WO2018113631A1 - 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构 - Google Patents

一种太阳能聚光装置及使用该装置的建筑物或构筑物结构 Download PDF

Info

Publication number
WO2018113631A1
WO2018113631A1 PCT/CN2017/116981 CN2017116981W WO2018113631A1 WO 2018113631 A1 WO2018113631 A1 WO 2018113631A1 CN 2017116981 W CN2017116981 W CN 2017116981W WO 2018113631 A1 WO2018113631 A1 WO 2018113631A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear
concentrating
receiver
lens
light
Prior art date
Application number
PCT/CN2017/116981
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳能源技术有限公司 filed Critical 北京兆阳能源技术有限公司
Publication of WO2018113631A1 publication Critical patent/WO2018113631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B2001/0053Buildings characterised by their shape or layout grid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of heat exchange technology, and in particular to a solar concentrating device and a structure of a building or a structure using the same.
  • concentrating solar applications have certain economic competitive advantages, such as concentrated photothermal (CPT) and concentrating photovoltaic (CPV) and concentrating composite photothermal photovoltaic (CPVT) applications.
  • CPT concentrated photothermal
  • CPV concentrating photovoltaic
  • CPVT composite photothermal photovoltaic
  • the concentrating method is usually specular reflection concentrating and lens refracting concentrating.
  • the mirrors or lenses and receiving devices of the two types of solar concentrators need to follow the change of the solar ray angle. Tracking so that the receiver is always in focus at the concentrating system.
  • Both the receiver and the reflective or refractive concentrating system follow the sun change for moving tracking, which requires the concentrating device to have a large driving power, and the concentrating device requires a self-supporting structure with better strength, thus making the concentrating device The production cost is higher.
  • An object of the present invention is to provide a solar concentrating device which has a small driving force, a simplified structure, and can reduce production costs, and a structure of a building or a structure to which the solar concentrating device is applied.
  • a solar concentrating device including at least one group of concentrating units: the concentrating unit includes:
  • a receiver located at a light strip to which the linear condenser lens is focused
  • the linear light strip moves along a moving path when the position of the sun changes, and the driving structure drives the receiver to track a change in position of the linear light strip.
  • the tracking path of the receiver is in an arc shape, the center of the arc coincides with the center of the linear concentrating lens or is located near the center of the linear concentrating lens; the radius of the arc
  • the focal lengths of the linear concentrating lenses are equal or the two are different by a set distance.
  • the set distance is greater than 0 and less than 0.2f; wherein f is a focal length of the linear concentrating lens.
  • the linear concentrating lens receives incident light rays in an angular range of ⁇ 40° from a normal to an incident plane of the linear concentrating lens.
  • the linear concentrating lens is a prismatic convex lens or a linear Fresnel lens.
  • the solar concentrating device further includes: a secondary converging device that focuses the received sunlight again onto the light receiving surface of the receiver.
  • the receiver is rotatably connected to a fixing rod by a rotating pair, the pivot point of the fixing rod is located near the center of the linear concentrating lens; the rod body and the receiver of the fixing rod are in the straight line a tangential line of a point at which the moving path of the optical strip is perpendicular;
  • the driving structure includes a driving motor, a lead screw fixedly connected to the output shaft of the driving motor, and the other end of the lead screw is fixedly connected with the fixing rod; After receiving the driving signal, the driving motor drives the lead screw and drives the fixing rod to move in a horizontal direction perpendicular to the longitudinal direction of the linear strip, and the receiver moves along the moving path under the driving of the fixing rod, and the receiver is The light receiving surface is always on the straight strip; or
  • the driving structure includes a hoist, a wire rope fixedly connected to the output end of the hoist, a support rod and a weight; the wire rope bypasses the support rod and the other end of the wire rope is fixedly connected to the weight; the hoist And a support rod is disposed on both sides of the linear concentrating lens in the width direction, and a length of the wire rope between the hoist and the support rod is greater than a width of the moving path projected on the linear concentrating lens; the wire rope and The fixing rod is fixedly connected; the hoist winds the wire rope according to the received driving signal to drive the fixing rod to move in a horizontal direction perpendicular to the longitudinal direction of the linear belt, and the receiver moves along the movement of the fixing rod The path moves and the light-receiving surface of the receiver is always on the straight strip; and when no sun-convergence is required, the counterweight makes the The wire rope wound by the hoist returns to the original position, and the receiver returns to the original position under the joint action of the wire rope and the fixed rod.
  • the offset of the pivot point of the fixing rod along the normal direction of the incident plane of the linear concentrating lens with respect to the central section of the linear concentrating lens is less than 0.2f; the length of the fixed rod body is greater than 0.8f is less than 1.2f; among them,
  • the central cross section is a plane perpendicular to a center of the linear concentrating lens and perpendicular to a normal direction of an incident plane of the linear concentrating lens; and f is a focal length of the linear concentrating lens.
  • the driving structure includes a driving motor, an arcuate rail, and a sliding member disposed on the rail, the sliding member being coupled to an output end of the driving motor; the receiver being fixed at the On the sliding member; the distance between the light receiving surface of the receiver and the center of the linear collecting lens is the focal length of the linear collecting lens; the driving motor drives the sliding assembly to drive the receiving according to the received driving signal The device moves on the moving path of the linear light strip.
  • the number of groups of the concentrating units is greater than or equal to 2, and the linear concentrating lenses of the plurality of concentrating units are disposed in parallel; or
  • the linear concentrating lenses of the plurality of concentrating units are parallel and in the same plane.
  • the receiver described in the present application is a photoelectric absorption device, a photothermal absorption device or a photoelectric photothermal composite absorption device.
  • a building or structure structure comprising a solar concentrating device as described above.
  • the building or structure structure comprises at least one inclined portion, a part of the inclined portion is arranged in a sun, and the solar concentrating device is mounted on the inclined portion provided in the sun.
  • the building or structure structure comprises a first inclined portion and a second inclined portion
  • the linear concentrating lens of the solar concentrating device constitutes the first inclined portion
  • the first inclined portion is disposed in a sun direction
  • the second inclined portion The part is a light-transmissive insulation structure.
  • the building is a factory building, a building, a residential building or a commercial office building; the structure is a greenhouse, a cold storage or a farm.
  • the solar concentrating device in the structure of the building or the structure further includes a light distribution controller connected to the driving structure of the concentrating unit in the solar concentrating device;
  • the driving structure of the concentrating unit is After receiving the control signal sent by the light distribution controller, driving the receiver to move all or part of the linear light strip to focus on the light receiving surface of the receiver Or moving the receiver out of the moving path of the linear light strip;
  • the control signal of the light distribution controller is generated based on the amount of power required, the amount of heat, and/or the amount of light.
  • the main components of the linear concentrating device of the solar concentrating device in the present application are fixed in position, a receiver is arranged on a linear light belt formed by sunlight through a linear concentrating lens, and the receiver is arranged in a straight line through a driving structure.
  • the strip moves over the path of the day so that the light-receiving surface of the receiver is always on the straight strip. Since the linear concentrating device is fixed and only the receiver needs to be driven, the structure of the solar concentrating device in the present application can be further simplified, the operation is more reliable, and the production cost is reduced.
  • Figure 1 is a ray trace diagram of sunlight passing through a linear Fresnel lens
  • FIG. 2 is a schematic structural view of a solar concentrating device including a group of concentrating units
  • Figure 3 is a view showing the optical path of incident light in a linear condenser lens
  • FIG. 4 is a schematic structural view of a solar concentrating device according to another preferred embodiment
  • FIG. 5 is a schematic structural diagram of a solar concentrating device according to still another preferred embodiment
  • FIG. 6 is a schematic structural view of a solar concentrating device including a plurality of groups of concentrating units
  • Figure 7 is a schematic structural view of a greenhouse in accordance with a preferred embodiment
  • Figure 8 is a schematic view showing the structure of a greenhouse in accordance with another preferred embodiment.
