WO2018113035A1 - 一种固体氧化物燃料电池堆阵列及其发电系统 - Google Patents

一种固体氧化物燃料电池堆阵列及其发电系统 Download PDF

Info

Publication number
WO2018113035A1
WO2018113035A1 PCT/CN2017/000111 CN2017000111W WO2018113035A1 WO 2018113035 A1 WO2018113035 A1 WO 2018113035A1 CN 2017000111 W CN2017000111 W CN 2017000111W WO 2018113035 A1 WO2018113035 A1 WO 2018113035A1
Authority
WO
WIPO (PCT)
Prior art keywords
stack
anode
cell stack
fuel cell
solid oxide
Prior art date
Application number
PCT/CN2017/000111
Other languages
English (en)
French (fr)
Inventor
王蔚国
彭军
陈涛
何长荣
牛金奇
赵青
Original Assignee
宁波索福人能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波索福人能源技术有限公司 filed Critical 宁波索福人能源技术有限公司
Publication of WO2018113035A1 publication Critical patent/WO2018113035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an array structure of a battery stack and a power generation system thereof in a solid oxide fuel cell (SOFC) power generation system.
  • SOFC solid oxide fuel cell
  • Solid Oxide Fuel Cell (SOFC) power generation system can directly convert chemical energy in fuel into electric energy.
  • the fuel includes natural gas, liquefied gas, syngas, biogas, hydrogen, etc.
  • the power generation process is efficient and clean. A promising way to generate electricity.
  • the SOFC power generation system can be modularly integrated to build a large-scale distributed power station.
  • the existing natural gas pipeline network can provide the natural gas needed for power generation, and the generated electricity can be supplied to the buildings, communities, factories, etc. It is also capable of transmitting electricity to the national grid. Therefore, the SOFC power generation system is a power generation mode with broad commercial prospects.
  • the core component of the SOFC power generation system is the battery stack array.
  • the battery stack array consists of a plurality of battery stacks according to a certain distribution pattern, and is a power generation place for converting chemical energy in the fuel into electric energy.
  • the battery stack requires a certain compression fastening structure to work stably.
  • the pressurization method of the stack of cells uses a common upper and lower superposition method, that is, the stack of cells is placed vertically, stacked one on top of the other, and screwed up and down with a screw.
  • Patent 201310212920.5 discloses a tissue form of a stack of cells in a solid oxide fuel cell power generation system, the stack of stacks in the solid oxide fuel cell power generation system, comprising a support and a stack, characterized in that:
  • the support body has a layered structure including one or more support units; each support unit supports at least one stack; each stack consists of several single stacks, each of which is Horizontally positioned; fasteners are disposed between the single stacks: the patent proposes to place the stack of cells in a horizontal position, using a layered disc structure to organize the stack of cells.
  • the program specifies the need to place fasteners between individual stacks, but does not further detail how the fasteners are set. Moreover, the use of the device of the patent application in practice indicates that a stable connection between the stacks is required, and the fasteners need to be well matched, resulting in a relatively high dimensional requirement for the installation, and the positioning and installation are difficult to implement, and the battery stack exists. Installation of unstable defects, resulting in unstable sealing and conduction failure between the stacks, etc., can further improve the design. Based on the patent 201310212920.5, the present invention refines and proposes a new structure for stacking a stack in a layered disk stack.
  • the battery stack can be effectively pressurized, overcoming the disadvantages of the instability of the stack which may be brought about by the pressurization method adopted in US Pat. No. 7,759,022 B2 and US 2012/0178003 A1, and the entire pressurized structure is stable. reliable.
  • the primary technical problem to be solved by the present invention is to provide a solid oxide fuel cell stack array which is reasonable in structure, easy to implement and operate, and which allows the battery stack to be easily pressurized and appropriately adjusted for pressure.
  • the pressure makes the connection between the stacks robust and reliable, thereby overcoming the drawbacks of battery stack instability that may be caused by the pressurization method employed in the background art.
  • Another technical problem to be solved by the present invention is to provide a solid oxide fuel cell power generation system using the above-described pressurized structure in view of the above state of the art.
  • a solid oxide fuel cell stack array comprising a support body and a battery stack, the support body having a layer structure, comprising at least an upper tray and a lower tray, the battery
  • the stack is carried by the lower tray, and the upper stack is placed on the stack of the battery stack.
  • the stack includes a plurality of stacks, the stack is horizontally arranged, and fasteners are arranged between the stacks.
  • the support body is arranged between the upper tray and the lower tray, and the fasteners on the left and right sides of the battery stack are respectively arranged as a movable block and a fixed block, and the support column has a screw hole, and the force applying screw is combined with the support column through the screw hole And the inner end of the force applying screw is in contact with the outer surface of the respective movable block, and the self-stroke is adjusted by rotating the force applying screw, so that the side of the movable block exerts pressure on the adjacent battery stack, so that the battery stack is pressed tightly. solid.
  • a movable block is disposed in the middle of the adjacent battery stack, and fixed blocks are respectively disposed on two sides of the adjacent battery stack, so that the battery stacks are sequentially arranged to form a layered annular distribution.
  • the support body has a multi-layer structure, and the adjacent upper support lower tray and the lower support upper tray share a fixed plate.
  • the support body has a multi-layer structure, and the movable block, the fixed block and the force-applying screw arranged on the side of each battery stack of each layer are arranged in a straight line in the longitudinal direction.
  • the movable block is wedge-shaped or trapezoidal, and at least one side is beveled.
  • the fixing block has a wedge shape or a trapezoidal shape, and at least one side surface is distributed by a slope.
  • the horizontal section of the movable block and the fixed block is an isosceles trapezoid.
  • the upper tray and the lower tray are formed with a convex and convex fixing portion at a position corresponding to the movable block, and the outer convex fixing portion is provided with a bayonet.
  • the upper end and the lower end of the support post are formed with a matching leg. .
  • the outer surface of the movable block is provided with a positioning hole for the inner end of the force applying screw to be in contact with the positioning, and is lined with a heat-resistant ceramic gasket.
  • the side of the fixing block is provided with an anode gas inlet hole and an anode exhaust gas collecting hole, respectively, and the battery
  • the anode gas hole and the anode waste gas hole of the pile are sealed and connected
  • the surface of the fixed block is provided with an anode gas inlet hole and an anode exhaust gas outlet hole, respectively communicating with the anode gas inlet hole and the anode exhaust gas collection hole on the side of the fixed block, and the fixing block is longitudinally disposed.
  • the fixing block is provided with a venting line which is respectively in sealing connection with the anode gas inlet hole and the anode exhaust gas outlet hole on the fixing block
  • the venting line comprises a venting flange and a vent main pipe
  • the venting flange is provided with an anode a gas vent and an anode exhaust vent
  • the vent main pipe is longitudinally distributed on both sides of the vent flange, respectively an anode gas main pipe and an anode exhaust gas collecting main pipe
  • the anode gas pipe and the anode exhaust gas pipe are laterally distributed
  • the two sides of the venting flange are such that the anode gas inlet hole on the fixing block is sealed through the anode gas vent hole, the anode gas line and the anode gas main pipe on the venting flange, and the anode exhaust gas outlet hole on the fixing block passes through
