WO2018113089A1 - 恒温晶体振荡器装置及其频率补偿方法 - Google Patents

恒温晶体振荡器装置及其频率补偿方法 Download PDF

Info

Publication number
WO2018113089A1
WO2018113089A1 PCT/CN2017/074837 CN2017074837W WO2018113089A1 WO 2018113089 A1 WO2018113089 A1 WO 2018113089A1 CN 2017074837 W CN2017074837 W CN 2017074837W WO 2018113089 A1 WO2018113089 A1 WO 2018113089A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal oscillator
frequency
microcontroller
frequency compensation
controlled crystal
Prior art date
Application number
PCT/CN2017/074837
Other languages
English (en)
French (fr)
Inventor
王义锋
刘朝胜
邱文才
Original Assignee
广东大普通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东大普通信技术有限公司 filed Critical 广东大普通信技术有限公司
Priority to US16/471,087 priority Critical patent/US20200021242A1/en
Publication of WO2018113089A1 publication Critical patent/WO2018113089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0275Varying the frequency of the oscillations by electronic means the means delivering several selected voltages or currents
    • H03B2201/0283Varying the frequency of the oscillations by electronic means the means delivering several selected voltages or currents the means functioning digitally
    • H03B2201/0291Varying the frequency of the oscillations by electronic means the means delivering several selected voltages or currents the means functioning digitally and being controlled by a processing device, e.g. a microprocessor