  • the solar elevation angle is the most important factor determining the amount of solar thermal energy on the Earth's surface. Same place The height of the sun in a day is constantly changing.
  • the inventors of the present application have found that with a linear Fresnel lens, the rays of sunlight in a certain range of angles can be focused on a straight line of light, as shown in the S-band of Figure 1, with the angle of incidence of the sun's rays.
  • the change in the area of the light band that the sunlight is focused through the linear Fresnel lens moves along a circular arc-shaped trajectory, that is, along the broken line L shown in FIG.
  • the inventor of the present application uses a fixed linear concentrating device to converge sunlight, and uses a moving receiver to perform a linear light band formed by the concentrating device. Move the tracking to ensure that the receiving surface of the receiver is always on the straight strip.
  • the receiver in the solar concentrating device can be a photovoltaic panel.
  • the solar concentrating device can generate electricity; if the receiver is a collector tube for collecting heat in a concentrating solar thermal power station or a solar water heater, the solar concentrating device can be set Hot application.
  • the solar concentrating device of the present application comprises at least one group of concentrating units.
  • Fig. 2 shows a schematic structural view of a solar concentrating device comprising a group of concentrating units.
  • the solar concentrating device includes a concentrating unit including a linear concentrating lens 1, a receiver 2, and a driving structure 3.
  • the linear concentrating lens 1 is fixedly arranged to focus the light onto the linear strip after the sunlight passes through. As the sun constantly changes in height throughout the day, the straight light strip formed by the sunlight through the linear condenser lens 1 moves along the path indicated by the broken line L in FIG.
  • the receiver 2 is located at a light strip focused by the linear condenser lens 1, and the length of the light receiving surface of the receiver 2 is less than or equal to the length of the light strip, the purpose of which is to enable the light receiving surface of the receiver 2 to receive sufficient illumination.
  • the linear concentrating lens receives the incident ray of an angle range of ⁇ 40° from the normal of the incident plane of the linear concentrating lens, that is, the angle range of ⁇ in FIG. 1 is [-40°, 40°]. .
  • the linear Fresnel lens in this embodiment includes, but is not limited to, a zigzag glass, a flat glass with an embossed pattern on one side, an acrylic Fresnel lens or a glass silica Fresnel lens.
  • the type of the linear Fresnel lens is not specifically limited in the present invention, and any lens capable of linearly collecting light falls within the protection scope of the present invention.
  • the drive structure 3 is mated to the receiver 2.
  • the driving structure 3 drives the receiver 2 to track the position change of the linear light strip, that is, the receiver
  • the tracking path is the curve L shown in Fig. 1, and the linear light strip is always focused on the light receiving surface of the receiver.
  • the tracking path L of the receiver in the present application has an arc shape.
  • the center of the arc coincides with the center of the linear concentrating lens or is located near the center of the linear concentrating lens; the radius of the arc is equal to the focal length of the linear concentrating lens or the difference between the two is a set distance.
  • the arc is set at the above position to satisfy the change of the position of the sun.
  • the receiver can always be positioned on the moving path of the straight strip and the best focusing effect can be obtained.
  • the center of the arc when the center of the arc is located near the center of the linear concentrating lens, that is, the radius of the arc is different from the focal length of the linear concentrating lens by a set distance, the set distance is greater than 0 and less than 0.2 f; wherein f is The focal length of the linear concentrating lens.
  • the receiver in this embodiment includes, but is not limited to, a photoelectric absorption device, a photothermal absorption device, or a photoelectric photothermal composite absorption device.
  • the photoelectric absorption device comprises, but is not limited to, a photovoltaic panel, a solar cell, etc.
  • the photothermal absorption device comprises a heat collecting tube with a circulating medium (such as water, oil, solid particles, etc.); and the photoelectric photothermal composite absorption device comprises a circulating medium.
  • the photovoltaic tube of the flow pipeline and the circulating medium flow pipeline are disposed at the back plate of the photovoltaic panel, and the photovoltaic panel generates electricity by using the received sunlight, and the heat emitted by the back plate of the photovoltaic panel is absorbed by the medium in the circulating medium flow pipeline And brought to the designated heat exchanger, so that the photovoltaic panel can not over-temperature, increase the photoelectric conversion rate, extend the life of the photovoltaic panel, and also can obtain a large number of low-grade heat for hot water or heating applications.
  • the solar concentrating device of Figure 2 shows a schematic view of one of the drive structures.
  • the receiver 2 is rotatably coupled to a fixing rod 202 via a rotating pair 201.
  • the pivot point of the fixed rod 202 is located near the center of the linear concentrating lens, and the rod of the fixed rod 202 is perpendicular to the tangent of the point at which the receiver 2 is located on the moving path L.
  • the driving structure 3 includes a driving motor 301 and a lead screw 302 fixedly connected to the output shaft of the driving motor, and the other end of the screw is connected to the fixing rod 202.
  • the driving motor After receiving the driving signal, the driving motor drives the lead screw and drives the fixing rod to move in a horizontal direction perpendicular to the longitudinal direction of the straight strip, and the receiver 2 moves along the moving path L under the driving of the fixing rod, and the receiver is
  • the light-receiving surface of 2 is always on the straight light strip.
  • the pivot point of the fixing rod 202 in this embodiment is along the normal line of the incident plane of the linear concentrating lens
  • the offset d (see FIG. 2) of the direction with respect to the central section of the linear concentrating lens is less than 0.2f.
  • the length of the fixed rod body is greater than 0.8f and less than 1.2f.
  • the central section is a plane of the center of the linear concentrating lens and perpendicular to the normal direction of the incident plane of the linear concentrating lens, and f is the focal length of the linear concentrating lens.
  • the focal length of the linear Fresnel lens is 1000 mm, and the position of the tip O 2 of the fixed rod body is lower than the center point of the linear condenser lens by 80 mm.
  • the change in the angle ⁇ is slightly different depending on the refractive index of the linear concentrating lens, but the change is not so obvious.
  • the inventors of the present application found that there is a correspondence between the incident angle ⁇ of the incident light of the linear concentrating lens and the angle ⁇ as shown in Table 1 below:
  • the focal length of the linear Fresnel lens is 1000 mm, and the position of the tip O 2 of the fixed rod body is 100 mm higher than the center point of the linear condenser lens.
  • the inventors of the present application found that there is a correspondence between the incident angle ⁇ of the incident light of the linear concentrating lens and the angle ⁇ as shown in Table 2 below:
  • the solar concentrating device in this embodiment further includes a secondary converging device 4.
  • the secondary converging device 4 is disposed in the vicinity of the receiver and directed toward the direction in which the sunlight is incident, and the secondary converging device 4 focuses the received sunlight again onto the light receiving surface of the receiver 2.
  • the driving structure 3 in the solar concentrating device includes a driving motor (not shown), an arcuate rail 303, and a sliding member 304 disposed on the rail.
  • the sliding member 304 is connected to the output end of the driving motor, and the receiver 2 is fixed on the sliding member; the radius of the curved track 303 is larger than the focal length of the linear collecting lens, and the distance between the receiving surface of the receiver and the linear collecting lens is linearly concentrated.
  • the focal length of the lens drives the slide assembly to move according to the received drive signal to always focus the linear strip on the light receiving surface of the receiver 2.
  • the solar concentrating device in this embodiment also includes a secondary converging device 4 to focus the received sunlight reflection onto the light receiving surface of the receiver 2.
  • FIG. 5 is a schematic structural view of a solar concentrating device according to still another preferred embodiment.
  • the receiver 2 is also fixed to a fixing rod 402 by a rotating pair 401.
  • the pivot point of the fixed rod 402 is located near the center of the linear concentrating lens, and the rod of the fixed rod 402 is perpendicular to the tangent of the point at which the receiver 2 is located on the moving path L.
  • the drive structure 3 includes a hoist 305, a wire rope 306 fixedly coupled to the output of the hoist, a support rod 307, and a weight 308.
