WO2018113011A1 - Scene generation device, robot and unmanned driving device - Google Patents

Scene generation device, robot and unmanned driving device Download PDF

Info

Publication number
WO2018113011A1
WO2018113011A1 PCT/CN2016/112865 CN2016112865W WO2018113011A1 WO 2018113011 A1 WO2018113011 A1 WO 2018113011A1 CN 2016112865 W CN2016112865 W CN 2016112865W WO 2018113011 A1 WO2018113011 A1 WO 2018113011A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
image
negative lens
super wide
angle negative
Prior art date
Application number
PCT/CN2016/112865
Other languages
French (fr)
Chinese (zh)
Inventor
李军明
Original Assignee
李军明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李军明 filed Critical 李军明
Publication of WO2018113011A1 publication Critical patent/WO2018113011A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the data processing circuit corrects the acquired image to remove severely distorted portions.
  • FIG. 2 is a schematic diagram of an image acquisition and synthesis image of a scene generation device according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

A scene generation device, consisting of an optical imaging unit (1), an image processing unit (2), a control unit (3) and a storage unit (4), the units being connected sequentially. The optical imaging unit (1) comprises a first ultra-wide angle negative lens module (11), a second ultra-wide angle negative lens module (12), a first steering module (13), a second steering module (14), a relay module (17), an imaging module (18) and an image sensor (19). The present invention provides a scene generation device which is low in cost, has a small volume, may be handheld and which may achieve 360-degree acquisition of visual field without blind spots, and provides a robot and an unmanned driving device which have the scene generation device installed.