Definitions

  • Embodiments of the present disclosure relate to the field of crystal oscillator technology, for example, to a constant temperature crystal oscillator and a frequency compensation method thereof.
  • Frequency-temperature stability is one of the important technical indicators of the Oven Controlled Crystal Oscillator (OCXO).
  • OXO Oven Controlled Crystal Oscillator
  • FIG. 1 is a schematic structural diagram of a constant temperature crystal oscillator system in the related art.
  • the oscillator system includes a housing 10, a temperature sensor 11 disposed in the housing 10, a microcontroller (Microcontroller Unit (MCU) 12, a digital to analog converter (DAC) 13, a thermostat 14 and a OCXO 15 in the thermostatic bath 14.
  • the temperature sensor 11 is disposed in the casing 10, and the temperature sensor 11 is for reading the ambient temperature inside the casing 10 and transmitting the ambient temperature to the MCU 12.
  • the MCU 12 sends different frequency compensation amounts to the DAC.
  • the analog signal is sent to the analog voltage control terminal (VC) of the OCXO 15. Adjust the output frequency of the frequency output (Fout) of the OCXO 15 to compensate.
  • VC analog voltage control terminal
  • the compensation scheme has a bottleneck.
  • the reason is that the temperature sensor is located between the constant temperature bath and the outer casing. Since the temperature control point of the constant temperature tank needs to be higher than the working environment temperature, such as OCXO requires work.
  • the ambient temperature is -40 ° C to 85 ° C
  • the temperature of the constant temperature bath can be set above 90 ° C.
  • the OCXO is operating at -40 ° C or 85 ° C
  • the difference in temperature gradient between the casing, temperature sensor and thermostat is not the same.
  • the OCXO operates at -40 ° C or 85 ° C, the ambient temperature changes, the difference in temperature gradient between the outer casing, temperature sensor and thermostat changes.
  • the present disclosure provides an oven controlled crystal oscillator device and a frequency compensation method thereof, which can achieve high precision compensation of the constant temperature crystal oscillator frequency.
  • Embodiments of the present disclosure provide an oven controlled crystal oscillator device including a thermostat, a microcontroller, an oven controlled crystal oscillator disposed in the bath, and a current detecting circuit, wherein:
  • the current detecting circuit is connected to the constant temperature crystal oscillator, configured to acquire an operating current value of the constant temperature crystal oscillator, and provide the operating current value to the microcontroller;
  • the microcontroller is configured to determine a frequency compensation amount according to the operating current value based on a frequency compensation rule, and output the frequency compensation amount to the constant temperature crystal oscillator to compensate an output frequency.
  • the device further includes:
  • a digital-to-analog converter coupled to the microcontroller and the oven-controlled crystal oscillator, configured to convert the frequency compensation amount into an analog electrical signal, and output the analog electrical signal to the analog of the oven-controlled crystal oscillator
  • the voltage control terminal causes the analog voltage control terminal to adjust the output frequency according to the analog electrical signal.
  • the above apparatus further comprises a housing, wherein:
  • the thermostat, the oven controlled crystal oscillator, the microcontroller, the current detecting circuit, and the digital to analog converter are all disposed within the housing; or
  • the thermostat and the oven controlled crystal oscillator are disposed outside the housing, and the microcontroller, the current detecting circuit, and the digital to analog converter are disposed within the housing; or
  • the housing includes a first housing and a second housing, the current detecting circuit, the thermostat and the oven controlled crystal oscillator are disposed in the first housing, the microcontroller and the digital to analog converter Provided in the second housing.
  • Embodiments of the present disclosure also provide an apparatus having an oven controlled crystal oscillator, including any of the above-described oven controlled crystal oscillator devices.
  • the embodiment of the present disclosure further provides a frequency compensation method for an oven controlled crystal oscillator device, which is performed by any of the above-mentioned constant temperature crystal oscillator devices, and the method includes:
  • the current detecting circuit acquires an operating current value of the constant temperature crystal oscillator, and provides the work Making a current value to the microcontroller;
  • the microcontroller determines a frequency compensation amount according to the operating current value based on a frequency compensation rule
  • the microcontroller outputs the frequency compensation amount to the oven controlled crystal oscillator to compensate for an output frequency.
  • the microcontroller outputs the frequency compensation amount to the constant temperature crystal oscillator to compensate the output frequency, including:
  • the microcontroller outputs the frequency compensation amount to the digital to analog converter
  • the digital-to-analog converter converts the frequency compensation amount into an analog electrical signal, and outputs the analog electrical signal to an analog voltage control end of the constant temperature crystal oscillator, so that the analog voltage control terminal is configured according to the analog power
  • the signal adjusts the output frequency
  • the method further includes:
  • the frequency compensation rule is established according to the corresponding relationship between the temperature value, the operating current value, and the frequency drift, and is stored in the microcontroller.
  • the microcontroller determines the frequency compensation amount according to the operating current value based on the frequency compensation rule, including:
  • the microcontroller acquires a frequency compensation rule corresponding to the operating current value according to the operating current value
  • the microcontroller obtains the frequency compensation amount according to a correspondence between the operating current value and a temperature value and a frequency drift in the frequency compensation rule.
  • the frequency drift refers to a difference between a current output frequency of the constant temperature crystal oscillator and a normal output frequency.