  • the wire rope bypasses the support rod and the other end of the wire rope is fixedly connected with the weight; the hoist and the support rod are respectively disposed on both sides of the width direction of the linear concentrating lens 1, and the length of the wire rope between the hoist and the support rod is larger than the movement path L projection online
  • the width of the concentrating lens 1; the wire rope is fixedly connected to the fixing rod.
  • the hoist winds the wire rope according to the received driving signal, and the wire rope drives the fixing rod to move in a horizontal direction perpendicular to the longitudinal direction of the linear light belt, and the receiver 2 moves along the path L under the driving of the fixed rod, and the light receiving surface of the receiver 2 is always Located on a straight strip of light.
  • the weights pull the rope back to the original position, and the four fixed rods bring their receivers 2 back to their original positions.
  • the specific structure of the second rotating pair in this embodiment is not specifically limited, and any structure capable of achieving a rotational connection with the receiver 2 and fixedly connecting with the lead screw falls within the protection scope of the present invention.
  • the driving mechanism in the above embodiments is merely exemplary, and any structure capable of driving the receiver to move along the movement locus L falls within the protection scope of the present invention.
  • the fixing manner of the receiver in the present application is also not specifically limited. The receiver can be fixed in the way it is driven The dynamic structure changes.
  • the solar concentrating device in this embodiment also includes a secondary converging device 4 to focus the received sunlight reflection onto the light receiving surface of the receiver 2.
  • the number of groups of the light collecting units in the solar concentrating device in the present application is greater than or equal to two.
  • the solar concentrating device includes a plurality of sets of concentrating units, preferably, the linear concentrating lenses 1 of the plurality of sets of concentrating units are disposed in parallel.
  • Each group of concentrating units can drive the receiver of the group using any of the driving structures shown in the above three embodiments.
  • FIG. 6 shows a schematic structural view of a solar concentrating device including a plurality of groups of concentrating units.
  • the solar concentrating device has a linear concentrating lens including four groups of concentrating units, and four groups of concentrating units are parallel and in the same plane.
  • the four groups of concentrating units preferably employ the driving structure in the third embodiment described above.
  • the receivers 2 of the four groups of concentrating units are fixed by fixing rods of the same length, the fixed positions of the fixing rods are the same, and each of the receivers 2 and its corresponding fixing rod are connected by a rotating pair.
  • the driving structures of the four groups of concentrating units adopt the same hoist, the wire rope, the support rod and the weight, and the length of the wire rope between the hoist and the support rod is greater than the sum of the widths of the plurality of linear concentrating lenses.
  • the fixing rods of each group of concentrating units are fixedly connected with the wire rope.
  • the hoist winds the wire rope according to the received driving signal, and the wire rope drives the fixing rod to move in a horizontal direction perpendicular to the longitudinal direction of the linear light belt, and the four fixing rods are linked together, correspondingly, the four receivers 2 are driven by the corresponding fixing rods thereof.
  • the lower ones are moved along the path L, and the light receiving surface of each receiver 2 is always on the straight light strip.
  • the setting position of the fixing rod in the embodiment of FIG. 5 and FIG. 6 is the same as the setting position of the fixing rod in the embodiment of FIG. 2, and details are not described herein.
  • the light concentrated by the linear concentrating lens is direct light. In areas with more solar energy, direct light accounts for 80-90% of the total solar light. Even in areas with weak solar energy, direct light accounts for 70-80% of the total solar light, and the remaining 10%-30% or more. Scatter light energy. While the direct light is used for convergence, the device does not substantially affect the emission of the scattered light after the linear concentrating lens, so that the area on the side of the light emitted from the linear concentrating lens can also have a considerable solar radiation intensity, so that For other brightness purposes. For more flexible and wide application, the amount of light of the linear light band falling on the light receiving surface of the receiver can be further controlled. In this embodiment, the solar concentrating device is further Also included is a light distribution controller.
  • the light distribution controller is electrically connected to a driving structure of the concentrating unit in the solar concentrating device. After receiving the control signal sent by the light distribution controller, the driving structure of the concentrating unit drives the receiver to move part or all of the light receiving surface of the receiver out of the area of the linear light band, so that the direct light condensed by the lens After passing through the direct focus light strip, it can continue to illuminate the lower area, further enhancing the intensity of the light below and expanding the application range.
  • the linear concentrating device of the solar concentrating device is fixed in the embodiment of the present application, the receiver is disposed on the linear light strip formed by the sunlight through the linear concentrating lens, and the receiver is in the linear light through the driving structure.
  • the belt is moved over the moving path of the day so that the linear strip is always focused on the light receiving surface of the receiver. Since the linear concentrating device is fixed and only the receiver needs to be driven, the structure of the solar concentrating device in the present application can be further simplified and the production cost is reduced.
  • a building or structure structure using the above solar concentrating device is also provided.
  • the buildings described in this application include, but are not limited to, factory buildings, buildings, residential buildings, or commercial office buildings; structures include, but are not limited to, greenhouses, cold storage, or farms.
  • the structure in the embodiment of the present application includes at least one inclined portion, one or more inclined portions are disposed in a sun direction, and a solar concentrating device having the structure as described above is mounted on the inclined portion of the sun.
  • Figure 7 is a schematic view showing the structure of a greenhouse in accordance with a preferred embodiment.
  • Figure 8 is a schematic view showing the structure of a greenhouse in accordance with another preferred embodiment. As shown in FIG. 7 or FIG. 8, the greenhouse covers the greenhouse body 60 and the top structure 61 disposed on the upper portion of the greenhouse body.
  • the top structure may comprise an inverted V-shaped structure or comprise a plurality of inverted V-shaped structures arranged side by side.
  • the inverted V-shaped structure includes a first inclined portion 610 and a second inclined portion 611 on which the solar concentrating device having the structure as described above is mounted.
  • the first inclined portion may be a monolithic linear concentrating lens or a plurality of linear concentrating lens splicing. Since the greenhouse is generally required to have sufficient sunlight, it is preferable that the second inclined portion of the inverted V-shaped roof structure is a light-transmitting heat insulating structure.
  • the greenhouse can also adopt a structure that does not include the greenhouse body, that is, the greenhouse covers only the first inclined portion and the second inclined portion.
  • the first inclined portion and the second inclined portion are directly mounted on the ground.
  • the structures of the first inclined portion and the second inclined portion are the same as those in the above embodiment, and are not described herein again.
  • the light incident through the linear condenser lens is direct light. In areas with more solar energy, direct light accounts for 80-90% of the total solar light. Even in areas with weak solar energy, direct light accounts for 70-80% of the total solar light.
  • the solar concentrating device further includes a light distribution controller.
  • the light distribution controller is coupled to the driving structure of the concentrating unit in the solar concentrating device. After receiving the control signal sent by the light distribution controller, the driving structure of the concentrating unit moves all or part of the linear light strip to the light receiving surface of the receiver or moves the receiver to the area of the straight light strip. outer.
  • a solar concentrating device with a light distribution controller is used in the building or structure structure.
  • the position of the receiver is controlled by the light distribution controller.
  • Direct light that is not obscured by the receiver directly enters the greenhouse, thereby increasing the amount of light entering the greenhouse.
  • the amount of light incident in the greenhouse is inversely proportional to the area where the receiver's light-receiving surface coincides with the area of the linear light strip.
  • the driving structure drives the receiver to move and the partial area of the linear light strip is focused on the light receiving surface of the receiver, the portion of the direct light of the unfocused receiver light receiving surface is incident into the greenhouse, thereby increasing the amount of light in the greenhouse.
  • the linear strips that are focused by the linear condenser lens are all dispersed and completely injected into the greenhouse, thus greatly increasing the amount of light in the greenhouse.
  • the receiver of the solar concentrating device may be a photovoltaic panel to provide electrical energy for use in a greenhouse, or the installed receiver may also be a heated component of the collector tube to provide the thermal energy required for heating the greenhouse.
