WO2018113595A1 - Synthetic polypeptide, composition comprising the same, antibody produced thereby, and uses thereof - Google Patents

Synthetic polypeptide, composition comprising the same, antibody produced thereby, and uses thereof Download PDF

Info

Publication number
WO2018113595A1
WO2018113595A1 PCT/CN2017/116445 CN2017116445W WO2018113595A1 WO 2018113595 A1 WO2018113595 A1 WO 2018113595A1 CN 2017116445 W CN2017116445 W CN 2017116445W WO 2018113595 A1 WO2018113595 A1 WO 2018113595A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
antibody
subject
polypeptide
administered
Prior art date
Application number
PCT/CN2017/116445
Other languages
French (fr)
Inventor
Kuang Wen Liao
Yen-Ku Liu
Chia-Hung Chen
Shu-Yi Ho
Pin-Rong Chen
Original Assignee
Can Heal Biomeditech Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Can Heal Biomeditech Corp. filed Critical Can Heal Biomeditech Corp.
Publication of WO2018113595A1 publication Critical patent/WO2018113595A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present disclosure in general relates to the field of cancer treatment. More particularly, the present disclosure relates to cancer-associated polypeptides, the vaccine compositions comprising the same, the antibodies that bind to said polypeptides, and their applications in cancer prevention and/or cancer therapy.
  • Cancer is a class of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. More than 100 different types of cancer have been identified in human. Among which, lung cancer, prostate cancer and colorectal cancer are prevalent in male subjects; while breast cancer, lung cancer and colorectal cancer prevail in female subjects.
  • Hereditary cancers are primarily caused by an inherited genetic defect (e.g., genetic mutation) .
  • the mutation in the gene BRCA1 or BRCA2 has been demonstrated to be associated with the development of breast, ovarian or pancreatic cancer.
  • Preventive cancer vaccine provides a strategy to protect a subject from developing a cancer via stimulating the immune response against tumor-associated antigen (TAA) .
  • TAA tumor-associated antigen
  • different types of cancer usually have different TAA expressed thereon (e.g., alpha-fetoprotein (AFP) mainly expressed in hepatocellular carcinoma, CA-125 mainly expressed in ovarian cancer, and prostate-specific antigen (PSA) recognized as a tumor antigen of prostate cancer) , and it is a challenge to predict the risk of specific cancer types in each individual and accordingly to design immune strategies targeting these cancer types.
  • AFP alpha-fetoprotein
  • PSA prostate-specific antigen
  • the major treatments for cancer include surgery, radiation therapy, chemotherapy, hormonal therapy and targeted therapy.
  • the treatment may vary with the type, location and grade of the cancer as well as the patient's health and preferences.
  • most of these treatments cannot produce a satisfactory effect on cancer patients due to the limitations of, for example, low-specificity, low-efficiency, and/or adverse side-effect.
  • Immunotherapy is an alternative treatment developed in the last few decades that uses certain parts of the immune system of the subject to attack the cancer cells.
  • the main types of immunotherapy include therapeutic cancer vaccine, immune checkpoint inhibitor, monoclonal antibody and non-specific immunotherapy.
  • Therapeutic cancer vaccine usually comprises one or more specific antigens that stimulates immune cells (e.g., dendritic cells and T cells) to recognize and attack the cancer cells having the antigen expressed thereon.
  • immune cells e.g., dendritic cells and T cells
  • this type of cancer therapy only extends patients’lives by several months on average, while fails to cure cancers. Besides, they also induces adverse side-effects caused by and/or associated with overactive/non-specific immune response, such as fever, chills, fatigue, pain, nausea and headache.
  • PD-1 and CTLA-4 are two immune checkpoint proteins that respectively inhibit the function of T cells and/or downregulate the immune response via interacting with their ligands (i.e., PD-L1 and CD80/CD86) expressed on cancer cells.
  • the immune checkpoint inhibitor thus provides a promising means to boost the immune response against cancer cells.
  • the said ligands i.e., PD-L1 and CD80/CD86
  • the said ligands are also expressed on normal cells; accordingly, such a treatment may lead to serious or even life-threatening side-effects in the subject.
  • Monoclonal antibody is useful in destroying cancers by recognizing cancer cells having antibody-specific antigen (e.g., TAA) expressed thereon followed by inhibiting the proliferation and/or inducing the death (e.g., apoptosis or necrosis) of the cancer cells.
  • antibody-specific antigen e.g., TAA
  • monoclonal antibody also activates the complement system against the cancer cells.
  • the monoclonal antibody still have some disadvantages needed to be improved, including poor-stability, low-affinity and low-specificity.
  • non-specific immunotherapy it stimulates the immune system in a general way; for example, the administration of interleukins or interferons.
  • the limitation of this type of treatment is that it does not target cancer cells specifically and may result in a “cytokine storm” in the subject.
  • the first aspect of the disclosure is directed to a synthetic polypeptide for preventing and/or treating a cancer in a subject in need thereof.
  • the synthetic polypeptide comprises a first polypeptide, which has the amino acid sequence at least 85%identical to SEQ ID NO: 1, 2 or 3.
  • the first polypeptide has the amino acid sequence of SEQ ID NO: 1, 2 or 3.
  • the N-terminus of the synthetic polypeptide is acetylated, glycosylated or formylated. Additionally or alternatively, the C-terminus of the synthetic polypeptide is amidated or glycosylated.
  • the synthetic polypeptide may further comprise a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, ovalbumin (OVA) , bovine serum albumin (BSA) , keyhole limpet haemocyanin (KLH) , ⁇ -galactosidase, thyroglobulin (TGB) , and a combination thereof.
  • OVA ovalbumin
  • BSA bovine serum albumin
  • KLH keyhole limpet haemocyanin
  • TGB thyroglobulin
  • the second aspect of the present disclosure is directed to a vaccine composition for preventing and/or treating a cancer in a subject, in which the vaccine composition comprises the present synthetic polypeptide and a pharmaceutically acceptable adjuvant.
  • the pharmaceutically acceptable adjuvant may be selected from the group consisting of, Emulsigen-D, aluminum hydroxide, incomplete Fruend's adjuvant (IFA) , complete Fruend's adjuvant (CFA) , endotoxin based adjuvant, mineral oil, mineral oil and surfactant, Ribi adjuvant, Titer-max, syntax adjuvant formulation, aluminium salt adjuvant, nitrocellulose adsorbed antigen, immune stimulating complex, Gebru adjuvant, super carrier, elvax 40w, L-tyrosine, montanide, Adju prime, Squalene, sodium phthalyl lipopolysaccharide (SPLPS) , calcium phosphate, saponin, and muramyl dipeptide (MDP) .
  • the synthetic polypeptide of the present vaccine composition may further comprise a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, OVA, BSA, KLH, ⁇ -galactosidase, TGB, and a combination thereof.
  • the third aspect of the present disclosure is directed to a method of preventing or treating a cancer in a subject in need thereof.
  • the method comprises administering to the subject an effective amount of the present vaccine composition.
  • the administration of the vaccine composition may give rise to about 0.8 ⁇ g to 80 mg of the present synthetic polypeptide per kilogram (Kg) of body weight per dose (i.e., 0.8 ⁇ g to 80 mg/Kg/dose) ; preferably, about 8 ⁇ g to 8 mg/Kg/dose; more preferably, about 80 to 800 ⁇ g/Kg/dose.
  • the vaccine composition is administered to the subject at least 2 times in the course of vaccination.
  • the vaccine composition is administered to the subject 6 to 10 times in the course of vaccination.
  • the present vaccine composition may be administered by any effective route including, for instance, transmucosal, intranasal, subcutaneous, intradermal, intramuscular, intravenous, or intraperitoneal routes, among others.
  • the present vaccine composition may be administered to the subject in combination with a therapy selected from the group consisting of surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, immunotherapy, and a combination thereof.
  • the antibody comprises a heavy chain variable region (VH) and a light chain variable region (VL) , in which the VH comprises amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8, and the VL comprises amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11.
  • VH heavy chain variable region
  • VL light chain variable region
  • the present disclosure provides an isolated monoclonal antibody or a binding fragment thereof, that exhibits binding affinity to the polypeptide described herein, wherein the antibody or the binding fragment thereof comprises a VH sequence at least 85%identical to SEQ ID NO: 12, and a VL sequence at least 85%identical to SEQ ID NO: 13.
  • the percent identities between the VH sequence and SEQ ID NO: 12, and between VL and SEQ ID NO: 13, are at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%and 99%, respectively.
  • the VH has the amino acid sequence of SEQ ID NO: 12
  • the VL has the amino acid sequence of SEQ ID NO: 13.
  • the present antibody is conjugated with a reporter molecule, a contrast agent, or an anti-cancer drug.
  • compositions for the treatment of a cancer in a subject in need thereof comprises the present monoclonal antibody or binding fragment thereof, and a pharmaceutically acceptable carrier.
  • the fifth aspect of the present disclosure to provide a method of treating a cancer in a subject in need thereof by use of the present antibody or the present pharmaceutical composition. Specifically, the method comprises administering to the subject an effective amount of the present antibody or the present pharmaceutical composition.
  • the present antibody is administered to the subject in an amount of about 0.8 ⁇ g-80 mg/Kg/dose; preferably, about 8 ⁇ g-8 mg/Kg/dose; more preferably, about 80-800 ⁇ g/Kg/dose. In these embodiments, the antibody is administered to the subject at least 2 times in the course of vaccination.
  • the present pharmaceutical composition is administered to the subject, in which the pharmaceutical composition may give rise to about 0.8 ⁇ g-80 mg of the present antibody per kilogram of body weight per dose; preferably, about 8 ⁇ g-8 mg/Kg/dose; more preferably, about 80-800 ⁇ g/Kg/dose.
  • the present vaccine composition, antibody and pharmaceutical composition are administered to the subject by any effective route including, for instance, transmucosal, intranasal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, or intraperitoneal routes, among others.
  • the present vaccine composition, antibody and pharmaceutical composition can be administered to the subject in combination with a therapy selected from the group consisting of surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy.
  • cancer treatable by the present vaccine composition, antibody and/or pharmaceutical composition examples include, but are not limited to, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  • the subject is a vertebrate.
  • the vertebrate is a mammal, wherein the mammal includes, but is not limited to, a farm animal (such as a cow) , a sport animal, a pet (such as a cat, a dog and a horse) , a primate, a mouse and a rat.
  • the subject is a human.
  • Figure 1 shows bar histograms depicting the expression of HSP27 polypeptide on the surface of cell lines as indicated according to one embodiment of the present disclosure.
  • Figure 2A shows bar histograms depicting the total serum IgG titers of antibodies from mice respectively immunized with the CH-1 (SEQ ID NO: 1) , CH-2 (SEQ ID NO: 2) , or CH-3 (SEQ ID NO: 3) polypeptides as according to one embodiment of the present disclosure.
  • Figure 2B shows bar histograms depicting the serum anti-HSP27 antibody titers from mice respectively immunized with the CH-1, CH-2, or CH-3 polypeptides as according to one embodiment of the present disclosure.
  • Figure 3 shows data of flow cytometry assay depicting the binding specificity of serum antibodies from mice respectively immunized with the CH-1 polypeptide (panel a) , CH-2 polypeptide (panel b) , or CH-3 polypeptide (panel c) , to immobilized HSP27 polypeptide as according to one embodiment of the present disclosure.
  • Figure 4 shows bar histograms respectively depicting the cytotoxicity effect of serum antibodies from mice respectively immunized with the CH-1, CH-2, or CH-3 polypeptides on HT29 cells (panel a) , AGS cells (panel b) and HepG2 cells (panel c) according to one embodiment of the present disclosure.
  • Figure 5 shows data of flow cytometry assay depicting the pro-apoptotic effect of serum antibodies from mice respectively immunized with the CH-1 polypeptide (panel a) , CH-2 polypeptide (panel b) , or CH-3 polypeptide (panel c) on HT29 cells as according to one embodiment of the present disclosure.
  • Figure 6 shows bar histograms that depict the cytotoxicity effect of serum antibodies from mice respectively immunized with the enhanced green fluorescent protein (EGFP) , CH-4, CH-5, or CH-3 polypeptides on HT29 cells as according to one embodiment of the present disclosure.
  • EGFP enhanced green fluorescent protein
  • Figure 7 shows a line chart depicting the tumor volume of mice respectively injected with serum antibodies from mice respectively immunized with CH-1 or CH-3 polypeptides as according to one embodiment of the present disclosure.
  • Figure 8A shows a line chart depicting the binding affinity of monoclonal antibody 1C4 to CH-3 polypeptide as according to one embodiment of the present disclosure.
  • Figure 8B shows data of flow cytometry assay depicting the binding specificity of monoclonal antibody 1C4 to the cell lines as indicated according to one embodiment of the present disclosure.
  • Figure 9 shows bar histograms depicting the inhibitory effect of monoclonal antibody 1C4 on proliferation rate of HT29 cells as according to one embodiment of the present disclosure.
  • Figure 10 shows a histogram depicting the inhibitory effect of the commercial antibody HSPB1 on HT29 cells according to one embodiment of the present disclosure.
  • polypeptide refers to a polymer of amino acids without regard to the length of the polymer; thus, “peptides, ” “oligopeptides” , and “proteins” are included within the definition of polypeptide and used interchangeably herein. This term also does not specify or exclude chemical or post-expression modifications of the polypeptides of the invention, although chemical or post-expression modifications of these polypeptides may be included or excluded as specific embodiments. Therefore, for example, modifications to polypeptides that include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term polypeptide. Further, polypeptides with these modifications may be specified as individual species to be included or excluded from the present invention.
  • synthetic polypeptide refers to a polypeptide which does not comprise an entire naturally occurring protein molecule.
  • the polypeptide is “synthetic” in that it may be produced by human intervention using such techniques as chemical synthesis, recombinant genetic techniques, or fragmentation of whole antigen or the like.
  • polypeptides As discussed herein, minor variations in the amino acid sequences of polypeptides are contemplated as being encompassed by the presently disclosed and claimed inventive concept (s) , providing that the variations in the amino acid sequence maintain at least 85%sequence identity, such as at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%and 99%sequence identity.
  • the present polypeptide may be modified specifically to alter a feature of the polypeptide unrelated to its physiological activity. For example, certain amino acids can be changed and/or deleted without affecting the physiological activity of the polypeptide in this study (i.e., its ability to induce a tumor-specific immune response) .
  • conservative amino acid replacements are contemplated.
  • Conservative replacements are those that take place within a family of amino acids that are related in their side chains.
  • More preferred families are: serine and threonine are aliphatic-hydroxy family; asparagine and glutamine are an amide-containing family; alanine, valine, leucine and isoleucine are an aliphatic family; and phenylalanine, tryptophan, and tyrosine are an aromatic family.
  • serine and threonine are aliphatic-hydroxy family
  • asparagine and glutamine are an amide-containing family
  • alanine, valine, leucine and isoleucine are an aliphatic family
  • phenylalanine, tryptophan, and tyrosine are an aromatic family.
  • Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the peptide derivative. Fragments or analogs of proteins/peptides can be readily prepared by those of ordinary skill in the art. Preferred amino-and carboxy-termini of fragments or analogs occur near boundaries of functional domains. In one example, one amino acid residue (e.g., valine) of the present synthetic peptide is conservatively replaced (e.g., by leucine) .
  • two amino acid residues of the present synthetic peptide are conservatively replaced by other suitable amino acid residues, for example, valine (V) and arginine (R) are replaced by the pair of amino acids that includes, but is not limited to, methionine (M) and lysine (K) , lysine (K) and proline (P) , tryptophan (W) and isoleucine (I) , isoleucine (I) and proline (P) , asparagine (N) and valine (V) , and glutamine (G) and lysine (K) .
  • valine (V) and arginine (R) are replaced by the pair of amino acids that includes, but is not limited to, methionine (M) and lysine (K) , lysine (K) and proline (P) , tryptophan (W) and isoleucine (I) , isoleucine (I) and proline (P) , aspara
  • Percentage (%) sequence identity is defined as the percentage of amino acid residues in a first sequence that are identical with the amino acid residues in a second peptide sequence, after aligning the two sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percentage sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
  • sequence comparison between two amino acid sequences was carried out by computer program Blastp (protein-protein BLAST) provided online by National Center for Biotechnology Information (NCBI) .
  • NCBI National Center for Biotechnology Information
  • the percentage amino acid sequence identity of a given amino acid sequence A to a given amino acid sequence B is calculated by the formula as follows:
  • X is the number of amino acid residues scored as identical matches by the sequence alignment program BLAST in that program's alignment of A and B, and where Y is the total number of amino acid residues in A or B, whichever is shorter.
  • vaccine refers to a composition which when inoculated into an animal has the effect of stimulating an immune response in the animal, which serves to fully or partially protect the animal against a disease (e.g., cancer) or its symptoms.
  • the term vaccine encompasses prophylactic as well as therapeutic vaccines.
  • a combination vaccine is one which combines two or more vaccines.
  • phrases “pharmaceutically acceptable” refers to molecular entities and compositions that are “generally regarded as safe” , e.g., that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • adjuvant refers to any substance or mixture of substances that enhances, increases, upwardly modulates, diversifies or otherwise facilitates the immune response (e.g., humoral or cellular immune response) to an antigen.
  • antigen refers to any agent that, when introduced into an immunocompetent human or animal, stimulates a humoral and/or cellular immune response.
  • the antigen may be a pure substance, a mixture of substances, or particulate material (including cells, cell fragments, or cell derived fragments) or a live, usually attenuated, organism or virus.
  • suitable antigens include, but are not limited to, a protein, glycoprotein, lipoprotein, polypeptide, peptide, carbohydrate/polysaccharide, lipopolysaccharide, toxin, virus, bacterium, fungus, and parasite.
  • immunogenicity refers to the ability of an immunogen, antigen, or vaccine to stimulate an immune response.
  • vector is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments may be ligated.
  • phage vector refers to a viral vector, wherein additional DNA segments may be ligated into the viral genome.
  • viral vector capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors) .
  • vectors e.g., non-episomal mammalian vectors
  • vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked.
  • Such vectors are referred to herein as “recombinant expression vectors” (or simply, “recombinant vectors” ) .
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasmid and vector may be used interchangeably as the plasmid is the most commonly used form of vector.
  • the nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase, or by a synthetic reaction.
  • antibody refers to an immunoglobulin molecule which is able to specifically bind to a specific epitope on an antigen.
  • Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins.
  • Antibodies are typically tetramers of immunoglobulin molecules.
  • the antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies (e.g., full length or intact monoclonal antibodies) , monovalent, multivalent antibodies, multispecific antibodies (e.g., bispecific antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments including Fv, Fab and F (ab) 2 , as well as single chain (scFv) antibodies.
  • An antibody can be chimeric, humanized, human and/or affinity matured.
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the antibody will be purified (1) to greater than 95%by weight of antibody as determined by, for example, the Lowry method, and in some embodiments more than 99%by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • CDR complementarity determining region
  • An antigen combining site therefore, includes a total of six CDRs that comprise three CDRs from the variable region of a heavy chain and three CDRs from the variable region of a light chain.
  • the amino acid residues of CDRs are in close contact with bound antigen, wherein the closest antigen contact is usually associated with the heavy chain CDR3.
  • substantially similar denotes a sufficiently high degree of similarity between two numeric values (for example, one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., half-life, K d values, anti-viral effects, etc. ) .
  • the difference between said two values is, for example, less than about 50%, less than about 40%, less than about 30%, less than about 20%, and/or less than about 10%as a function of the value for the reference/comparator molecule.
  • Binding affinity generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen) .
  • binding affinity refers to intrinsic binding affinity which reflects a 1: 1 interaction between members of a binding pair (e.g., antibody and antigen) .
  • the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (K d ) . Affinity can be measured by common methods known in the art, including those described herein.
  • Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer.
  • a variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention.
  • variable region or “variable domain” of an antibody refers to the amino-terminal domains of heavy or light chain of the antibody. These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR) .
  • CDRs complementarity-determining regions
  • FR framework
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991) ) .
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily.
  • Pepsin treatment yields an F (ab′) 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. In a two-chain Fv species, this region consists of a dimer of one heavy-and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species, one heavy-and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a “dimeric” structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain of the heavy chain.
  • Fab′fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the first constant domain of the heavy chain including one or more cysteines from the antibody hinge region.
  • Fab′-SH is the designation herein for Fab′in which the cysteine residue (s) of the constant domains bear a free thiol group.
  • F (ab′) 2 antibody fragments originally were produced as pairs of Fab′fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • the “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa ( ⁇ ) and lambda ( ⁇ ) , based on the amino acid sequences of their constant domains.
  • antibodies can be assigned to different classes.
  • immunoglobulins There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes) , e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
  • the heavy chain constant domains that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
  • Antibody fragments comprise only a portion of an intact antibody, wherein the portion retains at least one, and as many as most or all, of the functions normally associated with that portion when present in an intact antibody.
  • an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen.
  • an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding.
  • an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody.
  • such an antibody fragment may comprise an antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
  • monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, e.g., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
  • Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences.
  • the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones.
  • the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention.
  • each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
  • the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma method (e.g., Kohler et al., Nature, 256: 495 (1975) ; Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) ; Hammerling et al., in: Monoclonal Antibodies and T-Cell hybridomas 563-681 (Elsevier, N.Y., 1981) ) , recombinant DNA methods (see, e.g., U.S. Pat. No.
  • phage display technologies See, e.g., Clackson et al., Nature, 352: 624-628 (1991) ; Marks et al., J. Mol. Biol. 222: 581-597 (1992) ; Sidhu et al., J. Mol. Biol. 338 (2) : 299-310 (2004) ; Lee et al., J. Mol. Biol. 340 (5) : 1073-1093 (2004) ; Fellouse, Proc. Natl. Acad. Sci. USA 101 (34) : 12467-12472 (2004) ; and Lee et al., J. Immunol.
  • Methods 284 (1-2) 119-132 (2004) , and technologies for producing human or human-like antibodies in animals that have parts or all of the human immunoglobulin loci or genes encoding human immunoglobulin sequences (see, e.g., WO98/24893; WO96/34096; WO96/33735; WO91/10741; Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551 (1993) ; Jakobovits et al., Nature 362: 255-258 (1993) ; Bruggemann et al., Year in Immunol. 7: 33 (1993) ; U.S. Pat. Nos.
  • the monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984) ) .
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
  • a humanized antibody is a human immunoglobulin (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity.
  • donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity.
  • framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
  • the humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc) , typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • hypervariable region when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops.
  • antibodies comprise six hypervariable regions; three in the VH (H1, H2, H3) , and three in the VL (L1, L2, L3) .
  • a number of hypervariable region delineations are in use and are encompassed herein.
  • the Kabat Complementarity Determining Regions are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
  • Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196: 901-917 (1987) ) .
  • the AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software.
  • the “contact” hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below.
  • Hypervariable regions may comprise “extended hypervariable regions” as follows: 24-36 or 24-34 (L1) , 46-56 or 50-56 or 49-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (H1) , 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH.
  • the variable domain residues are numbered according to Kabat et al., supra, for each of these definitions.