  • the present invention provides an oven controlled crystal oscillator device and a frequency compensation method thereof. By obtaining the operating current value of the constant temperature crystal oscillator, the frequency compensation amount can be determined, thereby avoiding the influence of the temperature gradient on the frequency compensation and improving the frequency compensation. Precision.
  • 1 is a schematic structural view of a constant temperature crystal oscillator system in the related art
  • FIG. 2 is a first schematic structural diagram of an oven controlled crystal oscillator device according to Embodiment 1 of the present disclosure
  • FIG. 3 is a second schematic structural diagram of an oven controlled crystal oscillator device according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic diagram of a third structure of an oven controlled crystal oscillator device according to Embodiment 1 of the present disclosure.
  • FIG. 5 is a schematic flow chart of a frequency compensation method of an oven controlled crystal oscillator device according to Embodiment 3 of the present disclosure.
  • FIG. 2 is a schematic structural diagram of an oven controlled crystal oscillator device according to Embodiment 1 of the present disclosure.
  • the constant temperature crystal oscillator device provided by the embodiment of the present disclosure can achieve high-precision compensation of the constant temperature crystal oscillator frequency by acquiring the operating current value of the constant temperature crystal oscillator.
  • the oven controlled crystal oscillator device includes a thermostat tank 22, a microcontroller (MCU) 23, an oven controlled crystal oscillator (OCXO) 24 disposed in the thermostat bath 22, and a current detecting circuit 25.
  • MCU microcontroller
  • OXO oven controlled crystal oscillator
  • the current detecting circuit 25 is connected to the OCXO 24 and is configured to acquire an operating current value of the OCXO 24 and provide the operating current value to the MCU 23.
  • the MCU 23 is configured to determine a frequency compensation according to the operating current value based on a frequency compensation rule. The amount is compensated, and the frequency compensation amount is output to the OCXO 24 to compensate the output frequency.
  • the device further includes: a digital to analog converter (DAC) 26.
  • DAC digital to analog converter
  • a DAC 26 connected to the MCU 23 and the OCXO 24, configured to convert the frequency compensation amount into an analog electrical signal, and output the analog electrical signal to an analog voltage control terminal VC of the OCXO 24 such that the analog voltage control The terminal adjusts the output frequency according to the analog electrical signal.
  • the frequency output terminal Fout of the constant temperature crystal oscillator 24 outputs a frequency.
  • the device further includes a housing 21.
  • a constant temperature bath an oven controlled crystal oscillator, a microcontroller, a current detecting circuit, and a digital to analog converter are disposed in the casing 21. ,
  • the constant temperature bath and the constant temperature crystal oscillator are disposed outside the outer casing 21, and the microcontroller, the current detecting circuit and the digital to analog converter are disposed in the outer casing 21.
  • the outer casing includes a first outer casing 211 and a second outer casing 212.
  • the current detecting circuit, the thermostatic bath and the constant temperature crystal oscillator are disposed in the first outer casing 211, and the microcontroller and the digital-to-analog converter are disposed in the first Inside the second housing 212.
  • the frequency compensation rule may be established by acquiring the operating current value and the frequency drift of the crystal oscillator under different temperature values of the constant temperature bath, according to the corresponding relationship between the temperature value, the operating current value, and the frequency drift.
  • the frequency compensation rules are stored in the microcontroller.
  • the frequency compensation amount is obtained by the microcontroller according to the operating current value, and according to the corresponding relationship between the working current value and the temperature value and the frequency drift in the frequency compensation rule.
  • the frequency compensation amount output by the microcontroller is converted into an analog electrical signal by a digital-to-analog converter, and the digital-to-analog converter outputs an analog electrical signal to an analog voltage control terminal of the constant temperature crystal oscillator, and the analog voltage control terminal is connected to the constant temperature crystal oscillator.
  • the frequency is adjusted.
  • the present invention provides an oven controlled crystal oscillator device. By obtaining the operating current value of the constant temperature crystal oscillator, the frequency compensation amount can be determined, thereby avoiding the influence of the temperature gradient on the frequency compensation and improving the accuracy of the frequency compensation.
  • Embodiment 2 of the present disclosure provides an apparatus having an oven controlled crystal oscillator, which includes all of the oven controlled crystal oscillator devices provided in Embodiment 1.
  • the device is a communication device.
  • the invention provides a device with an oven controlled crystal oscillator, obtains the working current value of the constant temperature crystal oscillator through the constant temperature crystal oscillator device in the device, determines the frequency compensation amount, and avoids the influence of the temperature gradient on the frequency compensation, and improves The accuracy of frequency compensation.
  • FIG. 5 is a schematic flow chart of a frequency compensation method of an oven controlled crystal oscillator device according to Embodiment 3 of the present disclosure. The method is performed by an oven controlled crystal oscillator device provided by an embodiment of the present disclosure.
  • step 110 the current detecting circuit acquires an operating current value of the oven-controlled crystal oscillator and provides the operating current value to the microcontroller.
  • the operating current may be a heating operating current of the oven controlled crystal oscillator. Since the temperature control principle of the constant temperature crystal oscillator is to set the temperature in the thermostat to above the ambient operating temperature by heating, for example, when the constant temperature crystal oscillator is required to operate at an ambient temperature of -40 ° C to 85 ° C, the temperature of the thermostat can be set at Above 90 ° C, the principle of heat generation is to control the temperature of the constant temperature crystal oscillator to increase the temperature. When the current is large, the temperature in the constant temperature bath rises, the current is small, and the temperature in the constant temperature bath decreases.