  • the control signal of the light distribution controller is generated according to the amount of illumination detected by the illumination sensor set in the greenhouse, or by the amount of electric energy (or thermal energy) and the amount of illumination required in the greenhouse, or by integration. The amount of electricity, heat and light used in the greenhouse is assessed to be generated.
  • the structures described herein may also be cold storage or farms. Cold storage or farms usually require more electric energy. Therefore, in this type of building structure, the receivers installed in the solar concentrating device are mostly photovoltaic panels to realize the electric energy required by the cold storage or the farm. Further, the solar concentrating device in this embodiment may also include the ray distribution controller as described above, and the structure thereof is the same as that of the above embodiment, and details are not described herein again.
  • the control signal of the light distribution controller is generated according to the required power consumption in the structure. For the farm, the control signal of the light distribution controller can also be generated according to the required amount of light and the amount of electric energy used in the farm. .
  • the building described in the present application may also be a factory building, a building, a residential building or a commercial office building.
  • the receivers installed in the above buildings are mostly photovoltaic panels or photoelectric photothermal composite absorption devices. Photovoltaic panels can realize the electrical energy used in factories or residential buildings, and photoelectric photothermal composite absorption devices can provide plant or residence. Use electric energy such as a house, domestic water to heat or heat required for heating equipment.
  • the solar concentrating device may also include a light distribution controller as described above when the electrical or thermal energy requirements in the above building are not very strong and the interior requires more illumination. The method of using the light distribution controller is the same as that of the above embodiment, and details are not described herein again.
  • control signal of the light distribution controller is generated according to the amount of illumination detected by the illumination sensor provided in the above building, or is generated by the usage amount of two parameters of electric energy (or thermal energy) and illumination quantity in the building, or Comprehensively assess the use of electricity, heat and light in the greenhouse to produce.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能聚光装置及使用该装置的建筑物或构筑物。所述太阳能聚光装置包括至少一组聚光单元。聚光单元包括固定设置的线性聚光透镜(1),用于将设定角度范围内的太阳光聚焦于一直线光带上;接收器(2),其位于线性聚光透镜(1)所聚焦的光带处;以及驱动结构(3),与接收器(2)匹配连接;在太阳的位置发生变化时,直线光带沿一移动路径移动,驱动结构(3)驱动接收器(2)跟踪直线光带的位置变化,并使直线光带始终聚焦于接收器的受光面上。该线性聚光装置固定、只需驱动接收器以跟踪聚焦光带,因此该太阳能聚光装置的结构能够进一步简化,生产成本较低。

Description

一种太阳能聚光装置及使用该装置的建筑物或构筑物结构
本申请要求于2016年12月21日提交中国专利局、申请号为201611190432.9、申请名称为“一种太阳能聚光装置及使用该装置的建筑物或构筑物结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及换热技术领域,尤其涉及一种太阳能聚光装置及使用该装置的建筑物或构筑物结构。
背景技术
太阳能在解决不断增长的寻找无污染能源的需求中具有突出的优势。由于太阳光能量分布密度较低,聚光太阳能应用具有一定的经济性竞争优势,例如聚光光热(CPT)和聚光光伏(CPV)以及聚光复合光热光伏(CPVT)应用。
聚光太阳能应用中,聚光方式通常为镜面反射聚光和透镜折射聚光两种,一般情况下这两类的太阳能聚集器的镜面或透镜以及接收装置都需要跟随太阳光线角度的变化进行移动跟踪以使接收器始终处于聚光系统的焦点上。
接收器与反射或折射聚光系统均跟随太阳变化以进行移动跟踪,这就需要聚光装置具有较大的驱动动力,并且聚光装置需要强度较好的自支撑结构,因此,使得聚光装置的生产成本较高。
发明内容
本发明的目的在于提供驱动力小、结构简化且能降低生产成本的太阳能聚光装置,以及应用该太阳能聚光装置的建筑物或构筑物结构。
根据本申请的实施例,提供了一种太阳能聚光装置,包括至少一组聚光单元:所述聚光单元包括:
固定设置的线性聚光透镜,用于将设定角度范围内的太阳光聚焦于一直 线光带上;
接收器,其位于所述线性聚光透镜所聚焦的光带处;
驱动结构,与所述接收器匹配连接;在太阳位置发生变化时,所述直线光带沿一移动路径移动,所述驱动结构驱动所述接收器跟踪所述直线光带的位置变化。