  • the anode exhaust vent, the anode exhaust line, and the anode exhaust gas collection main pipe on the vent flange are in sealing communication
  • a sealing conductive structure is disposed between the fixing block and the battery stack, the sealing conductive structure comprises a sealing assembly and a conductive sheet, the sealing assembly comprises two sealing gasket layers and a supporting layer, and one supporting layer is disposed on the two Between the gasket layers, the gasket layer has a ring shape matching the shape of the fixing block and the side of the battery stack, and a convex flange portion is provided at the communication passage between the fixing block and the battery stack, and the flange portion is opened correspondingly The through hole, correspondingly, the support layer is surrounded by the metal sealing ring and is lined between the flange portions of the two sealing gasket layers.
  • the conductive sheet is a deformable conductive sheet, and the thickness of the conductive sheet is greater than the thickness of the sealing assembly. , placed in the inner space of the sealing assembly respectively against the fixed block and the side of the battery stack to achieve electrical conduction.
  • the conductive plate is made of a foamed metal sheet.
  • a solid oxide fuel cell power generation system comprising a battery stack array, characterized in that the battery stack array according to any one of the above items is used.
  • the pressurization of the stack is improved, so that the left and right sides of the stack are uniformly pressurized, and the force of each stack is achieved by the rapid pressurization of the movement, so that the entire sides of the stack are By force, by adjusting the force-applying screw, the pressure of each stack is uniform, and the pressure of the pressure can be adjusted.
  • the array of the stack is more stable and effective.
  • This pressurized structure facilitates the integration of the stack of cells.
  • the battery stack array can be stacked by using the pressurized structure to form a multilayer battery stack array structure, which facilitates large-scale integration of the SOFC system.
  • the fixed block does not move.
  • the sealed conductive structure begins to be stressed: first, the foamed metal conductive sheet begins to be compressed by force, and maintains good contact between the conductive plate, the fixed block, and the battery stack; Secondly, the intermediate layer metal sealing ring is embedded in the left and right two-layer gasket layers as the pressure increases, according to the flatness around the battery stack hole, Adjusting the embedding depth of each point of the metal sealing ring, so that the two left and right shim layers are closely adhered to the sealing block and the sealed surface of the battery stack to achieve the sealing of the anode gas, thereby achieving good between the fixing block and the battery stack. Stable sealing and electrical conduction.
  • the ventilation pipeline and the pipeline inside the fixed block are used to cooperate to supply anode gas and collect anode exhaust gas to the battery stack, which facilitates centralized anode gas distribution, easy maintenance of pipeline and maintenance, and compact and concentrated structure.
  • Fig. 1 is a view showing the assembled structure of the stack of the battery in the first embodiment (without the upper tray).
  • Fig. 2 is an assembly view of the stacking structure of the battery stack in the first embodiment.
  • Figure 3 is a block diagram of a fixed block.
  • Figure 4 is a structural view of the vent flange.
  • Figure 5 is a connection diagram of the venting main pipe and the vent flange.
  • Figure 6 is a schematic view showing the conductive structure of the fixed block and the battery stack.
  • Fig. 7 is an assembly diagram of a 30 kW battery stack array in the first embodiment.
  • Figure 8 is an assembled view of the stack pressure structure of the second embodiment (without the upper tray).
  • Fig. 9 is an assembly view of the stack pressure structure of the second embodiment.
  • Figure 10 is an assembly diagram of a 6 kW battery stack array in Example 2.
  • Figure 11 is an assembled view of the stack pressure structure of the third embodiment.
  • Figure 12 is a diagram showing a sealed conductive structure mounted between the fixed block and the stack.
  • Figure 13 is a schematic view showing the distribution of pores of the battery stack.
  • 1 to 13 are: upper tray 1, lower tray 2, support column 3, force applying screw 4, movable block 5, fixed block 6, battery stack 7, outer convex fixing portion 8, positioning hole 9, Anode gas inlet port 10, anode exhaust gas collection hole 11, anode gas inlet hole 12, anode exhaust gas outlet hole 13, venting flange anode gas vent hole 12', venting flange anode exhaust gas vent hole 13', flange screw hole 14 , flange screw 15, anode gas line 16, anode exhaust line 17, vent flange 18, anode gas main line 19, anode exhaust gas collection main pipe 20, main pipe fixing flange 21, gasket 22, conductive sheet 23, gasket layer 24, support layer 25, flange portion 26, through hole 27, anode gas hole 28 of battery stack 7, anode exhaust gas hole 29 of battery stack 7.
  • the solid oxide fuel cell stack array shown in this embodiment comprises 10 battery stacks, and further comprises an upper tray 1, a lower tray 2, a support column 3, a force applying screw 4, a movable block 5, a fixed block 6, and a battery stack. 7 main components.
  • a battery stack including 10 battery stacks 7 is placed on the lower tray 2, and the battery stack 7 is in a horizontal shape.
  • the two sides of the battery stack 7 are a movable block 5 and a fixed block 6, respectively, for ease of installation and use.
  • the movable block 5 is disposed in the middle of the adjacent battery stack 7, and the fixed blocks 6 are respectively disposed on both sides of the adjacent battery stack 7, so that the battery stack 7 is sequentially arranged to form a layered annular distribution.
  • the movable block 5 and the fixed block 6 are horizontal.
  • the cross section is an isosceles trapezoid, and the outer surface of the movable block 5 is provided with a positioning hole for the inner end of the force applying screw 4 to be in contact with the positioning, and the heat-resistant ceramic gasket is lined to provide heat insulation function for facilitating the adjustment operation of the screw 4 .
  • the fixing block 6 is internally provided with a venting hole and a positioning hole.
  • the function of the air holes is for anode ventilation of the battery stack, including the anode gas inlet hole 10, the anode exhaust gas collecting hole 11, the anode gas inlet hole 12, and the anode exhaust gas outlet hole 13.
  • the positioning hole functions for the convenience of installation. As shown in FIG.
  • the anode block gas inlet hole 10 and the anode exhaust gas collection hole 11 are disposed on the side of the fixing block 6, and are respectively in sealing communication with the anode gas hole 28 and the anode exhaust gas hole 29 of the battery stack 7, and the surface of the fixing block 6 is provided with
  • the anode gas inlet hole 12 and the anode exhaust gas outlet hole 13 are respectively communicated with the anode gas inlet hole 10 and the anode exhaust gas collection hole 11 on the side of the fixed block, such that the anode gas inlet hole 12 and the anode gas inlet hole 10 are in communication with each other,
  • the anode gas (i.e., reformed tail gas) of the main line enters the anode gas inlet hole 10 through the anode gas inlet hole 12, and enters the battery stack 7 from the anode gas inlet port 10, and the anode exhaust gas collection hole 11 and the anode exhaust gas outlet hole 13
  • the anode exhaust gas after the reaction passes through the anode exhaust gas collecting hole 11
  • the fixing block 6 is longitudinally provided with the positioning hole 9 and is fixed and fixed with the positioning pin of the upper tray 1.
  • the tray 1 has a support column 3 between the upper tray 1 and the lower tray 2.
  • the upper tray 1 and the lower tray 2 are formed with a convex outer circumferential fixing portion 8 corresponding to the movable block 5, and the outer convex fixing portion 8 Have a bayonet, right
  • the upper end and the lower end of the support column 3 are formed with a matching card leg.