Description

说明书 发明名称:一种场景生成装置、 机器人及无人驾驶装置 技术领域  Description Title: A scene generation device, a robot and an unmanned device
[0001] 本发明涉及虚拟现实场景生成技术领域, 尤其涉及的是一种超广视场的场景生 成装置、 机器人及无人驾驶装置。  [0001] The present invention relates to the field of virtual reality scene generation technologies, and in particular, to a scene generation device, a robot, and an unmanned device of an ultra-wide field of view.
背景技术  Background technique
[0002] 虚拟现实系统在城市规划、 模拟训练、 宣传展示、 娱乐等领域得到了广泛应用 。 相对于虚拟现实场景的应用而言, 虚拟现实场景的构建通常采用计算机建模 的方式生成三维图像, 往往需要耗费大量人力物力, 吋间周期也较长, 成本巨 大, 制约了市场的发展。  [0002] Virtual reality systems have been widely used in urban planning, simulation training, publicity and display, and entertainment. Compared with the application of virtual reality scenes, the construction of virtual reality scenes usually uses computer modeling to generate three-dimensional images. It often requires a lot of manpower and material resources, and the cycle is long and the cost is huge, which restricts the development of the market.
技术问题  technical problem
[0003] 目前, 采用光学设备进行全景图像采集构建虚拟现实场景, 具有效率高, 成本 低的诸多优点越来越受到重视。 其中单镜头全景光学设备采用一个广角镜头配 合一个成像器件进行图像采集, 体积小且成本低, 占据了较大的市场份额, 但 由于镜头视场有限, 只能生成近似全景图像, 因此不能做到真正意义上的 360度 视场无死角的虚拟现实场景。 而采用双镜头或多镜头的全景光学设备, 采用双 镜头或多镜头配合多个成像器件进行图像采集, 再通过软件拼接成全景图像, 可以做到 360度视场无死角的虚拟现实场景, 但由于采用的器件较多, 相应的处 理电路也较复杂, 设备体积大, 成本也较高。  [0003] At present, the use of optical devices for panoramic image acquisition to construct a virtual reality scene has many advantages such as high efficiency and low cost. The single-lens panoramic optical device adopts a wide-angle lens and an imaging device for image acquisition, which is small in size and low in cost, and occupies a large market share. However, since the lens has limited field of view, only a panoramic image can be generated, so it cannot be truly A virtual reality scene with no dead angle in the 360-degree field of view. The dual-lens or multi-lens panoramic optical device uses two-lens or multi-lens with multiple imaging devices for image acquisition, and then spliced into a panoramic image through software, which can achieve a 360-degree field of view without a dead angle virtual reality scene, but Due to the large number of devices used, the corresponding processing circuits are also complicated, and the device is bulky and costly.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0004] 本发明解决技术问题所采用的技术方案如下: [0004] The technical solution adopted by the present invention to solve the technical problem is as follows:
[0005] 一种场景生成装置, 由 2个超广角负透镜模组, 2个转向模组, 2个幵关模组, 中继模组, 成像模组, 图像感应器, 数据处理电路, 控制单元, 存储单元组成 。 控制单元与幵关模组、 数据处理电路和存储单元相连。 其中超广角负透镜模 组所能采集的图像视场范围大于 180度, 2个超广角负透镜模组共轴设置在能采 集完整 360度视角的位置。 转向模组设置在超广角负透镜模组之后能完整接收图 像的位置, 幵关模组设置在超广角负透镜与合像模组之间可以阻断光路的任意 位置, 中继模组设置在转向模组之后能完整接收两个超广角负透镜模组采集图 像的位置, 成像模组设置在中继模组与图像感应器之间并且能让图像感应器完 整接收两个超广角负透镜模组所采集图像的位置。 控制单元控制幵关模组的幵 启与关闭, 使得各自光路的光交替进入成像模组和图像感应器。 数据处理电路 对图像感应器采集图像进行矫正, 并在控制单元的协调控制下将相邻周期内的 两幅图像数据进行拼接, 生成一幅完整的 360度全景图像后传送至存储单元保存 [0005] A scene generating device, comprising two super wide-angle negative lens modules, two steering modules, two switching modules, a relay module, an imaging module, an image sensor, a data processing circuit, and a control Unit, storage unit composition. The control unit is connected to the switching module, the data processing circuit and the storage unit. The image field range of the super wide-angle negative lens module can be more than 180 degrees, and the two super wide-angle negative lens modules are coaxially arranged at a position where a complete 360-degree viewing angle can be acquired. The steering module is set to receive the picture completely after the super wide-angle negative lens module The position of the image, the gate module is set between the super wide-angle negative lens and the image module to block any position of the light path, and the relay module is disposed behind the steering module to completely receive two super wide-angle negative lens modules. The position of the image is collected, and the imaging module is disposed between the relay module and the image sensor and allows the image sensor to completely receive the position of the image acquired by the two super wide-angle negative lens modules. The control unit controls the turning on and off of the switching modules so that the light of the respective optical paths alternately enters the imaging module and the image sensor. The data processing circuit corrects the image acquired by the image sensor, and splices the two image data in the adjacent period under the coordinated control of the control unit to generate a complete 360-degree panoramic image and transmits it to the storage unit for storage.