  • Framework or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • variable domain residue numbering as in Kabat or “amino acid position numbering as in Kabat, ” and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) . Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain.
  • a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after heavy chain FR residue 82.
  • the Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard” Kabat numbered sequence.
  • Single-chain Fv or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL) .
  • VH heavy-chain variable domain
  • VL light-chain variable domain
  • VH-VL polypeptide chain
  • a “human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
  • an “affinity matured” antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration (s) .
  • an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen.
  • Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10: 779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas et al. Proc Nat. Acad. Sci.
  • blocking antibody or an “antagonist” antibody is one which inhibits or reduces biological activity of the antigen it binds. Certain blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
  • an “agonist antibody” is an antibody which mimics at least one of the functional activities of a polypeptide of interest.
  • an “effective amount” designate the quantity of a component which is sufficient to yield a desired response.
  • an “effective amount” refers to an amount effective, at dosages necessary, to achieve the desired therapeutic or prophylactic result.
  • the effective amount is also one in which any toxic or detrimental effects of the component are outweighed by the therapeutically beneficial effects.
  • the specific effective or sufficient amount will vary with such factors as the particular condition being treated, the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the type of mammal or animal being treated, the duration of the treatment, the nature of concurrent therapy (if any) , and the specific formulations employed and the structure of the compounds or its derivatives.
  • Effective amount may be expressed, for example, in grams, milligrams or micrograms or as milligrams per kilogram of body weight (mg/Kg) .
  • the effective amount can be expressed in the concentration of the active component (e.g., the synthetic polypeptide or the antibody of the present disclosure) , such as molar concentration, mass concentration, volume concentration, molality, mole fraction, mass fraction and mixing ratio.
  • the term “therapeutically effective amount” used in connection with the synthetic polypeptide or the antibody described herein refers to the quantity of the synthetic polypeptide or the antibody, which is sufficient to alleviate or ameliorate the symptoms associated with the cancer in the subject.
  • HED human equivalent dose
  • FDA US Food and Drug Administration
  • a “therapeutically effective amount” of a polypeptide or an antibody is an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or condition, or to delay or minimize one or more symptoms associated with the disease or condition.
  • a therapeutically effective amount of a polypeptide or an antibody is an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the disease or condition.
  • the term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of a disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
  • a “prophylactically effective amount” of a polypeptide or an antibody is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence.
  • a prophylactically effective amount of a polypeptide or an antibody means an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease.
  • the term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
  • the term “subject” , “patient” or “individual” refers to a vertebrate.
  • the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows) , sport animals, pets (such as cats, dogs and horses) , primates, mice and rats.
  • the vertebrate is a human that is treatable with methods of the present invention.
  • the terms “subject” , “patient” and “individual” are intended to refer to both the male and female gender unless one gender is specifically indicated.
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In certain embodiments, the mammal is human.
  • the present disclosure is based, at least, on the finding that compared with normal cells, three polypeptides are overexpressed on the surface of cancer cells. Accordingly, these polypeptides may be used as antigens for the development of antibodies and vaccine compositions for the prophylaxis and/or treatment of cancers.
  • the first aspect of the present disclosure is directed to identification of the polypeptide that is overexpressed on the surface of various types of cancer cells, including, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  • the polypeptide comprises the amino acid sequence at least 85%identical to the sequence of any of SEQ ID NOs: 1-3; that is, the amino acid sequence comprised in the present polypeptide may be 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%identical to SEQ ID NO: 1, 2 or 3.
  • the polypeptide has the sequence of SEQ ID NO: 1, and is named as “CH-1 polypeptide. ”
  • the polypeptide has the sequence of SEQ ID NO: 2, and is named as “CH-2 polypeptide. ”
  • the polypeptide has the sequence of SEQ ID NO: 3, and is named as “CH-3 polypeptide. ”
  • the skilled artisan may substitute one or more amino acid residues of the present CH-1, CH-2 or CH-3 polypeptides with the conservative amino acids (e.g., the replacement of a leucine with an isoleucine or valine, or an alanine with an valine) so as to achieve the same/similar stimulating effect.
  • the conservative amino acids e.g., the replacement of a leucine with an isoleucine or valine, or an alanine with an valine
  • the N-terminus of the present polypeptide is acetylated, glycosylated or formylated. Additionally or alternatively, the C-terminus of the present polypeptide is amidated or glycosylated.
  • the N-or C-terminus of the present polypeptide is conjugated with a carrier molecule, so as to increase the immunogenicity of the polypeptide.
  • a carrier molecule examples include, but are not limited to, OVA, BSA, KLH, TGB, and the combination thereof.
  • polypeptides of the invention identified above can be synthesized by commonly used methods such as t-BOC or FMOC protection of alpha-amino groups. Both methods involve stepwise syntheses whereby a single amino acid is added at each step starting from the C terminus of the polypeptide.
  • polypeptides of the invention can also be synthesized by the well-known solid phase peptide synthesis methods.
  • the synthetic polypeptides of the invention can be produced by host cells (e.g., HEK293 cells) , which is transfected with a nucleic acid encoding the polypeptide.
  • the afore-identified polypeptides are overexpressed on the surfaces of cancer cells, they may serve as tumor antigens to elicit antigen-specific immune response in the subject, thereby rendering protective effects to the subject. More specifically, once administered to the subject via an appropriate route (e.g., transmucosal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, and intraperitoneal injection) , the polypeptide may elicit the polypeptide-associated immune response (such as the production of polypeptide-specific T cells) in the subject, in which the polypeptide-expressing cancer cells are specifically targeted and attacked by the elicited immune mechanism.
  • an appropriate route e.g., transmucosal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, and intraperitoneal injection
  • the polypeptide may elicit the polypeptide-associated immune response (such as the production of polypeptide-specific T cells) in the subject, in which the polypeptide-expressing cancer
  • another aspect of the present disclosure is directed to a method for the prophylaxis and/or treatment of a cancer in a subject in need thereof; for example, the subject having a risk of developing a cancer, or the subject having or suspected of having a cancer.
  • the method comprises administering to the subject an effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present polypeptide.
  • the present polypeptide can be administered to the subject by a route selected from the group consisting of transmucosal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, and intraperitoneal injection.
  • the present method can be applied to the subject, alone or in combination with a therapy that is known to enhance the immune response and/or reduce the immunosuppression in the subject.
  • the present polypeptide may be administered to the subject in combination with interleukin-12 (IL-12) , a cytokine known to enhance T-cell responses; alternatively, the present polypeptide may be applied with an agent exhibiting inhibitory effect on the production and/or function of immunosuppressive cells (such as regulatory T cell (Treg) , myeloid derived suppressor cell (MDSC) and type II macrophage) and/or cytokines (such as IL-10 and transforming growth factor- ⁇ (TGF- ⁇ ) ) .
  • Treg regulatory T cell
  • MDSC myeloid derived suppressor cell
  • TGF- ⁇ transforming growth factor- ⁇
  • the present method can be applied to the subject before, during, or after the administration of the therapy.
  • the present vaccine composition comprises the present polypeptide and a pharmaceutically acceptable adjuvant.
  • the adjuvant is a substance that enhances the immune response to an antigen (e.g., the present polypeptide) .
  • Suitable examples of adjuvant for enhancing the present polypeptide include, but are not limited to, Emulsigen-D, aluminum hydroxide, IFA, CFA, endotoxin based adjuvant, mineral oil, mineral oil and surfactant, Ribi adjuvant, Titer-max, syntax adjuvant formulation, aluminium salt adjuvant, nitrocellulose adsorbed antigen, immune stimulating complex, Gebru adjuvant, super carrier, elvax 40w, L-tyrosine, montanide, Adju prime, Squalene, SPLPS, calcium phosphate, saponin, and MDP.
  • the adjuvant is Emulsigen-D.
  • the present disclosure also provides a method for preventing and/or treating a cancer in a subject in need thereof (e.g., the subject having a risk of developing a cancer, or the subject having or suspected of having a cancer) .
  • the present method comprises administering to the subject an effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present vaccine composition so as to vaccinate the subject against the cancer.
  • an effective amount e.g., a prophylactically effective amount or a therapeutically effective amount
  • the effective amount of the vaccine composition or the active component (i.e., the present polypeptide) comprised therein may vary with many factors, such as the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the type of mammal or animal being treated, the duration of the treatment, and the nature of concurrent therapy (if any) .
  • the subject is a mouse.
  • the present polypeptide is administered to the subject in the amount of about 0.01 to 1,000 mg/Kg body weight per dose; for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  • 0.1 to 100 mg/Kg body weight per dose More preferably, 1 to 20 mg/Kg body weight per dose.
  • 4-5 mg/Kg of the present polypeptide per dose is sufficient to elicit an immune response (e.g., the production of antibody) in the subject.
  • the effective HED of the present polypeptide is about 0.8 ⁇ g/Kg to 80 mg/Kg body weight per dose for human; in other words, the effective HED of the present polypeptide may be any of, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 ⁇ g/Kg, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
  • the present vaccine composition is administered to the subject at least 2 times in the course of vaccination; for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more times.
  • the course of vaccination may vary with various factors that include, but are not limited to, the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the vaccinated subject and the nature of immunized antigen/vaccine composition.
  • the vaccine composition may be administered to the subject 6-10 times with an interval from several days to several years.
  • the subject is a mouse
  • the present vaccine composition is administered weekly to the subject for 8 consecutive weeks so as to induce the polypeptide-specific immune response in the subject.
  • the present vaccine composition can be administered to the subject by any appropriate route, such as transmucosal, subcutaneous, intradermal, intramuscular, intravenous, and intraperitoneal injection.
  • the present vaccine composition is subcutaneously injected to the subject.
  • the present method is useful in inducing an anti-tumor response (e.g., the production of anti-tumor antibody) .
  • the serum antibody i.e., the serum of the antigen-immunized mice that comprises antibody specific to the antigen
  • the serum antibody induced by the present method exhibits a cytotoxic effect on tumor cells.
  • the serum antibody induced by the present method inhibits the tumor growth in the subject.
  • the antibody evoked by the CH-1, CH-2 or CH-3 polypeptide induces a higher level of apoptosis in cancer cells.
  • the present method can be applied to the subject, alone or in combination with an additional treatment, including surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy.
  • the present composition may be administered to the subject first, followed by any immunotherapy to enhance the immune response elicited by the present vaccine composition.
  • the present method can be applied to the subject before, during, or after the administration of the additional treatment.
  • the subject treatable by the present method is a mammal, for example, a human, a mouse, a rat, a hamster, a guinea pig, a rabbit, a dog, a cat, a cow, a goat, a sheep, a monkey, and a horse.
  • the subject is a human.
  • Another aspect of the present disclosure is directed to an antibody produced by the polypeptide-specific immune response described above in section (ii) of the present disclosure.
  • Exemplary Antibodies capable of binding to the polypeptides of the present disclosure described herein can be made by any method known in the art. See, for example, Harlow and Lane, (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.
  • Exemplary polyclonal antibodies against the polypeptides of the present disclosure described herein may be produced by immunizing a host animal, such as a mouse, a rat, or a rabbit, with the present polypeptide as described in section (i) or the vaccine composition as described in section (ii) .
  • a host animal such as a mouse, a rat, or a rabbit
  • Any mammalian animal may be immunized with the antigen for producing the desired antibodies.
  • animals of Rodentia, Lagomorpha, or Primates can be used.
  • Animals of Rodentia include, for example, mouse, rat, and hamster.
  • Animals of Lagomorpha include, for example, rabbit.
  • Animals of Primates include, for example, a monkey of Catarrhini (old world monkey) such as Macaca fascicularis, rhesus monkey, baboon, and chimpanzees.
  • the immunization may be performed in accordance with commonly adopted procedures.
  • the immunization interval is not particularly limited. Immunization may be carried out at intervals of several days to several weeks, preferably one week, for 2-10 times, until a desired antibody titer is reached.
  • the host animals are vaccinated by subcutaneously (sc) or intraperitoneally (ip) (among other routes) injecting with the present vaccine composition on weekly basis for 8 consecutive weeks.
  • a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues) , N-hydroxysuccinimide (through lysine residues) , glutaraldehyde, succinic anhydride, SOCl 2 , etc.
  • splenic cells and regional lymph nodes are removed. Blood samples are taken regularly after immunization and subject to centrifugation to separate sera. The resultant sera are then subject to measurement of antibody titers by any suitable method, which includes, but is not limited to, enzyme linked immunosorbent assay (ELISA) , enzyme immunoassay (EIA) , or radio immunoassay (RIA) . In one preferred example, antibody titers are measured by ELISA. Then, final immunization is given to those animals showing high antibody titers to the present polypeptide described above. Antibody-producing cells are prepared from splenic cells and regional lymph nodes or the like of the immunized animals.
  • ELISA enzyme linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radio immunoassay
  • antibody-producing cells it is preferably to remove tissue debris and erythrocytes as much as possible.
  • Commercial erythrocyte remover may be used to this purpose.
  • a buffer ammonium chloride and Tris may be prepared and used.
  • the thus prepared antibody-producing cells should be immediately fused with immortal cells such as myeloma cells to produce hybridoma cells, which semi-eternally continue to proliferate while producing antibodies.
  • immortal cells such as myeloma cells to produce hybridoma cells, which semi-eternally continue to proliferate while producing antibodies.
  • Commonly available cell strain derived from an animal such as mouse may be used.
  • a preferable cell strain to be used in this invention should not survive in HAT selection medium, which contains hypoxanthine, thymidine and aminopterin; and should survive there only when fused with antibody-producing cells.
  • myeloma cells include, but are not limited to, mouse myeloma cell line (such as myeloma FO cells and those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA) .
  • mouse myeloma cell line such as myeloma FO cells and those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA
  • human myeloma and mouse-human heteromyeloma cell lines also have been described and includes Karpas 707H, and those described in Kozbor, J. Immunol., 133: 3001 (1984) ; and Brön et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker,
  • the above immunocyte (antibody-producing cells) and myeloma cells can be fused according to known methods, for example, the method of Milstein et al. (Galfre et al., Methods Enzymol. 73: 3-46, 1981) .
  • Cell fusion is usually carried out by mixing splenic cells or lymph node cells withmyeloma cells in the presence of a cell-fusion promoter, such as polyethylene glycol (PEG) having an average molecular weight from about 200 to 20,000 daltons or the like (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986) .
  • cell fusion may be carried out in a cell fusion device utilizing electric stimulation such as electroporation. After the fusion, the resultant cells are then diluted and cultured in HAT medium to select for successfully fused hybridoma cells.
  • Hybridoma cells of interest are then selected from the fused cells.
  • the fused cells surviving cultured in HAT medium would form colonies.
  • the supernatant of each culture well is then collected and examined for the presence or absence of antibody titers against the present polypeptide.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, for example enzyme-linked immunosorbent assay (ELISA) , enzyme immunoassay (EIA) , radioimmunoassay (RIA) and/or immunofluorescences may be used.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the obtained hybridomas can be subsequently transplanted into the abdominal cavity of a mouse and the ascites are harvested.
  • the obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, a protein A or protein G column, DEAE ion exchange chromatography, or an affinity column to which the protein of the present invention is coupled.
  • the antibody of the present invention can be used not only for purification and detection of the protein of the present invention, but also as a candidate for agonists and antagonists of the protein of the present invention.
  • this antibody can be applied to the antibody treatment for diseases related to the protein of the present invention.
  • the monoclonal antibodies thus obtained can be also recombinantly prepared using genetic engineering techniques (see, for example, Borrebaeck C.A.K. and Larrick J.W. Therapeutic Monoclonal Antibodies, published in the United Kingdom by MacMillan Publishers LTD, 1990) .
  • a DNA encoding an antibody may be cloned from an immune cell, such as a hybridoma or an immunized lymphocyte producing the antibody, inserted into an appropriate vector, and introduced into host cells to prepare a recombinant antibody.
  • the present invention also provides recombinant antibodies prepared as described herein.
  • a human antibody or a humanized antibody is preferable for reducing immunogenicity.
  • transgenic animals having a repertory of human antibody genes may be immunized with an antigen selected from a protein, protein expressing cells, or their lysates.
  • Antibody producing cells are then collected from the animals and fused with myeloma cells to obtain hybridoma, from which human antibodies against the protein can be prepared.
  • an immune cell such as an immunized lymphocyte, producing antibodies may be immortalized by an oncogene and used for preparing monoclonal antibodies.
  • DNA encoding the monoclonal antibodies can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies) .
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • DNAs encoding the antibodies produced by the hybridoma cells described above can be genetically modified, via routine technology, to produce genetically engineered antibodies.
  • Genetically engineered antibodies such as humanized antibodies, chimeric antibodies, single-chain antibodies, and bi-specific antibodies, can be produced via, e.g., conventional recombinant technology.
  • the DNA can then be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison et al., (1984) Proc. Nat. Acad. Sci. 81: 6851, or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • genetically engineered antibodies such as "chimeric” or "hybrid” antibodies; can be prepared that have the binding specificity of a target antigen.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond.
  • suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an “import” variable domain.
  • Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986) ; Riechmann et al., Nature, 332: 323-327 (1988) ; Verhoeyen et al., Science, 239: 1534-1536 (1988) ) , by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151: 2296 (1993) ; Chothia et al., J. Mol. Biol., 196: 901 (1987) ) .
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad Sci. USA, 89: 4285 (1992) ; Prestaetal., J. Immnol., 151: 2623 (1993) ) .
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen (s) , is achieved.
  • the CDR residues are directly and most substantially involved in influencing antigen binding.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • JH antibody heavy-chain joining region
  • Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227: 381 (1991) ; Marks et al., J. Mol. Biol., 222: 581-597 (1991) ) .
  • nucleic acid encoding the anti-polypeptide antibodies described herein including heavy chain, light chain, or both
  • vectors such as expression vectors comprising one or more of the nucleic acids, and host cells comprising one or more of the vectors are also within the scope of the present disclosure.
  • the vector comprises nucleotide sequences encoding both the heavy chain variable region and the light chain variable region, the expression of which can be controlled by a single promoter or two separate promoters. Also provided here are methods for producing any of the anti-polypeptide antibodies as described herein, e.g., via the recombinant technology described in this section.
  • Fully human antibodies can be obtained by using commercially available mice that have been engineered to express specific human immunoglobulin proteins.
  • Transgenic animals that are designed to produce a more desirable (e.g., fully human antibodies) or more robust immune response may also be used for generation of humanized or human antibodies. Examples of such technology are XenomouseRTM from Amgen, Inc. (Fremont, Calif. ) and HuMAb-MouseRTM and TC MouseTM from Medarex, Inc. (Princeton, N.J. ) .
  • antibodies may be made recombinantly by phage display technology. See, for example, U.S. Pat. Nos.
  • Antigen-binding fragments of an intact antibody can be prepared via routine methods.
  • F (ab') 2 fragments can be produced by pepsin digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F (ab') 2 fragments.
  • the anti-polypeptide antibodies described herein can be isolated from antibody phage libraries (e.g., single-chain antibody phage libraries) generated using the techniques described in McCafferty et al., Nature, 348: 552-554 (1990) . Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol Biol., 222: 581-597 (1991) .
  • antibody phage libraries e.g., single-chain antibody phage libraries
  • Antibodies obtained as described herein may be purified to homogeneity.
  • the separation and purification of the antibody can be performed according to separation and purification methods used for general proteins.
  • the antibody may be separated and isolated by the appropriately selected and combined use of column chromatographies, such as affinity chromatography, filter, ultrafiltration, salting-out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, and others (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) , but are not limited thereto.
  • the concentration of the antibodies obtained as above may be determined by the measurement of absorbance, Enzyme-linked immunosorbent assay (ELISA) , or so on.
  • ELISA Enzyme-linked immunosorbent assay
  • Exemplary chromatography with the exception of affinity includes, for example, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) .
  • the chromatographic procedures can be carried out by liquid-phase chromatography, such as HPLC, FPLC.
  • the antibodies can be characterized using methods well known in the art. For example, one method is to identify the epitope to which the antigen binds, or “epitope mapping. ” There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. In an additional example, epitope mapping can be used to determine the sequence to which an antibody binds.
  • the epitope can be a linear epitope, i.e., contained in a single stretch of amino acids, or a conformational epitope formed by a three-dimensional interaction of amino acids that may not necessarily be contained in a single stretch (primary structure linear sequence) .
  • Peptides of varying lengths e.g., at least 4-6 amino acids long
  • the epitope to which the antibody binds can be determined in a systematic screening by using overlapping peptides derived from the target antigen sequence and determining binding by the antibody.
  • the open reading frame encoding the target antigen is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of the antigen with the antibody to be tested is determined.
  • the gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids. The binding of the antibody to the radioactively labeled antigen fragments is then determined by immunoprecipitation and gel electrophoresis. Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries) . Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays.
  • mutagenesis of an antigen binding domain can be performed to identify residues required, sufficient, and/or necessary for epitope binding.
  • domain swapping experiments can be performed using a mutant of a target antigen in which various residues in the binding epitope for the candidate antibody have been replaced (swapped) with sequences from a closely related, but antigenically distinct protein (such as another member of the neurotrophin protein family) .
  • a closely related, but antigenically distinct protein such as another member of the neurotrophin protein family
  • competition assays can be performed using other antibodies known to bind to the same antigen to determine whether an antibody binds to the same epitope as the other antibodies. Competition assays are well known to those of skill in the art.
  • compositions disclosed herein can be included in a pharmaceutical composition together with additional active agents, carriers, vehicles, excipients, or auxiliary agents identifiable by a person skilled in the art upon reading of the present disclosure.
  • compositions preferably comprise at least one pharmaceutically acceptable carrier.
  • the compositions disclosed herein form the “active compound, ” also referred to as the “active agent. ”
  • pharmaceutically acceptable carrier includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.