  • the support post 3 is mounted between the upper tray 1 and the lower tray 2 by the engagement of the card foot and the bayonet to form a support body.
  • the support post 3 is provided with a screw.
  • the hole is such that the upper force applying screw 4 can be disposed on the support column 3.
  • the upper tray 1 is covered as shown in FIG. 2.
  • the force applying screw 4 is rotated by a torque wrench, and the force applying screw 4 pushes the movable block 5 forward, and during the advancement of the movable block 4, the battery stack 7 on both sides is pressed, thereby achieving The battery stack 7 is pressurized for the purpose, and the force applying screw 4 is rotated to adjust its own stroke so that the pressure to the battery stack 7 can be adjusted.
  • the upper tray 1, the lower tray 2, the support column 3, and the biasing screw 4 are made of stainless steel.
  • the material of the movable block 5 and the fixed block 6 is made of a metal material such as stainless steel.
  • the material used for the movable block and the fixed block has a coefficient of thermal expansion greater than that of the materials used for the upper and lower trays.
  • the fixing block 6 is provided with a venting line which is respectively in sealing communication with the anode gas inlet hole and the anode exhaust gas outlet hole on the fixing block 6, and the vent line includes a venting flange 18 and a venting main pipe.
  • the peripheral vent line is used to introduce reformate off-gas to the stack and to extract anode off-gas from the stack.
  • the venting flange 18 in the peripheral line is shown in Fig. 4, the vent main pipe is shown in Fig. 5, and the vent main pipe is longitudinally distributed on both sides of the vent flange 18, which are an anode gas main pipe 19 and an anode exhaust gas collecting main pipe 20, and an anode.
  • the vent flange 18 has a venting flange anode gas vent 12', a venting flange anode exhaust vent 13', an anode gas line 16 and an anode exhaust line 17, and the vent flange 18 passes through the flange screw 15 and the fixed block. 6 fixedly connected.
  • the anode gas main conduit 19, the anode gas conduit 16 and the venting flange anode gas venting opening 12' are in communication, and the venting flange anode gas venting opening 12' is in communication with the anode gas inlet opening 12 in the stationary block.
  • the anode gas ie, the reformed tail gas
  • the anode gas is sequentially passed through the anode gas main pipe 19, the anode gas line 16, the vent flange anode gas vent 12', the anode gas inlet hole 12, and the anode gas inlet hole 10 into the battery stack 7. .
  • the anode gas ie, the reformed tail gas
  • the anode exhaust gas collection main pipe 20, the anode exhaust gas pipe 17, and the vent flange anode exhaust gas vent hole 13' are in communication, and the venting flange anode exhaust gas vent hole 13' is connected to the anode exhaust gas on the fixed block.
  • the exit holes 13 are in communication.
  • the reacted anode off-gas enters the anode off-gas collection main line 20 through the anode off-gas collection hole 11, the anode off-gas outlet 13, the vent flange anode off-gas vent 13', and the anode off-gas line 17 in order.
  • a sealed conductive structure is installed between the fixed block 6 and the battery stack 7.
  • the sealed conductive structure includes a sealing assembly 22 and a conductive sheet 23 for sealing the hole between the battery stack and the fixed block, and the conductive sheet 23 is used for the battery.
  • the sealing sheet is made of a high temperature resistant sealing sheet.
  • the seal assembly 22 includes two gasket layers 24 and a support layer 25, a support layer 25 disposed between the two gasket layers 24, the gasket layer 24 being presented to the side of the block 6 and the stack 7
  • the shape-fitting annular ring is provided with an inner convex flange portion 26 at a communication passage between the fixed block 6 and the battery stack 7.
  • the flange portion 26 defines a corresponding through hole 27, and correspondingly, the support layer 25 is surrounded by a metal sealing ring.
  • the through hole is lined between the flange portions 26 of the two gasket layers.
  • the conductive sheet 23 is a deformable conductive sheet. The thickness of the conductive sheet 23 is greater than the thickness of the sealing assembly, and is placed in the inner space of the sealing assembly to be respectively fixed and fixed. Block 6 and the side of the stack 7 provide electrical conduction.
  • the conductive sheet 23 is made of a metal sheet or a metal foam sheet such as silver sheet, silver foam, and foamed steel.
  • Fig. 7 is a stack of battery stacks assembled by stacking six such units in a cell stack pressurization structure shown in Fig. 2. It can be seen that under the condition that the support body has a multi-layer structure, the adjacent upper support lower tray 2 and the lower support upper tray 1 can share a fixed plate to save material cost, reduce weight, etc.: the support has a multi-layer structure
  • the movable block 5, the fixed block 6 and the force applying screw 4 arranged on the side of each of the battery stacks 7 in each layer are arranged in the longitudinal direction Listed in a straight line.
  • the array contains 60 battery stacks with a stable operating output of 30 kW.
  • the pressurized structure of the battery stack shown in this patent is as follows:
  • the force applying screw 4 When pressurized, the force applying screw 4 is pushed to push the movable block, and the movable block 5 pushes the battery stack 7 to pressurize.
  • a torque wrench is used when tightening the force applying screw 4, and the force applied by each force applying screw 4 is the same.
  • the pressurization of the stack 7 is completed and assembled into a solid oxide fuel cell stack array.
  • This solid oxide fuel cell stack array can be assembled into a corresponding power generation system.
  • the battery stack array shown in this embodiment includes four battery stacks, including main components such as an upper tray 1, a lower tray 2, a support column 3, a force applying screw 4, a movable block 5, a fixed block 6, and a battery stack 7.
  • FIG. 8 and FIG. 9 four battery stacks are placed on the lower tray 2, and the two sides of the battery stack 7 are a movable block 5 and a fixed block 6, respectively, with an upper tray 1 and an upper tray 1 and a lower tray 2
  • the urging screw 4 When pressurizing, the urging screw 4 is rotated, and the urging screw 4 pushes the movable block forward, and during the advancement of the movable block 5, the battery stack 7 on both sides is pressed to achieve the purpose of pressurizing the stack.
  • the upper tray, the lower tray, the support column, the force-applying screw, the movable block, and the fixed block are made of stainless steel.
  • Fig. 10 is a stack of battery stacks assembled by stacking three such units in a unit of the stack pressure structure shown in Fig. 9.
  • the array contains 12 battery stacks with a stable operating output of 6 kW.
  • the stacking structure of the stack in the SOFC power generation system is as shown in FIG. 11, and includes an upper tray 1, a lower tray 2, a support column 3, a force applying screw 4, a movable block 5, a fixed block 6, and a battery stack 7. And other major components.
  • the two sides of the battery stack 7 are a movable block 5 and a fixed block 6, respectively, with an upper tray 2 thereon, and a support column between the upper tray 1 and the lower tray 2 3.
  • the support column 3 has a force applying screw 4 thereon.
  • the urging screw 4 When pressurized, the urging screw 4 is rotated, and the urging screw 4 pushes the movable block 5 forward, and during the advancement of the movable block 5, the battery stack 7 on both sides is pressed to achieve the purpose of pressurizing the battery stack 7.
  • the upper tray 1, the lower tray 2, the support column 3, the force applying screw 4, the movable block 5, and the fixed block 6 are made of stainless steel.
  • the number of the stacks of the pressurized structure may be an odd number or an even number, and may be flexibly set as needed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种固体氧化物燃料电池堆阵列及其发电系统,其包括支撑体和电池堆组,支撑体呈层状结构,至少包括有上托盘和下托盘,电池堆组由下托盘承载,电池堆组的上面放置上托盘,电池堆组包括有多个电池堆,电池堆呈横卧状,电池堆之间设置了紧固件,其特征在于另有支撑柱设置在上托盘和下托盘之间构成了支撑体,电池堆左右两侧紧固件分别设置成活动块和固定块,支撑柱上有螺丝孔,施力螺杆通过螺丝孔与支撑柱结合在一起,并使施力螺杆的里端抵触在各自活动块外表面上,通过旋转施力螺杆来调节其自身行程,从而使活动块侧面对邻近的电池堆产生压力,使电池堆组被加压紧固。该结构方便实施,稳定有效。

