WO2018111329A1 - Methods and ingestible devices for the regio-specific release of il-1 inhibitors at the site of gastrointestinal tract disease - Google Patents

Methods and ingestible devices for the regio-specific release of il-1 inhibitors at the site of gastrointestinal tract disease Download PDF

Info

Publication number
WO2018111329A1
WO2018111329A1 PCT/US2017/025143 US2017025143W WO2018111329A1 WO 2018111329 A1 WO2018111329 A1 WO 2018111329A1 US 2017025143 W US2017025143 W US 2017025143W WO 2018111329 A1 WO2018111329 A1 WO 2018111329A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
disease
location
subject
housing
Prior art date
Application number
PCT/US2017/025143
Other languages
French (fr)
Inventor
Mitchell Lawrence Jones
Sharat Singh
Christopher Loren WAHL
Harry Stylli
Original Assignee
Progenity Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Progenity Inc. filed Critical Progenity Inc.
Publication of WO2018111329A1 publication Critical patent/WO2018111329A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6861Capsules, e.g. for swallowing or implanting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time

Definitions

  • This disclosure features methods and compositions for treating diseases of the gastrointestinal tract with an IL-1 inhibitor.
  • Anakinra (Kineret®) is a recombinant version of the interleukin 1 receptor antagonist (ILl-RA) that is frequently used to treat rheumatoid arthritis. Anakinra blocks the biologic activity of naturally occurring IL-1 by competitively inhibiting the binding of IL-1 to the IL-1 receptor. IL-1 is produced in response to inflammatory stimuli and mediates various physiologic responses, including inflammatory and immunologic reactions.
  • ILl-RA interleukin 1 receptor antagonist
  • the gastrointestinal (GI) tract generally provides a therapeutic medium for an individual's body.
  • therapeutic drugs may need to be dispensed to specified locations within the small intestine or large intestine, which is more effective than oral administration of the therapeutic drugs to cure some medical conditions.
  • therapeutic drugs applied directly within the small intestine would not be contaminated, digested or otherwise compromised in the stomach, and thus allow a higher dose to be delivered at a specific location within the small intestine.
  • dispensing therapeutic drugs directly within the small intestine inside a human body can be difficult, because a device or mechanism (e.g., special formulation) is needed to carry a therapeutically effective dose of drug to a desired location within the small intestine and then automatically deliver the therapeutic drug at the desired location.
  • a device or mechanism also needs to be operated in a safe manner as the device or mechanism needs to enter the human body.
  • a novel treatment paradigm for inflammatory conditions of the gastrointestinal tract is provided herein in one embodiment.
  • the methods and compositions described herein allow for the regio-specific release of therapeutic drugs at or near the site of disease in the gastrointestinal tract.
  • a therapeutic drug By releasing a therapeutic drug locally instead of systemically, the bioavailability of said drug can be increased at the site of injury and/or relative to a decrease in circulation; thereby, resulting in improved overall safety and/or efficacy and fewer side effects.
  • Advantages may include one or more of increased drug engagement at the target, leading to new and more efficacious treatment regimens; and/or lower systemic drug levels, which means reduced toxicity and reduced immunogenicity in the case of biologies. For patients, clinicians and payors, this means an easier route of administration, fewer co- medicaments (e.g., immunomodulators), fewer side effects, and/or better outcomes.
  • a disease of the gastrointestinal tract in a subject comprising:
  • the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
  • a disease of the large intestine in a subject comprising:
  • the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
  • a disease of the gastrointestinal tract in a subject comprising:
  • an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease
  • the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
  • a disease of the gastrointestinal tract in a subject comprising:
  • the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the
  • composition is an ingestible device, and the method comprises administering orally to the subject the pharmaceutical composition.
  • a disease of the gastrointestinal tract in a subject comprising:
  • the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3 ⁇ g/ml.
  • a disease of the large intestine in a subject comprising:
  • the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
  • an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with the IL-1 inhibitor, wherein the IL-1 inhibitor is released by the device at a location in the
  • gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • the present invention provides a composition comprising or consisting of an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, for use in a method of treatment, wherein the method comprises orally
  • compositions comprising administering the composition to the subject, wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • the present invention provides an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, wherein the device is controllable to release the IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • the device may be for use in a method of treatment of the human or animal body, for example, any method as described herein.
  • the present invention provides an ingestible device for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject the ingestible device loaded with a
  • an IL-1 inhibitor wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • An ingestible device as used in the present invention may comprise one or more mechanical and/or electrical mechanisms which actively control release of the IL-1 inhibitor.
  • the ingestible device as used in the present invention may comprise a release mechanism for release of the IL-1 inhibitor (e.g., from a reservoir comprising the IL-1 inhibitor) and an actuator controlling the release mechanism.
  • the ingestible device comprises: an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
  • a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
  • the ingestible device comprises
  • a housing defined by a first end, a second end substantially opposite from the first end;
  • a reservoir located within the housing and containing the IL-1 inhibitor wherein a first end of the reservoir is attached to the first end of the housing;
  • an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the reservoir.
  • the exit valve can be considered as the release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device, and the mechanism for releasing the IL-1 inhibitor from the reservoir can be considered as the actuator.
  • the one or more disease sites may have been pre-determined (e.g., determined in a step preceding the administration of the composition of the present invention).
  • the disease site(s) may have been determined by imaging the gastrointestinal tract.
  • the disease site(s) may have been pre-determined by endoscopy (e.g., a step of colonoscopy, enteroscopy, or using a capsule endoscope). Determination that the device is proximate to the disease site may therefore comprise a determining that the device is in a location corresponding to this previously-determined disease site.
  • the location of the device in the gut may be detected by tracking the device.
  • the device may comprise a localization mechanism which may be a communication system for transmitting localization data, e.g., by radiofrequency transmission.
  • the device may additionally or alternatively comprise a communication system for receiving a signal remotely triggering the actuator and thus causing release of the IL-1 inhibitor. The signal may be sent when it is determined that the device is in the correct location in the gut.
  • the ingestible device may comprise:
  • an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
  • a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
  • a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; and an actuator which changes the state of the release mechanism from the closed to the open state and which can be triggered by the signal.
  • the ingestible device as used in the present invention may comprise an environmental sensor for detecting the location of the device in the gut and/or for detecting the presence of disease in the GI tract.
  • the environment sensor may be an image sensor for obtaining images in vivo.
  • Detecting the presence of disease may comprise, for example, detecting the presence of inflamed tissue, and/or lesions such as ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
  • ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
  • Detecting the presence of disease may also comprise molecular sensing, such as detecting the amount of an inflammatory cytokine or other marker of inflammation. Such a marker can be measured locally from a biopsy or systemically in the serum.
  • actuation of the release mechanism may be triggered by a processor or controller communicably coupled to the environmental sensor.
  • the device may not require any external signal or control in order to release the drug.
  • the ingestible device may comprise:
  • an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
  • a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
  • a detector for detecting the location of the device in the gut and/or the presence of diseased tissue
  • a processor or controller which is coupled to the detector and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of diseased tissue and/or in a location in the gut that has been predetermined to be proximal to diseased tissue.
  • an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein; a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease;
  • valve system in fluid communication with the reservoir system; and a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective disease site so as to release the therapeutically effective amount of the IL-1 inhibitor at the respective disease site.
  • detection that the ingestible housing is proximate to the respective disease site may be based on environmental data indicating the location of the device in the GI tract (and reference to a pre-determined disease site) or on environmental data directly indicating the presence of diseased tissue.
  • the device may further comprise a communication system adapted to transmit the environment data to an external receiver (e.g., outside of the body).
  • This data may be used, for example, for diagnostic purposes.
  • the external receiver may comprise means for displaying the data.
  • this data may be analyzed externally to the device and used to determine when the drug should be released: an external signal may then be sent to the device to trigger release of the drug.
  • the communication system may further be adapted to receive a signal remotely triggering the actuator and thus causing release of the IL-1 inhibitor.
  • the signal may be sent from an external transmitter in response to receipt/analysis and/or assessment of the environmental data, e.g., data indicating that the device has reached the desired location of the gut (where the location of the diseased tissue has been predetermined) and/or data indicating the presence of diseased tissue.
  • “External" may be "outside of the body”.
  • the ingestible device may comprise:
  • an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein; a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
  • an environmental detector for detecting environmental data indicating the location of the device in the gut and/or the presence of diseased tissue
  • a communication system for transmitting the environmental data to an external receiver and for receiving a signal from an external transmitter; and an actuator which controls the transition of the release mechanism from the closed to the open state in response to the signal.
  • the device comprises one or more environmental detectors, e.g., comprises an image detector
  • the compositions may be used both for disease detection and for disease treatment.
  • an IL-1 inhibitor for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with the IL-1 inhibitor, wherein the ingestible device comprises an environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor.
  • the device may be according to any of the embodiments described herein.
  • compositions for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject comprising or consists of an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, wherein the ingestible device comprises an
  • the environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor.
  • the device may be according to any of the embodiments described herein.
  • the method of treatment may comprise: i) receiving at an external receiver from the ingestible device a signal transmitting the environmental data;
  • ii) assessing the environmental data to confirm the presence of the disease; and iii) when the presence of the disease is confirmed, sending from an external transmitter to the ingestible device a signal triggering release of the IL-1 inhibitor.
  • the presence of disease may be confirmed based on the presence of inflamed tissue and/or lesions associated with any of the disease states referred to herein.
  • the presence of disease may be confirmed based on the presence of inflammation, ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
  • the present invention may relate to a system comprising:
  • an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, a release mechanism for release of the IL-1 inhibitor (e.g., from a reservoir comprising the IL-1 inhibitor), an actuator controlling the release mechanism, an
  • environmental sensor for determining the location of the device in the gut and/or for detecting the presence of diseased tissue and a communication system adapted to transmit the environment data and receive a signal triggering the actuator;
  • a receiver and display module for receiving and displaying outside of the body the environment data from the ingestible device
  • a transmitter for sending to the ingestible device a signal triggering the actuator.
  • the ingestible device may further comprise an anchoring system for anchoring the device or a portion thereof in a location and an actuator for the anchoring system. This may be triggered in response to a determination that the device is at a location in the gastrointestinal tract of the subject proximate to one or more sites of disease. For instance, this may be detected by the environmental sensor.
  • the triggering may be controlled by a processor in the device, that is, autonomously.
  • a device where the triggering is controlled by a processor in the device is said to be an autonomous device. Alternatively, it may be controlled by a signal sent from outside of the body, as described above.
  • disease of the GI tract may be an inflammatory bowel disease.
  • the disease of the GI tract is ulcerative colitis.
  • the disease of the GI tract is Crohn's disease.
  • gastrointestinal tract diseases that can be treated include, without limitation, inflammatory bowel disease (IBD), Crohn's disease (e.g., active Crohn's disease, refractory Crohn's disease, or fistulizing Crohn' s disease), ulcerative colitis, indeterminate colitis, microscopic colitis, infectious colitis, drug or chemical-induced colitis, diverticulitis, and ischemic colitis, gastritis, peptic ulcers, stress ulcers, bleeding ulcers, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, short -bowel (anastomosis) syndrome, a hypersecretory state associated with systemic mastocytosis or basophilic leukemia or hyperhistaminemia, Celiac disease (e.g., nontropical Sprue), enteropathy
  • IBD inflammatory bowel disease
  • Crohn's disease e.g., active Crohn's disease,
  • gastroenteritis colitis associated with radiotherapy or chemotherapy, colitis associated with disorders of innate immunity as in leukocyte adhesion deficiency- 1, chronic granulomatous disease, food allergies, gastritis, infectious gastritis or enterocolitis (e.g., Helicobacter pylori- infected chronic active gastritis), other forms of gastrointestinal inflammation caused by an infectious agent, pseudomembranous colitis, hemorrhagic colitis, hemolytic-uremic syndrome colitis, diversion colitis, irritable bowel syndrome, irritable colon syndrome, and pouchitis.
  • apparatuses, compositions, and methods disclosed herein are used to treat one gastrointestinal disease.
  • apparatuses, compositions, and methods disclosed herein are used to treat more than one gastrointestinal disease.
  • apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in the same area of the gastrointestinal tract (e.g., each disease can occur in the small intestine, large intestine, colon, or any sub -region thereof).
  • apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in different areas of the
  • IL-1 inhibitor is useful in the treatment of gastrointestinal diseases including, but not limited to, inflammatory bowel disease (IBD), ulcerative colitis, Crohn's disease, or any of the other gastrointestinal diseases described herein.
  • IBD inflammatory bowel disease
  • ulcerative colitis Crohn's disease
  • any of the other gastrointestinal diseases described herein are intended to be freely combinable.
  • any details or embodiments described herein for methods of treatment apply equally to an IL-1 inhibitor, composition or ingestible device for use in said treatment.
  • Any details or embodiments described for a device apply equally to methods of treatment using the device, or to an IL-1 inhibitor or composition for use in a method of treatment involving the device.
  • FIG. 1 provides an exemplary structural diagram illustrating aspects of an ingestible device 100 having a piston to push for drug delivery, according to some embodiments described herein.
  • FIG. 2 provides another exemplary structural diagram illustrating aspects of an ingestible device 100 having a piston to push for drug delivery, according to some embodiments described herein.
  • Gastrointestinal inflammatory disorders are a group of chronic disorders that cause inflammation and/or ulceration in the mucous membrane. These disorders include, for example, inflammatory bowel disease (e.g., Crohn's disease, ulcerative colitis, indeterminate colitis and infectious colitis), mucositis (e.g., oral mucositis, gastrointestinal mucositis, nasal mucositis and proctitis), necrotizing enterocolitis and esophagitis.
  • inflammatory bowel disease e.g., Crohn's disease, ulcerative colitis, indeterminate colitis and infectious colitis
  • mucositis e.g., oral mucositis, gastrointestinal mucositis, nasal mucositis and proctitis
  • necrotizing enterocolitis and esophagitis necrotizing enterocolitis and esophagitis.
  • IBD ulcerative colitis
  • the GI tract can be divided into four main different sections, the oesophagus, stomach, small intestine and large intestine or colon.
  • the small intestine possesses three main subcompartments: the duodenum, jejunum and ileum.
  • the large intestine consists of six sections: the cecum, ascending colon, transverse colon, ascending colon, sigmoid colon, and the rectum.
  • the small intestine is about 6 m long, its diameter is 2.5 to 3 cm and the transit time through it is typically 3 hours.
  • the duodenum has a C-shape, and is 30 cm long.
  • jejunum and ileum are sections that can freely move.
  • the jejunum is 2.4 m in length and the ileum is 3.6 m in length and their surface areas are 180 m 2 and 280 m 2 respectively.
  • the large intestine is 1.5 m long, its diameter is between 6.3 and 6.5 cm, the transit time though this section is 20 hours and has a reduced surface area of approximately 150 m 2 .
  • the higher surface area of the small intestine enhances its capacity for systemic drug absorption.
  • corticosteroids and immunomodulator therapy e.g., azathioprine, 6 mercaptopurine, and methotrexate administered via traditional routes such as tablet form, oral suspension, or intravenously
  • corticosteroids and immunomodulator therapy e.g., azathioprine, 6 mercaptopurine, and methotrexate administered via traditional routes such as tablet form, oral suspension, or intravenously
  • steroids e.g., azathioprine, 6 mercaptopurine, and methotrexate administered via traditional routes such as tablet form, oral suspension, or intravenously
  • T F-a Monoclonal antibodies targeting tumor necrosis factor alpha
  • infliximab a chimeric antibody
  • adalimumab a fully human antibody
  • AEs adverse events associated with anti T Fs include elevated rates of bacterial infection, including tuberculosis, and, more rarely, lymphoma and demyelination (Chang et al, Nat Clin Pract Gastroenterol Hepatology 3 :220 (2006); Hoentjen et al, World J. Gastroenterol. 15(17):2067 (2009)).
  • IBD Inflammatory bowel syndrome
  • GI gastrointestinal
  • UC ulcerative colitis
  • CD Crohn's disease
  • CD Crohn's disease
  • UC ulcerative colitis
  • CD Crohn's disease
  • Crohn's disease is the granular, reddish-purple edematous thickening of the bowel wall. With the development of inflammation, these granulomas often lose their circumscribed borders and integrate with the surrounding tissue. Diarrhea and obstruction of the bowel are the predominant clinical features. As with ulcerative colitis, the course of Crohn's disease may be continuous or relapsing, mild or severe, but unlike ulcerative colitis, Crohn's disease is not curable by resection of the involved segment of bowel.
  • Crohn's disease may involve any part of the alimentary tract from the mouth to the anus, although typically it appears in the ileocolic, small-intestinal or colonic- anorectal regions. Histopathologically, the disease manifests by discontinuous
  • the inflammatory infiltrate is mixed, consisting of lymphocytes (both T and B cells), plasma cells, macrophages, and neutrophils. There is a disproportionate increase in IgM- and IgG-secreting plasma cells, macrophages and neutrophils.
  • CDAI Crohn's Disease Activity Index
  • Backward stepwise regression analysis identified eight independent predictors which are the number of liquid or soft stools, severity of abdominal pain, general well-being, occurrence of extra-intestinal symptoms, need for anti diarrheal drugs, presence of an abdominal mass, hematocrit, and body weight.
  • the final score is a composite of these eight items, adjusted using regression coefficients and standardization to construct an overall CDAI score, ranging from 0 to 600 with higher score indicating greater disease activity.
  • CDAI ⁇ 150 is defined as clinical remission
  • 150 to 219 is defined as mildly active disease
  • 220 to 450 is defined as moderately active disease
  • above 450 is defined as very severe disease (Best WR, et al, Gastroenterology 77:843-6, 1979).
  • Vedolizumab and natalizumab have been approved on the basis of demonstrated clinical remission, i.e. CDAI ⁇ 150.
  • CDAI has been in use for over 40 years, and has served as the basis for drug approval, it has several limitations as an outcome measure for clinical trials. For example, most of the overall score comes from the patient diary card items (pain,
  • the PR02 and PR03 tools are such adaptations of the CDAI and have been recently described in Khanna et al, Aliment Pharmacol. Ther. 41 : 77-86, 2015.
  • the PR02 evaluates the frequency of loose/liquid stools and abdominal pain (Id). These items are derived and weighted accordingly from the CDAI and are the CDAI diary card items, along with general well-being, that contribute most to the observed clinical benefit measured by CDAI (Sandler et al, J. Clin. Epidemiol 41 :451-8, 1988; Thia et al, Inflamm Bowel Dis 17: 105-11, 2011; Kim et al, Gastroenterology 146: (5 supplement 1) S-368,
  • the remission score of ⁇ 11 is the CDAI-weighted sum of the average stool frequency and pain scores in a 7-day period, which yielded optimum sensitivity and specificity for identification of CDAI remission (score of ⁇ 150) in a retrospective data
  • SES- CD Simplified Endoscopic Activity Score for Crohn's Disease
  • the current treatment goals for CD are to induce and maintain symptom improvement, induce mucosal healing, avoid surgery, and improve quality of life (Lichtenstein GR, et al, Am J Gastroenterol 104:465-83, 2009; Van Assche G, et al, J Crohns Colitis. 4:63-101, 2010).
  • the current therapy of IBD usually involves the administration of antiinflammatory or immunosuppressive agents, such as sulfasalazine, corticosteroids, 6- mercaptopurine/azathioprine, or cyclosporine, all of which are not typically delivered by localized release of a drug at the site or location of disease.
  • biologies like TNF-alpha inhibitors and IL-12/IL-23 blockers are used to treat IBD. If anti-inflammatory/immunosuppressive/biologic therapies fail, colectomies are the last line of defense.
  • the typical operation for CD not involving the rectum is resection (removal of a diseased segment of bowel) and anastomosis (reconnection) without an ostomy. Sections of the small or large intestine may be removed. About 30% of CD patients will need surgery within the first year after diagnosis. In the subsequent years, the rate is about 5% per year.
  • CD is characterized by a high rate of recurrence; about 5% of patients need a second surgery each year after initial surgery.
  • Refining a diagnosis of inflammatory bowel disease involves evaluating the progression status of the diseases using standard classification criteria.
  • the classification systems used in IBD include the Truelove and Witts Index (Truelove S. C. and Witts, L.J. Br Med J. 1955;2: 1041-1048), which classifies colitis as mild, moderate, or severe, as well as Lennard- Jones. (Lennard- Jones JE. Scand J Gastroenterol Suppl 1989; 170:2-6) and the simple clinical colitis activity index (SCCAI). (Walmsley et. al. Gut. 1998;43 :29-32) These systems track such variables as daily bowel movements, rectal bleeding, temperature, heart rate, hemoglobin levels, erythrocyte sedimentation rate, weight, hematocrit score, and the level of serum albumin.
  • UC ulcerative colitis
  • CD can appear anywhere in the bowel, with occasional involvement of stomach, esophagus and duodenum, and the lesions are usually described as extensive linear fissures.
  • Ulcerative colitis afflicts the large intestine.
  • the course of the disease may be continuous or relapsing, mild or severe.
  • the earliest lesion is an inflammatory infiltration with abscess formation at the base of the crypts of Lieberkuhn. Coalescence of these distended and ruptured crypts tends to separate the overlying mucosa from its blood supply, leading to ulceration.
  • Symptoms of the disease include cramping, lower abdominal pain, rectal bleeding, and frequent, loose discharges consisting mainly of blood, pus and mucus with scanty fecal particles.
  • a total colectomy may be required for acute, severe or chronic, unremitting ulcerative colitis.
  • UC ulcerative colitis
  • antibody and “immunoglobulin” are used interchangeably in the broadest sense and include monoclonal antibodies (for example, full length or intact monoclonal antibodies), polyclonal antibodies, multivalent antibodies, multispecific antibodies (e.g., bispecific, trispecific etc. antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein).
  • An antibody can be human, humanized and/or affinity matured.
  • Antibody fragments comprise only a portion of an intact antibody, where in certain embodiments, the portion retains at least one, and typically most or all, of the functions normally associated with that portion when present in an intact antibody.
  • an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen.
  • an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding.
  • an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody.
  • such an antibody fragment may comprise on antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
  • the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies
  • Monoclonal antibodies are highly specific, being directed against a single antigen. Furthermore, in contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • the monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or
  • Treatment regimen refers to a combination of dosage, frequency of administration, or duration of treatment, with or without addition of a second medication.
  • Effective treatment regimen refers to a treatment regimen that will offer beneficial response to a patient receiving the treatment.
  • Patient response or “patient responsiveness” can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of disease progression, including slowing down and complete arrest; (2) reduction in the number of disease episodes and/or symptoms; (3) reduction in lesional size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e., reduction, slowing down or complete stopping) of disease spread; (6) decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; (7) relief, to some extent, of one or more symptoms associated with the disorder; (8) increase in the length of disease-free presentation following treatment; and/or (9) decreased mortality at a given point of time following treatment.
  • responsiveness refers to a measurable response, including complete response (CR) and partial response (PR).
  • Partial response refers to a decrease of at least 50% in the severity of inflammation, in response to treatment.
  • a "beneficial response" of a patient to treatment with a therapeutic agent and similar wording refers to the clinical or therapeutic benefit imparted to a patient at risk for or suffering from a gastrointestinal inflammatory disorder from or as a result of the treatment with the agent.
  • Such benefit includes cellular or biological responses, a complete response, a partial response, a stable disease (without progression or relapse), or a response with a later relapse of the patient from or as a result of the treatment with the agent.
  • non-response or “lack of response” or similar wording means an absence of a complete response, a partial response, or a beneficial response to treatment with a therapeutic agent.
  • a patient maintains responsiveness to a treatment" when the patient' s responsiveness does not decrease with time during the course of a treatment.
  • a "symptom" of a disease or disorder is any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by a subject and indicative of disease.
  • IL-1 inhibitor refers to an agent that decreases the expression of an IL-1 cytokine or an IL-1 receptor and/or decreases the ability of an IL-1 cytokine to bind specifically to an IL-1 receptor.
  • IL-1 cytokines include IL-la, IL- 1 ⁇ , IL-18, IL-36a, IL-36P, IL-36y, IL-38, and IL-33.