  • a pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation) , transdermal (topical) , transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates, or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
  • Human anti-polypeptide antibodies of the invention can be constructed by combining Fv clone variable domain sequence (s) selected from human-derived phage display libraries with known human constant domain sequences (s) as described above.
  • human monoclonal anti-polypeptide antibodies of the invention can be made by the hybridoma method.
  • Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor J. Immunol., 133: 3001 (1984) ; Brön et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987) ; and Boerner et al., J. Immunol., 147: 86 (1991) .
  • transgenic animals e.g. mice
  • transgenic animals e.g. mice
  • JH antibody heavy-chain joining region
  • Gene shuffling can also be used to derive human antibodies from non-human, e.g. rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody.
  • this method which is also called “epitope imprinting” , either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described above is replaced with a repertoire of human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras.
  • one hybridoma 1C4 is selected, which exhibits binding affinity to the CH-3 polypeptide.
  • the thus produced monoclonal antibody may be isolated or prepared by any known method.
  • the antibody may be prepared from cultured supernatant obtained by culturing the hybridoma in a medium with low serum concentration.
  • the hybridoma may be injected into abdominal cavities of animals and the resultant abdominal dropsies are collected to prepare the antibody.
  • the antibody may be purified or isolated by methods that employ affinity column, gel filtration chromatography, ion exchange chromatography or the like. Any of these known methods may be appropriately selected or used in combination.
  • the monoclonal antibody 1C4 comprises a heavy chain variable region (VH) and a light chain variable region (VL) , in which the VH comprises three complementarity-determining regions (CDRs, i.e., CDR-H1, CDR-H2 and CDR-H3) respectively having the amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8, and the VL comprises three CDRs (i.e., CDR-L1, CDR-L2 and CDR-L3) respectively having the amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11.
  • VH heavy chain variable region
  • VL light chain variable region
  • the VH comprises three complementarity-determining regions (CDRs, i.e., CDR-H1, CDR-H2 and CDR-H3) respectively having the amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8
  • the VL comprises three CDRs (i.
  • the VH comprises CDR-H1 (SEQ ID NO: 6) , CDR-H2 (SEQ ID NO: 7) and CDR-H3 (SEQ ID NO: 8) , in sequence, from N-terminus to C-terminus; and the VL comprises CDR-L1 (SEQ ID NO: 9) , CDR-L2 (SEQ ID NO: 10) and CDR-L3 (SEQ ID NO: 11) , in sequence, from N-terminus to C-terminus.
  • the heavy chain variable region (VH) has the amino acid sequence at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%) identical to SEQ ID NO: 12, and the light chain variable region (VL) has the amino acid sequence at least 85%(e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%) identical to SEQ ID NO: 13.
  • theVH has the amino acid sequence of SEQ ID NO: 12
  • the VL has the amino acid sequence of SEQ ID NO: 13.
  • the antibody 1C4 specifically targets to the cancer cells and inhibit the growth thereof.
  • the present antibody can be conjugated with a reporter molecule (such as a biotin or a fluorescein) or a contrast agent so that once injected into the subject, the cancer cell targeted by the present polypeptide can be easily monitored via detecting the reported molecule or contrast agent.
  • a reporter molecule such as a biotin or a fluorescein
  • the present antibody can be conjugated with an anti-cancer drug so as to enhance the tumor-cytotoxic effect of the present antibody, and accordingly, achieving a better therapeutic effect in the subject.
  • An antibody of the invention may be used in, for example, in vitro, ex vivo and in vivo therapeutic methods.
  • Antibodies of the invention can be used as an antagonist to partially or fully block the specific antigen activity in vitro, ex vivo and/or in vivo.
  • at least some of the antibodies of the invention can neutralize antigen activity from other species.
  • antibodies of the invention can be used to inhibit a specific antigen activity, e.g., in a cell culture containing the antigen, in human subjects or in other mammalian subjects having the antigen with which an antibody of the invention cross-reacts (e.g.
  • an antibody of the invention can be used for inhibiting antigen activities by contacting the antibody with the antigen such that antigen activity is inhibited.
  • the antigen is a human protein molecule.
  • an antibody of the invention can be used in a method for inhibiting the activity of an antigen in a subject suffering from a disorder (such as cancer) in which the antigen activity is detrimental, comprising administering to the subject an antibody of the invention such that the antigen activity in the subject is inhibited.
  • the antigen is a human protein molecule and the subject is a human subject.
  • the subject can be a mammal expressing the antigen with which an antibody of the invention binds.
  • the subject can be a mammal into which the antigen has been introduced (e.g., by administration of the antigen or by expression of an antigen transgene) .
  • An antibody of the invention can be administered to a human subject for therapeutic purposes.
  • an antibody of the invention can be administered to a non-human mammal expressing an antigen with which the antibody cross-reacts (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease.
  • a non-human mammal expressing an antigen with which the antibody cross-reacts e.g., a primate, pig or mouse
  • animal models may be useful for evaluating the therapeutic efficacy of antibodies of the invention (e.g., testing of dosages and time courses of administration) .
  • Antibodies of the invention can be used to treat, inhibit, delay progression of, prevent/delay recurrence of, ameliorate, or prevent diseases, disorders or conditions associated with abnormal expression and/or activity of antigens comprising the polypeptides of the present disclosure, including but not limited to cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders.
  • a blocking antibody of the invention is specific for an antigen comprising the polypeptides of the present disclosure.
  • an immunoconjugate comprising an antibody of the invention conjugated with a cytotoxic agent is administered to the patient.
  • the immunoconjugate and/or antigen to which it is bound is/are internalized by cells expressing one or more proteins on their cell surface which are associated with an antigen comprising the polypeptides of the present disclosure, resulting in increased therapeutic efficacy of the immunoconjugate in killing the target cell with which it is associated.
  • the cytotoxic agent targets or interferes with nucleic acid in the target cell.
  • cytotoxic agents include any of the chemotherapeutic agents noted herein (such as a maytansinoid or a calicheamicin) , a radioactive isotope, or a ribonuclease or a DNA endonuclease.
  • Antibodies of the invention can be used either alone or in combination with other compositions in a therapy.
  • an antibody of the invention may be co-administered with another antibody, and/or adjuvant/therapeutic agents (e.g., steroids) .
  • an antibody of the invention may be combined with an anti-inflammatory and/or antiseptic in a treatment scheme, e.g. in treating any of the diseases described herein, including cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders.
  • Such combined therapies noted above include combined administration (where the two or more agents are included in the same or separate formulations) , and separate administration, in which case, administration of the antibody of the invention can occur prior to, and/or following, administration of the adjunct therapy or therapies.
  • An antibody of the invention can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration.
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration.
  • the antibody is suitably administered by pulse infusion, particularly with declining doses of the antibody. Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • an antibody of the invention can be expressed intracellularly as an intrabody.
  • intrabody refers to an antibody or antigen-binding portion thereof that is expressed intracellularly and that is capable of selectively binding to a target molecule, as described in Marasco, Gene Therapy 4: 11-15 (1997) ; Kontermann, Methods 34: 163-170 (2004) ; U.S. Pat. Nos.
  • Intracellular expression of an intrabody is effected by introducing a nucleic acid encoding the desired antibody or antigen-binding portion thereof (lacking the wild-type leader sequence and secretory signals normally associated with the gene encoding that antibody or antigen-binding fragment) into a target cell.
  • nucleic acids into a cell may be used, including, but not limited to, microinjection, ballistic injection, electroporation, calcium phosphate precipitation, liposomes, and transfection with retroviral, adenoviral, adeno-associated viral and vaccinia vectors carrying the nucleic acid of interest.
  • One or more nucleic acids encoding all or a portion of an anti-polypeptide antibody of the invention can be delivered to a target cell, such that one or more intrabodies are expressed which are capable of intracellular binding to an antigen comprising the polypeptides of the present disclosure and modulation of said antigen associated cellular pathways.
  • Antibodies can possess certain characteristics that enhance delivery of antibodies into cells, or can be modified to possess such characteristics. Techniques for achieving this are known in the art. For example, cationization of an antibody is known to facilitate its uptake into cells (see, e.g., U.S. Pat. No. 6,703,019) . Lipofections or liposomes can also be used to deliver the antibody into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is generally advantageous. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence.
  • Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993) .
  • modulator cell-penetrating or cell-permeating polypeptides into target cells
  • certain sequences such as those derived from HIV Tat or the Antennapedia homeodomain protein are able to direct efficient uptake of heterologous proteins across cell membranes. See, e.g., Chen et al., Proc. Natl. Acad. Sci. USA (1999) , 96: 4325-4329.
  • certain embodiments of the invention provide for the antibody or antigen-binding fragment thereof to traverse the blood-brain barrier.
  • Certain neurodegenerative diseases are associated with an increase in permeability of the blood-brain barrier, such that the antibody or antigen-binding fragment can be readily introduced to the brain.
  • the blood-brain barrier remains intact, several art-known approaches exist for transporting molecules across it, including, but not limited to, physical methods, lipid-based methods, and receptor and channel-based methods.
  • Circumvention methods include, but are not limited to, direct injection into the brain (see, e.g., Papanastassiou et al., Gene Therapy 9: 398-406 (2002) ) , interstitial infusion/convection-enhanced delivery (see, e.g., Bobo et al., Proc. Natl. Acad. Sci.
  • Methods of creating openings in the barrier include, but are not limited to, ultrasound (see, e.g., U.S. Patent Publication No. 2002/0038086) , osmotic pressure (e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Vols 1 &2, Plenum Press, N.Y.
  • permeabilization by, e.g., bradykinin or permeabilizer A-7 (see, e.g., U.S. Pat. Nos. 5,112,596, 5,268,164, 5,506,206, and 5,686,416) , and transfection of neurons that straddle the blood-brain barrier with vectors containing genes encoding the antibody or antigen-binding fragment (see, e.g., U.S. Patent Publication No. 2003/0083299) .
  • Lipid-based methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, encapsulating the antibody or antigen-binding fragment in liposomes that are coupled to antibody binding fragments that bind to receptors on the vascular endothelium of the blood-brain barrier (see, e.g., U.S. Patent Application Publication No. 20020025313) , and coating the antibody or antigen-binding fragment in low-density lipoprotein particles (see, e.g., U.S. Patent Application Publication No. 20040204354) or apolipoprotein E (see, e.g., U.S. Patent Application Publication No. 20040131692) .
  • Receptor and channel-based methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, using glucocorticoid blockers to increase permeability of the blood-brain barrier (see, e.g., U.S. Patent Application Publication Nos. 2002/0065259, 2003/0162695, and 2005/0124533) ; activating potassium channels (see, e.g., U.S. Patent Application Publication No. 2005/0089473) , inhibiting ABC drug transporters (see, e.g., U.S. Patent Application Publication No.
  • the antibody composition of the invention would be formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the antibody need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question.
  • the effective amount of such other agents depends on the amount of antibodies of the invention present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99%of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
  • an antibody of the invention when used alone or in combination with other agents such as chemotherapeutic agents, will depend on the type of disease to be treated, the type of antibody, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.
  • the antibody is suitably administered to the patient at one time or over a series of treatments.
  • about 1 ⁇ g/kg to 15 mg/kg (e.g. 0.1 mg/kg-10 mg/kg) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • One typical daily dosage might range from about 1 ⁇ g/kg to 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
  • One exemplary dosage of the antibody would be in the range from about 0.05 mg/kg to about 10 mg/kg.
  • one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg or 10 mg/kg (or any combination thereof) may be administered to the patient.
  • such doses may be administered intermittently, e.g. every week or every three weeks (e.g. such that the patient receives from about two to about twenty, or e.g. about six doses of the antibody) .
  • An initial higher loading dose, followed by one or more lower doses may be administered.
  • An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the antibody.
  • the present antibody is administered to the subject in an amount of about 0.8 ⁇ g-80 mg/Kg/dose; preferably, about 8 ⁇ g-8 mg/Kg/dose; more preferably, about 80-800 ⁇ g/Kg/dose.
  • the antibody is administered to the subject at least 2 times in the course of vaccination.
  • other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • the present antibody is useful in suppressing the growth of a cancer overexpressing the polypeptide on its surface.
  • the cancer that may be treated by the present method include, but are not limited to, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  • the present disclosure further provides a method for treating a cancer in a subject in need thereof (e.g., the subject having or suspected of having a cancer) by use of the present antibody.
  • the method comprises administering to the subject an effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present antibody, in which the antibody may be either a monoclonal antibody (e.g., the present 1C4 monoclonal antibody) or a polyclonal antibody (e.g., the serum antibody isolated from the immunized subject) .
  • an effective amount e.g., a prophylactically effective amount or a therapeutically effective amount
  • the antibody may be either a monoclonal antibody (e.g., the present 1C4 monoclonal antibody) or a polyclonal antibody (e.g., the serum antibody isolated from the immunized subject) .
  • the subject is a mouse, in which about 0.01 to 1,000 mg/Kg of the present antibody per dose is administered to the subject; for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
  • the effective amount of the present antibody is about 0.8 ⁇ g/Kg to 80 mg/Kg body weight per dose for human; for example, 0.8, 0.9, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 ⁇ g/Kg, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
  • the present antibody is administered to the subject once every three days in the course of treatment.
  • the present antibody is administered to the subject at least 2 times in the course of treatment; for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more times.
  • the course of treatment may vary with factors that include, but are not limited to, the physical condition of the patient (e.g., the patient's body mass, age, or gender) and the seriousness of the disease (e.g., the type and stage of the cancer) .
  • the antibody is administered to the subject once every three days over 51 days.
  • the present antibody can be administered to the subject by any appropriate route, such as transmucosal, subcutaneous, intradermal, intramuscular, intravenous, intratumoral and intraperitoneal injection.
  • the antibodies are intravenously injected to the subject.
  • the present method can be applied to the subject, alone or in combination with an additional treatment, including surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy.
  • an additional treatment including surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy.
  • the present antibody is useful in specifically targeting and destroying the remaining cancer cells residing in tumor surrounding tissue or blood, and/or preventing the recurrence of tumor.
  • the present method can be applied to the subject before, during, or after the administration of the additional treatment.
  • the subject treatable by the methods illustrated in above-mentioned aspects and embodiments of the present disclosure is a mammal, for example, a human, a mouse, a rat, a hamster, a guinea pig, a rabbit, a dog, a cat, a cow, a goat, a sheep, a monkey, and a horse.
  • the subject is a human.
  • the colorectal cancer cell lines (including SW480, HT29, Colo205 and HCT116) , gastric cancer cell line AGS, lung cancer cell lines (including A549 and H1299) , breast cancer cell lines (including MCF-7, SKBR3 and HS578T) , cervical cancer cell line Hela, liver cancer cell line HepG2, ovarian cancer cell line SKOV-3, and pancreatic cancer cell lines (including BxPC-3, Panc-1, Patu8988T) were cultured in Dulbecco's Modified Eagle's medium (DMEM) or RPMI-1640 medium containing 10%of fetal bovine serum (FBS) .
  • DMEM Dulbecco's Modified Eagle's medium
  • FBS fetal bovine serum
  • the THP-1 cell was cultured in RPMI-1640 medium
  • the human umbilical vein endothelial cell (HUVEC) was cultured in medium 200 (GIBCO)
  • the BEAS-2B cell line was cultured in BEBM medium
  • the human embryonic kidney 293 (HEK293) was cultured in Minimum Essential Media (MEM) medium containing 10%of FBS. All cells were cultured in a humidified incubator with 5%CO 2 at 37°C.
  • HSP27 polypeptide To detect the expression of HSP27 polypeptide, 2 ⁇ 10 5 cells were co-incubated with specified anti-HSP27 antibody (including the rabbit anti-HSP27 antibody, the antibodies respectively recognizing 10-40, 80-150, 124-136, 1-155 and 175-205 amino acid residues of HSP27, and the present serum antibodies) at 4°C for 1 hour. After incubation, cells were washed 3 times in phosphate-buffered saline (PBS) and labeled by 1 ⁇ g of goat anti-IgG FITC antibody (GeneTex) for 30 minutes. The cells were analyzed with a flow cytometry.
  • specified anti-HSP27 antibody including the rabbit anti-HSP27 antibody, the antibodies respectively recognizing 10-40, 80-150, 124-136, 1-155 and 175-205 amino acid residues of HSP27, and the present serum antibodies
  • PBS phosphate-buffered saline
  • GeneTex goat anti-IgG FITC antibody
  • Antibody titration was determined by indirect ELISA. Briefly, ELISA plate wells were coated overnight with 100 ng of antigen (i.e., CH-1, CH-2 or CH-3 polypeptides) or 100 ng goat anti-mouse kappa chain antibody. Wells were washed with PBS containing 0.05%Tween-20 (PBS-T) and blocked with 100 ml of 1%skim milk in PBS. Serum samples were serially diluted in PBST and added to the ELISA plates followed by incubation at room temperature for 1 hour.
  • antigen i.e., CH-1, CH-2 or CH-3 polypeptides
  • PBS-T 0.05%Tween-20
  • the monoclonal antibody 1C4 was purified by protein L agarose (GenScript) following the manufacturer’s procedure. Briefly, protein L agarose (1.5 ml) supplied in 20%ethanol was poured into a disposable column. The resin was washed with 10 ml wash buffer (20mM NaHPO 4 , 0.15M NaCl, pH 8) . Conditional medium of 1C4 hybridoma cells (30 ml) was diluted with 30 ml binding buffer. The mixed sample solution was then loaded into the column and the column was inverted for mixing. Next, the column was washed with 30 ml wash buffer for 2 times until OD 280 was close to 0.
  • the antibody was then eluted gently by adding 5 ml elution buffer (0.1 M glycine, pH 2.5) and collected in a collection tube that contained 500 ⁇ l neutralization buffer.
  • the antibody was concentrated, and the buffer was exchanged to neutralization buffer by Sephadex G-25 resin (GE) .
  • the concentration of the antibody was quantified by absorbance at 280 nm.
  • RT Reverse Transcriptase
  • mouse Ig-Primer Sets Novagen
  • G2 Green Master Mix Promega
  • the binding affinity of the monoclonal antibody 1C4 to the CH-3 polypeptide was determined with ELISA.
  • the ELISA plate wells were coated overnight with 500 ng of antigen (e.g., CH-3 polypeptide) .
  • 100 ng of 1C4 antibody was mixed with different concentrations of CH-3 polypeptide (including 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 ⁇ g/ml) followed by incubation at room temperature for 1 hour. Then, the mixture was added to the ELISA plate and incubator at room temperature for 20 minutes.
  • Wells were washed with PBS containing 0.05%PBS-T and incubated with goat anti-mouse IgG HRP antibody (1: 10,000 in PBST) at room temperature for 1 hour. After washing, 100 ⁇ l of TMB were added to each well and incubated at room temperature for 20 minutes. The reaction was stopped with 50 ⁇ l of 1N HCL and the OD 450 was read on ELISA reader.
  • 1 ⁇ 10 4 cells were seeded in 96-well culture plates per well and grown at 37°C in a humidified 5%CO 2 incubator for 24 hours. Then, the cells were treated with the monoclonal antibody 1C4, or the anti-CH-1, anti-CH-2 or anti-CH-3 serum antibody (i.e., the sera of mice respectively immunized with CH-1, CH-2 and CH3 polypeptides) for 72 hours. After that, 100 ⁇ l of 3- (4, 5-cimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bromide (MTT) solution was added to each plate and incubation was performed at 37°C for 4 hours. The resulting formazan crystals were dissolved in DMSO. Finally, the absorbance was measured at 492 nm using an ELISA plate reader.
  • MTT 5-diphenyl tetrazolium bromide
  • HSPB1 Code Number: 102-17173, RayBiotech
  • 3 ⁇ 10 3 HT29 cells were seeded in 96-well culture plates per well and grown at 37°C in a humidified 5%CO 2 incubator. 24 hours later, 0.5 ⁇ l HSPB1 was added to the cells followed by incubation for 48 hours. The cell viability was then evaluated by the MTT assay.
  • HT29 cells 1 ⁇ 10 5 HT29 cells were seeded in 24-well culture plates per well and grown at 37°C in a humidified 5%CO 2 incubator for 24 hours. Then, the cells were respectively treated with anti-CH-1, anti-CH-2, anti-CH-3, anti-CH-4 and anti-CH-5 serum antibodies for 48 hours. The HT29 cells were washed with cold PBS twice and resuspended using 500 ⁇ l of Cytofix solution. Following resuspension, 5 ⁇ l of Caspase-3 PE antibody (PE Active Caspase 3 Apoptosis Kit, BD) were added and incubated for 30 min at room temperature in the dark. The cells were analyzed with a flow cytometry.
  • Caspase-3 PE antibody PE Active Caspase 3 Apoptosis Kit, BD
  • HT29 cells 1 ⁇ 10 7 HT29 cells were subcutaneously implanted in nude mice. 100 ⁇ g of serum antibody was intravenously injected into the mice bearing tumors every three days. The size of the tumors was monitored regularly.
  • HSP27 and the fragment thereof were evaluated by flow cytometry assay.
  • the expression level of HSP27 on the surface of cancer cells was higher than that of normal cells (i.e., HUVEC cell, HEK293 cell and BEAS-2B cell) .
  • the antibodies respectively recognizing 10-40, 80-150, 124-136, 1-155 and 175-205 amino acid residues of HSP27 were co-incubated with intact HT29 cells (i.e., the HT29 cells not treated with permeabilization procedure so that the antibody cannot enter therein) , and analyzed by flow cytometry.
  • the fluorescent signal was detected only on the cells co-incubated with the antibody recognizing 1-155 amino acid residues of HSP27 (data not shown) .
  • the antibody recognizing 1-155 amino acid residues of HSP27 could bind to the surface of HT29 cells. Accordingly, it was hypothesized that 1-10 and 40-80 amino acid residues of HSP27 were expressed on the surface of cancer cells.
  • the synthesized CH-1, CH-2, and CH-3 polypeptides were respectively mixed with a suitable adjuvant, then were used to immunize mice in accordance with procedures described in “Materials and Methods” .
  • the thus produced anti-CH1, anti-CH2 and anti-CH3 serum antibodies were then isolated from the immunized mice and examined by ELISA assay.
  • the binding affinity of the serum antibodies to cancer cells was then examined by flow cytometry assay. As the data of Fig. 3 illustrated, all three serum antibodies bound to the HT29 cells (dash line) , while addition of CH-1, CH-2 or CH-3 polypeptide blocked the binding therebetween (dot line) . The data suggested that each of the anti-CH-1, anti-CH-2 and anti-CH-3 serum antibodies could specifically target the cancer cells.
  • the MTT and flow cytometric data further indicated that the binding of anti-CH-1, anti-CH-2 or anti-CH-3 serum antibody to the cancer cells resulted in the suppression of cell proliferation (panels a-c, Fig. 4) and may induce an apoptosis response in cancer cells via producing the caspase 3 protein (panels a-c, Fig. 5) .
  • Fig. 6 Compared with the serum antibody produced by EGFP, CH-4 or CH-5 polypeptide, the serum antibody produced by CH-3 polypeptide induced a higher level of apoptosis in HT29 cells (Fig. 6) .
  • the monoclonal antibody 1C4 was purified from the hybridoma in accordance with the procedures described in “Materials and Methods” , and the bioactivity and inhibitory effect thereof were determined in this example. The results were respectively depicted in Figs. 8 and 9.
  • the 1C4 exhibited binding affinity to the CH-3 polypeptide, in which the dissociation constant (K d ) is about 1.78 x 10 -7 .
  • the 1C4 antibody specifically recognized and targeted to all tested cancer cells, including HepG2, A549, AGS, SW480, HCT116, HT29 and Colo205 cells, while exhibited no affinity to the normal cell THP-1 (Fig. 8B) .
  • Fig. 9 further demonstrated that the 1C4 antibody suppressed the tumor growth as compared to the control group. It is noted that compared to the control group (i.e., medium alone) , the commercial antibody HSPB1 did not affect (e.g., decrease) the viability of cancer cells (Fig. 10) .
  • the present identified CH-1, CH-2 and CH-3 polypeptides are overexpressed on the surface of various types of cancer cells.
  • three vaccine compositions respectively comprising the CH-1, CH-2 and CH-3 polypeptides are useful in protecting and/or treating the cancers via evoking the cancer-specific immune response (e.g., the cancer-specific antibody) .
  • the thus produced 1C4 antibody specifically targeted the cancer cells and suppressed their growth.
  • the present polypeptides, vaccine compositions, and antibodies thus provide potential means for the prophylaxis and/or treatment of various types of cancers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed herein are polypeptides overexpressed on the surface of cancer cells. According to one embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO: 1, 2 or 3. The present polypeptides are useful in the treatment and/or prophylaxis of a cancer in a subject in need thereof. Accordingly, also disclosed herein are compositions comprising the polypeptides, antibodies that bind to the polypeptides, and their applications in the prophylaxis and/or treatment of cancer.

