WO2018113646A1 - Laundry detergent composition - Google Patents

Laundry detergent composition Download PDF

Info

Publication number
WO2018113646A1
WO2018113646A1 PCT/CN2017/117078 CN2017117078W WO2018113646A1 WO 2018113646 A1 WO2018113646 A1 WO 2018113646A1 CN 2017117078 W CN2017117078 W CN 2017117078W WO 2018113646 A1 WO2018113646 A1 WO 2018113646A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
detersive surfactant
perfume
detersive
alkyl
Prior art date
Application number
PCT/CN2017/117078
Other languages
French (fr)
Inventor
Alan Thomas Brooker
Neil Joseph Lant
Nigel Patrick Somerville Roberts
Gang SI
Phillip Jan Howard
Pu Zhao
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17172999.9A external-priority patent/EP3339413A1/en
Priority claimed from EP17173002.1A external-priority patent/EP3339415A1/en
Priority claimed from EP17173006.2A external-priority patent/EP3339418A1/en
Priority claimed from EP17173007.0A external-priority patent/EP3339419A1/en
Priority claimed from EP17173004.7A external-priority patent/EP3339416A1/en
Priority claimed from EP17173005.4A external-priority patent/EP3339417A1/en
Priority claimed from EP17173000.5A external-priority patent/EP3339414A1/en
Priority claimed from EP17173001.3A external-priority patent/EP3339407A1/en
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP17883829.8A priority Critical patent/EP3559195A4/en
Publication of WO2018113646A1 publication Critical patent/WO2018113646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • the present invention relates to a process for making a laundry detergent composition having a lenticular size and shape.
  • the lenticular laundry detergent compositions made by the process of the present invention exhibit good freshness performance.
  • compositions that are in the form of lenticles.
  • These solid particles are of a shape and size that exhibit difference product performance characteristics compared to the conventional particulate detergent products.
  • the cleaning and freshness performance have very different characteristics, especially in stressed laundering conditions such as cold and quick wash cycles.
  • the present invention seeks to provide a process of making a lenticular laundry detergent product, the product having a good perfume compatibility and improved freshness profie, especially in cold and quick cycles.
  • the process of the present invention exhibits reduced perfume capsule breakage rate.
  • the present invention provides a process for the preparation of a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the process comprises the following steps:
  • step (ii) extruding the detersive mixture of step (i) to form an extruded material
  • the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume;
  • the process comprises the following steps:
  • step (ii) extruding the detersive mixture of step (i) to form an extruded material
  • the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume;
  • Step (i) A detersive mixture comprising from 40wt%to 90wt%detersive surfactant is formed.
  • the detersive surfactant comprises from 15wt%to 85wt%anionic detersive surfactant and from 5wt%to 75wt%non-ionic detersive surfactant.
  • the anionic detersive surfactant is selected from alkyl benzene sulphonate, alkyl ether sulphate and/or alkyl sulphate.
  • the detersive mixture has a hardness of from 1MPa to 100MPa during the roller compaction step (ii) .
  • a suitable detersive surfactant comprises from 80wt%to 95wt%alkyl benzene sulphonate, and from 6wt%to 10wt%8%alkyl ethoxylated alcohol having an average degree of ethoxylation of from 5 to 9.
  • Such a detersive surfactant can be prepared by blending the nonionic detersive surfactant into HLAS and rapidly neutralizing the mix with aqueous caustic solution followed by drying in an oven, preferably a vacuum oven until the eRH of the surfactant is less than 10%. This surfactant can then be milled in any suitable device, such as a coffee grinder or mill.
  • a suitable detersive surfactant comprises at least 51wt%alkyl benzenesulphonate.
  • a suitable detersive surfactant comprises no more than 20wt%non-ionic detersive surfactant.
  • the detersive surfactant is dried prior to step (ii) .
  • a suitable drying means include an evaporator or drier.
  • a suitable drying means include a wiped film evaporator, fluid bed drier and/or a tube drier.
  • the detersive mixture introduced into step (ii) comprises less than 1.5 wt%water.
  • the detersive mixture is cooled prior to step (ii) .
  • a suitable cooling means inclues a chill roll.
  • the detersive surfactant may be transferred to a mill and milled to particles of less than 1.5 mm, preferably less than 1 mm, before it is fed to the extrusion step (ii) .
  • a powdered flow aid with a particle diameter of from 0.1 ⁇ m to 10 ⁇ m is added to the mill in an amount of 0.5wt%to 5 wt% (wt%based on the detersive misture) , and blended into the surfactant particles during milling.
  • Step (ii) The detersive mixture of step (i) is extruded to form an extruded material.
  • the extruder has a void commensurate with the size of the particle before coating.
  • the detersive mixture is fed into a twin-screw co-rotating extruder equipped with a die-plate and cutting mechanism.
  • the extruder is typically cooled during operation.
  • a suitable extruder is an APV 24.
  • Another suitable extruder includes a roller compactor.
  • Extrusion rates of from 2 to 8 kg/hr are suitable, and a die-plate with orifices of from 3 to 7 mm can be used.
  • the die-plate can be equipped with a rotary cutter so as to give an extrudate thickness of from 1mm to 2mm.
  • the temperature of the detersive mixture does not exceed 45°C, and preferably does not exceed 40°C, during the extrusion step (ii) .
  • the extruded material produced by step (ii) is an oblate spheroid.
  • the diameter of the extruded material produced by step (ii) is greater than 4mm
  • Step (iii) the extruded material is coated with a coating material to form a wet coated extruded material comprising from 1wt%to 40wt%water soluble inorganic salt and from 0.01wt%to 10wt%perfume.
  • the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume.
  • the coating material is selected from powdered inorganic material and mixtures of such material and nonionic material with a melting point in the range 40°C to 90°C.
  • Step (iv) Water is removed from the wet coated extruded material to form the coated detergent particle.
  • step (iv) is carried out in a fluidized bed and/or a drum.
  • the coated detergent particle comprises from 1wt%to 5wt%water.
  • the coated detergent particle is curved.
  • Encapsulated perfume The encapsulated perfume is typically added by coating the outside of particle.
  • a suitable encapsulated perfume is a perfume microcapsule, such as those based on melamine formaldehyde wall material.
  • perfume microcapsulates are often supplied in the form of an aqueous slurry. Typically such slurries are 50wt%solids and such slurries are suitable for spraying but it is often preferred to further dilute the slurry. It is also preferred to add additional binder materials to the slurry to assist in forming a robust coating. In this situation it is preferred to dilute the slurry and then add film-forming materials such as carboxymethylcellulose (CMC) . Slurries can have viscosities of less than 500 cps at 20 s -1 to be atomisable.
  • CMC carboxymethylcellulose
  • the particles to be coated is preferably a flattened disk like extrudate.
  • a suitable coating step is carried out in a fluidized bed using an air velocity of 0.4 to 0.7 m/s.
  • a suitable coating procedure is as follows. 300g of extruded material is placed in a circular fluidized bed of diameter 15cm. Inlet air at a temperature of 50°C is supplied to give an average velocity inside the fluidized bed of 0.5 m/s. A perfume microcapsule-containing slurry consisting of 20wt%perfume microcapsule solids, 5wt%CMC, 10wt%sodium carbonate and 65wt%water is prepared by mixing.
  • This solution is then pumped to a Spray Systems 001 nozzle mounted 10 cm above the surface of the fluidized particles at a rate of 10g/minute and sprayed onto the extrudates with the help of atomizing air so as to give wet coated extruded material.
  • SEA starch encapsulated perfume accord
  • the coated detergent particle typically comprises:
  • the coated detergent particle is also referred to herein as the composition.
  • the composition has a pH in the range of from 7.6 to 10.0.
  • the composition has a reserve alkalinity to pH 7.5 of greater than 3.0.
  • the composition is in the form of a coated laundry detergent particle that is curved.
  • the coating comprises the inorganic salt (b) , and wherein the core comprises the detersive surfactant (a) .
  • x 2mm
  • y >2mm
  • y >3mm
  • the dimensions x, y and z can be measured using image analysis.
  • Suitable equipment for image analysis includes a Leica Binocular Microscope (Leica MZ16A) with motorised and indexed mount, using a digital camera (Leica IC30) to capture the images, the images would be processed within the LEICA Application Software (LAS) platform using the optional Montage MultiFocus and Analysis modules.
  • LAS LEICA Application Software
  • the X and y axial size can be determined by pixel count analysis of the Feret diameters with the maximum and minimum Feret Diameters representing the X and Y axial lengths.
  • the Z axial length can be determined via the use of focus stacking (i.e. z-stacked images) which is a digital image processing technique which combines multiple images taken at different known focus distances to give a resulting image with a greater depth of field (DOF) than any of the individual source images.
  • focus stacking i.e. z-stacked images
  • DOE depth of field
  • the coated laundry detergent particle may be shaped as a disc.
  • the coated laundry detergent particle does not have hole; that is to say, the coated laundry detergent particle does not have a conduit that passes through the core: i.e. the coated detergent particle has a topologic genus of zero.
  • composition may comprise from 0.05wt%to 4.0wt%soil release polymer.
  • the composition may comprise from 0.1wt%to 3.0wt%carboxymethylcellulose (CMC) .
  • composition may comprise from 0.1wt%to 5.0wt%calcite.
  • the composition may comprise from 1wt%to 10wt%carboxylate polymer.
  • the composition may comprise less than 10wt%total level of silicates and aluminosilicates.
  • composition may comprise from 0.001wt%to 0.5wt% hueing dye.
  • composition may comprise from 0.001wt%to 0.5wt%organic pigment and/or inorganic pigment.
  • composition may comprise from 0.2 wt%to 10wt%chelant, preferably phosphonate chelant.
  • composition preferably comprises from 10wt%to 40wt%sodium carbonate.
  • a suitable detersive surfactant system typically comprises at least 5%alcohol ether carboxylate as a percentage of the total detersive surfactant system.
  • a suitable detersive surfactant system typically comprises at least 5%alcohol ethoxylate having an average degree of ethoxylation in the range of from 10 to 50 as a percentage of the total detersive surfactant system.
  • the detersive surfactant comprises C 8 -C 24 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 20 to 50, and preferably the compositon comprises from 1wt%to 10wt%C 8 -C 24 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 20 to 50.
  • a suitable highly ethoxylated alcohol is AO30 from BASF and/or 2430 from Sasol.
  • Anionic detersive surfactant Suitable anionic detersive surfactants include sulphonate and sulphate detersive surfactants.
  • Suitable sulphonate detersive surfactants include methyl ester sulphonates, alpha olefin sulphonates, alkyl benzene sulphonates, especially alkyl benzene sulphonates, preferably C 10-13 alkyl benzene sulphonate.
  • Suitable alkyl benzene sulphonate (LAS) is obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzene (LAB) ; suitable LAB includes low 2-phenyl LAB, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename
  • Suitable sulphate detersive surfactants include alkyl sulphate, preferably C 8-18 alkyl sulphate, or predominantly C 12 alkyl sulphate.
  • a preferred sulphate detersive surfactant is alkyl alkoxylated sulphate, preferably alkyl ethoxylated sulphate, preferably a C 8-18 alkyl alkoxylated sulphate, preferably a C 8-18 alkyl ethoxylated sulphate, preferably the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, preferably from 0.5 to 10, preferably the alkyl alkoxylated sulphate is a C 8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, preferably from 0.5 to 5, more preferably from 0.5 to 3 and most preferably from 0.5 to 1.5.
  • alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • anionic detersive surfactants include alkyl ether carboxylates.
  • Suitable anionic detersive surfactants may be in salt form, suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof.
  • suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof.
  • a preferred counter-ion is sodium.
  • Alkyl ether carboxylic acid A suitable alkyl ether carboxylic acid has the following structure:
  • R is selected from saturated and mono-unsaturated C 10 to C 26 linear or branched alkyl chains, preferably C 12 to C 24 linear or branched alkyl chains, most preferably a C 16 to C 20 linear alkyl chain;
  • n is selected from 5 to 20, preferably 7 to 13, more preferably 8 to 12, most preferably 9.5 to 10.5;
  • the alkyl ether carboxylic acid may be present from 0.5 to 20 wt%, preferably from 2 to 14 wt%, most preferably from 2.5 to 5 wt%. It may be present in acid or salt form, most preferably as its sodium salt.
  • Suitable materials are sold under the (Kao) and C (Huntsman) brand names.