  • an IL-1 cytokine is IL-la.
  • an IL-1 cytokine is IL- ⁇ .
  • IL-la and IL- ⁇ each binds to a complex of IL-1R1 and
  • ILIRAP proteins IL-18 binds to IL-18Ra; IL-36a, IL-36P, and IL-36y each binds to a complex of IL-1RL2 and IL-IRAP proteins; and IL-33 binds to a complex of ILIRLI and ILIRAP proteins.
  • IL-lRa is an endogenous soluble protein that decreases the ability of IL-la and IL- ⁇ to bind to their receptor (e.g., a complex of IL-1R1 and IL1RAP proteins).
  • IL- 36Ra is an endogenous soluble protein that decreases the ability of IL-36a, IL-36P, and IL- 36 ⁇ to bind to their receptor (e.g., a complex of IL-1RL2 and IL-IRAP proteins).
  • the IL-1 inhibitor mimicks native human interleukin 1 receptor antagonist (ILl-Ra).
  • the IL-1 inhibitor targets IL-1 a. In some embodiments, the IL- 1 inhibitor targets IL- ⁇ . In some embodiments, the IL-1 inhibitor targets one or both of IL- 1R1 and IL1RAP.
  • an IL-1 inhibitor can decrease the expression of IL-la and/or decrease the ability of IL-la to bind to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins).
  • an IL-1 inhibitor can decrease the expression of IL- 1 ⁇ and/or decrease the ability of IL- ⁇ to binds to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins).
  • an IL-1 inhibitor can decrease the expression of one or both of IL-1R1 and IL1RAP.
  • the IL-1 inhibitor targets IL-18. In some embodiments, the IL- 1 inhibitor targets IL-18Ra. In some embodiments, the IL-1 inhibitor decreases the ability of IL-18 to bind to its receptor (e.g., IL-18Ra). In some embodiments, the IL-1 inhibitor decreases the expression of IL-18. In some embodiments, the IL-1 inhibitor decreases the expression of IL-18Ra.
  • the IL-1 inhibitor targets one or more (e.g., two or three) of IL- 36a, IL-36P, and IL-36y. In some embodiments, the IL-1 inhibitor targets one or both of IL- 1RL2 and IL-IRAP. In some embodiments, the IL-1 inhibitor decreases the expression of one or more (e.g., two or three) of IL-36a, IL-36P, and IL-36y. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of IL-1RL2 and IL-IRAP proteins.
  • the IL-1 inhibitor decreases the ability of IL-36a to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36P to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36y to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP).
  • the IL-1 inhibitor targets IL-33. In some embodiments, the IL- 1 inhibitor targets one or both of ILIRLI and ILIRAP. In some embodiments, the IL-1 inhibitor decreases the expression of IL-33. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of ILIRLI and ILIRAP. In some embodiments, the IL-1 inhibitor decreases the ability of IL-33 to bind to its receptor (e.g., a complex of IL1RL1 and ILIRAP proteins).
  • its receptor e.g., a complex of IL1RL1 and ILIRAP proteins
  • an IL-1 inhibitory agent is an inhibitory nucleic acid, an antibody or fragment thereof, or a fusion protein.
  • the inhibitory nucleic acid is an antisense nucleic acid, a ribozyme, or a small interfering RNA.
  • Human IL-la mRNA SEQ ID NO: 1
  • Human IL-36a mRNA (SEQ ID NO: 5)
  • 3601 ctagaggcaa acatttctta aaatgtttca ttttcattaa aaatgaaagc caaatttata 3661 tgccaccgat tgcaggacac aagcacagtt ttaagagttg tatgaacatg gagaggactt 3721 ttggtttta tatttctcgt atttaatatg ggtgaacacc aacttttatt tggaataataataataata
  • gagcaacatg aatgttctac aaaagtttaa agcagagatt gtttcaaatg ggtgtagtag 3301 atattactga aaaccaaaa agagtgagat tgtcagtgta agaatgtgat ttttg 3361 tagtgcttac aattttgtgt accaactgga tgactaaaaa gagtaaata atttaattaa
  • An antisense nucleic acid molecule can be complementary to all or part of a non- coding region of the coding strand of a nucleotide sequence encoding an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein.
  • Non-coding regions (5' and 3' untranslated regions) are the 5' and 3' sequences that flank the coding region in a gene and are not translated into amino acids.
  • IL-la IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL- 18Ra, IL-1RL2, or ILIRLI protein described herein.
  • Antisense nucleic acids targeting a nucleic acid encoding an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein can be designed using the software available at the Integrated DNA Technologies website.
  • An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length.
  • An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
  • modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7- methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D- mannosylqueosine, 5'-meth
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).
  • the antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation.
  • the hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix.
  • the antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).
  • An antisense nucleic acid can be an a-anomeric nucleic acid molecule.
  • a- anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, ⁇ -units, the strands run parallel to each other (Gaultier et al, Nucleic Acids Res. 15:6625-6641, 1987).
  • the antisense nucleic acid can also comprise a 2'-0-methylribonucleotide (Inoue et al, Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al, FEB S Lett. 215:327-330, 1987).
  • an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 protein (e.g., specificity for an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA, e.g., specificity for any one of SEQ ID NOs: 1-41).
  • Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • ribozymes e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)
  • a ribozyme having specificity for an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA can be designed based upon the nucleotide sequence of any of the IL-la, IL- ⁇ , IL- 18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA sequences disclosed herein.
  • RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36P, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA (see, e.g., U.S. Patent. Nos. 4,987,071 and 5, 116,742).
  • a SMAD7 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al, Science 261 : 1411-1418, 1993.
  • An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures.
  • expression of an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36P, IL-36y, IL- 38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or ILIRLI polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb,
  • inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al, Bioorganic Medicinal Chem. 4(l):5-23, 1996).
  • Peptide nucleic acids are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a
  • PNA oligomers can be synthesized using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al, Proc. Natl. Acad. Sci.
  • PNAs can be used as antisense or antigene agents for sequence- specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
  • PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • PNA- DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA.
  • Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
  • PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.
  • PNA-DNA chimeras can be performed as described in Finn et al, Nucleic Acids Res. 24:3357-63, 1996.
  • a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs.
  • Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al, Nucleic Acids Res. 17:5973-88, 1989).
  • PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al, Nucleic Acids Res. 24:3357-63, 1996).
  • chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al, Bioorganic Med. Chem. Lett. 5: 1119-11124, 1975).
  • the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al, Proc. Natl. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810).
  • inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al, Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988).
  • the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
  • RNAi RNA interference
  • double-stranded RNA corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl polypeptide) is introduced into a mammalian cell.
  • siRNAs short interfering RNAs
  • RISC RNA-induced silencing complex
  • RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al, Proc. Natl. Acad. Sci. U.S.A. 99: 1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002).
  • Methods for modulating gene expression with RNAi are described, e.g., in U.S. Patent No. 6,506,559 and US
  • Standard molecular biology techniques can be used to generate siRNAs.
  • Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon.
  • the RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides.
  • siRNA molecules used to decrease expression of an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA can vary in a number of ways. For example, they can include a 3' hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3' end, the 5' end, or both ends.
  • At least one strand of the RNA molecule can have a 3' overhang from about 1 to about 6 nucleotides (e.g., 1 -5, 1-3, 2-4, or 3- 5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.
  • the 3' overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3' overhangs by 2'-deoxythymidine is tolerated and does not affect the efficiency of RNAi).
  • purine nucleotides such as adenosine or guanosine nucleotides
  • pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3' overhangs by 2'-deoxythymidine is tolerated and does not affect the efficiency of RNAi).
  • siRNA can be used in the methods of decreasing an IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or ILIRLI mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 1-7, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA).
  • the target of interest e.g., a sequence present in any one of SEQ ID NOs: 1-7, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA.
  • the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).
  • inhibitory nucleic acids preferentially bind (e.g., hybridize) to a nucleic acid encoding IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or ILIRLI protein to treat allergic diseases (e.g., asthma (Corren et al, N. Engl. J. Med. 365: 1088-1098, 2011)), radiation lung injury (Chung et al, Sci. Rep. 6: 39714, 2016), ulcerative colitis (Hua et al, Br. J. Clin. Pharmacol.
  • allergic diseases e.g., asthma (Corren et al, N. Engl. J. Med. 365: 1088-1098, 2011)
  • radiation lung injury Chung et al, Sci. Rep. 6: 39714, 2016
  • ulcerative colitis Hua e
  • IL-1 inhibitors that are antisense nucleic acids are described in Yilmaz- Elis et al, Mol. Ther. Nucleic Acids 2(1): e66, 2013; Lu et al, J. Immunol.
  • RNA small interfering RNA
  • a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding IL-1 a, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl protein can be administered to a subject (e.g., a human subject) in need thereof.
  • the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35
  • thermo melting point (Tm) refers to the melting point
  • an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.
  • the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or IL1RL1) with a T m of greater than 20 °C, greater than 22 °C, greater than 24 °C, greater than 26 °C, greater than 28 °C, greater than 30 °C, greater than 32 °C, greater than 34 °C, greater than 36 °C, greater than 38 °C, greater than 40 °C, greater than 42 °C, greater than 44 °C, greater than 46 °C, greater than 48 °C, greater than 50 °C, greater than 52 °C, greater than 54
  • a target nucleic acid e.g., a nu
  • the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-la, IL- ⁇ , IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or IL1RL1) with a T m of about 20 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 52 °C, about 50 °C, about
  • the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al,
  • the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al, Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.
  • the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al, J. Control Release 158(3): 362-370, 2012; Scarabel et al, Expert Opin. DrugDeliv.
  • a micelle e.g., a mixed micelle
  • a microemulsion WO 11/004395
  • a nanoemulsion or a solid lipid nanoparticle
  • a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein).
  • a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein).
  • the sterile saline is a pharmaceutical grade saline.
  • a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water.
  • a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water.
  • a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS).
  • a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS).
  • the sterile saline is a pharmaceutical grade PBS.
  • one or more inhibitory nucleic acids may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations.
  • compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.
  • compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters.
  • Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids.
  • Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.
  • prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.
  • Lipid moieties can be used to formulate an inhibitory nucleic acid.
  • the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids.
  • inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid.
  • a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal.
  • a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal.
  • a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.
  • compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients.
  • excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin,
  • a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.
  • a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal.
  • a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.
  • a pharmaceutical composition provided herein can include a co-solvent system.
  • co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase.
  • VPD co-solvent system is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80TM and 65% w/v polyethylene glycol 300.
  • a pharmaceutical composition can be formulated for oral administration.
  • pharmaceutical compositions are formulated for buccal administration.
  • a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these
  • a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • aqueous solution such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives).
  • injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like.
  • Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers.
  • Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents.
  • Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.
  • the IL-1 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).
  • an antibody or antigen- binding fragment described herein binds specifically to any one of IL-1 a, IL- ⁇ , IL-18, IL- 36a, IL-36P, IL-36y, IL-38, and IL-33.
  • an antibody or antigen- binding fragment of an antibody described herein can bind specifically to one or both of IL- 1R1 and IL1RAP.
  • an antibody or antigen-binding fragment of an antibody described herein can bind specifically to IL-18Ra.
  • an antibody or antigen-binding fragment of an antibody described herein can bind specifically to one or both of ILIRLI and ILIRAP. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind to one or both of IL-1RL2 and IL-1RAP.
  • the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof.
  • an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv) 2 , a minibody, or a BiTE.
  • an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-l-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL- Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in- holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, k -body, orthogonal Fab, DVD -IgG, IgG(H)-scFv, scF
  • DART
  • miniantibody minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab')2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFvl-PEG-scFv2.
  • Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab') 2 fragment, and a Fab' fragment.
  • Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgGl, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgGl, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgAl or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgAl or IgA2); an antigen-binding fragment of an IgD (e
  • the IL-1 inhibitor is canakinumab (ACZ885, Ilaris®
  • the IL- 1 inhibitor is anakinra (Kineret®; Beynon et al, J. Clin. Rheumatol. 23(3): 181-183, 2017; Stanam et al, Oncotarget 7(46): 76087-76100, 2016; Nayki et al, J. Obstet Gynaecol. Res. 42(11): 1525-1533, 2016; Greenhalgh et al, Dis. Model Mech. 5(6):823-833, 2012), or a variant thereof.
  • the IL-1 inhibitor is gevokizumab (XOMA 052;
  • Knicklebein et al Am. J Ophthalmol. 172: 104-110, 2016; Roubille et al, Atherosclerosis 236(2):277-285, 2014; Issafras et al, J. Pharmacol. Exp. Ther. 348(1):202-215, 2014; Handa et al, Obesity 21(2): 306-309, 2013; Geiler et al, Curr. Opin. Mol. Ther. 12(6):755-769, 2010), LY2189102 (Bihorel et al, AAPSJ.
  • IL-1 inhibitors that are antibodies or antigen-binding fragments thereof are described in U.S. Patent Nos. 5,075,222; 7,446, 175; 7,531, 166; 7,744,865;
  • any of the antibodies or antigen-binding fragments described herein has a dissociation constant (K D ) of less than 1 x 10 "5 M (e.g., less than 0.5 x 10 "5 M, less than 1 x 10 "6 M, less than 0.5 x 10 "6 M, less than 1 x 10 "7 M, less than 0.5 x 10 "7 M, less than 1 x 10 "8 M, less than 0.5 x 10 "8 M, less than 1 x 10 "9 M, less than 0.5 x 10 "9 M, less than 1 x 10 "10 M, less than 0.5 x 10 "10 M, less than 1 x 10 "11 M, less than 0.5 x 10 "U M, or less than 1 x 10 "12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).
  • SPR surface plasmon resonance
  • any of the antibodies or antigen-binding fragments described herein has a K D of about 1 x 10 "12 M to about 1 x 10 "5 M, about 0.5 x 10 "5 M, about 1 x 10 "6 M, about 0.5 x 10 "6 M, about 1 x 10 "7 M, about 0.5 x 10 "7 M, about 1 x 10 "8 M, about 0.5 x 10 " 8 M, about 1 x 10 "9 M, about 0.5 x 10 "9 M, about 1 x 10 "10 M, about 0.5 x 10 "10 M, about 1 x 10 "11 M, or about 0.5 x 10 "11 M (inclusive); about 0.5 x 10 "11 M to about 1 x 10 "5 M, about 0.5 x 10 "5 M, about 1 x 10 "6 M, about 0.5 x 10 "6 M, about 1 x 10 "7 M, about 0.5 x 10 "7 M, about 1 x 10 "8 M, about 0.5 x 10 "
  • any of the antibodies or antigen-binding fragments described herein has a K 0 ff of about 1 x 10 "6 s "1 to about 1 x 10 "3 s “1 , about 0.5 x 10 "3 s “1 , about 1 x 10 "4 s “ about 0.5 x 10 "4 s “1 , about 1 x 10 "5 s “1 , or about 0.5 x 10 "5 s “1 (inclusive); about 0.5 x 10 "5 s “1 to about 1 x 10 "3 s “1 , about 0.5 x 10 "3 s “1 , about 1 x 10 "4 s “1 , about 0.5 x 10 "4 s “1 , or about 1 x 10 "5 s “1 (inclusive); about 1 x 10 "5 s “1 to about 1 x 10 "3 s “1 , about 0.5 x 10 "3 s “1 , about 1 x 10 "4 s "1 , or
  • any of the antibodies or antigen-binding fragments described herein has a K on of about 1 x 10 2 M ' V 1 to about 1 x 10 6 M _1 s _1 , about 0.5 x 10 6 M ' V 1 , about 1 x 10 s M- 1 , about 0.5 x 10 5 M l s about 1 x 10 4 M ' V 1 , about 0.5 x 10 4 M ' V 1 , about 1 x 10 3 M ' V 1 , or about 0.5 x 10 3 M ' V 1 (inclusive); about 0.5 x 10 3 M ' V 1 to about 1 x 10 6 M _1 s _1 , about 0.5 x 10 6 M ' V 1 , about 1 x 10 s MV 1 , about 0.5 x 10 5 M ' V 1 , about 1 x 10 4 M ' V 1 , about 0.5 x 10 4 M ' V 1 , or about 1 x 10 3 M
  • the IL-1 inhibitor is a fusion protein or a soluble receptor.
  • a fusion can include an extracellular domain of any one of IL-1R1, ILIRAP, IL- 18Ra, IL-1RL2, and ILIRLI fused to a partner amino acid sequence (e.g., a stabilizing domain, e.g., an IgG Fc region, e.g., a human IgG Fc region).
  • the IL- 1 inhibitor is a soluble version of one or both of IL-lRLl and ILIRAP.
  • the IL-1 inhibitor is a soluble version of IL-18Ra. In some embodiments, the IL-1 inhibitor is a soluble version of one or both of IL-1RL2 and IL-1RAP.
  • the IL-1 inhibitor is a fusion protein comprising or consisting of rilonacept (IL-1 Trap, Arcalyst®) (see, e.g., Kapur & Bonk, P. T. 34(3): 138-141, 2009; Church et al, Biologies 2(4):733-742, 2008; McDermott, Drugs Today (Bare) 45(6):423-430, 2009).
  • the IL-1 inhibitor is a fusion protein that is chimeric (e.g., EBI-005 (Isunakinra®) (Furfine et al, Invest. Ophthalmol. Vis. Sci. 53(14):2340-2340, 2012; Goldstein et al, Eye Contact Lens 41(3): 145-155, 2015; Goldstein et al, Eye Contact Lens, 2016)).
  • the IL-1 inhibitor is a soluble receptor that comprises or consists of sIL-lRI and/or sIL-lRII (Svenson et al, Eur. J. Immunol. 25(10): 2842-2850, 1995).
  • the IL-1 inhibitor can be an endogenous ligand or an active fragment thereof, e.g., IL-IRa or IL-36Ra.
  • IL-lRa is an endogenous soluble protein that decreases the ability of IL-la and IL- ⁇ to bind to their receptor (e.g., a complex of IL-1R1 and ILIRAP proteins).
  • IL-36Ra is an endogenous soluble protein that decreases the ability of IL-36a, IL-36P, and IL-36y to bind to their receptor (e.g., a complex of IL-1RL2 and IL- lRAP proteins). Exemplary sequences for IL-IRa and IL-36Ra are shown below.
  • a method of treating a disease of the gastro-intestinal tract in a subject comprising: delivering an IL-1 inhibitor at a location in the gastrointestinal tract of the subject, wherein the method comprises administering orally to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
  • administering i) an amount of the IL-1 inhibitor that is an induction dose.
  • step (ii) is repeated one or more times.
  • step (ii) is repeated one or more times.
  • the induction dose is equal to the maintenance dose.
  • IL-1 inhibitor is Anakinra (Kineret®); modifications thereof having at least 90% sequence homology;
  • modifications thereof differing in the glycosylation pattern; and modifications thereof having at least 90% sequence homology and differing in the glycosylation pattern.
  • composition is an ingestible device, comprising:
  • a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
  • a storage reservoir located within the housing and containing the IL-1 inhibitor, wherein a first end of the storage reservoir is connected to the first end of the housing; a mechanism for releasing the IL-1 inhibitor from the storage reservoir;
  • an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the storage reservoir.
  • the electronic component is configured to activate the gas generating cell to generate gas.
  • safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
  • a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
  • an electronic component located within the housing; a gas generating cell located within the housing and adjacent to the electronic component,
  • the electronic component is configured to activate the gas generating cell to generate gas
  • a storage reservoir located within the housing
  • the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
  • exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the storage reservoir
  • safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
  • composition is an ingestible device, comprising: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
  • a gas generating cell located within the housing and adjacent to the electronic component
  • the electronic component is configured to activate the gas generating cell to generate gas
  • a storage reservoir located within the housing
  • the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
  • jet injection device configured to inject the dispensable substance out of the housing from the storage reservoir
  • safety device is configured to relieve an internal pressure within the housing.
  • a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
  • an optical sensing unit located on a side of the housing
  • optical sensing unit is configured to detect a reflectance from an environment external to the housing
  • a gas generating cell located within the housing and adjacent to the electronic component
  • the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;
  • a storage reservoir located within the housing, wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
  • a membrane in contact with the gas generating cell and configured to move or deform into the storage reservoir by a pressure generated by the gas generating cell;
  • dispensing outlet is configured to deliver the dispensable substance out of the housing from the storage reservoir.
  • a method of treating a disease of the large intestine of a subject comprising:
  • the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
  • inhibitor is delivered at a location in the proximal portion of the ascending colon.
  • inhibitor is delivered at a location in the proximal portion of the cecum.
  • inhibitor is delivered at a location in the proximal portion of the sigmoid colon.
  • inhibitor is delivered at a location in the proximal portion of the transverse colon.
  • inhibitor is delivered at a location in the proximal portion of the descending colon.
  • agent is administered intravenously.
  • agent is administered subcutaneously.
  • 91 The method of any one of exemplary embodiments 84 to 90, wherein the amount of the second agent is less than the amount of the second agent when the IL-1 inhibitor and the second agent are both administered systemically.
  • the second agent is methotrexate.
  • Endoscopes Ingestible Devices, and Reservoirs containing the drug Direct visualization of the GI mucosa is useful to detect subtle mucosal alterations, as in inflammatory bowel diseases, as well as any flat or sessile lesions.
  • the GI tract can be imaged using endoscopes, or more recently ingestible devices that are swallowed.
  • the technology behind standard colonoscopy consists of a long, semi-rigid insertion tube with a steerable tip (stiff if compared to the colon), which is pushed by the physician from the outside.
  • invasiveness, patient discomfort, fear of pain, and -more often than not- the need for conscious sedation limit the take-up of screening colonoscopy.
  • MEMS micro-electromechanical systems
  • Endoscopes may comprise a catheter.
  • the catheter may be a spray catheter.
  • a spray catheter may be used to deliver dyes for diagnostic purposes.
  • a spray catheter may be used to deliver a therapeutic agent at the site of disease in the GI tract.
  • the Olypmus PW-205 V is a ready-to-use spray catheter that enables efficient spraying for maximal differentiation of tissue structures during endoscopy, but may also be used to deliver drugs diseased tissue.
  • FIG. 1 disclosed in US Provisional Application No. 62/385,553, incorporated by reference herein in its entirety, illustrates an example of an ingestible device for localized delivery of pharmaceutical compositions disclosed herein, in accordance with particular implementations.
  • the ingestible device 100 includes a piston or drive element 134 to push for drug delivery, in accordance with particular implementations described herein.
  • the ingestible device 100 may have one or more batteries 131 placed at one end 102a of a housing 101 to provide power for the ingestible device 100.
  • a printed circuit board (PCB) 132 may be placed adjacent to a battery or other power source 131, and a gas generating cell 103 may be mounted on or above the PCB 132.
  • PCB printed circuit board
  • the gas generating cell 103 may be sealed from the bottom chamber (e.g., space including 131 and 132) of the ingestible device 100.
  • a movable piston 134 may be placed adjacent to the gas generating cell 103. In this way, gas generation from the gas generating cell 103 may propel a piston 134 to move towards another end 102b of the housing 101 such that the dispensable substance in a reservoir compartment 135 can be pushed out of the housing through a dispensing outlet 107, e.g., the movement is shown at 136, with the piston 134 at a position after dispensing the substance.
  • the dispensing outlet 107 may comprise a plug.
  • the reservoir compartment 135 can store the dispensable substance (e.g., drug substance), or alternatively the reservoir compartment can house a storage reservoir 161 which comprises the dispensable substance.
  • the reservoir can store the dispensable substance (e.g., drug substance), or alternatively the reservoir compartment can house a storage reservoir 161 which comprises the dispensable substance
  • compartment 135 or storage reservoir 161 may have a volume of approximately 600 ⁇ _, or even more dispensable substance, which may be dispensed in a single bolus, or gradually over a period of time.
  • the battery cells 131 may have a height of 1.65 mm each, and one to three batteries may be used.
  • the height of the piston may be reduced with custom molded part for around 1.5mm to save space. If the gas generating cell 103 is integrated with the piston 134, the overall height of the PCB, batteries and gas generating cell in total can be reduced to around 5 mm, thus providing more space for drug storage.