Description

SYNTHETIC POLYPEPTIDE, COMPOSITION COMPRISING THE SAME, ANTIBODY PRODUCED THEREBY, AND USES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application relates to and claims the benefit of U.S. Provisional Application No. 62/436,405, filed December 19, 2016; the content of the application is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
The present disclosure in general relates to the field of cancer treatment. More particularly, the present disclosure relates to cancer-associated polypeptides, the vaccine compositions comprising the same, the antibodies that bind to said polypeptides, and their applications in cancer prevention and/or cancer therapy.
2. DESCRIPTION OF RELATED ART
Cancer is a class of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. More than 100 different types of cancer have been identified in human. Among which, lung cancer, prostate cancer and colorectal cancer are prevalent in male subjects; while breast cancer, lung cancer and colorectal cancer prevail in female subjects.
The majority of cancers are believed to have resulted from environmental factors, including alcohol, tobacco, obesity, infection, radiation, stress, lack of physical activity and environmental pollutant. Further, heredity is also reported to play a role in the etiology of cancers. Hereditary cancers are primarily caused by an inherited genetic defect (e.g., genetic mutation) . For example, the mutation in the gene BRCA1 or BRCA2 has been demonstrated to be associated with the development of breast, ovarian or pancreatic cancer.
Preventive cancer vaccine provides a strategy to protect a subject from developing a cancer via stimulating the immune response against tumor-associated antigen (TAA) . However, different types of cancer usually have different TAA expressed thereon (e.g., alpha-fetoprotein (AFP) mainly expressed in hepatocellular carcinoma, CA-125 mainly expressed in ovarian cancer, and prostate-specific antigen (PSA) recognized as a tumor antigen of prostate cancer) , and it is a challenge to predict the risk of specific cancer types in each individual and accordingly to design immune strategies targeting these cancer types. Since most of the preventive cancer vaccines are designed to target TAA expressed uniquely on specific type of cancer,  they may not be suitable for use in human treatment. There is a need to identify a TAA widely expressed on various cancers; and thus, developing a therapeutic cancer vaccine therefrom to efficiently protect human beings from cancers.
The major treatments for cancer include surgery, radiation therapy, chemotherapy, hormonal therapy and targeted therapy. In general, the treatment may vary with the type, location and grade of the cancer as well as the patient's health and preferences. However, most of these treatments cannot produce a satisfactory effect on cancer patients due to the limitations of, for example, low-specificity, low-efficiency, and/or adverse side-effect.
Immunotherapy is an alternative treatment developed in the last few decades that uses certain parts of the immune system of the subject to attack the cancer cells. The main types of immunotherapy include therapeutic cancer vaccine, immune checkpoint inhibitor, monoclonal antibody and non-specific immunotherapy. Therapeutic cancer vaccine usually comprises one or more specific antigens that stimulates immune cells (e.g., dendritic cells and T cells) to recognize and attack the cancer cells having the antigen expressed thereon. Unfortunately, this type of cancer therapy only extends patients’lives by several months on average, while fails to cure cancers. Besides, they also induces adverse side-effects caused by and/or associated with overactive/non-specific immune response, such as fever, chills, fatigue, pain, nausea and headache. With regard to the immune checkpoint and the inhibitor thereof, PD-1 and CTLA-4 are two immune checkpoint proteins that respectively inhibit the function of T cells and/or downregulate the immune response via interacting with their ligands (i.e., PD-L1 and CD80/CD86) expressed on cancer cells. The immune checkpoint inhibitor thus provides a promising means to boost the immune response against cancer cells. However, it is worth noting that in addition to the cancer cells, the said ligands (i.e., PD-L1 and CD80/CD86) are also expressed on normal cells; accordingly, such a treatment may lead to serious or even life-threatening side-effects in the subject. Monoclonal antibody is useful in destroying cancers by recognizing cancer cells having antibody-specific antigen (e.g., TAA) expressed thereon followed by inhibiting the proliferation and/or inducing the death (e.g., apoptosis or necrosis) of the cancer cells. In addition, once bound to the antigen, monoclonal antibody also activates the complement system against the cancer cells. In terms of efficacy, the monoclonal antibody still have some disadvantages needed to be improved, including poor-stability, low-affinity and low-specificity. As to non-specific immunotherapy, it stimulates the immune system in a general way; for  example, the administration of interleukins or interferons. The limitation of this type of treatment is that it does not target cancer cells specifically and may result in a “cytokine storm” in the subject.
In view of the foregoing, there exists a need for a cancer-associated polypeptide that is widely expressed on different cancer cells so as to produce a cancer vaccine and antibodies capable of efficiently preventing and/or treating a variety of cancers in a subject in need thereof.
SUMMARY
The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure and it does not identify key/critical elements of the present invention or delineate the scope of the present invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.
As embodied and broadly described herein, the first aspect of the disclosure is directed to a synthetic polypeptide for preventing and/or treating a cancer in a subject in need thereof. According to the embodiments of the present disclosure, the synthetic polypeptide comprises a first polypeptide, which has the amino acid sequence at least 85%identical to SEQ ID NO: 1, 2 or 3. According to one wording example of the present disclosure, the first polypeptide has the amino acid sequence of SEQ ID NO: 1, 2 or 3.
According to the optional embodiments, the N-terminus of the synthetic polypeptide is acetylated, glycosylated or formylated. Additionally or alternatively, the C-terminus of the synthetic polypeptide is amidated or glycosylated.
Optionally, the synthetic polypeptide may further comprise a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, ovalbumin (OVA) , bovine serum albumin (BSA) , keyhole limpet haemocyanin (KLH) , β-galactosidase, thyroglobulin (TGB) , and a combination thereof.
The second aspect of the present disclosure is directed to a vaccine composition for preventing and/or treating a cancer in a subject, in which the vaccine composition comprises the present synthetic polypeptide and a pharmaceutically acceptable adjuvant. In general, the pharmaceutically acceptable adjuvant may be selected from the group consisting of, Emulsigen-D, aluminum hydroxide, incomplete Fruend's adjuvant (IFA) , complete Fruend's adjuvant (CFA) , endotoxin based adjuvant,  mineral oil, mineral oil and surfactant, Ribi adjuvant, Titer-max, syntax adjuvant formulation, aluminium salt adjuvant, nitrocellulose adsorbed antigen, immune stimulating complex, Gebru adjuvant, super carrier, elvax 40w, L-tyrosine, montanide, Adju prime, Squalene, sodium phthalyl lipopolysaccharide (SPLPS) , calcium phosphate, saponin, and muramyl dipeptide (MDP) .
In some embodiments, the synthetic polypeptide of the present vaccine composition may further comprise a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, OVA, BSA, KLH, β-galactosidase, TGB, and a combination thereof.
The third aspect of the present disclosure is directed to a method of preventing or treating a cancer in a subject in need thereof. The method comprises administering to the subject an effective amount of the present vaccine composition.
According to certain embodiments, the administration of the vaccine composition may give rise to about 0.8 μg to 80 mg of the present synthetic polypeptide per kilogram (Kg) of body weight per dose (i.e., 0.8 μg to 80 mg/Kg/dose) ; preferably, about 8 μg to 8 mg/Kg/dose; more preferably, about 80 to 800 μg/Kg/dose. According to some embodiments, the vaccine composition is administered to the subject at least 2 times in the course of vaccination. According to the preferred examples, the vaccine composition is administered to the subject 6 to 10 times in the course of vaccination.
The present vaccine composition may be administered by any effective route including, for instance, transmucosal, intranasal, subcutaneous, intradermal, intramuscular, intravenous, or intraperitoneal routes, among others. As would be appreciated, the present vaccine composition may be administered to the subject in combination with a therapy selected from the group consisting of surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, immunotherapy, and a combination thereof.
It is the fourth aspect of the present disclosure to provide an antibody or a fragment thereof, which exhibits binding affinity to the present polypeptide. According to the embodiments of the present disclosure, the antibody comprises a heavy chain variable region (VH) and a light chain variable region (VL) , in which the VH comprises amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8, and the VL comprises amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11.
According to some embodiments, the present disclosure provides an isolated monoclonal antibody or a binding fragment thereof, that exhibits binding affinity to the polypeptide described herein, wherein the antibody or the binding fragment thereof comprises a VH sequence at least 85%identical to SEQ ID NO: 12, and a VL sequence at least 85%identical to SEQ ID NO: 13. In some embodiments, the percent identities between the VH sequence and SEQ ID NO: 12, and between VL and SEQ ID NO: 13, are at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%and 99%, respectively. According to one specific example, the VH has the amino acid sequence of SEQ ID NO: 12, and the VL has the amino acid sequence of SEQ ID NO: 13.
Optionally, the present antibody is conjugated with a reporter molecule, a contrast agent, or an anti-cancer drug.
Also disclosed herein is a pharmaceutical composition for the treatment of a cancer in a subject in need thereof. The present pharmaceutical composition comprises the present monoclonal antibody or binding fragment thereof, and a pharmaceutically acceptable carrier.
It is therefore the fifth aspect of the present disclosure to provide a method of treating a cancer in a subject in need thereof by use of the present antibody or the present pharmaceutical composition. Specifically, the method comprises administering to the subject an effective amount of the present antibody or the present pharmaceutical composition.
According to certain embodiments, the present antibody is administered to the subject in an amount of about 0.8 μg-80 mg/Kg/dose; preferably, about 8 μg-8 mg/Kg/dose; more preferably, about 80-800 μg/Kg/dose. In these embodiments, the antibody is administered to the subject at least 2 times in the course of vaccination.
Alternatively, the present pharmaceutical composition is administered to the subject, in which the pharmaceutical composition may give rise to about 0.8 μg-80 mg of the present antibody per kilogram of body weight per dose; preferably, about 8 μg-8 mg/Kg/dose; more preferably, about 80-800 μg/Kg/dose.
In general, the present vaccine composition, antibody and pharmaceutical composition are administered to the subject by any effective route including, for instance, transmucosal, intranasal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, or intraperitoneal routes, among others. Optionally, the present vaccine composition, antibody and pharmaceutical composition can be administered to the subject in combination with a therapy selected from the group  consisting of surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy.
Examples of the cancer treatable by the present vaccine composition, antibody and/or pharmaceutical composition include, but are not limited to, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
In some embodiments, the subject is a vertebrate. In certain embodiments, the vertebrate is a mammal, wherein the mammal includes, but is not limited to, a farm animal (such as a cow) , a sport animal, a pet (such as a cat, a dog and a horse) , a primate, a mouse and a rat. Preferably, the subject is a human.
Many of the attendant features and advantages of the present disclosure will become better understood with reference to the following detailed description considered in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The present description will be better understood from the following detailed description read in light of the accompanying drawings, where:
Figure 1 shows bar histograms depicting the expression of HSP27 polypeptide on the surface of cell lines as indicated according to one embodiment of the present disclosure.
Figure 2A shows bar histograms depicting the total serum IgG titers of antibodies from mice respectively immunized with the CH-1 (SEQ ID NO: 1) , CH-2 (SEQ ID NO: 2) , or CH-3 (SEQ ID NO: 3) polypeptides as according to one embodiment of the present disclosure.
Figure 2B shows bar histograms depicting the serum anti-HSP27 antibody titers from mice respectively immunized with the CH-1, CH-2, or CH-3 polypeptides as according to one embodiment of the present disclosure.
Figure 3 shows data of flow cytometry assay depicting the binding specificity of serum antibodies from mice respectively immunized with the CH-1 polypeptide (panel a) , CH-2 polypeptide (panel b) , or CH-3 polypeptide (panel c) , to immobilized HSP27 polypeptide as according to one embodiment of the present disclosure.
Figure 4 shows bar histograms respectively depicting the cytotoxicity effect of serum antibodies from mice respectively immunized with the CH-1, CH-2, or CH-3  polypeptides on HT29 cells (panel a) , AGS cells (panel b) and HepG2 cells (panel c) according to one embodiment of the present disclosure.
Figure 5 shows data of flow cytometry assay depicting the pro-apoptotic effect of serum antibodies from mice respectively immunized with the CH-1 polypeptide (panel a) , CH-2 polypeptide (panel b) , or CH-3 polypeptide (panel c) on HT29 cells as according to one embodiment of the present disclosure.
Figure 6 shows bar histograms that depict the cytotoxicity effect of serum antibodies from mice respectively immunized with the enhanced green fluorescent protein (EGFP) , CH-4, CH-5, or CH-3 polypeptides on HT29 cells as according to one embodiment of the present disclosure.
Figure 7 shows a line chart depicting the tumor volume of mice respectively injected with serum antibodies from mice respectively immunized with CH-1 or CH-3 polypeptides as according to one embodiment of the present disclosure.
Figure 8A shows a line chart depicting the binding affinity of monoclonal antibody 1C4 to CH-3 polypeptide as according to one embodiment of the present disclosure.
Figure 8B shows data of flow cytometry assay depicting the binding specificity of monoclonal antibody 1C4 to the cell lines as indicated according to one embodiment of the present disclosure.
Figure 9 shows bar histograms depicting the inhibitory effect of monoclonal antibody 1C4 on proliferation rate of HT29 cells as according to one embodiment of the present disclosure.
Figure 10 shows a histogram depicting the inhibitory effect of the commercial antibody HSPB1 on HT29 cells according to one embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present example may be constructed or utilized. The description sets forth the functions of the example and the sequence of steps for constructing and operating the example. However, the same or equivalent functions and sequences may be accomplished by different examples.
1. DEFINITION
For convenience, certain terms employed in the specification, examples and appended claims are collected here. Unless otherwise defined herein, scientific and  technical terminologies employed in the present disclosure shall have the meanings that are commonly understood and used by one of ordinary skill in the art. Also, unless otherwise required by context, it will be understood that singular terms shall include plural forms of the same and plural terms shall include the singular. Specifically, as used herein and in the claims, the singular forms “a” and “an” include the plural reference unless the context clearly indicates otherwise. Also, as used herein and in the claims, the terms “at least one” and “one or more” have the same meaning and include one, two, three, or more. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) ; DNA Cloning, Volumes I and II (D.N. Glover ed., 1985) ; Culture Of Animal Cells (R.I. Freshney, Alan R. Liss, Inc., 1987) ; Immobilized Cells And Enzymes (IRL Press, 1986) ; B. Perbal, A Practical Guide To Molecular Cloning (1984) ; Methods In Enzymology (Academic Press, Inc., N.Y. ) ; Gene Transfer Vectors For Mammalian Cells (J.H. Miller and M.P. Calos eds., 1987, Cold Spring Harbor Laboratory) ; Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds. ) , Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987) ; Antibodies: A Laboratory Manual, by Harlow and Lane (Cold Spring Harbor Laboratory Press, 1988) ; and Handbook Of Experimental Immunology, Volumes I-IV (D.M. Weir and C.C. Blackwell, eds., 1986) .
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in the respective testing measurements. Also, as used herein, the term “about” generally means within 10%, 5%, 1%, or 0.5%of a given value or range. Alternatively, the term “about” means within an acceptable standard error of the mean when considered by one of ordinary skill in the art. Other than in the operating/working examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for quantities of materials, durations of times, temperatures, operating conditions, ratios of amounts, and the likes thereof disclosed herein should be understood as modified in all  instances by the term “about” . Accordingly, unless indicated to the contrary, the numerical parameters set forth in the present disclosure and attached claims are approximations that can vary as desired. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
The term “polypeptide” refers to a polymer of amino acids without regard to the length of the polymer; thus, “peptides, ” “oligopeptides” , and “proteins” are included within the definition of polypeptide and used interchangeably herein. This term also does not specify or exclude chemical or post-expression modifications of the polypeptides of the invention, although chemical or post-expression modifications of these polypeptides may be included or excluded as specific embodiments. Therefore, for example, modifications to polypeptides that include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term polypeptide. Further, polypeptides with these modifications may be specified as individual species to be included or excluded from the present invention.
As used herein, the term “synthetic polypeptide” refers to a polypeptide which does not comprise an entire naturally occurring protein molecule. The polypeptide is “synthetic” in that it may be produced by human intervention using such techniques as chemical synthesis, recombinant genetic techniques, or fragmentation of whole antigen or the like.
As discussed herein, minor variations in the amino acid sequences of polypeptides are contemplated as being encompassed by the presently disclosed and claimed inventive concept (s) , providing that the variations in the amino acid sequence maintain at least 85%sequence identity, such as at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%and 99%sequence identity. The present polypeptide may be modified specifically to alter a feature of the polypeptide unrelated to its physiological activity. For example, certain amino acids can be changed and/or deleted without affecting the physiological activity of the polypeptide in this study (i.e., its ability to induce a tumor-specific immune response) . In particular, conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are generally divided into families: (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine, histidine; (3) nonpolar = alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine,  tryptophan; and (4) uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. More preferred families are: serine and threonine are aliphatic-hydroxy family; asparagine and glutamine are an amide-containing family; alanine, valine, leucine and isoleucine are an aliphatic family; and phenylalanine, tryptophan, and tyrosine are an aromatic family. For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the binding or properties of the resulting molecule, especially if the replacement does not involve an amino acid within a framework site. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the peptide derivative. Fragments or analogs of proteins/peptides can be readily prepared by those of ordinary skill in the art. Preferred amino-and carboxy-termini of fragments or analogs occur near boundaries of functional domains. In one example, one amino acid residue (e.g., valine) of the present synthetic peptide is conservatively replaced (e.g., by leucine) . In other examples, two amino acid residues of the present synthetic peptide are conservatively replaced by other suitable amino acid residues, for example, valine (V) and arginine (R) are replaced by the pair of amino acids that includes, but is not limited to, methionine (M) and lysine (K) , lysine (K) and proline (P) , tryptophan (W) and isoleucine (I) , isoleucine (I) and proline (P) , asparagine (N) and valine (V) , and glutamine (G) and lysine (K) .
“Percentage (%) sequence identity” is defined as the percentage of amino acid residues in a first sequence that are identical with the amino acid residues in a second peptide sequence, after aligning the two sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percentage sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, sequence comparison between two amino acid sequences was carried out by computer program Blastp (protein-protein BLAST) provided online by Nation Center for Biotechnology Information (NCBI) . The percentage amino acid sequence identity of a given amino  acid sequence A to a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has a certain %amino acid sequence identity to a given amino acid sequence B) is calculated by the formula as follows:
Figure PCTCN2017116445-appb-000001
where X is the number of amino acid residues scored as identical matches by the sequence alignment program BLAST in that program's alignment of A and B, and where Y is the total number of amino acid residues in A or B, whichever is shorter.
As used herein, “vaccine” refers to a composition which when inoculated into an animal has the effect of stimulating an immune response in the animal, which serves to fully or partially protect the animal against a disease (e.g., cancer) or its symptoms. The term vaccine encompasses prophylactic as well as therapeutic vaccines. A combination vaccine is one which combines two or more vaccines.
The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that are “generally regarded as safe” , e.g., that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human. Preferably, as used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
As used herein, the term “adjuvant” , unless indicated otherwise, refers to any substance or mixture of substances that enhances, increases, upwardly modulates, diversifies or otherwise facilitates the immune response (e.g., humoral or cellular immune response) to an antigen.
The term “antigen, ” unless indicated otherwise, refers to any agent that, when introduced into an immunocompetent human or animal, stimulates a humoral and/or cellular immune response. The antigen may be a pure substance, a mixture of substances, or particulate material (including cells, cell fragments, or cell derived fragments) or a live, usually attenuated, organism or virus. Examples of suitable antigens include, but are not limited to, a protein, glycoprotein, lipoprotein, polypeptide, peptide, carbohydrate/polysaccharide, lipopolysaccharide, toxin, virus, bacterium, fungus, and parasite.
As used herein, the term “immunogenicity” refers to the ability of an immunogen, antigen, or vaccine to stimulate an immune response.
The term “vector, ” as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid” , which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a phage vector. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors) . Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “recombinant expression vectors” (or simply, “recombinant vectors” ) . In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” may be used interchangeably as the plasmid is the most commonly used form of vector.
“Polynucleotide, ” or “nucleic acid, ” as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase, or by a synthetic reaction.