  • Non-ionic detersive surfactant Suitable non-ionic detersive surfactants are selected from the group consisting of: C 8 -C 18 alkyl ethoxylates, such as, non-ionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates wherein preferably the alkoxylate units are ethyleneoxy units, propyleneoxy units or a mixture thereof; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as from BASF; alkylpolysaccharides, preferably alkylpolyglycosides; methyl ester ethoxylates; polyhydroxy fatty acid amides; ether capped poly (oxyalkylated) alcohol surfactants; and mixtures thereof. Suitable non-ionic detersive surfactants are alkylpolyglucoside and/or an alkyl alkoxylated alcohol.
  • Suitable non-ionic detersive surfactants include alkyl alkoxylated alcohols, preferably C 8-18 alkyl alkoxylated alcohol, preferably a C 8-18 alkyl ethoxylated alcohol, preferably the alkyl alkoxylated alcohol has an average degree of alkoxylation of from 1 to 50, preferably from 1 to 30, or from 1 to 20, or from 1 to 10, preferably the alkyl alkoxylated alcohol is a C 8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, preferably from 1 to 7, more preferably from 1 to 5 and most preferably from 3 to 7.
  • the alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.
  • Suitable nonionic detersive surfactants include secondary alcohol-based detersive surfactants.
  • Amino acid derivative complexing agent is selected from one or more of the following, in any stereoisomer or mixture of stereoisomer form:
  • the composition comprises from 0.1wt%to 10wt%methylglycinediacetic acid and salts thereof (MGDA)
  • amino acid derivative complexing agent it may be preferred to formulate the amino acid derivative complexing agent in acid form.
  • amino acid derivative complexing agent in salt form, especially preferred is the sodium salt form.
  • Suitable MGDA salts are produced by BASF.
  • Suitable GLDA salts are produced by Akzo Nobel and Showa Denko.
  • Suitable ASDA salts are produced by Mitsubishi Rayon.
  • Alkoxylated polyaryl/polyalkyl phenol A suitable alkoxylated polyaryl/polyalkyl phenol has the following structure:
  • R 1 is selected from linear of branched C 3 -C 15 alkyl groups and aryl groups, X is selected from ethoxy or propoxy groups, n is from 2 to 70, T is selected from H, SO 3 - , COO - and PO 3 2-
  • the alkoxylated polyaryl or alkoxylated polyalkyl phenol is preferably selected from groups (i) to (iv) :
  • R is selected from SO 3 - , COO - and PO 3 2- , preferably selected from SO 3 - and COO - , wherein n is selected from 2 to 54.
  • n is selected from 2 to 50
  • R is selected from SO 3 - , COO - and PO 3 2- , preferably selected from SO 3 - and COO - , wherein n is selected from 6 to 50.
  • Such compounds are available from industrial suppliers, for example Solvay under the Soprophor trade name, from Clariant under the Emulsogen trade name, Aoki Oil Industrial Co. under the Blaunon trade name, from Stepan under the Makon trade name, and from TOTO Chemical Industry Co. under the Sorpol trade name.
  • suitable compounds are TS160, BV conc., T110 or T139, all from Clariant.
  • the alkoxylated polyaryl/polyalkyl phenol may be present at levels of 0.5-20wt%, preferably 1-15wt%, most preferably 3-10wt%.
  • Amylase variant comprises:
  • R118P Q; V; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly R118P; Q; V; F; C; G,
  • E190P R; V; F; C; G; A; C; D; Q; H; I; K; L; M; N; S; T; Y, particularly E190P,
  • V213Q P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly V213T; A; G; S; C; L; P,
  • V214Q P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly V214T; I,
  • T246Q P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; Y; S; V, particularly T246Q; M,
  • amylase variant has at least 95%, such as at least 96%, or at least 97%, or at least 98%, or at least 99%but less than 100%sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO: 1 and wherein the variant has alpha-amylase activity.
  • One preferred amylase variant comprises a sequence corresponding to SEQ ID NO: 1 with the following mutations: H183*+G184*+I405L+A421H+A422P+A428T.
  • a suitable amylase is commercially available from Novozymes under the brand name, for example as a liquid raw material as 12L.
  • a suitable lipase is a variant of SEQ ID NO: 2 comprising:
  • the positions correspond to the positions of SEQ ID NO 2 and wherein the lipase variant has at least 95%but less than 100%sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO: 2 and wherein the variant has lipase activity.
  • One preferred lipase is a variant of SEQ ID NO: 2 comprising the following substitutions: T231R, N233R, D27R, G38A, D96E, D111A, G163K, D254S and P256T
  • One preferred lipase is a variant of SEQ ID NO: 2 comprising the following substitutions: T231R, N233R, N33Q, G91Q, E210Q, I255A.
  • Suitable lipases are commercially available from Novozymes, for example as Lipex Evity 100L (a liquid raw material) and Lipex Evity 105T (a granulate) . These lipases have different structures to the products Lipex 100L, Lipex 100T and Lipex Evity 100T which are outside the scope of this particular lipase definition.
  • Metalloproteases can be derived from animals, plants, bacteria or fungi. Suitable metalloprotease can be selected from the group of neutral metalloproteases and Myxobacter metalloproteases. Suitable metalloproteases can include collagenases, hemorrhagic toxins from snake venoms and thermolysin from bacteria.
  • thermolysin enzyme variants include an M4 peptidase, more preferably the thermolysin enzyme variant is a member of the PepSY ⁇ Peptidase_M4 ⁇ Peptidase_M4_C family.
  • thermolysin enzyme variant can have at least 50%identity to the thermolysin set forth in SEQ ID NO: 3.
  • the thermolysin enzyme variant is from a genus selected from the group consisting of Bacillus, Geobacillus, Alicyclobacillus, Lactobacillus, Exiguobacterium, Brevibacillus, Paenibacillus, Herpetosiphon, Oceanobacillus, Shewanella, Clostridium, Staphylococcus, Flavobacterium, Stigmatella, Myxococcus, Vibrio, Methanosarcina, Chryseobacterium, Streptomyces, Kribbella, Janibacter, Nocardioides, Xanthamonas, Micromonospora, Burkholderia, Dehalococcoides, Croceibacter, Kordia, Microscilla, Thermoactinomyces, Chloroflexus, Listeria, Plesiocystis, Hal
  • thermolysin enzyme variant is from a genus selected from the group consisting of Bacillus, Geobacillus, Alicyclobacillus, Lactobacillus, Exiguobacterium, Brevibacillus, Paenibacillus, Herpetosiphon, Oceanobacillus, Shewanella, Clostridium, Staphylococcus, Flavobacterium, Stigmatella, Myxococcus, Vibrio, Methanosarcina, Chryseobacterium, and Pseudoalteromonas.
  • thermolysin enzyme is from the genus Bacillus.
  • Preferred metalloproteases include thermolysin, matrix metalloproteinases and those metalloproteases derived from Bacillus subtilis, Bacillus thermoproteolyticus, Geobacillus stearothermophilus or Geobacillus sp., or Bacillus amyloliquefaciens, as described in US PA 2008/0293610A1.
  • a specially preferred metalloprotease belongs to the family EC3.4.24.27.
  • thermolysin variants described in WO2014/71410.
  • the metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 3 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3:
  • the metalloprotease protease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 3 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3:
  • metalloproteases are the NprE variants described in WO2007/044993, WO2009/058661 and US 2014/0315775.
  • the protease is a variant of a parent protease, said parent protease having at least 45%, or 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 4 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 4:
  • Another suitable metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 4 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 4:
  • M138L/V190I/D220P S129I/V190I, S129V/V190I, S129V/D220P, S129I/F130L/D220P,
  • T004V/S023N T059K/S66Q/S129I, T059R/S66N/S129I, S129I/F130L/M138L/V190I/D220P and T059K/S66Q/S129V.
  • Especially preferred metalloproteases for use herein belong belong to EC classes EC 3.4.22 or EC3.4.24, more preferably they belong to EC classes EC3.4.22.2, EC3.4.24.28 or EC3.4.24.27.
  • the most preferred metalloprotease for use herein belong to EC3.4.24.27.
  • Suitable commercially available metalloprotease enzymes include those sold under the trade names by Novozymes A/S (Denmark) , the range including 2TS, N, L10, LAP and 7089 from AB Enzymes, Protex 14L and Protex 15L from DuPont (Palo Alto, California) , those sold as thermolysin from Sigma and the Thermoase range (PC10F and C100) and thermolysin enzyme from Amano enzymes.
  • a preferred metalloprotease is selected from the M4 Metalloprotease Family.
  • a suitable water-soluble builder system comprising one or more aminocarboxylates, selected from: methylglycine diacetic acid (MGDA) and/or alkali metal or ammonium salts thereof; N, N-dicarboxymethyl glutamic acid (GLDA) and/or alkali metal or ammonium salts thereof; Aspartic acid N, N-diacetic acid (ASDA) and/or alkali metal or ammonium salts thereof; Ethylene diamine-N, N'-disuccunic acid (EDDS) and/or alkali metal or ammonium salt thereof; 2-hydroxy propylene diamine-N, N'-disuccunic acid (HPDDS) , and/or alkali metal or ammonium salt thereof; ethylenediamine-N, N'-diglutaric acid (EDDG and/or alkali metal or ammonium salt thereof; ethylenediamine-N, N'-bis- (orthohydroxyphenyl) acetic acid (EDDG) and
  • a suitable phosphonate chelant is selected from: 1-hydroxyethane-1, 1-diphosphonic acid (HEDP) ; Diethylene triamine pentamethylene phosphonic acid (DTPMP, CW-Base) ; 2-phosphonobutane-1, 2, 4-tricarboxylic acid (PBTC) ; Amino trimethylene phosphonic acid (ATMP) ; Ethylenediamine tetramethylene phosphonic acid (EDTMP) ; Diethylenetriamine pentamethylene phosphonic acid (DTPMP) ; Aminotrimethylene phosphonic acid (ATMP) ; salts of the aforementioned materials; and any combination thereof.
  • HEDP 1-hydroxyethane-1, 1-diphosphonic acid
  • DTPMP Diethylene triamine pentamethylene phosphonic acid
  • CW-Base 2-phosphonobutane-1, 2, 4-tricarboxylic acid
  • PBTC 2-phosphonobutane-1, 2, 4-tricarboxylic acid
  • ATMP Amin
  • Carboxylate polymer The composition may comprise a carboxylate polymer, such as a maleate/acrylate random copolymer, maleic-olefin copolymers or polyacrylate homopolymer.
  • Suitable carboxylate polymers include: polyacrylate homopolymers having a molecular weight of from 4,000 Da to 9,000 Da; maleate/acrylate random copolymers having a molecular weight of from 50,000 Da to 100,000 Da, or from 60,000 Da to 80,000 Da.
  • the Acusol series are available from Rohm &Haas, Philadelphia, PA and the Sokolan series are available from BASF (Germany and New Jersey) .
  • Suitable carboxylate polymers can contain other monomers including modified acrylic, fumaric, maleic, itaconic, aconitic, mesaconic, citraconic and methylenemalonic acid or their salts, modified maleic anhydride, acrylamide, alkylene, vinylmethyl ether, styrene and any mixtures thereof.
  • Suitable carboxylate polymers can also containing 2-acrylamido-2-methyl-l-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-propanesulfonic acid, allysulfonic acid, methallysulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenen-l-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropylmethacrylate, sulfomethylacrylamide, sulfomethylmethacrylamide and water soluble salts thereof.
  • Another suitable carboxylate polymer is a co-polymer that comprises: (i) from 50 to less than 98 wt%structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt%structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt%structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II) :
  • R 0 represents a hydrogen atom or CH 3 group
  • R represents a CH 2 group, CH 2 CH 2 group or single bond
  • X represents a number 0-5 provided X represents a number 1-5 when R is a single bond
  • R 1 is a hydrogen atom or C 1 to C 20 organic group
  • R 0 represents a hydrogen atom or CH 3 group
  • R represents a CH 2 group, CH 2 CH 2 group or single bond
  • X represents a number 0-5
  • R 1 is a hydrogen atom or C 1 to C 20 organic group.
  • the polymer has a weight average molecular weight of at least 50kDa, or even at least 70kDa.
  • Soil release polymer The composition may comprise a soil release polymer.
  • a suitable soil release polymer has a structure as defined by one of the following structures (I) , (II) or (III) :
  • a, b and c are from 1 to 200;
  • d, e and f are from 1 to 50;
  • Ar is a 1, 4-substituted phenylene
  • sAr is 1, 3-substituted phenylene substituted in position 5 with SO 3 Me;
  • Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C 1 -C 18 alkyl or C 2 -C 10 hydroxyalkyl, or mixtures thereof;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently selected from H or C 1 -C 18 n-or iso-alkyl;
  • R 7 is a linear or branched C 1 -C 18 alkyl, or a linear or branched C 2 -C 30 alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C 8 -C 30 aryl group, or a C 6 -C 30 arylalkyl group.
  • Suitable soil release polymers are sold by Clariant under the series of polymers, e.g. SRN240 and SRA300.
  • Other suitable soil release polymers are sold by Solvay under the series of polymers, e.g. SF2 and Crystal.
  • Anti-redeposition polymer Suitable anti-redeposition polymers include polyethylene glycol polymers and/or polyethyleneimine polymers.
  • Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) hydrophobic side chain (s) selected from the group consisting of: C 4 -C 25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C 1 -C 6 mono-carboxylic acid, C 1 -C 6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof.
  • Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains.