Description

一种固体氧化物燃料电池堆阵列及其发电系统 技术领域
本发明涉及一种固体氧化物燃料电池(Solid oxide fuel cell,SOFC)发电系统中电池堆的阵列结构及其发电系统。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)发电系统能将燃料中的化学能直接转化为电能,燃料包括天然气、液化气、合成气、沼气、氢气等,该发电过程高效、清洁,是一种很有前途的发电方式。SOFC发电系统可以模块化集成,用于构建大型的分布式发电站,现有的天然气管网能提供发电所需的天然气,发出来的电可就近供应供楼宇、社区、厂房等的用电,还能够向国家电网输电,因此,SOFC发电系统是一种具有广阔商业前景的发电模式。
SOFC发电系统的核心部件就是电池堆阵列,电池堆阵列由多个电池堆按照一定的分布形态所组成,是将燃料中的化学能转化为电能的发电场所。电池堆需要一定的加压紧固结构才能稳定的工作。在美国专利US7659022B2和US2012/0178003A1中,电池堆阵列的加压方法采用普通的上下叠加法,即电池堆竖直摆放,上下叠放,用螺杆上下加压紧固。当单列电池堆数量增加时,此种加压方法易导致电池堆倾斜不稳,影响加压紧固,这是此种方法最大的弊端。专利201310212920.5公开了一种固体氧化物燃料电池发电系统中的电池堆阵列的组织形式,该种固体氧化物燃料电池发电系统中的电堆阵列,包括支撑体与电堆组,其特征是:所述的支撑体呈层状结构,包括一层或两层以上的支撑单元;每层支撑单元支撑至少一个电堆组;每个电堆组由数个单电堆组成,每个单电堆呈横卧状;所述的单电堆之间设置紧固件:该专利提出将电池堆横卧放置,采用层状盘式结构组织电池堆阵列。该方案指明了要在单个电池堆之间设置紧固件,但并没有进一步具体细化紧固件如何设置。而且该专利申请的装置在实践中使用表明,要电池堆之间稳固连接,需要紧固件很好配合设置,造成安装上尺寸要求比较高,定位安装实施起来有一定难度,电池堆之间存在安装不稳固缺陷,从而造成电池堆之间密封导电不稳定失效等等,凡此种种还可以进一步改进设计。本发明在专利201310212920.5的基础上,细化并提出了在层状盘式电池堆阵列中电池堆加压的新结构。通过本发明提供的方法和和结构,电池堆能被有效的加压,克服了美国专利US7659022B2和US2012/0178003A1所采用的加压方法可能带来的电池堆不稳定的弊端,整个加压结构稳定可靠。
发明内容
本发明所要解决的首要技术问题是针对上述的技术现状而提供一种结构合理、容易实施和操作的固体氧化物燃料电池堆阵列,它使电池堆能方便地被加压并可以适当调节加压压力,使电池堆之间连接稳固可靠,从而克服背景技术中所采用的加压方法可能带来的电池堆不稳定的弊端。
本发明所要解决的另一个技术问题是针对上述的技术现状而提供一种采用上述加压结构的固体氧化物燃料电池发电系统。
本发明解决上述首要技术问题所采用的技术方案为:一种固体氧化物燃料电池堆阵列,其包括支撑体和电池堆组,支撑体呈层状结构,至少包括有上托盘和下托盘,电池堆组由下托盘承载,电池堆组的上面放置上托盘,电池堆组包括有多个电池堆,电池堆呈横卧状,电池堆之间设置了紧固件,其特征在于另有支撑柱设置在上托盘和下托盘之间构成了支撑体,电池堆左右两侧紧固件分别设置成活动块和固定块,支撑柱上有螺丝孔,施力螺杆通过螺丝孔与支撑柱结合在一起,并使施力螺杆的里端抵触在各自活动块外表面上,通过旋转施力螺杆来调节其自身行程,从而使活动块侧面对邻近的电池堆产生压力,使电池堆组被加压紧固。
优选,相邻所述电池堆的中间设置活动块,相邻电池堆的两侧分别设置固定块,使电池堆依次排列形成层状环形分布。
作为改进,所述支撑体具有多层结构条件下,相邻的上层支撑体下托盘和下层支撑体上托盘是共用一块固定板。
优选,所述支撑体具有多层结构条件下,每层各个电池堆侧面布置的活动块、固定块及施力螺杆在纵向排列成直线分布。
优选,所述活动块呈楔形或梯形,至少一侧面是斜面分布的。
优选,所述固定块呈楔形或梯形,至少一侧面是斜面分布的。
作为优选,所述活动块和固定块水平截面是呈现等腰梯形。
作为改进,所述上托盘和下托盘对应于活动块位置成型有凸出环周的外凸固定部,外凸固定部开有卡口,对应地,支撑柱的上端和下端成型出配合卡脚。
再改进,所述活动块外表面开有供施力螺杆的里端抵触定位的定位孔,内衬耐热陶瓷垫片。
作为改进,所述固定块侧面设置有阳极气体进气孔和阳极废气收集孔,分别与电池 堆的阳极气体孔、阳极废气孔密封连通,固定块的表面设置有阳极气体进孔和阳极废气出孔,分别和固定块侧面的阳极气体进气孔和阳极废气收集孔连通,固定块纵向设置有定位孔,与上托盘的定位销配合定位固定。
进一步改进,所述固定块外围设置有与固定块上的阳极气体进孔和阳极废气出孔分别密封相通的通气管路,通气管路包括通气法兰和通气主管道,通气法兰开有阳极气体通气孔和阳极废气通气孔,而通气主管道纵向地分布在通气法兰的两侧,分别为阳极气体主管道和阳极废气收集主管道,阳极气体管路和阳极废气管路横向地分布在通气法兰的两侧,这样使固定块上的阳极气体进孔通过通气法兰上的阳极气体通气孔、阳极气体管路和阳极气体主管道密封连通,而固定块上的阳极废气出孔通过通气法兰上的阳极废气通气孔、阳极废气管路和阳极废气收集主管道密封连通。
