the terminal determines the configuration of these pilot relationship related parameters according to explicit configuration signaling, and then uses it for demodulation, measurement feedback, and the like. Since multiple reference signal types are involved, the number of ports of the reference signal may be many, the configuration of the port is also flexible, the relationship between the reference signals is complicated, and there are some cross relations. Therefore, if some of the above configurations are notified by explicit signaling, and sufficient flexibility is to be ensured, complicated signaling design and a large amount of signaling overhead are required.
  • the configuration of the reference signal is notified in an explicit manner, and there is still a problem: in some cases, the terminal needs to measure the reference signal of the neighboring cell, for example, in the mobility management, the terminal may It is necessary to measure the synchronization signal of the neighboring cell, the measurement pilot signal of the neighboring cell, and the like to determine whether it is necessary to switch the cell or the beam. In this manner, the serving cell needs to communicate through the interface between the cells, and then the pilot with the neighboring cell. The relevant reference signal configuration is notified to the terminal of the own cell. In fact, the inter-cell communication interface does not have to exist, and configuring the reference signal parameters of multiple neighboring cells also requires a large amount of signaling overhead. Therefore, the explicit notification method cannot be applied to all scenarios, and the letter The cost is large.
  • the technical problem to be solved by the present disclosure is to provide a method for transmitting a reference signal, a method for determining a configuration, a device thereof, a base station, and a terminal, to avoid description of a pairwise relationship between all reference signals, thereby reducing signaling overhead.
  • a method for transmitting a reference signal includes: determining a relationship of N reference signals with respect to a class M parameter, wherein N and M are positive integers; determining the N reference signals Transmitting a sequence; using the transmission sequence to characterize a relationship of the N reference signals with respect to the M-type parameter; and transmitting the N reference signals.
  • the relationship includes one or more of the following: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the relationship includes any one of the following: the same and different; or related and unrelated; or may be combined and unmersible; or may be combined and unjoinable.
  • the M type parameter includes one or more of the following: a characteristic parameter, a sending parameter, a receiving parameter, a combining parameter, and a measuring parameter.
  • the rule for using the sending sequence to characterize the relationship between the N reference signals and the M-type parameters is determined by the transmitting end, or pre-agreed by the receiving end and the transmitting end, or configured by the transmitting end to be configured.
  • the receiving end, or determined by the receiving end, is configured to the transmitting end.
  • the rule is determined according to a type of the reference signal and/or a parameter type of the reference signal.
  • the using the sending sequence to characterize a relationship of the N reference signals with respect to the M-type parameter is characterized by using any one of the following: a sequence group to which the sending sequence belongs; or a correlation of the sending sequence Or a root sequence index of the transmission sequence; or a relationship of cyclic shift values of the transmission sequence; or an orthogonal code of the transmission sequence; or a scrambling code of the transmission sequence.
  • the sequence group to which the transmission sequence belongs is used to represent a relationship of the N reference signals with respect to the M-type parameter, including one or more of the following: the transmission sequence belongs to the same sequence set, and represents different reference signals. There is a quasi-co-location relationship with respect to one or more characteristic parameters corresponding to the sequence set; the sending sequence belongs to the same sequence set, and the different reference signal transmitting cells are identical; the sending sequence belongs to the same sequence set, and different reference signals are characterized.
  • the transmission sequence is the same; the transmission sequence belongs to the same sequence set, and the different reference signal transmission base stations are identical; the transmission sequence belongs to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequence belongs to the same sequence set, and the representation is different.
  • the reference signal transmitting antennas are the same; the sending sequences belong to the same sequence set, and the different reference signal sending nodes are identical; the sending sequences belong to the same sequence set, and the different reference signals are transmitted to pre-code the same or related; the sending sequence belongs to the same sequence.
  • the reference signal transmission beams are the same or related; the transmission sequences belong to the same sequence set, and the transmission powers of different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the transmission sequences belong to the same The sequence set is the same as the different reference signal receiving base stations; the transmission sequences belong to the same sequence set, and the different reference signal receiving cells are identical; the sending sequences belong to the same sequence set, and the different reference signal receiving sectors are identical; the sending sequence The same sequence set is used to represent different reference signal receiving antennas; the sending sequence belongs to the same sequence set, and the receiving reference signals are identical or related to each other; the sending sequences belong to the same sequence set, and the receiving beams of different reference signals are identical or Corresponding; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for channel measurement; the transmission sequences belong to the same sequence set, and different reference signals can be jointly used for interference measurement; The transmission sequences belong to the same sequence set, and the
  • sequence set is pre-agreed by the transceiver, or the sequence set is determined by the sending end and configured to the receiving end, or the sequence set is determined by the receiving end and configured to the sending end.
  • the sequence set is determined according to a type of the reference signal and/or a parameter type.
  • a device for transmitting a reference signal comprising: a first determining module configured to determine a relationship of N reference signals to be transmitted with respect to a class M parameter, wherein N and M are positive An integer determining unit configured to determine a transmission sequence of the N reference signals; a characterization module configured to use the transmission sequence to characterize a relationship of the N reference signals with respect to the M type parameter; the sending module is configured to be a transmitting station N reference signals are described.
  • the first determining module determines the relationship to include one or more of the following relationships: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the first determining module determines the relationship to include any one of the following: the same and different; or related and unrelated; or may be combined and unconsolidable; or may be combined and unjoinable,
  • the M type parameter includes one or more of the following: a characteristic parameter, a transmission parameter, a reception parameter, a combined parameter, and a measurement parameter.
  • the characterization module by using the sending sequence to characterize the relationship between the N reference signals and the M-type parameters, is determined by the transmitting end, or pre-agreed by the receiving end and the transmitting end, or determined by the transmitting end.
  • the configuration is configured to the receiving end, or is determined by the receiving end and configured to the transmitting end, and the rule is determined according to the type of the reference signal and/or the parameter type of the reference signal.
  • the characterization module is configured to use any one of the following to characterize a relationship of the N reference signals with respect to the M-type parameter: a sequence group to which the transmission sequence belongs, or a correlation of the transmission sequence, or the The root sequence index of the transmission sequence, or the relationship of the cyclic shift values of the transmission sequence, or the orthogonal code of the transmission sequence, or the scrambling code of the transmission sequence.
  • the characterization module uses the sequence group to which the sending sequence belongs to characterize the relationship of the N reference signals with respect to the M-type parameter, including one or more of the following: the sending sequence belongs to the same sequence set, and the characterization
  • the different reference signals have a quasi-co-location relationship with respect to one or more characteristic parameters corresponding to the sequence set; the sending sequences belong to the same sequence set, and the different reference signal transmitting cells are identical; the sending sequence belongs to the same sequence set, and the characterization
  • the different reference signal transmission sectors are the same; the transmission sequences belong to the same sequence set, and the different reference signal transmission base stations are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequences belong to the same sequence set.
  • the transmitting sequences belong to the same sequence set, and the different reference signal transmitting nodes are identical; the sending sequences belong to the same sequence set, and the different reference signals are transmitted to transmit the same precoding or the same; the sending sequence Belong to the same sequence set Characterizing that different reference signal transmission beams are the same or related; the transmission sequences belong to the same sequence set, and the transmission powers of different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the sending The sequences belong to the same sequence set, and the different reference signal receiving base stations are identical; the transmission sequences belong to the same sequence set, and the different reference signal receiving cells are identical; the sending sequences belong to the same sequence set, and the different reference signal receiving sectors are identical; The transmission sequences belong to the same sequence set, and the different reference signal receiving antennas are identical; the transmission sequences belong to the same sequence set, and the received reference signals are identical or related to each other; the transmission sequences belong to the
  • the beams are identical or related; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for channel measurement; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for the dry Measuring; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for phase noise estimation; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for demodulation and/or coherent reception; The transmission sequences belong to the same sequence set, and the different reference signals can be used jointly for time domain and/or frequency domain synchronization.
  • the sequence set is pre-agreed by the transceiver, or the sequence set is determined by the sending end and configured to the receiving end, or is determined by the receiving end and configured to the sending end, where the sequence set is according to the reference signal.
  • the type and / or parameter type is determined.
  • a method for determining a reference signal configuration comprising: determining a transmission sequence of N reference signals, N being a positive integer; determining a rule for indicating a reference signal relationship using the transmission sequence; The transmission sequence determines a relationship of the N reference signals with respect to a class M parameter, where M is a positive integer.
  • the reference signal relationship includes one or more of the following: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the reference signal relationship includes any one of the following: the same and different; or related and unrelated; or may be combined and unmersible; or may be combined and unjoinable.
  • the M type parameter includes one or more of the following: a characteristic parameter, a sending parameter, a receiving parameter, a combining parameter, and a measuring parameter.
  • the sending sequence indicates that the rule of the reference signal relationship is pre-agreed by the receiving end and the sending end, or is configured by the sending end to the receiving end, or is determined by the receiving end and configured to the sending end.
  • the rule of using the transmission sequence to indicate a reference signal relationship is determined according to a type of the reference signal and/or a parameter type of the reference signal.
  • determining, according to the sending sequence, a relationship of the N reference signals with respect to a class M parameter according to any one of the following: a sequence group to which the sending sequence belongs; or a sending sequence a root sequence index; or a relationship of cyclic shift values of the transmission sequence; or an orthogonal code of the transmission sequence; or a scrambling code of the transmission sequence.
  • the determining, according to the sending sequence, the relationship of the N reference signals with respect to the M-type parameter includes one or more of the following: the sending sequence belongs to the same sequence set, and represents different reference signals with respect to the set.
  • One or more characteristic parameters have a quasi-co-location relationship; the transmission sequences belong to the same sequence set, and the different reference signal transmission cells are identical; the transmission sequences belong to the same sequence set, and the same reference signal transmission sectors are identical;
  • the transmission sequence belongs to the same sequence set, and the different reference signal transmission base stations are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission antennas are identical;
  • the transmission sequence belongs to the same sequence set, and the different reference signal sending nodes are identical; the sending sequence belongs to the same sequence set, and the different reference signal transmission precodings are the same or related; the sending sequences belong to the same sequence set, and different reference signals are characterized.
  • the transmission sequence belongs to the same sequence set, and the transmission powers of different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the transmission sequences belong to the same sequence set, and the representation
  • the different reference signal receiving base stations are the same; the sending sequences belong to the same sequence set, and the different reference signal receiving cells are identical; the sending sequences belong to the same sequence set, and the different reference signal receiving sectors are identical; the sending sequences belong to the same sequence set.
  • the transmitting sequences belong to the same sequence set, and the receiving reference signals are identical or related to each other; the transmitting sequences belong to the same sequence set, and the receiving beams of the different reference signals are identical or related;
  • the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for channel measurement; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for interference measurement; the transmission sequences belong to the same Column sets, characterizing different reference signals can be jointly used for phase noise estimation; the transmission sequences belong to the same sequence set, and different reference signals can be jointly used for demodulation/coherent reception; the transmission sequences belong to the same sequence set, and different references are characterized Signals can be combined for time domain/frequency domain synchronization.
  • sequence set is pre-agreed by the receiving end and the sending end, or is determined by the sending end and configured to be sent to the receiving end; or determined by the receiving end and configured to be sent to the sending end.
  • the sequence set is determined according to a type of the reference signal and/or a parameter type.
  • a determining apparatus for determining a reference signal comprising: a first determining module configured to determine a transmission sequence of N reference signals, N being a positive integer; and a second determining module configured to determine Using the transmission sequence to indicate a rule of a reference signal relationship; a third determining module, configured to determine a relationship of the N reference signals with respect to a class M parameter according to the transmission sequence, where M is a positive integer.
  • the third determining module determines the reference signal relationship to include one or more of the following: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the third determining module determines that the reference signal relationship includes any one of the following: the same and different; or related and unrelated; or may be combined and unconsolidable; or may be combined and unjoinable,
  • the M type parameter includes one or more of the following: a characteristic parameter, a transmission parameter, a reception parameter, a combined parameter, and a measurement parameter.
  • the sending sequence indicates that the rule of the reference signal relationship is pre-agreed by the receiving end and the transmitting end, or is configured by the sending end to the receiving end, or is determined by the receiving end and configured to the sending end, where the sending sequence is used.
  • the rule indicating the reference signal relationship is determined according to the type of the reference signal and/or the parameter type of the reference signal.
  • the third determining module determines, according to the sending sequence, a relationship of the N reference signals with respect to the M-type parameter, which is determined according to any one of the following: a sequence group to which the sending sequence belongs; or a root sequence index of the transmission sequence; or a relationship of cyclic shift values of the transmission sequence; or an orthogonal code of the transmission sequence; or a scrambling code of the transmission sequence.
  • the third determining module determines, according to the sending sequence, that the relationship between the N reference signals and the M-type parameters includes one or more of the following: the sending sequences belong to the same sequence set, and represent different reference signals. There is a quasi-co-location relationship between the one or more characteristic parameters corresponding to the set; the sending sequence belongs to the same sequence set, and the different reference signal sending cells are identical; the sending sequence belongs to the same sequence set, and the different reference signals are sent.
  • the sectors are the same; the transmission sequences belong to the same sequence set, and the different reference signal transmission base stations are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequences belong to the same sequence set, and the different sequences are characterized.
  • the signal transmission antennas are the same; the transmission sequences belong to the same sequence set, and the different reference signal transmission nodes are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission precodings are identical or related; the transmission sequences belong to the same sequence set. , characterizing different parameters
  • the signal transmission beams are the same or related; the transmission sequences belong to the same sequence set, and the transmission powers of different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the transmission sequence belongs to the same sequence.
  • the set, the different reference signal receiving base stations are identical; the sending sequences belong to the same sequence set, and the different reference signal receiving cells are identical; the sending sequences belong to the same sequence set, and the different reference signal receiving sectors are identical; the sending sequence belongs to The same sequence set is the same as the receiving antennas of different reference signals; the transmitting sequences belong to the same sequence set, and the receiving weights of the different reference signals are identical or related; the sending sequences belong to the same sequence set, and the receiving beams of different reference signals are identical or related.
  • the transmission sequence belongs to the same sequence set, and the different reference signals can be jointly used for channel measurement; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for interference measurement; The sequences belong to the same sequence set, and the different reference signals can be jointly used for phase noise estimation; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for demodulation/coherent reception; the transmission sequences belong to the same sequence set.
  • Characterizing different reference signals may be jointly used for time domain/frequency domain synchronization, and the sequence set is pre-agreed by the receiving end and the transmitting end, or configured by the transmitting end and configured to the receiving end; or determined by the receiving end and configured to the transmitting end, The set of sequences is determined based on the type of reference signal and/or the type of parameter.
  • a method for transmitting a reference signal includes: determining a manner of grouping N reference signals to be transmitted, where N is a positive integer; determining transmission of the N reference signals according to a grouping manner a sequence; transmitting the N reference signals.
  • the determining a manner of grouping the N reference signals to be sent is determined according to the following manner: the sending sequence of the reference signals in the same group satisfies a first relationship, where the first relationship includes one or more of the following: Combination of species: the root sequences are the same or related, the cyclic shift parameters are the same or related, the orthogonal codes are the same or related, and the scrambling parameters are the same or related.
  • a device for transmitting a reference signal includes: a first determining module, configured to determine a manner of grouping N reference signals to be transmitted, where N is a positive integer; and a second determining module, And configured to determine a transmission sequence of the N reference signals according to a grouping manner; and a sending module configured to send the N reference signals.
  • the first determining module determines that a grouping manner of the N reference signals to be sent is determined according to one or more of the following relationships: the root sequences are the same or related; the cyclic shift parameters are the same or related The orthogonal codes are the same or related; the scrambling parameters are the same or related.
  • a method of determining a reference signal configuration comprising: determining N reference signals and a transmission sequence thereof, wherein N is a positive integer; determining the N reference signals according to the transmission sequence Grouping method.