  • the average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da.
  • the molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1: 1 to 1: 5, or from 1: 1.2 to 1: 2.
  • the average number of graft sites per ethylene oxide units can be less than 1, or less than 0.8, the average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4.
  • a suitable polyethylene glycol polymer is Sokalan HP22. Suitable polyethylene glycol polymers are described in WO08/007320.
  • Cellulosic polymer Suitable cellulosic polymers are selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose, sulphoalkyl cellulose, more preferably selected from carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof.
  • Suitable carboxymethyl celluloses have a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.
  • Suitable carboxymethyl celluloses have a degree of substitution greater than 0.65 and a degree of blockiness greater than 0.45, e.g. as described in WO09/154933.
  • Suitable care polymers include cellulosic polymers that are cationically modified and/or hydrophobically modified. Such modified cellulosic polymers can provide anti-abrasion benefits and dye lock benefits to fabric during the laundering cycle.
  • Suitable cellulosic polymers include cationically modified hydroxyethyl cellulose.
  • Suitable care polymers also include guar polymers that are cationically and/or hydrophobically modified.
  • Other suitable care polymers include dye lock polymers, for example the condensation oligomer produced by the condensation of imidazole and epichlorhydrin, preferably in ratio of 1: 4: 1.
  • a suitable commercially available dye lock polymer is FDI (Cognis) .
  • Suitable care polymers include amino-silicone, which can provide fabric feel benefits and fabric shape retention benefits.
  • the composition may comprise an alkoxylated polyalkyleneimine, wherein said alkoxylated polyalkyleneimine has a polyalkyleneimine core with one or more side chains bonded to at least one nitrogen atom in the polyalkyleneimine core, wherein said alkoxylated polyalkyleneimine has an empirical formula (I) of (PEI) a - (EO) b -R 1 , wherein a is the average number-average molecular weight (MW PEI ) of the polyalkyleneimine core of the alkoxylated polyalkyleneimine and is in the range of from 100 to 100,000 Daltons, wherein b is the average degree of ethoxylation in said one or more side chains of the alkoxylated polyalkyleneimine and is in the range of from 5 to 40, and wherein R 1 is independently selected from the group consisting of hydrogen, C 1 -C 4 alkyls, and combinations thereof.
  • the composition may comprise an alkoxylated polyalkyleneimine, wherein said alkoxylated polyalkyleneimine has a polyalkyleneimine core with one or more side chains bonded to at least one nitrogen atom in the polyalkyleneimine core, wherein the alkoxylated polyalkyleneimine has an empirical formula (II) of (PEI) o - (EO) m (PO) n -R 2 or (PEI) o - (PO) n (EO) m -R 2 , wherein o is the average number-average molecular weight (MW PEI ) of the polyalkyleneimine core of the alkoxylated polyalkyleneimine and is in the range of from 100 to 100,000 Daltons, wherein m is the average degree of ethoxylation in said one or more side chains of the alkoxylated polyalkyleneimine which ranges from 10 to 50, wherein n is the average degree of propoxylation in said one or more side chains of the
  • Suitable bleach includes sources of hydrogen peroxide, bleach activators, bleach catalysts, pre-formed peracids and any combination thereof.
  • a particularly suitable bleach includes a combination of a source of hydrogen peroxide with a bleach activator and/or a bleach catalyst.
  • Source of hydrogen peroxide include sodium perborate and/or sodium percarbonate.
  • Suitable bleach activators include tetra acetyl ethylene diamine and/or alkyl oxybenzene sulphonate.
  • Bleach catalyst The composition may comprise a bleach catalyst.
  • Suitable bleach catalysts include oxaziridinium bleach catalysts, transistion metal bleach catalysts, especially manganese and iron bleach catalysts.
  • a suitable bleach catalyst has a structure corresponding to general formula below:
  • R 13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl.
  • Pre-formed peracid Suitable pre-form peracids include phthalimido-peroxycaproic acid. However, it is preferred that the composition is substantially free of pre-formed peracid. By: “substantially free” it is meant: “no deliberately added” .
  • Enzymes include lipases, proteases, cellulases, amylases and any combination thereof.
  • Suitable proteases include metalloproteases and/or serine proteases.
  • suitable neutral or alkaline proteases include: subtilisins (EC 3.4.21.62) ; trypsin-type or chymotrypsin-type proteases; and metalloproteases.
  • the suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
  • Suitable commercially available protease enzymes include those sold under the trade names Liquanase Savinase and by Novozymes A/S (Denmark) , those sold under the tradename Preferenz series of proteases including P280, P281, P2018-C, P2081-WE, P2082-EE and P2083-A/J, Purafect Purafect and Purafect by DuPont, those sold under the tradename and by Solvay Enzymes, those available from Henkel/Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the folowing mutations S99D + S101 R + S103A + V104I + G159S, hereinafter referred to as BLAP) , BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D) , BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BL
  • a suitable protease is described in WO11/140316 and WO11/072117.
  • Amylase Suitable amylases are derived from AA560 alpha amylase endogenous to Bacillus sp. DSM 12649, preferably having the following mutations: R118K, D183*, G184*, N195F, R320K, and/or R458K. Suitable commercially available amylases include Plus, Natalase, Ultra, SZ, (all Novozymes) and AA, Preferenz series of amylases, and Ox Am, HT Plus (all Du Pont) .
  • a suitable amylase is described in WO06/002643.
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are also suitable. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
  • cellulases include and Premium, and (Novozymes A/S) , series of enzymes (Du Pont) , and series of enzymes (AB Enzymes) .
  • Suitable commercially available cellulases include Premium, Classic. Suitable cellulases are described in WO07/144857 and WO10/056652.
  • Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces) , e.g., from H. lanuginosa (T. lanuginosus) .
  • the lipase may be a “first cycle lipase” , e.g. such as those described in WO06/090335 and WO13/116261.
  • the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations.
  • Preferred lipases include those sold under the tradenames and by Novozymes, Bagsvaerd, Denmark.
  • Liprl 139 e.g. as described in WO2013/171241
  • TfuLip2 e.g. as described in WO2011/084412 and WO2013/033318.
  • Other enzymes are bleaching enzymes, such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof.
  • bleaching enzymes such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof.
  • Commercially available peroxidases include (Novozymes A/S) .
  • Other suitable enzymes include choline oxidases and perhydrolases such as those used in Gentle Power Bleach TM .
  • Suitable enzymes include pectate lyases sold under the tradenames (from Novozymes A/S, Bagsvaerd, Denmark) and (DuPont) and mannanases sold under the tradenames (Novozymes A/S, Bagsvaerd, Denmark) , and (Du Pont) .
  • identity refers to the relatedness between two amino acid sequences.
  • the degree of sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) , preferably version 3.0.0 or later.
  • the optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • the output of Needle labeled “longest identity” (obtained using the –nobrief option) is used as the percent identity and is calculated as follows:
  • Suitable fluorescent brighteners include: di-styryl biphenyl compounds, e.g. CBS-X, di-amino stilbene di-sulfonic acid compounds, e.g. DMS pure Xtra and HRH, and Pyrazoline compounds, e.g. SN, and coumarin compounds, e.g. SWN.
  • Preferred brighteners are: sodium 2 (4-styryl-3-sulfophenyl) -2H-napthol [1, 2-d] triazole, disodium 4, 4'-bis ⁇ [ (4-anilino-6- (N methyl-N-2 hydroxyethyl) amino 1 , 3, 5-triazin-2-yl) ] amino ⁇ stilbene-2-2'disulfonate, disodium 4, 4'-bis ⁇ [ (4-anilino-6-morpholino-1, 3, 5-triazin-2-yl) ] amino ⁇ stilbene-2-2'disulfonate, and disodium 4, 4'-bis (2-sulfostyryl) biphenyl.
  • a suitable fluorescent brightener is C.I. Fluorescent Brightener 260, which may be used in its beta or alpha crystalline forms, or a mixture of these forms.
  • Hueing agent Suitable hueing agents include small molecule dyes, typically falling into the Colour Index (C.I. ) classifications of Acid, Direct, Basic, Reactive (including hydrolysed forms thereof) or Solvent or Disperse dyes, for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
  • Preferred such hueing agents include Acid Violet 50, Direct Violet 9, 66 and 99, Solvent Violet 13 and any combination thereof.
  • hueing agents are known and described in the art which may be suitable for the present invention, such as hueing agents described in WO2014/089386.
  • Suitable hueing agents include phthalocyanine and azo dye conjugates, such as described in WO2009/069077.
  • Suitable hueing agents may be alkoxylated. Such alkoxylated compounds may be produced by organic synthesis that may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the hueing agent, or may undergo a purification step to increase the proportion of the target molecule.
  • Suitable hueing agents include alkoxylated bis-azo dyes, such as described in WO2012/054835, and/or alkoxylated thiophene azo dyes, such as described in WO2008/087497 and WO2012/166768.
  • the hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step (s) .
  • Such reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route.
  • Suitable hueing agents can be incorporated into hueing dye particles, such as described in WO 2009/069077.
  • the composition at 1wt%dilution in deionized water at 20°C has a reserve alkalinity to pH 7.5 of less than 3.0gNaOH/100g, preferably less than 2.5gNaOH/100g, or even less than 2.0gNaOH/100g.
  • the term “reserve alkalinity” is a measure of the buffering capacity of the detergent composition (g/NaOH/100g detergent composition) determined by titrating a 1% (w/v) solution of detergent composition with hydrochloric acid to pH 7.5 i.e. in order to calculate Reserve Alkalinity as defined herein:
  • T titre (ml) to pH 7.5
  • Encapsulated perfume microparticles (referred to PMC solids) are incorporated into coated extrudates as follows.
  • a surfactant powder consisting of 85%LAS, 8%nonionic (Neodol 45-7) , 4%PEG 2000 and balance other. miscellaneous/water
  • a surfactant powder consisting of 85%LAS, 8%nonionic (Neodol 45-7) , 4%PEG 2000 and balance other. miscellaneous/water
  • This powder mix is then extruded in a twin-screw extruder (MXP19) equipped with a rotary cutter and die-plate to form extrudates of dimensions 2mm by 5mm by 5mm.
  • extrudates are then coated in a fluidized bed using an aqueous slurry consisting of 20%sodium carbonate and 4%PMC solids containing 0.1%of a hueing dye and 0.2%TiO2 pigment and an air inlet temperature of 65 °C to as to form coated extrudates containing 25%by weight of sodium carbonate and 5%by weight of PMC solids.
  • a detergent product of composition shown below.
  • This composition is then blended with amylase, metalloprotease and lipase so as to introduce 0.01%by wt of each active enzyme into the composition to give the final product.
  • LAS, AE30 nonionic, citric acid, sodium citrate are premixed in a cement mixer.
  • the premix is feed into extrusion/cutting equipment –SUNUP granulator SET-60 (Q) with 5mm die plate, extuded and cut (1.5mm length) .
  • cylinder core particles are then placed in coating equipment –Enger multi-function fluid bed HWBF-3G.
  • Perfume microcapsules (PMC) and 30%carbonate solution are mixed for 10 min (at 60°C temperature) to form coating premix.
  • the coating premix (at 60°C temperature) is applied and coated on the cylinder core particle under fluidize air temperature (70°C temperature) .
  • LAS, AE30 nonionic, citric acid, sodium citrate and perfume microcapsules are premixed in a cement mixer.
  • the premix is feed into extrusion/cutting equipment –SUNUP granulator SET-60 (Q) with 5mm die plate, extuded and cut (1.5mm length) .
  • cylinder core particles are then placed in coating equipment –Enger multi-function fluid bed HWBF-3G. 30%carbonate solution (at 60°C temperature) is applied and coated on the cylinder core particle under fluidize air temperature (70°C temperature) .
  • Agilent Gas Chromatograph model 7890 series GC Agilent Technologies Inc., Santa Clara, California, U.S.A. ) ; Agilent Model 5975B Mass Selective Detector (MSD, Agilent Technologies Inc., Santa Clara, California, U.S.A. ) ; Multipurpose AutoSampler MPS (GERSTEL Inc., Linthicum, Maryland, U.S.A) ; and J&W TM DB-5ms Ultra Inert (30 m length x 0.25 mm internal diameter x 0.25 ⁇ m film thickness) (J&W Scientific/Agilent Technologies Inc., Santa Clara, California, U.S.A. ) .
  • MSD Full Scan mode with a minimum range of 40 to 300 m/z (a wider range may be used) .
  • Perfume composition is identified by matching their retention times and mass spectra with those of reference standards. Total target responses are corrected target responses of internal standard. Total target response of free perfume devided by total target response of total PMC indicates the breakage rate of PMC (%) .
  • Example 3 Sample PMC Breakage Rate (%) Example 3 (Inventive) 61.50 ⁇ 11.28 Example 4 (Comparative) 110.24 ⁇ 5.80