  • a reservoir compartment 135 or a storage reservoir 161 of approximately 600 ⁇ . may be used for drug delivery.
  • a reservoir compartment 135 or a storage reservoir 161 of approximately 1300 ⁇ . may be used for drug release.
  • the reservoir 135 or 161 for storing a therapeutically effective amount of the IL-1 inhibitor forms at least a portion of the device housing 101.
  • the therapeutically effective amount of the IL-1 inhibitor can be stored in the reservoir 135 or 161 at a particular pressure, for example, determined to be higher than a pressure inside the GI tract so that once the reservoir 135 or 161 is in fluid communication with the GI tract, the IL-1 inhibitor is automatically released.
  • the reservoir compartment 135 includes a plurality of chambers, and each of the plurality of the chambers stores a different dispensable substance or a different storage reservoir 161.
  • the storage reservoir 161 is a compressible component or has compressible side walls.
  • the compressible component can be composed, at least in part, or coated (e.g., internally) with polyvinyl chloride (PVC), silicone, DEUP (di-2-ethylhexyl phthalate), Tyvek, polyester film, polyolefin, polyethylene, polyurethane, or other materials that inhibit the IL-1 inhibitor from sticking to the reservoir and provide a sterile reservoir environment for the IL-1 inhibitor.
  • PVC polyvinyl chloride
  • silicone silicone
  • DEUP di-2-ethylhexyl phthalate
  • Tyvek polyester film
  • polyolefin polyethylene
  • polyurethane polyurethane
  • the reservoir compartment 135 or storage reservoir 161 can be configured to store IL-1 inhibitor in quantities in the range of 0.01 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.6mL - 2 mL.
  • the storage reservoir 161 is attachable to the device housing 101, for example, in the reservoir compartment. Accordingly, the storage reservoir 135 can be loaded with the IL-1 inhibitor prior to being positioned in and/or coupled to the ingestible device housing 101.
  • the ingestible device housing 101 includes one or more openings configured as a loading port to load the dispensable substance into the reservoir compartment.
  • the ingestible device housing 101 includes one or more openings configured as a vent.
  • the ingestible device housing 101 includes one or more actuation systems (e.g., gas generating cell 103) for pumping the IL-1 inhibitor from the reservoir 135.
  • the actuation system can include a mechanical, electrical, electromechanical, hydraulic, and/or fluid actuation system.
  • a chemical actuation means may use chemical reaction of mixing one or more reagents to generate a sufficient volume of gas to propel the piston or drive element 134 for drug release.
  • the actuation system can be integrated into the reservoir compartment 135 or can be an auxiliary system acting on or outside of the reservoir compartment 135.
  • the actuation system can include pumping system for pushing/pulling the IL-1 inhibitor out of the reservoir compartment 135 or the actuation system can be configured to cause the reservoir compartment 135 to change structurally so that the volume inside of the reservoir
  • the actuation system can include an energy storage component such as a battery or a capacitor for powering the actuation system.
  • the actuation system can be actuated via gas pressure or a system storing potential energy, such as energy from an elastic reservoir component being expanded during loading of the reservoir and after being positioned in the ingestible device housing 101 being subsequently released from the expanded state when the ingestible device housing is at the location for release within the GI tract.
  • the reservoir compartment 135 can include a membrane portion, whereby the IL-1 inhibitor is dispensed from the reservoir compartment 135 or storage reservoir 161 via osmotic pressure.
  • the storage reservoir 161 is in a form of a bellow that is configured to be compressed via a pressure from the gas generating cell.
  • the IL-1 inhibitor may be loaded into the bellow, which may be compressed by gas generation from the gas generating cell or other actuation means to dispense the dispensable substance through the dispensing outlet 107 and out of the housing 101.
  • the ingestible device includes a capillary plate placed between the gas generating cell and the first end of the housing, and a wax seal between the gas generating cell and the reservoir, wherein the wax seal is configured to melt and the dispensable substance is pushed through the capillary plate by a pressure from the gas generating cell.
  • the shape of the bellow may aid in controlled delivery.
  • the reservoir compartment 135 includes a dispensing outlet, such as a valve or dome slit 162 extending out of an end of the housing 101, in accordance with particular implementations.
  • a dispensing outlet such as a valve or dome slit 162 extending out of an end of the housing 101, in accordance with particular implementations.
  • the reservoir compartment 135 includes one or more valves (e.g. a valve in the dispensing outlet 107) that are configured to move or open to fluidly couple the reservoir compartment 135 to the GI tract.
  • a housing wall of the housing 101 can form a portion of the reservoir compartment 135.
  • the housing walls of the reservoir serve as a gasket.
  • One or more of the one or more valves are positioned in the housing wall of the device housing 101 , in accordance with particular implementations.
  • One or more conduits may extend from the reservoir 135 to the one or more valves, in certain implementations.
  • a housing wall of the housing 101 can be formed of a material that is configured to dissolve, for example, in response to contact at the disease site.
  • a housing wall of the housing 101 can be configured to dissolve in response to a chemical reaction or an electrical signal.
  • the one or more valves and/or the signals for causing the housing wall of the housing 101 to dissolve or dissipate can be controlled by one or more processors or controllers positioned on PCB 132 in the device housing 101.
  • the controller is communicably coupled to one or more sensors or detectors configured to determine when the device housing 101 is proximate to a disease site.
  • the sensors or detectors comprise a plurality of electrodes comprising a coating, in certain implementations.
  • the one or more sensors can include a chemical sensor, an electrical sensor, an optical sensor, an electromagnetic sensor, a light sensor, and/or a radiofrequency sensor.
  • the device housing 101 can include one or more pumps configured to pump the therapeutically effective amount of the IL-1 inhibitor from the reservoir compartment 135.
  • the pump is communicably coupled to the one or more controllers.
  • the controller is configured to activate the pump in response to detection by the one or more detectors of the disease site and activation of the valves to allow the reservoir 135 to be in fluid communication with the GI tract.
  • the pump can include a fluid actuated pump, an electrical pump, or a mechanical pump.
  • the device housing 101 comprises one or more anchor systems for anchoring the device housing 101 or a portion thereof at a particular location in the GI tract adjacent the disease site.
  • a storage reservoir comprises an anchor system, and the storage reservoir comprising a releasable substance is anchored to the GI tract.
  • the anchor system can be activated by the controller in response to detection by the one or more detectors of the disease site.
  • the anchor system includes legs or spikes configured to extend from the housing wall(s) of the device housing 101. The spikes can be configured to retract and/or can be configured to dissolve over time.
  • the reservoir is an anchorable reservoir, which is a reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract adjacent the disease site.
  • the anchor system includes legs or spikes or other securing means such as a piercing element, a gripping element, a magnetic-flux-guiding element, or an adhesive material, configured to extend from the anchorable reservoir of the device housing.
  • the spikes can be configured to retract and/or can be configured to dissolve over time.
  • the anchorable reservoir is suitable for localizing,positioning and/or anchoring.
  • the anchorable reservoir is suitable for localizing, and positioning and/or anchoring by an endoscope.
  • the anchorable reservoir is connected to the endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for oral administration. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for rectal administration. Accordingly, provided herein in some embodiments is an anchorable reservoir is connected to an endoscope wherein the anchorable reservoir comprises a therapeutically effective amount of the IL-1 inhibitor. In some embodiments the endoscope is fitted with a spray catheter.
  • Exemplary embodiments of anchorable reservoirs are as follows.
  • the reservoir is connected to an endoscope.
  • the anchorable reservoir comprises an implant capsule for insertion into a body canal to apply radiation treatment to a selected portion of the body canal.
  • the reservoir includes a body member defining at least one therapeutic treatment material receiving chamber and at least one resilient arm member associated with the body member for removably engaging the body canal when the device is positioned therein.
  • the anchorable reservoir has multiple suction ports and permits multiple folds of tissue to be captured in the suction ports with a single positioning of the device and attached together by a tissue securement mechanism such as a suture, staple or other form of tissue bonding.
  • the suction ports may be arranged in a variety of configurations on the reservoir to best suit the desired resulting tissue orientation.
  • an anchorable reservoir comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized.
  • the IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened.
  • the catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall.
  • the IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa.
  • a first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa.
  • a second stimulation/sense electrode is located at the fixation site.
  • a reservoir for sensing one or more parameters of a patient is anchored to a tissue at a specific site and is released from a device, using a single actuator operated during a single motion.
  • a delivery device may anchor the capsule to the tissue site and release the reservoir from the delivery device during a single motion of the actuator.
  • a device comprising: a reservoir configured to contain a fluid, the reservoir having at least one outlet through which the fluid may exit the reservoir; a fluid contained within the reservoir; a primary material contained within the reservoir and having a controllable effective concentration in the fluid; and at least one electromagnetically responsive control element located in the reservoir or in a wall of the reservoir and adapted for modifying the distribution of the primary material between a first active form carried in the fluid and a second form within the reservoir in response to an incident electromagnetic control signal, the effective concentration being the concentration of the first active form in the fluid, whereby fluid exiting the reservoir carries the primary material in the first active form at the effective concentration.
  • systems and methods are provided for implementing or deploying medical or veterinary devices or reservoirs (a) operable for anchoring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of anchoring, (e) facilitating a "primary" material supply deployable within a stomach for an extended and/or controllable period, (f) anchored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.
  • the reservoir is attachable to an ingestible device.
  • the ingestible device comprises a housing and the reservoir is attachable to the housing.
  • the attachable reservoir is also an anchorable reservoir, such as an anchorable reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract as disclosed hereinabove.
  • an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract as disclosed herein, wherein the IL-1 inhibitor is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.
  • an attachable reservoir containing an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein the IL-1 inhibitor is released by device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • an attachable reservoir containing an IL-1 inhibitor wherein the reservoir is attachable to a device housing to form an ingestible device that is suitable for oral administration to a subject and that is capable of releasing the IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
  • the ingestible device includes cameras (e.g., video cameras) that affords inspection of the entire GI tract without discomfort or the need for sedation, thus avoiding many of the potential risks of conventional endoscopy.
  • Video imaging can be used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease).
  • the ingestible device 101 may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device. Examples of video imaging capsules include Medtronic' s PillCamTM, Olympus' Endocapsule®, and Intro Medic's MicroCamTM.
  • Imaging capsules For a review of imaging capsules, see Basar et al. "Ingestible Wireless Capsule Technology: A Review of Development and Future Indication” International Journal of Antennas and Propagation (2012); 1-14).
  • Other imaging technologies implemented with the device 101 can include thermal imaging cameras, and those that employ ultrasound or Doppler principles to generate different images (see Chinese patent application
  • CN104473611 “Capsule endoscope system having ultrasonic positioning function”.
  • Ingestible devices can be equipped with sources for generating reflected light, including light in the Ultraviolet, Visible, Near-infrared and/or Mid-infrared spectrum, and the corresponding detectors for spectroscopy and hyperspectral imaging.
  • autofluorescense may be used to characterize GI tissue (e.g., subsurface vessel information), or low-dose radiation (see Check-CapTM) can be used to obtain 3D reconstructed images.
  • An ingestible device in accordance with particular embodiments of the present invention may comprise a component made of a non-digestible material and containing the IL-1 inhibitor.
  • the material is plastic.
  • the device is single-use.
  • the device is loaded with a drug prior to the time of administration.
  • a medicinal product comprising the device pre-filled with the drug.
  • Various implementations may be used for localization of ingestible devices within the GI tract.
  • certain implementations can include one or more electromagnetic sensor coils, magnetic fields, electromagnetic waves, electric potential values, ultrasound positioning systems, gamma scintigraphy techniques or other radio-tracker technology have been described by others.
  • imaging can be used to localize, for example, using anatomical landmarks or more complex algorithms for 3D reconstruction based on multiple images.
  • Other technologies rely on radio frequency, which relies on sensors placed externally on the body to receive the strength of signals emitted by the capsule.
  • Ingestible devices may also be localized based on reflected light in the medium surrounding the device; pH;
  • Anchoring components may actively actuate and control the capsule position and orientation in different sections of the GI tract. Examples include leg-like or anchor-like mechanisms that can be deployed by an ingestible device to resist peristaltic forces in narrowed sections of the GI tract, such as the intestine, and anchor the device to a location. Other systems employ magnetic shields of different shapes that can interact with external magnetic fields to move the device. These mechanisms may be particularly useful in areas outside of the small intestine, like the cecum and large intestine.
  • An anchoring mechanism may be a mechanical mechanism.
  • a device may be a capsule comprising a plurality of legs configured to steer the capsule.
  • the number of legs in the capsule may be, for example, two, four, six, eight, ten or twelve.
  • the aperture between the legs of the device may be up to about 35 mm; about 30 to about 35 mm; about 35 to about 75 mm; or about 70 to about 75 mm.
  • the contact area of each leg may be varied to reduce impact on the tissue.
  • One or more motors in the capsule may each actuate a set of legs independently from the other.
  • the motors may be battery-powered motors.

Abstract

This disclosure features methods and compositions for treating diseases of the gastrointestinal tract with an IL-1 inhibitor. An embodiment of the disclosure relates to releasing the IL- 1 inhibitor at a location in the gastrointestinal tract of a subject that is proximate to one or more sites of disease, by administering an orally ingestible delivery device comprising such IL-1 inhibitor, said device comprise of an ingestible housing comprising a reservoir that contains the IL-1 inhibitor, a detector coupled to the ingestible housing, a valve system in fluid communication with the reservoir, and a controller communicably coupled to the valve and the detector.

Description

METHODS AMD INGESTIBLE DEVICES FOR THE REGIO- SPECIFIC RELEASE OF IL-1 INHIBITORS AT THE SITE OF GASTROINTESTINAL TRACT DISEASE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Application Serial No. 62/434,372, filed on December 14, 2016. The disclosure of the prior application is considered part of the disclosure of this application, and is incorporated in its entirety into this application.
TECHNICAL FIELD
This disclosure features methods and compositions for treating diseases of the gastrointestinal tract with an IL-1 inhibitor.
Background
Anakinra (Kineret®) is a recombinant version of the interleukin 1 receptor antagonist (ILl-RA) that is frequently used to treat rheumatoid arthritis. Anakinra blocks the biologic activity of naturally occurring IL-1 by competitively inhibiting the binding of IL-1 to the IL-1 receptor. IL-1 is produced in response to inflammatory stimuli and mediates various physiologic responses, including inflammatory and immunologic reactions.
The gastrointestinal (GI) tract generally provides a therapeutic medium for an individual's body. At times, therapeutic drugs may need to be dispensed to specified locations within the small intestine or large intestine, which is more effective than oral administration of the therapeutic drugs to cure some medical conditions. For example, therapeutic drugs applied directly within the small intestine would not be contaminated, digested or otherwise compromised in the stomach, and thus allow a higher dose to be delivered at a specific location within the small intestine. However, dispensing therapeutic drugs directly within the small intestine inside a human body can be difficult, because a device or mechanism (e.g., special formulation) is needed to carry a therapeutically effective dose of drug to a desired location within the small intestine and then automatically deliver the therapeutic drug at the desired location. Such a device or mechanism also needs to be operated in a safe manner as the device or mechanism needs to enter the human body.
Provided herein in one embodiment is a novel treatment paradigm for inflammatory conditions of the gastrointestinal tract. The methods and compositions described herein allow for the regio-specific release of therapeutic drugs at or near the site of disease in the gastrointestinal tract. By releasing a therapeutic drug locally instead of systemically, the bioavailability of said drug can be increased at the site of injury and/or relative to a decrease in circulation; thereby, resulting in improved overall safety and/or efficacy and fewer side effects. Advantages may include one or more of increased drug engagement at the target, leading to new and more efficacious treatment regimens; and/or lower systemic drug levels, which means reduced toxicity and reduced immunogenicity in the case of biologies. For patients, clinicians and payors, this means an easier route of administration, fewer co- medicaments (e.g., immunomodulators), fewer side effects, and/or better outcomes. Summary
Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:
delivering an IL-1 inhibitor at a location in the gastrointestinal tract of the subject, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
Provided herein in one embodiment is a method of treating a disease of the large intestine in a subject, comprising:
delivering an IL-1 inhibitor at a location in the proximal portion of the large intestine of the subject,
wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:
releasing an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,
wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:
releasing an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the
pharmaceutical composition is an ingestible device, and the method comprises administering orally to the subject the pharmaceutical composition.
Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:
releasing an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3 μg/ml.
Provided herein in one embodiment is a method of treating a disease of the large intestine in a subject, comprising:
releasing an IL-1 inhibitor at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease,
wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
In another aspect of the present invention, there is provided an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with the IL-1 inhibitor, wherein the IL-1 inhibitor is released by the device at a location in the
gastrointestinal tract of the subject that is proximate to one or more sites of disease.
In another aspect, the present invention provides a composition comprising or consisting of an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, for use in a method of treatment, wherein the method comprises orally
administering the composition to the subject, wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
In another aspect, the present invention provides an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, wherein the device is controllable to release the IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease. The device may be for use in a method of treatment of the human or animal body, for example, any method as described herein. In still another aspect, the present invention provides an ingestible device for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject the ingestible device loaded with a
therapeutically effective amount of an IL-1 inhibitor, wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
An ingestible device as used in the present invention may comprise one or more mechanical and/or electrical mechanisms which actively control release of the IL-1 inhibitor. For example, in any of the above aspects and embodiments, the ingestible device as used in the present invention may comprise a release mechanism for release of the IL-1 inhibitor (e.g., from a reservoir comprising the IL-1 inhibitor) and an actuator controlling the release mechanism.
In one embodiment, the ingestible device comprises: an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device; and
an actuator which changes the state of the release mechanism from the closed to the open state.
In one embodiment, the ingestible device comprises
a housing defined by a first end, a second end substantially opposite from the first end;
a reservoir located within the housing and containing the IL-1 inhibitor wherein a first end of the reservoir is attached to the first end of the housing;
a mechanism for releasing the IL-1 inhibitor from the reservoir;
and
an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the reservoir.
Here, the exit valve can be considered as the release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device, and the mechanism for releasing the IL-1 inhibitor from the reservoir can be considered as the actuator.
In some embodiments of methods of treatment as described herein, the one or more disease sites may have been pre-determined (e.g., determined in a step preceding the administration of the composition of the present invention). The disease site(s) may have been determined by imaging the gastrointestinal tract. For example, the disease site(s) may have been pre-determined by endoscopy (e.g., a step of colonoscopy, enteroscopy, or using a capsule endoscope). Determination that the device is proximate to the disease site may therefore comprise a determining that the device is in a location corresponding to this previously-determined disease site.
In some embodiments, the location of the device in the gut may be detected by tracking the device. For example, the device may comprise a localization mechanism which may be a communication system for transmitting localization data, e.g., by radiofrequency transmission. The device may additionally or alternatively comprise a communication system for receiving a signal remotely triggering the actuator and thus causing release of the IL-1 inhibitor. The signal may be sent when it is determined that the device is in the correct location in the gut.
Thus, the ingestible device may comprise:
an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; and an actuator which changes the state of the release mechanism from the closed to the open state and which can be triggered by the signal.
In other embodiments, the ingestible device as used in the present invention may comprise an environmental sensor for detecting the location of the device in the gut and/or for detecting the presence of disease in the GI tract. For example, the environment sensor may be an image sensor for obtaining images in vivo. Detecting the presence of disease may comprise, for example, detecting the presence of inflamed tissue, and/or lesions such as ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
Detecting the presence of disease may also comprise molecular sensing, such as detecting the amount of an inflammatory cytokine or other marker of inflammation. Such a marker can be measured locally from a biopsy or systemically in the serum.
Where the ingestible device comprises an environmental sensor, actuation of the release mechanism may be triggered by a processor or controller communicably coupled to the environmental sensor. Thus, in some embodiments, the device may not require any external signal or control in order to release the drug.
In one embodiment, the ingestible device may comprise:
an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein;
a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
an actuator which controls the transition of the release mechanism from the closed to the open state;
a detector for detecting the location of the device in the gut and/or the presence of diseased tissue; and
a processor or controller which is coupled to the detector and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of diseased tissue and/or in a location in the gut that has been predetermined to be proximal to diseased tissue.
In another embodiment, there is provided:
an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein; a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease;
a valve system in fluid communication with the reservoir system; and a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective disease site so as to release the therapeutically effective amount of the IL-1 inhibitor at the respective disease site.
As above, detection that the ingestible housing is proximate to the respective disease site may be based on environmental data indicating the location of the device in the GI tract (and reference to a pre-determined disease site) or on environmental data directly indicating the presence of diseased tissue.
Additionally or alternatively, the device may further comprise a communication system adapted to transmit the environment data to an external receiver (e.g., outside of the body). This data may be used, for example, for diagnostic purposes. The external receiver may comprise means for displaying the data.
In some embodiments, this data may be analyzed externally to the device and used to determine when the drug should be released: an external signal may then be sent to the device to trigger release of the drug. Thus, the communication system may further be adapted to receive a signal remotely triggering the actuator and thus causing release of the IL-1 inhibitor. The signal may be sent from an external transmitter in response to receipt/analysis and/or assessment of the environmental data, e.g., data indicating that the device has reached the desired location of the gut (where the location of the diseased tissue has been predetermined) and/or data indicating the presence of diseased tissue. "External" may be "outside of the body".
Thus, in another embodiment, the ingestible device may comprise:
an ingestible housing comprising a reservoir having a therapeutically effective amount of the IL-1 inhibitor stored therein; a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device;
an environmental detector for detecting environmental data indicating the location of the device in the gut and/or the presence of diseased tissue;
a communication system for transmitting the environmental data to an external receiver and for receiving a signal from an external transmitter; and an actuator which controls the transition of the release mechanism from the closed to the open state in response to the signal.
It will be understood from the above that when the device comprises one or more environmental detectors, e.g., comprises an image detector, the compositions may be used both for disease detection and for disease treatment.
Accordingly, in a further embodiment, there is provided an IL-1 inhibitor for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with the IL-1 inhibitor, wherein the ingestible device comprises an environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor. The device may be according to any of the embodiments described herein.
In another embodiment, there is provided a composition for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject, wherein the composition comprises or consists of an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, wherein the ingestible device comprises an
environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor. Again, the device may be according to any of the embodiments described herein.
In some embodiments, where the ingestible device as used in the present invention comprises an environmental sensor for detecting the presence of disease in the GI tract and a communication system as described above, the method of treatment may comprise: i) receiving at an external receiver from the ingestible device a signal transmitting the environmental data;
ii) assessing the environmental data to confirm the presence of the disease; and iii) when the presence of the disease is confirmed, sending from an external transmitter to the ingestible device a signal triggering release of the IL-1 inhibitor.
For example, the presence of disease may be confirmed based on the presence of inflamed tissue and/or lesions associated with any of the disease states referred to herein. For example, the presence of disease may be confirmed based on the presence of inflammation, ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
In some embodiments, the present invention may relate to a system comprising:
an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, a release mechanism for release of the IL-1 inhibitor (e.g., from a reservoir comprising the IL-1 inhibitor), an actuator controlling the release mechanism, an
environmental sensor for determining the location of the device in the gut and/or for detecting the presence of diseased tissue and a communication system adapted to transmit the environment data and receive a signal triggering the actuator;
a receiver and display module for receiving and displaying outside of the body the environment data from the ingestible device;
a transmitter for sending to the ingestible device a signal triggering the actuator.
In any of the above embodiments, the ingestible device may further comprise an anchoring system for anchoring the device or a portion thereof in a location and an actuator for the anchoring system. This may be triggered in response to a determination that the device is at a location in the gastrointestinal tract of the subject proximate to one or more sites of disease. For instance, this may be detected by the environmental sensor. The triggering may be controlled by a processor in the device, that is, autonomously. A device where the triggering is controlled by a processor in the device is said to be an autonomous device. Alternatively, it may be controlled by a signal sent from outside of the body, as described above.
In any of the above aspects and embodiments, disease of the GI tract may be an inflammatory bowel disease. In some embodiments, the disease of the GI tract is ulcerative colitis.
In some embodiments, the disease of the GI tract is Crohn's disease.