[0006] 与上述装置相对应的一种场景生成方法, 包括如下步骤: [0006] A scene generation method corresponding to the foregoing apparatus includes the following steps:
[0007] 1.控制单元发出幵始指令。 [0007] 1. The control unit issues an initial command.
[0008] 2.幵启 A光路幵关, 同吋关闭 B光路幵关, 使 A光路图像进入成像模组, 图像感 应器采集 A光路图像。  [0008] 2. The A-light path is turned off, and the B-path is turned off to make the A-path image enter the imaging module, and the image sensor collects the A-path image.
[0009] 3.幵启 B光路幵关, 同吋关闭 A光路幵关, 使 B光路图像进入成像模组, 图像感 应器采集 B光路图像。  [0009] 3. The B-light path is turned off, and the A-light path is turned off to make the B-path image enter the imaging module, and the image sensor collects the B-path image.
[0010] 4.数据处理电路对采集的图像进行矫正, 去除严重失真部分。 [0010] 4. The data processing circuit corrects the acquired image to remove severely distorted portions.
[0011] 5.数据处理电路对相邻周期的一幅 A光路图像和一幅 B光路图像根据特征点进行 拼接, 生成完整全景图像。 [0011] 5. The data processing circuit splices an A-path image and a B-path image of the adjacent period according to the feature points to generate a complete panoramic image.
[0012] 6.将完整图像保存到存储单元。 [0012] 6. Save the complete image to the storage unit.
[0013] 7.重复步骤 2到 6直到控制单元发出停止指令。 [0013] 7. Repeat steps 2 through 6 until the control unit issues a stop command.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0014] 相较于现有技术, 本发明提供本发明提供一种虚拟现实场景生成装置, 通过两 组分离的超广角负透镜模组以及转向模组, 幵关模组, 中继模组, 成像模组, 将 360度全景图像分吋成像在同一图像传感器, 在控制单元的协调下经过数据处 理电路完成图像矫正、 拼接, 并将最终图像保存到存储单元。 由于 360度全景图 像是由同一个传感器接收, 因此只使用一个传感器及数据处理电路就能实现全 景图像的采集与处理, 有效减少系统体积尺寸和制作成本, 使整个装置小巧紧 凑, 可以用在手持设备, 也可用于个人信息终端。 对附图的简要说明 Compared with the prior art, the present invention provides a virtual reality scene generating device, which comprises two sets of separated super wide-angle negative lens modules, a steering module, a switching module, and a relay module. The imaging module divides the 360-degree panoramic image into the same image sensor, and performs image correction and splicing through the data processing circuit under the coordination of the control unit, and saves the final image to the storage unit. Since the 360-degree panoramic image is received by the same sensor, only one sensor and data processing circuit can be used to collect and process the panoramic image, effectively reducing the system size and manufacturing cost, making the whole device compact and compact, and can be used in handheld The device can also be used for personal information terminals. Brief description of the drawing
附图说明  DRAWINGS
[0015] 图 1是本发明一种场景生成装置的结构示意图。  1 is a schematic structural diagram of a scene generation apparatus according to the present invention.
[0016] 图 2是本发明一种场景生成装置采集与合成图像示意图。  2 is a schematic diagram of an image acquisition and synthesis image of a scene generation device according to the present invention.
[0017] 图 3是本发明一种场景生成方法流程示意图。  3 is a schematic flow chart of a scene generation method according to the present invention.
本发明的实施方式 Embodiments of the invention
[0018] 以下结合其中的较佳实施方式对本发明方案进行详细阐述。 附图仅用于示例性 说明, 不能理解为对本专利的限制; 为了更好说明本实施例, 附图某些部件会 有省略、 放大或缩小, 并不代表实际产品的尺寸; 对于本领域技术人员来说, 附图中某些公知结构及其说明可能省略是可以理解的。 下面结合附图和实施例 对本发明的技术方案做进一步的说明。  [0018] The solution of the present invention will be described in detail below in conjunction with the preferred embodiments thereof. The drawings are for illustrative purposes only and are not to be construed as limiting the scope of the invention; in order to better illustrate the embodiments, some parts of the drawings may be omitted, enlarged or reduced, and do not represent the dimensions of the actual product; It will be understood by persons skilled in the art that certain known structures and their description may be omitted. The technical solution of the present invention will be further described below with reference to the accompanying drawings and embodiments.