The term “antibody” as used herein refers to an immunoglobulin molecule which is able to specifically bind to a specific epitope on an antigen. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins. Antibodies are typically tetramers of immunoglobulin molecules. The antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies (e.g., full length or intact monoclonal antibodies) , monovalent, multivalent antibodies, multispecific antibodies (e.g., bispecific antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments including Fv, Fab and F (ab) 2, as well as single chain (scFv) antibodies. An antibody can be chimeric, humanized, human and/or affinity matured.
An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of  its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In one embodiment, the antibody will be purified (1) to greater than 95%by weight of antibody as determined by, for example, the Lowry method, and in some embodiments more than 99%by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
The term “complementarity determining region” (CDR) used herein refers to the hypervariable region of an antibody molecule that forms a surface complementary to the three-dimensional surface of a bound antigen. Proceeding from N-terminus to C-terminus, each of the antibody heavy and light chains comprises three CDRs (CDR 1, CDR 2 and CDR3) . An antigen combining site, therefore, includes a total of six CDRs that comprise three CDRs from the variable region of a heavy chain and three CDRs from the variable region of a light chain. The amino acid residues of CDRs are in close contact with bound antigen, wherein the closest antigen contact is usually associated with the heavy chain CDR3.
The phrase “substantially similar” or “equivalent” , as used herein, denotes a sufficiently high degree of similarity between two numeric values (for example, one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., half-life, Kd values, anti-viral effects, etc. ) . The difference between said two values is, for example, less than about 50%, less than about 40%, less than about 30%, less than about 20%, and/or less than about 10%as a function of the value for the reference/comparator molecule.
“Binding affinity” generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen) . Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity which reflects a 1: 1 interaction  between members of a binding pair (e.g., antibody and antigen) . The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd) . Affinity can be measured by common methods known in the art, including those described herein. Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer. A variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention.
The “variable region” or “variable domain” of an antibody refers to the amino-terminal domains of heavy or light chain of the antibody. These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.
The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR) . The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991) ) . The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F (ab′) 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
“Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. In a two-chain Fv species, this region consists  of a dimer of one heavy-and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species, one heavy-and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a “dimeric” structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
The Fab fragment also contains the constant domain of the light chain and the first constant domain of the heavy chain. Fab′fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the first constant domain of the heavy chain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′in which the cysteine residue (s) of the constant domains bear a free thiol group. F (ab′) 2 antibody fragments originally were produced as pairs of Fab′fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ) , based on the amino acid sequences of their constant domains.
Depending on the amino acid sequences of the constant domains of their heavy chains, antibodies (immunoglobulins) can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes) , e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. The heavy chain constant domains that correspond to the different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known and described generally in, for example, Abbas et al. Cellular and Mol. Immunology, 4th ed. (2000) . An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
“Antibody fragments” comprise only a portion of an intact antibody, wherein the portion retains at least one, and as many as most or all, of the functions normally associated with that portion when present in an intact antibody. In one embodiment,  an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding. In one embodiment, an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody. For example, such an antibody fragment may comprise an antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, e.g., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies. Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones. It should be understood that the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to polyclonal antibody preparations which typically include different antibodies directed against different determinants (epitopes) , each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the  hybridoma method (e.g., Kohler et al., Nature, 256: 495 (1975) ; Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) ; Hammerling et al., in: Monoclonal Antibodies and T-Cell hybridomas 563-681 (Elsevier, N.Y., 1981) ) , recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567) , phage display technologies (See, e.g., Clackson et al., Nature, 352: 624-628 (1991) ; Marks et al., J. Mol. Biol. 222: 581-597 (1992) ; Sidhu et al., J. Mol. Biol. 338 (2) : 299-310 (2004) ; Lee et al., J. Mol. Biol. 340 (5) : 1073-1093 (2004) ; Fellouse, Proc. Natl. Acad. Sci. USA 101 (34) : 12467-12472 (2004) ; and Lee et al., J. Immunol. Methods 284 (1-2) : 119-132 (2004) , and technologies for producing human or human-like antibodies in animals that have parts or all of the human immunoglobulin loci or genes encoding human immunoglobulin sequences (see, e.g., WO98/24893; WO96/34096; WO96/33735; WO91/10741; Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551 (1993) ; Jakobovits et al., Nature 362: 255-258 (1993) ; Bruggemann et al., Year in Immunol. 7: 33 (1993) ; U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016; Marks et al., Bio. Technology 10: 779-783 (1992) ; Lonberg et al., Nature 368: 856-859 (1994) ; Morrison, Nature 368: 812-813 (1994) ; Fishwild et al., Nature Biotechnol. 14: 845-851 (1996) ; Neuberger, Nature Biotechnol. 14: 826 (1996) and Lonberg and Huszar, Intern. Rev. Immunol. 13: 65-93 (1995) .
The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984) ) .
“Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. In one embodiment, a humanized antibody is a human immunoglobulin (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity. In some instances, framework region (FR) residues of the human  immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc) , typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321: 522-525 (1986) ; Riechmann et al., Nature 332: 323-329 (1988) ; and Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992) . See also the following review articles and references cited therein: Vaswani and Hamilton, Ann. Allergy, Asthma &Immunol. 1: 105-115 (1998) ; Harris, Biochem. Soc. Transactions 23: 1035-1038 (1995) ; Hurle and Gross, Curr. Op. Biotech. 5: 428-433 (1994) .
The term “hypervariable region” , “HVR” , or “HV” , when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six hypervariable regions; three in the VH (H1, H2, H3) , and three in the VL (L1, L2, L3) . A number of hypervariable region delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) ) . Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196: 901-917 (1987) ) . The AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The “contact” hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below.
Loop Kabat AbM Chothia Contact
L1 L24-L34 L24-L34 L26-L32 L30-L36
L2 L50-L56 L50-L56 L50-L52 L46-L55
L3 L89-L97 L89-L97 L91-L96 L89-L96
H1 H31-H35B H26-H35B H26-H32 H30-H35B
(Kabat Numbering)
H1 H31-H35 H26-H35 H26-H32 H30-H35
(Chothia Numbering)
H2 H50-H65 H50-H58 H53-H55 H47-H58
H3 H95-H102 H95-H102 H96-H101 H93-H101
Hypervariable regions may comprise “extended hypervariable regions” as follows: 24-36 or 24-34 (L1) , 46-56 or 50-56 or 49-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (H1) , 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. The variable domain residues are numbered according to Kabat et al., supra, for each of these definitions.
“Framework” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
The term “variable domain residue numbering as in Kabat” or “amino acid position numbering as in Kabat, ” and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) . Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain. For example, a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after heavy chain FR residue 82. The Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard” Kabat numbered sequence.
“Single-chain Fv” or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv see Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994) .
The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain  (VH-VL) . By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404, 097; WO93/1161; and Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993) .
A “human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
An “affinity matured” antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration (s) . In one embodiment, an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10: 779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas et al. Proc Nat. Acad. Sci. USA 91: 3809-3813 (1994) ; Schier et al. Gene 169: 147-155 (1995) ; Yelton et al. J. Immunol. 155: 1994-2004 (1995) ; Jackson et al., J. Immunol. 154 (7) : 3310-9 (1995) ; and Hawkins et al, J. Mol. Biol. 226: 889-896 (1992) .
A “blocking” antibody or an “antagonist” antibody is one which inhibits or reduces biological activity of the antigen it binds. Certain blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
An “agonist antibody” , as used herein, is an antibody which mimics at least one of the functional activities of a polypeptide of interest.
The term “effective amount” as referred to herein designate the quantity of a component which is sufficient to yield a desired response. In other words, an “effective amount” refers to an amount effective, at dosages necessary, to achieve the desired therapeutic or prophylactic result. For therapeutic purposes, the effective amount is also one in which any toxic or detrimental effects of the component are outweighed by the therapeutically beneficial effects. The specific effective or sufficient amount will vary with such factors as the particular condition being treated, the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the  type of mammal or animal being treated, the duration of the treatment, the nature of concurrent therapy (if any) , and the specific formulations employed and the structure of the compounds or its derivatives. Effective amount may be expressed, for example, in grams, milligrams or micrograms or as milligrams per kilogram of body weight (mg/Kg) . Alternatively, the effective amount can be expressed in the concentration of the active component (e.g., the synthetic polypeptide or the antibody of the present disclosure) , such as molar concentration, mass concentration, volume concentration, molality, mole fraction, mass fraction and mixing ratio. Specifically, the term “therapeutically effective amount” used in connection with the synthetic polypeptide or the antibody described herein refers to the quantity of the synthetic polypeptide or the antibody, which is sufficient to alleviate or ameliorate the symptoms associated with the cancer in the subject. Persons having ordinary skills could calculate the human equivalent dose (HED) for the medicament (such as the present synthetic polypeptide or antibody) based on the doses determined from animal models. For example, one may follow the guidance for industry published by US Food and Drug Administration (FDA) entitled “Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers” in estimating a maximum safe dosage for use in human subjects.
Unless otherwise indicated, a “therapeutically effective amount” of a polypeptide or an antibody is an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or condition, or to delay or minimize one or more symptoms associated with the disease or condition. A therapeutically effective amount of a polypeptide or an antibody is an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the disease or condition. The term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of a disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
Unless otherwise indicated, a “prophylactically effective amount” of a polypeptide or an antibody is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence. A prophylactically effective amount of a polypeptide or an antibody means an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease. The term “prophylactically effective amount” can encompass an amount that improves overall  prophylaxis or enhances the prophylactic efficacy of another prophylactic agent. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
The term “subject” , “patient” or “individual” refers to a vertebrate. In certain embodiments, the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows) , sport animals, pets (such as cats, dogs and horses) , primates, mice and rats. In certain embodiments, the vertebrate is a human that is treatable with methods of the present invention. The terms “subject” , “patient” and “individual” are intended to refer to both the male and female gender unless one gender is specifically indicated.
“Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In certain embodiments, the mammal is human.
2. DESCRIPTION OF PREFERRED EMBODIMENTS
The present disclosure is based, at least, on the finding that compared with normal cells, three polypeptides are overexpressed on the surface of cancer cells. Accordingly, these polypeptides may be used as antigens for the development of antibodies and vaccine compositions for the prophylaxis and/or treatment of cancers.
(i) Polypeptide and uses thereof
The first aspect of the present disclosure is directed to identification of the polypeptide that is overexpressed on the surface of various types of cancer cells, including, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
According to some embodiments of the present disclosure, the polypeptide comprises the amino acid sequence at least 85%identical to the sequence of any of SEQ ID NOs: 1-3; that is, the amino acid sequence comprised in the present polypeptide may be 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%identical to SEQ ID NO: 1, 2 or 3. In one embodiment, the polypeptide has the sequence of SEQ ID NO: 1, and is named as “CH-1 polypeptide. ” In another embodiment, the polypeptide has the sequence of SEQ ID NO: 2, and is named as “CH-2 polypeptide. ” In still another embodiment,  the polypeptide has the sequence of SEQ ID NO: 3, and is named as “CH-3 polypeptide. ”
Depending on desired purposes, the skilled artisan may substitute one or more amino acid residues of the present CH-1, CH-2 or CH-3 polypeptides with the conservative amino acids (e.g., the replacement of a leucine with an isoleucine or valine, or an alanine with an valine) so as to achieve the same/similar stimulating effect.
Preferably, the N-terminus of the present polypeptide is acetylated, glycosylated or formylated. Additionally or alternatively, the C-terminus of the present polypeptide is amidated or glycosylated.
Optionally, the N-or C-terminus of the present polypeptide is conjugated with a carrier molecule, so as to increase the immunogenicity of the polypeptide. Examples of the well-known carrier molecules include, but are not limited to, OVA, BSA, KLH, TGB, and the combination thereof.
The polypeptides of the invention identified above can be synthesized by commonly used methods such as t-BOC or FMOC protection of alpha-amino groups. Both methods involve stepwise syntheses whereby a single amino acid is added at each step starting from the C terminus of the polypeptide. Alternatively, polypeptides of the invention can also be synthesized by the well-known solid phase peptide synthesis methods. Still alternatively, the synthetic polypeptides of the invention can be produced by host cells (e.g., HEK293 cells) , which is transfected with a nucleic acid encoding the polypeptide.
Since the afore-identified polypeptides are overexpressed on the surfaces of cancer cells, they may serve as tumor antigens to elicit antigen-specific immune response in the subject, thereby rendering protective effects to the subject. More specifically, once administered to the subject via an appropriate route (e.g., transmucosal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, and intraperitoneal injection) , the polypeptide may elicit the polypeptide-associated immune response (such as the production of polypeptide-specific T cells) in the subject, in which the polypeptide-expressing cancer cells are specifically targeted and attacked by the elicited immune mechanism.
Accordingly, another aspect of the present disclosure is directed to a method for the prophylaxis and/or treatment of a cancer in a subject in need thereof; for example, the subject having a risk of developing a cancer, or the subject having or suspected of having a cancer. The method comprises administering to the subject an  effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present polypeptide.
Depending on the desired purposes, the present polypeptide can be administered to the subject by a route selected from the group consisting of transmucosal, subcutaneous, intratumoral, intradermal, intramuscular, intravenous, and intraperitoneal injection.
As would be appreciated, the present method can be applied to the subject, alone or in combination with a therapy that is known to enhance the immune response and/or reduce the immunosuppression in the subject. For example, the present polypeptide may be administered to the subject in combination with interleukin-12 (IL-12) , a cytokine known to enhance T-cell responses; alternatively, the present polypeptide may be applied with an agent exhibiting inhibitory effect on the production and/or function of immunosuppressive cells (such as regulatory T cell (Treg) , myeloid derived suppressor cell (MDSC) and type II macrophage) and/or cytokines (such as IL-10 and transforming growth factor-β (TGF-β) ) . Depending on the therapeutic purpose, the present method can be applied to the subject before, during, or after the administration of the therapy.
(ii) Vaccines composition comprising the present polypeptide and uses thereof
Another aspect of the present disclosure pertains to a vaccine composition developed by use of the present polypeptide. Specifically, the present vaccine composition comprises the present polypeptide and a pharmaceutically acceptable adjuvant.
As known by a skilled artisan, the adjuvant is a substance that enhances the immune response to an antigen (e.g., the present polypeptide) . Suitable examples of adjuvant for enhancing the present polypeptide include, but are not limited to, Emulsigen-D, aluminum hydroxide, IFA, CFA, endotoxin based adjuvant, mineral oil, mineral oil and surfactant, Ribi adjuvant, Titer-max, syntax adjuvant formulation, aluminium salt adjuvant, nitrocellulose adsorbed antigen, immune stimulating complex, Gebru adjuvant, super carrier, elvax 40w, L-tyrosine, montanide, Adju prime, Squalene, SPLPS, calcium phosphate, saponin, and MDP. According to one working example, the adjuvant is Emulsigen-D.
The present disclosure also provides a method for preventing and/or treating a cancer in a subject in need thereof (e.g., the subject having a risk of developing a cancer, or the subject having or suspected of having a cancer) . The present method  comprises administering to the subject an effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present vaccine composition so as to vaccinate the subject against the cancer.
In general, the effective amount of the vaccine composition or the active component (i.e., the present polypeptide) comprised therein may vary with many factors, such as the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the type of mammal or animal being treated, the duration of the treatment, and the nature of concurrent therapy (if any) .
According to one embodiment, the subject is a mouse. To elicit a vaccinated effect in mice, the present polypeptide is administered to the subject in the amount of about 0.01 to 1,000 mg/Kg body weight per dose; for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990 or 1000 mg/Kg body weight per dose. Preferably, 0.1 to 100 mg/Kg body weight per dose. More preferably, 1 to 20 mg/Kg body weight per dose. According to one working example, 4-5 mg/Kg of the present polypeptide per dose is sufficient to elicit an immune response (e.g., the production of antibody) in the subject.
A skilled artisan could calculate the human equivalent dose (HED) of the present polypeptide, based on the doses determined from animal models. Accordingly, the effective HED of the present polypeptide is about 0.8 μg/Kg to 80 mg/Kg body weight per dose for human; in other words, the effective HED of the present polypeptide may be any of, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 μg/Kg, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 mg/Kg body weight per dose for human; preferably, 8 μg/Kg to 8 mg/Kg body weight per dose; more preferably, 80 to 800 μg/Kg body weight per dose. In one preferred example, the effective HED is about 300 to 400 μg/Kg body weight per dose.
According to embodiments of the present disclosure, the present vaccine composition is administered to the subject at least 2 times in the course of vaccination; for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more times. The course of vaccination may vary with various factors that include, but are not limited to, the physical condition of the patient (e.g., the patient's body mass, age, or gender) , the vaccinated subject and the nature of immunized antigen/vaccine composition. Basically, the vaccine composition may be administered to the subject 6-10 times with an interval from several days to several years.
For example, in one embodiment of the present disclosure, the subject is a mouse, and the present vaccine composition is administered weekly to the subject for 8 consecutive weeks so as to induce the polypeptide-specific immune response in the subject.
The present vaccine composition can be administered to the subject by any appropriate route, such as transmucosal, subcutaneous, intradermal, intramuscular, intravenous, and intraperitoneal injection. According to one specific example, the present vaccine composition is subcutaneously injected to the subject.
According to certain embodiments of the present disclosure, the present method is useful in inducing an anti-tumor response (e.g., the production of anti-tumor antibody) . In one embodiment, the serum antibody (i.e., the serum of the antigen-immunized mice that comprises antibody specific to the antigen) induced by the present method exhibits a cytotoxic effect on tumor cells. In another embodiment, the serum antibody induced by the present method inhibits the tumor growth in the subject.
According to one embodiment, compared with the antibodies respectively produced by polypeptides CH-4 (SEQ ID NO: 4) and CH-5 (SEQ ID NO: 5) , the antibody evoked by the CH-1, CH-2 or CH-3 polypeptide induces a higher level of apoptosis in cancer cells.
As would be appreciated, the present method can be applied to the subject, alone or in combination with an additional treatment, including surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy. For example, the present composition may be administered to the  subject first, followed by any immunotherapy to enhance the immune response elicited by the present vaccine composition. Depending on the therapeutic purpose, the present method can be applied to the subject before, during, or after the administration of the additional treatment.
Basically, the subject treatable by the present method is a mammal, for example, a human, a mouse, a rat, a hamster, a guinea pig, a rabbit, a dog, a cat, a cow, a goat, a sheep, a monkey, and a horse. Preferably, the subject is a human.
(iii) Antibody produced by the present polypeptide and/or vaccine composition and uses thereof
Another aspect of the present disclosure is directed to an antibody produced by the polypeptide-specific immune response described above in section (ii) of the present disclosure.
Exemplary Antibody Preparation
Exemplary Antibodies capable of binding to the polypeptides of the present disclosure described herein can be made by any method known in the art. See, for example, Harlow and Lane, (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.
Immunization of Host Animals and Hybridoma Technology