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

A process for the preparation of a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the process comprises the following steps: (i) forming a detersive mixture comprising from 40wt% to 90wt% detersive surfactant; (ii) extruding the detersive mixture of step (i) to form an extruded material; (iii) coating the extruded material with a coating material to form a wet coated extruded material comprising from 1wt% to 40wt% water soluble inorganic salt and from 0.01wt% to 10wt% perfume, wherein the coating material is in the form of an aqueous slurry and comprises from 20wt% to 90wt% water-soluble inorganic, and from 0.1wt% to 40wt% encapsulated perfume; and (iv) removing water from the wet coated extruded material to form the coated detergent particle.

Description

LAUNDRY DETERGENT COMPOSITION FIELD OF THE INVENTION
The present invention relates to a process for making a laundry detergent composition having a lenticular size and shape. The lenticular laundry detergent compositions made by the process of the present invention exhibit good freshness performance.
BACKGROUND OF THE INVENTION
There is a recent trend in the field of laundry detergency to develop compositions that are in the form of lenticles. These solid particles are of a shape and size that exhibit difference product performance characteristics compared to the conventional particulate detergent products. For example, the cleaning and freshness performance have very different characteristics, especially in stressed laundering conditions such as cold and quick wash cycles.
There is a need to further improve the perfume compatibility with other ingredient in the lenticular laundry detergent; as well as the process of making such. There is also a need to further improve the freshness profile of such lenticular laundry detergent product. The present invention seeks to provide a process of making a lenticular laundry detergent product, the product having a good perfume compatibility and improved freshness profie, especially in cold and quick cycles. The process of the present invention exhibits reduced perfume capsule breakage rate.
SUMMARY OF THE INVENTION
The present invention provides a process for the preparation of a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the process comprises the following steps:
(i) forming a detersive mixture comprising from 40wt%to 90wt%detersive surfactant;
(ii) extruding the detersive mixture of step (i) to form an extruded material;
(iii) coating the extruded material with a coating material to form a wet coated extruded material comprising from 1wt%to 40wt%water soluble inorganic salt and from 0.01wt%to 10wt%perfume,
wherein the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume; and
(iv) removing water from the wet coated extruded material to form the coated detergent particle.
DETAILED DESCRIPTION OF THE INVENTION
Process: The process comprises the following steps:
(i) forming a detersive mixture comprising from 40wt%to 90wt%detersive surfactant;
(ii) extruding the detersive mixture of step (i) to form an extruded material;
(iii) coating the extruded material with a coating material to form a wet coated extruded material comprising from 1wt%to 40wt%water soluble inorganic salt and from 0.01wt%to 10wt%perfume,
wherein the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume; and
(iv) removing water from the wet coated extruded material to form the coated detergent particle.
Step (i) : A detersive mixture comprising from 40wt%to 90wt%detersive surfactant is formed. Typically, the detersive surfactant comprises from 15wt%to 85wt%anionic detersive surfactant and from 5wt%to 75wt%non-ionic detersive surfactant.
Typically, the anionic detersive surfactant is selected from alkyl benzene sulphonate, alkyl ether sulphate and/or alkyl sulphate.
Typically, the detersive mixture has a hardness of from 1MPa to 100MPa during the roller compaction step (ii) .
A suitable detersive surfactant comprises from 80wt%to 95wt%alkyl benzene sulphonate, and from 6wt%to 10wt%8%alkyl ethoxylated alcohol having an average degree of ethoxylation of from 5 to 9. Such a detersive surfactant can be prepared by blending the nonionic detersive surfactant into HLAS and rapidly neutralizing the mix with aqueous caustic solution followed by drying in an oven, preferably a vacuum oven until the eRH of the surfactant is less than 10%. This surfactant can then be milled in any suitable device, such as a coffee grinder or mill.
A suitable detersive surfactant comprises at least 51wt%alkyl benzenesulphonate. A suitable detersive surfactant comprises no more than 20wt%non-ionic detersive surfactant.
Typically, the detersive surfactant is dried prior to step (ii) . A suitable drying means include an evaporator or drier. A suitable drying means include a wiped film evaporator, fluid bed drier and/or a tube drier.
Typically, the detersive mixture introduced into step (ii) comprises less than 1.5 wt%water.
Typically, the detersive mixture is cooled prior to step (ii) . A suitable cooling means inclues a chill roll.
The detersive surfactant may be transferred to a mill and milled to particles of less than 1.5 mm, preferably less than 1 mm, before it is fed to the extrusion step (ii) . Typically, a powdered flow aid with a particle diameter of from 0.1μm to 10μm is added to the mill in an amount of 0.5wt%to 5 wt% (wt%based on the detersive misture) , and blended into the surfactant particles during milling.
Step (ii) : The detersive mixture of step (i) is extruded to form an extruded material.
Typically, the extruder has a void commensurate with the size of the particle before coating.
Typically, the detersive mixture is fed into a twin-screw co-rotating extruder equipped with a die-plate and cutting mechanism.
The extruder is typically cooled during operation.
A suitable extruder is an APV 24.
Another suitable extruder includes a roller compactor.
Extrusion rates of from 2 to 8 kg/hr are suitable, and a die-plate with orifices of from 3 to 7 mm can be used. The die-plate can be equipped with a rotary cutter so as to give an extrudate thickness of from 1mm to 2mm.
Typically, the temperature of the detersive mixture does not exceed 45℃, and preferably does not exceed 40℃, during the extrusion step (ii) .
Typically, the extruded material produced by step (ii) is an oblate spheroid.
Typically, the diameter of the extruded material produced by step (ii) is greater than 4mm
Step (iii) : the extruded material is coated with a coating material to form a wet coated extruded material comprising from 1wt%to 40wt%water soluble inorganic salt and from 0.01wt%to 10wt%perfume.
The coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume.
Typically, the coating material is selected from powdered inorganic material and mixtures of such material and nonionic material with a melting point in the range 40℃ to 90℃.
Step (iv) : Water is removed from the wet coated extruded material to form the coated detergent particle. Typically, step (iv) is carried out in a fluidized bed and/or a drum.
Typically, the coated detergent particle comprises from 1wt%to 5wt%water.
Typically, the coated detergent particle is curved.
Encapsulated perfume: The encapsulated perfume is typically added by coating the outside of particle.
A suitable encapsulated perfume is a perfume microcapsule, such as those based on melamine formaldehyde wall material. These perfume microcapsulates are often supplied in the form of an aqueous slurry. Typically such slurries are 50wt%solids and such slurries are suitable for spraying but it is often preferred to further dilute the slurry. It is also preferred to add additional binder materials to the slurry to assist in forming a robust coating. In this situation it is preferred to dilute the slurry and then add film-forming materials such as carboxymethylcellulose (CMC) . Slurries can have viscosities of less than 500 cps at 20 s -1 to be atomisable.
The particles to be coated (extruded material) is preferably a flattened disk like extrudate. A suitable coating step is carried out in a fluidized bed using an air velocity of 0.4 to 0.7 m/s.
A suitable coating procedure is as follows. 300g of extruded material is placed in a circular fluidized bed of diameter 15cm. Inlet air at a temperature of 50℃ is supplied to give an average velocity inside the fluidized bed of 0.5 m/s. A perfume microcapsule-containing slurry consisting of 20wt%perfume microcapsule solids, 5wt%CMC, 10wt%sodium carbonate and 65wt%water is prepared by mixing.
This solution is then pumped to a Spray Systems 001 nozzle mounted 10 cm above the surface of the fluidized particles at a rate of 10g/minute and sprayed onto the extrudates with the help of atomizing air so as to give wet coated extruded material.
Another suitable process uses starch encapsulated perfume accord (SEA) . For example, it is possible to blend the SEA in a hot melt of a non-aqueous material such as PEG 8000 and to coat this mix onto the surface of the extrudates together with an aqueous solution of inorganic salt such as sodium carbonate by using hot atomizing air in a similar arrangement to that described previously.
The coated detergent particle: The coated detergent particle typically comprises:
(a) from 20wt%to 39wt%detersive surfactant selected from anionic detersive surfactant and/or non-ionic detersive surfactant;
(b) from 10wt%to 40wt%inorganic salts selected from sodium carbonate, sodium sesquicarbonate, sodium bicarbonate and any mixtures thereof;
(c) optionally, from 10wt%to 40wt%citric acid and/or salts thereof; and
(d) from 0.2wt%to 10wt%perfume.
The coated detergent particle is also referred to herein as the composition.
Typically, at 1wt%dilution in de-ionised water at 20℃, the composition has a pH in the range of from 7.6 to 10.0.
Typically, at 1wt%dilution in de-ionised water at 20℃, the composition has a reserve alkalinity to pH 7.5 of greater than 3.0.
Typically, the composition is in the form of a coated laundry detergent particle that is curved.
Typically, the coating comprises the inorganic salt (b) , and wherein the core comprises the detersive surfactant (a) .
The coated laundry detergent particle may be lenticular (e.g. shaped like a whole dried lentil) , an oblate ellipsoid, and where z and y are the equatorial diameters and x is the polar diameter; preferably y = z.
Typically, when x = 2mm, then at least one of z or y = >2mm, and preferably >3mm. The dimensions x, y and z can be measured using image analysis. Suitable equipment for image analysis includes a Leica Binocular Microscope (Leica MZ16A) with motorised and indexed mount, using a digital camera (Leica IC30) to capture the images, the images would be processed within the LEICA Application Software (LAS) platform using the optional Montage MultiFocus and Analysis modules.
The X and y axial size can be determined by pixel count analysis of the Feret diameters with the maximum and minimum Feret Diameters representing the X and Y axial lengths.
The Z axial length can be determined via the use of focus stacking (i.e. z-stacked images) which is a digital image processing technique which combines multiple images taken at different known focus distances to give a resulting image with a greater depth of field (DOF) than any of the individual source images.
The coated laundry detergent particle may be shaped as a disc. Preferably the coated laundry detergent particle does not have hole; that is to say, the coated laundry detergent particle does not have a conduit that passes through the core: i.e. the coated detergent particle has a topologic genus of zero.
The composition may comprise from 0.05wt%to 4.0wt%soil release polymer.
The composition may comprise from 0.1wt%to 3.0wt%carboxymethylcellulose (CMC) .
The composition may comprise from 0.1wt%to 5.0wt%calcite.
The composition may comprise from 1wt%to 10wt%carboxylate polymer.
The composition may comprise less than 10wt%total level of silicates and aluminosilicates.
The composition may comprise from 0.001wt%to 0.5wt% hueing dye.
The composition may comprise from 0.001wt%to 0.5wt%organic pigment and/or inorganic pigment.
The composition may comprise from 0.2 wt%to 10wt%chelant, preferably phosphonate chelant.
The composition preferably comprises from 10wt%to 40wt%sodium carbonate.
Detersive surfactant: A suitable detersive surfactant system typically comprises at least 5%alcohol ether carboxylate as a percentage of the total detersive surfactant system.
A suitable detersive surfactant system typically comprises at least 5%alcohol ethoxylate having an average degree of ethoxylation in the range of from 10 to 50 as a percentage of the total detersive surfactant system.
Preferably, the detersive surfactant comprises C 8-C 24 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 20 to 50, and preferably the compositon comprises from 1wt%to 10wt%C 8-C 24 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 20 to 50. A suitable highly ethoxylated alcohol is
Figure PCTCN2017117078-appb-000001
AO30 from BASF and/or 
Figure PCTCN2017117078-appb-000002
2430 from Sasol.
Anionic detersive surfactant: Suitable anionic detersive surfactants include sulphonate and sulphate detersive surfactants.
Suitable sulphonate detersive surfactants include methyl ester sulphonates, alpha olefin sulphonates, alkyl benzene sulphonates, especially alkyl benzene sulphonates, preferably C 10-13 alkyl benzene sulphonate. Suitable alkyl benzene sulphonate (LAS) is obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzene (LAB) ; suitable LAB includes low 2-phenyl LAB, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename
Figure PCTCN2017117078-appb-000003
Suitable sulphate detersive surfactants include alkyl sulphate, preferably C 8-18 alkyl sulphate, or predominantly C 12 alkyl sulphate.
A preferred sulphate detersive surfactant is alkyl alkoxylated sulphate, preferably alkyl ethoxylated sulphate, preferably a C 8-18 alkyl alkoxylated sulphate, preferably a C 8-18 alkyl ethoxylated sulphate, preferably the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, preferably from 0.5 to 10, preferably the alkyl alkoxylated sulphate is a C 8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, preferably from 0.5 to 5, more preferably from 0.5 to 3 and most preferably from 0.5 to 1.5.
The alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
Other suitable anionic detersive surfactants include alkyl ether carboxylates.
Suitable anionic detersive surfactants may be in salt form, suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof. A preferred counter-ion is sodium.
Alkyl ether carboxylic acid: A suitable alkyl ether carboxylic acid has the following structure:
R- (OCH 2CH 2) n-OCH 2-COOH
wherein,
R is selected from saturated and mono-unsaturated C 10 to C 26 linear or branched alkyl chains, preferably C 12 to C 24 linear or branched alkyl chains, most preferably a C 16 to C 20 linear alkyl chain;
n is selected from 5 to 20, preferably 7 to 13, more preferably 8 to 12, most preferably 9.5 to 10.5; and
The alkyl ether carboxylic acid may be present from 0.5 to 20 wt%, preferably from 2 to 14 wt%, most preferably from 2.5 to 5 wt%. It may be present in acid or salt form, most preferably as its sodium salt.
Suitable materials are sold under the
Figure PCTCN2017117078-appb-000004
 (Kao) and
Figure PCTCN2017117078-appb-000005
C (Huntsman) brand names.
Non-ionic detersive surfactant: Suitable non-ionic detersive surfactants are selected from the group consisting of: C 8-C 18 alkyl ethoxylates, such as, 
Figure PCTCN2017117078-appb-000006