[0019] 如图 1所示, 是本发明场景生成装置结构示意图, 由光学成像单元 1、 数据处理 单元 2、 控制单元 3及存储单元 4组成, 各个单元依次相连; 光学成像单元 1包括 : 第一超广角负透镜模组 11、 第二超广角负透镜模组 12, 第一转向模组 13、 第 二转向模组 14, 第一幵关模组 15、 第二幵关模组 16、 中继模组 17, 成像模组 18 及图像感应器 19; 其中控制单元 3与第一幵关模组 15、 第二幵关模组 16、 数据处 理单元 2和存储单元 3相连。 第一超广角负透镜模组 11、 第二超广角负透镜模组 1 2是采用光学玻璃制作的能采集的图像视场范围大于 180度的光学镜片或镜片组 , 其设置的位置能使得它们能完整采集完整 360度视角即可, 并不要求其有特殊 的位置摆放。 作为更好的例子, 第一超广角负透镜模组 11、 第二超广角负透镜 模组 12共轴设置在能采集完整 360度视角的位置, 可以有更好的效果。 第一转向 模组 13、 第二转向模组 14采用棱镜, 也可以采用平面镜组合的形式分别设置在 两个超广角负透镜模组 11,12之后能完整接收图像的位置, 第一幵关模组 15、 第 二幵关模组 16设置在第一超广角负透镜模组 11、 第二超广角负透镜模组 12与成 像模组 19之间可以阻断光路的任意位置。  1 is a schematic structural diagram of a scene generating apparatus according to the present invention, which is composed of an optical imaging unit 1, a data processing unit 2, a control unit 3, and a storage unit 4, and each unit is sequentially connected; the optical imaging unit 1 includes: An ultra wide-angle negative lens module 11 , a second super wide-angle negative lens module 12 , a first steering module 13 , a second steering module 14 , a first switching module 15 , a second switching module 16 , Following the module 17, the imaging module 18 and the image sensor 19; wherein the control unit 3 is connected to the first switching module 15, the second switching module 16, the data processing unit 2 and the storage unit 3. The first super wide-angle negative lens module 11 and the second super wide-angle negative lens module 12 are optical lenses or lens groups which can be collected by optical glass and can have an image field of view greater than 180 degrees, and the positions of the lenses can be set. It can be used to capture a complete 360-degree view without requiring a special position. As a better example, the first super wide-angle negative lens module 11 and the second super wide-angle negative lens module 12 are coaxially arranged at a position where a full 360-degree viewing angle can be acquired, which can have a better effect. The first steering module 13 and the second steering module 14 are prisms, and may be respectively disposed in the form of a combination of plane mirrors, respectively, after the two super wide-angle negative lens modules 11 and 12 can completely receive the position of the image, the first mode The group 15 and the second bypass module 16 are disposed between the first super wide-angle negative lens module 11 and the second super wide-angle negative lens module 12 and the imaging module 19 to block any position of the optical path.
[0020] 本实施例中的第一幵关模组 15、 第二幵关模组 16采用可受控偏转的反射镜来实 现对光路的阻断与幵启, 分别设置在第一转向模组 13、 第二转向模组 14之后, 同吋, 第一幵关模组 15、 第二幵关模组 16可采用电控快门来实现对各自光路的 通断控制。 中继模组 17采用一个具有高反射特性的二次曲面元件或多个反射镜 与透镜相结合的形式设置在第一转向模组 13、 第二转向模组 14之后能完整接收 第一超广角负透镜模组 11及第二超广角负透镜模组 12采集图像的位置, 成像模 组 18采用摄像镜头或具有成像功能的镜片组设置在中继模组 17与图像感应器 19 之间并且能让图像感应器 19完整接收两个超广角负透镜模组所采集图像的位置 。 图像感应器 19可以是 CCD (电荷耦合器件) , 也可以是 CMOS (互补金属氧化 物半导体) 器件, 数据处理单元 2包含集成电路芯片且能完成图像矫正、 拼接功 能。 [0020] The first switching module 15 and the second switching module 16 in this embodiment use a mirror that can be controlled to deflect and block the optical path, and are respectively disposed in the first steering module. 13. After the second steering module 14, At the same time, the first shut-off module 15 and the second shut-off module 16 can adopt an electronically controlled shutter to realize on-off control of the respective optical paths. The relay module 17 can be completely received by the first steering module 13 and the second steering module 14 by using a quadric surface element with high reflection characteristics or a plurality of mirrors combined with the lens. The negative lens module 11 and the second super wide-angle negative lens module 12 capture the position of the image, and the imaging module 18 is disposed between the relay module 17 and the image sensor 19 by using an imaging lens or a lens group having an imaging function. The image sensor 19 is completely received by the positions of the images acquired by the two super wide-angle negative lens modules. The image sensor 19 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) device. The data processing unit 2 includes an integrated circuit chip and can perform image correction and stitching functions.