In general, apparatuses, compositions, and methods disclosed herein are useful in the treatment of diseases of the gastrointestinal tract. Exemplary gastrointestinal tract diseases that can be treated include, without limitation, inflammatory bowel disease (IBD), Crohn's disease (e.g., active Crohn's disease, refractory Crohn's disease, or fistulizing Crohn' s disease), ulcerative colitis, indeterminate colitis, microscopic colitis, infectious colitis, drug or chemical-induced colitis, diverticulitis, and ischemic colitis, gastritis, peptic ulcers, stress ulcers, bleeding ulcers, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, short -bowel (anastomosis) syndrome, a hypersecretory state associated with systemic mastocytosis or basophilic leukemia or hyperhistaminemia, Celiac disease (e.g., nontropical Sprue), enteropathy associated with seronegative arthropathies, microscopic colitis, collagenous colitis, eosinophilic
gastroenteritis, colitis associated with radiotherapy or chemotherapy, colitis associated with disorders of innate immunity as in leukocyte adhesion deficiency- 1, chronic granulomatous disease, food allergies, gastritis, infectious gastritis or enterocolitis (e.g., Helicobacter pylori- infected chronic active gastritis), other forms of gastrointestinal inflammation caused by an infectious agent, pseudomembranous colitis, hemorrhagic colitis, hemolytic-uremic syndrome colitis, diversion colitis, irritable bowel syndrome, irritable colon syndrome, and pouchitis. In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat one gastrointestinal disease. In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat more than one gastrointestinal disease. In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in the same area of the gastrointestinal tract (e.g., each disease can occur in the small intestine, large intestine, colon, or any sub -region thereof). In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in different areas of the
gastrointestinal tract. In some embodiments, administration (e.g., local administration to the gastrointestinal tract) of IL-1 inhibitor is useful in the treatment of gastrointestinal diseases including, but not limited to, inflammatory bowel disease (IBD), ulcerative colitis, Crohn's disease, or any of the other gastrointestinal diseases described herein. Aspects and embodiments as described herein are intended to be freely combinable. For example, any details or embodiments described herein for methods of treatment apply equally to an IL-1 inhibitor, composition or ingestible device for use in said treatment. Any details or embodiments described for a device apply equally to methods of treatment using the device, or to an IL-1 inhibitor or composition for use in a method of treatment involving the device.
Brief Description of the Drawings
FIG. 1 provides an exemplary structural diagram illustrating aspects of an ingestible device 100 having a piston to push for drug delivery, according to some embodiments described herein.
FIG. 2 provides another exemplary structural diagram illustrating aspects of an ingestible device 100 having a piston to push for drug delivery, according to some embodiments described herein.
Detailed description
Definitions:
By "ingestible", it is meant that the device can be swallowed whole.
"Gastrointestinal inflammatory disorders" are a group of chronic disorders that cause inflammation and/or ulceration in the mucous membrane. These disorders include, for example, inflammatory bowel disease (e.g., Crohn's disease, ulcerative colitis, indeterminate colitis and infectious colitis), mucositis (e.g., oral mucositis, gastrointestinal mucositis, nasal mucositis and proctitis), necrotizing enterocolitis and esophagitis.
"Inflammatory Bowel Disease" or "IBD" is a chronic inflammatory autoimmune condition of the gastrointestinal (GI) tract. The GI tract can be divided into four main different sections, the oesophagus, stomach, small intestine and large intestine or colon. The small intestine possesses three main subcompartments: the duodenum, jejunum and ileum. Similarly, the large intestine consists of six sections: the cecum, ascending colon, transverse colon, ascending colon, sigmoid colon, and the rectum. The small intestine is about 6 m long, its diameter is 2.5 to 3 cm and the transit time through it is typically 3 hours. The duodenum has a C-shape, and is 30 cm long. Due to its direct connection with the stomach, it is physically more stable than the jejunum and ileum, which are sections that can freely move. The jejunum is 2.4 m in length and the ileum is 3.6 m in length and their surface areas are 180 m2 and 280 m2 respectively. The large intestine is 1.5 m long, its diameter is between 6.3 and 6.5 cm, the transit time though this section is 20 hours and has a reduced surface area of approximately 150 m2. The higher surface area of the small intestine enhances its capacity for systemic drug absorption.
The etiology of IBD is complex, and many aspects of the pathogenesis remain unclear. The treatment of moderate to severe IBD poses
significant challenges to treating physicians, because conventional therapy with
corticosteroids and immunomodulator therapy (e.g., azathioprine, 6 mercaptopurine, and methotrexate administered via traditional routes such as tablet form, oral suspension, or intravenously) is associated with side effects and intolerance and has not shown proven benefit in maintenance therapy (steroids). Monoclonal antibodies targeting tumor necrosis factor alpha (T F-a), such as infliximab (a chimeric antibody) and adalimumab (a fully human antibody), are currently used in the management of CD. Infliximab has also shown efficacy and has been approved for use in UC. However, approximately 10%-20% of patients with CD are primary nonresponders to anti T F therapy, and another ~20%-30% of CD patients lose response over time (Schnitzler et al, Gut 58:492-500 (2009)). Other adverse events (AEs) associated with anti T Fs include elevated rates of bacterial infection, including tuberculosis, and, more rarely, lymphoma and demyelination (Chang et al, Nat Clin Pract Gastroenterol Hepatology 3 :220 (2006); Hoentjen et al, World J. Gastroenterol. 15(17):2067 (2009)). No currently available therapy achieves sustained remission
in more than 20%-30% of IBD patients with chronic disease (Hanauer et al, Lancet 359: 1541-49 (2002); Sandborn et al, N Engl J Med 353 : 1912-25 (2005)). In addition, most patients do not achieve sustained steroid-free remission and mucosal healing, clinical outcomes that correlate with true disease modification.
Although the cause of IBD remains unknown, several factors such as genetic, infectious and immunologic susceptibility have been implicated. IBD is much more common in Caucasians, especially those of Jewish descent. The chronic inflammatory nature of the condition has prompted an intense search for a possible infectious cause. Although agents have been found which stimulate acute inflammation, none has been found to cause the chronic inflammation associated with IBD. The hypothesis that IBD is an autoimmune disease is supported by the previously mentioned extraintestinal manifestation of IBD as joint arthritis, and the known positive response to IBD by treatment with therapeutic agents such as adrenal glucocorticoids, cyclosporine and azathioprine, which are known to suppress immune response. In addition, the GI tract, more than any other organ of the body, is continuously exposed to potential antigenic substances such as proteins from food, bacterial byproducts (LPS), etc.
A chronic inflammatory autoimmune condition of the gastrointestinal (GI) tract presents clinically as either ulcerative colitis (UC) or Crohn's disease (CD). Both IBD conditions are associated with an increased risk for malignancy of the GI tract.
"Crohn's disease" ("CD") is a chronic transmural inflammatory disease
with the potential to affect any part of the entire GI tract, and UC is a mucosal
inflammation of the colon. Both conditions are characterized clinically by frequent bowel motions, malnutrition, and dehydration, with disruption in the activities of daily living.
CD is frequently complicated by the development of malabsorption, strictures, and fistulae and may require repeated surgery. UC, less frequently, may be complicated by severe bloody diarrhea and toxic megacolon, also requiring surgery. The most prominent feature Crohn's disease is the granular, reddish-purple edematous thickening of the bowel wall. With the development of inflammation, these granulomas often lose their circumscribed borders and integrate with the surrounding tissue. Diarrhea and obstruction of the bowel are the predominant clinical features. As with ulcerative colitis, the course of Crohn's disease may be continuous or relapsing, mild or severe, but unlike ulcerative colitis, Crohn's disease is not curable by resection of the involved segment of bowel. Most patients with Crohn's disease require surgery at some point, but subsequent relapse is common and continuous medical treatment is usual. Crohn's disease may involve any part of the alimentary tract from the mouth to the anus, although typically it appears in the ileocolic, small-intestinal or colonic- anorectal regions. Histopathologically, the disease manifests by discontinuous
granulomatomas, crypt abscesses, fissures and aphthous ulcers. The inflammatory infiltrate is mixed, consisting of lymphocytes (both T and B cells), plasma cells, macrophages, and neutrophils. There is a disproportionate increase in IgM- and IgG-secreting plasma cells, macrophages and neutrophils.
To date, the primary outcome measure in Crohn's Disease clinical trials is the Crohn's Disease Activity Index (CDAI), which has served as the basis for approval of multiple drug treatments, including for example, vedolizumab and natalizumab. The CDAI was developed by regressing clinician global assessment of disease activity on eighteen potential items representing patient reported outcomes (PROs) (i.e. abdominal pain, pain awakening patient from sleep, appetite), physical signs (i.e. average daily temperature, abdominal mass), medication use (i.e. loperamide or opiate use for diarrhea) and a laboratory test (i.e.
hematocrit). Backward stepwise regression analysis identified eight independent predictors which are the number of liquid or soft stools, severity of abdominal pain, general well-being, occurrence of extra-intestinal symptoms, need for anti diarrheal drugs, presence of an abdominal mass, hematocrit, and body weight. The final score is a composite of these eight items, adjusted using regression coefficients and standardization to construct an overall CDAI score, ranging from 0 to 600 with higher score indicating greater disease activity. Widely used benchmarks are: CDAI <150 is defined as clinical remission, 150 to 219 is defined as mildly active disease, 220 to 450 is defined as moderately active disease, and above 450 is defined as very severe disease (Best WR, et al, Gastroenterology 77:843-6, 1979).
Vedolizumab and natalizumab have been approved on the basis of demonstrated clinical remission, i.e. CDAI < 150.
Although the CDAI has been in use for over 40 years, and has served as the basis for drug approval, it has several limitations as an outcome measure for clinical trials. For example, most of the overall score comes from the patient diary card items (pain,
number of liquid bowel movements, and general well-being), which are vaguely defined and not standardized terms (Sandler et al, J. Clin. Epidemiol 41 :451 -8, 1988; Thia et al,
Inflamm Bowel Dis 17: 105-11, 2011). In addition, measurement of pain is based on a four- point scale rather than an updated seven-point scale. The remaining 5 index items contribute very little to identifying an efficacy signal and may be a source of measurement noise.
Furthermore, concerns have been raised about poor criterion validity for the CDAI, a reported lack of correlation between the CDAI and endoscopic measures of inflammation (which may render the CDAI as a poor discriminator of active CD and irritable bowel syndrome) and high reported placebo rates (Korzenik et al, N Engl J Med. 352:2193-201, 2005; Sandborn WJ, et al, N Engl J Med 353 : 1912-25, 2005; Sandborn WJ, et al, Ann Intern 19; 146:829-38, 2007, Epub 2007 Apr 30; Kim et al, Gastroenterology 146: (5 supplement 1) S-368, 2014).
It is, thus, generally recognized that additional or alternative measures of CD symptoms are needed, such as new PRO tools or adaptations of the CDAI to derive a new PRO. The PR02 and PR03 tools are such adaptations of the CDAI and have been recently described in Khanna et al, Aliment Pharmacol. Ther. 41 : 77-86, 2015. The PR02 evaluates the frequency of loose/liquid stools and abdominal pain (Id). These items are derived and weighted accordingly from the CDAI and are the CDAI diary card items, along with general well-being, that contribute most to the observed clinical benefit measured by CDAI (Sandler et al, J. Clin. Epidemiol 41 :451-8, 1988; Thia et al, Inflamm Bowel Dis 17: 105-11, 2011; Kim et al, Gastroenterology 146: (5 supplement 1) S-368,
2014). The remission score of < 11 is the CDAI-weighted sum of the average stool frequency and pain scores in a 7-day period, which yielded optimum sensitivity and specificity for identification of CDAI remission (score of < 150) in a retrospective data
analysis of ustekinumab induction treatment for moderate to severe CD in a Phase II clinical study (Gasink C, et al, abstract, ACG Annual Meeting 2014). The PR02 was shown to be sensitive and responsive when used as a continuous outcome measure in a retrospective data analysis of MTX treatment in active CD (Khanna R, et al, Inflamm Bowel Dis 20: 1850-61, 2014) measured by CDAI. Additional outcome measures include the Mayo Clinic Score, the Crohn disease endoscopic index of severity (CDEIS), and the Ulcerative colitis endoscopic index of severity (UCEIS). Additional outcome measures include Clinical remission,
Mucosal healing, Histological healing (transmural), MRI or ultrasound for measurement or evaluation of bowel wall thickness, abscesses, fistula and histology.
An additional means of assessing the extent and severity of Crohn's Disease is endoscopy. Endoscopic lesions typical of Crohn's disease have been described in numerous studies and include, e.g., aphthoid ulcerations, "punched-out ulcers," cobblestoning and stenosis. Endoscopic evaluation of such lesions was used to develop the first validated endoscopic score, the Crohn's Disease Endoscopic Index of Severity (CDEIS) (Mary et al, Gut 39:983-9, 1989). More recently, because the CDEIS is time-consuming, complicated and impractical for routine use, a Simplified Endoscopic Activity Score for Crohn's Disease (SES- CD) was developed and validated (Daperno et al, Gastrointest. Endosc. 60(4):505-12, 2004). The SES-CD consists of four endoscopic variables (size of ulcers,
proportion of surface covered by ulcers, proportion of surface with any other lesions (e.g., inflammation), and presence of narrowings [stenosis]) that are scored in five ileocolonic segments, with each variable, or assessment, rated from 0 to 3.
To date, there is no cure for CD. Accordingly, the current treatment goals for CD are to induce and maintain symptom improvement, induce mucosal healing, avoid surgery, and improve quality of life (Lichtenstein GR, et al, Am J Gastroenterol 104:465-83, 2009; Van Assche G, et al, J Crohns Colitis. 4:63-101, 2010). The current therapy of IBD usually involves the administration of antiinflammatory or immunosuppressive agents, such as sulfasalazine, corticosteroids, 6- mercaptopurine/azathioprine, or cyclosporine, all of which are not typically delivered by localized release of a drug at the site or location of disease. More recently, biologies like TNF-alpha inhibitors and IL-12/IL-23 blockers, are used to treat IBD. If anti-inflammatory/immunosuppressive/biologic therapies fail, colectomies are the last line of defense. The typical operation for CD not involving the rectum is resection (removal of a diseased segment of bowel) and anastomosis (reconnection) without an ostomy. Sections of the small or large intestine may be removed. About 30% of CD patients will need surgery within the first year after diagnosis. In the subsequent years, the rate is about 5% per year. Unfortunately, CD is characterized by a high rate of recurrence; about 5% of patients need a second surgery each year after initial surgery.
Refining a diagnosis of inflammatory bowel disease involves evaluating the progression status of the diseases using standard classification criteria. The classification systems used in IBD include the Truelove and Witts Index (Truelove S. C. and Witts, L.J. Br Med J. 1955;2: 1041-1048), which classifies colitis as mild, moderate, or severe, as well as Lennard- Jones. (Lennard- Jones JE. Scand J Gastroenterol Suppl 1989; 170:2-6) and the simple clinical colitis activity index (SCCAI). (Walmsley et. al. Gut. 1998;43 :29-32) These systems track such variables as daily bowel movements, rectal bleeding, temperature, heart rate, hemoglobin levels, erythrocyte sedimentation rate, weight, hematocrit score, and the level of serum albumin.
There is sufficient overlap in the diagnostic criteria for UC and CD that it is sometimes impossible to say which a given patient has; however, the type of lesion typically seen is different, as is the localization. UC mostly appears in the colon, proximal to the rectum, and the characteristic lesion is a superficial ulcer of the mucosa; CD can appear anywhere in the bowel, with occasional involvement of stomach, esophagus and duodenum, and the lesions are usually described as extensive linear fissures.
In approximately 10-15% of cases, a definitive diagnosis of ulcerative colitis or Crohn's disease cannot be made and such cases are often referred to as "indeterminate colitis." Two antibody detection tests are available that can help the diagnosis, each of which assays for antibodies in the blood. The antibodies are "perinuclear anti-neutrophil antibody" (pANCA) and "anti-Saccharomyces cervisiae antibody" (ASCA). Most patients with ulcerative colitis have the pANCA antibody but not the ASCA antibody, while most patients with Crohn's disease have the ASCA antibody but not the pANCA antibody. However, these two tests have shortcomings as some patients have neither antibody and some Crohn's disease patients may have only the pANC A antibody. A third test, which measures the presence and accumulation of circulating anti-microbial antibodies - particularly flagellin antibodies, has proven to be useful for detecting susceptibility to Crohn's Disease before disease
development. See Choung, R. S., et al. "Serologic microbial associated markers can predict Crohn's disease behaviour years before disease diagnosis." Alimentary pharmacology & therapeutics 43.12 (2016): 1300-1310.
"Ulcerative colitis (UC)" afflicts the large intestine. The course of the disease may be continuous or relapsing, mild or severe. The earliest lesion is an inflammatory infiltration with abscess formation at the base of the crypts of Lieberkuhn. Coalescence of these distended and ruptured crypts tends to separate the overlying mucosa from its blood supply, leading to ulceration. Symptoms of the disease include cramping, lower abdominal pain, rectal bleeding, and frequent, loose discharges consisting mainly of blood, pus and mucus with scanty fecal particles. A total colectomy may be required for acute, severe or chronic, unremitting ulcerative colitis.
The clinical features of UC are highly variable, and the onset may be insidious or abrupt, and may include diarrhea, tenesmus and relapsing rectal bleeding. With fulminant involvement of the entire colon, toxic megacolon, a life -threatening emergency, may occur. Extraintestinal manifestations include arthritis, pyoderma gangrenoum, uveitis, and erythema nodosum.
The terms "antibody" and "immunoglobulin" are used interchangeably in the broadest sense and include monoclonal antibodies (for example, full length or intact monoclonal antibodies), polyclonal antibodies, multivalent antibodies, multispecific antibodies (e.g., bispecific, trispecific etc. antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein). An antibody can be human, humanized and/or affinity matured.
"Antibody fragments" comprise only a portion of an intact antibody, where in certain embodiments, the portion retains at least one, and typically most or all, of the functions normally associated with that portion when present in an intact antibody. In one embodiment, an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding. In one embodiment, an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody. For example, such an antibody fragment may comprise on antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies
comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigen. Furthermore, in contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or
homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81 :6851 -6855 (1984)).
"Treatment regimen" refers to a combination of dosage, frequency of administration, or duration of treatment, with or without addition of a second medication.
"Effective treatment regimen" refers to a treatment regimen that will offer beneficial response to a patient receiving the treatment.
"Patient response" or "patient responsiveness" can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of disease progression, including slowing down and complete arrest; (2) reduction in the number of disease episodes and/or symptoms; (3) reduction in lesional size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e., reduction, slowing down or complete stopping) of disease spread; (6) decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; (7) relief, to some extent, of one or more symptoms associated with the disorder; (8) increase in the length of disease-free presentation following treatment; and/or (9) decreased mortality at a given point of time following treatment. The term "responsiveness" refers to a measurable response, including complete response (CR) and partial response (PR).
As used herein, "complete response" or "CR" means the disappearance of all signs of inflammation or remission in response to treatment. This does not necessarily mean the disease has been cured.
"Partial response" or "PR" refers to a decrease of at least 50% in the severity of inflammation, in response to treatment.
A "beneficial response" of a patient to treatment with a therapeutic agent and similar wording refers to the clinical or therapeutic benefit imparted to a patient at risk for or suffering from a gastrointestinal inflammatory disorder from or as a result of the treatment with the agent. Such benefit includes cellular or biological responses, a complete response, a partial response, a stable disease (without progression or relapse), or a response with a later relapse of the patient from or as a result of the treatment with the agent.
As used herein, "non-response" or "lack of response" or similar wording means an absence of a complete response, a partial response, or a beneficial response to treatment with a therapeutic agent.
"A patient maintains responsiveness to a treatment" when the patient' s responsiveness does not decrease with time during the course of a treatment.
A "symptom" of a disease or disorder (e.g., inflammatory bowel disease, e.g., ulcerative colitis or Crohn's disease) is any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by a subject and indicative of disease.
IL-1 Inhibitor
The term "IL-1 inhibitor" refers to an agent that decreases the expression of an IL-1 cytokine or an IL-1 receptor and/or decreases the ability of an IL-1 cytokine to bind specifically to an IL-1 receptor. Non-limiting examples of IL-1 cytokines include IL-la, IL- 1β, IL-18, IL-36a, IL-36P, IL-36y, IL-38, and IL-33. In some examples, an IL-1 cytokine is IL-la. In some examples, an IL-1 cytokine is IL-Ιβ.
As is known in the art, IL-la and IL-Ιβ each binds to a complex of IL-1R1 and
ILIRAP proteins; IL-18 binds to IL-18Ra; IL-36a, IL-36P, and IL-36y each binds to a complex of IL-1RL2 and IL-IRAP proteins; and IL-33 binds to a complex of ILIRLI and ILIRAP proteins. IL-lRa is an endogenous soluble protein that decreases the ability of IL-la and IL-Ιβ to bind to their receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). IL- 36Ra is an endogenous soluble protein that decreases the ability of IL-36a, IL-36P, and IL- 36γ to bind to their receptor (e.g., a complex of IL-1RL2 and IL-IRAP proteins).
In some embodiments, the IL-1 inhibitor mimicks native human interleukin 1 receptor antagonist (ILl-Ra).
In some embodiments, the IL-1 inhibitor targets IL-1 a. In some embodiments, the IL- 1 inhibitor targets IL-Ιβ. In some embodiments, the IL-1 inhibitor targets one or both of IL- 1R1 and IL1RAP. For example, an IL-1 inhibitor can decrease the expression of IL-la and/or decrease the ability of IL-la to bind to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). In another example, an IL-1 inhibitor can decrease the expression of IL- 1β and/or decrease the ability of IL-Ιβ to binds to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). In some embodiments, an IL-1 inhibitor can decrease the expression of one or both of IL-1R1 and IL1RAP.
In some embodiments, the IL-1 inhibitor targets IL-18. In some embodiments, the IL- 1 inhibitor targets IL-18Ra. In some embodiments, the IL-1 inhibitor decreases the ability of IL-18 to bind to its receptor (e.g., IL-18Ra). In some embodiments, the IL-1 inhibitor decreases the expression of IL-18. In some embodiments, the IL-1 inhibitor decreases the expression of IL-18Ra.
In some embodiments, the IL-1 inhibitor targets one or more (e.g., two or three) of IL- 36a, IL-36P, and IL-36y. In some embodiments, the IL-1 inhibitor targets one or both of IL- 1RL2 and IL-IRAP. In some embodiments, the IL-1 inhibitor decreases the expression of one or more (e.g., two or three) of IL-36a, IL-36P, and IL-36y. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of IL-1RL2 and IL-IRAP proteins. In some embodiments, the IL-1 inhibitor decreases the ability of IL-36a to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36P to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36y to bind to its receptor (e.g., a complex including IL-1RL2 and IL-IRAP).
In some embodiments, the IL-1 inhibitor targets IL-33. In some embodiments, the IL- 1 inhibitor targets one or both of ILIRLI and ILIRAP. In some embodiments, the IL-1 inhibitor decreases the expression of IL-33. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of ILIRLI and ILIRAP. In some embodiments, the IL-1 inhibitor decreases the ability of IL-33 to bind to its receptor (e.g., a complex of IL1RL1 and ILIRAP proteins).
In some embodiments, an IL-1 inhibitory agent is an inhibitory nucleic acid, an antibody or fragment thereof, or a fusion protein. In some embodiments, the inhibitory nucleic acid is an antisense nucleic acid, a ribozyme, or a small interfering RNA.