进一步改进,所述固定块与电池堆之间设置有密封导电结构,密封导电结构包括密封组件和导电片,密封组件包括两个密封垫片层和一层支撑层,一层支撑层设置在两个密封垫片层之间,密封垫片层呈现与固定块和电池堆侧面形状配合的环形,在固定块和电池堆之间孔道连通处设置有内凸的凸缘部位,凸缘部位开设对应贯通孔,对应地,支撑层采用金属密封圈绕着贯通孔,并衬在两个密封垫片层的凸缘部位之间,导电片是能变形的导电片,导电片厚度要大于密封组件厚度,置于密封组件内侧空间内分别抵触固定块和电池堆侧面,实现电导通。
优选,所述导电板采用泡沫金属片。
本发明解决上述另一个技术问题所采用的技术方案为:一种固体氧化物燃料电池发电系统,包括电池堆阵列,其特征是;采用上述任何一项所述的电池堆阵列。
与现有技术相比,本发明的优点在于:
(1)改进了电池堆的加压,使电池堆左右两侧受到均匀的加压,每个电池堆的受力都是通过活动快的加压而实现,因此电池堆两侧的整个面都受力,通过调节施力螺杆,使每个电池堆的受压都均匀,并可以调节受压压力大小,在此种加压结构中,电池堆阵列更加稳定、有效。
(2)此加压结构便于电池堆阵列的集成。用此加压结构制作电池堆阵列能够叠加,组成多层电池堆阵列结构,便于SOFC系统的大规模集成。
(3)电池堆侧面施加压力后,固定块不动,此时密封导电结构开始受力:首先泡沫金属导电片开始受力被压缩,保持导电板、固定块、电池堆之间的良好接触;其次中间层金属密封环随着压力的增大嵌入左右两层垫片层内,根据电池堆孔周围的平整度,自 行调节金属密封环各点的嵌入深度,使左右两层垫片层保持与固定块和电池堆被密封面紧密贴合,实现阳极气体的密封,故实现了固定块和电池堆之间的良好而稳定的密封与导电。
(4)采用通气管路和固定块内管道进行配合,实现给电池堆供给阳极气体和收集阳极废气,方便集中阳极气体配给,容易维护管路和检修,使结构紧凑集中。
附图说明
图1是实施例1中的电池堆加压结构装配图(无上托盘)。
图2是实施例1中的电池堆加压结构装配图。
图3是固定块结构图。
图4是通气法兰结构图。
图5是通气主管与通气法兰连接结构图。
图6是固定块与电池堆密封导电结构示意图。
图7是实施例1中的30kW电池堆阵列装配图。
图8是实施例2中的电池堆加压结构装配图(无上托盘)。
图9是实施例2中的电池堆加压结构装配图。
图10是实施例2中的6kW电池堆阵列装配图。
图11是实施例3中的电池堆加压结构装配图。
图12是固定块与电池堆之间安装有密封导电结构图。
图13是电池堆的气孔分布示意图。
图1至13中的附图标记为:上托盘1,下托盘2,支撑柱3,施力螺杆4,活动块5,固定块6,电池堆7,外凸固定部8,定位孔9,阳极气体进气孔10,阳极废气收集孔11,阳极气体进孔12,阳极废气出孔13,通气法兰阳极气体通气孔12’,通气法兰阳极废气通气孔13’,法兰螺丝孔14,法兰螺丝15,阳极气体管路16,阳极废气管路17,通气法兰18,阳极气体主管道19,阳极废气收集主管道20,主管道固定法兰21,密封垫片22,导电片23,密封垫片层24,支撑层25,凸缘部位26,贯通孔27,电池堆7的阳极气体孔28,电池堆7的阳极废气孔29。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例所示的一种固体氧化物燃料电池堆阵列包含10个电池堆,还包括上托盘1、下托盘2、支撑柱3、施力螺杆4、活动块5、固定块6、电池堆7等主要部件。
如图1所示,包括10个电池堆7的电池堆组放置在下托盘2上,电池堆7呈横卧状,电池堆7两侧分别是活动块5和固定块6,为了便于安装使用,通常相邻电池堆7的中间设置活动块5,相邻电池堆7的两侧分别设置固定块6,使电池堆7依次排列形成层状环形分布,作为优选,活动块5和固定块6水平截面是呈现等腰梯形,活动块5外表面开有供施力螺杆4的里端抵触定位的定位孔,内衬耐热陶瓷垫片,起到隔热作用,便于施力螺杆4调节操作。固定块6内部设置有布气孔以及定位孔。布气孔的作用是用于电池堆的阳极通气,包括阳极气体进气孔10,阳极废气收集孔11,阳极气体进孔12以及阳极废气出孔13,定位孔的作用则是为了安装的方便。如图3所示,固定块6侧面设置有阳极气体进气孔10和阳极废气收集孔11,分别与电池堆7的阳极气体孔28、阳极废气孔29密封连通,固定块6的表面设置有阳极气体进孔12和阳极废气出孔13分别和固定块侧面的阳极气体进气孔10和阳极废气收集孔11连通,这样,阳极气体进孔12与阳极气体进气孔10是相通的,来自主管路的阳极气体(即重整尾气)通过阳极气体进孔12进入阳极气体进气孔10,再由阳极气体进气孔10进入电池堆7,而阳极废气收集孔11与阳极废气出孔13是相通的,反应后的阳极废气依次通过阳极废气收集孔11以及阳极废气出孔13进入主管路,固定块6纵向设置有定位孔9,与上托盘1的定位销配合定位固定,上面有上托盘1,上托盘1和下托盘2之间有支撑柱3,通常,上托盘1和下托盘2对应于活动块5位置成型有凸出环周的外凸固定部8,外凸固定部8开有卡口,对应地,支撑柱3的上端和下端成型出配合卡脚,通过卡脚和卡口配合使支撑柱3安装在上托盘1和下托盘2之间,构成了支撑体,支撑柱3上开有螺丝孔,使支撑柱3上面可以设置上施力螺杆4。上托盘1盖上后如图2所示。为了便于安装支撑柱3,加压时,通过扭力扳手旋转施力螺杆4,施力螺杆4推动活动块5前进,活动块4前进的过程中向两侧的电池堆7施压,从而达到给电池堆7加压的目的,并且旋转施力螺杆4来调节其自身行程,从而可以调节给电池堆7压力大小。上托盘1、下托盘2、支撑柱3、施力螺杆4的材质为不锈钢。活动块5和固定块6的材质为不锈钢等金属材料。活动块和固定块所采用材质的热膨胀系数大于上托盘和下托盘所采用材质的热膨胀系数。