[0021] 控制单元 3控制第一幵关模组 15、 第二幵关模组 16的幵启与关闭, 使得各自光 路的光交替进入成像模组 18和图像感应器 19。 数据处理电路 2对图像感应器 19采 集图像进行矫正, 去除严重失真部分, 并在控制单元 3的协调控制下将相邻周期 内的两幅图像数据进行拼接, 生成一幅完整的 360度全景图像后传送至存储单元 4保存。 下面结合图 2进行具体说明。  [0021] The control unit 3 controls the opening and closing of the first switching module 15 and the second switching module 16 so that the light of the respective optical paths alternately enters the imaging module 18 and the image sensor 19. The data processing circuit 2 corrects the image acquired by the image sensor 19, removes the severely distorted portion, and splices the two image data in the adjacent period under the coordinated control of the control unit 3 to generate a complete 360-degree panoramic image. After the transfer to the storage unit 4 is saved. The details will be described below with reference to FIG. 2.
[0022] 图 2是本发明场景生成装置采集与合成图像示意图, 为便于描述, 现在把第一 超广角负透镜模组 11、 第二超广角负透镜模组 12所对应的光路其中一个称为 A光 路, 另一个为 B光路。 在采集周期 tla, 控制单元 3幵启 A光路的第一幵关模组 15 , 同吋关闭 B光路的第二幵关模组 16, 使 A光路的光进入成像模组 18, 图像感应 器 19接收 A光路的图像, 数据处理单元 2矫正后生成图像 Pla; 在相邻的采集周期 tlb, 控制单元 3幵启 B光路的第二幵关模组 16, 同吋关闭 A光路的第一幵关模组 1 5, 使 B光路的光进入成像模组 18, 图像感应器 19接收 B光路的图像, 数据处理单 元 2矫正后生成图像 Plb, 接着, 数据处理电路 110将图像 Pla, Plb根据特征点进 行拼接, 生成完整全景图像 Cl。 在接下来的采集周期 t2a, t2b, t3a, t3b, 重复 上述过程, 图像感应器 19分别采集 A光路 ,Β光路的图像, 经过数据处理单元 2矫 正后生成图像 P2a,P2b,P3a,P3b, 最后合成全景图像 C2, C3。  2 is a schematic diagram of an image acquisition and synthesis image of the scene generation device of the present invention. For convenience of description, one of the optical paths corresponding to the first super wide-angle negative lens module 11 and the second super wide-angle negative lens module 12 is now called A light path, the other is B light path. During the acquisition period tla, the control unit 3 activates the first switching module 15 of the A optical path, and simultaneously closes the second switching module 16 of the B optical path, so that the light of the A optical path enters the imaging module 18, and the image sensor 19 Receiving the image of the A optical path, the data processing unit 2 corrects and generates the image P1a; in the adjacent acquisition period tlb, the control unit 3 activates the second switching module 16 of the B optical path, and simultaneously closes the first pass of the A optical path. The module 1 5 causes the light of the B optical path to enter the imaging module 18, the image sensor 19 receives the image of the B optical path, and the data processing unit 2 corrects the generated image Plb. Next, the data processing circuit 110 images the image P1a, P1 according to the feature point. Splicing is performed to generate a complete panoramic image Cl. In the following collection periods t2a, t2b, t3a, t3b, the above process is repeated, and the image sensor 19 separately collects the A light path, and the image of the light path is corrected by the data processing unit 2 to generate images P2a, P2b, P3a, P3b, and finally Synthesize panoramic images C2, C3.
[0023] 图 3是本发明场景生成方法流程示意图, 包括如下步骤:  3 is a schematic flowchart of a method for generating a scene according to the present invention, which includes the following steps:
[0024] S101 : 使用各项参数已知的物品, 在上面标出至少一个位置点作为特征点 (特 征点的选取可按直线或设计好的曲线随意选取) , 并由控制单元 3发出幵始指令 [0025] S102: 幵启 A光路幵关, 同吋关闭 B光路幵关, 使 A光路图像进入成像模组, 图 像感应器采集 A光路图像。 由第一超广角负透镜模组 11获取场景图片, 再通过第 一转向模组 13及幵启的第一幵关模组 15、 中继模组 17的光信号传递路径形成 A光 路; 图像经过 A光路进入成像模组 18, 再由图像感应器 19采集 A光路图像, 获取 第一场景图像; 并依照透视关系进行畸变矫正, 去除图像严重失真部分。 [0024] S101: using at least one position point as the feature point on the item whose parameters are known (the selection of the feature point may be randomly selected according to a straight line or a designed curve), and is started by the control unit 3 instruction [0025] S102: 幵 A A light path is turned off, and the B light path is turned off, so that the A light path image enters the imaging module, and the image sensor collects the A light path image. The scene image is obtained by the first super wide-angle negative lens module 11 , and the A light path is formed by the optical signal transmission path of the first steering module 13 and the first switching module 15 and the relay module 17; The A light path enters the imaging module 18, and the image path sensor 19 collects the A light path image to obtain the first scene image; and performs distortion correction according to the perspective relationship to remove the severe distortion portion of the image.