Inhibitory Nucleic Acids
Inhibitory nucleic acids that can decrease the expression of IL-la, IL-Ιβ, IL-18, IL- 36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an IL-la, IL-Ιβ, IL- 18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 1-41). Human IL-la mRNA (SEQ ID NO: 1)
1 agtaaccagg caacaccatt gaaggctcat atgtaaaaat ccatgccttc ctttctccca
61 atctccattc ccaaacttag ccactggctt ctggctgagg ccttacgcat acctcccggg
121 gcttgcacac accttcttct acagaagaca caccttgggc atatcctaca gaagaccagg
181 cttctctctg gtccttggta gagggctact ttactgtaac agggccaggg tggagagttc
241 tctcctgaag ctccatcccc tctataggaa atgtgttgac aatattcaga agagtaagag
301 gatcaagact tctttgtgct caaataccac tgttctcttc tctaccctgc cctaaccagg
361 agcttgtcac cccaaactct gaggtgattt atgccttaat caagcaaact tccctcttca
421 gaaaagatgg ctcattttcc ctcaaaagtt gccaggagct gccaagtatt ctgccaattc
481 accctggagc acaatcaaca aattcagcca gaacacaact acagctacta ttagaactat
541 tattattaat aaattcctct ccaaatctag ccccttgact tcggatttca cgatttctcc
601 cttcctccta gaaacttgat aagtttcccg cgcttccctt tttctaagac tacatgtttg
661 tcatcttata aagcaaaggg gtgaataaat gaaccaaatc aataacttct ggaatatctg
721 caaacaacaa taatatcagc tatgccatct ttcactattt tagccagtat cgagttgaat
781 gaacatagaa aaatacaaaa ctgaattctt ccctgtaaat tccccgtttt gacgacgcac
841 ttgtagccac gtagccacgc ctacttaaga caattacaaa aggcgaagaa gactgactca
901 ggcttaagct gccagccaga gagggagtca tttcattggc gtttgagtca gcaaagaagt
961 caagatggcc aaagttccag acatgtttga agacctgaag aactgttaca gtgaaaatga
1021 agaagacagt tcctccattg atcatctgtc tctgaatcag aaatccttct atcatgtaag
1081 ctatggccca ctccatgaag gctgcatgga tcaatctgtg tctctgagta tctctgaaac
1141 ctctaaaaca tccaagctta ccttcaagga gagcatggtg gtagtagcaa ccaacgggaa
1201 ggttctgaag aagagacggt tgagtttaag ccaatccatc actgatgatg acctggaggc
1261 catcgccaat gactcagagg aagaaatcat caagcctagg tcagcacctt ttagcttcct
1321 gagcaatgtg aaatacaact ttatgaggat catcaaatac gaattcatcc tgaatgacgc
1381 cctcaatcaa agtataattc gagccaatga tcagtacctc acggctgctg cattacataa 1441 tctggatgaa gcagtgaaat ttgacatggg tgcttataag tcatcaaagg atgatgctaa 1501 aattaccgtg attctaagaa tctcaaaaac tcaattgtat gtgactgccc aagatgaaga 1561 ccaaccagtg ctgctgaagg agatgcctga gatacccaaa accatcacag gtagtgagac 1621 caacctcctc ttcttctggg aaactcacgg cactaagaac tatttcacat cagttgccca 1681 tccaaacttg tttattgcca caaagcaaga ctactgggtg tgcttggcag gggggccacc 1741 ctctatcact gactttcaga tactggaaaa ccaggcgtag gtctggagtc tcacttgtct 1801 cacttgtgca gtgttgacag ttcatatgta ccatgtacat gaagaagcta aatcctttac 1861 tgttagtcat ttgctgagca tgtactgagc cttgtaattc taaatgaatg tttacactct 1921 ttgtaagagt ggaaccaaca ctaacatata atgttgttat ttaaagaaca ccctatattt 1981 tgcatagtac caatcatttt aattattatt cttcataaca attttaggag gaccagagct 2041 actgactatg gctaccaaaa agactctacc catattacag atgggcaaat taaggcataa 2101 gaaaactaag aaatatgcac aatagcagtt gaaacaagaa gccacagacc taggatttca 2161 tgatttcatt tcaactgttt gccttctact tttaagttgc tgatgaactc ttaatcaaat 2221 agcataagtt tctgggacct cagttttatc attttcaaaa tggagggaat aatacctaag 2281 ccttcctgcc gcaacagttt tttatgctaa tcagggaggt cattttggta aaatacttct 2341 tgaagccgag cctcaagatg aaggcaaagc acgaaatgtt attttttaat tattatttat 2401 atatgtattt ataaatatat ttaagataat tataatatac tatatttatg ggaacccctt 2461 catcctctga gtgtgaccag gcatcctcca caatagcaga cagtgttttc tgggataagt 2521 aagtttgatt tcattaatac agggcatttt ggtccaagtt gtgcttatcc catagccagg 2581 aaactctgca ttctagtact tgggagacct gtaatcatat aataaatgta cattaattac 2641 cttgagccag taattggtcc gatctttgac tcttttgcca ttaaacttac ctgggcattc 2701 ttgtttcaat tccacctgca atcaagtcct acaagctaaa attagatgaa ctcaactttg 2761 acaaccatga gaccactgtt atcaaaactt tcttttctgg aatgtaatca atgtttcttc 2821 taggttctaa aaattgtgat cagaccataa tgttacatta ttatcaacaa tagtgattga 2881 tagagtgtta tcagtcataa ctaaataaag cttgcaacaa aattctctga caaaaaaaaa 2941 aaaaaaa
Human IL-Ιβ mRNA (SEQ ID NO: 2)
1 accaaacctc ttcgaggcac aaggcacaac aggctgctct gggattctct tcagccaatc 61 ttcattgctc aagtgtctga agcagccatg gcagaagtac ctgagctcgc cagtgaaatg 121 atggcttatt acagtggcaa tgaggatgac ttgttctttg aagctgatgg ccctaaacag 181 atgaagtgct ccttccagga cctggacctc tgccctctgg atggcggcat ccagctacga 241 atctccgacc accactacag caagggcttc aggcaggccg cgtcagttgt tgtggccatg 301 gacaagctga ggaagatgct ggttccctgc ccacagacct tccaggagaa tgacctgagc 361 accttctttc ccttcatctt tgaagaagaa cctatcttct tcgacacatg ggataacgag 421 gcttatgtgc acgatgcacc tgtacgatca ctgaactgca cgctccggga ctcacagcaa 481 aaaagcttgg tgatgtctgg tccatatgaa ctgaaagctc tccacctcca gggacaggat 541 atggagcaac aagtggtgtt ctccatgtcc tttgtacaag gagaagaaag taatgacaaa 601 atacctgtgg ccttgggcct caaggaaaag aatctgtacc tgtcctgcgt gttgaaagat 661 gataagccca ctctacagct ggagagtgta gatcccaaaa attacccaaa gaagaagatg 721 gaaaagcgat ttgtcttcaa caagatagaa atcaataaca agctggaatt tgagtctgcc 781 cagttcccca actggtacat cagcacctct caagcagaaa acatgcccgt cttcctggga 841 gggaccaaag gcggccagga tataactgac ttcaccatgc aatttgtgtc ttcctaaaga 901 gagctgtacc cagagagtcc tgtgctgaat gtggactcaa tccctagggc tggcagaaag 961 ggaacagaaa ggtttttgag tacggctata gcctggactt tcctgttgtc tacaccaatg 1021 cccaactgcc tgccttaggg tagtgctaag aggatctcct gtccatcagc caggacagtc 1081 agctctctcc tttcagggcc aatccccagc ccttttgttg agccaggcct ctctcacctc 1141 tcctactcac ttaaagcccg cctgacagaa accacggcca catttggttc taagaaaccc 1201 tctgtcattc gctcccacat tctgatgagc aaccgcttcc ctatttattt atttatttgt
1261 ttgtttgttt tattcattgg tctaatttat tcaaaggggg caagaagtag cagtgtctgt 1321 aaaagagcct agtttttaat agctatggaa tcaattcaat ttggactggt gtgctctctt 1381 taaatcaagt cctttaatta agactgaaaa tatataagct cagattattt aaatgggaat 1441 atttataaat gagcaaatat catactgttc aatggttctg aaataaactt cactgaag
Human IL-18 mRNA Variant 1 (SEQ ID NO: 3)
1 attctctccc cagcttgctg agccctttgc tcccctggcg actgcctgga cagtcagcaa 61 ggaattgtct cccagtgcat tttgccctcc tggctgccaa ctctggctgc taaagcggct 121 gccacctgct gcagtctaca cagcttcggg aagaggaaag gaacctcaga ccttccagat 181 cgcttcctct cgcaacaaac tatttgtcgc aggaataaag atggctgctg aaccagtaga
241 agacaattgc atcaactttg tggcaatgaa atttattgac aatacgcttt actttatagc 301 tgaagatgat gaaaacctgg aatcagatta ctttggcaag cttgaatcta aattatcagt 361 cataagaaat ttgaatgacc aagttctctt cattgaccaa ggaaatcggc ctctatttga 421 agatatgact gattctgact gtagagataa tgcaccccgg accatattta ttataagtat 481 gtataaagat agccagccta gaggtatggc tgtaactatc tctgtgaagt gtgagaaaat
541 ttcaactctc tcctgtgaga acaaaattat ttcctttaag gaaatgaatc ctcctgataa 601 catcaaggat acaaaaagtg acatcatatt ctttcagaga agtgtcccag gacatgataa 661 taagatgcaa tttgaatctt catcatacga aggatacttt ctagcttgtg aaaaagagag 721 agaccttttt aaactcattt tgaaaaaaga ggatgaattg ggggatagat ctataatgtt 781 cactgttcaa aacgaagact agctattaaa atttcatgcc gggcgcagtg gctcacgcct
841 gtaatcccag ccctttggga ggctgaggcg ggcagatcac cagaggtcag gtgttcaaga 901 ccagcctgac caacatggtg aaacctcatc tctactaaaa atacaaaaaa ttagctgagt 961 gtagtgacgc atgccctcaa tcccagctac tcaagaggct gaggcaggag aatcacttgc 1021 actccggagg tagaggttgt ggtgagccga gattgcacca ttgcgctcta gcctgggcaa 1081 caacagcaaa actccatctc aaaaaataaa ataaataaat aaacaaataa aaaattcata
1141 atgtgaaaaa aaaaaaaaaa aaa
Human IL-18 mRNA Variant 2 (SEQ ID NO: 4)
1 attctctccc cagcttgctg agccctttgc tcccctggcg actgcctgga cagtcagcaa 61 ggaattgtct cccagtgcat tttgccctcc tggctgccaa ctctggctgc taaagcggct
121 gccacctgct gcagtctaca cagcttcggg aagaggaaag gaacctcaga ccttccagat 181 cgcttcctct cgcaacaaac tatttgtcgc aggaataaag atggctgctg aaccagtaga 241 agacaattgc atcaactttg tggcaatgaa atttattgac aatacgcttt actttataga 301 aaacctggaa tcagattact ttggcaagct tgaatctaaa ttatcagtca taagaaattt 361 gaatgaccaa gttctcttca ttgaccaagg aaatcggcct ctatttgaag atatgactga
421 ttctgactgt agagataatg caccccggac catatttatt ataagtatgt ataaagatag 481 ccagcctaga ggtatggctg taactatctc tgtgaagtgt gagaaaattt caactctctc 541 ctgtgagaac aaaattattt cctttaagga aatgaatcct cctgataaca tcaaggatac 601 aaaaagtgac atcatattct ttcagagaag tgtcccagga catgataata agatgcaatt 661 tgaatcttca tcatacgaag gatactttct agcttgtgaa aaagagagag acctttttaa 721 actcattttg aaaaaagagg atgaattggg ggatagatct ataatgttca ctgttcaaaa 781 cgaagactag ctattaaaat ttcatgccgg gcgcagtggc tcacgcctgt aatcccagcc 841 ctttgggagg ctgaggcggg cagatcacca gaggtcaggt gttcaagacc agcctgacca
901 acatggtgaa acctcatctc tactaaaaat acaaaaaatt agctgagtgt agtgacgcat 961 gccctcaatc ccagctactc aagaggctga ggcaggagaa tcacttgcac tccggaggta 1021 gaggttgtgg tgagccgaga ttgcaccatt gcgctctagc ctgggcaaca acagcaaaac 1081 tccatctcaa aaaataaaat aaataaataa acaaataaaa aattcataat gtgaaaaaaa 1141 aaaaaaaaaa a
Human IL-36a mRNA (SEQ ID NO: 5)
1 aaaacccaag tgcagtagaa gccattgttc ataatggtag ggatacaggg tccttcgtaa 61 cagattatca gtgtggccta tgctggaaag tctggtgacc tctgattttt tttgcttcca 121 ggtctttggc cttggcactc tttgtcatat tagagttcct gggtctaggc ctgggcagga 181 ttcataggtg cagctgcttc tgctggaggt agactgcatc caacaaagta agggtgctgg 241 gtgagttctg ggagtataga ttctgactgg ggtcactgct gggctggccg ccagtctttc 301 atctgaccca gggttaaact gtggcttggg actgactcag gtcctctctt ggggtcggtc 361 tgcacataaa aggactccta tccttggcag ttctgaaaca acaccaccac aatggaaaaa 421 gcattgaaaa ttgacacacc tcagcagggg agcattcagg atatcaatca tcgggtgtgg 481 gttcttcagg accagacgct catagcagtc ccgaggaagg accgtatgtc tccagtcact 541 attgccttaa tctcatgccg acatgtggag acccttgaga aagacagagg gaaccccatc 601 tacctgggcc tgaatggact caatctctgc ctgatgtgtg ctaaagtcgg ggaccagccc 661 acactgcagc tgaaggaaaa ggatataatg gatttgtaca accaacccga gcctgtgaag 721 tcctttctct tctaccacag ccagagtggc aggaactcca ccttcgagtc tgtggctttc 781 cctggctggt tcatcgctgt cagctctgaa ggaggctgtc ctctcatcct tacccaagaa 841 ctggggaaag ccaacactac tgactttggg ttaactatgc tgttttaa
Human IL-36P mRNA Variant 1 (SEQ ID NO: 6)
1 cacgggttcc tccccactct gtctttctca cctctccttc acttttccta gcctcctcac
61 caccatctga tctatcttgt tctcttcaca aaaggctctg aagacatcat gaacccacaa 121 cgggaggcag cacccaaatc ctatgctatt cgtgattctc gacagatggt gtgggtcctg 181 agtggaaatt ctttaatagc agctcctctt agccgcagca ttaagcctgt cactcttcat 241 ttaatagcct gtagagacac agaattcagt gacaaggaaa agggtaatat ggtttacctg 301 ggaatcaagg gaaaagatct ctgtctcttc tgtgcagaaa ttcagggcaa gcctactttg
361 cagcttaagc ttcagggctc ccaagataac atagggaagg acacttgctg gaaactagtt 421 ggaattcaca catgcataaa cctggatgtg agagagagct gcttcatggg aacccttgac 481 caatggggaa taggagtggg tagaaagaag tggaagagtt cctttcaaca tcaccatctc 541 aggaagaagg acaaagattt ctcatccatg cggaccaaca taggaatgcc aggaaggatg 601 tagaaataag gggaggaaga ttcccatctc tacaatcttt gagtgggttt gctatcaatg
661 aaatgctaca aatggaataa gttgcagaaa tttttctctt ttcttgggtt ctggagagtt 721 tgtaaaacaa ggacactatg tatttttaaa gagttggtaa atcttacctg taaagctaga 781 gaaggtcgga gtctttttag gagtagattt ggactacata acctgtaaat gtgttttgtc 841 cagtccttag agtgtttttt aaaaaattgt aaagtcaagg ttttcatgaa aaatgggaag 901 atcagacaac attgctcctg aattcccaca gagcagcaag ctactagagc tcaatctgtt 961 atttcttttc ctgatgtaca ggggttaagt cctatggaag aaacagcaga attattcaaa 1021 attatttaca taatgtgcaa ttattcacta gagcatgagg agtgaaacgc tctgtttagt 1081 atgtataact taaaaggaac acatacaatt aaaagtaatt gaaagacatt tcttcttaaa
1141 aattctataa tcttacactg gtaaaataaa ctagtttttc ccatgt
Human IL-36P mRNA Variant 2 (SEQ ID NO: 7)
1 cacgggttcc tccccactct gtctttctca cctctccttc acttttccta gcctcctcac 61 caccatctga tctatcttgt tctcttcaca aaaggctctg aagacatcat gaacccacaa 121 cgggaggcag cacccaaatc ctatgctatt cgtgattctc gacagatggt gtgggtcctg 181 agtggaaatt ctttaatagc agctcctctt agccgcagca ttaagcctgt cactcttcat 241 ttaatagcct gtagagacac agaattcagt gacaaggaaa agggtaatat ggtttacctg 301 ggaatcaagg gaaaagatct ctgtctcttc tgtgcagaaa ttcagggcaa gcctactttg 361 cagcttaagg aaaaaaatat catggacctg tatgtggaga agaaagcaca gaagcccttt 421 ctctttttcc acaataaaga aggctccact tctgtctttc agtcagtctc ttaccctggc 481 tggttcatag ccacctccac cacatcagga cagcccatct ttctcaccaa ggagagaggc 541 ataactaata acactaactt ctacttagat tctgtggaat aaatccagcc taggctgtgg 601 gtggctggtt ccaggataga gaatcaagct gtcagagtca tcttaacaga tcattatgcg 661 actgagttca ctagcagttc agcccatcca tagcttacct cattcttact atccaaaagc 721 cacctcctcc tccaaacatc catttctgta ccaagaccct cactcgaatg tcactatccc 781 aagatgaaac ctaaaaatca ctttccattc tttcttgatc ttaccccacc atccactcag 841 ctgccatgcc cagtttagtc aaccccccaa atgctgcttc atgcaacctt ccattcctat 901 tccttttgcc aacccatgat gtagagatgt ggattcatga cattttgttc atacaacttc 961 ttcaataaaa cattataata tgtgccccaa agataaagct gaagaatgag atgaatgtga 1021 aattaaaggt ttgcatgtct ttctaatcct aaaaaaaaaa aaaaaaaa
Human IL-36y mRNA Variant 1 (SEQ ID NO: 8)
1 gaagctgctg gagccacgat tcagtcccct ggactgtaga taaagaccct ttcttgccag 61 gtgctgagac aaccacacta tgagaggcac tccaggagac gctgatggtg gaggaagggc
121 cgtctatcaa tcaatgtgta aacctattac tgggactatt aatgatttga atcagcaagt 181 gtggaccctt cagggtcaga accttgtggc agttccacga agtgacagtg tgaccccagt 241 cactgttgct gttatcacat gcaagtatcc agaggctctt gagcaaggca gaggggatcc 301 catttatttg ggaatccaga atccagaaat gtgtttgtat tgtgagaagg ttggagaaca 361 gcccacattg cagctaaaag agcagaagat catggatctg tatggccaac ccgagcccgt
421 gaaacccttc cttttctacc gtgccaagac tggtaggacc tccacccttg agtctgtggc 481 cttcccggac tggttcattg cctcctccaa gagagaccag cccatcattc tgacttcaga 541 acttgggaag tcatacaaca ctgcctttga attaaatata aatgactgaa ctcagcctag 601 aggtggcagc ttggtctttg tcttaaagtt tctggttccc aatgtgtttt cgtctacatt 661 ttcttagtgt cattttcacg ctggtgctga gacaggggca aggctgctgt tatcatctca
721 ttttataatg aagaagaagc aattacttca tagcaactga agaacaggat gtggcctcag 781 aagcaggaga gctgggtggt ataaggctgt cctctcaagc tggtgctgtg taggccacaa 841 ggcatctgca tgagtgactt taagactcaa agaccaaaca ctgagctttc ttctaggggt 901 gggtatgaag atgcttcaga gctcatgcgc gttacccacg atggcatgac tagcacagag 961 ctgatctctg tttctgtttt gctttattcc ctcttgggat gatatcatcc agtctttata
1021 tgttgccaat atacctcatt gtgtgtaata gaaccttctt agcattaaga ccttgtaaac 1081 aaaaataatt cttgtgttaa gttaaatcat ttttgtccta attgtaatgt gtaatcttaa
1141 agttaaataa actttgtgta tttatataat aataaagcta aaactgatat aaaataaaga
1201 aagagtaaac tg
Human IL-36y mRNA Variant 2 (SEQ ID NO: 9)
1 gaagctgctg gagccacgat tcagtcccct ggactgtaga taaagaccct ttcttgccag 61 gtgctgagac aaccacacta tgagaggcac tccaggagac gctgatggtg gaggaagggc 121 cgtctatcaa tcaatcactg ttgctgttat cacatgcaag tatccagagg ctcttgagca 181 aggcagaggg gatcccattt atttgggaat ccagaatcca gaaatgtgtt tgtattgtga 241 gaaggttgga gaacagccca cattgcagct aaaagagcag aagatcatgg atctgtatgg 301 ccaacccgag cccgtgaaac ccttcctttt ctaccgtgcc aagactggta ggacctccac 361 ccttgagtct gtggccttcc cggactggtt cattgcctcc tccaagagag accagcccat 421 cattctgact tcagaacttg ggaagtcata caacactgcc tttgaattaa atataaatga 481 ctgaactcag cctagaggtg gcagcttggt ctttgtctta aagtttctgg ttcccaatgt 541 gttttcgtct acattttctt agtgtcattt tcacgctggt gctgagacag gggcaaggct 601 gctgttatca tctcatttta taatgaagaa gaagcaatta cttcatagca actgaagaac 661 aggatgtggc ctcagaagca ggagagctgg gtggtataag gctgtcctct caagctggtg 721 ctgtgtaggc cacaaggcat ctgcatgagt gactttaaga ctcaaagacc aaacactgag 781 ctttcttcta ggggtgggta tgaagatgct tcagagctca tgcgcgttac ccacgatggc 841 atgactagca cagagctgat ctctgtttct gttttgcttt attccctctt gggatgatat 901 catccagtct ttatatgttg ccaatatacc tcattgtgtg taatagaacc ttcttagcat 961 taagaccttg taaacaaaaa taattcttgt gttaagttaa atcatttttg tcctaattgt 1021 aatgtgtaat cttaaagtta aataaacttt gtgtatttat ataataataa agctaaaact 1081 gatataaaat aaagaaagag taaactg
Human IL-38 mRNA Variant 1 (SEQ ID NO: 10)
1 ggcagtggga ctgggtttga gctgggctta tcctccaact gtgagggagg ctacagcaca
61 ctccacccca ctctcagggc tgggaattgt tgtggctcag ctatttgggg gaatctgttt 121 tccagtttct cagaaccagc gcaagcacac acatcccagg ctcacacccc tggtggctgg 181 acttgctccc ggatagcctc agtcagggag aggcagagct gcctggagcc tgctgggctg 241 gtggaagcct tggtggattc tggcaggcca attatagacg aatggcctgg ggaacccgtg 301 cagcccttgg ctgagtggtt ctaagcccca gcacgtctgc ctctggcttc acccagcctc
361 cttttctaac tgcccttctc tcctccccat cagtgaggac cagacaccac tgattgcagg 421 aatgtgttcc ctccccatgg caagatacta cataattaaa tatgcagacc agaaggctct 481 atacacaaga gatggccagc tgctggtggg agatcctgtt gcagacaact gctgtgcaga 541 gaagatctgc atacttccta acagaggctt ggcccgcacc aaggtcccca ttttcctggg 601 gatccaggga gggagccgct gcctggcatg tgtggagaca gaagaggggc cttccctaca
661 gctggaggat gtgaacattg aggaactgta caaaggtggt gaagaggcca cacgcttcac 721 cttcttccag agcagctcag gctccgcctt caggcttgag gctgctgcct ggcctggctg 781 gttcctgtgt ggcccggcag agccccagca gccagtacag ctcaccaagg agagtgagcc 841 ctcagcccgt accaagtttt actttgaaca gagctggtag ggagacagga aactgcgttt 901 tagccttgtg cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg 961 tcccccgaaa tatgtccaca tcctaatccc aagatctgtg catatgttac catacatgtc 1021 caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg 1081 ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag
1141 aatggaagat accatgcttc taattttgaa gatggagtga ggggccttga gccaacaaat 1201 gcaggtgttt ttagaaggtg gaaaagccaa gggaacggat tctcctctag agtctccgga 1261 aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 1321 ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaa
Human IL-38 mRNA Variant 2 (SEQ ID NO: 11)