Exemplary polyclonal antibodies against the polypeptides of the present disclosure described herein may be produced by immunizing a host animal, such as a mouse, a rat, or a rabbit, with the present polypeptide as described in section (i) or the vaccine composition as described in section (ii) . Any mammalian animal may be immunized with the antigen for producing the desired antibodies. In general, animals of Rodentia, Lagomorpha, or Primates can be used. Animals of Rodentia include, for example, mouse, rat, and hamster. Animals of Lagomorpha include, for example, rabbit. Animals of Primates include, for example, a monkey of Catarrhini (old world monkey) such as Macaca fascicularis, rhesus monkey, baboon, and chimpanzees. The immunization may be performed in accordance with commonly adopted procedures. The immunization interval is not particularly limited. Immunization may be carried out at intervals of several days to several weeks, preferably one week, for 2-10 times, until a desired antibody titer is reached.
According to certain embodiment, the host animals are vaccinated by subcutaneously (sc) or intraperitoneally (ip) (among other routes) injecting with the present vaccine composition on weekly basis for 8 consecutive weeks. In some embodiments, it may be useful to conjugate the relevant polypeptide of the present  disclosure to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues) , N-hydroxysuccinimide (through lysine residues) , glutaraldehyde, succinic anhydride, SOCl2, etc.
After the final immunization, splenic cells and regional lymph nodes are removed. Blood samples are taken regularly after immunization and subject to centrifugation to separate sera. The resultant sera are then subject to measurement of antibody titers by any suitable method, which includes, but is not limited to, enzyme linked immunosorbent assay (ELISA) , enzyme immunoassay (EIA) , or radio immunoassay (RIA) . In one preferred example, antibody titers are measured by ELISA. Then, final immunization is given to those animals showing high antibody titers to the present polypeptide described above. Antibody-producing cells are prepared from splenic cells and regional lymph nodes or the like of the immunized animals. In the preparation of antibody-producing cells, it is preferably to remove tissue debris and erythrocytes as much as possible. Commercial erythrocyte remover may be used to this purpose. Alternatively, a buffer ammonium chloride and Tris may be prepared and used. The thus prepared antibody-producing cells should be immediately fused with immortal cells such as myeloma cells to produce hybridoma cells, which semi-eternally continue to proliferate while producing antibodies. Commonly available cell strain derived from an animal such as mouse may be used. A preferable cell strain to be used in this invention should not survive in HAT selection medium, which contains hypoxanthine, thymidine and aminopterin; and should survive there only when fused with antibody-producing cells. Examples of myeloma cells include, but are not limited to, mouse myeloma cell line (such as myeloma FO cells and those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA) . Examples of human myeloma and mouse-human heteromyeloma cell lines also have been described and includes Karpas 707H, and those described in Kozbor, J. Immunol., 133: 3001 (1984) ; and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987) .
The above immunocyte (antibody-producing cells) and myeloma cells can be fused according to known methods, for example, the method of Milstein et al. (Galfre et al., Methods Enzymol. 73: 3-46, 1981) . Cell fusion is usually carried out by  mixing splenic cells or lymph node cells withmyeloma cells in the presence of a cell-fusion promoter, such as polyethylene glycol (PEG) having an average molecular weight from about 200 to 20,000 daltons or the like (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986) . Alternatively, cell fusion may be carried out in a cell fusion device utilizing electric stimulation such as electroporation. After the fusion, the resultant cells are then diluted and cultured in HAT medium to select for successfully fused hybridoma cells.
Hybridoma cells of interest are then selected from the fused cells. The fused cells surviving cultured in HAT medium would form colonies. The supernatant of each culture well is then collected and examined for the presence or absence of antibody titers against the present polypeptide. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, for example enzyme-linked immunosorbent assay (ELISA) , enzyme immunoassay (EIA) , radioimmunoassay (RIA) and/or immunofluorescences may be used. Once antibody-positive wells are identified, cells are then cultured in a HT medium, which does not contain aminopterin. After culturing for a while, antibody titers in the culture supernatant are confirmed again. Cells that are selected are then subject to subcloning by limiting dilution procedures and grown by standard methods to obtain single cell clones each of which secretes antibodies with a single specificity, i.e. monoclonal antibodies (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986) ) . Clones that secretes antibodies that exhibit high specificity to the present polypeptide are selected, and are proliferated to some extent to establish monoclonal hybridoma cells.
The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal. For example, the obtained hybridomas can be subsequently transplanted into the abdominal cavity of a mouse and the ascites are harvested.
The obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, a protein A or protein G column, DEAE ion exchange chromatography, or an affinity column to which the protein of the present invention is coupled. The antibody of the present invention can be used not only for  purification and detection of the protein of the present invention, but also as a candidate for agonists and antagonists of the protein of the present invention. In addition, this antibody can be applied to the antibody treatment for diseases related to the protein of the present invention.
Recombinant Technology
The monoclonal antibodies thus obtained can be also recombinantly prepared using genetic engineering techniques (see, for example, Borrebaeck C.A.K. and Larrick J.W. Therapeutic Monoclonal Antibodies, published in the United Kingdom by MacMillan Publishers LTD, 1990) . A DNA encoding an antibody may be cloned from an immune cell, such as a hybridoma or an immunized lymphocyte producing the antibody, inserted into an appropriate vector, and introduced into host cells to prepare a recombinant antibody. The present invention also provides recombinant antibodies prepared as described herein.
When the obtained antibody is to be administered to the human body (antibody treatment) , a human antibody or a humanized antibody is preferable for reducing immunogenicity. For example, transgenic animals having a repertory of human antibody genes may be immunized with an antigen selected from a protein, protein expressing cells, or their lysates. Antibody producing cells are then collected from the animals and fused with myeloma cells to obtain hybridoma, from which human antibodies against the protein can be prepared. Alternatively, an immune cell, such as an immunized lymphocyte, producing antibodies may be immortalized by an oncogene and used for preparing monoclonal antibodies.
DNA encoding the monoclonal antibodies can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies) . The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5: 256-262 (1993) and Pluckthun, Immunol. Rev., 130: 151-188 (1992) . DNAs encoding the antibodies produced by the hybridoma cells described above can be genetically modified, via routine technology, to produce genetically engineered antibodies. Genetically engineered antibodies,  such as humanized antibodies, chimeric antibodies, single-chain antibodies, and bi-specific antibodies, can be produced via, e.g., conventional recombinant technology. The DNA can then be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison et al., (1984) Proc. Nat. Acad. Sci. 81: 6851, or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. In that manner, genetically engineered antibodies, such as "chimeric" or "hybrid" antibodies; can be prepared that have the binding specificity of a target antigen.
Techniques developed for the production of "chimeric antibodies" are well known in the art. See, e.g., Morrison et al. (1984) Proc. Natl. Acad. Sci. USA 81, 6851; Neuberger et al. (1984) Nature 312, 604; and Takeda et al. (1984) Nature 314: 452.
Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986) ; Riechmann et al., Nature, 332: 323-327 (1988) ; Verhoeyen et al., Science, 239: 1534-1536 (1988) ) , by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR  residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151: 2296 (1993) ; Chothia et al., J. Mol. Biol., 196: 901 (1987) ) . Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad Sci. USA, 89: 4285 (1992) ; Prestaetal., J. Immnol., 151: 2623 (1993) ) .
It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen (s) , is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.
Alternatively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete  inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551 (1993) ; Jakobovits et al., Nature, 362: 255-258 (1993) ; Bruggermann et al., Year in Immuno., 7: 33 (1993) . Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227: 381 (1991) ; Marks et al., J. Mol. Biol., 222: 581-597 (1991) ) .
Any of the nucleic acid encoding the anti-polypeptide antibodies described herein (including heavy chain, light chain, or both) , vectors such as expression vectors comprising one or more of the nucleic acids, and host cells comprising one or more of the vectors are also within the scope of the present disclosure. In some examples, a vector comprising a nucleic acid comprising a nucleotide sequence encoding either the heavy chain variable region or the light chain variable region of an anti-polypeptide antibody as described herein. In some examples, a vector comprising a nucleic acid comprising a nucleotide sequence encoding either the heavy chain variable region or the light chain variable region of an anti-polypeptide antibody as described herein. In other examples, the vector comprises nucleotide sequences encoding both the heavy chain variable region and the light chain variable region, the expression of which can be controlled by a single promoter or two separate promoters. Also provided here are methods for producing any of the anti-polypeptide antibodies as described herein, e.g., via the recombinant technology described in this section.
Other Technology for Preparing Antibodies
In other embodiments, fully human antibodies can be obtained by using commercially available mice that have been engineered to express specific human immunoglobulin proteins. Transgenic animals that are designed to produce a more desirable (e.g., fully human antibodies) or more robust immune response may also be used for generation of humanized or human antibodies. Examples of such technology are XenomouseRTM from Amgen, Inc. (Fremont, Calif. ) and HuMAb-MouseRTM and TC MouseTM from Medarex, Inc. (Princeton, N.J. ) . In another alternative, antibodies may be made recombinantly by phage display technology. See, for example, U.S. Pat. Nos. 5,565,332; 5,580,717; 5,733,743; and 6,265,150; and Winter et al., (1994) Annu. Rev. Immunol. 12: 433-455. Alternatively, the phage display technology (McCafferty et al., (1990) Nature 348: 552-553) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized  donors.
Antigen-binding fragments of an intact antibody (full-length antibody) can be prepared via routine methods. For example, F (ab') 2 fragments can be produced by pepsin digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F (ab') 2 fragments.
Alternatively, the anti-polypeptide antibodies described herein can be isolated from antibody phage libraries (e.g., single-chain antibody phage libraries) generated using the techniques described in McCafferty et al., Nature, 348: 552-554 (1990) . Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol Biol., 222: 581-597 (1991) . Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10: 779-783 (1992) ) , as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res., 21: 2265-2266 (1993) ) . Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
Antibodies obtained as described herein may be purified to homogeneity. For example, the separation and purification of the antibody can be performed according to separation and purification methods used for general proteins. For example, the antibody may be separated and isolated by the appropriately selected and combined use of column chromatographies, such as affinity chromatography, filter, ultrafiltration, salting-out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, and others (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) , but are not limited thereto. The concentration of the antibodies obtained as above may be determined by the measurement of absorbance, Enzyme-linked immunosorbent assay (ELISA) , or so on. Exemplary chromatography, with the exception of affinity includes, for example, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) . The chromatographic procedures can be carried out by liquid-phase chromatography, such as HPLC, FPLC.
The antibodies can be characterized using methods well known in the art. For example, one method is to identify the epitope to which the antigen binds, or  “epitope mapping. ” There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. In an additional example, epitope mapping can be used to determine the sequence to which an antibody binds. The epitope can be a linear epitope, i.e., contained in a single stretch of amino acids, or a conformational epitope formed by a three-dimensional interaction of amino acids that may not necessarily be contained in a single stretch (primary structure linear sequence) . Peptides of varying lengths (e.g., at least 4-6 amino acids long) can be isolated or synthesized (e.g., recombinantly) and used for binding assays with an antibody. In another example, the epitope to which the antibody binds can be determined in a systematic screening by using overlapping peptides derived from the target antigen sequence and determining binding by the antibody. According to the gene fragment expression assays, the open reading frame encoding the target antigen is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of the antigen with the antibody to be tested is determined. The gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids. The binding of the antibody to the radioactively labeled antigen fragments is then determined by immunoprecipitation and gel electrophoresis. Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries) . Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays.
In an additional example, mutagenesis of an antigen binding domain, domain swapping experiments and alanine scanning mutagenesis can be performed to identify residues required, sufficient, and/or necessary for epitope binding. For example, domain swapping experiments can be performed using a mutant of a target antigen in which various residues in the binding epitope for the candidate antibody have been replaced (swapped) with sequences from a closely related, but antigenically distinct protein (such as another member of the neurotrophin protein family) . By assessing binding of the antibody to the mutant target protein, the importance of the particular antigen fragment to antibody binding can be assessed.
Alternatively, competition assays can be performed using other antibodies known to bind to the same antigen to determine whether an antibody binds to the same epitope as the other antibodies. Competition assays are well known to those of skill in the art.
Additional Aspects of Exemplary suitable General Antibody Production Methods
The compositions disclosed herein can be included in a pharmaceutical composition together with additional active agents, carriers, vehicles, excipients, or auxiliary agents identifiable by a person skilled in the art upon reading of the present disclosure.
The pharmaceutical compositions preferably comprise at least one pharmaceutically acceptable carrier. In such pharmaceutical compositions, the compositions disclosed herein form the “active compound, ” also referred to as the “active agent. ” As used herein the language "pharmaceutically acceptable carrier" includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions. A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation) , transdermal (topical) , transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates, or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
Human Antibodies
Human anti-polypeptide antibodies of the invention can be constructed by combining Fv clone variable domain sequence (s) selected from human-derived phage display libraries with known human constant domain sequences (s) as described above.  Alternatively, human monoclonal anti-polypeptide antibodies of the invention can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor J. Immunol., 133: 3001 (1984) ; Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987) ; and Boerner et al., J. Immunol., 147: 86 (1991) .
It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551 (1993) ; Jakobovits et al., Nature, 362: 255 (1993) ; Bruggermann et al., Year in Immunol., 7: 33 (1993) .
Gene shuffling can also be used to derive human antibodies from non-human, e.g. rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody. According to this method, which is also called “epitope imprinting” , either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described above is replaced with a repertoire of human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras. Selection with antigen results in isolation of a non-human chain/human chain chimeric scFv or Fab wherein the human chain restores the antigen binding site destroyed upon removal of the corresponding non-human chain in the primary phage display clone, i.e. the epitope governs (imprints) the choice of the human chain partner. When the process is repeated in order to replace the remaining non-human chain, a human antibody is obtained (see PCT WO 93/06213 published Apr. 1, 1993) . Unlike traditional humanization of non-human antibodies by CDR grafting, this technique provides completely human antibodies, which have no FR or CDR residues of non-human origin.
According to the preferred embodiment of the present disclosure, one hybridoma 1C4 is selected, which exhibits binding affinity to the CH-3 polypeptide. The thus produced monoclonal antibody may be isolated or prepared by any known  method. For example, the antibody may be prepared from cultured supernatant obtained by culturing the hybridoma in a medium with low serum concentration. Alternatively, the hybridoma may be injected into abdominal cavities of animals and the resultant abdominal dropsies are collected to prepare the antibody. The antibody may be purified or isolated by methods that employ affinity column, gel filtration chromatography, ion exchange chromatography or the like. Any of these known methods may be appropriately selected or used in combination.
According to certain embodiments of the present disclosure, the monoclonal antibody 1C4 comprises a heavy chain variable region (VH) and a light chain variable region (VL) , in which the VH comprises three complementarity-determining regions (CDRs, i.e., CDR-H1, CDR-H2 and CDR-H3) respectively having the amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8, and the VL comprises three CDRs (i.e., CDR-L1, CDR-L2 and CDR-L3) respectively having the amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11. More specifically, the VH comprises CDR-H1 (SEQ ID NO: 6) , CDR-H2 (SEQ ID NO: 7) and CDR-H3 (SEQ ID NO: 8) , in sequence, from N-terminus to C-terminus; and the VL comprises CDR-L1 (SEQ ID NO: 9) , CDR-L2 (SEQ ID NO: 10) and CDR-L3 (SEQ ID NO: 11) , in sequence, from N-terminus to C-terminus.
According to some embodiments, the heavy chain variable region (VH) has the amino acid sequence at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%) identical to SEQ ID NO: 12, and the light chain variable region (VL) has the amino acid sequence at least 85%(e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%or 100%) identical to SEQ ID NO: 13. In one specific embodiment, theVH has the amino acid sequence of SEQ ID NO: 12, and the VL has the amino acid sequence of SEQ ID NO: 13.
According to some embodiments of the present disclosure, the antibody 1C4 specifically targets to the cancer cells and inhibit the growth thereof.
Optionally, the present antibody can be conjugated with a reporter molecule (such as a biotin or a fluorescein) or a contrast agent so that once injected into the subject, the cancer cell targeted by the present polypeptide can be easily monitored via detecting the reported molecule or contrast agent. Alternatively, the present antibody can be conjugated with an anti-cancer drug so as to enhance the tumor-cytotoxic effect of the present antibody, and accordingly, achieving a better therapeutic effect in the subject.
Uses
An antibody of the invention may be used in, for example, in vitro, ex vivo and in vivo therapeutic methods. Antibodies of the invention can be used as an antagonist to partially or fully block the specific antigen activity in vitro, ex vivo and/or in vivo. Moreover, at least some of the antibodies of the invention can neutralize antigen activity from other species. Accordingly, antibodies of the invention can be used to inhibit a specific antigen activity, e.g., in a cell culture containing the antigen, in human subjects or in other mammalian subjects having the antigen with which an antibody of the invention cross-reacts (e.g. chimpanzee, baboon, marmoset, cynomolgus and rhesus, pig or mouse) . In one embodiment, an antibody of the invention can be used for inhibiting antigen activities by contacting the antibody with the antigen such that antigen activity is inhibited. In one embodiment, the antigen is a human protein molecule.
In one embodiment, an antibody of the invention can be used in a method for inhibiting the activity of an antigen in a subject suffering from a disorder (such as cancer) in which the antigen activity is detrimental, comprising administering to the subject an antibody of the invention such that the antigen activity in the subject is inhibited. In one embodiment, the antigen is a human protein molecule and the subject is a human subject. Alternatively, the subject can be a mammal expressing the antigen with which an antibody of the invention binds. Still further the subject can be a mammal into which the antigen has been introduced (e.g., by administration of the antigen or by expression of an antigen transgene) . An antibody of the invention can be administered to a human subject for therapeutic purposes. Moreover, an antibody of the invention can be administered to a non-human mammal expressing an antigen with which the antibody cross-reacts (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of antibodies of the invention (e.g., testing of dosages and time courses of administration) . Antibodies of the invention can be used to treat, inhibit, delay progression of, prevent/delay recurrence of, ameliorate, or prevent diseases, disorders or conditions associated with abnormal expression and/or activity of antigens comprising the polypeptides of the present disclosure, including but not limited to cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders.
In one aspect, a blocking antibody of the invention is specific for an antigen comprising the polypeptides of the present disclosure.
In certain embodiments, an immunoconjugate comprising an antibody of the invention conjugated with a cytotoxic agent is administered to the patient. In some embodiments, the immunoconjugate and/or antigen to which it is bound is/are internalized by cells expressing one or more proteins on their cell surface which are associated with an antigen comprising the polypeptides of the present disclosure, resulting in increased therapeutic efficacy of the immunoconjugate in killing the target cell with which it is associated. In one embodiment, the cytotoxic agent targets or interferes with nucleic acid in the target cell. Examples of such cytotoxic agents include any of the chemotherapeutic agents noted herein (such as a maytansinoid or a calicheamicin) , a radioactive isotope, or a ribonuclease or a DNA endonuclease.
Antibodies of the invention can be used either alone or in combination with other compositions in a therapy. For instance, an antibody of the invention may be co-administered with another antibody, and/or adjuvant/therapeutic agents (e.g., steroids) . For instance, an antibody of the invention may be combined with an anti-inflammatory and/or antiseptic in a treatment scheme, e.g. in treating any of the diseases described herein, including cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders. Such combined therapies noted above include combined administration (where the two or more agents are included in the same or separate formulations) , and separate administration, in which case, administration of the antibody of the invention can occur prior to, and/or following, administration of the adjunct therapy or therapies.
An antibody of the invention (and adjunct therapeutic agent) can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In addition, the antibody is suitably administered by pulse infusion, particularly with declining doses of the antibody. Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