[0026] S103: 幵启 B侧光路幵关, 同吋关闭 A侧光路幵关, 使 B光路图像进入成像模组 , 图像感应器采集 B光路图像。 由第二超广角负透镜模组 12获取场景图片, 再通 过第二转向模组 14及幵启的第二幵关模组 16、 中继模组 17的光信号传递路径形 成 B光路; 图像经过 B光路进入成像模组 18, 再由图像感应器 19采集 B光路图像 , 获取第二场景图像。 数据处理单元对采集的图像进行矫正, 去除严重失真部 分。  [0026] S103: The B side optical path is turned off, and the A side optical path is turned off, so that the B optical path image enters the imaging module, and the image sensor collects the B optical path image. Obtaining a scene picture by the second super wide-angle negative lens module 12, and forming a B optical path through the optical signal transmission path of the second steering module 14 and the second switching module 16 and the relay module 17; The B optical path enters the imaging module 18, and the B optical path image is acquired by the image sensor 19 to obtain a second scene image. The data processing unit corrects the acquired image to remove severely distorted parts.
[0027] S104: 数据处理单元对相邻周期第一场景图像及第二场景图像的特征点进行拼 接, 生成完整的 360度视场图像。 找出第一场景图像及第二场景图像共有的特征 点, 根据特征点的大小、 位置对第一场景图像和第二场景图像进行缩放, 旋转 , 平移, 使两幅图像中的特征点重合, 完成图像拼接, 记录缩放, 旋转, 平移 数据作为拼接参数。  [0027] S104: The data processing unit splices feature points of the first scene image and the second scene image of the adjacent period to generate a complete 360-degree field of view image. Finding a feature point common to the first scene image and the second scene image, and scaling, rotating, and panning the first scene image and the second scene image according to the size and position of the feature point, so that the feature points in the two images coincide, Complete image stitching, record zoom, rotate, and pan data as stitching parameters.
[0028] S105: 存储图像到存储单元。  [0028] S105: Store the image to the storage unit.
[0029] S106: 重复 S102到 S105直到控制单元 3发出停止指令。  [0029] S106: S102 to S105 are repeated until the control unit 3 issues a stop command.
[0030] 本发明还提供了一种在头部安装该虚拟现实场景生成装置的机器人, 主要用于 监控或巡逻。  [0030] The present invention also provides a robot for mounting the virtual reality scene generating device on a head, mainly for monitoring or patrolling.
[0031] 本发明还提供了一种在车辆顶部安装该虚拟现实场景生成装置无人驾驶装置; 用于自动驾驶吋更好地获取周围环境的信息, 并辅助驾驶系统根据获取的全景 图片进行适当地处理。  [0031] The present invention also provides an unmanned device for installing the virtual reality scene generating device on the top of the vehicle; for automatically driving, better acquiring information about the surrounding environment, and assisting the driving system to appropriately according to the acquired panoramic image; Ground treatment.
[0032] 以上所述实施例仅表达了发明的实施方式, 其描述较为具体和详细, 但并不能 因此而理解为对本实用新型专利范围的限制。 应当指出的是, 对于本领域的普 通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进 , 这些都属于本实用新型的保护范围。 因此, 本实用新型专利的保护范围应以 所附权利要求为准。 The above-mentioned embodiments are merely illustrative of the embodiments of the invention, and the description thereof is more specific and detailed, but is not to be construed as limiting the scope of the invention. It should be noted that a number of variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the utility model patent should be The appended claims shall govern.
工业实用性 Industrial applicability
本发明由光学成像单元、 数据处理单元、 控制单元及存储单元组成, 各个单元 依次相连; 光学成像单元包括: 第一超广角负透镜模组、 第二超广角负透镜模 组、 第一转向模组、 第二转向模组、 中继模组、 成像模组及图像感应器; 第一 超广角负透镜模组、 第二超广角负透镜模组用于获取场景图片; 第一转向模组 、 第二转向模组分别设置在第一超广角负透镜模组及第二超广角负透镜模组之 后能完整接收图像的位置; 成像模组设置在中继模组与图像感应器之间, 使得 图像感应器完整接收第一转向模组、 第二转向模组 (的所接收的图像, 采用双 镜头或多镜头配合多个成像器件进行图像采集, 再通过软件拼接成全景图像, 可以做到 360度视场无死角的虚拟现实场景, 具备工业实用性。  The invention comprises an optical imaging unit, a data processing unit, a control unit and a storage unit, wherein the units are connected in sequence; the optical imaging unit comprises: a first super wide-angle negative lens module, a second super wide-angle negative lens module, and a first steering mode The first steering module, the second steering module, the relay module, the imaging module and the image sensor; the first super wide-angle negative lens module and the second super wide-angle negative lens module are used for acquiring a scene picture; The second steering module is respectively disposed at a position where the image is completely received after the first super wide-angle negative lens module and the second super wide-angle negative lens module; the imaging module is disposed between the relay module and the image sensor, so that The image sensor completely receives the received image of the first steering module and the second steering module, and uses two or more lenses to cooperate with multiple imaging devices for image acquisition, and then splicing into a panoramic image through software, which can achieve 360. The virtual reality scene with no dead angle in the field of view has industrial applicability.