  • the current detecting circuit can periodically acquire the working current value of the constant temperature crystal oscillator, and periodically monitor the working current of the constant temperature crystal oscillator to monitor the frequency of the constant temperature crystal oscillator and timely compensate the frequency.
  • step 120 the microcontroller determines a frequency compensation amount based on the operating current value based on a frequency compensation rule.
  • Step 120 may include: the microcontroller acquiring a corresponding frequency compensation rule according to the working current value; and the micro controller according to the working current value and the temperature value and the frequency drift in the frequency compensation rule Relationship, get the frequency compensation amount.
  • the frequency drift refers to the difference between the current output frequency of the oven controlled crystal oscillator and the normal output frequency.
  • the difference may be the current output frequency value of the constant temperature crystal oscillator minus the normal output frequency value of the constant temperature crystal oscillator. If the difference is a positive number, the output frequency of the constant temperature crystal oscillator needs to be reduced; if the difference is a negative number, Then you need to increase the output frequency of the constant temperature crystal oscillator.
  • the frequency compensation rule may be established according to the corresponding relationship between the temperature value, the working current value and the frequency drift by acquiring the operating current value and the frequency drift corresponding to the crystal oscillator under different temperature values of the constant temperature bath.
  • the frequency compensation rules are stored in the microcontroller.
  • the temperature of the bath is affected by the ambient temperature, resulting in a change in the output frequency of the oven.
  • the heating operating current of the oven controlled crystal oscillator also changes. Because heating is the core of constant temperature crystal oscillator temperature control, and the temperature control of the constant temperature crystal oscillator will be reflected in the working current (by controlling the operating current to adjust the temperature change), as long as the external ambient temperature changes, the heating of the constant temperature crystal oscillator The working current will change accordingly, and the change of the heating working current is the same as the temperature change of the constant temperature crystal oscillator, that is, the heating temperature control of the constant temperature crystal oscillator regardless of the change of the ambient temperature.
  • the circuit will make corresponding adjustments to make the heating operating current change accordingly. Therefore, the frequency compensation amount can be determined by the operating current value and the frequency drift amount of the constant temperature crystal oscillator at different temperatures, and the frequency of the constant temperature crystal oscillator device is compensated.
  • step 130 the microcontroller outputs the frequency compensation amount to the oven controlled crystal oscillator to compensate for the output frequency.
  • the step 130 may include: the microcontroller outputs the frequency compensation amount to the digital-to-analog converter; and the digital-to-analog converter converts the compensation amount into an analog electrical signal, and outputs an analog
  • the electrical signal is applied to the analog voltage control terminal of the oven controlled crystal oscillator such that the analog voltage control terminal adjusts the output frequency according to the analog electrical signal.
  • the analog electrical signal can be an analog voltage signal.
  • the frequency compensation amount is determined according to the frequency drift. If the output frequency value becomes larger after the frequency drift, the output frequency can be adjusted back, and vice versa, the output frequency can be increased.
  • the frequency compensation method of the constant temperature crystal oscillator device further includes: acquiring a working current value and a frequency drift corresponding to the crystal oscillator under different temperature values of the constant temperature bath; and according to the temperature value and the operating current The correspondence between the value and the frequency drift establishes the frequency compensation rule and is stored in the microcontroller.
  • the normal output frequency of the constant temperature crystal oscillator is 10 Hz
  • the normal operating frequency corresponds to a standard operating current of 5 A
  • the temperature of the constant temperature bath is 40 °C.
  • the constant temperature crystal oscillator is affected by the ambient temperature, the output frequency has changed, and the current working current value is measured as 7A.
  • the current working current value corresponds to the current thermostat temperature of 80 °C.
  • the current output frequency is 12 Hz.
  • the current output frequency is 12 Hz.
  • the normal output frequency is 10 Hz equal to +2 Hz, that is, the frequency drift is +2 (the output frequency is increased by 2 Hz).
  • the frequency compensation amount can be determined to be -2, which can be output and
  • the analog voltage signal corresponding to the frequency compensation amount is sent to the analog voltage control terminal VC of the constant temperature crystal oscillator, and the output frequency of the constant temperature crystal oscillator is adjusted, and the output frequency is compensated.
  • the embodiment of the present disclosure determines the frequency compensation amount according to the working current value by acquiring an operating current value of the constant temperature crystal oscillator, and outputs the frequency compensation amount to the constant temperature crystal oscillator to compensate the output frequency, which not only reduces The effect of the error caused by the measurement also improves the accuracy of the frequency compensation.
  • the present invention provides an oven controlled crystal oscillator device and a frequency compensation method thereof. By obtaining the operating current value of the constant temperature crystal oscillator, the frequency compensation amount can be determined, the influence of the temperature gradient on the frequency compensation is avoided, and the frequency compensation is improved. Precision.