其中,所述接收器的跟踪路径呈圆弧状,所述圆弧的圆心与所述线性聚光透镜的中心重合或位于所述线性聚光透镜中心的附近;所述圆弧的半径与所述线性聚光透镜的焦距相等或两者相差一设定距离。
优选地,在所述圆弧的半径与所述线性聚光透镜的焦距相差设定距离时,所述设定距离大于0小于0.2f;其中,f为所述线性聚光透镜的焦距。
优选地,所述线性聚光透镜接收与所述线性聚光透镜入射平面的法线成±40°角范围的入射光线。
优选地,所述线性聚光透镜为棱柱凸透镜或线性菲涅尔透镜。
进一步地,太阳能聚光装置还包括:二次会聚装置,所述二次会聚装置将接收到的太阳光再次聚焦至所述接收器的受光面上。
作为优选方案,所述接收器通过一转动副与一固定杆转动连接,所述固定杆的轴点位于所述线性聚光透镜的中心附近;所述固定杆的杆体与接收器在所述直线光带的移动路径上所处的那一点的切线垂直;所述驱动结构包括驱动电机、与驱动电机输出轴固定连接的丝杠,所述丝杠的另一端与所述固定杆固定连接;在接收到驱动信号后,驱动电机驱动丝杠并带动固定杆沿与直线光带长度方向垂直的水平方向移动,接收器在固定杆的带动下沿所述移动路径移动,并使所述接收器的受光面始终位于直线光带上;或者
所述驱动结构包括卷扬机、与卷扬机输出端固定连接的钢丝绳、支撑杆和配重块;所述钢丝绳绕过所述支撑杆且所述钢丝绳的另一端固定连接所述配重块;所述卷扬机和支撑杆分设于所述线性聚光透镜宽度方向的两侧,且所述卷扬机和支撑杆之间的钢丝绳的长度大于所述移动路径投影在所述线性聚光透镜的宽度;所述钢丝绳与固定杆固定连接;所述卷扬机根据接收的驱动信号卷绕所述钢丝绳以带动所述固定杆杆沿与直线光带长度方向垂直的水平方向移动,接收器在固定杆的带动下沿所述移动路径移动,并使接收器的受光面始终位于直线光带上;以及在不需要进行阳光会聚时,配重块使所述 卷扬机卷绕的钢丝绳回归至原位,所述接收器在钢丝绳与固定杆的联动作用下回归至原位。
优选地,所述固定杆的轴点沿所述线性聚光透镜入射平面的法线方向相对于所述线性聚光透镜的中心截面的偏移量小于0.2f;所述固定杆杆体的长度大于0.8f小于1.2f;其中,
所述中心截面为过所述线性聚光透镜中心且与所述线性聚光透镜入射平面的法线方向垂直的平面;所述f为所述线性聚光透镜的焦距。
作为另一优选实施方案,所述驱动结构包括驱动电机、弧形轨道和设置于所述轨道上的滑动构件,所述滑动构件与所述驱动电机的输出端连接;所述接收器固定在所述滑动构件上;所述接收器的受光面与所述线性聚光透镜中心的距离为所述线性聚光透镜的焦距;所述驱动电机根据接收的驱动信号驱动所述滑动组件带动所述接收器在所述直线光带的移动路径上移动。
作为另一实施方案,所述聚光单元的组数大于等于2,多组聚光单元的线性聚光透镜平行设置;或者
多组聚光单元的线性聚光透镜平行且位于同一平面内。
本申请所述的接收器为光电吸收装置、光热吸收装置或者光电光热复合吸收装置。
根据本发明的另一方面,还提供了一种建筑物或构筑物结构,其包括如上所述的太阳能聚光装置。
其中,所述建筑物或构筑物结构包括至少一个倾斜部,部分倾斜部向阳设置,在向阳设置的倾斜部上安装所述太阳能聚光装置。
优选地,所述建筑物或构筑物结构包括第一倾斜部和第二倾斜部,所述太阳能聚光装置的线性聚光透镜构成所述第一倾斜部,第一倾斜部向阳设置;第二倾斜部为透光保温结构。
其中,所述建筑物为厂房、楼房、居住用房或商用办公用房;所述构筑物为温室大棚、冷库或养殖场。
进一步地,所述建筑物或构筑物结构中的太阳能聚光装置还包括光线分配控制器,与所述太阳能聚光装置中所述聚光单元的驱动结构连接;所述聚光单元的驱动结构在接收到所述光线分配控制器发送的控制信号后,驱动所述接收器移动使所述直线光带全部或部分区域聚焦于所述接收器的受光面上 或将所述接收器移动至所述直线光带的移动路径之外;
所述光线分配控制器的控制信号根据所需用电量、用热量和/或光照量产生。
由以上技术方案可知,本申请中太阳能聚光装置的线性聚光装置主要部件位置固定,在太阳光通过线性聚光透镜形成的直线光带上设置接收器,并通过驱动结构使接收器在直线光带在一天中的移动路径上进行移动,以使接收器的受光面始终处在直线光带上。由于线性聚光装置固定、只有接收器需要驱动,因此本申请中的太阳能聚光装置的结构能够进一步简化,运行更加可靠,生产成本降低。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为太阳光经线性菲涅尔透镜的光线轨迹图;
图2示出了包括一组聚光单元的太阳能聚光装置的结构示意图;
图3示出了线性聚光透镜中入射光线的光路图;
图4为根据另一优选实施例示出的太阳能聚光装置的结构示意图;
图5为根据再一优选实施例示出的太阳能聚光装置的结构示意图;
图6示出了包括多组聚光单元的太阳能聚光装置的结构示意图;
图7为根据一优选实施例示出的温室大棚的结构示意图;
图8为根据另一优选实施例示出的温室大棚的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
太阳高度角是决定地球表面获得太阳热能数量的最重要的因素。同一地 点一天内太阳的高度是不断变化的。本申请的发明人发现,利用线性菲涅尔透镜,可以将一定角度范围内的太阳光的光线聚焦于一直线光带上,如图1所示的S光带,且随着太阳光线入射角度的变化,太阳光通过线性菲涅尔透镜聚焦的光带区域会沿着一条圆弧形的轨迹移动,即沿着图1所示的虚线L进行移动。为了简单可靠获取更多的太阳热能数量,本申请的发明人采用一种固定设置的线性聚光装置对太阳光进行汇聚,同时采用一种移动的接收器对聚光装置形成的直线光带进行移动跟踪,以保证接收器的受光面始终位于直线光带上。
由于能够将太阳能量尽可能多地进行收集,太阳能聚光装置中的接收器,其可为光伏板。在接收器为光伏板时,太阳能聚光装置即可进行发电;若接收器为类似聚光光热电站或者太阳能热水器等中用于进行集热的集热管时,则太阳能聚光装置可为集热应用。
下面对本申请中太阳能聚光装置的具体结构进行详细阐述。
根据本发明的实施例,本申请中的太阳能聚光装置包括至少一组聚光单元。图2示出了包括一组聚光单元的太阳能聚光装置的结构示意图。如图2所示,太阳能聚光装置包括聚光单元,该聚光单元包括线性聚光透镜1、接收器2和驱动结构3。
线性聚光透镜1固定设置,用于在太阳光穿过后使光线聚焦于一直线光带上。随着太阳在一天之中的高度不断变化,太阳光通过线性聚光透镜1形成的直线光带沿图1虚线L所示的路径移动。接收器2位于线性聚光透镜1所聚焦的光带处,接收器2的受光面的长度小于或等于光带的长度,其目的是使接收器2的受光面能够接收到足够的光照。在本申请实施例中,线性聚光透镜接收与线性聚光透镜的入射平面的法线成±40°角范围的入射光线,即图1中θ的角度范围为[-40°,40°]。
优选地,本实施例中线性菲涅尔透镜包括但不限于锯齿形玻璃、一面带有压花图案的平面玻璃、亚克力菲涅尔透镜或玻璃硅胶菲涅尔透镜。本发明对于线性菲涅尔透镜的类型不做具体限定,凡是能够起到线性聚光作用的透镜均落入本发明的保护范围。
驱动结构3与接收器2匹配连接。在直线光带随太阳的位置变化而移动时,驱动结构3驱动所述接收器2跟踪上述直线光带的位置变化,即接收器 的跟踪路径为图1中所示的曲线L,并使直线光带始终聚焦于所述接收器的受光面上。
优选地,本申请中接收器的跟踪路径L呈圆弧状。其中,圆弧的圆心与线性聚光透镜的中心重合或位于线性聚光透镜中心的附近;圆弧的半径与线性聚光透镜的焦距相等或两者相差一设定距离。圆弧设置在上述位置,可满足随太阳位置的变化接收器始终能够位于直线光带的移动路径上并且能获得最好的聚焦效果。
进一步优选地,当圆弧的圆心位于线性聚光透镜中心的附近,即圆弧的半径与线性聚光透镜的焦距相差设定距离时,该设定距离大于0小于0.2f;其中,f为所述线性聚光透镜的焦距。
本实施例中的所述接收器包括但不限于光电吸收装置、光热吸收装置或者光电光热复合吸收装置等。其中,光电吸收装置包括但不限于光伏板、太阳能电池等;光热吸收装置包括带有循环介质(如水、油、固体颗粒等)的集热管等;光电光热复合吸收装置包括带有循环介质流动管路的光伏板,循环介质流动管路设置于光伏板的背板处,光伏板利用接收的太阳光进行发电,光伏板的背板所散发的热量由循环介质流动管路中的介质吸收并带至指定换热器中,从而使光伏板能够不超温,增加光电转换率,延长光伏板的使用寿命,同时还能够获得大量低品位热量供热水或取暖等应用。
图2中的太阳能聚光装置示出了其中一种驱动结构的示意图。如图2所示,在该太阳能聚光装置中,接收器2通过转动副201与一固定杆202转动连接。其中,固定杆202的轴点位于线性聚光透镜的中心附近,固定杆202的杆体与接收器2在移动路径L上位于的那一点的切线垂直。驱动结构3包括驱动电机301、与驱动电机输出轴固定连接的丝杠302,丝杠的另一端与固定杆202连接。在接收到驱动信号后,驱动电机驱动丝杠并带动固定杆沿与直线光带长度方向垂直的水平方向移动,接收器2在固定杆的带动下沿移动路径L移动,并使所述接收器2的受光面始终位于直线光带上。