作为改进,固定块6外围设置有与固定块6上的阳极气体进孔和阳极废气出孔分别密封相通的通气管路,通气管路包括通气法兰18和通气主管道。外围通气管路是用于向电池堆阵列导入重整尾气以及从电池堆阵列导出阳极尾气。外围管路中通气法兰18见图4,通气主管道见图5,通气主管道纵向地分布在通气法兰18的两侧,分别为阳极气体主管道19和阳极废气收集主管道20,阳极气体主管道19和阳极废气收集主管道20下端用主管道固定法兰21固定,阳极气体管路16和阳极废气管路17横向地分布在通气法兰18的两侧,如图4所示,通气法兰18上有通气法兰阳极气体通气孔12’、通气法兰阳极废气通气孔13’、阳极气体管路16以及阳极废气管路17,通气法兰18通过法兰螺丝15和固定块6固定连接起来。阳极气体主管道19、阳极气体管路16以及通气法兰阳极气体通气孔12’是相通的,而通气法兰阳极气体通气孔12’与固定块上的阳极气体进孔12是相通的。阳极气体(即重整尾气)就是依次通过阳极气体主管道19、阳极气体管路16、通气法兰阳极气体通气孔12’、阳极气体进孔12以及阳极气体进气孔10进入电池堆7的。如图5所示,阳极废气收集主管道20、阳极废气管路17以及通气法兰阳极废气通气孔13’是相通的,而通气法兰阳极废气通气孔13’则与固定块上的阳极废气出孔13是相通的。反应后的阳极废气依次通过阳极废气收集孔11、阳极废气出孔13、通气法兰阳极废气通气孔13’以及阳极废气管路17进入阳极废气收集主管道20。
作为改进,固定块6与电池堆7之间安装有密封导电结构,密封导电结构包括密封组件22和导电片23,用于电池堆与固定块之间的孔道密封,导电片23是用于电池堆与固定块之间的导电,如图6所示。密封片采用耐高温的密封片。密封组件22包括两个密封垫片层24和一层支撑层25,一层支撑层25设置在两个密封垫片层24之间,密封垫片层24呈现与固定块6和电池堆7侧面形状配合的环形,在固定块6和电池堆7之间孔道连通处设置有内凸的凸缘部位26,凸缘部位26开设对应贯通孔27,对应地,支撑层25采用金属密封圈绕着贯通孔,并衬在两个密封垫片层的凸缘部位26之间,导电片23是能变形的导电片,导电片23厚度要大于密封组件厚度,置于密封组件内侧空间内分别抵触固定块6和电池堆7侧面,实现电导通。导电片23采用金属片或泡沫金属片,如银片、泡沫银以及泡沫钢等。
图7是以图2所示的电池堆加压结构为单元,由6个这样的单元叠加组装而成的电池堆阵列。可见支撑体具有多层结构条件下,相邻的上层支撑体下托盘2和下层支撑体上托盘1可以共用一块固定板,以节省材料降低成本,减轻重量等:支撑体具有多层结构条件下,每层各个电池堆7侧面布置的活动块5、固定块6及施力螺杆4在纵向排 列成直线分布。该阵列中包含60个电池堆,稳定运行的输出功率为30kW。
该专利所示的电池堆的加压结构,装配过程如下:
1)将下托盘2平放;2)将固定块6放置在相应位置;3)然后将电池堆7分别放置在固定块5的两边;4)在电池堆7中间放进活动块5;5)放置支撑柱3(带施力螺杆),将上托盘1放在上面。
加压时,旋紧施力螺杆4推动活动块,活动块5再推动电池堆7加压。旋紧施力螺杆4时采用扭力扳手,每个施力螺杆4所施加的力要一样。如此,电池堆7的加压即完成,组装成固体氧化物燃料电池堆阵列。用这个固体氧化物燃料电池堆阵列可以组装成对应发电系统。
实施例2:
本实施例所示的电池堆阵列中包含4个电池堆,包括上托盘1、下托盘2、支撑柱3、施力螺杆4、活动块5、固定块6、电池堆7等主要部件。
如图8和图9所示,4个电池堆放置在下托盘2上,电池堆7两侧分别是活动块5和固定块6,上面有上托盘1,上托盘1和下图盘2之间有支撑柱3,支撑柱3上面有施力螺杆4。加压时,旋转施力螺杆4,施力螺杆4推动活动块前进,活动块5前进的过程中向两侧的电池堆7施压,从而达到电池堆加压的目的。上托盘、下托盘、支撑柱、施力螺杆、活动块以及固定块的材质均为不锈钢。
图10是以图9所示的电池堆加压结构为单元,由3个这样的单元叠加组装而成的电池堆阵列。该阵列中包含12个电池堆,稳定运行的输出功率为6kW。
其他与实施例1类似。
实施例3:
本实施例中,SOFC发电系统中的电池堆加压结构如图11所示,包括上托盘1、下托盘2、支撑柱3、施力螺杆4、活动块5、固定块6、电池堆7等主要部件。
如图11所示,7个电池堆放置在下托盘2上,电池堆7两侧分别是活动块5和固定块6,上面有上托盘2,上托盘1和下图盘2之间有支撑柱3,支撑柱3上面有施力螺杆4。加压时,旋转施力螺杆4,施力螺杆4推动活动块5前进,活动块5前进的过程中向两侧的电池堆7施压,从而达到电池堆7加压的目的。上托盘1、下托盘2、支撑柱3、施力螺杆4、活动块5和固定块6的材质均为不锈钢。
其他与实施例1类似。
从该实施例可以看出,此种加压结构,电池堆的个数可以是奇数,也可以是偶数,可以根据需要灵活设置。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种固体氧化物燃料电池堆阵列,其包括支撑体和电池堆组,支撑体呈层状结构,至少包括有上托盘(1)和下托盘(2),电池堆组由下托盘(2)承载,电池堆组的上面放置上托盘(1),电池堆组包括有多个电池堆(7),电池堆(7)呈横卧状,电池堆(7)之间设置了紧固件,其特征在于另有支撑柱(3)设置在上托盘(1)和下托盘(2)之间构成了支撑体,电池堆(7)左右两侧紧固件分别设置成活动块(5)和固定块(6),支撑柱(3)上有螺丝孔,施力螺杆(4)通过螺丝孔与支撑柱(3)结合在一起,并使施力螺杆(4)的里端抵触在各自活动块(5)外表面上,通过旋转施力螺杆(4)来调节其自身行程,从而使活动块(5)侧面对邻近的电池堆(7)产生压力,使电池堆组被加压紧固。