The location of the binding target of an antibody of the invention may be taken into consideration in preparation and administration of the antibody. When the  binding target is an intracellular molecule, certain embodiments of the invention provide for the antibody or antigen-binding fragment thereof to be introduced into the cell where the binding target is located. In one embodiment, an antibody of the invention can be expressed intracellularly as an intrabody. The term “intrabody, ” as used herein, refers to an antibody or antigen-binding portion thereof that is expressed intracellularly and that is capable of selectively binding to a target molecule, as described in Marasco, Gene Therapy 4: 11-15 (1997) ; Kontermann, Methods 34: 163-170 (2004) ; U.S. Pat. Nos. 6,004,940 and 6,329,173; U.S. Patent Application Publication No. 2003/0104402, and PCT Publication No. WO2003/077945. Intracellular expression of an intrabody is effected by introducing a nucleic acid encoding the desired antibody or antigen-binding portion thereof (lacking the wild-type leader sequence and secretory signals normally associated with the gene encoding that antibody or antigen-binding fragment) into a target cell. Any standard method of introducing nucleic acids into a cell may be used, including, but not limited to, microinjection, ballistic injection, electroporation, calcium phosphate precipitation, liposomes, and transfection with retroviral, adenoviral, adeno-associated viral and vaccinia vectors carrying the nucleic acid of interest. One or more nucleic acids encoding all or a portion of an anti-polypeptide antibody of the invention can be delivered to a target cell, such that one or more intrabodies are expressed which are capable of intracellular binding to an antigen comprising the polypeptides of the present disclosure and modulation of said antigen associated cellular pathways.
In another embodiment, internalizing antibodies are provided. Antibodies can possess certain characteristics that enhance delivery of antibodies into cells, or can be modified to possess such characteristics. Techniques for achieving this are known in the art. For example, cationization of an antibody is known to facilitate its uptake into cells (see, e.g., U.S. Pat. No. 6,703,019) . Lipofections or liposomes can also be used to deliver the antibody into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is generally advantageous. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993) .
Entry of modulator (cell-penetrating or cell-permeating) polypeptides into target cells can be enhanced by methods known in the art. For example, certain  sequences, such as those derived from HIV Tat or the Antennapedia homeodomain protein are able to direct efficient uptake of heterologous proteins across cell membranes. See, e.g., Chen et al., Proc. Natl. Acad. Sci. USA (1999) , 96: 4325-4329.
When the binding target is located in the brain, certain embodiments of the invention provide for the antibody or antigen-binding fragment thereof to traverse the blood-brain barrier. Certain neurodegenerative diseases are associated with an increase in permeability of the blood-brain barrier, such that the antibody or antigen-binding fragment can be readily introduced to the brain. When the blood-brain barrier remains intact, several art-known approaches exist for transporting molecules across it, including, but not limited to, physical methods, lipid-based methods, and receptor and channel-based methods.
Physical methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, circumventing the blood-brain barrier entirely, or by creating openings in the blood-brain barrier. Circumvention methods include, but are not limited to, direct injection into the brain (see, e.g., Papanastassiou et al., Gene Therapy 9: 398-406 (2002) ) , interstitial infusion/convection-enhanced delivery (see, e.g., Bobo et al., Proc. Natl. Acad. Sci. USA 91: 2076-2080 (1994) ) , and implanting a delivery device in the brain (see, e.g., Gill et al., Nature Med. 9: 589-595 (2003) ; and Gliadel WafersTM, Guildford Pharmaceutical) . Methods of creating openings in the barrier include, but are not limited to, ultrasound (see, e.g., U.S. Patent Publication No. 2002/0038086) , osmotic pressure (e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Vols 1 &2, Plenum Press, N.Y. (1989) ) ) , permeabilization by, e.g., bradykinin or permeabilizer A-7 (see, e.g., U.S. Pat. Nos. 5,112,596, 5,268,164, 5,506,206, and 5,686,416) , and transfection of neurons that straddle the blood-brain barrier with vectors containing genes encoding the antibody or antigen-binding fragment (see, e.g., U.S. Patent Publication No. 2003/0083299) .
Lipid-based methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, encapsulating the antibody or antigen-binding fragment in liposomes that are coupled to antibody binding fragments that bind to receptors on the vascular endothelium of the blood-brain barrier (see, e.g., U.S. Patent Application Publication No. 20020025313) , and coating the antibody or antigen-binding fragment in low-density  lipoprotein particles (see, e.g., U.S. Patent Application Publication No. 20040204354) or apolipoprotein E (see, e.g., U.S. Patent Application Publication No. 20040131692) .
Receptor and channel-based methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, using glucocorticoid blockers to increase permeability of the blood-brain barrier (see, e.g., U.S. Patent Application Publication Nos. 2002/0065259, 2003/0162695, and 2005/0124533) ; activating potassium channels (see, e.g., U.S. Patent Application Publication No. 2005/0089473) , inhibiting ABC drug transporters (see, e.g., U.S. Patent Application Publication No. 2003/0073713) ; coating antibodies with a transferrin and modulating activity of the one or more transferrin receptors (see, e.g., U.S. Patent Application Publication No. 2003/0129186) , and cationizing the antibodies (see, e.g., U.S. Pat. No. 5,004,697) .
The antibody composition of the invention would be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The antibody need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of antibodies of the invention present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99%of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
For the prevention or treatment of disease, the appropriate dosage of an antibody of the invention (when used alone or in combination with other agents such as chemotherapeutic agents) will depend on the type of disease to be treated, the type of antibody, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The antibody is suitably administered to the patient at one time or over a series of treatments.
Depending on the type and severity of the disease, about 1 μg/kg to 15 mg/kg  (e.g. 0.1 mg/kg-10 mg/kg) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. One typical daily dosage might range from about 1 μg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
One exemplary dosage of the antibody would be in the range from about 0.05 mg/kg to about 10 mg/kg. Thus, one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg or 10 mg/kg (or any combination thereof) may be administered to the patient. However, such doses may be administered intermittently, e.g. every week or every three weeks (e.g. such that the patient receives from about two to about twenty, or e.g. about six doses of the antibody) . An initial higher loading dose, followed by one or more lower doses may be administered. An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the antibody. According to one embodiment, the present antibody is administered to the subject in an amount of about 0.8 μg-80 mg/Kg/dose; preferably, about 8 μg-8 mg/Kg/dose; more preferably, about 80-800 μg/Kg/dose. In these embodiments, the antibody is administered to the subject at least 2 times in the course of vaccination. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
According to certain embodiments of the present disclosure, the present antibody is useful in suppressing the growth of a cancer overexpressing the polypeptide on its surface. Examples of the cancer that may be treated by the present method include, but are not limited to, gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
The present disclosure further provides a method for treating a cancer in a subject in need thereof (e.g., the subject having or suspected of having a cancer) by use of the present antibody. The method comprises administering to the subject an effective amount (e.g., a prophylactically effective amount or a therapeutically effective amount) of the present antibody, in which the antibody may be either a  monoclonal antibody (e.g., the present 1C4 monoclonal antibody) or a polyclonal antibody (e.g., the serum antibody isolated from the immunized subject) .
According to one embodiment, the subject is a mouse, in which about 0.01 to 1,000 mg/Kg of the present antibody per dose is administered to the subject; for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990 or 1000 mg/Kg body weight per dose. Preferably, 0.1 to 100 mg/Kg body weight per dose. More preferably, 1 to 20 mg/Kg body weight per dose. According to one working example, 4-5 mg/Kg of the present antibody per dose is sufficient to inhibit the tumor growth in the subject.
A skilled artisan could calculate the human equivalent dose (HED) for the present antibody, based on the doses determined from animal models. Accordingly, the effective amount of the present antibody is about 0.8 μg/Kg to 80 mg/Kg body weight per dose for human; for example, 0.8, 0.9, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 μg/Kg, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 mg/Kg body weight per dose. In one preferred example, the effective amount of the present antibody is about 300 to 400 μg/Kg body weight per dose.
According to one embodiment, the present antibody is administered to the subject once every three days in the course of treatment. Preferably, the present antibody is administered to the subject at least 2 times in the course of treatment; for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more times. The course of treatment may vary with factors that include, but are not limited to, the physical condition of the patient (e.g., the patient's body mass, age, or gender) and the  seriousness of the disease (e.g., the type and stage of the cancer) . According to one embodiment of the present disclosure, the antibody is administered to the subject once every three days over 51 days.
The present antibody can be administered to the subject by any appropriate route, such as transmucosal, subcutaneous, intradermal, intramuscular, intravenous, intratumoral and intraperitoneal injection. According to one specific example, the antibodies are intravenously injected to the subject.
As would be appreciated, the present method can be applied to the subject, alone or in combination with an additional treatment, including surgery, radiation therapy, chemotherapy, hormonal therapy, antiangiogenic therapy, and immunotherapy. For example, after the tumor mass has been removed by a surgery operation, the present antibody is useful in specifically targeting and destroying the remaining cancer cells residing in tumor surrounding tissue or blood, and/or preventing the recurrence of tumor. Depending on the therapeutic purpose, the present method can be applied to the subject before, during, or after the administration of the additional treatment.
Basically, the subject treatable by the methods illustrated in above-mentioned aspects and embodiments of the present disclosure is a mammal, for example, a human, a mouse, a rat, a hamster, a guinea pig, a rabbit, a dog, a cat, a cow, a goat, a sheep, a monkey, and a horse. Preferably, the subject is a human.
The following Examples are provided to elucidate certain aspects of the present invention and to aid those of skilled in the art in practicing this invention. These Examples are in no way to be considered to limit the scope of the invention in any manner. Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. All publications cited herein are hereby incorporated by reference in their entirety.
EXAMPLES
Materials and Methods
Cell culture
The colorectal cancer cell lines (including SW480, HT29, Colo205 and HCT116) , gastric cancer cell line AGS, lung cancer cell lines (including A549 and H1299) , breast cancer cell lines (including MCF-7, SKBR3 and HS578T) , cervical cancer cell line Hela, liver cancer cell line HepG2, ovarian cancer cell line SKOV-3, and pancreatic cancer cell lines (including BxPC-3, Panc-1, Patu8988T) were cultured in Dulbecco's Modified Eagle's medium (DMEM) or RPMI-1640 medium containing  10%of fetal bovine serum (FBS) . The human monocyte THP-1 cell, human umbilical vein endothelial cell (HUVEC) , human embryonic kidney 293 (HEK293) cell and human lung epithelial cell BEAS-2B, serving as normal controls in this experiment. The THP-1 cell was cultured in RPMI-1640 medium, the human umbilical vein endothelial cell (HUVEC) was cultured in medium 200 (GIBCO) , the BEAS-2B cell line was cultured in BEBM medium, and the human embryonic kidney 293 (HEK293) was cultured in Minimum Essential Media (MEM) medium containing 10%of FBS. All cells were cultured in a humidified incubator with 5%CO2 at 37℃.
Protein detection
To detect the expression of HSP27 polypeptide, 2×105 cells were co-incubated with specified anti-HSP27 antibody (including the rabbit anti-HSP27 antibody, the antibodies respectively recognizing 10-40, 80-150, 124-136, 1-155 and 175-205 amino acid residues of HSP27, and the present serum antibodies) at 4℃ for 1 hour. After incubation, cells were washed 3 times in phosphate-buffered saline (PBS) and labeled by 1 μg of goat anti-IgG FITC antibody (GeneTex) for 30 minutes. The cells were analyzed with a flow cytometry.
Mice immunization
100 μg of polypeptides CH-1 (consisting of 36-65 amino acid residues of HSP27; SEQ ID NO: 1) , CH-2 (consisting of 46-75 amino acid residues of HSP27; SEQ ID NO: 2) , CH-3 (consisting of 56-85 amino acid residues of HSP27; SEQ ID NO: 3) , CH-4 (consisting of 6-35 amino acid residues of HSP27; SEQ ID NO: 4) , and CH5 (consisting of 86-115 amino acid residues of HSP27; SEQ ID NO: 5) were respectively mixed with adjuvant Emulsigen-D. The mixture was then subcutaneously injected into mice on week 1. Re-immunization was carried out by treating the primed mouse with same procedure weekly for 7 consecutive weeks. Blood samples from the retro-orbital sinus of the immunized mice were taken weekly. The serum was collected and stored at -20℃ for the following analysis.
Serum antibody titer
Antibody titration was determined by indirect ELISA. Briefly, ELISA plate wells were coated overnight with 100 ng of antigen (i.e., CH-1, CH-2 or CH-3 polypeptides) or 100 ng goat anti-mouse kappa chain antibody. Wells were washed with PBS containing 0.05%Tween-20 (PBS-T) and blocked with 100 ml of 1%skim milk in PBS. Serum samples were serially diluted in PBST and added to the ELISA plates followed by incubation at room temperature for 1 hour. After incubation, the  wells were washed with PBS-T and added with goat anti-mouse IgG HRP antibody (1: 8,000 in PBST) and incubated at room temperature for 1 hour. After washing, 100 μl of 3, 3', 5, 5'-Tetramethylbenzidine (TMB) were added to each well and incubated at room temperature for 20 minutes. The reaction was stopped with 50 μl of 1N HCL and the OD450 was read on ELISA reader.
Purification of monoclonal antibody
The monoclonal antibody 1C4 was purified by protein L agarose (GenScript) following the manufacturer’s procedure. Briefly, protein L agarose (1.5 ml) supplied in 20%ethanol was poured into a disposable column. The resin was washed with 10 ml wash buffer (20mM NaHPO4, 0.15M NaCl, pH 8) . Conditional medium of 1C4 hybridoma cells (30 ml) was diluted with 30 ml binding buffer. The mixed sample solution was then loaded into the column and the column was inverted for mixing. Next, the column was washed with 30 ml wash buffer for 2 times until OD280 was close to 0. The antibody was then eluted gently by adding 5 ml elution buffer (0.1 M glycine, pH 2.5) and collected in a collection tube that contained 500 μl neutralization buffer. The antibody was concentrated, and the buffer was exchanged to neutralization buffer by Sephadex G-25 resin (GE) . The concentration of the antibody was quantified by absorbance at 280 nm.
Cloning and sequencing the Ig variable (V) genes
Total RNA was prepared from 2×106 1C4 hybridoma cells using
Figure PCTCN2017116445-appb-000002
Reagent (Thermo) . cDNA synthesis was synthesized by using
Figure PCTCN2017116445-appb-000003
III Reverse Transcriptase (RT) kit (Invitrogen) . Then, mouse Ig-Primer Sets (Novagen) and
Figure PCTCN2017116445-appb-000004
G2 Green Master Mix (Promega) were used to amplified Ig heavy and kappa genes. The PCR products were cloned by
Figure PCTCN2017116445-appb-000005
TA
Figure PCTCN2017116445-appb-000006
Kit (Invitrogen) . Finally, DNA sequencing was performed by Mission Biotech.
The analysis data indicated that the heavy chain variable region comprised the nucleotide sequences of SEQ ID NO: 14 that encoded the amino acid sequence of SEQ ID NO: 12, while the light chain variable region comprised the nucleotide sequences of SEQ ID NO: 15 that encoded the amino acid sequence of SEQ ID NO: 13.
Binding affinity
The binding affinity of the monoclonal antibody 1C4 to the CH-3 polypeptide was determined with ELISA. First, the ELISA plate wells were coated overnight with 500 ng of antigen (e.g., CH-3 polypeptide) . 100 ng of 1C4 antibody was mixed with different concentrations of CH-3 polypeptide (including 0, 0.05, 0.1,  0.2, 0.4, 0.8, 1.6 and 3.2 μg/ml) followed by incubation at room temperature for 1 hour. Then, the mixture was added to the ELISA plate and incubator at room temperature for 20 minutes. Wells were washed with PBS containing 0.05%PBS-T and incubated with goat anti-mouse IgG HRP antibody (1: 10,000 in PBST) at room temperature for 1 hour. After washing, 100 μl of TMB were added to each well and incubated at room temperature for 20 minutes. The reaction was stopped with 50 μl of 1N HCL and the OD450 was read on ELISA reader.
Cell viability assay
1× 104 cells were seeded in 96-well culture plates per well and grown at 37℃ in a humidified 5%CO2 incubator for 24 hours. Then, the cells were treated with the monoclonal antibody 1C4, or the anti-CH-1, anti-CH-2 or anti-CH-3 serum antibody (i.e., the sera of mice respectively immunized with CH-1, CH-2 and CH3 polypeptides) for 72 hours. After that, 100 μl of 3- (4, 5-cimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bromide (MTT) solution was added to each plate and incubation was performed at 37℃ for 4 hours. The resulting formazan crystals were dissolved in DMSO. Finally, the absorbance was measured at 492 nm using an ELISA plate reader.
For the purpose of testing the effect the commercial anti-HSP27 antibody HSPB1 (Code Number: 102-17173, RayBiotech) on cancer cells, 3× 103 HT29 cells were seeded in 96-well culture plates per well and grown at 37℃ in a humidified 5%CO2 incubator. 24 hours later, 0.5 μl HSPB1 was added to the cells followed by incubation for 48 hours. The cell viability was then evaluated by the MTT assay.
Apoptosis assay
1× 105 HT29 cells were seeded in 24-well culture plates per well and grown at 37℃ in a humidified 5%CO2 incubator for 24 hours. Then, the cells were respectively treated with anti-CH-1, anti-CH-2, anti-CH-3, anti-CH-4 and anti-CH-5 serum antibodies for 48 hours. The HT29 cells were washed with cold PBS twice and resuspended using 500 μl of Cytofix solution. Following resuspension, 5 μl of Caspase-3 PE antibody (PE Active Caspase 3 Apoptosis Kit, BD) were added and incubated for 30 min at room temperature in the dark. The cells were analyzed with a flow cytometry.
Animal experiment
1×107 HT29 cells were subcutaneously implanted in nude mice. 100 μg of serum antibody was intravenously injected into the mice bearing tumors every three days. The size of the tumors was monitored regularly.
Example 1 Expression of HSP27 on the surfaces of cancerous cells
In this example, the expressions of HSP27 and the fragment thereof were evaluated by flow cytometry assay. As the data in Fig. 1 illustrated, the expression level of HSP27 on the surface of cancer cells was higher than that of normal cells (i.e., HUVEC cell, HEK293 cell and BEAS-2B cell) .
To investigate the ectodomain (i.e., the domain extending into the extracellular space) of HSP27, the antibodies respectively recognizing 10-40, 80-150, 124-136, 1-155 and 175-205 amino acid residues of HSP27 were co-incubated with intact HT29 cells (i.e., the HT29 cells not treated with permeabilization procedure so that the antibody cannot enter therein) , and analyzed by flow cytometry. The fluorescent signal was detected only on the cells co-incubated with the antibody recognizing 1-155 amino acid residues of HSP27 (data not shown) . In other words, among the five antibodies that were tested, only the antibody recognizing 1-155 amino acid residues of HSP27 could bind to the surface of HT29 cells. Accordingly, it was hypothesized that 1-10 and 40-80 amino acid residues of HSP27 were expressed on the surface of cancer cells.
Example 2 Characterization of anti-CH-1, anti-CH-2 and anti-CH-3 serum antibodies
Based on the finding of example 1, three polypeptides were synthesized, in which the CH-1 polypeptide consisted of 36-65 amino acid residues of HSP27, CH-2 polypeptide consisted of 46-75 amino acid residues of HSP27, and CH-3 polypeptide consisted of 56-85 amino acid residues of HSP27.
The synthesized CH-1, CH-2, and CH-3 polypeptides were respectively mixed with a suitable adjuvant, then were used to immunize mice in accordance with procedures described in “Materials and Methods” . The thus produced anti-CH1, anti-CH2 and anti-CH3 serum antibodies were then isolated from the immunized mice and examined by ELISA assay. The data indicated that all three polypeptides may prompt the mice to produce IgG antibodies (Fig. 2A) , and the thus produced serum antibodies could specifically bind to their respective corresponding polypeptides (Fig. 2B) .
The binding affinity of the serum antibodies to cancer cells was then examined by flow cytometry assay. As the data of Fig. 3 illustrated, all three serum antibodies bound to the HT29 cells (dash line) , while addition of CH-1, CH-2 or CH-3 polypeptide blocked the binding therebetween (dot line) . The data suggested that each of the anti-CH-1, anti-CH-2 and anti-CH-3 serum antibodies could specifically  target the cancer cells. The MTT and flow cytometric data further indicated that the binding of anti-CH-1, anti-CH-2 or anti-CH-3 serum antibody to the cancer cells resulted in the suppression of cell proliferation (panels a-c, Fig. 4) and may induce an apoptosis response in cancer cells via producing the caspase 3 protein (panels a-c, Fig. 5) .
Compared with the serum antibody produced by EGFP, CH-4 or CH-5 polypeptide, the serum antibody produced by CH-3 polypeptide induced a higher level of apoptosis in HT29 cells (Fig. 6) . The data of Fig. 6 indicated that anti-CH4 and anti-CH5 serum antibodies did not significantly induced cell death.
Next, the anti-tumor effect of anti-CH-1 and anti-CH-3 serum antibodies was evaluated in an animal model. Compared with the control group (control serum) , both the anti-CH-1 and anti-CH-3 serum antibodies could significantly inhibit the tumor growth (Fig. 7) .
Example 3 Characterization of monoclonal antibody 1C4
The monoclonal antibody 1C4 was purified from the hybridoma in accordance with the procedures described in “Materials and Methods” , and the bioactivity and inhibitory effect thereof were determined in this example. The results were respectively depicted in Figs. 8 and 9.
As the data of Fig. 8A indicated, the 1C4 exhibited binding affinity to the CH-3 polypeptide, in which the dissociation constant (Kd) is about 1.78 x 10-7. Regarding the cell-binding specificity, it is found that the 1C4 antibody specifically recognized and targeted to all tested cancer cells, including HepG2, A549, AGS, SW480, HCT116, HT29 and Colo205 cells, while exhibited no affinity to the normal cell THP-1 (Fig. 8B) .
The data of Fig. 9 further demonstrated that the 1C4 antibody suppressed the tumor growth as compared to the control group. It is noted that compared to the control group (i.e., medium alone) , the commercial antibody HSPB1 did not affect (e.g., decrease) the viability of cancer cells (Fig. 10) .
In conclusion, the present identified CH-1, CH-2 and CH-3 polypeptides are overexpressed on the surface of various types of cancer cells. Based on the finding, three vaccine compositions respectively comprising the CH-1, CH-2 and CH-3 polypeptides are useful in protecting and/or treating the cancers via evoking the cancer-specific immune response (e.g., the cancer-specific antibody) . According to embodiments of the present disclosure, the thus produced 1C4 antibody specifically targeted the cancer cells and suppressed their growth. The present polypeptides,  vaccine compositions, and antibodies thus provide potential means for the prophylaxis and/or treatment of various types of cancers.
It will be understood that the above description of embodiments is given by way of example only and that various modifications may be made by those with ordinary skill in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those with ordinary skill in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention.