需要说明的是,对于本实施例中转动副的具体结构不做具体限定,凡是能够实现与接收器转动连接并与丝杠进行固定连接的结构均落入本发明的保护范围。
优选地,该实施例中固定杆202的轴点沿线性聚光透镜入射平面的法线 方向相对于线性聚光透镜的中心截面的偏移量d(见图2)小于0.2f。固定杆杆体的长度大于0.8f小于1.2f。其中,中心截面为过线性聚光透镜中心且与线性聚光透镜入射平面的法线方向垂直的平面,f为线性聚光透镜的焦距。
值得注意的是,在固定杆202杆体长度与线性聚光透镜的焦距不同时,入射光的入射角度θ发生变化时,入射光线经线性聚光透镜会聚的焦点O1与固定杆杆体顶端O2的连线O1O2与线性聚光透镜入射平面的法线的夹角α的变化不一定一致,但存在固定对应关系。如图3所示线性聚光透镜中入射光线的光路图。
在图3所示的光路图中,在一种优选的实施例中,线性菲涅尔透镜的焦距为1000毫米,固定杆杆体顶端O2的位置低于线性聚光透镜的中心点80毫米。在该实施例中,夹角α的变化根据线性聚光透镜的折射率而略有不同,但其变化并不是很明显。本申请的发明人发现,线性聚光透镜入射光线的入射角度θ与夹角α之间存在如下表1中的对应关系:
表1:
θ(度) 0 5 10 15 20 25 30 35 40
α(度) 0 6 12 19 24 29 34 39 44
在另一优选实施例中,线性菲涅尔透镜的焦距为1000毫米,固定杆杆体顶端O2的位置高于线性聚光透镜的中心点100毫米。在该实施例中,本申请的发明人发现,线性聚光透镜入射光线的入射角度θ与夹角α之间存在如下表2中的对应关系:
表2:
θ(度) 0 5 10 15 20 25 30 35 40
α(度) 0 5 10 15 20 24 28 33 37
在上述的对应关系下,在已知固定杆杆体顶端的位置和线性聚光透镜入射光线的入射角度θ时,按照上述表1或表2中的对应关系,即可获知固定杆杆体底端应该处于什么位置。由于接收器固定于固定杆杆体的底端,故由此可确定接收器应移动到的位置。作为其中一种优选的计算方案,驱动机构在获知线性聚光透镜入射光线的入射角度θ后,即可根据表1或表2中的数据计算出接收器的位置并将其驱动至对应位置。
优选地,该实施例中的太阳能聚光装置还包括二次会聚装置4。优选地,二次会聚装置4设置在接收器的附近并朝向所述太阳光射入的方向,二次会聚装置4将接收到的太阳光再次聚焦至接收器2的受光面上。
图4为根据另一优选实施例示出的太阳能聚光装置的结构示意图。如图4所示,该太阳能聚光装置中的驱动结构3包括驱动电机(图中未示出)、弧形轨道303和设置于轨道上的滑动构件304。滑动构件304与驱动电机的输出端连接,接收器2固定在滑动构件上;弧形轨道303的半径大于线性聚光透镜的焦距,接收器的受光面与线性聚光透镜的距离为线性聚光透镜的焦距。驱动电机根据接收的驱动信号驱动滑动组件移动以使直线光带始终聚焦于接收器2的受光面上。
优选地,该实施例中的太阳能聚光装置也包括二次会聚装置4,以将接收到的太阳光反射聚焦至接收器2的受光面上。
图5为根据再一优选实施例示出的太阳能聚光装置的结构示意图。如图5所示,与图2所示太阳能聚光装置的结构图部分相似,接收器2亦是通过转动副401与一固定杆402固定。固定杆402的轴点位于线性聚光透镜的中心附近,固定杆402的杆体与接收器2在移动路径L上位于的那一点的切线垂直。驱动结构3包括卷扬机305、与卷扬机输出端固定连接的钢丝绳306、支撑杆307和配重块308。钢丝绳绕过支撑杆且钢丝绳的另一端固定连接配重块;卷扬机和支撑杆分设于线性聚光透镜1宽度方向的两侧,且卷扬机和支撑杆之间的钢丝绳的长度大于移动路径L投影在线性聚光透镜1的宽度;钢丝绳与固定杆固定连接。卷扬机根据接收的驱动信号卷绕钢丝绳,钢丝绳带动固定杆沿与直线光带长度方向垂直的水平方向移动,接收器2在固定杆的带动下沿路径L移动,并使接收器2的受光面始终位于直线光带上。在不需要进行阳光会聚时,配重块将钢丝绳拉回至原位,四个固定杆带动与其对应的接收器2回归至原位。本实施例中第二转动副的具体结构不做具体限定,凡是能够实现与接收器2转动连接并与丝杠进行固定连接的结构均落入本发明的保护范围。
需要说明的是,上述个实施例中的驱动机构只是示例性的,凡是能够驱动接收器沿运动轨迹L移动的结构均落入本发明的保护范围。同时,本申请中对于接收器的固定方式亦不做具体限定。接收器的固定方式可随采用的驱 动结构的不同而改变。
优选地,该实施例中的太阳能聚光装置也包括二次会聚装置4,以将接收到的太阳光反射聚焦至接收器2的受光面上。
作为另一优选实施方式,本申请中太阳能聚光装置中的聚光单元的组数大于等于2。当太阳能聚光装置包括多组聚光单元时,优选地,多组聚光单元的线性聚光透镜1平行设置。每组聚光单元可采用上述三种实施例中示出的任一驱动结构对该组的接收器进行驱动。
为使太阳能聚光装置的结构更为简化,优选地,将多组聚光单元的线性聚光透镜平行且位于同一平面设置。图6示出了包括多组聚光单元的太阳能聚光装置的结构示意图。如图6所示,太阳能聚光装置以包括四组聚光单元,四组聚光单元的线性聚光透镜平行且处于同一平面。在该实施例中,四组聚光单元优选采用上述第三种实施例中的驱动结构。四组聚光单元的接收器2采用长度相同的固定杆进行固定,固定杆的固定位置相同,每个接收器2与其对应的固定杆通过转动副连接。本实施例中四组聚光单元的驱动结构采用同一卷扬机、钢丝绳、支撑杆和配重块,卷扬机和支撑杆之间的钢丝绳的长度大于多块线性聚光透镜的宽度之和。每组聚光单元的固定杆均与钢丝绳固定连接。卷扬机根据接收的驱动信号卷绕钢丝绳,钢丝绳带动固定杆沿与直线光带长度方向垂直的水平方向移动,四个固定杆一起联动,对应地,四个接收器2在与其对应的固定杆的带动下均沿路径L移动,并使每个接收器2的受光面始终位于直线光带上。在不需要进行追踪直线光带位置时,配重块将钢丝绳拉回至原位,四个固定杆带动与其对应的接收器回归至原位。
图5与图6实施例中的固定杆的设置位置要求与图2实施例中固定杆的设置位置要求相同,此处不再进行赘述。
本申请中,经线性聚光透镜汇聚的光线为直射光线。在太阳能较为丰富的区域,直射光线占总太阳光线的80-90%,即使太阳能较弱的区域,直射光线亦占总太阳光线的70-80%,其余10%-30%甚至更多的为散射光能量。在对直射光线进行汇聚利用的同时,本装置基本不会影响散射光线照射到线性聚光透镜后的出射,使得线性聚光透镜出射光一侧的区域还能有相当的太阳辐照强度,以便于其他亮度的用途。为了更灵活广泛的应用,可以进一步控制直线光带落在接收器受光面上的光量,本实施例进一步地,太阳能聚光装置 还包括光线分配控制器。光线分配控制器与太阳能聚光装置中的聚光单元的驱动结构电连接。聚光单元的驱动结构在接收到光线分配控制器发送的控制信号后,驱动接收器使接收器的受光面部分或全部移至直线光带的区域之外,使得被所述透镜汇聚的直射光线在经过焦点直射光带后能够继续照射到下方区域,进一步增强下方的光线强度,扩大应用范围。
由以上技术方案可知,本申请实施例中太阳能聚光装置的线性聚光装置固定,在太阳光通过线性聚光透镜形成的直线光带上设置接收器,并通过驱动结构使接收器在直线光带在一天中的移动路径上进行移动,以使直线光带始终聚焦于接收器的受光面上。由于线性聚光装置固定、只有接收器需要驱动,因此本申请中的太阳能聚光装置的结构能够进一步简化,生产成本降低。
根据本发明的另一方面,还提供了使用上述太阳能聚光装置的建筑物或构筑物结构。本申请中所述的建筑物包括但不限于厂房、楼房、居住用房或商用办公用房;构筑物包括但不限于温室大棚、冷库或养殖场。
本申请实施例中的构筑物包括至少一个倾斜部,一个或多个倾斜部向阳设置,在向阳的倾斜部上安装如上所述结构的太阳能聚光装置。图7为根据一优选实施例示出的温室大棚的结构示意图。图8为根据另一优选实施例示出的温室大棚的结构示意图。如图7或图8所示,温室大棚包括大棚本体60和设置于大棚本体上部的顶结构61。顶结构可包括一个倒V型结构或者包括多个并排布置的倒V型结构。其中,倒V型结构包括第一倾斜部610和第二倾斜部611,第一倾斜部上安装如上所述结构的太阳能聚光装置。第一倾斜部可为一整块的线性聚光透镜,也可为多块线性聚光透镜拼接构成。由于温室大棚通常需要较为充足的阳光,因此优选地,倒V型顶结构的第二倾斜部为透光保温结构。
作为另一优选的实施方式,温室大棚亦可采用不包括大棚本体的结构,即温室大棚只包括第一倾斜部和第二倾斜部。第一倾斜部和第二倾斜部直接安装在地面上。第一倾斜部和第二倾斜部的结构与上述实施例中相同,此处不再赘述。