  • the determining, by the sending sequence, the grouping manner of the N reference signals is determined according to the following manner: a sending sequence of reference signals in the same group satisfies a first relationship, where the first relationship includes the following Or a combination of multiple: the root sequence is the same or related, the cyclic shift parameters are the same or related, the orthogonal codes are the same or related, and the scrambling parameters are the same or related.
  • a determining apparatus for determining a reference signal comprising: a first determining module configured to determine N reference signals and a transmission sequence thereof, wherein N is a positive integer; a second determining module, And configured to determine a manner of grouping the N reference signals according to the transmission sequence.
  • the first determining module determines, according to the sending sequence, how to group the N reference signals according to the manner that a sending sequence of reference signals in the same group satisfies a first relationship, where the first determining The relationship includes a combination of one or more of the following: the root sequences are the same or related, the cyclic shift parameters are the same or related, the orthogonal codes are the same or related, and the scrambling parameters are the same or related.
  • a method for transmitting a reference signal includes: dividing at least two types of configuration parameters of a reference signal: a first type of configuration parameter and a second type of configuration parameter; determining the first type Determining, according to the first type of configuration parameter, the second type of configuration parameter; or determining the second type of configuration parameter, determining the first type of configuration parameter according to the second type of configuration parameter; The configuration parameters are used to transmit the reference signal.
  • the first type of configuration parameter includes sequence parameter information
  • the second type of configuration parameter includes one or more of the following information: time domain transmission configuration information of the reference signal, frequency domain transmission configuration of the reference signal Information, transmission rule information of the reference signal, precoding/beam indication information of the reference signal, transmission power configuration information of the reference signal, transmission antenna configuration information of the reference signal, and transmission port configuration information of the reference signal.
  • the time domain transmission configuration information of the reference signal includes one or more of the following: transmission period configuration information, time domain transmission offset information, time domain symbol position information, and time domain repeated transmission times configuration information.
  • the frequency domain transmission configuration information of the reference signal is: frequency domain density configuration information and/or frequency domain transmission location information.
  • the sending rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode hopping rule information.
  • the sending manner includes one or more of the following: a transmitting antenna, a transmitting beam, and a precoding.
  • a device for transmitting a reference signal includes: a dividing module configured to divide at least two types of configuration parameters of a reference signal: a first type of configuration parameter and a second type of configuration parameter; a module, configured to determine the first type of configuration parameter, determine the second type of configuration parameter according to the first type of configuration parameter, or determine the second type of configuration parameter, and determine, according to the second type of configuration parameter
  • the first type of configuration parameter is described; the sending module is configured to send the reference signal according to the configuration parameter.
  • the first type of configuration parameter includes sequence parameter information
  • the second type of configuration parameter includes one or more of the following information: time domain transmission configuration information of the reference signal, frequency domain transmission configuration of the reference signal Information, transmission rule information of the reference signal, precoding/beam indication information of the reference signal, transmission power configuration information of the reference signal, transmission antenna configuration information of the reference signal, and transmission port configuration information of the reference signal.
  • the time domain sending configuration information of the reference signal includes one or more of the following: sending period configuration information, time domain sending offset information, time domain symbol position information, and time domain repeat sending times configuration information;
  • the frequency domain transmission configuration information of the reference signal is: frequency domain density configuration information and/or frequency domain transmission location information;
  • the transmission rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode The rule information is hopped with time;
  • the sending manner includes one or more of the following: a transmitting antenna, a transmitting beam, and a precoding.
  • a method for determining a configuration of a reference signal includes: dividing at least two types of configuration parameters of a reference signal: a first type of configuration parameter and a second type of configuration parameter; determining the first type The configuration parameter determines the second type of configuration parameter according to the first type of configuration parameter; or determines the second type of configuration parameter, and determines the first type of configuration parameter according to the second type of configuration parameter.
  • the first type of configuration parameter includes sequence parameter configuration information
  • the second type of configuration parameter is one or more of the following information: time domain transmission configuration information of the reference signal; frequency domain transmission of the reference signal Configuration information; transmission rule information of reference signal; precoding/beam indication information of reference signal; transmission power configuration information of reference signal; transmission antenna configuration information of reference signal; transmission port configuration information of reference signal.
  • the time domain transmission configuration information of the reference signal includes one or more of the following: transmission period configuration information, time domain transmission offset information, time domain symbol position information, and time domain repeated transmission times configuration information.
  • the frequency domain transmission configuration information of the reference signal is: frequency domain density configuration information and/or frequency domain transmission location information.
  • the sending rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode hopping rule information.
  • the sending manner includes one or more of the following: a transmitting antenna, a transmitting beam, and a sending precoding.
  • a configuration determining apparatus for a reference signal comprising: a dividing module configured to divide at least two types of configuration parameters of a reference signal: a first type of configuration parameter and a second type of configuration parameter a determining module, configured to determine a first type of configuration parameter, determine the second type of configuration parameter according to the first type of configuration parameter; or determine a second type of configuration parameter, and determine the second type of configuration parameter according to the second type of configuration parameter The first type of configuration parameters.
  • the first type of configuration parameter includes sequence parameter configuration information
  • the second type of configuration parameter is one or more of the following information: time domain transmission configuration information of the reference signal; frequency domain transmission of the reference signal Configuration information; transmission rule information of reference signal; precoding/beam indication information of reference signal; transmission power configuration information of reference signal; transmission antenna configuration information of reference signal; transmission port configuration information of reference signal.
  • the time domain sending configuration information of the reference signal includes one or more of the following: sending period configuration information, time domain sending offset information, time domain symbol position information, and time domain repeat sending times configuration information;
  • the frequency domain transmission configuration information of the reference signal is: frequency domain density configuration information and/or frequency domain transmission location information;
  • the transmission rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode The rule information is hopped over time;
  • the sending manner includes one or more of the following: a transmitting antenna, a transmitting beam, and a transmitting precoding.
  • a base station including a memory and a processor, wherein the memory stores an instruction to perform a transmission method of a reference signal as described above; the processor is configured to Execute the instructions stored by the memory.
  • a terminal comprising a memory and a processor, wherein the memory stores instructions for performing a configuration determining method of a reference signal as described above; the processor, setting An instruction to store the memory.
  • the present disclosure provides a method for transmitting a reference signal, a method for determining a configuration, a device thereof, a base station, and a terminal, and characterizing a relationship between other parameters of a reference signal by a sequence relationship, without explicitly indicating what the value of the parameter is. It is only used to characterize the same, related, different, irrelevant, mergeable, different mergeable, etc. This method avoids the description of the pairwise relationship between all reference signals, with small signaling overhead and high flexibility; The configuration of the reference signal by sequence can avoid the interaction between cells, and is very simple and convenient in the mobility management and interference information measurement.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a device for transmitting a reference signal according to Embodiment 3 of the present disclosure
  • FIG. 3 is a flowchart of a method for determining a reference signal configuration according to Embodiment 4 of the present disclosure
  • FIG. 4 is a schematic diagram of a determining apparatus for determining a reference signal according to Embodiment 5 of the present disclosure
  • FIG. 5 is a flowchart of a method for transmitting a reference signal according to Embodiment 6 of the present disclosure
  • FIG. 6 is a schematic diagram of a device for transmitting a reference signal according to Embodiment 7 of the present disclosure
  • FIG. 7 is a flowchart of a method for determining a reference signal configuration according to Embodiment 8 of the present disclosure
  • FIG. 8 is a schematic diagram of a determining apparatus for determining a reference signal according to Embodiment 9 of the present disclosure.
  • Embodiment 9 is a flowchart of a method for transmitting a reference signal according to Embodiment 10 of the present disclosure.
  • FIG. 10 is a schematic diagram of a device for transmitting a reference signal according to Embodiment 11 of the present disclosure
  • FIG. 11 is a flowchart of a method for determining a configuration of a reference signal according to Embodiment 12 of the present disclosure
  • FIG. 12 is a schematic diagram of a configuration determining apparatus for a reference signal according to Embodiment 13 of the present disclosure.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure. As shown in FIG. 1, the sending method of this embodiment includes the following steps.
  • N reference signals to be transmitted are determined and parameter configurations of the N reference signals are determined.
  • the parameter configuration herein may include multiple types of parameters.
  • the following types of parameters are mainly concerned, including: reference signal characteristic parameters, reference signal transmission parameters, reference signal reception parameters, reference signal measurement parameters, but the implementation of the present disclosure The examples do not exclude other parameters.
  • step 111 the relationship between the N reference signals with respect to the above-mentioned parameters of the M class is determined, and N and M are both positive integers.
  • a transmission sequence of N reference signals is determined according to a relationship of the N reference signals with respect to the M-type parameters; and a transmission sequence is used to characterize the relationship of the N reference signals with respect to the M-type parameters.
  • transmission sequences need to be determined according to the relationship between the aforementioned N reference signals with respect to the above-mentioned parameters of the M class, and the relationship between the transmission sequences of the N reference signals can reflect the existence of N reference signals with respect to the above-mentioned parameters of the M class. relationship. That is to say, the relationship existing between sequences implicitly represents the relationship between the M-type parameters.
  • the N reference signals are transmitted according to the relationship of the N reference signals with respect to the M-type parameters using the transmission sequence.
  • step 101 is explained below by way of example.
  • N reference signals may be determined by the base station, and N reference signals may be determined by the terminal, which respectively correspond to the downlink reference signal and the uplink reference signal.
  • the N reference signals may include different types of reference signals and/or reference signals of the same type but different time-frequency resources or different port resources.
  • N reference signals are determined here by the base station, and the N reference signals may be in the following cases.
  • Examples of some different types of reference signals included in the N reference signals include: “downlink synchronization signal and downlink measurement pilot signal”, “downlink measurement pilot and downlink demodulation pilot signal”, “downlink synchronization and downlink demodulation” Pilot signal “downlink phase noise pilot signal and downlink demodulation pilot signal” “downlink phase noise pilot signal and downlink measurement pilot signal”, etc.; also includes reference signals of different subtypes, such as beam measurement pilot (BRS) and downlink channel state information measurement pilot (CSI-RS), downlink mobility measurement pilot (MRS) and channel state information measurement pilot (CSI-RS), downlink control channel demodulation pilot and downlink data channel Demodulation pilot, broadcast channel demodulation pilot and downlink control channel demodulation pilot, downlink public control channel demodulation pilot, downlink dedicated control channel demodulation pilot, downlink public control channel demodulation for transmitting paging message The pilot and the downlink public control channel transmitting the OFDM OFDM
  • Examples of some of the N reference signals of the same type but occupying different resources include: reference signals of the same type but different ports, for example: pilot signals corresponding to different downlink measurement pilot ports; different downlink demodulation pilot ports Corresponding pilot signals; pilot signals corresponding to different downlink phase noise pilot ports; reference signals of the same type but different time domain positions, for example: downlink synchronization signals of different symbols/subframes/time slots; different symbols/sub-signals Downlink measurement pilot signal of frame/slot; downlink demodulation pilot signal of different symbols/subframe/slot; reference signal of the same type but different frequency domain positions, for example: different carrier/subcarrier/Subband (sub Downlink synchronization signal with /) RB (Resource Block); CSI-RS signal for different carriers/subcarriers/Subband/RB; BRS signals for different carriers/subcarriers/Subband/RB; different carriers/subcarriers/ Downband demodulation pilot signal of Subband/RB; downlink phase noise pilot signal of different carrier/subcarrier/Sub
  • the N reference signals are determined here by the terminal, and the N reference signals may be in the following cases.
  • Examples of some different types of reference signals included in the N reference signals include: “random access signals and measurement pilot signals”, “random access signals and demodulation pilot signals”, “measurement pilot signals and demodulation” Pilot signal”, “phase noise pilot signal and demodulation pilot signal” “phase noise pilot signal and measurement pilot signal”, and the like.
  • Examples of some of the N reference signals of the same type but occupying different resources include: reference signals of the same type but different ports, for example: pilot signals corresponding to different uplink measurement pilot ports; different uplink demodulation pilot ports Corresponding pilot signals; pilot signals corresponding to different uplink phase noise pilot ports; reference signals of the same type but different time domain positions, for example: random access signals of different symbols/subframes/slots; different symbols/ Uplink measurement pilot signals for subframes/time slots; uplink demodulation pilot signals for different symbols/subframes/time slots; reference signals of the same type but different frequency domain locations, eg different carrier/subcarrier/Subband/ Random access signal of RB; SRS signal of different carrier/subcarrier/Subband/RB; uplink demodulation pilot signal of different carrier/subcarrier/Subband/RB; uplink phase noise of different carrier/subcarrier/Subband/RB Pilot signal.
  • the N reference signals may include some of the above cases or a combination thereof.
  • step 111 The implementation of step 111 is described below.
  • the relationship of the N reference signals with respect to the plurality of types of parameters may include, for example, a characteristic parameter, a transmission parameter, a reception parameter, a merge parameter, and a measurement parameter.
  • the characteristic parameters include: delay spread, Doppler spread, Doppler shift, average gain, average delay, frequency offset ( Frequency shift), Average received power Received Timing, channel correlation, arrival angle, and Departure angle.
  • the sending parameters include: for the downlink, including: a transmitting cell, a transmitting sector, a transmitting base station, a transmitting antenna, a transmitting node, a transmitting precoding, a transmitting beam, a transmitting power, and the like.
  • the receiving parameters include: for the downlink, including: the receiving terminal, the receiving antenna, the receiving weight, and the receiving beam.
  • the measurement parameters include: parameters for channel measurement, parameters for interference measurement.
  • the same is generally the same as the parameter values, such as: the same density, the same power, the same period, the same offset, etc.; the same can be the same for the transmitting cell (for the downlink), the sending sector is the same, the transmitting base station is the same (for the downlink), The transmitting terminal is the same (for the uplink), the transmitting antenna is the same, the transmitting node is the same, the transmitting precoding is the same, the transmitting beam is the same, etc.; the receiving terminal (for the downlink) is the same, the receiving base station (for the uplink) is the same, and the receiving cell (for the uplink) The same, the receiving antennas are the same, the receiving weights are the same, the receiving beams are the same, the receiving modes are the same, and the like.
  • reference signal parameters can also be described as: relevant, irrelevant.
  • a quasi-co-location or quasi-common beam is a representation that describes the reference signal correlation.
  • Irrelevant is a special case of difference, that is, different and not related; it can be considered that the parameters are independent.
  • reference signal parameters can also be described as: combinable, not merging.
  • some signals can be combined for demodulation, combined for phase noise estimation, combined for channel measurement, combined for synchronization, combined for eigen measurement, combined for interference measurement, etc.; Cannot be combined for phase noise estimation, channel measurement, synchronization, characteristic measurement, and interference measurement.
  • reference signal parameters can also be described as: can be combined, not combined.
  • Merging is a special case of federation.
  • noise reduction can be jointly performed to improve channel estimation performance, channel measurement accuracy, phase noise estimation performance, synchronization performance, and characteristic measurement. Accuracy, interference measurement accuracy, etc.
  • step 121 The embodiment of step 121 is described below.
  • the transmission sequence of the N reference signals can be determined by the base station or the terminal.
  • the determination of these transmission sequences needs to be determined according to the relationship between the aforementioned N reference signals with respect to the above-mentioned parameters of the M class, and the relationship between the transmission sequences of the N reference signals can reflect the N reference signals with respect to the above parameters of the M class.
  • sequences belong to the same set (sequence group)
  • there is an association relationship between one or more types of parameters in the M-type parameters for example, the sequences may belong to the same sequence set, and the different reference signals are characterized as being corresponding to the set.