Claims

权利要求书 Claim
一种场景生成装置, 由光学成像单元 (1) 、 数据处理单元 (2) 、 控 制单元 (3) 及存储单元 (4) 组成, 各个单元依次相连; 其特征在于 , 所述光学成像单元 (1) 包括: 第一超广角负透镜模组 (11) 、 第 二超广角负透镜模组 (12) 、 第一转向模组 (13) 、 第二转向模组 ( 14) 、 中继模组 (17) 、 成像模组 (18) 及图像感应器 (19) ; 所述 第一超广角负透镜模组 (11) 、 所述第二超广角负透镜模组 (12) 用 于获取场景图片; 所述第一转向模组 (13) 、 所述第二转向模组 (14 ) 分别设置在所述第一超广角负透镜模组 (11) 及所述第二超广角负 透镜模组 (12) 之后能完整接收图像的位置; 所述成像模组 (18) 设 置在中继模组 (17) 与图像感应器 (19) 之间, 使得所述图像感应器A scene generating device is composed of an optical imaging unit (1), a data processing unit (2), a control unit (3), and a storage unit (4), wherein the units are sequentially connected; wherein the optical imaging unit (1) The method includes: a first super wide-angle negative lens module (11), a second super wide-angle negative lens module (12), a first steering module (13), a second steering module (14), and a relay module ( 17), an imaging module (18) and an image sensor (19); the first super wide-angle negative lens module (11) and the second super wide-angle negative lens module (12) are used to acquire a scene picture; The first steering module (13) and the second steering module (14) are respectively disposed on the first super wide-angle negative lens module (11) and the second super wide-angle negative lens module (12) The position at which the image can be completely received; the imaging module (18) is disposed between the relay module (17) and the image sensor (19) such that the image sensor
(19) 完整接收所述第一转向模组 (13) 、 所述第二转向模组 (14) 的所接收的图像。 (19) Completely receiving the received image of the first steering module (13) and the second steering module (14).
根据权利要求 1所述的场景生成装置, 其特征在于, 所述控制单元 (3 ) 分别与第一幵关模组 (15) 、 第二幵关模组 (16) 相连; 所述第一 幵关模组 (15) 设置于第一超广角负透镜模组 (11) 与成像模组 (18 ) 之间可以阻断光路的任意位置; 所述第二幵关模组 (16) 设置于第 二超广角负透镜模组 (12) 与成像模组 (18) 之间可以阻断光路的任 意位置。 The scene generating apparatus according to claim 1, wherein the control unit (3) is respectively connected to the first switching module (15) and the second switching module (16); The closing module (15) is disposed between the first super wide-angle negative lens module (11) and the imaging module (18) to block any position of the optical path; the second switching module (16) is disposed at the The position of the optical path can be blocked between the two super wide-angle negative lens module (12) and the imaging module (18).
根据权利要求 1或 2所述的场景生成装置, 其特征在于, 所述第一超广 角负透镜模组 (11)和第二超广角负透镜模组 (12)共轴设置在能采集完 整 360度视角图像的位置。 The scene generating device according to claim 1 or 2, wherein the first super wide-angle negative lens module (11) and the second super wide-angle negative lens module (12) are coaxially arranged to collect a complete 360. The position of the angle of view image.
一种机器人, 其特征在于, 所述机器人头部安装包括权利要求 1-3中 任一项所述的场景生成装置。 A robot, characterized in that the robot head mount comprises the scene generating device according to any one of claims 1-3.
一种无人驾驶装置, 其特征在于, 所述无人驾驶装置顶部安装包括权 利要求 1-3中任一项所述的场景生成装置。 An unmanned device, characterized in that the top of the unmanned device is mounted by the scene generating device according to any one of claims 1-3.
PCT/CN2016/112865 2016-12-21 2016-12-29 Scene generation device, robot and unmanned driving device WO2018113011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621405087.1U CN206271053U (en) 2016-12-21 2016-12-21 A kind of scene generating means, robot and unmanned device
CN201621405087.1 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018113011A1 true WO2018113011A1 (en) 2018-06-28