non-ionic surfactants from Shell; C 6-C 12 alkyl phenol alkoxylates wherein preferably the alkoxylate units are ethyleneoxy units, propyleneoxy units or a mixture thereof; C 12-C 18 alcohol and C 6-C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as
Figure PCTCN2017117078-appb-000007
from BASF; alkylpolysaccharides, preferably alkylpolyglycosides; methyl ester ethoxylates; polyhydroxy fatty acid amides; ether capped poly (oxyalkylated) alcohol surfactants; and mixtures thereof. Suitable non-ionic detersive surfactants are alkylpolyglucoside and/or an alkyl alkoxylated alcohol.
Suitable non-ionic detersive surfactants include alkyl alkoxylated alcohols, preferably C 8-18 alkyl alkoxylated alcohol, preferably a C 8-18 alkyl ethoxylated alcohol, preferably the alkyl alkoxylated alcohol has an average degree of alkoxylation of from 1 to 50, preferably from 1 to 30, or from 1 to 20, or from 1 to 10, preferably the alkyl alkoxylated alcohol is a C 8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, preferably from 1  to 7, more preferably from 1 to 5 and most preferably from 3 to 7. The alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.
Suitable nonionic detersive surfactants include secondary alcohol-based detersive surfactants.
Amino acid derivative complexing agent: A suitable amino acid derivative complexing agent is selected from one or more of the following, in any stereoisomer or mixture of stereoisomer form:
(i) methylglycinediacetic acid and salts thereof (MGDA)
Figure PCTCN2017117078-appb-000008
(ii) L-glutamic acid, N, N-diacetic acid and salts thereof (GLDA)
Figure PCTCN2017117078-appb-000009
(iii) L-aspartic acid N, N-diacetic acid and salts thereof (ASDA)
Figure PCTCN2017117078-appb-000010
Preferbly, the composition comprises from 0.1wt%to 10wt%methylglycinediacetic acid and salts thereof (MGDA)
Figure PCTCN2017117078-appb-000011
It may be preferred to formulate the amino acid derivative complexing agent in acid form. Alternatively, it may be preferred to formulate the amino acid derivative complexing agent in salt form, especially preferred is the sodium salt form.
Suitable MGDA salts are produced by BASF. Suitable GLDA salts are produced by Akzo Nobel and Showa Denko. Suitable ASDA salts are produced by Mitsubishi Rayon.
Alkoxylated polyaryl/polyalkyl phenol: A suitable alkoxylated polyaryl/polyalkyl phenol has the following structure:
Figure PCTCN2017117078-appb-000012
wherein R 1 is selected from linear of branched C 3-C 15 alkyl groups and aryl groups, X is selected from ethoxy or propoxy groups, n is from 2 to 70, T is selected from H, SO 3 -, COO -and PO 3 2-
The alkoxylated polyaryl or alkoxylated polyalkyl phenol is preferably selected from groups (i) to (iv) :
(i) Uncharged alkoxylated tristyrylphenols of the following structure:
Figure PCTCN2017117078-appb-000013
wherein n is selected from 2 to 70, more preferably n is selected from 10 to 54, most preferably n = 16 or 20.
(ii) Anionic alkoxylated tristyrylphenols of the following structure
Figure PCTCN2017117078-appb-000014
wherein R is selected from SO 3 -, COO -and PO 3 2-, preferably selected from SO 3 -and COO -, wherein n is selected from 2 to 54.
(iii) Uncharged alkoxylated tri (n-butyl) phenols of the following structure:
Figure PCTCN2017117078-appb-000015
wherein n is selected from 2 to 50
(iv) Anionic alkoxylated tri (n-butyl) phenols of the following structure:
Figure PCTCN2017117078-appb-000016
wherein R is selected from SO 3 -, COO -and PO 3 2-, preferably selected from SO 3 -and COO -, wherein n is selected from 6 to 50.
Such compounds are available from industrial suppliers, for example Solvay under the Soprophor trade name, from Clariant under the Emulsogen trade name, Aoki Oil Industrial Co. under the Blaunon trade name, from Stepan under the Makon trade name, and from TOTO Chemical Industry Co. under the Sorpol trade name. Specific examples of suitable compounds are
Figure PCTCN2017117078-appb-000017
TS160, 
Figure PCTCN2017117078-appb-000018
BV conc., 
Figure PCTCN2017117078-appb-000019
T110 or
Figure PCTCN2017117078-appb-000020
T139, all from Clariant.
The alkoxylated polyaryl/polyalkyl phenol may be present at levels of 0.5-20wt%, preferably 1-15wt%, most preferably 3-10wt%.
Amylase variant: A suitable amylase variant comprises:
(a) a deletion and/or a substitution at two or more positions corresponding to positions R181 , G182, H183 and G184 of the mature polypeptide of SEQ ID NO: 1 , and
(b) a substitution at one or more positions said substitutions selected from the group consisting of:
I206Y; F; Q; P; R; V; C; G; A; C; D; E; H; K; L; M; N; S; T, particularly I206Y; F; C; L; H; S,
N195F; Y; H; K; L,
L63Q; P; R; V; F; C; G; A; C; D; E; H; K; I; M; N; S; T; Y, particularly L63V,
A113M; R; W; I; L,
M116F; Y; I; W; L,
R118P; Q; V; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly R118P; Q; V; F; C; G,
N128C;
Q129P; R; V; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly Q129E,
G133N,
A139Q; P; R; V; F; C; G; C; D; E; H; I; K; L; M; N; S; T; Y, particularly A139T,
R142H; V; L; Q; I,
A186E; N; Q; S,
E190P; R; V; F; C; G; A; C; D; Q; H; I; K; L; M; N; S; T; Y, particularly E190P,
A204Q; P; R; V; F; C; G; C; D; E; H; I; K; L; M; N; S; T; Y, particularly A204T,
H210M; D; C; A; Q; S; F; N; E; T,
P211Q; R; V; F; C; G; A; C; D; E; H; l; K; L; M; N; S; T; Y, particularly P211L; M; S; Q; G; V; W; A; H; T; R;
E212T; R; S; V; L; Y; R; T; G;
V213Q; P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly V213T; A; G; S; C; L; P,
V214Q; P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; Y, particularly V214T; I,
L217M; Q; V; I; H, particularly L217V,
Y243Q; P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; S; T; V, particularly Y243F,
S244Q; P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; Y; T; V, particularly S244Q,
T246Q; P; R; F; C; G; A; C; D; E; H; I; K; L; M; N; Y; S; V, particularly T246Q; M,
N260E, Q280S, N311R, F343W, D418C, S419M, S420Q; R and Y482W,
where the positions correspond to the positions of SEQ ID NO 1 and wherein the amylase variant has at least 95%, such as at least 96%, or at least 97%, or at least 98%, or at least 99%but less than 100%sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO: 1 and wherein the variant has alpha-amylase activity.
One preferred amylase variant comprises a sequence corresponding to SEQ ID NO: 1 with the following mutations: H183*+G184*+I405L+A421H+A422P+A428T.
A suitable amylase is commercially available from Novozymes under the
Figure PCTCN2017117078-appb-000021
brand name, for example as a liquid raw material as
Figure PCTCN2017117078-appb-000022
12L.
Lipase: A suitable lipase is a variant of SEQ ID NO: 2 comprising:
(a) substitutions T231R and N233R
and
(b) at least three further substitutions selected from D27R, N33Q, G38A, D96E, D111A, G91Q, G163K, E210Q, D254S, I255A, and P256T;
where the positions correspond to the positions of SEQ ID NO 2 and wherein the lipase variant has at least 95%but less than 100%sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO: 2 and wherein the variant has lipase activity.
One preferred lipase is a variant of SEQ ID NO: 2 comprising the following substitutions: T231R, N233R, D27R, G38A, D96E, D111A, G163K, D254S and P256T
One preferred lipase is a variant of SEQ ID NO: 2 comprising the following substitutions: T231R, N233R, N33Q, G91Q, E210Q, I255A.
Suitable lipases are commercially available from Novozymes, for example as Lipex Evity 100L (a liquid raw material) and Lipex Evity 105T (a granulate) . These lipases have different structures to the products Lipex 100L, Lipex 100T and Lipex Evity 100T which are outside the scope of this particular lipase definition.
Metalloprotease: Metalloproteases can be derived from animals, plants, bacteria or fungi. Suitable metalloprotease can be selected from the group of neutral metalloproteases and Myxobacter metalloproteases. Suitable metalloproteases can include collagenases, hemorrhagic toxins from snake venoms and thermolysin from bacteria.
Preferred thermolysin enzyme variants include an M4 peptidase, more preferably the thermolysin enzyme variant is a member of the PepSY~Peptidase_M4~Peptidase_M4_C family.
Suitable metalloprotease variants can have at least 50%identity to the thermolysin set forth in SEQ ID NO: 3. In some embodiments, the thermolysin enzyme variant is from a genus selected from the group consisting of Bacillus, Geobacillus, Alicyclobacillus, Lactobacillus, Exiguobacterium, Brevibacillus, Paenibacillus, Herpetosiphon, Oceanobacillus, Shewanella, Clostridium, Staphylococcus, Flavobacterium, Stigmatella, Myxococcus, Vibrio, Methanosarcina, Chryseobacterium, Streptomyces, Kribbella, Janibacter, Nocardioides, Xanthamonas, Micromonospora, Burkholderia, Dehalococcoides, Croceibacter, Kordia, Microscilla, Thermoactinomyces, Chloroflexus, Listeria, Plesiocystis, Haliscomenobacter, Cytophaga, Hahella, Arthrobacter, Brachybacterium, Clavibacter, Microbacterium, Intrasporangium, Frankia, Meiothermus, Pseudomonas, Ricinus, Catenulispora, Anabaena, Nostoc, Halomonas, Chromohalobacter, Bordetella, Variovorax, Dickeya, Pectobacterium, Citrobacter, Enterobacter,  Salmonella, Erwinia, Pantoea, Rahnella, Serratia, Geodermatophilus, Gemmata, Xenorhabdus, Photorhabdus, Aspergillus, Neosartorya, Pyrenophora, Saccharopolyspora, Nectria, Gibberella, Metarhizium, Waddlia, Cyanothece, Cellulphaga, Providencia, Bradyrhizobium, Agrobacterium, Mucilaginibacter, Serratia, Sorangium, Streptosporangium, Renibacterium, Aeromonas, Reinekea, Chromobacterium, Moritella, Haliangium, Kangiella, Marinomonas, Vibrionales, Listonella, Salinivibrio, Photobacterium, Alteromonadales, Legionella, Teredinibacter, Reinekea, Hydrogenivirga and Pseudoalteromonas. In some embodiments, the thermolysin enzyme variant is from a genus selected from the group consisting of Bacillus, Geobacillus, Alicyclobacillus, Lactobacillus, Exiguobacterium, Brevibacillus, Paenibacillus, Herpetosiphon, Oceanobacillus, Shewanella, Clostridium, Staphylococcus, Flavobacterium, Stigmatella, Myxococcus, Vibrio, Methanosarcina, Chryseobacterium, and Pseudoalteromonas.
Preferably the thermolysin enzyme is from the genus Bacillus.
Preferred metalloproteases include thermolysin, matrix metalloproteinases and those metalloproteases derived from Bacillus subtilis, Bacillus thermoproteolyticus, Geobacillus stearothermophilus or Geobacillus sp., or Bacillus amyloliquefaciens, as described in US PA 2008/0293610A1.
A specially preferred metalloprotease belongs to the family EC3.4.24.27.
Further suitable metalloproteases are the thermolysin variants described in WO2014/71410.
In one aspect the metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 3 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3:
(a) 2, 26, 47, 53, 87, 91, 96, 108, 118, 154, 179, 197, 198, 199, 209, 211, 217, 219, 225, 232, 256, 257, 259, 261, 265, 267, 272, 276, 277, 286, 289, 290, 293, 295, 298, 299, 300, 301, 303, 305, 308, 311 and 316;
(b) 1, 4, 17, 25, 40, 45, 56, 58, 61, 74, 86, 97, 101, 109, 149, 150 , 158, 159, 172, 181, 214, 216, 218, 221, 222, 224, 250, 253, 254, 258, 263, 264, 266, 268, 271, 273, 275, 278, 279, 280, 282, 283, 287, 288, 291, 297, 302, 304, 307 and 312;
(c) 5, 9, 11, 19, 27, 31, 33, 37, 46, 64, 73, 76, 79, 80, 85, 89, 95, 98, 99, 107, 127, 129, 131, 137, 141, 145, 148, 151, 152, 155, 156, 160, 161, 164, 168 , 171, 176, 180, 182, 187, 188, 205, 206, 207, 210, 212, 213, 220, 227, 234 , 235, 236, 237, 242, 244, 246, 248, 249, 252, 255, 270, 274, 284, 294, 296, 306, 309, 310, 313, 314 and 315;
(d) 3, 6, 7, 20, 23, 24, 44, 48, 50, 57, 63, 72, 75, 81, 92, 93, 94, 100, 102, 103, 104, 110, 117, 120, 134, 135, 136, 140, 144, 153, 173, 174, 175, 178, 183, 185, 189, 193, 201, 223, 230, 238, 239, 241, 247, 251, 260, 262, 269, and 285;
(e) 17, 19, 24, 25, 31, 33, 40, 48, 73, 79, 80, 81, 85, 86, 89, 94, 109, 117, 140, 141, 150, 152, 153, 158, 159, 160, 161, 168, 171, 174, 175, 176, 178, 180, 181, 182, 183, 189, 205, 206, 207, 210, 212, 213, 214, 218, 223, 224, 227, 235, 236, 237, 238, 239, 241, 244, 246, 248, 249, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 262, 266, 268, 269, 270, 271, 272, 273, 274, 276, 278, 279, 280, 282, 283, 294, 295, 296, 297, 300, 302, 306, 310 and 312;
(f) 1, 2, 127, 128, 180, 181, 195, 196, 197, 198, 199, 211, 223, 224, 298, 299, 300, and 316
all relative to SEQ ID NO: 3.
In a further aspect the metalloprotease protease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 3 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3:
(a) I001L, T002A, T002C, T002I, T002K, T002M, T004K, T004L, T004M, T004Y, Q017L, N037K, F040K, F040L, K045A, K045G, K045M, T049E, T049M, T049Y, L050P, S053C, S053L, A056M, A058E, A058L, Q061L, F063C, A064D, A064E, S065A, S065D, S065E, S065P, S065Y, V087C, V087K, V087L, V087M, V087N, V087Q, V087W, V087Y, N096K, N096L, N096Y, R101H, Q108L, Q108M, G109E, G109M, G109R, G109W, S118A, S118D, S118M, S118Q, S118R, S118T, SI 18V, Q128A, Q128L, Q128Y, I131L, I137L, T149N, G154A, G154H, G154K, G154M, G154Y, L155M, I164A, N181S, G196A, G196W, I197C, S198A, S198K, G199A, G199Y, A209C, A209M, H216A, Y217C, Y217L, T222K, N227A, I244L, Q246D, V256N, L263A, L263M, T272K, Q273N, Y274M, P277A, P277D, P277Y, L284A, L284M, L284Y, A286K, A286L, A286M, A286N, A286Y, A287C, A288L, A288M, V289A, S291A, S291T, T293A, T293I, T293K, T293L, T293M, T293Y, L295A, L295K, L295M, L295W, Y296M, G297N, S298A, S298G, S298K, S298M, S298R, T299A, T299K, S300D, S300N, Q301K, E302A, V303A, V303P, V303Y, A304E, A304K, A304Y, S305A, S305K, S305M, V306L, V306T, A309C, F310M, D311A, D311K, D311L, D311M, D311V, D311W, D311Y, and A312C;
(b) T002Q, T004V, V007I, V009I, R01 IK, I020L, I020V, S025A, S025C, S025K, S025M, S025R, T026C, T026D, Y027C, Y027L, N037L, F040A, A044C, K045F,  K045H, K045Q, K045Y, Y046C, R047D, R047E, R047G, R047L, R047M, R047Q, R047T, T049L, T049N, T049Q, T049V, S053A, S053N, S053V, A056E, Q061C, Q061I, A064T, S065L, S065T, S065W, A073F, A073L, A073M, A073W, H074C, H074F, H074M, H074N, H074Q, H074W, T080L, T080N, K085S, N086D, V087R, V087T, L091A, L091N, L091R, L091W, L091Y, S092L, Y093C, N096G, N096H, N096Q, N096R, N096S, N096W, N097E, N097M, A099R, A099S, R101C, R101L, R101S, S102N, S107G, Q108I, Q108K, Q108N, G109S, S118E, M120L, Q128I, Q128K, T129L, T129M, I131W, S134P, G136S, I137E, I137T, I137V, V140D, V148A, V148Q, T149D, T149S, T152G, G154C, G154N, L155I, N159S, N159Y, I164C, I168L, I171G, Y179F, A180S, G189A, Y193F, G196H, G196L, G196Y, I197F, S198M, S198N, S198R, S198W, S201A, A209G, A209I, A209K, A209P, A209R, A209Y, Y211E, Y211R, P214A, P214R, Y217A, Y217F, Y217M, Y217N, K219A, K219E, K219R, K219S, R220A, Y221A, Y221F, Y221G, Y221M, T222A, T222M, Q225C, Q225E, Q225K, Q225L, Q225S, I232L, I232R, I232S, I232T, I232V, I232Y, S234A, S234C, G235A, I236C, I244A, I244M, Q246C, V256S, G257K, G257R, I258A, I258C, I258K, I258Q, I258V, G259N, G259S, G259T, L263H, L263K, L263N, L263V, G264A, G264N, G264P, G264Q, G264S, G264T, K265N, I266C, I266M, I266T, I266V, F267A, F267C, F267H, F267I, F267K, F267L, F267M, F267T, F267Y, R269K, A270G, L271H, T272A, Q273E, Q273G, L275C, L275Q, L275S, L275T, T276A, T276L, T276V, T276Y, P277E, P277F, P277G, P277H, P277N, P277R, P277V, P277W, S279G, R285Y, A286C, A286Q, A286R, A286T, A288N, V289L, V289M, V289Y, Q290A, Q290H, Q290N, S291V, T293N, T293V, T293W, D294N, L295F, L295G, Y296W, G297D, S298E, S298N, S298P, T299N, S300A, S300G, S300T, Q301M, Q301S, Q301T, Q301V, E302D, E302Q, V303G, V303K, V303L, V303R, V303W, A304R, A304S, A304T, A304W, S305H, S305T, S305V, V306I, Q308A, Q308L, F310C, F310W, D311F, D311G, D311I, D311Q, D311S, D311T, V313C, G314Q, V315L, V315T, K316A, and K316M;