  • One or more characteristic parameters have a quasi-co-location relationship; the sequences belong to the same sequence set, and the different reference signal transmitting cells are identical; the sequences belong to the same sequence set, and the different reference signal transmitting sectors are identical; the sequences belong to the same sequence set, and the characterization
  • Different reference signal transmitting base stations are the same; sequences belong to the same sequence set, and different reference signal transmitting terminals are identical; sequences belong to the same sequence set, and different reference signal transmitting antennas are identical; sequences belong to the same sequence set, and different reference signal transmitting nodes are identical; sequence Belong to the same sequence set, and characterize different reference signals to transmit precoding identical or related; the sequences belong to the same sequence set, and the different reference signal transmitting beams are identical or related; the sequences belong to the same sequence set, and the different reference signal transmitting power phases are characterized.
  • sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the sequences belong to the same sequence set, and the different reference signal receiving base stations are identical; the sequences belong to the same sequence set, and the different reference signal receiving cells are identical; the sequences belong to the same sequence set.
  • Characterizing different reference signal receiving sectors is the same; sequences belong to the same sequence set, characterizing different reference signal receiving antennas; sequences belonging to the same sequence set, representing different reference signal receiving weights are the same or related; sequences belong to the same sequence set, characterizing different references
  • the signal receiving beams are the same or related; the sequences belong to the same sequence set, and the different reference signals can be jointly used for channel measurement; the sequences belong to the same sequence set, and the different reference signals can be jointly used for interference measurement; the sequences belong to the same sequence set, and the different sequences are characterized.
  • Signals can be used jointly for phase noise estimation; sequences belong to the same sequence set, and different reference signals can be used jointly for demodulation/coherent reception; sequences belong to the same sequence set, characterizing different parameters Signal can be combined for a time domain / frequency domain synchronization.
  • sequence correlation coefficient is greater than the agreed or configured threshold and is considered to be related or identical with respect to one or more types of parameters; or may be combined and may be combined.
  • relationship of the root sequence index to characterize the relationship of the reference signals; for example, if the index satisfies the agreed function relationship, it is considered that one or more types of parameters are related or identical; or may be combined and may be combined.
  • cyclic shift values it is also possible to use the relationship of the cyclic shift values to characterize the relationship of the reference signals; for example, the same cyclic shift value is considered to be related or identical to one or more types of parameters; or may be combined and combined.
  • orthogonal codes to characterize the relationship of reference signals; for example, orthogonal codes are considered to be related or identical to one or more types of parameters; or may be combined and combined.
  • the scrambling code it is also possible to use the scrambling code to characterize the relationship of the reference signals; for example, the same scrambling code is considered to be related or identical to one or more types of parameters; or may be combined and combined.
  • the rule that the transmitting end determines that the sequence is used to indicate the relationship of different reference signals may be pre-agreed by the transceiver; or is determined by the transmitting end and configured to the receiving end; or may be the receiving end. After determining, configure it to the sender.
  • the rule may be different for different reference signals.
  • the configuration of the sequence set may be:
  • the above-mentioned reason sequence is determined to indicate the rules of the different reference signal relationships.
  • the configuration of the sequence set may be:
  • the set of sequence sets configured for different types of parameters can be different.
  • the functional relationships of the sequences may be different for different types of reference signals.
  • the functional relationships of the sequences may be different for different types of reference signal parameters.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a method of transmitting the reference signal.
  • the device 100 for transmitting a reference signal includes:
  • the first determining module 210 is configured to determine a relationship of the N reference signals to be sent with respect to the M type parameter, where M is a natural number;
  • the second determining module 220 is configured to determine a sending sequence of the N reference signals
  • the characterization module 230 is configured to utilize a transmission sequence to characterize a relationship of the N reference signals with respect to the M-type parameter;
  • the sending module 240 is configured to send N reference signals.
  • the first determining module 210 determines the relationship to include one or more of the following relationships: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the first determining module 210 determines the relationship to include any one of the following: the same and different; or related and unrelated; or may be combined and unconsolidable; or may be combined and unjoinable,
  • the M type parameter includes one or more of the following: a characteristic parameter, a transmission parameter, a reception parameter, a combined parameter, and a measurement parameter.
  • the rule that the characterization module uses the transmission sequence to characterize the relationship between the N reference signals and the M-type parameters is determined by the transmitting end, or pre-agreed by the transceiver, or determined by the transmitting end, configured to the receiving end, or by the receiving end. After determining, configure it to the sender.
  • the rules may be determined based on the type of reference signal and/or the type of parameter of the reference signal.
  • the characterization module 230 is configured to use any of the following to characterize the relationship of the N reference signals with respect to the M-type parameter: the sequence group to which the transmission sequence belongs, or the correlation of the transmission sequence, or the root sequence index of the transmission sequence, Or send the relationship of the cyclic shift value of the sequence, or send the orthogonal code of the sequence, or send the scrambling code of the sequence.
  • the characterization module 230 uses the sequence group to which the transmission sequence belongs to characterize the relationship of the N reference signals with respect to the M-type parameters, including one or more of the following: the transmission sequences belong to the same sequence set, and represent different reference signals.
  • the one or more characteristic parameters corresponding to the sequence set have a quasi-co-location relationship; the sending sequences belong to the same sequence set, and the different reference signal transmitting cells are identical; the sending sequences belong to the same sequence set, and the different reference signal transmitting sectors are identical;
  • the sequences belong to the same sequence set, and the different reference signal transmission base stations are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission antennas are identical; the transmission sequences belong to the same sequence set.
  • Characterizing different reference signal transmitting nodes is the same; transmitting sequences belong to the same sequence set, characterizing different reference signals to transmit precoding identical or related; transmitting sequences belong to the same sequence set, and characterizing different reference signal transmitting beams are the same or related;
  • the sequences belong to the same sequence set, and the transmission powers of different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the transmission sequences belong to the same sequence set, and the different reference signal receiving base stations are identical; the transmission sequences belong to the same
  • the sequence set is the same as the receiving cells of different reference signals; the transmitting sequences belong to the same sequence set, and the receiving sectors of the different reference signals are identical; the transmitting sequences belong to the same sequence set, and the receiving antennas of different reference signals are identical; the sending sequences belong to the same sequence set, and the characterization Different reference signal receiving weights are the same or related; the transmitting sequences belong to the same sequence set, and the receiving beams of the different reference
  • characterization of different reference signals can be used jointly for interference measurement; transmission sequences belong to the same sequence set, and different reference signals can be used jointly for phase noise estimation; Belonging to the same sequence set, the different reference signals can be jointly used for demodulation and/or coherent reception; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for time domain and/or frequency domain synchronization.
  • the sequence set is pre-agreed by the transceiver end, or the sequence set is determined by the sending end and then configured to the receiving end, or is determined by the receiving end and configured to the sending end.
  • the sequence set is determined based on the type of reference signal and/or the type of parameter.
  • FIG. 3 is a flowchart of a method for determining a reference signal configuration according to an embodiment of the present disclosure.
  • a relationship of a reference signal with respect to a type M parameter may be determined according to a relationship of a transmission sequence, as shown in FIG.
  • the method for determining the reference signal configuration includes the following steps:
  • Step 201 Determine a transmission sequence of N reference signals, where N is an integer greater than or equal to 2;
  • the transmission sequence can be determined by the configuration of the transmitting end or by performing blind detection of the sequence.
  • Step 211 Determine a rule that uses a transmission sequence to indicate a reference signal relationship
  • the rule can be configured by the sender or agreed by the transceiver.
  • Step 213 Determine, according to the transmission sequence, a relationship of the N reference signals with respect to the M-type parameter, where M is a natural number.
  • the relationship of the N reference signals with respect to the M-type parameters may be determined according to a rule indicating a reference signal relationship by using a sequence, and the relationship existing between the sequences implicitly represents the relationship between the M-type parameters.
  • the parameter configuration herein may include multiple types of parameters.
  • the following types of parameters are mainly concerned, including reference signal characteristic parameters; reference signal transmission parameters; reference signal reception parameters; reference signal measurement parameters; Exclude some other parameters.
  • step 201
  • N reference signals may be determined by the configuration of the transmitting end, or N reference signals may be determined by blind detection; the configuration content may include a root sequence type of the reference signal, a root sequence length, and an orthogonal code configuration. Scrambling code configuration, etc.; for blind detection, some sequences are set to be correlated with the received signal. If a strong correlation peak is detected, the transmission sequence parameter can be determined according to the reception sequence at this time.
  • the transmitting end may be a base station, and the receiving end is a terminal; or the transmitting end is a terminal, and the receiving end is a base station, respectively, a downlink reference signal and an uplink reference signal; preferably, the N reference signals may include different types of reference signals and / or reference signals of the same type but different time-frequency resources or different port resources.
  • the N reference signals are determined by the base station, and the N reference signals may be in the following cases:
  • the N reference signals include some different types of reference signals: for example, “downlink synchronization signal and downlink measurement pilot signal”, “downlink measurement pilot and downlink demodulation pilot signal”, “downlink synchronization and downlink demodulation pilot signal” “Downlink phase noise pilot signal and downlink demodulation pilot signal” “downlink phase noise pilot signal and downlink measurement pilot signal” and the like.
  • BRS Beam Measurement Pilot
  • CSI-RS Downlink Channel State Information Measurement Pilot
  • MRS Downlink Mobility Measurement Pilot
  • CSI Channel State Information Measurement Pilot
  • BRS Beam Measurement Pilot
  • MRS Downlink Mobility Measurement Pilot
  • CSI Channel State Information Measurement Pilot
  • downlink control channel demodulation pilot and downlink data channel demodulation pilot broadcast channel demodulation pilot and downlink control channel demodulation pilot
  • broadcast channel demodulation pilot and downlink control channel demodulation pilot downlink public control channel demodulation pilot and downlink proprietary control channel solution
  • the pilot frequency is transmitted; the downlink public control channel for transmitting the paging message demodulates the pilot and the downlink public control channel for transmitting the SIB message demodulates the pilot.
  • the reference signals of the same type but different ports for example: pilot signals corresponding to different downlink measurement pilot ports; pilot signals corresponding to different downlink demodulation pilot ports; and pilot signals corresponding to different downlink phase noise pilot ports.
  • reference signals of the same type but different time domain locations for example: downlink synchronization signals of different symbols/subframes/slots; downlink measurement pilot signals of different symbols/subframes/slots; different symbols/subframes/slots The downlink demodulation pilot signal.
  • reference signals of the same type but different frequency domain locations for example: downlink synchronization signals of different carriers/subcarriers/Subband/RB; CSI-RS signals of different carriers/subcarriers/Subband/RB; different carriers/subcarriers/Subband BRS signal of /RB; downlink demodulation pilot signal of different carrier/subcarrier/Subband/RB; downlink phase noise pilot signal of different carrier/subcarrier/Subband/RB.
  • the N reference signals may include some of the above cases or a combination thereof.
  • the N reference signals are determined by the terminal, and the N reference signals may be in the following cases:
  • N reference signals contain some different types of reference signals, such as "random access signal and measurement pilot signal”, “random access signal and demodulation pilot signal”, “measure pilot signal and demodulation pilot signal” “phase noise pilot signal and demodulation pilot signal” “phase noise pilot signal and measurement pilot signal” and so on.
  • N reference signals of the same type but occupying different resources such as reference signals of the same type but different ports, for example:
  • reference signals of the same type but different frequency domain locations for example: random access signals of different carriers/subcarriers/Subband/RB; SRS signals of different carriers/subcarriers/Subband/RB; different carriers/subcarriers/Subband/ Uplink demodulation pilot signal of RB; uplink phase noise pilot signal of different carrier/subcarrier/Subband/RB;
  • the N reference signals may include some of the above cases or a combination thereof.
  • step 211
  • the base station or terminal determines a rule that utilizes the transmit sequence to indicate a reference signal with respect to one or more parameter relationships.
  • the rule may be configured by the sender or agreed by the transceiver;
  • the rule may belong to the same sequence set (sequence group), and then it is considered to have a relationship; the rule may be a function relationship of the root sequence index satisfying the agreement or the configuration, and the existence relationship is considered, and the simplest function relationship is the same as the root sequence;
  • the rule may be a function relationship in which the cyclic shift value satisfies the convention or the configuration, and the existence relationship is considered, and the simplest function relationship is that the cyclic shift value is the same;
  • the rule may be a function relationship in which the orthogonal code satisfies the convention or the configuration, and the existence relationship is considered, and the simplest function relationship is the same as the orthogonal code;
  • the rule may be a function relationship in which the scrambling code satisfies the convention or configuration, and the existence relationship is considered, and the simplest function relationship is the same as the scrambling code;
  • the rule is preferably related to the type of the reference signal, and the corresponding rule needs to be determined according to the type of the reference signal, corresponding to the description in Embodiment 2;
  • the rule is preferably related to the parameter type of the reference signal, and the corresponding rule needs to be determined according to the parameter type of the reference signal, and also corresponds to the description in Embodiment 2.
  • the relationship between the N reference signals and the M-type parameters may be determined according to a rule for indicating the relationship of the reference signals by using the sequence, and the relationship existing between the sequences is hidden Characterizes the relationship between M-type parameters;
  • the configuration parameters of the M-type reference signal may be a characteristic parameter, a transmission parameter, a reception parameter, and a measurement parameter.
  • a characteristic parameter For reference, the description in the foregoing Embodiment 1 can be referred to.
  • the relationship of the configuration parameters includes: the same, different, related, irrelevant, mergeable, non-mergable, jointly, non-joinable, etc., refer to the description in the foregoing Embodiment 1.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a method of determining a reference signal configuration.
  • FIG. 4 is a schematic diagram of a determining apparatus for determining a reference signal according to an embodiment of the present disclosure. As shown in FIG. 4, the determining apparatus 400 of the reference signal configuration of this embodiment includes:
  • the first determining module 401 is configured to determine a transmission sequence of N reference signals, where N is an integer greater than or equal to 2;
  • the second determining module 402 is configured to determine a rule for indicating a reference signal relationship by using a sending sequence
  • the third determining module 403 is configured to determine a relationship of the N reference signals with respect to the M-type parameter according to the transmission sequence, where M is a natural number.
  • the first determining module 401 determines the relationship includes one or more of the following: the same, related, irrelevant, different, mergeable, non-mergable, jointly and non-joinable.
  • the first determining module 401 determines the relationship includes any one of the following: the same and different; or related and unrelated; or may be combined and unmersible; or may be combined and unjoinable.
  • the M type parameter includes one or more of the following: a characteristic parameter, a sending parameter, a receiving parameter, a combining parameter, and a measuring parameter.
  • the sending sequence indicates that the rule of the reference signal relationship is pre-agreed by the transceiver end, or is configured by the sending end to the receiving end, or is determined by the receiving end and configured to the sending end,
  • the rules for transmitting a sequence to indicate a reference signal relationship are determined based on the type of reference signal and/or the type of parameter of the reference signal.
  • the third determining module 403 determines, according to the sending sequence, the relationship of the N reference signals with respect to the M-type parameter, according to any one of the following: a sequence group to which the sending sequence belongs; or a root sequence index of the sending sequence; Or send the relationship of the cyclic shift value of the sequence; or send the orthogonal code of the sequence; or send the scrambling code of the sequence.
  • the third determining module 403 determines, according to the sending sequence, that the relationship between the N reference signals and the M-type parameters includes one or more of the following: the sending sequences belong to the same sequence set, and represent different reference signals with respect to the one corresponding to the set. There are quasi-co-location relationships of one or more characteristic parameters; the transmission sequences belong to the same sequence set, and the different reference signal transmission cells are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission sectors are identical; the transmission sequences belong to the same sequence set.
  • the transmission sequences belong to the same sequence set, and the different reference signal transmission terminals are identical; the transmission sequences belong to the same sequence set, and the different reference signal transmission antennas are identical; the transmission sequences belong to the same sequence set, and the different reference signals are transmitted.
  • the nodes are the same; the transmission sequences belong to the same sequence set, and the different reference signals are transmitted to pre-code the same or related; the transmission sequences belong to the same sequence set, and the different reference signal transmission beams are identical or related; the transmission sequence belongs to the same sequence.