1 agttggagtc tccagggatc agggttccag gaactcagga tctgcagtga ggaccagaca 61 ccactgattg caggaatgtg ttccctcccc atggcaagat actacataat taaatatgca 121 gaccagaagg ctctatacac aagagatggc cagctgctgg tgggagatcc tgttgcagac 181 aactgctgtg cagagaagat ctgcatactt cctaacagag gcttggcccg caccaaggtc
241 cccattttcc tggggatcca gggagggagc cgctgcctgg catgtgtgga gacagaagag 301 gggccttccc tacagctgga ggatgtgaac attgaggaac tgtacaaagg tggtgaagag 361 gccacacgct tcaccttctt ccagagcagc tcaggctccg ccttcaggct tgaggctgct 421 gcctggcctg gctggttcct gtgtggcccg gcagagcccc agcagccagt acagctcacc 481 aaggagagtg agccctcagc ccgtaccaag ttttactttg aacagagctg gtagggagac
541 aggaaactgc gttttagcct tgtgccccca aaccaagctc atcctgctca gggtctatgg 601 taggcagaat aatgtccccc gaaatatgtc cacatcctaa tcccaagatc tgtgcatatg 661 ttaccataca tgtccaaaga ggttttgcaa atgtgattat gttaaggatc ttgaaatgag 721 gagacaatcc tgggttatcc ttgtgggctc agtttaatca caagaaggag gcaggaaggg 781 agagtcagag agagaatgga agataccatg cttctaattt tgaagatgga gtgaggggcc
841 ttgagccaac aaatgcaggt gtttttagaa ggtggaaaag ccaagggaac ggattctcct 901 ctagagtctc cggaaggaac acagctcttg acacatggat ttcagctcag tgacacccat 961 ttcagacttc tgacctccac aactataaaa taataaactt gtgttattgt aaacctctaa 1021 aaaaaaa
Human IL-33 mRNA Variant 1 (SEQ ID NO: 12)
1 agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga 61 tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca 121 gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag 181 aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa
241 aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga 301 aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt 361 gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca 421 ggaatttcac ctattacaga gtatcttgct tctctaagca catacaatga tcaatccatt 481 acttttgctt tggaggatga aagttatgag atatatgttg aagacttgaa aaaagatgaa
541 aagaaagata aggtgttact gagttactat gagtctcaac acccctcaaa tgaatcaggt 601 gacggtgttg atggtaagat gttaatggta accctgagtc ctacaaaaga cttctggttg 661 catgccaaca acaaggaaca ctctgtggag ctccataagt gtgaaaaacc actgccagac 721 caggccttct ttgtccttca taatatgcac tccaactgtg tttcatttga atgcaagact 781 gatcctggag tgtttatagg tgtaaaggat aatcatcttg ctctgattaa agtagactct 841 tctgagaatt tgtgtactga aaatatcttg tttaagctct ctgaaactta gttgatggaa 901 acctgtgagt cttgggttga gtacccaaat gctaccactg gagaaggaat gagagataaa 961 gaaagagaca ggtgacatct aagggaaatg aagagtgctt agcatgtgtg gaatgttttc
1021 catattatgt ataaaaatat tttttctaat cctccagtta ttcttttatt tccctctgta
1081 taactgcatc ttcaatacaa gtatcagtat attaaatagg gtattggtaa agaaacggtc 1141 aacattctaa agagatacag tctgaccttt acttttctct agtttcagtc cagaaagaac 1201 ttcatattta gagctaaggc cactgaggaa agagccatag cttaagtctc tatgtagaca 1261 gggatccatt ttaaagagct acttagagaa ataattttcc acagttccaa acgataggct
1321 caaacactag agctgctagt aaaaagaaga ccagatgctt cacagaatta tcattttttc 1381 aactggaata aaacaccagg tttgtttgta gatgtcttag gcaacactca gagcagatct 1441 cccttactgt caggggatat ggaacttcaa aggcccacat ggcaagccag gtaacataaa 1501 tgtgtgaaaa agtaaagata actaaaaaat ttagaaaaat aaatccagta tttgtaaagt 1561 gaataacttc atttctaatt gtttaatttt taaaattctg atttttatat attgagttta
1621 agcaaggcat tcttacacga ggaagtgaag taaattttag ttcagacata aaatttcact 1681 tattaggaat atgtaacatg ctaaaacttt ttttttttta aagagtactg agtcacaaca 1741 tgttttagag catccaagta ccatataatc caactatcat ggtaaggcca gaaatcttct 1801 aacctaccag agcctagatg agacaccgaa ttaacattaa aatttcagta actgactgtc 1861 cctcatgtcc atggcctacc atcccttctg accctggctt ccagggacct atgtctttta
1921 atactcactg tcacattggg caaagttgct tctaatcctt atttcccatg tgcacaagtc 1981 tttttgtatt ccagcttcct gataacactg cttactgtgg aatattcatt tgacatctgt 2041 ctcttttcat ttcttttaac taccatgccc ttgatatatc ttttgcacct gctgaacttc 2101 atttctgtat cacctgacct ctggatgcca aaacgtttat tctgctttgt ctgttgtaga 2161 attttagata aagctattaa tggcaatatt tttttgctaa acgtttttgt tttttactgt
2221 cactagggca ataaaattta tactcaacca tataataaca ttttttaact actaaaggag 2281 tagtttttat tttaaagtct tagcaatttc tattacaact tttcttagac ttaacactta
2341 tgataaatga ctaacatagt aacagaatct ttatgaaata tgaccttttc tgaaaataca 2401 tacttttaca tttctacttt attgagacct attagatgta agtgctagta gaatataaga 2461 taaaagaggc tgagaattac catacaaggg tattacaact gtaaaacaat ttatctttgt
2521 ttcattgttc tgtcaataat tgttaccaaa gagataaaaa taaaagcaga atgtatatca 2581 tcccatctga aaaacactaa ttattgacat gtgcatctgt acaataaact taaaatgatt 2641 attaaataat caaatatatc tactacattg tttatattat tgaataaagt atattttcca 2701 aatgtaaaaa aaaaaaaa
Human IL-33 mRNA Variant 2 (SEQ ID NO: 13)
1 agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga 61 tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca 121 gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag 181 aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa
241 aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga 301 aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt 361 gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca 421 gataaggtgt tactgagtta ctatgagtct caacacccct caaatgaatc aggtgacggt 481 gttgatggta agatgttaat ggtaaccctg agtcctacaa aagacttctg gttgcatgcc 541 aacaacaagg aacactctgt ggagctccat aagtgtgaaa aaccactgcc agaccaggcc 601 ttctttgtcc ttcataatat gcactccaac tgtgtttcat ttgaatgcaa gactgatcct 661 ggagtgttta taggtgtaaa ggataatcat cttgctctga ttaaagtaga ctcttctgag
721 aatttgtgta ctgaaaatat cttgtttaag ctctctgaaa cttagttgat ggaaacctgt 781 gagtcttggg ttgagtaccc aaatgctacc actggagaag gaatgagaga taaagaaaga 841 gacaggtgac atctaaggga aatgaagagt gcttagcatg tgtggaatgt tttccatatt 901 atgtataaaa atattttttc taatcctcca gttattcttt tatttccctc tgtataactg
961 catcttcaat acaagtatca gtatattaaa tagggtattg gtaaagaaac ggtcaacatt
1021 ctaaagagat acagtctgac ctttactttt ctctagtttc agtccagaaa gaacttcata 1081 tttagagcta aggccactga ggaaagagcc atagcttaag tctctatgta gacagggatc 1141 cattttaaag agctacttag agaaataatt ttccacagtt ccaaacgata ggctcaaaca 1201 ctagagctgc tagtaaaaag aagaccagat gcttcacaga attatcattt tttcaactgg 1261 aataaaacac caggtttgtt tgtagatgtc ttaggcaaca ctcagagcag atctccctta
1321 ctgtcagggg atatggaact tcaaaggccc acatggcaag ccaggtaaca taaatgtgtg 1381 aaaaagtaaa gataactaaa aaatttagaa aaataaatcc agtatttgta aagtgaataa 1441 cttcatttct aattgtttaa tttttaaaat tctgattttt atatattgag tttaagcaag
1501 gcattcttac acgaggaagt gaagtaaatt ttagttcaga cataaaattt cacttattag 1561 gaatatgtaa catgctaaaa cttttttttt tttaaagagt actgagtcac aacatgtttt
1621 agagcatcca agtaccatat aatccaacta tcatggtaag gccagaaatc ttctaaccta 1681 ccagagccta gatgagacac cgaattaaca ttaaaatttc agtaactgac tgtccctcat 1741 gtccatggcc taccatccct tctgaccctg gcttccaggg acctatgtct tttaatactc 1801 actgtcacat tgggcaaagt tgcttctaat ccttatttcc catgtgcaca agtctttttg 1861 tattccagct tcctgataac actgcttact gtggaatatt catttgacat ctgtctcttt
1921 tcatttcttt taactaccat gcccttgata tatcttttgc acctgctgaa cttcatttct 1981 gtatcacctg acctctggat gccaaaacgt ttattctgct ttgtctgttg tagaatttta 2041 gataaagcta ttaatggcaa tatttttttg ctaaacgttt ttgtttttta ctgtcactag 2101 ggcaataaaa tttatactca accatataat aacatttttt aactactaaa ggagtagttt 2161 ttattttaaa gtcttagcaa tttctattac aacttttctt agacttaaca cttatgataa
2221 atgactaaca tagtaacaga atctttatga aatatgacct tttctgaaaa tacatacttt 2281 tacatttcta ctttattgag acctattaga tgtaagtgct agtagaatat aagataaaag 2341 aggctgagaa ttaccataca agggtattac aactgtaaaa caatttatct ttgtttcatt 2401 gttctgtcaa taattgttac caaagagata aaaataaaag cagaatgtat atcatcccat 2461 ctgaaaaaca ctaattattg acatgtgcat ctgtacaata aacttaaaat gattattaaa
2521 taatcaaata tatctactac attgtttata ttattgaata aagtatattt tccaaatgta 2581 aaaaaaaaaa aa
Human IL-33 mRNA Variant 3 (SEQ ID NO: 14)
1 agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga
61 tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca 121 gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa taaggtgtta 181 ctgagttact atgagtctca acacccctca aatgaatcag gtgacggtgt tgatggtaag 241 atgttaatgg taaccctgag tcctacaaaa gacttctggt tgcatgccaa caacaaggaa 301 cactctgtgg agctccataa gtgtgaaaaa ccactgccag accaggcctt ctttgtcctt 361 cataatatgc actccaactg tgtttcattt gaatgcaaga ctgatcctgg agtgtttata 421 ggtgtaaagg ataatcatct tgctctgatt aaagtagact cttctgagaa tttgtgtact 481 gaaaatatct tgtttaagct ctctgaaact tagttgatgg aaacctgtga gtcttgggtt
541 gagtacccaa atgctaccac tggagaagga atgagagata aagaaagaga caggtgacat 601 ctaagggaaa tgaagagtgc ttagcatgtg tggaatgttt tccatattat gtataaaaat 661 attttttcta atcctccagt tattctttta tttccctctg tataactgca tcttcaatac
721 aagtatcagt atattaaata gggtattggt aaagaaacgg tcaacattct aaagagatac 781 agtctgacct ttacttttct ctagtttcag tccagaaaga acttcatatt tagagctaag
841 gccactgagg aaagagccat agcttaagtc tctatgtaga cagggatcca ttttaaagag 901 ctacttagag aaataatttt ccacagttcc aaacgatagg ctcaaacact agagctgcta 961 gtaaaaagaa gaccagatgc ttcacagaat tatcattttt tcaactggaa taaaacacca 1021 ggtttgtttg tagatgtctt aggcaacact cagagcagat ctcccttact gtcaggggat 1081 atggaacttc aaaggcccac atggcaagcc aggtaacata aatgtgtgaa aaagtaaaga
1141 taactaaaaa atttagaaaa ataaatccag tatttgtaaa gtgaataact tcatttctaa 1201 ttgtttaatt tttaaaattc tgatttttat atattgagtt taagcaaggc attcttacac
1261 gaggaagtga agtaaatttt agttcagaca taaaatttca cttattagga atatgtaaca 1321 tgctaaaact tttttttttt taaagagtac tgagtcacaa catgttttag agcatccaag 1381 taccatataa tccaactatc atggtaaggc cagaaatctt ctaacctacc agagcctaga
1441 tgagacaccg aattaacatt aaaatttcag taactgactg tccctcatgt ccatggccta 1501 ccatcccttc tgaccctggc ttccagggac ctatgtcttt taatactcac tgtcacattg 1561 ggcaaagttg cttctaatcc ttatttccca tgtgcacaag tctttttgta ttccagcttc 1621 ctgataacac tgcttactgt ggaatattca tttgacatct gtctcttttc atttctttta
1681 actaccatgc ccttgatata tcttttgcac ctgctgaact tcatttctgt atcacctgac
1741 ctctggatgc caaaacgttt attctgcttt gtctgttgta gaattttaga taaagctatt 1801 aatggcaata tttttttgct aaacgttttt gttttttact gtcactaggg caataaaatt 1861 tatactcaac catataataa cattttttaa ctactaaagg agtagttttt attttaaagt 1921 cttagcaatt tctattacaa cttttcttag acttaacact tatgataaat gactaacata 1981 gtaacagaat ctttatgaaa tatgaccttt tctgaaaata catactttta catttctact
2041 ttattgagac ctattagatg taagtgctag tagaatataa gataaaagag gctgagaatt 2101 accatacaag ggtattacaa ctgtaaaaca atttatcttt gtttcattgt tctgtcaata 2161 attgttacca aagagataaa aataaaagca gaatgtatat catcccatct gaaaaacact 2221 aattattgac atgtgcatct gtacaataaa cttaaaatga ttattaaata atcaaatata 2281 tctactacat tgtttatatt attgaataaa gtatattttc caaatgtaaa
Human IL-33 mRNA Variant 4 (SEQ ID NO: 15)
1 acagatgcca aacgagatgg agagagggtg agtaggagca aaatttctca tgagaatact 61 gaaaaatgaa gcctaaaatg aagtattcaa ccaacaaaat ttccacagca aagtggaaga 121 acacagcaag caaagccttg tgtttcaagc tgggaaaatc ccaacagaag gccaaagaag
181 tttgccccat gtactttatg aagctccgct ctggccttat gataaaaaag gaggcctgtt 241 actttaggag agaaaccacc aaaaggcctt cactgaaaac aggtagaaag cacaaaagac 301 atctggtact cgctgcctgt caacagcagt ctactgtgga gtgctttgcc tttggtatat 361 caggggtcca gaaatatact agagcacttc atgattcaag tatcacagga atttcaccta 421 ttacagagta tcttgcttct ctaagcacat acaatgatca atccattact tttgctttgg 481 aggatgaaag ttatgagata tatgttgaag acttgaaaaa agatgaaaag aaagataagg 541 tgttactgag ttactatgag tctcaacacc cctcaaatga atcaggtgac ggtgttgatg 601 gtaagatgtt aatggtaacc ctgagtccta caaaagactt ctggttgcat gccaacaaca
661 aggaacactc tgtggagctc cataagtgtg aaaaaccact gccagaccag gccttctttg 721 tccttcataa tatgcactcc aactgtgttt catttgaatg caagactgat cctggagtgt 781 ttataggtgt aaaggataat catcttgctc tgattaaagt agactcttct gagaatttgt 841 gtactgaaaa tatcttgttt aagctctctg aaacttagtt gatggaaacc tgtgagtctt 901 gggttgagta cccaaatgct accactggag aaggaatgag agataaagaa agagacaggt
961 gacatctaag ggaaatgaag agtgcttagc atgtgtggaa tgttttccat attatgtata 1021 aaaatatttt ttctaatcct ccagttattc ttttatttcc ctctgtataa ctgcatcttc
1081 aatacaagta tcagtatatt aaatagggta ttggtaaaga aacggtcaac attctaaaga 1141 gatacagtct gacctttact tttctctagt ttcagtccag aaagaacttc atatttagag 1201 ctaaggccac tgaggaaaga gccatagctt aagtctctat gtagacaggg atccatttta
1261 aagagctact tagagaaata attttccaca gttccaaacg ataggctcaa acactagagc 1321 tgctagtaaa aagaagacca gatgcttcac agaattatca ttttttcaac tggaataaaa 1381 caccaggttt gtttgtagat gtcttaggca acactcagag cagatctccc ttactgtcag 1441 gggatatgga acttcaaagg cccacatggc aagccaggta acataaatgt gtgaaaaagt 1501 aaagataact aaaaaattta gaaaaataaa tccagtattt gtaaagtgaa taacttcatt
1561 tctaattgtt taatttttaa aattctgatt tttatatatt gagtttaagc aaggcattct
1621 tacacgagga agtgaagtaa attttagttc agacataaaa tttcacttat taggaatatg 1681 taacatgcta aaactttttt ttttttaaag agtactgagt cacaacatgt tttagagcat 1741 ccaagtacca tataatccaa ctatcatggt aaggccagaa atcttctaac ctaccagagc 1801 ctagatgaga caccgaatta acattaaaat ttcagtaact gactgtccct catgtccatg
1861 gcctaccatc ccttctgacc ctggcttcca gggacctatg tcttttaata ctcactgtca 1921 cattgggcaa agttgcttct aatccttatt tcccatgtgc acaagtcttt ttgtattcca 1981 gcttcctgat aacactgctt actgtggaat attcatttga catctgtctc ttttcatttc 2041 ttttaactac catgcccttg atatatcttt tgcacctgct gaacttcatt tctgtatcac 2101 ctgacctctg gatgccaaaa cgtttattct gctttgtctg ttgtagaatt ttagataaag
2161 ctattaatgg caatattttt ttgctaaacg tttttgtttt ttactgtcac tagggcaata
2221 aaatttatac tcaaccatat aataacattt tttaactact aaaggagtag tttttatttt 2281 aaagtcttag caatttctat tacaactttt cttagactta acacttatga taaatgacta 2341 acatagtaac agaatcttta tgaaatatga ccttttctga aaatacatac ttttacattt 2401 ctactttatt gagacctatt agatgtaagt gctagtagaa tataagataa aagaggctga
2461 gaattaccat acaagggtat tacaactgta aaacaattta tctttgtttc attgttctgt 2521 caataattgt taccaaagag ataaaaataa aagcagaatg tatatcatcc catctgaaaa 2581 acactaatta ttgacatgtg catctgtaca ataaacttaa aatgattatt aaataatcaa 2641 atatatctac tacattgttt atattattga ataaagtata ttttccaaat gtaaaaaaaa 2701 aaaaa
Human IL-33 mRNA Variant 5 (SEQ ID NO: 16)
1 aaatactaca attgctgact acaggaaacc tcatcatctg agaccagcac tttataaatt 61 agaatactga aaaatgaagc ctaaaatgaa gtattcaacc aacaaaattt ccacagcaaa 121 gtggaagaac acagcaagca aagccttgtg tttcaagctg ggaaaatccc aacagaaggc 181 caaagaagtt tgccccatgt actttatgaa gctccgctct ggccttatga taaaaaagga 241 ggcctgttac tttaggagag aaaccaccaa aaggccttca ctgaaaacag gtagaaagca 301 caaaagacat ctggtactcg ctgcctgtca acagcagtct actgtggagt gctttgcctt
361 tggtatatca ggggtccaga aatatactag agcacttcat gattcaagta tcacaggaat 421 ttcacctatt acagagtatc ttgcttctct aagcacatac aatgatcaat ccattacttt 481 tgctttggag gatgaaagtt atgagatata tgttgaagac ttgaaaaaag atgaaaagaa 541 agataaggtg ttactgagtt actatgagtc tcaacacccc tcaaatgaat caggtgacgg 601 tgttgatggt aagatgttaa tggtaaccct gagtcctaca aaagacttct ggttgcatgc
661 caacaacaag gaacactctg tggagctcca taagtgtgaa aaaccactgc cagaccaggc 721 cttctttgtc cttcataata tgcactccaa ctgtgtttca tttgaatgca agactgatcc 781 tggagtgttt ataggtgtaa aggataatca tcttgctctg attaaagtag actcttctga 841 gaatttgtgt actgaaaata tcttgtttaa gctctctgaa acttagttga tggaaacctg 901 tgagtcttgg gttgagtacc caaatgctac cactggagaa ggaatgagag ataaagaaag
961 agacaggtga catctaaggg aaatgaagag tgcttagcat gtgtggaatg ttttccatat 1021 tatgtataaa aatatttttt ctaatcctcc agttattctt ttatttccct ctgtataact
1081 gcatcttcaa tacaagtatc agtatattaa atagggtatt ggtaaagaaa cggtcaacat 1141 tctaaagaga tacagtctga cctttacttt tctctagttt cagtccagaa agaacttcat 1201 atttagagct aaggccactg aggaaagagc catagcttaa gtctctatgt agacagggat
1261 ccattttaaa gagctactta gagaaataat tttccacagt tccaaacgat aggctcaaac 1321 actagagctg ctagtaaaaa gaagaccaga tgcttcacag aattatcatt ttttcaactg 1381 gaataaaaca ccaggtttgt ttgtagatgt cttaggcaac actcagagca gatctccctt 1441 actgtcaggg gatatggaac ttcaaaggcc cacatggcaa gccaggtaac ataaatgtgt 1501 gaaaaagtaa agataactaa aaaatttaga aaaataaatc cagtatttgt aaagtgaata
1561 acttcatttc taattgttta atttttaaaa ttctgatttt tatatattga gtttaagcaa
1621 ggcattctta cacgaggaag tgaagtaaat tttagttcag acataaaatt tcacttatta 1681 ggaatatgta acatgctaaa actttttttt ttttaaagag tactgagtca caacatgttt 1741 tagagcatcc aagtaccata taatccaact atcatggtaa ggccagaaat cttctaacct 1801 accagagcct agatgagaca ccgaattaac attaaaattt cagtaactga ctgtccctca
1861 tgtccatggc ctaccatccc ttctgaccct ggcttccagg gacctatgtc ttttaatact 1921 cactgtcaca ttgggcaaag ttgcttctaa tccttatttc ccatgtgcac aagtcttttt 1981 gtattccagc ttcctgataa cactgcttac tgtggaatat tcatttgaca tctgtctctt 2041 ttcatttctt ttaactacca tgcccttgat atatcttttg cacctgctga acttcatttc 2101 tgtatcacct gacctctgga tgccaaaacg tttattctgc tttgtctgtt gtagaatttt
2161 agataaagct attaatggca atattttttt gctaaacgtt tttgtttttt actgtcacta 2221 gggcaataaa atttatactc aaccatataa taacattttt taactactaa aggagtagtt 2281 tttattttaa agtcttagca atttctatta caacttttct tagacttaac acttatgata 2341 aatgactaac atagtaacag aatctttatg aaatatgacc ttttctgaaa atacatactt 2401 ttacatttct actttattga gacctattag atgtaagtgc tagtagaata taagataaaa
2461 gaggctgaga attaccatac aagggtatta caactgtaaa acaatttatc tttgtttcat 2521 tgttctgtca ataattgtta ccaaagagat aaaaataaaa gcagaatgta tatcatccca 2581 tctgaaaaac actaattatt gacatgtgca tctgtacaat aaacttaaaa tgattattaa 2641 ataatcaaat atatctacta cattgtttat attattgaat aaagtatatt ttccaaatgt 2701 aaaaaaaaaa aaa