(c) I001K, I001M, I001V, T002F, T002L, T002P, T002S, T002V, T002W, T002Y, T004E, S005D, S005N, S005P, T006C, RO11I, Q017I, Q017W, Q017Y, S025D, S025F, T026K, T026L, T026R, T026V, T026Y, Y027W, Q031A, Q031K, Q031V, N033S, N033T, N037D, N037Q, N037R, F040E, F040G, F040M, F040Q, F040S, F040Y, K045E, K045L, K045S, Y046L, R047A, R047C, R047H, R047K, R047N, T048E, T049A, T049D, T049F, T049H, T049I, T049S, S053F, S053H, S053I, S053M, S053Q, S053T, S053W, A056K, A056Q, A056V, A056W, Q061M, S065I,  S065M, S065Q, S065V, D072F, H074E, H074L, Y076H, Y076L, Y076M, Y076Q, V079L, V079Q, V079T, T080I, Y081F, K085E, N086L, N086S, V087D, V087E, V087G, V087I, V087S, L091D, L091E, L091F, L091K, L091M, L091P, L091Q, L091S, Y093T, G095A, G095D, G095H, G095M, G095N, G095S, N096C, N096D, N096I, N096V, N097K, A098C, A098E, A098H, A098R, A099E, A099K, A099P, S107D, Q108C, Q108E, Q108F, Q108H, G127C, G127D, G127E, Q128C, Q128D, Q128E, Q128R, Q128S, T129I, T129R, S134A, I137P, A141S, T145A, T145C, T145E, T145G, T145M, T145N, T145Q, V148L, V148N, V148Y, T149M, T149V, Y151K, T152S, A153T, G154L, G154Q, G154S, G154T, L155C, Q158A, Q158K, Q158M, Q158N, N159R, N159W, S161A, S161N, S161P, S161T, I164L, I164N, I164S, I164T, I164V, I171C, I171E, I171F, I171L, I171S, F172G, F172L, F172M, F172Q, F172S, F172V, F172W, F172Y, G173A, G173C, T174C, V176L, V176N, N181L, G196D, G196E, G196T, I197D, I197K, I197L, I197T, I197V, I197W, I197Y, S198C, S198E, S198F, S198G, S198H, S198I, S198P, S198Q, S198T, S198V, G199C, G199E, G199F, G199H, G199Q, G199S, G199T, G199W, M205L, A209D, A209E, A209L, A209S, A209T, A209V, Y211A, Y211C, Y211D, Y211F, Y211G, Y211H, Y211I, Y211L, Y211N, Y211Q, Y211S, Y211T, D213N, D213S, P214C, P214G, P214K, P214S, H216C, H216E, H216S, H216T, Y217Q, Y217S, Y217T, Y217V, Y217W, S218K, S218L, S218Y, K219D, K219F, K219G, K219H, K219I, K219M, K219N, K219Q, K219T, R220K, R220V, Y221K, Y221N, Y221Q, Y221R, Y221S, Y221T, Y221V, T222C, T222D, T222L, T222Y, T224K, T224M, Q225D, Q225G, Q225H, Q225I, Q225P, Q225V, Q225W, I232C, I232E, I232F, I232K, I232M, I232N, I232Q, I232W, S234D, G235M, I236M, Y242C, Y242F, Y242N, Y242V, I244T, I244V, Q246E, Q246N, Q246T, G247A, G247S, T249K, T249M, T249N, H250A, H250C, G252K, G252Y, V253N, V253T, S254A, S254M, S254R, S254Y, V255L, V255P, V256L, V256T, G257C, G257D, G257E, G257L, G257N, G257P, G257Q, G257S, G257T, G257Y, I258E, I258L, I258M, I258N, G259A, G259C, G259E, G259F, G259H, G259L, G259M, G259W, D261A, D261N, L263C, L263I, L263Q, L263T, K265A, K265C, K265D, K265M, K265P, K265Q, K265S, I266A, I266F, I266L, I266S, F267E, F267G, F267N, F267S, F267V, F267W, Y268M, Y268Q, Y268V, A270C, A270F, A270I, A270L, A270S, L271A, L271D, L271F, L271I, T272E, T272L, T272V, T272W, Q273A, Q273H, Q273Y, Y274F, Y274H, L275I, L275M, L275V, T276C, T276F, T276I, T276P, T276Q, T276W, P277Q, P277S, P277T, T278G, S279A, S279D, S279I, S279L, S279M, S279N,  S279Q, S279T, N280A, N280C, N280D, N280E, S282K, S282N, L284V, L284W, R285K, A286D, A286E, A286F, A286G, A286H, A286I, A286S, A287I, A287L, A287N, A287V, A287Y, A288C, A288I, A288S, A288T, A288V, V289C, V289E, V289F, V289G, V289I, V289N, V289S, V289W, Q290C, Q290D, Q290F, Q290G, Q290L, Q290W, S291E, T293C, T293E, T293F, T293G, T293H, T293Q, T293S, L295C, L295I, L295N, Y296N, G297A, G297M, G297R, G297Y, S298C, S298T, S298W, S298Y, T299C, T299F, T299L, T299M, T299R, T299W, S300C, S300K, S300M, S300R, S300Y, Q301E, Q301H, Q301P, Q301R, V303C, V303H, A304C, A304D, A304L, A304N, S305G, S305I, S305L, S305N, S305W, S305Y, V306A, V306S, K307A, K307C, K307G, K307I, K307M, K307N, K307Q, K307R, K307W, K307Y, Q308C, Q308D, Q308F, Q308G, Q308I, Q308M, A309G, A309S, D311C, D311E, A312G, A312M, A312V, V313T, G314A, G314E, G314H, G314M, G314S, G314W, V315A, V315C, V315I, V315M, K316D, K316E, K316F, K316G, K316H, K316L, K316N, K316P, K316Q, K316R, K316S, K316V, K316W and K316Y.
Further suitable metalloproteases are the NprE variants described in WO2007/044993, WO2009/058661 and US 2014/0315775.
In one aspect the protease is a variant of a parent protease, said parent protease having at least 45%, or 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 4 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 4:
S23, Q45, T59, S66, S129, F130, M138, V190, S199, D220, K211, and G222,
Another suitable metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85%or 90%or 95%or 96%or 97%or 98%or 99%or even 100%identity to SEQ ID NO: 4 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 4:
Q45E, T59P, 566E, S129I, S129V, F130L, M138I, V190I, S199E, D220P, D220E, K211V,
K214Q, G222C, M138L/D220P, F130L/D220P, S129I/D220P, V190I/D220P,
M138L/V190I/D220P, S129I/V190I, S129V/V190I, S129V/D220P, S129I/F130L/D220P,
T004V/S023N, T059K/S66Q/S129I, T059R/S66N/S129I, S129I/F130L/M138L/V190I/D220P and T059K/S66Q/S129V.
Especially preferred metalloproteases for use herein belong belong to EC classes EC 3.4.22 or EC3.4.24, more preferably they belong to EC classes EC3.4.22.2, EC3.4.24.28 or EC3.4.24.27. The most preferred metalloprotease for use herein belong to EC3.4.24.27.
Suitable commercially available metalloprotease enzymes include those sold under the trade names
Figure PCTCN2017117078-appb-000023
by Novozymes A/S (Denmark) , the
Figure PCTCN2017117078-appb-000024
range including 
Figure PCTCN2017117078-appb-000025
2TS, 
Figure PCTCN2017117078-appb-000026
N, 
Figure PCTCN2017117078-appb-000027
L10, 
Figure PCTCN2017117078-appb-000028
LAP and
Figure PCTCN2017117078-appb-000029
7089 from AB Enzymes, Protex 14L and Protex 15L from DuPont (Palo Alto, California) , those sold as thermolysin from Sigma and the Thermoase range (PC10F and C100) and thermolysin enzyme from Amano enzymes.
A preferred metalloprotease is selected from the M4 Metalloprotease Family.
Builder system: A suitable water-soluble builder system comprising one or more aminocarboxylates, selected from: methylglycine diacetic acid (MGDA) and/or alkali metal or ammonium salts thereof; N, N-dicarboxymethyl glutamic acid (GLDA) and/or alkali metal or ammonium salts thereof; Aspartic acid N, N-diacetic acid (ASDA) and/or alkali metal or ammonium salts thereof; Ethylene diamine-N, N'-disuccunic acid (EDDS) and/or alkali metal or ammonium salt thereof; 2-hydroxy propylene diamine-N, N'-disuccunic acid (HPDDS) , and/or alkali metal or ammonium salt thereof; ethylenediamine-N, N'-diglutaric acid (EDDG and/or alkali metal or ammonium salt thereof; ethylenediamine-N, N'-bis- (orthohydroxyphenyl) acetic acid (EDDHA) and/or alkali metal or ammonium salt thereof; N-hydroxyethyl ethylenediamine-N, N’, N’-triacetic acid (HEDTA) alkali metal or ammonium salts thereof; iminodisuccinate, hydroxyethyl iminodiacetate, and ethylene iminodisuccinate and the respective alkali metal or ammonium salts; and any combination thereof.
Phosphonate chelant: A suitable phosphonate chelant is selected from: 1-hydroxyethane-1, 1-diphosphonic acid (HEDP) ; Diethylene triamine pentamethylene phosphonic acid (DTPMP, CW-Base) ; 2-phosphonobutane-1, 2, 4-tricarboxylic acid (PBTC) ; Amino trimethylene phosphonic acid (ATMP) ; Ethylenediamine tetramethylene phosphonic acid (EDTMP) ; Diethylenetriamine pentamethylene phosphonic acid (DTPMP) ; Aminotrimethylene phosphonic acid (ATMP) ; salts of the aforementioned materials; and any combination thereof.
Carboxylate polymer: The composition may comprise a carboxylate polymer, such as a maleate/acrylate random copolymer, maleic-olefin copolymers or polyacrylate homopolymer. Suitable carboxylate polymers include: polyacrylate homopolymers having a molecular weight of from 4,000 Da to 9,000 Da; maleate/acrylate random copolymers having a molecular weight of from 50,000 Da to 100,000 Da, or from 60,000 Da to 80,000 Da. Examples of the foregoing include Acusol 410N, Acusol 445N (polyacrylic acid, Na salt) ; Acusol 450N and Acusol 480N (modified polyacrylic acid, Na salt) ; Acusol 479N, Acusol 490N, and Acusol 505N (acrylic acid/maleic acid, Na salt) ; Acusol 460N (maleic acid/olefin, Na salt) ; Sokolan CP5 and Sokolan CP12S (maleic acid/acrylic acid, Na salt) ; and Sokolan CP 9 (maleic acid/olefin, Na salt) . The  Acusol series are available from Rohm &Haas, Philadelphia, PA and the Sokolan series are available from BASF (Germany and New Jersey) .
Suitable carboxylate polymers can contain other monomers including modified acrylic, fumaric, maleic, itaconic, aconitic, mesaconic, citraconic and methylenemalonic acid or their salts, modified maleic anhydride, acrylamide, alkylene, vinylmethyl ether, styrene and any mixtures thereof. Suitable carboxylate polymers can also containing 2-acrylamido-2-methyl-l-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-propanesulfonic acid, allysulfonic acid, methallysulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenen-l-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropylmethacrylate, sulfomethylacrylamide, sulfomethylmethacrylamide and water soluble salts thereof.
Another suitable carboxylate polymer is a co-polymer that comprises: (i) from 50 to less than 98 wt%structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt%structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt%structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II) :
formula (I) :
Figure PCTCN2017117078-appb-000030
wherein in formula (I) , R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2CH 2 group or single bond, X represents a number 0-5 provided X represents a number 1-5 when R is a single bond, and R 1 is a hydrogen atom or C 1 to C 20 organic group;
formula (II)
Figure PCTCN2017117078-appb-000031
wherein in formula (II) , R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2CH 2 group or single bond, X represents a number 0-5, and R 1 is a hydrogen atom or C 1 to C 20 organic group.
It may be preferred that the polymer has a weight average molecular weight of at least 50kDa, or even at least 70kDa.
Soil release polymer: The composition may comprise a soil release polymer. A suitable soil release polymer has a structure as defined by one of the following structures (I) , (II) or (III) :
(I) - [ (OCHR 1-CHR 2a-O-OC-Ar-CO-]  d
(II) - [ (OCHR 3-CHR 4b-O-OC-sAr-CO-]  e
(III) - [ (OCHR 5-CHR 6c-OR 7f
wherein:
a, b and c are from 1 to 200;
d, e and f are from 1 to 50;
Ar is a 1, 4-substituted phenylene;
sAr is 1, 3-substituted phenylene substituted in position 5 with SO 3Me;
Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C 1-C 18 alkyl or C 2-C 10 hydroxyalkyl, or mixtures thereof;
R 1, R 2, R 3, R 4, R 5 and R 6 are independently selected from H or C 1-C 18 n-or iso-alkyl; and
R 7 is a linear or branched C 1-C 18 alkyl, or a linear or branched C 2-C 30 alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C 8-C 30 aryl group, or a C 6-C 30 arylalkyl group.
Suitable soil release polymers are sold by Clariant under the
Figure PCTCN2017117078-appb-000032
series of polymers, e.g. 
Figure PCTCN2017117078-appb-000033
SRN240 and
Figure PCTCN2017117078-appb-000034
SRA300. Other suitable soil release polymers are sold by  Solvay under the
Figure PCTCN2017117078-appb-000035
series of polymers, e.g. 
Figure PCTCN2017117078-appb-000036
SF2 and
Figure PCTCN2017117078-appb-000037
Crystal.
Anti-redeposition polymer: Suitable anti-redeposition polymers include polyethylene glycol polymers and/or polyethyleneimine polymers.
Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) hydrophobic side chain (s) selected from the group consisting of: C 4-C 25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C 1-C 6 mono-carboxylic acid, C 1-C 6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof. Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains. The average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da. The molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1: 1 to 1: 5, or from 1: 1.2 to 1: 2. The average number of graft sites per ethylene oxide units can be less than 1, or less than 0.8, the average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4. A suitable polyethylene glycol polymer is Sokalan HP22. Suitable polyethylene glycol polymers are described in WO08/007320.
Cellulosic polymer: Suitable cellulosic polymers are selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose, sulphoalkyl cellulose, more preferably selected from carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof.
Suitable carboxymethyl celluloses have a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.
Suitable carboxymethyl celluloses have a degree of substitution greater than 0.65 and a degree of blockiness greater than 0.45, e.g. as described in WO09/154933.
Care polymers: Suitable care polymers include cellulosic polymers that are cationically modified and/or hydrophobically modified. Such modified cellulosic polymers can provide anti-abrasion benefits and dye lock benefits to fabric during the laundering cycle. Suitable cellulosic polymers include cationically modified hydroxyethyl cellulose. Suitable care polymers also include guar polymers that are cationically and/or hydrophobically modified. Other suitable care polymers include dye lock polymers, for example the condensation oligomer produced by the condensation of imidazole and epichlorhydrin, preferably in ratio of 1: 4: 1. A suitable commercially available dye lock polymer is
Figure PCTCN2017117078-appb-000038
FDI (Cognis) .
Other suitable care polymers include amino-silicone, which can provide fabric feel benefits and fabric shape retention benefits.
Alkoxylated polyalkyleneimine: The composition may comprise an alkoxylated polyalkyleneimine, wherein said alkoxylated polyalkyleneimine has a polyalkyleneimine core with one or more side chains bonded to at least one nitrogen atom in the polyalkyleneimine core, wherein said alkoxylated polyalkyleneimine has an empirical formula (I) of (PEI)  a- (EO)  b-R 1, wherein a is the average number-average molecular weight (MW PEI) of the polyalkyleneimine core of the alkoxylated polyalkyleneimine and is in the range of from 100 to 100,000 Daltons, wherein b is the average degree of ethoxylation in said one or more side chains of the alkoxylated polyalkyleneimine and is in the range of from 5 to 40, and wherein R 1 is independently selected from the group consisting of hydrogen, C 1-C 4 alkyls, and combinations thereof.
The composition may comprise an alkoxylated polyalkyleneimine, wherein said alkoxylated polyalkyleneimine has a polyalkyleneimine core with one or more side chains bonded to at least one nitrogen atom in the polyalkyleneimine core, wherein the alkoxylated polyalkyleneimine has an empirical formula (II) of (PEI)  o- (EO)  m (PO)  n-R 2 or (PEI)  o- (PO)  n (EO)  m-R 2, wherein o is the average number-average molecular weight (MW PEI) of the polyalkyleneimine core of the alkoxylated polyalkyleneimine and is in the range of from 100 to 100,000 Daltons, wherein m is the average degree of ethoxylation in said one or more side chains of the alkoxylated polyalkyleneimine which ranges from 10 to 50, wherein n is the average degree of propoxylation in said one or more side chains of the alkoxylated polyalkyleneimine which ranges from 1 to 50, and wherein R 2 is independently selected from the group consisting of hydrogen, C 1-C 4 alkyls, and combinations thereof.
Bleach: Suitable bleach includes sources of hydrogen peroxide, bleach activators, bleach catalysts, pre-formed peracids and any combination thereof. A particularly suitable bleach includes a combination of a source of hydrogen peroxide with a bleach activator and/or a bleach catalyst.