  • the transmission powers of the different reference signals are identical or related; the transmission sequences belong to the same sequence set, and the different reference signal receiving terminals are identical; the transmission sequences belong to the same sequence set, and the different reference signal receiving base stations are identical; the transmission sequences belong to the same sequence set, and the representation Different reference signals are received by the same cell; the transmission sequences belong to the same sequence set, and the different reference signal receiving sectors are identical; the transmission sequences belong to the same sequence set, and the different reference signal receiving antennas are identical; the transmission sequences belong to the same sequence set, and the different reference signals are received.
  • the weights are the same or related; the sending sequences belong to the same sequence set, and the receiving beams of the different reference signals are identical or related; the sending sequences belong to the same sequence set, and the different reference signals can be jointly used for channel measurement; the sending sequences belong to the same sequence set, and the representations are different.
  • the reference signals can be jointly used for interference measurement; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for phase noise estimation; the transmission sequences belong to the same sequence set.
  • Characterizing different reference signals can be jointly used for demodulation/coherent reception; the transmission sequences belong to the same sequence set, and the different reference signals can be jointly used for time domain/frequency domain synchronization, and the sequence set is pre-agreed by the transceiver, or determined by the sender.
  • the configuration is configured to the receiving end; or determined by the receiving end and configured to the transmitting end, and the sequence set is determined according to the type of the reference signal and/or the parameter type.
  • FIG. 5 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure. As shown in FIG. 5, the method for transmitting a reference signal in this embodiment includes the following steps.
  • a manner of grouping the N reference signals is determined; where N is a natural number.
  • Reference signals in the same group have the same/correlated transmission parameters
  • Reference signals in the same group have the same/correlated receiving parameters
  • Reference signals within the same group can be used jointly for channel measurement
  • Reference signals within the same group can be used jointly for interference measurements
  • Reference signals within the same group can be used jointly for phase noise estimation
  • Reference signals within the same group can be used jointly for demodulation/coherent reception
  • Reference signals within the same group can be used jointly for time domain/frequency domain synchronization.
  • the same group of reference signals should average the reception quality when measuring feedback; or only one of the strongest reports or only one can be selected from the same group of reference signals.
  • a transmission sequence of N reference signals is determined according to a grouping manner.
  • the reference signal sequence in the same group of the same group satisfies the first relationship;
  • the first relationship includes: the root sequence is the same or related; the cyclic shift parameters are the same or related; the orthogonal codes are the same or related; and the scrambling parameters are the same or related.
  • N reference signals are transmitted.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a method of transmitting the reference signal.
  • FIG. 6 is a schematic diagram of a device for transmitting a reference signal according to an embodiment of the present disclosure.
  • the reference signal transmitting apparatus 600 of the present embodiment includes: a first determining module 601, a second determining module 602, and a sending module. 603.
  • the first determining module 601 is configured to determine a grouping manner of the N reference signals to be sent, where N is a natural number; the second determining module 602 is configured to determine a sending sequence of the N reference signals according to the grouping manner; and the sending module 603 is configured to send the N Reference signals.
  • the first determining module 601 determines that a grouping manner of the N reference signals to be sent is determined according to one or more of the following relationships: the root sequences are the same or related; the cyclic shift parameters are the same or related; The orthogonal codes are the same or related; the scrambling parameters are the same or related.
  • FIG. 7 is a flowchart of a method for determining a reference signal configuration according to an embodiment of the present disclosure. As shown in FIG. 7, the method for determining a reference signal configuration in this embodiment includes the following steps.
  • N reference signals and their transmission sequences are determined, where N is a natural number.
  • a grouping manner of the N reference signals is determined according to the transmission sequence.
  • the first relationship includes: the root sequence is the same or related, the cyclic shift parameters are the same or related, the orthogonal codes are the same or related, and the scrambling code parameters are the same or related.
  • the reference signals in the same group may have the following relationships:
  • Reference signals in the same group have the same/correlated transmission parameters
  • Reference signals in the same group have the same/correlated receiving parameters
  • Reference signals within the same group can be used jointly for channel measurement
  • Reference signals within the same group can be used jointly for interference measurements
  • Reference signals within the same group can be used jointly for phase noise estimation
  • Reference signals within the same group can be used jointly for demodulation/coherent reception
  • Reference signals within the same group can be used jointly for time domain/frequency domain synchronization.
  • the same group of reference signals should average the reception quality when measuring feedback; or only one of the strongest reports or only one can be selected from the same group of reference signals.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a method of determining the configuration of the reference signals described above.
  • FIG. 8 is a schematic diagram of a determining apparatus for determining a reference signal according to an embodiment of the present disclosure.
  • the determining apparatus 800 of the reference signal configuration of the present embodiment includes: a first determining module 801 and a second determining module 802.
  • the first determining module 801 is configured to determine N reference signals and their transmission sequences, where N is a natural number; and the second determining module 802 is configured to determine a grouping manner of the N reference signals according to the transmission sequence.
  • the determining module 801 determines, according to the sending sequence, that the grouping manner of the N reference signals is determined according to the following manner: the sending sequence of the reference signals in the same group satisfies the first relationship, and the first relationship includes one or more of the following Combination: The root sequences are the same or related, the cyclic shift parameters are the same or related, the orthogonal codes are the same or related, and the scrambling parameters are the same or related.
  • FIG. 9 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure. As shown in FIG. 9, the method for transmitting a reference signal in this embodiment includes the following steps.
  • the configuration parameters of the reference signal are divided into at least two categories: a first type of configuration parameter and a second type of configuration parameter.
  • the first type of configuration parameter information includes parameter information of the sequence class, for example: root sequence configuration, sequence length configuration, cyclic shift configuration, orthogonal code configuration, scrambling code configuration, etc.; the second type of configuration parameters include some other reference signals.
  • Configuration parameters such as time domain transmission configuration information of reference signals, frequency domain transmission configuration information of reference signals, transmission rule information of reference signals, precoding/beam indication information of reference signals, transmission power configuration information of reference signals, reference signals
  • the transmit antenna configuration information, the transmit port configuration information of the reference signal; the time domain transmit configuration information of the reference signal may be one or more of the following information: transmit cycle configuration information, time domain transmit offset information, time domain symbol location information, and The time domain repeat transmission configuration information;
  • the frequency domain transmission configuration information of the reference signal may be: frequency domain density configuration information and/or frequency domain transmission location information;
  • the reference signal transmission rule information may be: frequency domain location with transmission time hopping Rule information and/or sending method hops rule information over time.
  • the sending manner includes any one of the following methods: transmitting an antenna, transmitting a beam, transmitting a precoding, and the like.
  • step 902 the first type of configuration parameters are determined, the second type of configuration parameters are determined according to the first type of configuration parameters, or the second type of configuration parameters are determined, and the first type of configuration parameters are determined according to the second type of configuration parameters.
  • the selectable range of the second type of configuration parameters is determined, or the value of the second type of configuration parameters is directly determined; In one case, when the value of the second type of configuration parameter is determined, the value or range of values of the sequence class configuration is determined.
  • step 903 the transmitting end performs transmission of the reference signal according to the configuration parameter.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a method of transmitting the reference signal.
  • FIG. 10 is a schematic diagram of a device for transmitting a reference signal according to an embodiment of the present disclosure.
  • the device 100 for transmitting reference signals of the present embodiment includes: a partitioning module 1001, a determining module 1002, and a transmitting module 1003.
  • the dividing module 1001 is configured to divide the configuration parameters of the reference signal into at least two types: a first type of configuration parameter and a second type of configuration parameter; the determining module 1002 is configured to determine the first type of configuration parameter, and determine the second type according to the first type of configuration parameter.
  • the first type of configuration parameter includes sequence parameter information
  • the second type of configuration parameter includes one or more of the following information: time domain transmission configuration information of the reference signal, frequency domain transmission configuration information of the reference signal, and reference signal transmission.
  • Rule information precoding/beam indication information of the reference signal, transmission power configuration information of the reference signal, transmission antenna configuration information of the reference signal, and transmission port configuration information of the reference signal.
  • the time domain transmission configuration information of the reference signal includes one or more of the following: a transmission period configuration information, a time domain transmission offset information, a time domain symbol position information, and a time domain repeated transmission times configuration information; a frequency domain of the reference signal
  • the sending configuration information is: frequency domain density configuration information and/or frequency domain transmission location information
  • the transmission rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode hopping rule information with time; sending
  • the method includes one or more of the following: a transmitting antenna, a transmitting beam, and a precoding.
  • FIG. 11 is a flowchart of a method for determining a configuration of a reference signal according to an embodiment of the present disclosure. As shown in FIG. 11, the method for determining a configuration of a reference signal in this embodiment includes the following steps.
  • the configuration parameters of the reference signal are divided into at least two categories: a first type of configuration parameter and a second type of configuration parameter.
  • the first type of configuration parameter information includes parameter information of the sequence class, such as: root sequence configuration, sequence length configuration, cyclic shift configuration, orthogonal code configuration, scrambling code configuration, and the like.
  • the second type of configuration parameters include some other reference signal configuration parameters, such as: time domain transmission configuration information of the reference signal; frequency domain transmission configuration information of the reference signal; transmission rule information of the reference signal; precoding/beam indication information of the reference signal.
  • the time domain transmission configuration information of the reference signal may be: transmission period configuration information/time domain transmission offset information/time domain symbol position information/time domain repeated transmission number configuration information.
  • the frequency domain transmission configuration information of the reference signal may be: frequency domain density configuration information and/or frequency domain transmission location information.
  • the transmission rule information of the reference signal may be: frequency domain location with transmission time hopping rule information and/or transmission mode hopping rule information with time.
  • the sending manner includes any one of the following methods: transmitting an antenna, transmitting a beam, transmitting a precoding, and the like.
  • step 1102 the first type of configuration parameter is determined, and the second type of configuration parameter is determined according to the first type of configuration parameter; or the second type of configuration parameter is determined, and the first type of configuration parameter is determined according to the second type of configuration parameter.
  • the reference signal of the current cell or the neighboring cell is received, and when the reference signal sequence is successfully detected, the selectable range of the value of the second type of configuration parameter is determined, and the terminal can blindly detect the second type of configuration.
  • the parameter or the value of the second type of configuration parameter is directly determined, and the value corresponds to the sequence parameter of the reference signal; the correspondence is agreed by the transceiver.
  • the terminal may perform measurement and feedback on the reference signal of the local cell or the neighboring cell based on the configuration parameters.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement a configuration determination method of the reference signals.
  • FIG. 12 is a schematic diagram of a configuration determining apparatus for a reference signal according to an embodiment of the present disclosure.
  • the configuration determining apparatus 1200 of the reference signal of the present embodiment includes: a dividing module 1201 and a determining module 1202.
  • the dividing module 1201 is configured to divide the configuration parameters of the reference signal into at least two categories: a first type configuration parameter and a second type configuration parameter;
  • the determining module 1202 is configured to determine the first type of configuration parameters, determine the second type of configuration parameters according to the first type of configuration parameters, or determine the second type of configuration parameters, and determine the first type of configuration parameters according to the second type of configuration parameters.
  • the first type of configuration parameter includes sequence parameter configuration information
  • the second type of configuration parameter is one or more of the following information: time domain transmission configuration information of the reference signal; frequency domain transmission configuration information of the reference signal; reference signal Transmission rule information; precoding/beam indication information of the reference signal; transmission power configuration information of the reference signal; transmission antenna configuration information of the reference signal; and transmission port configuration information of the reference signal.
  • the time domain transmission configuration information of the reference signal includes one or more of the following: a transmission period configuration information, a time domain transmission offset information, a time domain symbol position information, and a time domain repeated transmission times configuration information; a frequency domain of the reference signal
  • the sending configuration information is: frequency domain density configuration information and/or frequency domain transmission location information
  • the transmission rule information of the reference signal is: frequency domain location with transmission time hopping rule information and/or transmission mode hopping rule information with time; sending
  • the method includes one or more of the following: transmitting antenna, transmitting beam, and transmitting precoding.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a removable medium such as a hard disk, a disk, or a disc that can store program code.
  • An embodiment of the present disclosure further provides a base station, including a memory and a processor, where the memory stores an instruction for performing a sending method of the reference signal described above;
  • a processor set to execute instructions for memory storage.