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种恒温晶体振荡器装置及其频率补偿方法,该装置包括:恒温槽(22)、微控制器(23)、设置在恒温槽(22)中的恒温晶体振荡器(24)以及电流检测电路(25),其中:所述电流检测电路(25)与所述恒温晶体振荡器(24)相连,设置为获取恒温晶体振荡器(24)的工作电流值,并提供所述工作电流值给所述微控制器(23);以及所述微控制器(23)设置为基于频率补偿规则,根据所述工作电流值确定频率补偿量,并将所述频率补偿量输出给所述恒温晶体振荡器(24),以补偿输出频率。

Description

恒温晶体振荡器装置及其频率补偿方法 技术领域
本公开实施例涉及晶体振荡器技术领域,例如涉及一种恒温晶体振荡器及其频率补偿方法。
背景技术
“频率-温度稳定度”是恒温晶体振荡器(Oven Controlled Crystal Oscillator,OCXO)的重要技术指标之一,然而当恒温晶体振荡器被设计出来后,很多时候“频率-温度稳定度”指标仍不满足应用的要求,不断提升该指标是晶振制造商和用户应用的长期目标,因此引入了温度补偿技术来提升OCXO的温度稳定度。
相关的温度补偿方案如图1所示,图1为相关技术中恒温晶体振荡器系统的结构示意图。该振荡器系统包括:外壳10、设置在外壳10内的温度传感器11、微控制器(Microcontroller Unit,MCU)12、数模转换器(Digital to Analog Converter,DAC)13、恒温槽14以及设置在恒温槽14中的OCXO 15。温度传感器11设置在外壳10中,温度传感器11用于读取外壳10内的环境温度,传送环境温度至MCU 12。在恒温槽的不同温度下,MCU 12发送不同的频率补偿量到DAC 13,频率补偿量通过DAC 13由数字信号转换为模拟信号后,将模拟信号给到OCXO 15的模拟电压控制端(VC),调节OCXO 15的频率输出端(Fout)的输出频率,起到补偿的作用。
但是由于技术指标的要求不断提升,该补偿方案就出现了瓶颈,原因在于:温度传感器的位于恒温槽与外壳之间,由于恒温槽的控温点需要高于工作环境温度,如OCXO要求工作在环境温度-40℃~85℃时,恒温槽的温度可以设置在90℃以上。当OCXO工作在-40℃或85℃时,外壳、温度传感器和恒温槽这三者之间的温度梯度的差值是不一样的。当OCXO工作在-40℃或85℃,外界环境的气流发生变化时,外壳、温度传感器和恒温槽这三者之间的温度梯度的差值又会发生变化。如此,当OCXO工作在同一温度下,气流不一样时,温度传感器的温度梯度会发生变化,MCU给出的频率补偿量就会发生轻微的变化。虽然这种轻微的变化在OCXO的“频率-温度稳定度”技术指标要求较低的时候可以忽略,但是当OCXO的“频率-温度稳定度”技术指标要求小于这轻微的变化量时, 该补偿方法就无法满足应用的要求。
发明内容
本公开提供一种恒温晶体振荡器装置及其频率补偿方法,可以实现恒温晶体振荡器频率的高精度补偿。
本公开实施例提供一种恒温晶体振荡器装置,包括恒温槽、微控制器、设置在所述恒温槽中的恒温晶体振荡器以及电流检测电路,其中:
所述电流检测电路与所述恒温晶体振荡器相连,设置为获取所述恒温晶体振荡器的工作电流值,并提供所述工作电流值给所述微控制器;以及
所述微控制器设置为基于频率补偿规则,根据所述工作电流值确定频率补偿量,并将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率。
可选地,所述装置,还包括:
数模转换器,与所述微控制器和所述恒温晶体振荡器相连,设置为将所述频率补偿量转换成模拟电信号,并输出所述模拟电信号到所述恒温晶体振荡器的模拟电压控制端,使得所述模拟电压控制端根据所述模拟电信号调节输出频率。
可选地,上述装置还包括外壳,其中:
所述恒温槽、所述恒温晶体振荡器、所述微控制器、所述电流检测电路和所述数模转换器均设置在所述外壳内;或
所述恒温槽和所述恒温晶体振荡器设置在所述外壳外,所述微控制器、所述电流检测电路和所述数模转换器设置在所述外壳内;或
所述外壳包括第一外壳和第二外壳,所述电流检测电路、所述恒温槽和所述恒温晶体振荡器设置在所述第一外壳内,所述微控制器和所述数模转换器设置在所述第二外壳内。
本公开实施例还提供一种具有恒温晶体振荡器的设备,包括上述任一恒温晶体振荡器装置。
本公开实施例还提供一种恒温晶体振荡器装置的频率补偿方法,由上述任一恒温晶体振荡器装置执行,所述方法包括:
所述电流检测电路获取所述恒温晶体振荡器的工作电流值,并提供所述工 作电流值给所述微控制器;
所述微控制器基于频率补偿规则,根据所述工作电流值确定频率补偿量;以及
所述微控制器将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率。
可选地,上述方法中,所述微控制器将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率包括:
所述微控制器将所述频率补偿量输出给所述数模转换器;以及
所述数模转换器将所述频率补偿量转换成模拟电信号,并输出所述模拟电信号到所述恒温晶体振荡器的模拟电压控制端,使得所述模拟电压控制端根据所述模拟电信号调节输出频率。
可选地,所述方法,还包括:
获取所述恒温槽的不同温度值下,所述恒温晶体振荡器的工作电流值和频率漂移;以及
根据所述温度值、所述工作电流值和所述频率漂移的对应关系建立所述频率补偿规则,并存储至所述微控制器中。
可选地,上述方法中,所述微控制器基于频率补偿规则,根据所述工作电流值确定频率补偿量,包括:
所述微控制器根据所述工作电流值获取与所述工作电流值对应的频率补偿规则;以及
所述微控制器根据所述工作电流值与所述频率补偿规则中的温度值和频率漂移的对应关系,得到所述频率补偿量。
可选地,上述方法中,所述频率漂移是指所述恒温晶体振荡器的当前输出频率与正常输出频率的差值。
本公开提供的一种恒温晶体振荡器装置及其频率补偿方法,通过获取恒温晶体振荡器的工作电流值,可以确定频率补偿量,从而避免了温度梯度对频率补偿造成的影响,提高了频率补偿的精度。
附图说明
为了说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中使用的附图作简单地介绍。
图1为相关技术中的恒温晶体振荡器系统的结构示意图;
图2为本公开实施例一提供的一种恒温晶体振荡器装置的第一种结构示意图;
图3为本公开实施例一提供的一种恒温晶体振荡器装置的第二种结构示意图;
图4为本公开实施例一提供的一种恒温晶体振荡器装置的第三种结构示意图;以及
图5为本公开实施例三提供的一种恒温晶体振荡器装置的频率补偿方法的流程示意图。
具体实施方式
下面结合附图和实施例对本公开作进行详细说明。此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。在不冲突的情况下,以下实施例以及实施例中的技术特征可以相互任意组合。
实施例一