  2. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述相邻电池堆(7)的中间设置活动块(5),相邻电池堆(7)的两侧分别设置固定块(6),使电池堆(7)依次排列形成层状环形分布。
  3. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述支撑体具有多层结构条件下,相邻的上层支撑体下托盘(2)和下层支撑体上托盘(1)是共用一块固定板。
  4. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述支撑体具有多层结构条件下,每层各个电池堆(7)侧面布置的活动块(5)、固定块(6)及施力螺杆(4)在纵向排列成直线分布。
  5. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述活动块(5)呈楔形或梯形,至少一侧面是斜面分布的。
  6. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述固定块(6)呈楔形或梯形,至少一侧面是斜面分布的。
  7. 根据权利要求5或者6所述的固体氧化物燃料电池堆阵列,其特征在于所述活动块(5)和固定块(6)水平截面是呈现等腰梯形。
  8. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述上托盘(1)和下托盘(2)对应于活动块(5)位置成型有凸出环周的外凸固定部(8),外凸固定部(8)开有卡口,对应地,支撑柱(3)的上端和下端成型出配合卡脚。
  9. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述活动块(5)外表面开有供施力螺杆(4)的里端抵触定位的定位孔,内衬耐热陶瓷垫片。
  10. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述固定块(6)侧面设置有阳极气体进气孔(10)和阳极废气收集孔(11),分别与电池堆(7)的阳极气体孔、阳极废气孔密封连通,固定块(6)的表面设置有阳极气体进孔(12)和阳极废气出孔(13),分别和固定块(6)侧面的阳极气体进气孔(10)和阳极废气收集孔(11)连通,固定块(6)纵向设置有定位孔,与上托盘(1)的定位销配合定位固定。
  11. 根据权利要求10所述的固体氧化物燃料电池堆阵列,其特征在于所述固定块(6)外围设置有与固定块(6)上的阳极气体进孔(12)和阳极废气出孔(13)分别密封相通的通气管路,通气管路包括通气法兰(18)和通气主管道,通气法兰(18)开有阳极气体通气孔(12’)和阳极废气通气孔(13’),而通气主管道纵向地分布在通气法兰(18)的两侧,分别为阳极气体主管道(19)和阳极废气收集主管道(20),阳极气体管路(16)和阳极废气管路(17)横向地分布在通气法兰(18)的两侧,这样使固定块(6)上的阳极气体进孔(12)通过通气法兰(18)上的阳极气体通气孔(12’)、阳极气体管路(16)和阳极气体主管道(19)密封连通,而固定块(6)上的阳极废气出孔(13)通过通气法兰(18)上的阳极废气通气孔(13’)、阳极废气管路(17)和阳极废气收集主管道(20)密封连通。
  12. 根据权利要求1所述的固体氧化物燃料电池堆阵列,其特征在于所述固定块(6)与电池堆(7)之间设置有密封导电结构,密封导电结构包括密封组件(22)和导电片(23),密封组件(22)包括两个密封垫片层(24)和一层支撑层(25),一层支撑层(25)设置在两个密封垫片层(24)之间,密封垫片层(24)呈现与固定块(6)和电池堆(7)侧面形状配合的环形,在固定块(6)和电池堆(7)之间孔道连通处设置有内凸的凸缘部位(26),凸缘部位(26)开设对应贯通孔(27),对应地,支撑层(25)采用金属密封圈绕着贯通孔(27),并衬在两个密封垫片层(24)的凸缘部位(26)之间,导电片(23)是能变形的导电片(23),导电片(23)厚度要大于密封组件(22)厚度,置于密封组件(22)内侧空间内分别抵触固定块(6)和电池堆(7)侧面,实现电导通。
  13. 根据权利要求12所述的固体氧化物燃料电池堆阵列,其特征在于所述导电片(23)采用泡沫金属片。
  14. 一种固体氧化物燃料电池发电系统,包括电池堆阵列,其特征是:采用包括权利1至13中任何一项所述的电池堆(7)阵列。
PCT/CN2017/000111 2016-12-23 2017-01-12 一种固体氧化物燃料电池堆阵列及其发电系统 WO2018113035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611202019.X 2016-12-23
CN201611202019.XA CN106654334B (zh) 2016-12-23 2016-12-23 一种固体氧化物燃料电池堆阵列及其发电系统