  • An embodiment of the present disclosure further provides a terminal, including a memory and a processor, where
  • a processor set to execute instructions for memory storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

一种参考信号的发送方法,包括:确定N个参考信号关于M类参数的关系,其中,N、M均为正整数;确定所述N个参考信号的发送序列;利用所述发送序列来表征N个参考信号关于M类参数的关系;发送所述N个参考信号。本公开实施例还提供一种参考信号配置的确定方法及其装置、基站和终端,本方案可以避免对所有的参考信号之间两两关系的描述,开销小。

Description

参考信号发送方法及基站,配置确定方法及终端 技术领域
本公开涉及通信技术领域,尤其涉及一种参考信号的发送方法,配置的确定方法及其装置、基站和终端。
背景技术
在无线通信系统中,会存在多种不同类型的参考信号,这些参考信号分别承担着不同方面重要的作用。主要存在以下几类参考信号。
第一类是同步信号,同步信号主要用于发送端与接收端之间的同步,包括下行同步信号(Synchronization Signal,简称SS)和上行同步信号或随机接入信号(Radom access signal,简称RAS);其中,SS可以进一步的分为主同步信号(primary synchronization signal,简称PSS)和辅同步信号(secondary synchronization signal,简称SSS),前者主要用于基本时间间隔同步,后者用于时间间隔单元序号的对齐。
第二类是测量参考信号,又称为测量导频,主要用于接收端的测量及反馈。根据测量目的不同,可以分为移动性相关测量(RRM measurement),波束测量(beam measurement),信道状态信息(CSI)测量,大尺度特性(Large-scale properties)测量。主要有以下几种类型的测量导频:
下行的CSI测量导频(channel state information reference signal,简称CSI-RS),主要用于下行的信道信息CSI测量,但也可以辅助用于波束测量,移动性测量以及大尺度特性测量;
上行的探测导频(sounding reference signal,简称SRS),主要用于上行的信道信息CSI测量,但也可以辅助用于波束测量,移动性测量以及大尺度特性测量;
移动性测量导频(Mobility reference signal,简称MRS),主要用于移动性相关的测量,可能是独立的信号也有可能是同步信号,广播信道的参考解调信号,或者是波束测量参考信号,以及CSI-RS信号;
波束测量导频(Beam Reference Signal,简称BRS),主要用于波束训练,也可以用于广播信道的参考解调,移动性测量,大尺度特性测量等;
特性测量导频:用于大尺度特性测量,包括时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、平均增益和平均延迟(average gain and average delay)、频移(Frequency shift)、平均接收功率(Average received power)、接收定时(Received Timing)、信道相关性(channel correlation)、到达角(arrival angle)等特性的测量,可以是独立的导频,也可以是采用其他功能的导频增加密度来兼顾大尺度特性的测量。
第三类是参考解调信号,又称为参考解调导频,当获得信道信息后发送端可以根据信道信息进行预编码的数据/控制的传输,可以采用一层或多层的多天线传输技术。一般来说,每一层都有对应的解调参考导频(Demodulation Reference Signal,简称DMRS),数据或控制信息要通过解调参考导频估计出的信道结合接收到的信号进行解调;主要用于参考解调包 括:
数据的参考解调导频:用于数据信道的参考解调,可以配置多个端口;包括上行数据的参考解调导频和下行的数据的参考解调导频。
控制的参考解调导频:用于控制信道的参考解调,可以配置多个端口;控制信道又可以分为专有控制信道,公有控制信道;专有/公有控制信道可能又会根据传输控制信息的不同分为多个子类,这些控制信道分别需要对应的解调导频;按照上下行区分又可以分为,上行和下行的控制的参考解调导频。
广播参考解调导频:用于广播信道的参考解调,一般只出现在下行信道中。广播信道的参考解调导频可以是独立的参考解调导频,也可以利用同步信号,或者BRS来进行参考解调。
需要特别说明的是,DMRS除了用于解调,有的情况下也可以用于CSI(Channel State Information,信道状态指示)的测量反馈。
第四类导频是相位噪声补偿参考信号(Phase Noise Compensation Reference Signal,简称PNCRS),又称为相噪补偿导频,这一类导频一般用于相位噪声比较大时的相位补偿,也可以用于频偏的跟踪,因此也可以认为是频偏估计导频。这一类导频有的情况是单独出现,有的情况则是作为DMRS的一步分出现,主要是相位噪声的补偿主要用于数据的解调时,其也可以理解为特殊的解调导频,如果其也是定义在传输层上,每层对应一个相位噪声补充导频的端口的话,可以考虑作为DMRS的一部分。
在相关技术中,上述的参考信号的参数配置一般都是由基站确定,然后通过信令通知给终端的,常见的参考信号配置包括参考信号密度和时频位置,参考信号的端口数目,参考信号的功率等。这些配置一般采用显式信令的配置方式,也就是说直接通过信令中的状态位来指示时频位置,端口数目,功率等。除了这些参考信号配置之外,还有一些描述参考信号关系的配置信息,也需要通知给终端,如,参考信号之间的QCL(Quasi-co-location,准共位置)关系指示,类似的还有QCB(quasi-co-beam)关系指示或其他参考信号间关系指示,参考信号分组指示,参考信号的合并估计能力指示等。
可以发现上面一些配置的共同特点是,涉及了上述参考信号的相关配置都涉及了多个参考信号之间的关系指示信息,在相关技术中,参考信号参数配置主要的思路也是通过显式的控制信令来配置,如,明确地通知哪些参考信号之间存在关系,以及通知这些参考信号之间存在什么关系。终端根据显式的配置信令确定这些导频关系相关参数的配置,然后用于解调、测量反馈等。由于涉及多种参考信号类型,参考信号的端口数目可能很多,端口的配置也是灵活可变,参考信号之间的关系比较复杂,并且存在一些交叉关系。因此,如果通过显式的信令方式来通知上面的一些配置,并且要保障足够的灵活性,则需要复杂的信令设计以及大量的信令开销。
除此之外,相关技术中通过显式的方式来通知参考信号的配置,还存在一个问题:有的情况下,终端需要测量相邻小区的参考信号,如,在移动性管理时,终端可能需要测量相邻小区的同步信号、相邻小区的测量导频信号等来判断是否需要切换小区或波束,这种方式需 要服务小区通过小区间的接口进行通信,再将与相邻小区的导频相关的参考信号配置通知给本小区的终端。而实际上小区间通信接口不一定是存在的,并且配置多个相邻小区的参考信号参数也需要大量的信令开销,因此,这种显式的通知方法也不能适用于所有场景,并且信令开销大。
发明内容
本公开要解决的技术问题是提供一种参考信号的发送方法,配置的确定方法及其装置、基站和终端,以避免对所有的参考信号之间两两关系的描述,从而减小信令开销。
根据本公开的第一方面,提供了一种参考信号的发送方法,包括:确定N个参考信号关于M类参数的关系,其中,N、M均为正整数;确定所述N个参考信号的发送序列;利用所述发送序列来表征N个参考信号关于M类参数的关系;和发送所述N个参考信号。
可选地,所述关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,所述关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合。
可选地,所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
可选地,所述利用所述发送序列来表征N个参考信号关于M类参数的关系的规则是由发送端确定的,或者由接收端和发送端预先约定,或者由发送端确定后配置给接收端,或者由接收端确定后配置给发送端。
可选地,所述规则根据所述参考信号的类型和/或所述参考信号的参数类型确定。
可选地,所述利用所述发送序列来表征N个参考信号关于M类参数的关系,是利用以下任一种来表征的:所述发送序列所属的序列组;或者所述发送序列的相关性;或者所述发送序列的根序列索引;或者所述发送序列的循环移位值的关系;或者所述发送序列的正交码;或者所述发送序列的扰码。
可选地,所述利用所述发送序列所属的序列组来表征N个参考信号关于M类参数的关系,包括以下的一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该序列集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收 基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调和/或相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域和/或频域同步。
可选地,所述序列集合为收发端预先约定,或者所述序列集合由发送端确定后配置给接收端,或者所述序列集合由接收端确定后配置给发送端。
可选地,所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
根据本公开的第二方面,提供了一种参考信号的发送装置,包括:第一确定模块,设置为确定待发送的N个参考信号关于M类参数的关系,其中,N、M均为正整数;第二确定模块,设置为确定所述N个参考信号的发送序列;表征模块,设置为利用所述发送序列来表征N个参考信号关于M类参数的关系;发送模块,设置为发送所述N个参考信号。
可选地,所述第一确定模块,确定的所述关系包括以下关系中一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,所述第一确定模块,确定的所述关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合,所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
可选地,所述表征模块,利用所述发送序列来表征N个参考信号关于M类参数的关系的规则是由发送端确定的,或者由接收端和发送端预先约定,或者由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,所述规则根据所述参考信号的类型和/或所述参考信号的参数类型确定。
可选地,所述表征模块,是利用以下任一种来表征N个参考信号关于M类参数的关系的:所述发送序列所属的序列组,或者所述发送序列的相关性,或者所述发送序列的根序列索引,或者所述发送序列的循环移位值的关系,或者所述发送序列的正交码,或者所述发送序列的扰码。
可选地,所述表征模块,利用所述发送序列所属的序列组来表征N个参考信号关于M类参数的关系,包括以下的一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该序列集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参 考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调和/或相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域和/或频域同步。
可选地,所述序列集合为收发端预先约定,或者所述序列集合由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
根据本公开的第三方面,提供了一种参考信号配置的确定方法,包括:确定N个参考信号的发送序列,N为正整数;确定利用所述发送序列来指示参考信号关系的规则;根据所述发送序列确定所述N个参考信号关于M类参数的关系,其中M为正整数。
可选地,所述参考信号关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,所述参考信号关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合。
可选地,所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
可选地,所述发送序列来指示参考信号关系的规则为接收端和发送端预先约定,或者由发送端配置给接收端,或者由接收端确定后配置给发送端。
可选地,所述利用发送序列来指示参考信号关系的规则是根据参考信号的类型和/或参考信号的参数类型来确定的。
可选地,所述根据所述发送序列确定所述N个参考信号关于M类参数的关系,是根据以下任一种来确定的:所述发送序列所属的序列组;或者所述发送序列的根序列索引;或者所述发送序列的循环移位值的关系;或者所述发送序列的正交码;或者所述发送序列的扰码。
可选地,所述根据所述发送序列确定所述N个参考信号关于M类参数的关系包括以下一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送 序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步。
可选地,所述序列集合为接收端和发送端预先约定,或由发送端确定后配置给接收端;或由接收端确定后配置给发送端。
可选地,所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
根据本公开的第四方面,提供了一种参考信号配置的确定装置,包括:第一确定模块,设置为确定N个参考信号的发送序列,N为正整数;第二确定模块,设置为确定利用所述发送序列来指示参考信号关系的规则;第三确定模块,设置为根据所述发送序列确定所述N个参考信号关于M类参数的关系,其中M为正整数。
可选地,所述第三确定模块,确定的参考信号关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,所述第三确定模块,确定的参考信号关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合,所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
可选地,所述发送序列来指示参考信号关系的规则为接收端和发送端预先约定,或者由发送端配置给接收端,或者由接收端确定后配置给发送端,所述利用发送序列来指示参考信号关系的规则是根据参考信号的类型和/或参考信号的参数类型来确定的。
可选地,所述第三确定模块,根据所述发送序列确定所述N个参考信号关于M类参数的关系,是根据以下任一种来确定的:所述发送序列所属的序列组;或者所述发送序列的根序列索引;或者所述发送序列的循环移位值的关系;或者所述发送序列的正交码;或者所述发送序列的扰码。
可选地,所述第三确定模块,根据所述发送序列确定所述N个参考信号关于M类参数 的关系包括以下一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步,所述序列集合为接收端和发送端预先约定,或由发送端确定后配置给接收端;或由接收端确定后配置给发送端,所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
根据本公开的第五方面,提供了一种参考信号的发送方法,包括:确定待发送的N个参考信号的分组方式,其中N为正整数;根据分组方式确定所述N个参考信号的发送序列;发送所述N个参考信号。
可选地,所述确定待发送的N个参考信号的分组方式是根据以下方式进行确定的:同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
根据本公开的第六方面,提供了一种参考信号的发送装置,包括:第一确定模块,设置为确定待发送的N个参考信号的分组方式,其中N为正整数;第二确定模块,设置为根据分组方式确定所述N个参考信号的发送序列;发送模块,设置为发送所述N个参考信号。
可选地,所述第一确定模块,确定待发送的N个参考信号的分组方式是根据以下关系中的一种或多种进行确定的:根序列相同或相关;循环移位参数相同或相关;正交码相同或相关;扰码参数相同或相关。
根据本公开的第七方面,提供了一种参考信号配置的确定方法,包括:确定N个参考信号及其发送序列,其中,N为正整数;根据所述发送序列确定所述N个参考信号的分组方式。
可选地,所述根据所述发送序列确定所述N个参考信号的分组方式是根据以下方式确 定:同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
根据本公开的第八方面,提供了一种参考信号配置的确定装置,包括:第一确定模块,设置为确定N个参考信号及其发送序列,其中,N为正整数;第二确定模块,设置为根据所述发送序列确定所述N个参考信号的分组方式。
可选地,所述第一确定模块,根据所述发送序列确定所述N个参考信号的分组方式是根据以下方式确定:同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
根据本公开的第九方面,提供了一种参考信号的发送方法,包括:将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;确定所述第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者确定所述第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数;按照所述配置参数进行参考信号的发送。
可选地,所述第一类配置参数包括序列参数信息,所述第二类配置参数包括以下信息中的一种或多种:参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息。
可选地,所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息。
可选地,所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息。
可选地,所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
可选地,所述发送方式包括以下的一种或多种:发送天线,发送波束,发送预编码。
根据本公开的第十方面,提供了一种参考信号的发送装置,包括:划分模块,设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;确定模块,设置为确定所述第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者确定所述第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数;发送模块,设置为按照所述配置参数进行参考信号的发送。
可选地,所述第一类配置参数包括序列参数信息,所述第二类配置参数包括以下信息中的一种或多种:参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息。
可选地,所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;所述参考信号的频域 发送配置信息为:频域密度配置信息和/或频域发送位置信息;所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;所述发送方式包括以下的一种或多种:发送天线,发送波束,发送预编码。
根据本公开的第十一方面,提供了一种参考信号的配置确定方法,包括:将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;确定第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者,确定第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数。
可选地,所述第一类配置参数包括序列参数配置信息,所述第二类配置参数为以下信息中的一种或多种:参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
可选地,所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息。
可选地,所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息。
可选地,所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
可选地,所述发送方式包括以下的一种或多种:发送天线,发送波束和发送预编码。
根据本公开的第十二方面,提供了一种参考信号的配置确定装置,包括:划分模块,设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;确定模块,设置为确定第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者,确定第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数。
可选地,所述第一类配置参数包括序列参数配置信息,所述第二类配置参数为以下信息中的一种或多种:参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
可选地,所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息;所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;所述发送方式包括以下的一种或多种:发送天线,发送波束和发送预编码。