图2为本公开实施例一提供的一种恒温晶体振荡器装置的结构示意图。如图2所示,本公开实施例提供的一种恒温晶体振荡器装置,通过获取恒温晶体振荡器的工作电流值,可以实现恒温晶体振荡器频率的高精度补偿。
所述恒温晶体振荡器装置,包括:恒温槽22、微控制器(MCU)23、设置在恒温槽22中的恒温晶体振荡器(OCXO)24以及电流检测电路25。
所述电流检测电路25与OCXO 24相连,设置为获取OCXO 24的工作电流值,并提供所述工作电流值给所述MCU 23。
所述MCU 23设置为基于频率补偿规则,根据所述工作电流值确定频率补 偿量,并将所述频率补偿量输出给所述OCXO 24,以补偿输出频率。
可选的,所述装置还包括:数模转换模器(DAC)26。
DAC 26,与所述MCU 23和OCXO 24相连,设置为将所述频率补偿量转换成模拟电信号,并输出所述模拟电信号到OCXO 24的模拟电压控制端VC,使得所述模拟电压控制端根据所述模拟电信号调节输出频率。恒温晶体振荡器24的频率输出端Fout输出频率。
可选的,所述装置还包括外壳21。
参见图2,恒温槽、恒温晶体振荡器、微控制器、电流检测电路和数模转换器均设置在外壳21内。,
可选的,参见图3,恒温槽和恒温晶体振荡器设置在外壳21外,微控制器、电流检测电路和数模转换器设置在外壳21内。
可选的,参见图4,外壳包括第一外壳211和第二外壳212,电流检测电路、恒温槽和恒温晶体振荡器设置在第一外壳211内,微控制器和数模转换器设置在第二外壳212内。
上述方案中,频率补偿规则可以是通过获取所述恒温槽的不同温度值下,晶体振荡器的工作电流值和频率漂移,根据所述温度值、工作电流值和频率漂移的对应关系建立的,所述频率补偿规则存储在所述微控制器中。
可选的,频率补偿量是所述微控制器根据所述工作电流值获取频率补偿规则,根据所述工作电流值与所述频率补偿规则中的温度值和频率漂移的对应关系得到的。所述微控制器输出的频率补偿量经过数模转换器转换成模拟电信号,数模转换器输出模拟电信号给到恒温晶体振荡器的模拟电压控制端,模拟电压控制端对恒温晶体振荡器频率进行调节。
本公开提供的一种恒温晶体振荡器装置,通过获取恒温晶体振荡器的工作电流值,可以确定频率补偿量,从而避免了温度梯度对频率补偿造成的影响,提高了频率补偿的精度。
实施例二
本公开实施例二提供一种具有恒温晶体振荡器的设备,该设备包括实施例一提供的所有恒温晶体振荡器装置。
可选的,所述设备为通信设备。
本公开提供的一种具有恒温晶体振荡器的设备,通过设备中的恒温晶体振荡器装置获取恒温晶体振荡器的工作电流值,确定频率补偿量,避免了温度梯度对频率补偿造成的影响,提高了频率补偿的精度。
实施例三
请参阅图5,为本公开实施例三提供的一种恒温晶体振荡器装置的频率补偿方法的流程示意图。该方法由本公开实施例所提供的恒温晶体振荡器装置执行。
在步骤110中,所述电流检测电路获取所述恒温晶体振荡器的工作电流值,并提供所述工作电流值给所述微控制器。
所述工作电流可以为恒温晶体振荡器的加热工作电流。由于恒温晶体振荡器的控温原理是通过加热将恒温槽内的温度设置到环境工作温度以上,比如恒温晶体振荡器要求工作在环境温度-40℃~85℃时,恒温槽的温度可以设置在90℃以上,而发热的原理是通过控制恒温晶体振荡器的工作电流进行升温,当电流大时,恒温槽内的温度升高,电流小时,恒温槽内的温度降低。
可选的,所述电流检测电路可以周期性地获取恒温晶体振荡器的工作电流值,实现周期性地监控恒温晶体振荡器的工作电流来达到对恒温晶体振荡器频率的监控和及时补偿频率。
在步骤120中,所述微控制器基于频率补偿规则,根据所述工作电流值确定频率补偿量。
步骤120可以包括:所述微控制器根据所述工作电流值获取对应的频率补偿规则;以及所述微控制器根据所述工作电流值与所述频率补偿规则中的温度值和频率漂移的对应关系,得到频率补偿量。
所述频率漂移是指恒温晶体振荡器的当前输出频率与正常输出频率的差值。比如所述差值可以是恒温晶体振荡器的当前输出频率值减恒温晶体振荡器的正常输出频率值,若差为正数,则需要减小恒温晶体振荡器的输出频率;若差为负数,则需要增大恒温晶体振荡器的输出频率。所述频率补偿规则可以通过获取所述恒温槽的不同温度值下,晶体振荡器对应的工作电流值和频率漂移,根据所述温度值、工作电流值和频率漂移的对应关系建立。所述频率补偿规则存储在所述微控制器中。
当外界环境温度发生改变时,恒温槽的温度受到外界环境温度影响,导致恒温晶体振荡器的输出频率发生改变。当外界环境温度发生改变导致恒温晶体振荡器的输出频率改变时,恒温晶体振荡器的加热工作电流也会发生改变。因为加热是恒温晶体振荡器控温的核心,而恒温晶体振荡器的控温会体现在工作电流上(通过控制工作电流来调节温度变化),只要外界环境温度发生改变,恒温晶体振荡器的加热工作电流会做出相应的改变,并且加热工作电流改变的大小与恒温晶体振荡器的温度变化的比例是一样的,也就是说不论外界环境温度发生怎样的变化,恒温晶体振荡器的加热控温电路都会做出相应的调整使加热工作电流做出相应的改变。因此,通过不同温度下恒温晶体振荡器的工作电流值与频率的漂移量,可以确定频率补偿量,对恒温晶体振荡器装置的频率进行补偿。
在步骤130中,所述微控制器将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率。
可选的,步骤130可以包括:所述微控制器将所述频率补偿量输出给所述数模转换器;以及所述数模转换器将所述补偿量转换成模拟电信号,并输出模拟电信号到恒温晶体振荡器的模拟电压控制端,使得模拟电压控制端根据所述模拟电信号调节输出频率。
所述模拟电信号可以是模拟电压信号。所述频率补偿量根据频率漂移决定,若频率漂移后输出频率值变大,则可以回调输出频率,反之则可以增大输出频率。
可选的,所述恒温晶体振荡器装置的频率补偿方法还包括:获取所述恒温槽的不同温度值下,晶体振荡器对应的工作电流值和频率漂移;以及根据所述温度值、工作电流值和频率漂移的对应关系建立所述频率补偿规则,并存储至所述微控制器中。
假设恒温晶体振荡器的正常输出频率为10Hz,正常输出频率对应的标准工作电流为5A,恒温槽的温度为40℃。恒温晶体振荡器受到外界环境温度影响,输出频率发生了改变,测得当前工作电流值为7A,基于事先建立好的频率补偿规则,能获悉当前工作电流值对应的当前恒温槽的温度为80℃,当前输出频率为12Hz,当前输出频率12Hz减正常输出频率10Hz等于+2Hz,即频率漂移为+2(输出频率增加了2Hz),因此,可以确定频率补偿量为-2,可以通过输出与 频率补偿量对应的模拟电压信号到恒温晶体振荡器的模拟电压控制端VC,进行恒温晶体振荡器的输出频率回调,对输出频率进行补偿。
本公开实施例通过获取恒温晶体振荡器的工作电流值,根据所述工作电流值确定频率补偿量;将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率,不仅减小了测量带来的误差造成的影响,还提高了频率补偿的精度。
工业实用性
本公开提供的一种恒温晶体振荡器装置及其频率补偿方法,通过获取恒温晶体振荡器的工作电流值,可以确定频率补偿量,避免了温度梯度对频率补偿造成的影响,提高了频率补偿的精度。