Source of hydrogen peroxide: Suitable sources of hydrogen peroxide include sodium perborate and/or sodium percarbonate.
Bleach activator: Suitable bleach activators include tetra acetyl ethylene diamine and/or alkyl oxybenzene sulphonate.
Bleach catalyst: The composition may comprise a bleach catalyst. Suitable bleach catalysts include oxaziridinium bleach catalysts, transistion metal bleach catalysts, especially manganese and iron bleach catalysts. A suitable bleach catalyst has a structure corresponding to general formula below:
Figure PCTCN2017117078-appb-000039
wherein R 13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl.
Pre-formed peracid: Suitable pre-form peracids include phthalimido-peroxycaproic acid. However, it is preferred that the composition is substantially free of pre-formed peracid. By: “substantially free” it is meant: “no deliberately added” .
Enzymes: Suitable enzymes include lipases, proteases, cellulases, amylases and any combination thereof.
Protease: Suitable proteases include metalloproteases and/or serine proteases. Examples of suitable neutral or alkaline proteases include: subtilisins (EC 3.4.21.62) ; trypsin-type or chymotrypsin-type proteases; and metalloproteases. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
Suitable commercially available protease enzymes include those sold under the trade names 
Figure PCTCN2017117078-appb-000040
Liquanase 
Figure PCTCN2017117078-appb-000041
Savinase
Figure PCTCN2017117078-appb-000042
and
Figure PCTCN2017117078-appb-000043
by Novozymes A/S (Denmark) , those sold under the tradename
Figure PCTCN2017117078-appb-000044
Preferenz
Figure PCTCN2017117078-appb-000045
series of proteases including
Figure PCTCN2017117078-appb-000046
P280, 
Figure PCTCN2017117078-appb-000047
P281, 
Figure PCTCN2017117078-appb-000048
P2018-C, 
Figure PCTCN2017117078-appb-000049
P2081-WE, 
Figure PCTCN2017117078-appb-000050
P2082-EE and
Figure PCTCN2017117078-appb-000051
P2083-A/J, 
Figure PCTCN2017117078-appb-000052
Figure PCTCN2017117078-appb-000053
Purafect
Figure PCTCN2017117078-appb-000054
Purafect
Figure PCTCN2017117078-appb-000055
and Purafect
Figure PCTCN2017117078-appb-000056
by DuPont, those sold under the tradename
Figure PCTCN2017117078-appb-000057
and
Figure PCTCN2017117078-appb-000058
by Solvay Enzymes, those available from Henkel/Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the folowing mutations S99D + S101 R + S103A + V104I + G159S, hereinafter referred to as BLAP) , BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D) , BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) -all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.
A suitable protease is described in WO11/140316 and WO11/072117.
Amylase: Suitable amylases are derived from AA560 alpha amylase endogenous to Bacillus sp. DSM 12649, preferably having the following mutations: R118K, D183*, G184*, N195F, R320K, and/or R458K. Suitable commercially available amylases include
Figure PCTCN2017117078-appb-000059
Figure PCTCN2017117078-appb-000060
Plus, Natalase, 
Figure PCTCN2017117078-appb-000061
Ultra, 
Figure PCTCN2017117078-appb-000062
SZ, 
Figure PCTCN2017117078-appb-000063
Figure PCTCN2017117078-appb-000064
 (all Novozymes) and
Figure PCTCN2017117078-appb-000065
AA, Preferenz
Figure PCTCN2017117078-appb-000066
series of amylases, 
Figure PCTCN2017117078-appb-000067
and 
Figure PCTCN2017117078-appb-000068
Ox Am, 
Figure PCTCN2017117078-appb-000069
HT Plus (all Du Pont) .
A suitable amylase is described in WO06/002643.
Cellulase: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are also suitable. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
Commercially available cellulases include
Figure PCTCN2017117078-appb-000070
and
Figure PCTCN2017117078-appb-000071
Premium, 
Figure PCTCN2017117078-appb-000072
and
Figure PCTCN2017117078-appb-000073
 (Novozymes A/S) , 
Figure PCTCN2017117078-appb-000074
series of enzymes (Du Pont) , and
Figure PCTCN2017117078-appb-000075
series of enzymes (AB Enzymes) . Suitable commercially available cellulases include
Figure PCTCN2017117078-appb-000076
Premium, 
Figure PCTCN2017117078-appb-000077
Classic. Suitable cellulases are described in WO07/144857 and WO10/056652.
Lipase: Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces) , e.g., from H. lanuginosa (T. lanuginosus) .
The lipase may be a “first cycle lipase” , e.g. such as those described in WO06/090335 and WO13/116261. In one aspect, the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations. Preferred lipases include those sold under the tradenames
Figure PCTCN2017117078-appb-000078
and
Figure PCTCN2017117078-appb-000079
by Novozymes, Bagsvaerd, Denmark.
Other suitable lipases include: Liprl 139, e.g. as described in WO2013/171241; and TfuLip2, e.g. as described in WO2011/084412 and WO2013/033318.
Other enzymes: Other suitable enzymes are bleaching enzymes, such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof. Commercially available peroxidases include
Figure PCTCN2017117078-appb-000080
 (Novozymes A/S) . Other suitable enzymes include choline oxidases and perhydrolases such as those used in Gentle Power Bleach TM.
Other suitable enzymes include pectate lyases sold under the tradenames
Figure PCTCN2017117078-appb-000081
Figure PCTCN2017117078-appb-000082
 (from Novozymes A/S, Bagsvaerd, Denmark) and
Figure PCTCN2017117078-appb-000083
 (DuPont) and mannanases sold under the tradenames
Figure PCTCN2017117078-appb-000084
 (Novozymes A/S, Bagsvaerd, Denmark) , and
Figure PCTCN2017117078-appb-000085
 (Du Pont) .
Identity: When used herein identity or sequence identity refers to the relatedness between two amino acid sequences.
For purposes of the present invention, the degree of sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) , preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled “longest identity” (obtained using the –nobrief option) is used as the percent identity and is calculated as follows:
(Identical Residues x 100) / (Length of Alignment –Total Number of Gaps in Alignment) .
Brightener: Suitable fluorescent brighteners include: di-styryl biphenyl compounds, e.g. 
Figure PCTCN2017117078-appb-000086
CBS-X, di-amino stilbene di-sulfonic acid compounds, e.g. 
Figure PCTCN2017117078-appb-000087
DMS pure Xtra and
Figure PCTCN2017117078-appb-000088
HRH, and Pyrazoline compounds, e.g. 
Figure PCTCN2017117078-appb-000089
SN, and coumarin compounds, e.g. 
Figure PCTCN2017117078-appb-000090
SWN.
Preferred brighteners are: sodium 2 (4-styryl-3-sulfophenyl) -2H-napthol [1, 2-d] triazole, disodium 4, 4'-bis { [ (4-anilino-6- (N methyl-N-2 hydroxyethyl) amino 1 , 3, 5-triazin-2-yl) ] amino} stilbene-2-2'disulfonate, disodium 4, 4'-bis { [ (4-anilino-6-morpholino-1, 3, 5-triazin-2-yl) ] amino} stilbene-2-2'disulfonate, and disodium 4, 4'-bis (2-sulfostyryl) biphenyl. A suitable fluorescent brightener is C.I. Fluorescent Brightener 260, which may be used in its beta or alpha crystalline forms, or a mixture of these forms.
Hueing agent: Suitable hueing agents include small molecule dyes, typically falling into the Colour Index (C.I. ) classifications of Acid, Direct, Basic, Reactive (including hydrolysed forms thereof) or Solvent or Disperse dyes, for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination. Preferred such hueing agents include Acid Violet 50, Direct Violet 9, 66 and 99, Solvent Violet 13 and any combination thereof.
Many hueing agents are known and described in the art which may be suitable for the present invention, such as hueing agents described in WO2014/089386.
Suitable hueing agents include phthalocyanine and azo dye conjugates, such as described in WO2009/069077.
Suitable hueing agents may be alkoxylated. Such alkoxylated compounds may be produced by organic synthesis that may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the hueing agent, or may undergo a purification step to increase the proportion of the target molecule. Suitable hueing agents include alkoxylated bis-azo dyes, such as described in WO2012/054835, and/or alkoxylated thiophene azo dyes, such as described in WO2008/087497 and WO2012/166768.
The hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step (s) . Such reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route. Suitable hueing agents can be incorporated into hueing dye particles, such as described in WO 2009/069077.
Reserve alkalinity: Typically, the composition at 1wt%dilution in deionized water at 20℃, has a reserve alkalinity to pH 7.5 of less than 3.0gNaOH/100g, preferably less than 2.5gNaOH/100g, or even less than 2.0gNaOH/100g.
As used herein, the term “reserve alkalinity” is a measure of the buffering capacity of the detergent composition (g/NaOH/100g detergent composition) determined by titrating a 1% (w/v) solution of detergent composition with hydrochloric acid to pH 7.5 i.e. in order to calculate Reserve Alkalinity as defined herein:
Reserve Alkalinity (to pH 7.5) as %alkali in g NaOH/100 g
Figure PCTCN2017117078-appb-000091
T       =      titre (ml) to pH 7.5
M       =      Molarity of HCl = 0.2
40      =      Molecular weight of NaOH
Vol     =      Total volume (ie. 1000 ml)
W       =      Weight of product (10 g)
Aliquot =      (100 ml)
Obtain a 10g sample accurately weighed to two decimal places, of fully formulated detergent composition. The sample should be obtained using a Pascall sampler in a dust cabinet.  Add the 10g sample to a plastic beaker and add 200 ml of carbon dioxide-free de-ionised water. Agitate using a magnetic stirrer on a stirring plate at 150 rpm until fully dissolved and for at least 15 minutes. Transfer the contents of the beaker to a l litre volumetric flask and make up to 1 litre with deionised water. Mix well and take a 100 mls ± 1 ml aliquot using a 100 mls pipette immediately. Measure and record the pH and temperature of the sample using a pH meter capable of reading to ±0.01pH units, with stirring, ensuring temperature is 20℃ +/-2℃. Titrate whilst stirring with 0.2M hydrochloric acid until pH measures exactly 7.5. Note the millilitres of hydrochloric acid used. Take the average titre of three identical repeats. Carry out the calculation described above to calculate the reserve alkalinity to pH 7.5.
EXAMPLES
Illustrative Example
Figure PCTCN2017117078-appb-000092
Figure PCTCN2017117078-appb-000093
2.  Inventive example
Encapsulated perfume microparticles (referred to PMC solids) are incorporated into coated extrudates as follows.
450g of a surfactant powder (consisting of 85%LAS, 8%nonionic (Neodol 45-7) , 4%PEG 2000 and balance other. miscellaneous/water) are mixed with 175g of anhydrous sodium citrate, 50g of MGDA builder and 25g of polyalkyl phenol. This powder mix is then extruded in a twin-screw extruder (MXP19) equipped with a rotary cutter and die-plate to form extrudates of dimensions 2mm by 5mm by 5mm.
These extrudates are then coated in a fluidized bed using an aqueous slurry consisting of 20%sodium carbonate and 4%PMC solids containing 0.1%of a hueing dye and 0.2%TiO2 pigment and an air inlet temperature of 65 ℃ to as to form coated extrudates containing 25%by weight of sodium carbonate and 5%by weight of PMC solids. This gives a detergent product of  composition shown below. This composition is then blended with amylase, metalloprotease and lipase so as to introduce 0.01%by wt of each active enzyme into the composition to give the final product.
Figure PCTCN2017117078-appb-000094
Example 3: Inventive sample
Ingredient Example 3 (%)
LAS 27.66
AE30 Nonionic 5.48
Citric acid 9.53
Citrate 27.93
Carbonate (as coating) 25.22
PMC (in core) 0.00
PMC (in coating) 1.10
Water 1.23
Misc 1.84
Total 100
LAS, AE30 nonionic, citric acid, sodium citrate are premixed in a cement mixer. The premix is feed into extrusion/cutting equipment –SUNUP granulator SET-60 (Q) with 5mm die plate, extuded and cut (1.5mm length) .
Then cylinder core particles are then placed in coating equipment –Enger multi-function fluid bed HWBF-3G. Perfume microcapsules (PMC) and 30%carbonate solution are mixed for 10 min (at 60℃ temperature) to form coating premix. Then the coating premix (at 60℃ temperature) is applied and coated on the cylinder core particle under fluidize air temperature (70℃ temperature) .
The core particle dimensions are: x = 5mm, y = 1.5mm, and z = 1.5mm.
Example 4: compatative sample
Ingredient Example 4 (%)
LAS 27.66
AE30 Nonionic 5.48
Citric acid 9.53
Citrate 19.03
Carbonate (as coating) 25.22
PMC (in core) 1.10
PMC (in coating) 0.00
Water 1.23
Misc 1.84
Total 100
LAS, AE30 nonionic, citric acid, sodium citrate and perfume microcapsules (PMC) are premixed in a cement mixer. The premix is feed into extrusion/cutting equipment –SUNUP granulator SET-60 (Q) with 5mm die plate, extuded and cut (1.5mm length) .
Then cylinder core particles are then placed in coating equipment –Enger multi-function fluid bed HWBF-3G. 30%carbonate solution (at 60℃ temperature) is applied and coated on the cylinder core particle under fluidize air temperature (70℃ temperature) .
The core particle dimensions are: x = 5mm, y = 1.5mm, and z = 1.5mm.
Example 5: PMC Breakage Rate Analysis:
Sample Preparation:
For free perfume level measurement, 1 g of sample is weighed in glass vial and dissolved with 10 mL DI water. Then 20 mL hexane with Tetradecane (internal standard) concentration of 25 mg/L is added and vortex for 3 min. 5 mL 20%calcium chloride water solution is added to help with phase separation. After phase separation, the hexane layer was transferred into glass auto sampler vials for GC-MS analysis.
For total PMC level measurement, 1 g of sample is weighed in glass vial and mixed with 20 mL ethanol. The mixture is heated at 70 ℃ for 1 hour and sonificated at 45 ℃ for 1 hour. After cooling down, 10 mL DI water is added to fully dissolve the particles. Then 20 mL hexane with Tetradecane (internal standard) concentration of 25 mg/L is added and vortex for 3 min. 5 mL 20%calcium chloride water solution is added to help with phase separation. After phase separation, the hexane layer was transferred into glass auto sampler vials for GC-MS analysis.
Instrument and Parameters:
GC-MS analysis is conducted using the following instrument:
Agilent Gas Chromatograph model 7890 series GC (Agilent Technologies Inc., Santa Clara, California, U.S.A. ) ; Agilent Model 5975B Mass Selective Detector (MSD, Agilent Technologies Inc., Santa Clara, California, U.S.A. ) ; Multipurpose AutoSampler MPS (GERSTEL Inc., Linthicum, Maryland, U.S.A) ; and
Figure PCTCN2017117078-appb-000095
J&W TM DB-5ms Ultra Inert (30 m length x 0.25 mm internal diameter x 0.25 μm film thickness) (J&W Scientific/Agilent Technologies Inc., Santa Clara, California, U.S.A. ) .
Conditions:
Column: J&W TM DB-5ms Ultra Inert, 30 m length x 0.25 mm internal diameter x 0.25 μm film thickness (direct to MS)
Pneumatics: He; constant flow; 1.5mL/min
Oven: 50 ℃ (0.5 min) , 15 ℃ /min, 280 ℃ (3min)
Injection: split ratio of 10: 1; 1 μL injection; heat at 270 ℃
MSD: Full Scan mode with a minimum range of 40 to 300 m/z (a wider range may be used) .
Data Analysis:
Perfume composition is identified by matching their retention times and mass spectra with those of reference standards. Total target responses are corrected target responses of internal standard. Total target response of free perfume devided by total target response of total PMC indicates the breakage rate of PMC (%) .
Result: The inventive Example 3 show significant higher PMC breakage rate (%) than the compatative Example 4.
Sample PMC Breakage Rate (%)
Example 3 (Inventive) 61.50 ± 11.28
Example 4 (Comparative) 110.24 ± 5.80
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm. ”