根据本公开的第十三方面,提供了一种基站,包括存储器和处理器,其中,所述存储器,存储有用于执行如上所述的参考信号的发送方法的指令;所述处理器,设置为执行所述存储器存储的指令。
根据本公开的第十四方面,提供了一种终端,包括存储器和处理器,其中,所述存储器,存储有用于执行如上所述的参考信号的配置确定方法的指令;所述处理器,设置为执行所述 存储器存储的指令。
综上,本公开提供一种参考信号的发送方法,配置的确定方法及其装置、基站和终端,通过序列关系来表征参考信号其他参数之间关系,无需明确地指示参数的取值是什么,只用于表征相同,相关,不同,不相关,可合并,不同可合并等,这种方法避免了针对所有的参考信号之间两两关系的描述,信令开销小,灵活性高;本方案还通过序列来表征参考信号的配置可以避免小区间的交互,在移动性管理及干扰信息测量时非常的简单方便。
附图说明
图1为本公开实施例1的参考信号的发送方法的流程图;
图2为本公开实施例3的参考信号的发送装置的示意图;
图3为本公开实施例4的一种参考信号配置的确定方法的流程图;
图4为本公开实施例5的一种参考信号配置的确定装置的示意图;
图5为本公开实施例6的一种参考信号的发送方法的流程图;
图6为本公开实施例7的一种参考信号的发送装置的示意图;
图7为本公开实施例8的一种参考信号配置的确定方法的流程图;
图8为本公开实施例9的一种参考信号配置的确定装置的示意图;
图9为本公开实施例10的一种参考信号的发送方法的流程图;
图10为本公开实施例11的一种参考信号的发送装置的示意图;
图11为本公开实施例12的一种参考信号的配置确定方法的流程图;
图12为本公开实施例13的一种参考信号的配置确定装置的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
图1为本公开实施例的参考信号的发送方法的流程图,如图1所示,本实施例的发送方法包括以下步骤。
在步骤101,确定待发送的N个参考信号,并确定N个参考信号的参数配置。
这里的参数配置可以包括多种类型的参数,本实施例中主要关注以下一些类型的参数,包括:参考信号特性参数、参考信号发送参数、参考信号接收参数、参考信号测量参数,但本公开实施例并不排除其它方面的参数。
在步骤111,确定N个参考信号关于M类上述参数之间的关系,N、M均为正整数。
这里的关系包括相同、不相同、相关、不相关等。
在步骤121,根据N个参考信号关于M类参数的关系确定N个参考信号的发送序列;利用发送序列来表征N个参考信号关于M类参数的关系。
这些发送序列需要根据前面提到N个参考信号关于M类上述参数之间的关系来确定,N个参考信号的发送序列之间的关系能够体现N个参考信号关于M类上述参数之间存在的关系。也就是说,序列间存在的关系隐式地表征了M类参数之间的关系。
在步骤131,根据利用发送序列来表征N个参考信号关于M类参数的关系发送这N个参考信号。
下面以举例方式解释步骤101的实施方式。
在步骤101中,可以由基站确定N个参考信号,也可以由终端确定N个参考信号,二者分别对应于下行的参考信号和上行的参考信号。
可选的,这N个参考信号可以包括不同类型的参考信号和/或相同类型但不同时频资源或者不同端口资源的参考信号。
对于下行的参考信号,这里由基站确定N个参考信号,这N个参考信号可以是以下的一些情况。N个参考信号中包含一些不同类型的参考信号的例子包括:如“下行同步信号和下行测量导频信号”,“下行测量导频和下行解调导频信号”,“下行同步和下行解调导频信号”“下行相噪导频信号和下行解调导频信号”“下行相噪导频信号和下行测量导频信号”等;还包括不同子类型的参考信号,如,波束测量导频(BRS)和下行信道状态信息测量导频(CSI-RS)、下行移动性测量导频(MRS)和信道状态信息测量导频(CSI-RS)、下行控制信道解调导频和下行数据信道解调导频、广播信道解调导频和下行控制信道解调导频、下行公有控制信道解调导频和下行专有控制信道解调导频、发送寻呼消息的下行公有控制信道解调导频和发送SIB消息的下行公有控制信道解调导频。N个参考信号中一些相同类型但占用资源不同的参考信号的例子包括:如同一类型但不同端口的参考信号,例如:不同下行测量导频端口对应的导频信号;不同下行解调导频端口对应的导频信号;不同下行相噪导频端口对应的导频信号;如同一类型但不同时域位置的参考信号,例如:不同符号/子帧/时隙的下行同步信号;不同符号/子帧/时隙的下行测量导频信号;不同符号/子帧/时隙的下行解调导频信号;如同一类型但不同频域位置的参考信号,例如:不同载波/子载波/Subband(子带)/RB(Resource Block,资源块)的下行同步信号;不同载波/子载波/Subband/RB的CSI-RS信号;不同载波/子载波/Subband/RB的BRS信号;不同载波/子载波/Subband/RB的下行解调导频信号;不同载波/子载波/Subband/RB的下行相噪导频信号。N个参考信号可以包含上述一些情况或者是其结合的情况。
对于上行的参考信号,这里由终端确定N个参考信号,这N个参考信号可以是以下的一些情况。N个参考信号中包含一些不同类型的参考信号的例子包括:如“随机接入信号和测量导频信号”,“随机接入信号和解调导频信号”,“测量导频信号和解调导频信号”,“相噪导频信号和解调导频信号”“相噪导频信号和测量导频信号”等。N个参考信号中一些相同类型但占用资源不同的参考信号的例子包括:如同一类型但不同端口的参考信号,例如:不同上行测量导频端口对应的导频信号;不同上行解调导频端口对应的导频信号;不同上行相噪导频端口对应的导频信号;如同一类型但不同时域位置的参考信号,例如:不同符号/子帧/时隙的随机接入信号;不同符号/子帧/时隙的上行测量导频信号;不同符号/子帧/ 时隙的上行解调导频信号;如同一类型但不同频域位置的参考信号,例如:不同载波/子载波/Subband/RB的随机接入信号;不同载波/子载波/Subband/RB的SRS信号;不同载波/子载波/Subband/RB的上行解调导频信号;不同载波/子载波/Subband/RB的上行相噪导频信号。N个参考信号可以包含上述一些情况或者是其结合的情况。
下面来描述步骤111的实施方式。
N个参考信号的关于多类参数的关系可包括,例如:特性参数、发送参数、接收参数、合并参数、测量参数。
特性参数包括:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒偏移(Doppler shift),平均增益(average gain),平均时延(average delay),频率偏移(Frequency shift),平均接收功率(Average received power)接收时间(Received Timing),信道相关性(channel correlation),到达角(arrival angle),离开角(Departure angle)等特性的测量。
发送参数包括:对于下行,包括:发送小区,发送扇区,发送基站,发送天线,发送节点,发送预编码,发送波束,发送功率等。
接收参数包括:对于下行,包括:接收终端,接收天线,接收权值,接收波束。
测量参数包括:用于信道测量的参数,用于干扰测量的参数。
参考信号参数的关系有几种,如,相同,不相同。
相同一般是指参数取值相同,如:密度相同,功率相同,周期相同,偏置相同等等;还可以是发送小区相同(对于下行),发送扇区相同,发送基站相同(对于下行),发送终端相同(对于上行)发送天线相同,发送节点相同,发送预编码相同,发送波束相同等;还可以是接收终端(对于下行)相同,接收基站(对于上行)相同,接收小区(对于上行)相同,接收天线相同,接收权值相同,接收波束相同,接收方式相同等。
不相同则指上面的这些参数取值不相同的情况。
参考信号参数的关系也可以描述为:相关,不相关。
可以是一些特性参数相关,比如频偏相同,时偏相同,到达角相同,角度扩展相同等等;也可以是一些发送参数相关,比如发送预编码,发送波束,发送功率等;也可以是一些接收参数相关,比如接收预编码,接收波束等。一般来说准共位置或准共波束是描述参考信号相关的表述形式。
相关代表的是可能完全相同,也可能是比较近似,或者有关联关系,一般来说会比相同的要求弱一些;相同是相关的一个特例。
不相关则是不同的一个特例,即不同且没有关联性;可以认为参数之间是独立的。
参考信号参数的关系也可以描述为:可合并,不可合并。
如,有一些信号是可以合并用于解调,可以合并用于相噪估计,合并用于信道测量,合并用于同步,合并用于特性测量,合并用于干扰测量等等;有一些信号则不能合并用于相噪估计,信道测量,同步,特性测量,干扰测量的。
参考信号参数的关系也可以描述为:可联合,不可联合。
合并是联合的一个特例,有些情况下,虽然不是直接合并,但由于二者有一定关联性可 以联合进行降噪来提高信道估计性能,信道测量准确性,相噪估计性能,同步性能,特性测量准确性,干扰测量准确性等。
下面描述步骤121的实施方式。
示例性而言,可以由基站或终端确定N个参考信号的发送序列。
这些发送序列的确定需要根据前面提到N个参考信号关于M类上述参数之间的关系来确定,这N个参考信号的发送序列之间的关系能够体现N个参考信号关于M类上述参数之间存在的关系;也就是说,序列间存在的关系隐式的表征了M类参数之间的关系。
比如序列属于同一集合(序列组),则代表关于M类参数中的一类或多类参数存在关联关系;示例性而言,可以是序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;序列属于同一序列集合,表征不同参考信号发送小区相同;序列属于同一序列集合,表征不同参考信号发送扇区相同;序列属于同一序列集合,表征不同参考信号发送基站相同;序列属于同一序列集合,表征不同参考信号发送终端相同;序列属于同一序列集合,表征不同参考信号发送天线相同;序列属于同一序列集合,表征不同参考信号发送节点相同;序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;序列属于同一序列集合,表征不同参考信号发送波束相同或相关;序列属于同一序列集合,表征不同参考信号发送功率相同或相关;序列属于同一序列集合,表征不同参考信号接收终端相同;序列属于同一序列集合,表征不同参考信号接收基站相同;序列属于同一序列集合,表征不同参考信号接收小区相同;序列属于同一序列集合,表征不同参考信号接收扇区相同;序列属于同一序列集合,表征不同参考信号接收天线相同;序列属于同一序列集合,表征不同参考信号接收权值相同或相关;序列属于同一序列集合,表征不同参考信号接收波束相同或相关;序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步。
还可以是,利用序列相关性来表征参考信号的关系;比如序列相关系数大于约定或配置的门限则认为关于一类或多类参数相关或相同;或者是可合并,可联合。
还可以是,利用根序列索引的关系来表征参考信号的关系;比如索引满足约定的函数关系则认为关于一类或多类参数相关或相同;或者是可合并,可联合。
还可以是,利用循环移位值的关系来表征参考信号的关系;比如循环移位值相同则认为关于一类或多类参数相关或相同;或者是可合并,可联合。
还可以是,利用正交码的来表征参考信号的关系;比如正交码相同则认为关于一类或多类参数相关或相同;或者是可合并,可联合。
还可以是,利用扰码的来表征参考信号的关系;比如扰码相同则认为关于一类或多类参数相关或相同;或者是可合并,可联合。
实施例2
步骤121中,前面实施例中提到,这里发送端确定利用序列来指示不同参考信号关系的规则通常可以是收发端预先约定;或者是由发送端确定后配置给接收端;也可以是接收端确定后配置给发送端。
该规则对于不同的参考信号之间可以是不同的,以序列集合的配置为例,可以是:
为同步信号配置x个序列集合,分别为序列集合X1,X2……Xx;
为测量导频配置y个序列集合,分别为序列集合Y1,Y2……Yy;
为解调导频配置z个序列集合,分别为序列集合Z1,Z2……Zz;
也就是说,需要确定参考信号类型后,再确定上面提及理由序列来指示不同参考信号关系的规则。
另外,不同的参数其对应的规则也是不同的,以序列集合的配置为例,可以是:
为时偏参数配置a个序列集合,分别为序列集合A1,A2……Aa;
为频偏参数配置b个序列集合,分别为序列集合B1,B2……Bb;
为功率参数配置c个序列集合,分别为序列集合C1,C2……Cc;
为发送小区参数配置d个序列集合,分别为序列集合D1,D2……Dd;
为发送波束参数配置e个序列集合,分别为序列集合E1,E2……Ee;
为接收波束参数配置f个序列集合,分别为序列集合F1,F2……Ff;
为不同类型的参数配置的序列集合组可以是不同的。
与之类似的,如果是通过序列的函数关系来隐式的指示参考信号关于M类参数类型的关系,那么这些序列的函数关系对于不同类型的参考信号可以是不同的。
与之类似的,如果是通过序列的函数关系来隐式的指示参考信号关于M类参数类型的关系,那么这些序列的函数关系对于不同类型的参考信号参数可以是不同的。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现上述参考信号的发送方法。
实施例3
图2为本公开实施例的参考信号的发送装置的示意图,如图2所示,本实施例的参考信号的发送装置200包括:
第一确定模块210,设置为确定待发送的N个参考信号关于M类参数的关系,其中M为自然数;
第二确定模块220,设置为确定N个参考信号的发送序列;
表征模块230,设置为利用发送序列来表征N个参考信号关于M类参数的关系;
发送模块240,设置为发送N个参考信号。
可选地,第一确定模块210,确定的关系包括以下关系中一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,第一确定模块210,确定的关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合,
M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
其中,表征模块利用发送序列来表征N个参考信号关于M类参数的关系的规则是由发送端确定的,或者由收发端预先约定,或者由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,
规则可以根据参考信号的类型和/或参考信号的参数类型确定。
可选地,表征模块230,是利用以下任一种来表征N个参考信号关于M类参数的关系的:发送序列所属的序列组,或者发送序列的相关性,或者发送序列的根序列索引,或者发送序列的循环移位值的关系,或者发送序列的正交码,或者发送序列的扰码。
可选地,表征模块230,利用发送序列所属的序列组来表征N个参考信号关于M类参数的关系,包括以下的一种或多种:发送序列属于同一序列集合,表征不同参考信号关于与该序列集合对应的一种或多种特性参数存在准共位置关系;发送序列属于同一序列集合,表征不同参考信号发送小区相同;发送序列属于同一序列集合,表征不同参考信号发送扇区相同;发送序列属于同一序列集合,表征不同参考信号发送基站相同;发送序列属于同一序列集合,表征不同参考信号发送终端相同;发送序列属于同一序列集合,表征不同参考信号发送天线相同;发送序列属于同一序列集合,表征不同参考信号发送节点相同;发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;发送序列属于同一序列集合,表征不同参考信号接收终端相同;发送序列属于同一序列集合,表征不同参考信号接收基站相同;发送序列属于同一序列集合,表征不同参考信号接收小区相同;发送序列属于同一序列集合,表征不同参考信号接收扇区相同;发送序列属于同一序列集合,表征不同参考信号接收天线相同;发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;发送序列属于同一序列集合,表征不同参考信号可以联合用于解调和/或相干接收;发送序列属于同一序列集合,表征不同参考信号可以联合用于时域和/或频域同步。
其中,序列集合为收发端预先约定,或者序列集合由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,
序列集合是根据参考信号的类型和/或参数类型确定的。
实施例4
图3为本公开实施例的一种参考信号配置的确定方法的流程图,在接收端,可以根据发送序列的关系来确定参考信号关于M类参数的关系,如图3所示,本实施例的参考信号配置的确定方法包括以下步骤:
步骤201:确定N个参考信号的发送序列,其中,N为大于等于2的整数;
这里可以通过发送端的配置确定,或者是进行序列的盲检测来确定发送序列。
步骤211:确定利用发送序列来指示参考信号关系的规则;
该规则可以是发送端配置的或者收发端约定的。
步骤213:根据发送序列确定N个参考信号关于M类参数的关系,其中,M为自然数。
这里可以根据利用序列来指示参考信号关系的规则来确定N个参考信号关于M类参数的关系,序列间存在的关系隐式的表征了M类参数之间的关系。
这里的参数配置可以包括多种类型的参数,本实施例中主要关注以下一些类型的参数,包括参考信号特性参数;参考信号发送参数;参考信号接收参数;参考信号测量参数;但本公开并不排除一些其它方面的参数。
步骤201的实施方式:
在步骤201中,可以是通过发送端的配置确定N个参考信号,也可以是通过盲检测来确定N个参考信号;配置内容可以包括参考信号的根序列类型,根序列长度,正交码配置,扰码配置等等;盲检测的话则是设置一些序列与接收到的信号进行相关,若检测到较强的相关峰则根据此时的接收序列则可以判断出发送序列参数。
发送端可以是基站,接收端为终端;或者发送端为终端,接收端为基站,分别下行的参考信号和上行的参考信号;较佳的,这N个参考信号可以包括不同类型的参考信号和/或相同类型但不同时频资源或者不同端口资源的参考信号。
对于下行,这里由基站确定N个参考信号,这N个参考信号可以是以下的一些情况:
N个参考信号中包含一些不同类型的参考信号:比如“下行同步信号和下行测量导频信号”,“下行测量导频和下行解调导频信号”,“下行同步和下行解调导频信号”“下行相噪导频信号和下行解调导频信号”“下行相噪导频信号和下行测量导频信号”等。
还包括不同子类型的参考信号,比如:波束测量导频(BRS)和下行信道状态信息测量导频(CSI-RS);下行移动性测量导频(MRS)和信道状态信息测量导频(CSI-RS);下行控制信道解调导频和下行数据信道解调导频;广播信道解调导频和下行控制信道解调导频;下行公有控制信道解调导频和下行专有控制信道解调导频;发送寻呼消息的下行公有控制信道解调导频和发送SIB消息的下行公有控制信道解调导频。
N个参考信号中一些相同类型但占用资源不同的参考信号:
比如同一类型但不同端口的参考信号,例如:不同下行测量导频端口对应的导频信号;不同下行解调导频端口对应的导频信号;不同下行相噪导频端口对应的导频信号。
比如同一类型但不同时域位置的参考信号,例如:不同符号/子帧/时隙的下行同步信号;不同符号/子帧/时隙的下行测量导频信号;不同符号/子帧/时隙的下行解调导频信号。
比如同一类型但不同频域位置的参考信号,例如:不同载波/子载波/Subband/RB的下行同步信号;不同载波/子载波/Subband/RB的CSI-RS信号;不同载波/子载波/Subband/RB的BRS信号;不同载波/子载波/Subband/RB的下行解调导频信号;不同载波/子载波/Subband/RB的下行相噪导频信号。
N个参考信号可以包含上述一些情况或者是其结合的情况。
对于上行,这里由终端确定N个参考信号,这N个参考信号可以是以下的一些情况:
N个参考信号中包含一些不同类型的参考信号,比如“随机接入信号和测量导频信号”, “随机接入信号和解调导频信号”,“测量导频信号和解调导频信号”“相噪导频信号和解调导频信号”“相噪导频信号和测量导频信号”等。
N个参考信号中一些相同类型但占用资源不同的参考信号,比如同一类型但不同端口的参考信号,例如:
不同上行测量导频端口对应的导频信号;不同上行解调导频端口对应的导频信号;不同上行相噪导频端口对应的导频信号;比如同一类型但不同时域位置的参考信号,例如:不同符号/子帧/时隙的随机接入信号;不同符号/子帧/时隙的上行测量导频信号;不同符号/子帧/时隙的上行解调导频信号;
比如同一类型但不同频域位置的参考信号,例如:不同载波/子载波/Subband/RB的随机接入信号;不同载波/子载波/Subband/RB的SRS信号;不同载波/子载波/Subband/RB的上行解调导频信号;不同载波/子载波/Subband/RB的上行相噪导频信号;
N个参考信号可以包含上述一些情况或者是其结合的情况。
步骤211的实施方式:
基站或终端确定利用发送序列来指示参考信号关于一种或多种参数关系的规则。
该规则可以是发送端配置的或者收发端约定的;
该规则可以是属于同一序列集合(序列组),则认为其存在关系;该规则可以是根序列索引满足约定或配置的函数关系,则认为其存在关系,最简单的函数关系为根序列相同;
该规则可以是循环移位值满足约定或配置的函数关系,则认为其存在关系,最简单的函数关系为循环移位值相同;
该规则可以是正交码满足约定或配置的函数关系,则认为其存在关系,最简单的函数关系为正交码相同;
该规则可以是扰码满足约定或配置的函数关系,则认为其存在关系,最简单的函数关系为扰码相同;
该规则较佳的与参考信号的类型有关,需要根据参考信号的类型来确定对应的规则,对应于实施例2中的描述;
该规则较佳的与参考信号的参数类型有关,需要根据参考信号的参数类型来确定对应的规则,也对应于实施例2中的描述。
步骤213的实施方式:
根据序列确定N个参考信号关于M类参数的关系;其中M为自然数;这里可以根据利用序列来指示参考信号关系的规则来确定N个参考信号关于M类参数的关系,序列间存在的关系隐式的表征了M类参数之间的关系;
M类参考信号的配置参数可以是特性参数,发送参数,接收参数,测量参数,可以参考前面实施例1中的描述。
配置参数的关系包括:相同,不相同,相关,不相关,可合并,不可合并,可联合,不可联合等,可以参考前面实施例1中的描述。
获得N个参考信号的序列后,可以判断其是否满足前面获取的规则中提到的一些条件, 如果满足则,认为其关于一类或多参数存在关系。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现参考信号配置的确定方法。
实施例5