本申请中,经线性聚光透镜射入的光线为直射光线。在太阳能较为丰富的区域,直射光线占总太阳光线的80-90%,即使太阳能较弱的区域,直射光线亦占总太阳光线的70-80%。为了进一步控制直线光带落在接收器受光面上 的光量,本实施例进一步地,太阳能聚光装置还包括光线分配控制器。光线分配控制器与太阳能聚光装置中的聚光单元的驱动结构连接。聚光单元的驱动结构在接收到光线分配控制器发送的控制信号后,移动使所述直线光带全部或部分区域聚焦于接收器的受光面上或将接收器移动至直线光带的区域之外。
在建筑物或构筑物结构中使用带有光线分配控制器的太阳能聚光装置。当如温室大棚等构筑物内需要较多光线时,通过光线分配控制器控制接收器的位置。未经接收器遮挡的直射光线直接进入温室大棚内,从而提高温室大棚内的光线射入量。温室大棚内光线射入量的多少与接收器受光面与直线光带的区域重合的面积成反比。当驱动结构驱动接收器移动,并使直线光带的部分区域聚焦于接收器的受光面上时,未聚焦接收器受光面的那一部分直射光线射入温室大棚内,从而增加大棚的光照量。当接收器移动至直线光带的区域之外后,由线性聚光透镜聚焦的直线光带会全部分散开并全部射入温室大棚内,从而大大增加大棚的光照量。
太阳能聚光装置的接收器可为光伏板,以提供给温室大棚所使用的电能,或者安装的接收器也可为集热管的受热部件,用以提供温室大棚内供暖设备所需的热能。需要说明的是,光线分配控制器的控制信号根据温室大棚中设置的光照传感器探测的光照量产生,或者通过温室大棚内所需电能(或热能)和光照量的使用量来产生,或者通过综合评定温室大棚内的电能、热能和光照量三者的使用量来产生。
本申请所述的构筑物还可为冷库或养殖场。冷库或养殖场通常需要较多的电能,故在该类建筑结构中,太阳能聚光装置中安装的接收器多为光伏板,以实现冷库或养殖场所需的电能。进一步地,该实施方式中的太阳能聚光装置,也可包括如上所述的光线分配控制器,其结构与上述实施例相同,此处不再赘述。该实施例中光线分配控制器的控制信号根据构筑物中所需的用电量产生,对于养殖场,光线分配控制器的控制信号还可根据养殖场内所需的光照量和电能使用量共同产生。
本申请所述的建筑物还可为厂房、楼房、居住用房或商用办公用房,上述建筑中安装的接收器多为光伏板或者光电光热复合吸收装置。光伏板可实现工厂或居住用房所使用的电能,光电光热复合吸收装置可提供厂房或居住 用房等的电能、生活用水加热或为供暖设备所需的热能。当上述建筑中对于电能或热能需要不是很旺盛,且室内需要较多光照时,太阳能聚光装置亦可包括如上所述的光线分配控制器。光线分配控制器的使用方法与上述实施例相同,此处不再赘述。该实施例中光线分配控制器的控制信号根据上述建筑中设置的光照传感器探测的光照量产生,或者通过建筑内所需电能(或热能)和光照量两个参数的使用量来产生,或者通过综合评定温室大棚内的电能、热能和光照量三者的使用量来产生。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种太阳能聚光装置,其特征在于,包括至少一组聚光单元:所述聚光单元包括:
    固定设置的线性聚光透镜,用于将设定角度范围内的太阳光聚焦于一直线光带上;
    接收器,其位于所述线性聚光透镜所聚焦的光带处;
    驱动结构,与所述接收器匹配连接;在太阳位置发生变化时,所述直线光带沿一移动路径移动,所述驱动结构驱动所述接收器跟踪所述直线光带的位置变化,并使所述直线光带始终聚焦于所述接收器的受光面上。
  2. 根据权利要求1所述的太阳能聚光装置,其特征在于,所述接收器的跟踪路径呈圆弧状,所述圆弧的圆心与所述线性聚光透镜的中心重合或位于所述线性聚光透镜中心的附近;所述圆弧的半径与所述线性聚光透镜的焦距相等或两者相差一设定距离。
  3. 根据权利要求2所述的太阳能聚光装置,其特征在于,在所述圆弧的半径与所述线性聚光透镜的焦距相差设定距离时,所述设定距离大于0小于0.2f;其中,f为所述线性聚光透镜的焦距。
  4. 根据权利要求1至3中任一所述的太阳能聚光装置,其特征在于,所述线性聚光透镜接收与所述线性聚光透镜入射平面的法线成±40°角范围的入射光线。
  5. 根据权利要求4中任一所述的太阳能聚光装置,其特征在于,所述线性聚光透镜为棱柱凸透镜或线性菲涅尔透镜。
  6. 根据权利要求5所述的太阳能聚光装置,其特征在于,还包括:二次会聚装置,所述二次会聚装置将接收到的太阳光再次聚焦至所述接收器的受光面上。
  7. 根据权利要求6所述的太阳能聚光装置,其特征在于,所述接收器通过一转动副与一固定杆转动连接,所述固定杆的轴点位于所述线性聚光透镜的中心附近;所述固定杆的杆体与接收器在所述直线光带的移动路径上所处的那一点的切线垂直;所述驱动结构包括驱动电机、与驱动电机输出轴固定连接的丝杠,所述丝杠的另一端与所述固定杆固定连接;在接收到驱动信号后,驱动电机驱动丝杠并带动固定杆沿与直线光带长度方向垂直的水平方向 移动,接收器在固定杆的带动下沿所述移动路径移动,并使所述接收器的受光面始终位于直线光带上;或者
    所述驱动结构包括卷扬机、与卷扬机输出端固定连接的钢丝绳、支撑杆和配重块;所述钢丝绳绕过所述支撑杆且所述钢丝绳的另一端固定连接所述配重块;所述卷扬机和支撑杆分设于所述线性聚光透镜宽度方向的两侧,且所述卷扬机和支撑杆之间的钢丝绳的长度大于所述移动路径投影在所述线性聚光透镜的宽度;所述钢丝绳与固定杆固定连接;所述卷扬机根据接收的驱动信号卷绕所述钢丝绳以带动所述固定杆杆沿与直线光带长度方向垂直的水平方向移动,接收器在固定杆的带动下沿所述移动路径移动,并使接收器的受光面始终位于直线光带上;以及在不需要进行阳光会聚时,配重块使所述卷扬机卷绕的钢丝绳回归至原位,所述接收器在钢丝绳与固定杆的联动作用下回归至原位。
  8. 根据权利要求7所述的太阳能聚光装置,其特征在于,所述固定杆的轴点沿所述线性聚光透镜入射平面的法线方向相对于所述线性聚光透镜的中心截面的偏移量小于0.2f;所述固定杆杆体的长度大于0.8f小于1.2f;其中,
    所述中心截面为过所述线性聚光透镜中心且与所述线性聚光透镜入射平面的法线方向垂直的平面;所述f为所述线性聚光透镜的焦距。
  9. 根据权利要求6所述的太阳能聚光装置,其特征在于,所述驱动结构包括驱动电机、弧形轨道和设置于所述轨道上的滑动构件,所述滑动构件与所述驱动电机的输出端连接;所述接收器固定在所述滑动构件上;所述接收器的受光面与所述线性聚光透镜中心的距离为所述线性聚光透镜的焦距;所述驱动电机根据接收的驱动信号驱动所述滑动组件带动所述接收器在所述直线光带的移动路径上移动。
  10. 根据权利要求6所述的太阳能聚光装置,其特征在于,所述聚光单元的组数大于等于2,多组聚光单元的线性聚光透镜平行设置;或者
    多组聚光单元的线性聚光透镜平行且位于同一平面内。
  11. 根据权利要求1所述的太阳能聚光装置,其特征在于,所述接收器为光电吸收装置、光热吸收装置或者光电光热复合吸收装置。
  12. 一种建筑物或构筑物结构,其特征在于,包括如权利要求1至11中任一所述的太阳能聚光装置。
  13. 根据权利要求12所述的建筑物或构筑物结构,其特征在于,所述建筑物或构筑物结构包括至少一个倾斜部,部分倾斜部向阳设置,在向阳设置的倾斜部上安装所述太阳能聚光装置。
  14. 根据权利要求13所述的建筑物或构筑物结构,其特征在于,所述建筑物或构筑物结构包括第一倾斜部和第二倾斜部,第一倾斜部向阳设置,所述太阳能聚光装置的线性聚光透镜构成所述第一倾斜部;第二倾斜部为透光保温结构。
  15. 根据权利要求12所述的建筑物或构筑物结构,其特征在于,所述建筑物为厂房、楼房、居住用房或商用办公用房;所述构筑物为温室大棚、冷库或养殖场。
  16. 根据权利要求12至15任一所述的建筑物或构筑物结构,其特征在于,太阳能聚光装置还包括光线分配控制器,与所述太阳能聚光装置中所述聚光单元的驱动结构连接;所述聚光单元的驱动结构在接收到所述光线分配控制器发送的控制信号后,驱动所述接收器移动使所述直线光带全部或部分区域聚焦于所述接收器的受光面上或将所述接收器移动至所述直线光带的区域之外;
    所述光线分配控制器的控制信号根据所需用电量、用热量和/或光照量产生。
PCT/CN2017/116981 2016-12-21 2017-12-18 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构 WO2018113631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611190432.9A CN108613411A (zh) 2016-12-21 2016-12-21 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构
CN201611190432.9 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018113631A1 true WO2018113631A1 (zh) 2018-06-28