Claims (11)

  1. A process for the preparation of a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the process comprises the following steps:
    (i) forming a detersive mixture comprising from 40wt%to 90wt%detersive surfactant;
    (ii) extruding the detersive mixture of step (i) to form an extruded material;
    (iii) coating the extruded material with a coating material to form a wet coated extruded material comprising from 1wt%to 40wt%water soluble inorganic salt and from 0.01wt%to 10wt%perfume,
    wherein the coating material is in the form of an aqueous slurry and comprises from 20wt%to 90wt%water-soluble inorganic, and from 0.1wt%to 40wt%encapsulated perfume; and
    (iv) removing water from the wet coated extruded material to form the coated detergent particle.
  2. A process according to claim 1, wherein the encapsulated perfume is a perfume microcapsule.
  3. A process according to claim 1, wherein the encapsulated perfume is a starch encapsulated perfume accord.
  4. A process according to any preceding claim, wherein the detersive surfactant comprises from 15wt%to 85wt%anionic detersive surfactant and from 5wt%to 75wt%non-ionic detersive surfactant.
  5. A process according to any preceding claim, wherein the detersive mixture has a hardness of from 1MPa to 100MPa during the extrusion step (ii) .
  6. A process according to any preceding claim, wherein the extruder has a void commensurate with the size of the particle before coating.
  7. A process according to any preceding claim, wherein step (iv) is carried out in a fluidized bed and/or a drum.
  8. A process according to any preceding claim, wherein the anionic detersive surfactant is selected from alkyl benzene sulphonate, alkyl ether sulphate and/or alkyl sulphate.
  9. A process according to any preceding claim, wherein the coated detergent particle is curved.
  10. A process according to any preceding claim, wherein the coated detergent particle comprises from 1wt%to 5wt%water.
  11. A process according to any preceding claim, wherein the coated detergent particle comprises
    (a) from 20wt%to 39wt%detersive surfactant selected from anionic detersive surfactant and/or non-ionic detersive surfactant;
    (b) from 10wt%to 40wt%inorganic salts selected from sodium carbonate, sodium sesquicarbonate, sodium bicarbonate and any mixtures thereof;
    (c) optionally, from 10wt%to 40wt%citric acid and/or salts thereof; and
    (d) from 0.2wt%to 10wt%perfume.
PCT/CN2017/117078 2016-12-22 2017-12-19 Laundry detergent composition WO2018113646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17883829.8A EP3559195A4 (en) 2016-12-22 2017-12-19 Laundry detergent composition

Applications Claiming Priority (34)

Application Number Priority Date Filing Date Title
EP16206490.1 2016-12-22
EP16206487.7 2016-12-22
EP16206461 2016-12-22
EP16206461.2 2016-12-22
EP16206490 2016-12-22
EP16206487 2016-12-22
EP16206451 2016-12-22
EP16206477.8 2016-12-22
EP16206498.4 2016-12-22
EP16206480.2 2016-12-22
EP16206503.1 2016-12-22
EP16206451.3 2016-12-22
EP16206503 2016-12-22
EP16206498 2016-12-22
EP16206480 2016-12-22
EP16206477 2016-12-22
EP17173005.4 2017-05-26
EP17172999.9A EP3339413A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173001.3 2017-05-26
EP17173006.2 2017-05-26
EP17173002.1A EP3339415A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173006.2A EP3339418A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173007.0 2017-05-26
EP17173007.0A EP3339419A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173002.1 2017-05-26
EP17173004.7A EP3339416A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173005.4A EP3339417A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173000.5 2017-05-26
EP17172999.9 2017-05-26
EP17173000.5A EP3339414A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173118 2017-05-26
EP17173001.3A EP3339407A1 (en) 2016-12-22 2017-05-26 Laundry detergent composition
EP17173004.7 2017-05-26
EP17173118.5 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018113646A1 true WO2018113646A1 (en) 2018-06-28

Family

ID=62624750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117078 WO2018113646A1 (en) 2016-12-22 2017-12-19 Laundry detergent composition

Country Status (2)

Country Link
EP (1) EP3559195A4 (en)
WO (1) WO2018113646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115803420A (en) * 2020-07-06 2023-03-14 宝洁公司 Process for preparing a particulate laundry detergent composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2441825A1 (en) * 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Process for preparing laundry detergent particles
WO2012048947A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048910A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
WO2012048948A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2013014975A1 (en) * 2011-07-28 2013-01-31 ブラザー工業株式会社 Oscillating power generator
EP2639291A1 (en) * 2012-03-13 2013-09-18 Unilever PLC Packaged particulate detergent composition
WO2013139702A1 (en) * 2012-03-21 2013-09-26 Unilever Plc Laundry detergent particles
WO2013149752A1 (en) * 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149754A1 (en) * 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2441825A1 (en) * 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Process for preparing laundry detergent particles
WO2012048947A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048910A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
WO2012048948A1 (en) * 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2013014975A1 (en) * 2011-07-28 2013-01-31 ブラザー工業株式会社 Oscillating power generator
EP2639291A1 (en) * 2012-03-13 2013-09-18 Unilever PLC Packaged particulate detergent composition
WO2013139702A1 (en) * 2012-03-21 2013-09-26 Unilever Plc Laundry detergent particles
WO2013149752A1 (en) * 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149754A1 (en) * 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3559195A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115803420A (en) * 2020-07-06 2023-03-14 宝洁公司 Process for preparing a particulate laundry detergent composition

Also Published As

Publication number Publication date
EP3559195A1 (en) 2019-10-30
EP3559195A4 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
EP3301152B1 (en) Spray-dried base detergent particle giving rise to a low ph in the wash
EP2377914A1 (en) Mildly alkaline, low-built, solid fabric treatment detergent composition comprising perhydrolase
EP3301168B1 (en) Laundry detergent composition
US20180094228A1 (en) Laundry detergent composition
EP3301155A1 (en) Laundry detergent composition
WO2019191174A1 (en) Laundry detergent composition
EP3301148A1 (en) Low ph laundry detergent composition
EP3301145A1 (en) Low ph laundry detergent composition
EP3339414A1 (en) Laundry detergent composition
US11505768B2 (en) Process for preparing a spray-dried laundry detergent particle
EP3301146A1 (en) Low ph laundry detergent composition
EP3559189A1 (en) Laundry detergent composition
EP3559195A1 (en) Laundry detergent composition
EP3339422B1 (en) Laundry detergent composition
WO2019191170A1 (en) Laundry detergent composition
EP3339420A1 (en) Laundry detergent composition
EP3339417A1 (en) Laundry detergent composition
EP3559194A1 (en) Laundry detergent composition
EP3339419A1 (en) Laundry detergent composition
EP3301150A1 (en) Low ph laundry detergent composition
EP3339407A1 (en) Laundry detergent composition
EP3339418A1 (en) Laundry detergent composition
EP3339416A1 (en) Laundry detergent composition
EP3339415A1 (en) Laundry detergent composition
EP3339413A1 (en) Laundry detergent composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883829

Country of ref document: EP

Effective date: 20190722