Human IL-33 mRNA Variant 6 (SEQ ID NO: 17)
1 agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga 61 tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca
121 gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag 181 aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa 241 aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga 301 aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt 361 gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca
421 gagtatcttg cttctctaag cacatacaat gatcaatcca ttacttttgc tttggaggat 481 gaaagttatg agatatatgt tgaagacttg aaaaaagatg aaaagaaaga taaggtgtta 541 ctgagttact atgagtctca acacccctca aatgaatcag gtgacggtgt tgatggtaag 601 atgttaatgg taaccctgag tcctacaaaa gacttctggt tgcatgccaa caacaaggaa 661 cactctgtgg agctccataa gtgtgaaaaa ccactgccag accaggcctt ctttgtcctt
721 cataatatgc actccaactg tgtttcattt gaatgcaaga ctgatcctgg agtgtttata 781 ggtgtaaagg ataatcatct tgctctgatt aaagtagact cttctgagaa tttgtgtact 841 gaaaatatct tgtttaagct ctctgaaact tagttgatgg aaacctgtga gtcttgggtt 901 gagtacccaa atgctaccac tggagaagga atgagagata aagaaagaga caggtgacat 961 ctaagggaaa tgaagagtgc ttagcatgtg tggaatgttt tccatattat gtataaaaat
1021 attttttcta atcctccagt tattctttta tttccctctg tataactgca tcttcaatac
1081 aagtatcagt atattaaata gggtattggt aaagaaacgg tcaacattct aaagagatac 1141 agtctgacct ttacttttct ctagtttcag tccagaaaga acttcatatt tagagctaag 1201 gccactgagg aaagagccat agcttaagtc tctatgtaga cagggatcca ttttaaagag 1261 ctacttagag aaataatttt ccacagttcc aaacgatagg ctcaaacact agagctgcta
1321 gtaaaaagaa gaccagatgc ttcacagaat tatcattttt tcaactggaa taaaacacca 1381 ggtttgtttg tagatgtctt aggcaacact cagagcagat ctcccttact gtcaggggat 1441 atggaacttc aaaggcccac atggcaagcc aggtaacata aatgtgtgaa aaagtaaaga 1501 taactaaaaa atttagaaaa ataaatccag tatttgtaaa gtgaataact tcatttctaa 1561 ttgtttaatt tttaaaattc tgatttttat atattgagtt taagcaaggc attcttacac
1621 gaggaagtga agtaaatttt agttcagaca taaaatttca cttattagga atatgtaaca 1681 tgctaaaact tttttttttt taaagagtac tgagtcacaa catgttttag agcatccaag 1741 taccatataa tccaactatc atggtaaggc cagaaatctt ctaacctacc agagcctaga 1801 tgagacaccg aattaacatt aaaatttcag taactgactg tccctcatgt ccatggccta 1861 ccatcccttc tgaccctggc ttccagggac ctatgtcttt taatactcac tgtcacattg
1921 ggcaaagttg cttctaatcc ttatttccca tgtgcacaag tctttttgta ttccagcttc 1981 ctgataacac tgcttactgt ggaatattca tttgacatct gtctcttttc atttctttta
2041 actaccatgc ccttgatata tcttttgcac ctgctgaact tcatttctgt atcacctgac 2101 ctctggatgc caaaacgttt attctgcttt gtctgttgta gaattttaga taaagctatt 2161 aatggcaata tttttttgct aaacgttttt gttttttact gtcactaggg caataaaatt
2221 tatactcaac catataataa cattttttaa ctactaaagg agtagttttt attttaaagt 2281 cttagcaatt tctattacaa cttttcttag acttaacact tatgataaat gactaacata 2341 gtaacagaat ctttatgaaa tatgaccttt tctgaaaata catactttta catttctact 2401 ttattgagac ctattagatg taagtgctag tagaatataa gataaaagag gctgagaatt 2461 accatacaag ggtattacaa ctgtaaaaca atttatcttt gtttcattgt tctgtcaata 2521 attgttacca aagagataaa aataaaagca gaatgtatat catcccatct gaaaaacact 2581 aattattgac atgtgcatct gtacaataaa cttaaaatga ttattaaata atcaaatata 2641 tctactacat tgtttatatt attgaataaa gtatattttc caaatgtaaa
Human IL-33 mRNA Variant 7 (SEQ ID NO: 18)
1 acagatgcca aacgagatgg agagagggtg agtaggagca aaatttctca tgagaatact 61 gaaaaatgaa gcctaaaatg aagtattcaa ccaacaaaat ttccacagca aagtggaaga 121 acacagcaag caaagccttg tgtttcaagc tgggaaaatc ccaacagaag gccaaagaag
181 tttgccccat gtactttatg aagctccgct ctggccttat gataaaaaag gaggcctgtt 241 actttaggag agaaaccacc aaaaggcctt cactgaaaac aggtagaaag cacaaaagac 301 atctggtact cgctgcctgt caacagcagt ctactgtgga gtgctttgcc tttggtatat 361 caggggtcca gaaatatact agagcacttc atgattcaag tatcacagag tatcttgctt 421 ctctaagcac atacaatgat caatccatta cttttgcttt ggaggatgaa agttatgaga
481 tatatgttga agacttgaaa aaagatgaaa agaaagataa ggtgttactg agttactatg 541 agtctcaaca cccctcaaat gaatcaggtg acggtgttga tggtaagatg ttaatggtaa 601 ccctgagtcc tacaaaagac ttctggttgc atgccaacaa caaggaacac tctgtggagc 661 tccataagtg tgaaaaacca ctgccagacc aggccttctt tgtccttcat aatatgcact 721 ccaactgtgt ttcatttgaa tgcaagactg atcctggagt gtttataggt gtaaaggata
781 atcatcttgc tctgattaaa gtagactctt ctgagaattt gtgtactgaa aatatcttgt 841 ttaagctctc tgaaacttag ttgatggaaa cctgtgagtc ttgggttgag tacccaaatg 901 ctaccactgg agaaggaatg agagataaag aaagagacag gtgacatcta agggaaatga 961 agagtgctta gcatgtgtgg aatgttttcc atattatgta taaaaatatt ttttctaatc 1021 ctccagttat tcttttattt ccctctgtat aactgcatct tcaatacaag tatcagtata
1081 ttaaataggg tattggtaaa gaaacggtca acattctaaa gagatacagt ctgaccttta 1141 cttttctcta gtttcagtcc agaaagaact tcatatttag agctaaggcc actgaggaaa 1201 gagccatagc ttaagtctct atgtagacag ggatccattt taaagagcta cttagagaaa 1261 taattttcca cagttccaaa cgataggctc aaacactaga gctgctagta aaaagaagac 1321 cagatgcttc acagaattat cattttttca actggaataa aacaccaggt ttgtttgtag
1381 atgtcttagg caacactcag agcagatctc ccttactgtc aggggatatg gaacttcaaa 1441 ggcccacatg gcaagccagg taacataaat gtgtgaaaaa gtaaagataa ctaaaaaatt 1501 tagaaaaata aatccagtat ttgtaaagtg aataacttca tttctaattg tttaattttt 1561 aaaattctga tttttatata ttgagtttaa gcaaggcatt cttacacgag gaagtgaagt 1621 aaattttagt tcagacataa aatttcactt attaggaata tgtaacatgc taaaactttt
1681 ttttttttaa agagtactga gtcacaacat gttttagagc atccaagtac catataatcc 1741 aactatcatg gtaaggccag aaatcttcta acctaccaga gcctagatga gacaccgaat 1801 taacattaaa atttcagtaa ctgactgtcc ctcatgtcca tggcctacca tcccttctga 1861 ccctggcttc cagggaccta tgtcttttaa tactcactgt cacattgggc aaagttgctt 1921 ctaatcctta tttcccatgt gcacaagtct ttttgtattc cagcttcctg ataacactgc
1981 ttactgtgga atattcattt gacatctgtc tcttttcatt tcttttaact accatgccct
2041 tgatatatct tttgcacctg ctgaacttca tttctgtatc acctgacctc tggatgccaa 2101 aacgtttatt ctgctttgtc tgttgtagaa ttttagataa agctattaat ggcaatattt 2161 ttttgctaaa cgtttttgtt ttttactgtc actagggcaa taaaatttat actcaaccat 2221 ataataacat tttttaacta ctaaaggagt agtttttatt ttaaagtctt agcaatttct 2281 attacaactt ttcttagact taacacttat gataaatgac taacatagta acagaatctt 2341 tatgaaatat gaccttttct gaaaatacat acttttacat ttctacttta ttgagaccta 2401 ttagatgtaa gtgctagtag aatataagat aaaagaggct gagaattacc atacaagggt
2461 attacaactg taaaacaatt tatctttgtt tcattgttct gtcaataatt gttaccaaag 2521 agataaaaat aaaagcagaa tgtatatcat cccatctgaa aaacactaat tattgacatg 2581 tgcatctgta caataaactt aaaatgatta ttaaataatc aaatatatct actacattgt 2641 ttatattatt gaataaagta tattttccaa atgtaaaaaa aaaaaaa
Human IL-33 mRNA Variant 8 (SEQ ID NO: 19)
1 agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga 61 tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca 121 gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag 181 aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa
241 aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggaatt 301 tcacctatta cagagtatct tgcttctcta agcacataca atgatcaatc cattactttt 361 gctttggagg atgaaagtta tgagatatat gttgaagact tgaaaaaaga tgaaaagaaa 421 gataaggtgt tactgagtta ctatgagtct caacacccct caaatgaatc aggtgacggt 481 gttgatggta agatgttaat ggtaaccctg agtcctacaa aagacttctg gttgcatgcc
541 aacaacaagg aacactctgt ggagctccat aagtgtgaaa aaccactgcc agaccaggcc 601 ttctttgtcc ttcataatat gcactccaac tgtgtttcat ttgaatgcaa gactgatcct 661 ggagtgttta taggtgtaaa ggataatcat cttgctctga ttaaagtaga ctcttctgag 721 aatttgtgta ctgaaaatat cttgtttaag ctctctgaaa cttagttgat ggaaacctgt 781 gagtcttggg ttgagtaccc aaatgctacc actggagaag gaatgagaga taaagaaaga
841 gacaggtgac atctaaggga aatgaagagt gcttagcatg tgtggaatgt tttccatatt 901 atgtataaaa atattttttc taatcctcca gttattcttt tatttccctc tgtataactg
961 catcttcaat acaagtatca gtatattaaa tagggtattg gtaaagaaac ggtcaacatt 1021 ctaaagagat acagtctgac ctttactttt ctctagtttc agtccagaaa gaacttcata 1081 tttagagcta aggccactga ggaaagagcc atagcttaag tctctatgta gacagggatc
1141 cattttaaag agctacttag agaaataatt ttccacagtt ccaaacgata ggctcaaaca 1201 ctagagctgc tagtaaaaag aagaccagat gcttcacaga attatcattt tttcaactgg 1261 aataaaacac caggtttgtt tgtagatgtc ttaggcaaca ctcagagcag atctccctta 1321 ctgtcagggg atatggaact tcaaaggccc acatggcaag ccaggtaaca taaatgtgtg 1381 aaaaagtaaa gataactaaa aaatttagaa aaataaatcc agtatttgta aagtgaataa
1441 cttcatttct aattgtttaa tttttaaaat tctgattttt atatattgag tttaagcaag
1501 gcattcttac acgaggaagt gaagtaaatt ttagttcaga cataaaattt cacttattag 1561 gaatatgtaa catgctaaaa cttttttttt tttaaagagt actgagtcac aacatgtttt 1621 agagcatcca agtaccatat aatccaacta tcatggtaag gccagaaatc ttctaaccta 1681 ccagagccta gatgagacac cgaattaaca ttaaaatttc agtaactgac tgtccctcat
1741 gtccatggcc taccatccct tctgaccctg gcttccaggg acctatgtct tttaatactc 1801 actgtcacat tgggcaaagt tgcttctaat ccttatttcc catgtgcaca agtctttttg 1861 tattccagct tcctgataac actgcttact gtggaatatt catttgacat ctgtctcttt 1921 tcatttcttt taactaccat gcccttgata tatcttttgc acctgctgaa cttcatttct
1981 gtatcacctg acctctggat gccaaaacgt ttattctgct ttgtctgttg tagaatttta
2041 gataaagcta ttaatggcaa tatttttttg ctaaacgttt ttgtttttta ctgtcactag
2101 ggcaataaaa tttatactca accatataat aacatttttt aactactaaa ggagtagttt
2161 ttattttaaa gtcttagcaa tttctattac aacttttctt agacttaaca cttatgataa
2221 atgactaaca tagtaacaga atctttatga aatatgacct tttctgaaaa tacatacttt
2281 tacatttcta ctttattgag acctattaga tgtaagtgct agtagaatat aagataaaag
2341 aggctgagaa ttaccataca agggtattac aactgtaaaa caatttatct ttgtttcatt
2401 gttctgtcaa taattgttac caaagagata aaaataaaag cagaatgtat atcatcccat 2461 ctgaaaaaca ctaattattg acatgtgcat ctgtacaata aacttaaaat gattattaaa
2521 taatcaaata tatctactac attgtttata ttattgaata aagtatattt tccaaatgta
2581 aaaaaaaaaa aa
Human IL-1R1 mRNA Variant 1 (SEQ ID NO: 20)
1 gtggccggcg gccggagccg actcggagcg cgcggcgccg gccgggagga gccggagagc
61 ggccgggccg ggcggtgggg gcgccggcct gccccgcgcg ccccagggag cggcaggaat 121 gtgacaatcg cgcgcccgcg caccgaagca ctcctcgctc ggctcctagg gctctcgccc 181 ctctgagctg agccgggttc cgcccggggc tgggatccca tcaccctcca cggccgtccg 241 tccaggtaga cgcaccctct gaagatggtg actccctcct gagaagctgg accccttggt 301 aaaagacaag gccttctcca agaagaatat gaaagtgtta ctcagactta tttgtttcat
361 agctctactg atttcttctc tggaggctga taaatgcaag gaacgtgaag aaaaaataat 421 tttagtgtca tctgcaaatg aaattgatgt tcgtccctgt cctcttaacc caaatgaaca
481 caaaggcact ataacttggt ataaagatga cagcaagaca cctgtatcta cagaacaagc 541 ctccaggatt catcaacaca aagagaaact ttggtttgtt cctgctaagg tggaggattc 601 aggacattac tattgcgtgg taagaaattc atcttactgc ctcagaatta aaataagtgc
661 aaaatttgtg gagaatgagc ctaacttatg ttataatgca caagccatat ttaagcagaa 721 actacccgtt gcaggagacg gaggacttgt gtgcccttat atggagtttt ttaaaaatga 781 aaataatgag ttacctaaat tacagtggta taaggattgc aaacctctac ttcttgacaa 841 tatacacttt agtggagtca aagataggct catcgtgatg aatgtggctg aaaagcatag 901 agggaactat acttgtcatg catcctacac atacttgggc aagcaatatc ctattacccg
961 ggtaatagaa tttattactc tagaggaaaa caaacccaca aggcctgtga ttgtgagccc 1021 agctaatgag acaatggaag tagacttggg atcccagata caattgatct gtaatgtcac 1081 cggccagttg agtgacattg cttactggaa gtggaatggg tcagtaattg atgaagatga 1141 cccagtgcta ggggaagact attacagtgt ggaaaatcct gcaaacaaaa gaaggagtac 1201 cctcatcaca gtgcttaata tatcggaaat tgaaagtaga ttttataaac atccatttac
1261 ctgttttgcc aagaatacac atggtataga tgcagcatat atccagttaa tatatccagt 1321 cactaatttc cagaagcaca tgattggtat atgtgtcacg ttgacagtca taattgtgtg 1381 ttctgttttc atctataaaa tcttcaagat tgacattgtg ctttggtaca gggattcctg
1441 ctatgatttt ctcccaataa aagcttcaga tggaaagacc tatgacgcat atatactgta 1501 tccaaagact gttggggaag ggtctacctc tgactgtgat atttttgtgt ttaaagtctt
1561 gcctgaggtc ttggaaaaac agtgtggata taagctgttc atttatggaa gggatgacta 1621 cgttggggaa gacattgttg aggtcattaa tgaaaacgta aagaaaagca gaagactgat 1681 tatcatttta gtcagagaaa catcaggctt cagctggctg ggtggttcat ctgaagagca 1741 aatagccatg tataatgctc ttgttcagga tggaattaaa gttgtcctgc ttgagctgga 1801 gaaaatccaa gactatgaga aaatgccaga atcgattaaa ttcattaagc agaaacatgg 1861 ggctatccgc tggtcagggg actttacaca gggaccacag tctgcaaaga caaggttctg 1921 gaagaatgtc aggtaccaca tgccagtcca gcgacggtca ccttcatcta aacaccagtt 1981 actgtcacca gccactaagg agaaactgca aagagaggct cacgtgcctc tcgggtagca
2041 tggagaagtt gccaagagtt ctttaggtgc ctcctgtctt atggcgttgc aggccaggtt 2101 atgcctcatg ctgacttgca gagttcatgg aatgtaacta tatcatcctt tatccctgag 2161 gtcacctgga atcagattat taagggaata agccatgacg tcaatagcag cccagggcac 2221 ttcagagtag agggcttggg aagatctttt aaaaaggcag taggcccggt gtggtggctc 2281 acgcctataa tcccagcact ttgggaggct gaagtgggtg gatcaccaga ggtcaggagt
2341 tcgagaccag cccagccaac atggcaaaac cccatctcta ctaaaaatac aaaaatgagc 2401 taggcatggt ggcacacgcc tgtaatccca gctacacctg aggctgaggc aggagaattg 2461 cttgaaccgg ggagacggag gttgcagtga gccgagtttg ggccactgca ctctagcctg 2521 gcaacagagc aagactccgt ctcaaaaaaa gggcaataaa tgccctctct gaatgtttga 2581 actgccaaga aaaggcatgg agacagcgaa ctagaagaaa gggcaagaag gaaatagcca
2641 ccgtctacag atggcttagt taagtcatcc acagcccaag ggcggggcta tgccttgtct 2701 ggggaccctg tagagtcact gaccctggag cggctctcct gagaggtgct gcaggcaaag 2761 tgagactgac acctcactga ggaagggaga catattcttg gagaactttc catctgcttg 2821 tattttccat acacatcccc agccagaagt tagtgtccga agaccgaatt ttattttaca 2881 gagcttgaaa actcacttca atgaacaaag ggattctcca ggattccaaa gttttgaagt
2941 catcttagct ttccacagga gggagagaac ttaaaaaagc aacagtagca gggaattgat 3001 ccacttctta atgctttcct ccctggcatg accatcctgt cctttgttat tatcctgcat
3061 tttacgtctt tggaggaaca gctccctagt ggcttcctcc gtctgcaatg tcccttgcac 3121 agcccacaca tgaaccatcc ttcccatgat gccgctcttc tgtcatcccg ctcctgctga 3181 aacacctccc aggggctcca cctgttcagg agctgaagcc catgctttcc caccagcatg
3241 tcactcccag accacctccc tgccctgtcc tccagcttcc cctcgctgtc ctgctgtgtg 3301 aattcccagg ttggcctggt ggccatgtcg cctgccccca gcactcctct gtctctgctc 3361 ttgcctgcac ccttcctcct cctttgccta ggaggccttc tcgcattttc tctagctgat 3421 cagaatttta ccaaaattca gaacatcctc caattccaca gtctctggga gactttccct 3481 aagaggcgac ttcctctcca gccttctctc tctggtcagg cccactgcag agatggtggt
3541 gagcacatct gggaggctgg tctccctcca gctggaattg ctgctctctg agggagaggc 3601 tgtggtggct gtctctgtcc ctcactgcct tccaggagca atttgcacat gtaacataga 3661 tttatgtaat gctttatgtt taaaaacatt ccccaattat cttatttaat ttttgcaatt
3721 attctaattt tatatataga gaaagtgacc tattttttaa aaaaatcaca ctctaagttc
3781 tattgaacct aggacttgag cctccatttc tggcttctag tctggtgttc tgagtacttg
3841 atttcaggtc aataacggtc ccccctcact ccacactggc acgtttgtga gaagaaatga 3901 cattttgcta ggaagtgacc gagtctagga atgcttttat tcaagacacc aaattccaaa 3961 cttctaaatg ttggaatttt caaaaattgt gtttagattt tatgaaaaac tcttctactt
4021 tcatctattc tttccctaga ggcaaacatt tcttaaaatg tttcattttc attaaaaatg
4081 aaagccaaat ttatatgcca ccgattgcag gacacaagca cagttttaag agttgtatga
4141 acatggagag gacttttggt ttttatattt ctcgtattta atatgggtga acaccaactt 4201 ttatttggaa taataatttt cctcctaaac aaaaacacat tgagtttaag tctctgactc
4261 ttgcctttcc acctgctttc tcctgggccc gctttgcctg cttgaaggaa cagtgctgtt 4321 ctggagctgc tgttccaaca gacagggcct agctttcatt tgacacacag actacagcca 4381 gaagcccatg gagcagggat gtcacgtctt gaaaagccta ttagatgttt tacaaattta 4441 attttgcaga ttattttagt ctgtcatcca gaaaatgtgt cagcatgcat agtgctaaga 4501 aagcaagcca atttggaaac ttaggttagt gacaaaattg gccagagagt gggggtgatg 4561 atgaccaaga attacaagta gaatggcagc tggaatttaa ggagggacaa gaatcaatgg 4621 ataagcgtgg gtggaggaag atccaaacag aaaagtgcaa agttattccc catcttccaa
4681 gggttgaatt ctggaggaag aagacacatt cctagttccc cgtgaacttc ctttgactta 4741 ttgtccccac taaaacaaaa caaaaaactt ttaatgcctt ccacattaat tagattttct 4801 tgcagttttt ttatggcatt tttttaaaga tgccctaagt gttgaagaag agtttgcaaa 4861 tgcaacaaaa tatttaatta ccggttgtta aaactggttt agcacaattt atattttccc 4921 tctcttgcct ttcttatttg caataaaagg tattgagcca ttttttaaat gacatttttg
4981 ataaattatg tttgtactag ttgatgaagg agtttttttt aacctgttta tataattttg 5041 cagcagaagc caaatttttt gtatattaaa gcaccaaatt catgtacagc atgcatcacg 5101 gatcaataga ctgtacttat tttccaataa aattttcaaa ctttgtactg ttaaaaaaaa 5161 aaaaaaaaaa
Human IL-1R1 mRNA Variant 2 (SEQ ID NO: 21)
1 attggcagct cttcacttgt atcttttcat atcaaaaatg ggaggtgaca cccagtttaa 61 ggaaaattcc aaggcatttg tctcgactaa tgtgaaagat gattacagtg gccagaggac 121 tgccaaggct ccttctcaag ctgcttgagt caatgagggt agacgcaccc tctgaagatg 181 gtgactccct cctgagaagc tggacccctt ggtaaaagac aaggccttct ccaagaagaa
241 tatgaaagtg ttactcagac ttatttgttt catagctcta ctgatttctt ctctggaggc 301 tgataaatgc aaggaacgtg aagaaaaaat aattttagtg tcatctgcaa atgaaattga 361 tgttcgtccc tgtcctctta acccaaatga acacaaaggc actataactt ggtataaaga 421 tgacagcaag acacctgtat ctacagaaca agcctccagg attcatcaac acaaagagaa 481 actttggttt gttcctgcta aggtggagga ttcaggacat tactattgcg tggtaagaaa
541 ttcatcttac tgcctcagaa ttaaaataag tgcaaaattt gtggagaatg agcctaactt 601 atgttataat gcacaagcca tatttaagca gaaactaccc gttgcaggag acggaggact 661 tgtgtgccct tatatggagt tttttaaaaa tgaaaataat gagttaccta aattacagtg 721 gtataaggat tgcaaacctc tacttcttga caatatacac tttagtggag tcaaagatag 781 gctcatcgtg atgaatgtgg ctgaaaagca tagagggaac tatacttgtc atgcatccta