图4为本公开实施例的一种参考信号配置的确定装置的示意图,如图4所示,本实施例的参考信号配置的确定装置400包括:
第一确定模块401,设置为确定N个参考信号的发送序列,N为大于等于2的整数;
第二确定模块402,设置为确定利用发送序列来指示参考信号关系的规则;
第三确定模块403,设置为根据发送序列确定N个参考信号关于M类参数的关系,其中M为自然数。
可选地,第一确定模块401,确定的关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
可选地,第一确定模块401,确定的关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合。
其中,M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
可选地,发送序列来指示参考信号关系的规则为收发端预先约定,或者由发送端配置给接收端,或者由接收端确定后配置给发送端,
发送序列来指示参考信号关系的规则是根据参考信号的类型和/或参考信号的参数类型来确定的。
可选地,第三确定模块403,根据发送序列确定N个参考信号关于M类参数的关系,是根据以下任一种来确定的:发送序列所属的序列组;或者发送序列的根序列索引;或者发送序列的循环移位值的关系;或者发送序列的正交码;或者发送序列的扰码。
可选地,第三确定模块403,根据发送序列确定N个参考信号关于M类参数的关系包括以下一种或多种:发送序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;发送序列属于同一序列集合,表征不同参考信号发送小区相同;发送序列属于同一序列集合,表征不同参考信号发送扇区相同;发送序列属于同一序列集合,表征不同参考信号发送基站相同;发送序列属于同一序列集合,表征不同参考信号发送终端相同;发送序列属于同一序列集合,表征不同参考信号发送天线相同;发送序列属于同一序列集合,表征不同参考信号发送节点相同;发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;发送序列属于同一序列集合,表征不同参考信号接收终端相同;发送序列属于同一序列集合,表征不同参考信号接收基站相同;发送序列属于同一序列集合,表征不同参考信号接收小区相同;发送序列属于同一序列集合,表征不同参考信号接收扇区相同;发送序列属于同一序列集合,表征不同参考信号接收天线相同;发送序列属于同一序列集合,表征不同参考信号 接收权值相同或相关;发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;发送序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;发送序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步,序列集合为收发端预先约定,或由发送端确定后配置给接收端;或由接收端确定后配置给发送端,序列集合是根据参考信号的类型和/或参数类型确定的。
实施例6
图5为本公开实施例的一种参考信号的发送方法的流程图,如图5所示,本实施例的参考信号的发送方法包括以下步骤。
在步骤501,确定N个参考信号的分组方式;其中N为自然数。
可以按照不同的规则和不同的目的进行分组,常见的一些分组规则有:
同一组内的参考信号之间关于一种或多种特性参数存在准共位置关系;
同一组内的参考信号有相同/相关的发送参数;
同一组内的参考信号有相同/相关的接收参数;
同一组内的参考信号可以联合用于信道测量;
同一组内的参考信号可以联合用于干扰测量;
同一组内的参考信号可以联合用于相位噪声估计;
同一组内的参考信号可以联合用于解调/相干接收;
同一组内的参考信号可以联合用于时域/频域同步。
还有一些分组规则是用于测量反馈时的一些限制,比如同一组参考信号在测量反馈时要进行接收质量的平均;或者同一组参考信号中只能选择一个最强的上报或者只能选择一个最弱的上报等。
在步骤502,根据分组方式确定N个参考信号的发送序列。
比如同一组的同一组内的参考信号序列满足第一关系;第一关系包括:根序列相同或相关;循环移位参数相同或相关;正交码相同或相关;扰码参数相同或相关。
在步骤503,发送N个参考信号。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现上述参考信号的发送方法。
实施例7
图6为本公开实施例的一种参考信号的发送装置的示意图,如图6所示,本实施例的参考信号的发送装置600包括:第一确定模块601、第二确定模块602和发送模块603。
第一确定模块601设置为确定待发送的N个参考信号的分组方式,其中N为自然数;第二确定模块602设置为根据分组方式确定N个参考信号的发送序列;发送模块603设置为发送N个参考信号。
可选地,第一确定模块601,确定待发送的N个参考信号的分组方式是根据以下关系中 的一种或多种进行确定的:根序列相同或相关;循环移位参数相同或相关;正交码相同或相关;扰码参数相同或相关。
实施例8
图7为本公开实施例的一种参考信号配置的确定方法的流程图,如图7所示,本实施例的参考信号配置的确定方法包括以下步骤。
在步骤701,确定N个参考信号及其发送序列,其中N为自然数。
在步骤702,根据发送序列确定N个参考信号的分组方式。
判断参考信号的发送序列是否满足第一关系,第一关系包括:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
若满足第一关系,则认为其属于同一分组,同一组内的参考信号可能存在以下一些关系:
同一组内的参考信号之间关于一种或多种特性参数存在准共位置关系;
同一组内的参考信号有相同/相关的发送参数;
同一组内的参考信号有相同/相关的接收参数;
同一组内的参考信号可以联合用于信道测量;
同一组内的参考信号可以联合用于干扰测量;
同一组内的参考信号可以联合用于相位噪声估计;
同一组内的参考信号可以联合用于解调/相干接收;
同一组内的参考信号可以联合用于时域/频域同步。
还有一些分组规则是用于测量反馈时的一些限制,比如同一组参考信号在测量反馈时要进行接收质量的平均;或者同一组参考信号中只能选择一个最强的上报或者只能选择一个最弱的上报等。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现上述参考信号配置的确定方法。
实施例9
图8为本公开实施例的一种参考信号配置的确定装置的示意图,如图8所示,本实施例的参考信号配置的确定装置800包括:第一确定模块801和第二确定模块802。第一确定模块801设置为确定N个参考信号及其发送序列,其中,N为自然数;第二确定模块802设置为根据发送序列确定N个参考信号的分组方式。
可选地,确定模块801,根据发送序列确定N个参考信号的分组方式是根据以下方式确定:同一组内的参考信号的发送序列满足第一关系,第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
实施例10
图9为本公开实施例的一种参考信号的发送方法的流程图,如图9所示,本实施例的参考信号的发送方法包括以下步骤。
在步骤901,将参考信号的配置参数至少分为两类:第一类配置参数和第二类配置参数。
第一类配置参数信息包括序列类的参数信息,例如:根序列配置,序列长度配置,循环 移位配置,正交码配置,扰码配置等等;第二类配置参数包括一些其他的参考信号配置参数,比如参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息;参考信号的时域发送配置信息可以为以下信息中的一个或多个:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;参考信号的频域发送配置信息可以为:频域密度配置信息和/或频域发送位置信息;参考信号的发送规则信息可以为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
在一实施例中,发送方式包括以下的任一方式:发送天线,发送波束,发送预编码等。
在步骤902,确定第一类配置参数,根据第一类配置参数确定第二类配置参数;或者确定第二类配置参数,根据第二类配置参数确定第一类配置参数。一种情况是,当发送序列的第一类配置参数被确定以后,第二类配置参数的取值可选择范围就被确定的,或者第二类配置参数的取值就直接被确定了;另外一种情况是,当第二类配置参数的取值确定的,序列类配置的取值或取值范围就被确定了。
在步骤903,发送端根据上述配置参数进行参考信号的发送。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现上述参考信号的发送方法。
实施例11
图10为本公开实施例的一种参考信号的发送装置的示意图,如图10所示,本实施例的参考信号的发送装置1000包括:划分模块1001、确定模块1002和发送模块1003。
划分模块1001设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;确定模块1002设置为确定第一类配置参数,根据第一类配置参数确定第二类配置参数;或者确定第二类配置参数,根据第二类配置参数确定第一类配置参数;发送模块1003设置为按照配置参数进行参考信号的发送。
其中,第一类配置参数包括序列参数信息,第二类配置参数包括以下信息中的一种或多种:参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息。
其中,参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息;参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;发送方式包括以下的一种或多种:发送天线,发送波束,发送预编码。
实施例12
图11为本公开实施例的一种参考信号的配置确定方法的流程图,如图11所示,本实施例的参考信号的配置确定方法包括以下步骤。
在步骤1101,将参考信号的配置参数至少分为两类:第一类配置参数和第二类配置参数。
其中,第一类配置参数信息包括序列类的参数信息,例如:根序列配置,序列长度配置,循环移位配置,正交码配置,扰码配置等等。
第二类配置参数包括一些其他的参考信号配置参数,比如:参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
参考信号的时域发送配置信息可以为:发送周期配置信息/时域发送偏置信息/时域符号位置信息/时域重复发送次数配置信息。
参考信号的频域发送配置信息可以为:频域密度配置信息和/或频域发送位置信息。
参考信号的发送规则信息可以为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
在一实施例中,发送方式包括以下的任一方式:发送天线,发送波束,发送预编码等。
在步骤1102,确定第一类配置参数,根据第一类配置参数确定第二类配置参数;或者,确定第二类配置参数,根据第二类配置参数确定第一类配置参数。
一种情况是,接收检测当前小区或邻区的参考信号,当成功检测到参考信号序列时,第二类配置参数的取值可选择范围就被确定了,终端可以进而盲检测第二类配置参数;或者第二类配置参数的取值就直接被确定了,其取值与参考信号的序列参数有对应关系;该对应关系由收发端进行约定。
终端获取第一类和第二类配置参数后就可以基于这些配置参数对本小区或邻小区的参考信号进行测量,反馈。
本公开实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,该计算机可执行指令被执行时实现上述参考信号的配置确定方法。
实施例13
图12为本公开实施例的一种参考信号的配置确定装置的示意图,如图12所示,本实施例的参考信号的配置确定装置1200包括:划分模块1201和确定模块1202。
划分模块1201设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;
确定模块1202设置为确定第一类配置参数,根据第一类配置参数确定第二类配置参数;或者,确定第二类配置参数,根据第二类配置参数确定第一类配置参数。
其中,第一类配置参数包括序列参数配置信息,第二类配置参数为以下信息中的一种或多种:参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
其中,参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;参考信号的频域发送配置 信息为:频域密度配置信息和/或频域发送位置信息;参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;发送方式包括以下的一种或多种:发送天线,发送波束和发送预编码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等每种可以存储程序代码的介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本公开实施例还提供一种基站,包括存储器和处理器,其中,存储器,存储有用于执行上文所述的参考信号的发送方法的指令;
处理器,设置为执行存储器存储的指令。
本公开实施例还提供一种终端,包括存储器和处理器,其中,
存储器,存储有用于执行上文所述的参考信号配置的确定方法的指令;
处理器,设置为执行存储器存储的指令。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,该程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的每个模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本公开实施例不限制于任何特定形式的硬件和软件的结合。
虽然本公开实施例所揭露的实施方式如上,但所述的内容仅为便于理解本公开实施例而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (61)

  1. 一种参考信号的发送方法,包括:
    确定N个参考信号关于M类参数的关系,其中,N、M均为正整数;
    确定所述N个参考信号的发送序列;
    利用所述发送序列来表征N个参考信号关于M类参数的关系;
    发送所述N个参考信号。
  2. 如权利要求1所述的方法,其中,
    所述关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
  3. 如权利要求1所述的方法,其中,所述关系包括以下的任一种:
    相同和不相同;
    相关和不相关;
    可合并和不可合并;或
    可联合和不可联合。
  4. 如权利要求1所述的方法,其中,
    所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
  5. 如权利要求1所述的方法,其中,
    所述利用所述发送序列来表征N个参考信号关于M类参数的关系的规则是由发送端确定的,或者由接收端和发送端预先约定,或者由发送端确定后配置给接收端,或者由接收端确定后配置给发送端。
  6. 如权利要求5所述的方法,其中,
    所述规则根据所述参考信号的类型和/或所述参考信号的参数类型确定。
  7. 如权利要求1所述的方法,其中,所述利用所述发送序列来表征N个参考信号关于M类参数的关系,是利用以下任一种来表征的:
    所述发送序列所属的序列组;
    所述发送序列的相关性;
    所述发送序列的根序列索引;
    所述发送序列的循环移位值的关系;
    所述发送序列的正交码;或者
    所述发送序列的扰码。
  8. 如权利要求7所述的方法,其中,所述利用所述发送序列所属的序列组来表征N个参考信号关于M类参数的关系,包括以下的一种或多种:
    所述发送序列属于同一序列集合,表征不同参考信号关于与该序列集合对应的一种或多种特性参数存在准共位置关系;
    所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调和/或相干接收;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域和/或频域同步。
  9. 如权利要求8所述的方法,其中,
    所述序列集合为收发端预先约定,或者所述序列集合由发送端确定后配置给接收端,或者所述序列集合由接收端确定后配置给发送端。
  10. 如权利要求8所述的方法,其中,
    所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
  11. 一种参考信号的发送装置,包括:
    第一确定模块,设置为确定待发送的N个参考信号关于M类参数的关系,其中,N、M均为正整数;
    第二确定模块,设置为确定所述N个参考信号的发送序列;
    表征模块,设置为利用所述发送序列来表征N个参考信号关于M类参数的关系;
    发送模块,设置为发送所述N个参考信号。
  12. 如权利要求11所述的装置,其中,
    所述第一确定模块,确定的所述关系包括以下关系中一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
  13. 如权利要求11所述的装置,其中,
    所述第一确定模块,确定的所述关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合,
    所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
  14. 如权利要求11所述的装置,其中,
    所述表征模块,利用所述发送序列来表征N个参考信号关于M类参数的关系的规则是由发送端确定的,或者由接收端和发送端预先约定,或者由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,
    所述规则根据所述参考信号的类型和/或所述参考信号的参数类型确定。
  15. 如权利要求11所述的装置,其中,
    所述表征模块,是利用以下任一种来表征N个参考信号关于M类参数的关系的:所述发送序列所属的序列组,或者所述发送序列的相关性,或者所述发送序列的根序列索引,或者所述发送序列的循环移位值的关系,或者所述发送序列的正交码,或者所述发送序列的扰码。
  16. 如权利要求15所述的装置,其中,
    所述表征模块,利用所述发送序列所属的序列组来表征N个参考信号关于M类参数的关系,包括以下的一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该序列集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于 干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调和/或相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域和/或频域同步。
  17. 如权利要求16所述的装置,其中,
    所述序列集合为收发端预先约定,或者所述序列集合由发送端确定后配置给接收端,或者由接收端确定后配置给发送端,
    所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
  18. 一种参考信号配置的确定方法,包括:
    确定N个参考信号的发送序列,N为正整数;
    确定利用所述发送序列来指示参考信号关系的规则;
    根据所述发送序列确定所述N个参考信号关于M类参数的关系,其中M为正整数。
  19. 如权利要求18所述的方法,其中,
    所述参考信号关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
  20. 如权利要求18所述的方法,其中,所述参考信号关系包括以下的任一种:
    相同和不相同;
    相关和不相关;
    可合并和不可合并;或
    可联合和不可联合。
  21. 如权利要求18所述的方法,其中,
    所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
  22. 如权利要求18所述的方法,其中,
    所述发送序列来指示参考信号关系的规则为接收端和发送端预先约定,或者由发送端配置给接收端,或者由接收端确定后配置给发送端。
  23. 如权利要求22所述的方法,其中,
    所述利用发送序列来指示参考信号关系的规则是根据参考信号的类型和/或参考信号的参数类型来确定的。
  24. 如权利要求18所述的方法,其中,所述根据所述发送序列确定所述N个参考信号关于M类参数的关系,是根据以下任一种来确定的:
    所述发送序列所属的序列组;
    所述发送序列的根序列索引;
    所述发送序列的循环移位值的关系;
    所述发送序列的正交码;或者
    所述发送序列的扰码。
  25. 如权利要求18所述的方法,其中,所述根据所述发送序列确定所述N个参考信号关于M类参数的关系包括以下一种或多种:
    所述发送序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;
    所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;
    所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;
    所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号接收波束相同或相关;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;
    所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步。
  26. 如权利要求25所述的方法,其中,
    所述序列集合为接收端和发送端预先约定,或由发送端确定后配置给接收端;或由接收端确定后配置给发送端。