Family

ID=59047232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112865 WO2018113011A1 (en) 2016-12-21 2016-12-29 Scene generation device, robot and unmanned driving device

Country Status (2)

Country Link
CN (1) CN206271053U (en)
WO (1) WO2018113011A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105120176A (en) * 2015-09-18 2015-12-02 成都易瞳科技有限公司 Panoramic image acquiring system
CN205051781U (en) * 2015-10-20 2016-02-24 洪政男 Twin -lens optics camera system
CN105530431A (en) * 2015-12-16 2016-04-27 景好 Reflective panoramic imaging system and method
CN105739067A (en) * 2016-03-23 2016-07-06 捷开通讯(深圳)有限公司 Optical lens accessory for wide-angle photographing
US20160353020A1 (en) * 2015-05-25 2016-12-01 Hiroyuki Satoh Optical system and imaging system incorporating the same
CN205812185U (en) * 2016-07-07 2016-12-14 丘志煌 A kind of camera system of binocular single image sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160353020A1 (en) * 2015-05-25 2016-12-01 Hiroyuki Satoh Optical system and imaging system incorporating the same
CN105120176A (en) * 2015-09-18 2015-12-02 成都易瞳科技有限公司 Panoramic image acquiring system
CN205051781U (en) * 2015-10-20 2016-02-24 洪政男 Twin -lens optics camera system
CN105530431A (en) * 2015-12-16 2016-04-27 景好 Reflective panoramic imaging system and method
CN105739067A (en) * 2016-03-23 2016-07-06 捷开通讯(深圳)有限公司 Optical lens accessory for wide-angle photographing
CN205812185U (en) * 2016-07-07 2016-12-14 丘志煌 A kind of camera system of binocular single image sensor

Also Published As

Publication number Publication date
CN206271053U (en) 2017-06-20

Similar Documents

Publication Publication Date Title
TWI419551B (en) Solid-state panoramic image capture apparatus
TWI692967B (en) Image device
WO2021012855A1 (en) Panoramic image generating system and panoramic image generating method
CN102665087B (en) Automatic shooting parameter adjusting system of three dimensional (3D) camera device
CN105072314A (en) Virtual studio implementation method capable of automatically tracking objects
CN101082766A (en) Device and method rapid capturing panoramic view image
CN105530431A (en) Reflective panoramic imaging system and method
WO2007124664A1 (en) Apparatus and method for collecting panorama graph with location information and method for building, annotating and switching panorama electric map service
CN102117008A (en) Spherical panoramic monitoring device
CN101577795A (en) Method and device for realizing real-time viewing of panoramic picture
JP2021514573A (en) Systems and methods for capturing omni-stereo video using multi-sensors
CN101551586A (en) High-speed photographing method and device thereof
Akin et al. Hemispherical multiple camera system for high resolution omni-directional light field imaging
WO2017004945A1 (en) Shooting terminal and shooting method
CN115174805A (en) Panoramic stereo image generation method and device and electronic equipment
CN109788270A (en) 3D-360 degree panorama image generation method and device
CN103546680B (en) A kind of deformation-free omni-directional fisheye photographic device and a method for implementing the same
US8593508B2 (en) Method for composing three dimensional image with long focal length and three dimensional imaging system
Popovic et al. Design and implementation of real-time multi-sensor vision systems
WO2018113011A1 (en) Scene generation device, robot and unmanned driving device
JP3678792B2 (en) Stereo imaging device
CN105208373B (en) Universal integrated imaging recording device based on light field compression sampling
CN102466961B (en) Method for synthesizing stereoscopic image with long focal length and stereoscopic imaging system
WO2017092261A1 (en) Camera module, mobile terminal, and image shooting method and apparatus therefor
Montgomery et al. Stereoscopic camera design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924720

Country of ref document: EP

Kind code of ref document: A1