Claims (44)

  1. A synthetic polypeptide for preventing and/or treating a cancer in a subject in need thereof, comprising a first polypeptide having the amino acid sequence at least 85% identical to SEQ ID NO: 1, 2 or 3.
  2. The synthetic polypeptide of claim 1, wherein the first polypeptide has the amino acid sequence of SEQ ID NO: 1, 2 or 3.
  3. The synthetic polypeptide of claim 1, wherein
    the N-terminus of the synthetic polypeptide is acetylated, glycosylated or formylated, and/or
    the C-terminus of the synthetic polypeptide is amidated or glycosylated.
  4. The synthetic polypeptide of claim 1, further comprising a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, ovalbumin, bovine serum albumin, keyhole limpet haemocyanin, β-galactosidase, thyroglobulin, and a combination thereof.
  5. A vaccine composition for preventing and/or treating a cancer in a subject in need thereof, comprising the synthetic polypeptide of claim 1 and a pharmaceutically acceptable adjuvant.
  6. The vaccine composition of claim 5, wherein the pharmaceutically acceptable adjuvant is selected from the group consisting of, Emulsigen-D, aluminum hydroxide, incomplete Fruend's adjuvant, complete Fruend's adjuvant, endotoxin based adjuvant, mineral oil, mineral oil and surfactant, Ribi adjuvant, Titer-max, syntax adjuvant formulation, aluminium salt adjuvant, nitrocellulose adsorbed antigen, immune stimulating complex, Gebru adjuvant, super carrier, elvax 40w, L-tyrosine, montanide, Adju prime, Squalene, sodium phthalyl lipopolysaccharide, calcium phosphate, saponin, and muramyl dipeptide.
  7. The vaccine composition of claim 5, wherein the synthetic polypeptide further comprises a second polypeptide disposed at the N-or C-terminus of the first polypeptide, wherein the second polypeptide is selected from the group consisting of, ovalbumin, bovine serum albumin, keyhole limpet haemocyanin, β-galactosidase, thyroglobulin, and a combination thereof.
  8. A method of preventing and/or treating a cancer in a subject in need thereof, comprising administering to the subject an effective amount of the vaccine  composition of claim 5.
  9. The method of claim 8, wherein administering the vaccine composition of claim 5 gives rise to about 0.8 μg to 80 mg the synthetic polypeptide of claim 1 per kilogram of body weight per dose.
  10. The method of claim 9, wherein administering the vaccine composition of claim 5 gives rise to about 8 μg to 8 mg the synthetic polypeptide of claim 1 per kilogram of body weight per dose.
  11. The method of claim 10, wherein administering the vaccine composition of claim 5 gives rise to about 80 to 800 μg the synthetic polypeptide of claim 1 per kilogram of body weight per dose.
  12. The method of claim 8, wherein the vaccine composition is administered to the subject at least 2 times in the course of vaccination.
  13. The method of claim 12, wherein the vaccine composition is administered to the subject 6 to 10 times in the course of vaccination.
  14. The method of claim 8, wherein the cancer is selected from the group consisting of gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  15. The method of claim 8, wherein the subject is a human.
  16. An antibody or a fragment thereof that exhibits binding affinity to the polypeptide of claim 1, comprising,
    a heavy chain variable region comprising amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8; and
    a light chain variable region comprising amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11.
  17. The antibody of claim 16, the heavy chain variable region has the amino acid sequence at least 85% identical to SEQ ID NO: 12, and the light chain variable region has the amino acid sequence at least 85% identical to SEQ ID NO: 13.
  18. The antibody of claim 17, wherein the heavy chain variable region has the amino acid sequence of SEQ ID NO: 12, and the light chain variable region has the amino acid sequence of SEQ ID NO: 13.
  19. A method of treating a cancer in a subject in need thereof, comprising administering to the subject an effective amount of the antibody of claim 16.
  20. The method of claim 19, wherein the cancer is selected from the group consisting of gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  21. The method of claim 19, wherein the antibody is administered to the subject in an amount of 0.8 μg to 80 mg per kilogram of body weight per dose.
  22. The method of claim 21, wherein the antibody is administered to the subject in an amount of 8 μg to 8 mg per kilogram of body weight per dose.
  23. The method of claim 22, wherein the antibody is administered to the subject in an amount of 80 to 800 μg per kilogram of body weight per dose.
  24. The method of claim 19, wherein the antibody is administered to the subject at least 2 times.
  25. The method of claim 19, wherein the subject is a human.
  26. Use of the synthetic polypeptide of claim 1 for the preparation of a medicament for the prophylaxis or treatment of a cancer in a subject in need thereof.
  27. The use of claim 26, wherein the medicament is administered to the subject and gives rise to the synthetic polypeptide of claim 1 in an amount of 0.8 μg to 80 mg per kilogram of body weight per dose.
  28. The use of claim 27, wherein the medicament is administered to the subject and gives rise to the synthetic polypeptide of claim 1 in an amount of 8 μg to 8 mg per kilogram of body weight per dose.
  29. The use of claim 28, wherein the medicament is administered to the subject and gives rise to the synthetic polypeptide of claim 1 in an amount of 80 to 800 μg per kilogram of body weight per dose.
  30. The use of claim 26, wherein the medicament is administered to the subject at least 2 times in the course of vaccination.
  31. The use of claim 30, wherein the medicament is administered to the subject 6 to 10 times in the course of vaccination.
  32. The use of claim 26, wherein the cancer is selected from the group consisting of gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  33. The use of claim 26, wherein the subject is a human.
  34. Use of the antibody of claim 16 for the preparation of a medicament for the treatment of a cancer in a subject in need thereof.
  35. The use of claim 34, wherein the medicament is administered to the subject and gives rise to the antibody of claim 16 in an amount of 0.8 μg to 80 mg per kilogram of body weight per dose.
  36. The use of claim 35, wherein the medicament is administered to the subject and gives rise to the antibody of claim 16 in an amount of 8 μg to 8 mg per kilogram of body weight per dose.
  37. The use of claim 36, wherein the medicament is administered to the subject and gives rise to the antibody of claim 16 in an amount of 80 to 800 μg per kilogram of body weight per dose.
  38. The use of claim 34, wherein the medicament is administered to the subject at least 2 times.
  39. The use of claim 38, wherein the medicament is administered to the subject 6 to 10 times.
  40. The use of claim 34, wherein the cancer is selected from the group consisting of gastric cancer, lung cancer, bladder cancer, breast cancer, pancreatic cancer, renal cancer, colorectal cancer, cervical cancer, ovarian cancer, brain tumor, prostate cancer, hepatocellular carcinoma, melanoma, esophageal carcinoma, multiple myeloma, and head and neck squamous cell carcinoma.
  41. The use of claim 34, wherein the subject is a human.
  42. The isolated monoclonal antibody of any one of claims 16, wherein the antibody is a humanized, chimeric, scFv, Fab, or Fab2 antibody.
  43. The isolated monoclonal antibody of any one of claims 16, wherein the antibody is a human antibody.
  44. A pharmaceutical composition comprising the monoclonal antibody or binding fragment thereof of any one of claims 16 and a pharmaceutically acceptable carrier.
PCT/CN2017/116445 2016-12-19 2017-12-15 Synthetic polypeptide, composition comprising the same, antibody produced thereby, and uses thereof WO2018113595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662436405P 2016-12-19 2016-12-19
US62/436,405 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018113595A1 true WO2018113595A1 (en) 2018-06-28

Family

ID=62624434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116445 WO2018113595A1 (en) 2016-12-19 2017-12-15 Synthetic polypeptide, composition comprising the same, antibody produced thereby, and uses thereof

Country Status (2)

Country Link
TW (1) TW201827070A (en)
WO (1) WO2018113595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827291A (en) * 2012-09-11 2012-12-19 钟敬祥 Recombinant fusion protein PTD-HSP27 and use thereof
CN103858008A (en) * 2011-07-09 2014-06-11 阿斯图特医药公司 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN105175527A (en) * 2015-10-09 2015-12-23 深圳市康尔诺生物技术有限公司 Heat shock protein complex for breast cancer specificity and application of complex
CN105175498A (en) * 2015-10-09 2015-12-23 深圳市康尔诺生物技术有限公司 Heat shock protein complex associated with cervical cancer and application of heat shock protein complex
CN106749673A (en) * 2016-11-22 2017-05-31 张震宇 A kind of fusion protein, preparation method and applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858008A (en) * 2011-07-09 2014-06-11 阿斯图特医药公司 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN102827291A (en) * 2012-09-11 2012-12-19 钟敬祥 Recombinant fusion protein PTD-HSP27 and use thereof
CN105175527A (en) * 2015-10-09 2015-12-23 深圳市康尔诺生物技术有限公司 Heat shock protein complex for breast cancer specificity and application of complex
CN105175498A (en) * 2015-10-09 2015-12-23 深圳市康尔诺生物技术有限公司 Heat shock protein complex associated with cervical cancer and application of heat shock protein complex
CN106749673A (en) * 2016-11-22 2017-05-31 张震宇 A kind of fusion protein, preparation method and applications

Also Published As

Publication number Publication date
TW201827070A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
KR102584675B1 (en) Antibodies specific for GUCY2c and their uses
EP3838289A1 (en) Anti-tigit antibody and uses thereof
ES2883176T3 (en) Recombinant monoclonal antibodies and corresponding antigens for colon and pancreatic cancers
ES2901173T3 (en) Compositions and Methods Related to Universal Glycoforms for Enhanced Anti-SSEA4 Antibody Efficacy
IL279606B (en) Anti-trem2 antibodies and methods of use thereof
KR20130110169A (en) Carrier immunoglobulins and uses thereof
US20140286950A1 (en) Use of anti-cd83 agonist antibodies for treating autoimmune diseases
JP6670297B2 (en) Anti-ceramide antibody
CN113474362B (en) Antibodies specific for CD44
US10882906B2 (en) Claudin 5 antibody, and medicine containing said antibody
KR20220110537A (en) How to Use Anti-TREM2 Antibodies
TW201702273A (en) Agents, uses and methods for treatment
WO2007059300A2 (en) Anti-alk antagonist and agonist antibodies and uses thereof
US20240043540A1 (en) Anti-b7-h3 antibody and uses thereof
US20240026024A1 (en) Cd73 antigen-binding protein and application thereof
JP2024502758A (en) CD73 binding protein and its use
TW200804418A (en) Methods and compositions for targeting relt
JP2021535078A (en) Transferrin receptor 2 antagonists and agonists for use in the treatment of bone disorders
WO2018113595A1 (en) Synthetic polypeptide, composition comprising the same, antibody produced thereby, and uses thereof
EP2506864B1 (en) Treatment and prevention of cancers associated with intracellular oncoproteins by antibody therapy or vaccination
KR20180098570A (en) Anti-MYL9 antibody
US9701744B2 (en) Anti-Vasohibin 2 antibody
EP4296279A1 (en) Anti-transthyretin (ttr) binding proteins and uses thereof
US20240124576A1 (en) Preparation of siglec-15 binding protein and use thereof
US20120189620A1 (en) Methods for treating non-functioning pituitary adenoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884806

Country of ref document: EP

Kind code of ref document: A1