Claims (9)

  1. 一种恒温晶体振荡器装置,包括恒温槽、微控制器、设置在所述恒温槽中的恒温晶体振荡器以及电流检测电路,其中,
    所述电流检测电路与所述恒温晶体振荡器相连,设置为获取所述恒温晶体振荡器的工作电流值,并提供所述工作电流值给所述微控制器;以及
    所述微控制器设置为基于频率补偿规则,根据所述工作电流值确定频率补偿量,并将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率。
  2. 根据权利要求1所述的装置,所述装置还包括:
    数模转换器,与所述微控制器和所述恒温晶体振荡器相连,设置为将所述频率补偿量转换成模拟电信号,并输出所述模拟电信号到所述恒温晶体振荡器的模拟电压控制端,使得所述模拟电压控制端根据所述模拟电信号调节输出频率。
  3. 根据权利要求2所述的装置,所述装置还包括外壳,其中,
    所述恒温槽、所述恒温晶体振荡器、所述微控制器、所述电流检测电路和所述数模转换器均设置在所述外壳内;或
    所述恒温槽和所述恒温晶体振荡器设置在所述外壳外,所述微控制器、所述电流检测电路和所述数模转换器设置在所述外壳内;或
    所述外壳包括第一外壳和第二外壳,所述电流检测电路、所述恒温槽和所述恒温晶体振荡器设置在所述第一外壳内,所述微控制器和所述数模转换器设置在所述第二外壳内。
  4. 一种具有恒温晶体振荡器的设备,所述设备包括权利要求1-3任一所述的恒温晶体振荡器装置。
  5. 一种恒温晶体振荡器装置的频率补偿方法,由权利要求1-3任一所述的恒温晶体振荡器装置执行,所述方法包括:
    所述电流检测电路获取所述恒温晶体振荡器的工作电流值,并提供所述工作电流值给所述微控制器;
    所述微控制器基于频率补偿规则,根据所述工作电流值确定频率补偿量;以及
    所述微控制器将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率。
  6. 根据权利要求5所述的方法,其中,所述微控制器将所述频率补偿量输出给所述恒温晶体振荡器,以补偿输出频率包括:
    所述微控制器将所述频率补偿量输出给所述数模转换器;以及
    所述数模转换器将所述频率补偿量转换成模拟电信号,并输出所述模拟电信号到所述恒温晶体振荡器的模拟电压控制端,使得所述模拟电压控制端根据所述模拟电信号调节输出频率。
  7. 根据权利要求5所述的方法,所述方法还包括:
    获取所述恒温槽的不同温度值下,所述恒温晶体振荡器的工作电流值和频率漂移;以及
    根据所述温度值、所述工作电流值和所述频率漂移的对应关系建立所述频率补偿规则,并存储至所述微控制器中。
  8. 根据权利要求7所述的方法,其中,所述微控制器基于频率补偿规则,根据所述工作电流值确定频率补偿量,包括:
    所述微控制器根据所述工作电流值获取与所述工作电流值对应的频率补偿规则;以及
    所述微控制器根据所述工作电流值与所述频率补偿规则中的温度值和频率漂移的对应关系,得到所述频率补偿量。
  9. 根据权利要求8所述的方法,其中,所述频率漂移是指所述恒温晶体振荡器的当前输出频率与正常输出频率的差值。
PCT/CN2017/074837 2016-12-19 2017-02-24 恒温晶体振荡器装置及其频率补偿方法 WO2018113089A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/471,087 US20200021242A1 (en) 2016-12-19 2017-02-24 Oven controlled crystal oscillator device, and frequency compensation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611179491.6A CN106788259A (zh) 2016-12-19 2016-12-19 一种恒温晶体振荡器装置、设备及其频率补偿方法
CN201611179491.6 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018113089A1 true WO2018113089A1 (zh) 2018-06-28