Publications (1)

Publication Number Publication Date
WO2018113035A1 true WO2018113035A1 (zh) 2018-06-28

Family

ID=58828143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000111 WO2018113035A1 (zh) 2016-12-23 2017-01-12 一种固体氧化物燃料电池堆阵列及其发电系统

Country Status (2)

Country Link
CN (1) CN106654334B (zh)
WO (1) WO2018113035A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120354A1 (fr) * 2018-12-12 2020-06-18 Safran Power Units Pile a combustible a structure annulaire
US12027738B2 (en) 2018-12-12 2024-07-02 Safran Power Units Fuel cell with annular structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494394B (zh) * 2017-09-12 2021-05-25 太仓克莱普沙能源科技有限公司 一种燃料电池结构
KR102168803B1 (ko) * 2018-04-17 2020-10-22 주식회사 엘지화학 연료전지 스택의 성능 평가 장치
JP7074085B2 (ja) * 2019-01-23 2022-05-24 トヨタ自動車株式会社 電池装置
US11658332B2 (en) 2019-03-10 2023-05-23 Caban Systems, Inc. Structural battery packs and methods related thereto
CN114447392B (zh) * 2022-02-11 2023-09-15 氢电中科(广州)新能源设备有限公司 一种氢燃料电池电堆保护系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898825A (zh) * 2003-12-26 2007-01-17 本田技研工业株式会社 燃料电池和燃料电池组
US20110076585A1 (en) * 2009-09-30 2011-03-31 Bloom Energy Corporation Fuel Cell Stack Compression Devices and Methods
CN102122722A (zh) * 2011-01-21 2011-07-13 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池堆
CN102694191A (zh) * 2011-03-22 2012-09-26 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池
CN102723507A (zh) * 2012-05-22 2012-10-10 华中科技大学 一种外气道式平板型固体氧化物燃料电池堆及其装配方法
CN103311558A (zh) * 2013-05-30 2013-09-18 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池发电系统中的电堆阵列

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196704A1 (en) * 2006-01-23 2007-08-23 Bloom Energy Corporation Intergrated solid oxide fuel cell and fuel processor
TWI422096B (zh) * 2010-10-21 2014-01-01 Atomic Energy Council 易組裝及抽換之平板型固態氧化物燃料電池電池堆結構
EP2661782B1 (en) * 2011-01-06 2018-10-03 Bloom Energy Corporation Sofc hot box components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898825A (zh) * 2003-12-26 2007-01-17 本田技研工业株式会社 燃料电池和燃料电池组
US20110076585A1 (en) * 2009-09-30 2011-03-31 Bloom Energy Corporation Fuel Cell Stack Compression Devices and Methods
CN102122722A (zh) * 2011-01-21 2011-07-13 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池堆
CN102694191A (zh) * 2011-03-22 2012-09-26 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池
CN102723507A (zh) * 2012-05-22 2012-10-10 华中科技大学 一种外气道式平板型固体氧化物燃料电池堆及其装配方法
CN103311558A (zh) * 2013-05-30 2013-09-18 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池发电系统中的电堆阵列

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120354A1 (fr) * 2018-12-12 2020-06-18 Safran Power Units Pile a combustible a structure annulaire
FR3090215A1 (fr) * 2018-12-12 2020-06-19 Safran Power Units Pile à combustible à structure périphérique
US12027738B2 (en) 2018-12-12 2024-07-02 Safran Power Units Fuel cell with annular structure

Also Published As

Publication number Publication date
CN106654334A (zh) 2017-05-10
CN106654334B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2018113035A1 (zh) 一种固体氧化物燃料电池堆阵列及其发电系统
CN103401011B (zh) 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块
US10418648B2 (en) Method for producing bipolar plates
US8012648B2 (en) Side spring compression retention system
US8034496B2 (en) Fuel cell
KR20090108492A (ko) 연료전지용 mea 소재 자동 타발 및 접합 설비
US20170214073A1 (en) Modular unit fuel cell assembly
US20050263393A1 (en) System and method of performing electrochemical tests of solid oxide fuel cells
CN100379072C (zh) 重整器和具有该重整器的燃料电池系统
JP2007103343A (ja) 平板積層形燃料電池スタック及び平板積層形燃料電池
JP7456980B2 (ja) 事前に組み立てられたモジュールによる電気化学セルの積み重ねを有する電解または共電解リアクター(soec)または燃料電池(sofc)、および関連する製造プロセス
US20090169969A1 (en) Bipolar plate of solid oxide fuel cell
KR101304883B1 (ko) 막전극접합체 제조를 위한 핫 프레스 장치 및 이를 이용한 막전극접합체 제조 방법
JP5426485B2 (ja) 燃料電池スタック
JP2008251237A (ja) 燃料電池
KR101282618B1 (ko) 막전극접합체 제조용 핫 프레스 장치
O'Brien et al. The high-temperature electrolysis program at the Idaho National Laboratory: observations on performance degradation
RU150252U1 (ru) Компоновка топливной батареи на высокотемпературных твердооксидных топливных элементах полной мощности до 7 квт для условий эксплуатации на магистральных газопроводах
WO2023097587A1 (zh) 电化学燃料电池双极板制备方法
KR100957370B1 (ko) 엠이에이 자동조립장치 및 방법
CN109921035B (zh) 一种燃料电池膜电极压合与检测装置及其使用方法
KR20180004230A (ko) 연료 전지 스택 및 연료 전지 스택의 제조 방법
CN118198398A (zh) 单电池加工治具及其加工方法
JP2022126256A (ja) 燃料電池スタックの製造方法および製造装置
Dietrich et al. Multiple innovations on a portable propane driven 300 We SOFC system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884577

Country of ref document: EP

Kind code of ref document: A1