Family

ID=62624713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116981 WO2018113631A1 (zh) 2016-12-21 2017-12-18 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构

Country Status (2)

Country Link
CN (1) CN108613411A (zh)
WO (1) WO2018113631A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728333A (zh) * 2019-12-19 2020-01-24 广东博智林机器人有限公司 日照时长分析方法、装置、电子设备以及存储介质
CN110805125A (zh) * 2019-11-04 2020-02-18 西北工业大学 一种建筑冬季日照体形系数计算方法
CN112379470A (zh) * 2020-11-09 2021-02-19 荆门麦隆珂机器人科技有限公司 滑移遮蔽式变焦距线型菲涅尔透镜机器人
CN114097485A (zh) * 2021-12-13 2022-03-01 中国农业科学院农业环境与可持续发展研究所 连栋温室的集放热和遮光系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120317900A1 (en) * 2010-04-26 2012-12-20 Guardian Industries Corp. Multi-functional photovoltaic skylight and/or methods of making the same
CN102954601A (zh) * 2012-11-26 2013-03-06 王英 一种波形瓦太阳能聚光集热器
CN103277921A (zh) * 2013-05-08 2013-09-04 中国科学院广州能源研究所 一种新型聚光太阳能装置
CN103590546A (zh) * 2012-08-14 2014-02-19 北京兆阳能源技术有限公司 一种太阳能建筑一体化装置
US8857425B2 (en) * 2011-09-19 2014-10-14 Cyrous Gheyri Solar lens water heating system
CN204610160U (zh) * 2015-05-19 2015-09-02 中国电力工程顾问集团华北电力设计院有限公司 一种聚光透镜发电系统
CN206300367U (zh) * 2016-12-21 2017-07-04 北京兆阳能源技术有限公司 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072562A (zh) * 2010-12-29 2011-05-25 东莞和佳塑胶制品有限公司 太阳能装置
CN205119523U (zh) * 2015-09-22 2016-03-30 北京理工大学 菲涅耳透射聚光式太阳能高温集热装置
CN106123362A (zh) * 2016-06-30 2016-11-16 成都生辉电子科技有限公司 一种跟踪太阳能聚焦集热系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120317900A1 (en) * 2010-04-26 2012-12-20 Guardian Industries Corp. Multi-functional photovoltaic skylight and/or methods of making the same
US8857425B2 (en) * 2011-09-19 2014-10-14 Cyrous Gheyri Solar lens water heating system
CN103590546A (zh) * 2012-08-14 2014-02-19 北京兆阳能源技术有限公司 一种太阳能建筑一体化装置
CN102954601A (zh) * 2012-11-26 2013-03-06 王英 一种波形瓦太阳能聚光集热器
CN103277921A (zh) * 2013-05-08 2013-09-04 中国科学院广州能源研究所 一种新型聚光太阳能装置
CN204610160U (zh) * 2015-05-19 2015-09-02 中国电力工程顾问集团华北电力设计院有限公司 一种聚光透镜发电系统
CN206300367U (zh) * 2016-12-21 2017-07-04 北京兆阳能源技术有限公司 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805125A (zh) * 2019-11-04 2020-02-18 西北工业大学 一种建筑冬季日照体形系数计算方法
CN110728333A (zh) * 2019-12-19 2020-01-24 广东博智林机器人有限公司 日照时长分析方法、装置、电子设备以及存储介质
CN112379470A (zh) * 2020-11-09 2021-02-19 荆门麦隆珂机器人科技有限公司 滑移遮蔽式变焦距线型菲涅尔透镜机器人
CN114097485A (zh) * 2021-12-13 2022-03-01 中国农业科学院农业环境与可持续发展研究所 连栋温室的集放热和遮光系统
CN114097485B (zh) * 2021-12-13 2023-09-22 中国农业科学院农业环境与可持续发展研究所 连栋温室的集放热和遮光系统

Also Published As

Publication number Publication date
CN108613411A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2018113631A1 (zh) 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构
US4307711A (en) Sun tracking solar energy collector system
CN101836055A (zh) 线性菲涅尔太阳能阵列
CN102620442A (zh) 基于槽式抛物面反射镜和人工黑体的太阳能集热器
WO2012113195A1 (zh) 基于碟式聚光的太阳能二次聚光分频方法及其装置
CN101976972A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN104849844A (zh) 碟式菲涅尔反射聚光方法及其装置
CA2738647A1 (en) Solar collector panel
CN104143954B (zh) 一种适用于太阳能光伏和光热的免跟踪式聚光器
TWI684703B (zh) 側聚光型太陽能百葉窗
JP2012225611A (ja) 太陽光集光装置および太陽エネルギー利用システム
CN204065838U (zh) 牵拉式太阳能聚光跟踪装置
US20130055999A1 (en) Concentrating solar energy device
CN102466329A (zh) 太阳能收集装置
CN112378094A (zh) 透射型太阳能聚光集热系统
CN108981190B (zh) 一种全方位跟踪抛物面镜热能吸收系统
CN101210746A (zh) 可固定安装的折射式聚光太阳能高温集热器
JP2008066133A (ja) 集光方法および集光板
US20100307480A1 (en) Non-tracking solar collectors
CN102486284A (zh) 一种新型太阳能照明装置
CN108507199A (zh) 一种太阳能聚光集热系统及方法
CN206300367U (zh) 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构
CN201187903Y (zh) 可固定安装的折射式聚光太阳能高温集热器
CN208859917U (zh) 一种太阳能聚光集热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885430

Country of ref document: EP

Kind code of ref document: A1