Family

ID=58890564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074837 WO2018113089A1 (zh) 2016-12-19 2017-02-24 恒温晶体振荡器装置及其频率补偿方法

Country Status (3)

Country Link
US (1) US20200021242A1 (zh)
CN (1) CN106788259A (zh)
WO (1) WO2018113089A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911299B (zh) * 2022-07-18 2022-10-28 深圳市英特瑞半导体科技有限公司 用于晶振温度补偿的高阶函数产生电路及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784756B2 (en) * 2001-12-21 2004-08-31 Corning Incorporated On-board processor compensated oven controlled crystal oscillator
JP2010245609A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 発振器
CN102983812A (zh) * 2012-11-23 2013-03-20 清华大学 一种温度补偿晶体振荡器
CN103138756A (zh) * 2013-01-24 2013-06-05 江汉大学 一种带温度补偿的原子频标伺服方法和电路
CN203166872U (zh) * 2013-02-01 2013-08-28 江汉大学 原子频标漂移修复系统及具有该系统的原子频标
CN104158493A (zh) * 2014-08-19 2014-11-19 广东大普通信技术有限公司 一种高稳恒温数字压控晶体振荡器系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166608A (en) * 1998-10-21 2000-12-26 Symmetricom, Inc. Thermo-electric cooled oven controlled crystal oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784756B2 (en) * 2001-12-21 2004-08-31 Corning Incorporated On-board processor compensated oven controlled crystal oscillator
JP2010245609A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 発振器
CN102983812A (zh) * 2012-11-23 2013-03-20 清华大学 一种温度补偿晶体振荡器
CN103138756A (zh) * 2013-01-24 2013-06-05 江汉大学 一种带温度补偿的原子频标伺服方法和电路
CN203166872U (zh) * 2013-02-01 2013-08-28 江汉大学 原子频标漂移修复系统及具有该系统的原子频标
CN104158493A (zh) * 2014-08-19 2014-11-19 广东大普通信技术有限公司 一种高稳恒温数字压控晶体振荡器系统

Also Published As

Publication number Publication date
CN106788259A (zh) 2017-05-31
US20200021242A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
CN101860322B (zh) 自动跟随温度控制晶体振荡器
ES2705433T3 (es) Método para la compensación de deriva de temperatura de dispositivo de medición de temperatura que usa termopar
US8749314B2 (en) Oven-controlled crystal oscillator
CN111174810B (zh) 一种应用于惯性导航系统的高精度if转换模块
TW201825874A (zh) 溫度量測電路、積體電路及溫度量測方法
US11326961B2 (en) Voltage and temperature sensor for a serializer/deserializer communication application
JP2021534387A (ja) 温度センサ装置、光センサ装置、これらの装置を含むモバイルコンピューティングデバイス、及び、これらの装置の使用法
CN104970776A (zh) 一种体温检测方法和一种高精度动态校准电子体温计装置
US9838023B2 (en) Slow-clock calibration method and unit, clock circuit, and mobile communication terminal
WO2018113089A1 (zh) 恒温晶体振荡器装置及其频率补偿方法
WO2015131539A1 (zh) 一种温度测量装置
EP2605408B1 (en) Multiple electrothermal-filter device
CN105680296A (zh) 基于热电制冷器的温度控制电路
CN110488903B (zh) 温度补偿por电路
JP3272633B2 (ja) 恒温槽型圧電発振器
CN111045317A (zh) 设备时钟的校准方法、装置及系统、自校准方法及设备
CN105811965B (zh) 一种高精度石英晶体振荡器结构及其实现方法
CN115185306A (zh) 一种基于fpga的石英加速度计i/f转换电路温控系统
EP3396392A1 (en) Apparatus and method for determining a power value of a target
CN109921760B (zh) Mems谐振器的温度补偿方法及装置、mems振荡器
CN207964942U (zh) 一种时域测量系统
CN207053485U (zh) 一种基于双泡式起振系统
JP2012134910A (ja) 温度制御回路、恒温槽型圧電発振器、電子機器及び温度制御方法
RU2488128C2 (ru) Терморезисторный преобразователь температуры в напряжение
CN111007710B (zh) 设备时钟的产线校准方法、装置及系统、自校准方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884401

Country of ref document: EP

Kind code of ref document: A1