  27. 如权利要求26所述的方法,其中,
    所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
  28. 一种参考信号配置的确定装置,包括:
    第一确定模块,设置为确定N个参考信号的发送序列,N为正整数;
    第二确定模块,设置为确定利用所述发送序列来指示参考信号关系的规则;
    第三确定模块,设置为根据所述发送序列确定所述N个参考信号关于M类参数的关 系,其中M为正整数。
  29. 如权利要求28所述的装置,其中,
    所述第三确定模块,确定的参考信号关系包括以下的一种或多种:相同,相关,不相关,不相同,可合并,不可合并,可联合和不可联合。
  30. 如权利要求28所述的装置,其中,
    所述第三确定模块,确定的参考信号关系包括以下的任一种:相同和不相同;或相关和不相关;或可合并和不可合并;或可联合和不可联合,
    所述M类参数包括以下一种或多种:特性参数,发送参数,接收参数,合并参数和测量参数。
  31. 如权利要求28所述的装置,其中,
    所述发送序列来指示参考信号关系的规则为接收端和发送端预先约定,或者由发送端配置给接收端,或者由接收端确定后配置给发送端,
    所述利用发送序列来指示参考信号关系的规则是根据参考信号的类型和/或参考信号的参数类型来确定的。
  32. 如权利要求28所述的装置,其中,
    所述第三确定模块,根据所述发送序列确定所述N个参考信号关于M类参数的关系,是根据以下任一种来确定的:所述发送序列所属的序列组;或者所述发送序列的根序列索引;或者所述发送序列的循环移位值的关系;或者所述发送序列的正交码;或者所述发送序列的扰码。
  33. 如权利要求28所述的装置,其中,
    所述第三确定模块,根据所述发送序列确定所述N个参考信号关于M类参数的关系包括以下一种或多种:所述发送序列属于同一序列集合,表征不同参考信号关于与该集合对应的一种或多种特性参数存在准共位置关系;所述发送序列属于同一序列集合,表征不同参考信号发送小区相同;所述发送序列属于同一序列集合,表征不同参考信号发送扇区相同;所述发送序列属于同一序列集合,表征不同参考信号发送基站相同;所述发送序列属于同一序列集合,表征不同参考信号发送终端相同;所述发送序列属于同一序列集合,表征不同参考信号发送天线相同;所述发送序列属于同一序列集合,表征不同参考信号发送节点相同;所述发送序列属于同一序列集合,表征不同参考信号发送预编码相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号发送功率相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接收终端相同;所述发送序列属于同一序列集合,表征不同参考信号接收基站相同;所述发送序列属于同一序列集合,表征不同参考信号接收小区相同;所述发送序列属于同一序列集合,表征不同参考信号接收扇区相同;所述发送序列属于同一序列集合,表征不同参考信号接收天线相同;所述发送序列属于同一序列集合,表征不同参考信号接收权值相同或相关;所述发送序列属于同一序列集合,表征不同参考信号接 收波束相同或相关;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于信道测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于干扰测量;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于相位噪声估计;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于解调/相干接收;所述发送序列属于同一序列集合,表征不同参考信号可以联合用于时域/频域同步,所述序列集合为接收端和发送端预先约定,或由发送端确定后配置给接收端;或由接收端确定后配置给发送端,所述序列集合是根据所述参考信号的类型和/或参数类型确定的。
  34. 一种参考信号的发送方法,包括:
    确定待发送的N个参考信号的分组方式,其中N为正整数;
    根据分组方式确定所述N个参考信号的发送序列;
    发送所述N个参考信号。
  35. 如权利要求34所述的一种参考信号的发送方法,其中,所述确定待发送的N个参考信号的分组方式是根据以下方式进行确定的:
    同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
  36. 一种参考信号的发送装置,包括:
    第一确定模块,设置为确定待发送的N个参考信号的分组方式,其中N为正整数;
    第二确定模块,设置为根据分组方式确定所述N个参考信号的发送序列;
    发送模块,设置为发送所述N个参考信号。
  37. 如权利要求36所述的一种参考信号的发送装置,其中,
    所述第一确定模块,确定待发送的N个参考信号的分组方式是根据以下关系中的一种或多种进行确定的:根序列相同或相关;循环移位参数相同或相关;正交码相同或相关;扰码参数相同或相关。
  38. 一种参考信号配置的确定方法,包括:
    确定N个参考信号及其发送序列,其中,N为正整数;
    根据所述发送序列确定所述N个参考信号的分组方式。
  39. 如权利要求38所述的一种参考信号配置的确定方法,其中,所述根据所述发送序列确定所述N个参考信号的分组方式是根据以下方式确定:
    同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
  40. 一种参考信号配置的确定装置,包括:
    第一确定模块,设置为确定N个参考信号及其发送序列,其中,N为正整数;
    第二确定模块,设置为根据所述发送序列确定所述N个参考信号的分组方式。
  41. 如权利要求40所述的一种参考信号配置的确定装置,其中,
    所述第一确定模块,根据所述发送序列确定所述N个参考信号的分组方式是根据以下方式确定:同一组内的参考信号的发送序列满足第一关系,所述第一关系包括以下一种或多种的结合:根序列相同或相关,循环移位参数相同或相关,正交码相同或相关,扰码参数相同或相关。
  42. 一种参考信号的发送方法,包括:
    将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;
    确定所述第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者确定所述第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数;
    按照所述配置参数进行参考信号的发送。
  43. 如权利要求42所述的一种参考信号的发送方法,其中,
    所述第一类配置参数包括序列参数信息,所述第二类配置参数包括以下信息中的一种或多种:
    参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息。
  44. 如权利要求43所述的一种参考信号的发送方法,其中,
    所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息。
  45. 如权利要求43所述的一种参考信号的发送方法,其中,
    所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息。
  46. 如权利要求43所述的一种参考信号的发送方法,其中,
    所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
  47. 如权利要求46所述的一种参考信号的发送方法,其中,
    所述发送方式包括以下的一种或多种:发送天线,发送波束,发送预编码。
  48. 一种参考信号的发送装置,包括:
    划分模块,设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;
    确定模块,设置为确定所述第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者确定所述第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数;
    发送模块,设置为按照所述配置参数进行参考信号的发送。
  49. 如权利要求48所述的一种参考信号的发送装置,其中,
    所述第一类配置参数包括序列参数信息,所述第二类配置参数包括以下信息中的一种 或多种:
    参考信号的时域发送配置信息,参考信号的频域发送配置信息,参考信号的发送规则信息,参考信号的预编码/波束指示信息,参考信号的发送功率配置信息,参考信号的发送天线配置信息,参考信号的发送端口配置信息。
  50. 如权利要求49所述的一种参考信号的发送装置,其中,
    所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;
    所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息;
    所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;
    所述发送方式包括以下的一种或多种:发送天线,发送波束,发送预编码。
  51. 一种参考信号的配置确定方法,包括:
    将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;
    确定第一类配置参数,根据所述第一类配置参数确定所述第二类配置参数;或者,确定第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数。
  52. 如权利要求51所述的一种参考信号的配置确定方法,其中,
    所述第一类配置参数包括序列参数配置信息,所述第二类配置参数为以下信息中的一种或多种:
    参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
  53. 如权利要求52所述的一种参考信号的配置确定方法,其中,
    所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息。
  54. 如权利要求52所述的一种参考信号的配置确定方法,其中,
    所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息。
  55. 如权利要求52所述的一种参考信号的配置确定方法,其中,
    所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息。
  56. [根据细则26改正05.03.2018]
    如权利要求55所述的一种参考信号的配置确定方法,其中,
    所述发送方式包括以下的一种或多种:发送天线,发送波束和发送预编码。
  57. 一种参考信号的配置确定装置,包括:
    划分模块,设置为将参考信号的配置参数至少划分为两类:第一类配置参数和第二类配置参数;
    确定模块,设置为确定第一类配置参数,根据所述第一类配置参数确定所述第二类配 置参数;或者,确定第二类配置参数,根据所述第二类配置参数确定所述第一类配置参数。
  58. [根据细则26改正05.03.2018]
    如权利要求57所述的一种参考信号的配置确定装置,其中,
    所述第一类配置参数包括序列参数配置信息,所述第二类配置参数为以下信息中的一种或多种:
    参考信号的时域发送配置信息;参考信号的频域发送配置信息;参考信号的发送规则信息;参考信号的预编码/波束指示信息;参考信号的发送功率配置信息;参考信号的发送天线配置信息;参考信号的发送端口配置信息。
  59. [根据细则26改正05.03.2018]
    如权利要求58所述的一种参考信号的配置确定装置,其中,
    所述参考信号的时域发送配置信息包括以下的一种或多种:发送周期配置信息,时域发送偏置信息,时域符号位置信息和时域重复发送次数配置信息;
    所述参考信号的频域发送配置信息为:频域密度配置信息和/或频域发送位置信息;
    所述参考信号的发送规则信息为:频域位置随发送时间跳变规则信息和/或发送方式随时间跳变规则信息;
    所述发送方式包括以下的一种或多种:发送天线,发送波束和发送预编码。
  60. 一种基站,包括存储器和处理器,其中,
    所述存储器,存储有用于执行如权利要求1-9、34、35、42-47任一项所述的参考信号的发送方法的指令;
    所述处理器,设置为执行所述存储器存储的指令。
  61. [根据细则26改正05.03.2018]
    一种终端,包括存储器和处理器,其中,
    所述存储器,存储有用于执行如权利要求18-27、38、39、51-56中任一项所述的参考信号的配置确定方法的指令;
    所述处理器,设置为执行所述存储器存储的指令。
PCT/CN2017/117886 2016-12-23 2017-12-22 参考信号发送方法及基站,配置确定方法及终端 WO2018113760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611209355.7 2016-12-23
CN201611209355.7A CN108242987B (zh) 2016-12-23 2016-12-23 参考信号发送方法及基站,配置确定方法及终端

Publications (1)

Publication Number Publication Date
WO2018113760A1 true WO2018113760A1 (zh) 2018-06-28

Family

ID=62624738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117886 WO2018113760A1 (zh) 2016-12-23 2017-12-22 参考信号发送方法及基站,配置确定方法及终端

Country Status (2)

Country Link
CN (1) CN108242987B (zh)
WO (1) WO2018113760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096516A1 (en) * 2018-11-09 2020-05-14 Telefonaktiebolaget L M Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535545A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种信息确定方法和装置、信息元素的处理方法和装置
CN110214427B (zh) * 2019-04-23 2022-03-01 北京小米移动软件有限公司 反馈信息的发送、接收方法、装置及介质
CN114466442A (zh) * 2020-11-10 2022-05-10 华为技术有限公司 一种侧行链路的数据传输方法及相关装置
WO2022204970A1 (zh) * 2021-03-30 2022-10-06 华为技术有限公司 一种参考信号的传输方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780532A (zh) * 2011-05-09 2012-11-14 华为技术有限公司 信道测量的方法及装置
CN102869105A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 一种配置参考信号的方法、UE及eNB
CN106161317A (zh) * 2015-04-08 2016-11-23 中国移动通信集团公司 一种同步方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421125B2 (ja) * 2007-02-02 2014-02-19 エルジー エレクトロニクス インコーポレイティド グルーピングを用いた参照信号シーケンス生成方法
KR101700003B1 (ko) * 2010-01-20 2017-01-25 텔레폰악티에볼라겟엘엠에릭슨(펍) 복조 기준신호를 위한 안테나 포트 맵핑방법 및 장치
CN102075274B (zh) * 2011-01-31 2016-09-28 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
CN103220791A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行解调参考信号的信令资源分配方法和基站
CN103327614B (zh) * 2012-03-19 2016-08-03 上海贝尔股份有限公司 将用于ACK/NACK的扩展的PUCCH资源与ePDCCH所使用的eCCE隐式关联的方法
CN105991222B (zh) * 2015-02-12 2020-05-19 中兴通讯股份有限公司 配置信息通知方法、获取方法、装置、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780532A (zh) * 2011-05-09 2012-11-14 华为技术有限公司 信道测量的方法及装置
CN102869105A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 一种配置参考信号的方法、UE及eNB
CN106161317A (zh) * 2015-04-08 2016-11-23 中国移动通信集团公司 一种同步方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096516A1 (en) * 2018-11-09 2020-05-14 Telefonaktiebolaget L M Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
US11949621B2 (en) 2018-11-09 2024-04-02 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system

Also Published As

Publication number Publication date
CN108242987B (zh) 2022-09-13
CN108242987A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
US20220030617A1 (en) Transmission of control information using more than one beam pair link
AU2018342485B2 (en) Information transmission method and apparatus
WO2018113760A1 (zh) 参考信号发送方法及基站,配置确定方法及终端
CN108632008B (zh) 一种参考信号发送方法及装置
CN110169181B (zh) 通信方法、装置和系统
CN110832916B (zh) 用于分配资源的系统和方法
US9468037B2 (en) Robust transmission on downlink discontinuous transmission carrier
US11700094B2 (en) Signal transmission method and apparatus
KR20200035300A (ko) 기준 신호 구성 정보를 나타내기 위한 방법, 기지국 및 단말
JP2020529804A (ja) 参照信号の構成方法及び装置
CN111436147B (zh) 传输信号的方法和装置
US20150236801A1 (en) Method, system, and apparatus for notifying and determining antenna port position relationship
EP2874451B1 (en) Method for configuring reference signal, base station, and user equipment
CN108400807B (zh) 获取信道特性的方法、用户设备及基站
CN113169836A (zh) 用于多发射/接收点(trp)操作的方法和装置
CN108289017B (zh) 信号接收、发送方法、控制信道的接收、发送方法及装置
CN113302869A (zh) 用于多传输点(trp)的物理下行链路共享信道(pdsch)资源映射
JP2021534630A (ja) 電力制御方法および装置、目標受信電力を求めるための方法および装置
CN114175718A (zh) 一种传输信道状态信息的方法及装置
CN115039475A (zh) 一种用于改进的探测参考信号(srs)开销和灵活重用方案的方法和系统
CN112567793A (zh) 无线通信方法、用户设备和基站
US20240023026A1 (en) Determination of reference signal resources in multi-transmission reception point uplink schemes
CN115398840A (zh) 用于改进的探测参考信号(srs)开销和灵活重用方案的方法和系统
KR20190095245A (ko) 신호 전송 방법, 네트워크 장치 및 단말기 장치
WO2018024002A1 (zh) 一种信号传输方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884624

Country of ref document: EP

Kind code of ref document: A1