841 cacatacttg ggcaagcaat atcctattac ccgggtaata gaatttatta ctctagagga 901 aaacaaaccc acaaggcctg tgattgtgag cccagctaat gagacaatgg aagtagactt 961 gggatcccag atacaattga tctgtaatgt caccggccag ttgagtgaca ttgcttactg 1021 gaagtggaat gggtcagtaa ttgatgaaga tgacccagtg ctaggggaag actattacag 1081 tgtggaaaat cctgcaaaca aaagaaggag taccctcatc acagtgctta atatatcgga
1141 aattgaaagt agattttata aacatccatt tacctgtttt gccaagaata cacatggtat 1201 agatgcagca tatatccagt taatatatcc agtcactaat ttccagaagc acatgattgg 1261 tatatgtgtc acgttgacag tcataattgt gtgttctgtt ttcatctata aaatcttcaa 1321 gattgacatt gtgctttggt acagggattc ctgctatgat tttctcccaa taaaagtctt 1381 gcctgaggtc ttggaaaaac agtgtggata taagctgttc atttatggaa gggatgacta
1441 cgttggggaa gacattgttg aggtcattaa tgaaaacgta aagaaaagca gaagactgat 1501 tatcatttta gtcagagaaa catcaggctt cagctggctg ggtggttcat ctgaagagca 1561 aatagccatg tataatgctc ttgttcagga tggaattaaa gttgtcctgc ttgagctgga 1621 gaaaatccaa gactatgaga aaatgccaga atcgattaaa ttcattaagc agaaacatgg 1681 ggctatccgc tggtcagggg actttacaca gggaccacag tctgcaaaga caaggttctg 1741 gaagaatgtc aggtaccaca tgccagtcca gcgacggtca ccttcatcta aacaccagtt 1801 actgtcacca gccactaagg agaaactgca aagagaggct cacgtgcctc tcgggtagca 1861 tggagaagtt gccaagagtt ctttaggtgc ctcctgtctt atggcgttgc aggccaggtt
1921 atgcctcatg ctgacttgca gagttcatgg aatgtaacta tatcatcctt tatccctgag 1981 gtcacctgga atcagattat taagggaata agccatgacg tcaatagcag cccagggcac 2041 ttcagagtag agggcttggg aagatctttt aaaaaggcag taggcccggt gtggtggctc 2101 acgcctataa tcccagcact ttgggaggct gaagtgggtg gatcaccaga ggtcaggagt 2161 tcgagaccag cccagccaac atggcaaaac cccatctcta ctaaaaatac aaaaatgagc
2221 taggcatggt ggcacacgcc tgtaatccca gctacacctg aggctgaggc aggagaattg 2281 cttgaaccgg ggagacggag gttgcagtga gccgagtttg ggccactgca ctctagcctg 2341 gcaacagagc aagactccgt ctcaaaaaaa gggcaataaa tgccctctct gaatgtttga 2401 actgccaaga aaaggcatgg agacagcgaa ctagaagaaa gggcaagaag gaaatagcca 2461 ccgtctacag atggcttagt taagtcatcc acagcccaag ggcggggcta tgccttgtct
2521 ggggaccctg tagagtcact gaccctggag cggctctcct gagaggtgct gcaggcaaag 2581 tgagactgac acctcactga ggaagggaga catattcttg gagaactttc catctgcttg 2641 tattttccat acacatcccc agccagaagt tagtgtccga agaccgaatt ttattttaca 2701 gagcttgaaa actcacttca atgaacaaag ggattctcca ggattccaaa gttttgaagt 2761 catcttagct ttccacagga gggagagaac ttaaaaaagc aacagtagca gggaattgat
2821 ccacttctta atgctttcct ccctggcatg accatcctgt cctttgttat tatcctgcat
2881 tttacgtctt tggaggaaca gctccctagt ggcttcctcc gtctgcaatg tcccttgcac 2941 agcccacaca tgaaccatcc ttcccatgat gccgctcttc tgtcatcccg ctcctgctga 3001 aacacctccc aggggctcca cctgttcagg agctgaagcc catgctttcc caccagcatg 3061 tcactcccag accacctccc tgccctgtcc tccagcttcc cctcgctgtc ctgctgtgtg
3121 aattcccagg ttggcctggt ggccatgtcg cctgccccca gcactcctct gtctctgctc 3181 ttgcctgcac ccttcctcct cctttgccta ggaggccttc tcgcattttc tctagctgat 3241 cagaatttta ccaaaattca gaacatcctc caattccaca gtctctggga gactttccct 3301 aagaggcgac ttcctctcca gccttctctc tctggtcagg cccactgcag agatggtggt 3361 gagcacatct gggaggctgg tctccctcca gctggaattg ctgctctctg agggagaggc
3421 tgtggtggct gtctctgtcc ctcactgcct tccaggagca atttgcacat gtaacataga 3481 tttatgtaat gctttatgtt taaaaacatt ccccaattat cttatttaat ttttgcaatt
3541 attctaattt tatatataga gaaagtgacc tattttttaa aaaaatcaca ctctaagttc
3601 tattgaacct aggacttgag cctccatttc tggcttctag tctggtgttc tgagtacttg 3661 atttcaggtc aataacggtc ccccctcact ccacactggc acgtttgtga gaagaaatga
3721 cattttgcta ggaagtgacc gagtctagga atgcttttat tcaagacacc aaattccaaa 3781 cttctaaatg ttggaatttt caaaaattgt gtttagattt tatgaaaaac tcttctactt
3841 tcatctattc tttccctaga ggcaaacatt tcttaaaatg tttcattttc attaaaaatg
3901 aaagccaaat ttatatgcca ccgattgcag gacacaagca cagttttaag agttgtatga 3961 acatggagag gacttttggt ttttatattt ctcgtattta atatgggtga acaccaactt
4021 ttatttggaa taataatttt cctcctaaac aaaaacacat tgagtttaag tctctgactc
4081 ttgcctttcc acctgctttc tcctgggccc gctttgcctg cttgaaggaa cagtgctgtt 4141 ctggagctgc tgttccaaca gacagggcct agctttcatt tgacacacag actacagcca 4201 gaagcccatg gagcagggat gtcacgtctt gaaaagccta ttagatgttt tacaaattta 4261 attttgcaga ttattttagt ctgtcatcca gaaaatgtgt cagcatgcat agtgctaaga 4321 aagcaagcca atttggaaac ttaggttagt gacaaaattg gccagagagt gggggtgatg 4381 atgaccaaga attacaagta gaatggcagc tggaatttaa ggagggacaa gaatcaatgg 4441 ataagcgtgg gtggaggaag atccaaacag aaaagtgcaa agttattccc catcttccaa 4501 gggttgaatt ctggaggaag aagacacatt cctagttccc cgtgaacttc ctttgactta
4561 ttgtccccac taaaacaaaa caaaaaactt ttaatgcctt ccacattaat tagattttct 4621 tgcagttttt ttatggcatt tttttaaaga tgccctaagt gttgaagaag agtttgcaaa 4681 tgcaacaaaa tatttaatta ccggttgtta aaactggttt agcacaattt atattttccc 4741 tctcttgcct ttcttatttg caataaaagg tattgagcca ttttttaaat gacatttttg 4801 ataaattatg tttgtactag ttgatgaagg agtttttttt aacctgttta tataattttg
4861 cagcagaagc caaatttttt gtatattaaa gcaccaaatt catgtacagc atgcatcacg 4921 gatcaataga ctgtacttat tttccaataa aattttcaaa ctttgtactg ttaaaaaaaa 4981 aaaaaaaaaa Human IL-1R1 mRNA Variant 3 (SEQ ID NO: 22)
1 attggcagct cttcacttgt atcttttcat atcaaaaatg ggaggtgaca cccagtttaa 61 ggaaaattcc aaggcatttg tctcgactaa tgtgaaagat gattacagtg gccagaggac 121 tgccaaggct ccttctcaag ctgcttgagt caatgagggt agacgcaccc tctgaagatg 181 gtgactccct cctgagaagc tggacccctt ggtaaaagac aaggccttct ccaagaagaa 241 tatgaaagtg ttactcagac ttatttgttt catagctcta ctgatttctt ctctggaggc
301 tgataaatgc aaggaacgtg aagaaaaaat aattttagtg tcatctgcaa atgaaattga 361 tgttcgtccc tgtcctctta acccaaatga acacaaaggc actataactt ggtataaaga 421 tgacagcaag acacctgtat ctacagaaca agcctccagg attcatcaac acaaagagaa 481 actttggttt gttcctgcta aggtggagga ttcaggacat tactattgcg tggtaagaaa 541 ttcatcttac tgcctcagaa ttaaaataag tgcaaaattt gtggagaatg agcctaactt
601 atgttataat gcacaagcca tatttaagca gaaactaccc gttgcaggag acggaggact 661 tgtgtgccct tatatggagt tttttaaaaa tgaaaataat gagttaccta aattacagtg 721 gtataaggat tgcaaacctc tacttcttga caatatacac tttagtggag tcaaagatag 781 gctcatcgtg atgaatgtgg ctgaaaagca tagagggaac tatacttgtc atgcatccta 841 cacatacttg ggcaagcaat atcctattac ccgggtaata gaatttatta ctctagagga
901 aaacaaaccc acaaggcctg tgattgtgag cccagctaat gagacaatgg aagtagactt 961 gggatcccag atacaattga tctgtaatgt caccggccag ttgagtgaca ttgcttactg 1021 gaagtggaat gggtcagtaa ttgatgaaga tgacccagtg ctaggggaag actattacag 1081 tgtggaaaat cctgcaaaca aaagaaggag taccctcatc acagtgctta atatatcgga 1141 aattgaaagt agattttata aacatccatt tacctgtttt gccaagaata cacatggtat
1201 agatgcagca tatatccagt taatatatcc agtcactaat ttccagaagc acatgattgg 1261 tatatgtgtc acgttgacag tcataattgt gtgttctgtt ttcatctata aaatcttcaa 1321 gattgacatt gtgctttggt acagggattc ctgctatgat tttctcccaa taaaagcttc 1381 agatggaaag acctatgacg catatatact gtatccaaag actgttgggg aagggtctac 1441 ctctgactgt gatatttttg tgtttaaagt cttgcctgag gtcttggaaa aacagtgtgg
1501 atataagctg ttcatttatg gaagggatga ctacgttggg gaagacattg ttgaggtcat 1561 taatgaaaac gtaaagaaaa gcagaagact gattatcatt ttagtcagag aaacatcagg 1621 cttcagctgg ctgggtggtt catctgaaga gcaaatagcc atgtataatg ctcttgttca 1681 ggatggaatt aaagttgtcc tgcttgagct ggagaaaatc caagactatg agaaaatgcc 1741 agaatcgatt aaattcatta agcagaaaca tggggctatc cgctggtcag gggactttac 1801 acagggacca cagtctgcaa agacaaggtt ctggaagaat gtcaggtacc acatgccagt 1861 ccagcgacgg tcaccttcat ctaaacacca gttactgtca ccagccacta aggagaaact 1921 gcaaagagag gctcacgtgc ctctcgggta gcatggagaa gttgccaaga gttctttagg
1981 tgcctcctgt cttatggcgt tgcaggccag gttatgcctc atgctgactt gcagagttca 2041 tggaatgtaa ctatatcatc ctttatccct gaggtcacct ggaatcagat tattaaggga 2101 ataagccatg acgtcaatag cagcccaggg cacttcagag tagagggctt gggaagatct 2161 tttaaaaagg cagtaggccc ggtgtggtgg ctcacgccta taatcccagc actttgggag 2221 gctgaagtgg gtggatcacc agaggtcagg agttcgagac cagcccagcc aacatggcaa
2281 aaccccatct ctactaaaaa tacaaaaatg agctaggcat ggtggcacac gcctgtaatc 2341 ccagctacac ctgaggctga ggcaggagaa ttgcttgaac cggggagacg gaggttgcag 2401 tgagccgagt ttgggccact gcactctagc ctggcaacag agcaagactc cgtctcaaaa 2461 aaagggcaat aaatgccctc tctgaatgtt tgaactgcca agaaaaggca tggagacagc 2521 gaactagaag aaagggcaag aaggaaatag ccaccgtcta cagatggctt agttaagtca
2581 tccacagccc aagggcgggg ctatgccttg tctggggacc ctgtagagtc actgaccctg 2641 gagcggctct cctgagaggt gctgcaggca aagtgagact gacacctcac tgaggaaggg 2701 agacatattc ttggagaact ttccatctgc ttgtattttc catacacatc cccagccaga 2761 agttagtgtc cgaagaccga attttatttt acagagcttg aaaactcact tcaatgaaca 2821 aagggattct ccaggattcc aaagttttga agtcatctta gctttccaca ggagggagag
2881 aacttaaaaa agcaacagta gcagggaatt gatccacttc ttaatgcttt cctccctggc 2941 atgaccatcc tgtcctttgt tattatcctg cattttacgt ctttggagga acagctccct 3001 agtggcttcc tccgtctgca atgtcccttg cacagcccac acatgaacca tccttcccat 3061 gatgccgctc ttctgtcatc ccgctcctgc tgaaacacct cccaggggct ccacctgttc 3121 aggagctgaa gcccatgctt tcccaccagc atgtcactcc cagaccacct ccctgccctg
3181 tcctccagct tcccctcgct gtcctgctgt gtgaattccc aggttggcct ggtggccatg 3241 tcgcctgccc ccagcactcc tctgtctctg ctcttgcctg cacccttcct cctcctttgc 3301 ctaggaggcc ttctcgcatt ttctctagct gatcagaatt ttaccaaaat tcagaacatc 3361 ctccaattcc acagtctctg ggagactttc cctaagaggc gacttcctct ccagccttct 3421 ctctctggtc aggcccactg cagagatggt ggtgagcaca tctgggaggc tggtctccct
3481 ccagctggaa ttgctgctct ctgagggaga ggctgtggtg gctgtctctg tccctcactg 3541 ccttccagga gcaatttgca catgtaacat agatttatgt aatgctttat gtttaaaaac 3601 attccccaat tatcttattt aatttttgca attattctaa ttttatatat agagaaagtg
3661 acctattttt taaaaaaatc acactctaag ttctattgaa cctaggactt gagcctccat 3721 ttctggcttc tagtctggtg ttctgagtac ttgatttcag gtcaataacg gtcccccctc
3781 actccacact ggcacgtttg tgagaagaaa tgacattttg ctaggaagtg accgagtcta 3841 ggaatgcttt tattcaagac accaaattcc aaacttctaa atgttggaat tttcaaaaat 3901 tgtgtttaga ttttatgaaa aactcttcta ctttcatcta ttctttccct agaggcaaac 3961 atttcttaaa atgtttcatt ttcattaaaa atgaaagcca aatttatatg ccaccgattg 4021 caggacacaa gcacagtttt aagagttgta tgaacatgga gaggactttt ggtttttata
4081 tttctcgtat ttaatatggg tgaacaccaa cttttatttg gaataataat tttcctccta
4141 aacaaaaaca cattgagttt aagtctctga ctcttgcctt tccacctgct ttctcctggg 4201 cccgctttgc ctgcttgaag gaacagtgct gttctggagc tgctgttcca acagacaggg 4261 cctagctttc atttgacaca cagactacag ccagaagccc atggagcagg gatgtcacgt 4321 cttgaaaagc ctattagatg ttttacaaat ttaattttgc agattatttt agtctgtcat 4381 ccagaaaatg tgtcagcatg catagtgcta agaaagcaag ccaatttgga aacttaggtt 4441 agtgacaaaa ttggccagag agtgggggtg atgatgacca agaattacaa gtagaatggc 4501 agctggaatt taaggaggga caagaatcaa tggataagcg tgggtggagg aagatccaaa 4561 cagaaaagtg caaagttatt ccccatcttc caagggttga attctggagg aagaagacac
4621 attcctagtt ccccgtgaac ttcctttgac ttattgtccc cactaaaaca aaacaaaaaa 4681 cttttaatgc cttccacatt aattagattt tcttgcagtt tttttatggc atttttttaa
4741 agatgcccta agtgttgaag aagagtttgc aaatgcaaca aaatatttaa ttaccggttg 4801 ttaaaactgg tttagcacaa tttatatttt ccctctcttg cctttcttat ttgcaataaa
4861 aggtattgag ccatttttta aatgacattt ttgataaatt atgtttgtac tagttgatga
4921 aggagttttt tttaacctgt ttatataatt ttgcagcaga agccaaattt tttgtatatt 4981 aaagcaccaa attcatgtac agcatgcatc acggatcaat agactgtact tattttccaa 5041 taaaattttc aaactttgta ctgttaaaaa aaaaaaaaaa aaa Human IL-1R1 mRNA Variant 4 (SEQ ID NO: 23)
1 attaaagccc taagaggctg tgacacagcc atctccaaaa ccccactttc tccttccttt 61 gagcctccgt accagctggg gcgtccggca agatgtgagt tgtcactctg ctgcggcaca 121 gacctgaatt aacaactcta gctagggctg acttcaaaaa gcactttcgt tttttaataa 181 ccaacatcag ctcagcaggc ttcatttggg aaaagaaacc ttgtcggatt accccgacat 241 tctccacctc ctgggaggcc agccattccc aaatgcccca aggatgaaga acggagacgg
301 tagacgcacc ctctgaagat ggtgactccc tcctgagaag ctggacccct tggtaaaaga 361 caaggccttc tccaagaaga atatgaaagt gttactcaga cttatttgtt tcatagctct 421 actgatttct tctctggagg ctgataaatg caaggaacgt gaagaaaaaa taattttagt 481 gtcatctgca aatgaaattg atgttcgtcc ctgtcctctt aacccaaatg aacacaaagg 541 cactataact tggtataaag atgacagcaa gacacctgta tctacagaac aagcctccag
601 gattcatcaa cacaaagaga aactttggtt tgttcctgct aaggtggagg attcaggaca 661 ttactattgc gtggtaagaa attcatctta ctgcctcaga attaaaataa gtgcaaaatt 721 tgtggagaat gagcctaact tatgttataa tgcacaagcc atatttaagc agaaactacc 781 cgttgcagga gacggaggac ttgtgtgccc ttatatggag ttttttaaaa atgaaaataa 841 tgagttacct aaattacagt ggtataagga ttgcaaacct ctacttcttg acaatataca
901 ctttagtgga gtcaaagata ggctcatcgt gatgaatgtg gctgaaaagc atagagggaa 961 ctatacttgt catgcatcct acacatactt gggcaagcaa tatcctatta cccgggtaat 1021 agaatttatt actctagagg aaaacaaacc cacaaggcct gtgattgtga gcccagctaa 1081 tgagacaatg gaagtagact tgggatccca gatacaattg atctgtaatg tcaccggcca 1141 gttgagtgac attgcttact ggaagtggaa tgggtcagta attgatgaag atgacccagt
1201 gctaggggaa gactattaca gtgtggaaaa tcctgcaaac aaaagaagga gtaccctcat 1261 cacagtgctt aatatatcgg aaattgaaag tagattttat aaacatccat ttacctgttt 1321 tgccaagaat acacatggta tagatgcagc atatatccag ttaatatatc cagtcactaa 1381 tttccagaag cacatgattg gtatatgtgt cacgttgaca gtcataattg tgtgttctgt 1441 tttcatctat aaaatcttca agattgacat tgtgctttgg tacagggatt cctgctatga
1501 ttttctccca ataaaagctt cagatggaaa gacctatgac gcatatatac tgtatccaaa 1561 gactgttggg gaagggtcta cctctgactg tgatattttt gtgtttaaag tcttgcctga 1621 ggtcttggaa aaacagtgtg gatataagct gttcatttat ggaagggatg actacgttgg 1681 ggaagacatt gttgaggtca ttaatgaaaa cgtaaagaaa agcagaagac tgattatcat 1741 tttagtcaga gaaacatcag gcttcagctg gctgggtggt tcatctgaag agcaaatagc 1801 catgtataat gctcttgttc aggatggaat taaagttgtc ctgcttgagc tggagaaaat 1861 ccaagactat gagaaaatgc cagaatcgat taaattcatt aagcagaaac atggggctat 1921 ccgctggtca ggggacttta cacagggacc acagtctgca aagacaaggt tctggaagaa
1981 tgtcaggtac cacatgccag tccagcgacg gtcaccttca tctaaacacc agttactgtc 2041 accagccact aaggagaaac tgcaaagaga ggctcacgtg cctctcgggt agcatggaga 2101 agttgccaag agttctttag gtgcctcctg tcttatggcg ttgcaggcca ggttatgcct 2161 catgctgact tgcagagttc atggaatgta actatatcat cctttatccc tgaggtcacc 2221 tggaatcaga ttattaaggg aataagccat gacgtcaata gcagcccagg gcacttcaga
2281 gtagagggct tgggaagatc ttttaaaaag gcagtaggcc cggtgtggtg gctcacgcct 2341 ataatcccag cactttggga ggctgaagtg ggtggatcac cagaggtcag gagttcgaga 2401 ccagcccagc caacatggca aaaccccatc tctactaaaa atacaaaaat gagctaggca 2461 tggtggcaca cgcctgtaat cccagctaca cctgaggctg aggcaggaga attgcttgaa 2521 ccggggagac ggaggttgca gtgagccgag tttgggccac tgcactctag cctggcaaca
2581 gagcaagact ccgtctcaaa aaaagggcaa taaatgccct ctctgaatgt ttgaactgcc 2641 aagaaaaggc atggagacag cgaactagaa gaaagggcaa gaaggaaata gccaccgtct 2701 acagatggct tagttaagtc atccacagcc caagggcggg gctatgcctt gtctggggac 2761 cctgtagagt cactgaccct ggagcggctc tcctgagagg tgctgcaggc aaagtgagac 2821 tgacacctca ctgaggaagg gagacatatt cttggagaac tttccatctg cttgtatttt
2881 ccatacacat ccccagccag aagttagtgt ccgaagaccg aattttattt tacagagctt 2941 gaaaactcac ttcaatgaac aaagggattc tccaggattc caaagttttg aagtcatctt 3001 agctttccac aggagggaga gaacttaaaa aagcaacagt agcagggaat tgatccactt 3061 cttaatgctt tcctccctgg catgaccatc ctgtcctttg ttattatcct gcattttacg
3121 tctttggagg aacagctccc tagtggcttc ctccgtctgc aatgtccctt gcacagccca
3181 cacatgaacc atccttccca tgatgccgct cttctgtcat cccgctcctg ctgaaacacc 3241 tcccaggggc tccacctgtt caggagctga agcccatgct ttcccaccag catgtcactc 3301 ccagaccacc tccctgccct gtcctccagc ttcccctcgc tgtcctgctg tgtgaattcc 3361 caggttggcc tggtggccat gtcgcctgcc cccagcactc ctctgtctct gctcttgcct 3421 gcacccttcc tcctcctttg cctaggaggc cttctcgcat tttctctagc tgatcagaat
3481 tttaccaaaa ttcagaacat cctccaattc cacagtctct gggagacttt ccctaagagg 3541 cgacttcctc tccagccttc tctctctggt caggcccact gcagagatgg tggtgagcac 3601 atctgggagg ctggtctccc tccagctgga attgctgctc tctgagggag aggctgtggt 3661 ggctgtctct gtccctcact gccttccagg agcaatttgc acatgtaaca tagatttatg 3721 taatgcttta tgtttaaaaa cattccccaa ttatcttatt taatttttgc aattattcta
3781 attttatata tagagaaagt gacctatttt ttaaaaaaat cacactctaa gttctattga
3841 acctaggact tgagcctcca tttctggctt ctagtctggt gttctgagta cttgatttca 3901 ggtcaataac ggtcccccct cactccacac tggcacgttt gtgagaagaa atgacatttt 3961 gctaggaagt gaccgagtct aggaatgctt ttattcaaga caccaaattc caaacttcta 4021 aatgttggaa ttttcaaaaa ttgtgtttag attttatgaa aaactcttct actttcatct
4081 attctttccc tagaggcaaa catttcttaa aatgtttcat tttcattaaa aatgaaagcc
4141 aaatttatat gccaccgatt gcaggacaca agcacagttt taagagttgt atgaacatgg 4201 agaggacttt tggtttttat atttctcgta tttaatatgg gtgaacacca acttttattt
4261 ggaataataa ttttcctcct aaacaaaaac acattgagtt taagtctctg actcttgcct 4321 ttccacctgc tttctcctgg gcccgctttg cctgcttgaa ggaacagtgc tgttctggag 4381 ctgctgttcc aacagacagg gcctagcttt catttgacac acagactaca gccagaagcc 4441 catggagcag ggatgtcacg tcttgaaaag cctattagat gttttacaaa tttaattttg 4501 cagattattt tagtctgtca tccagaaaat gtgtcagcat gcatagtgct aagaaagcaa 4561 gccaatttgg aaacttaggt tagtgacaaa attggccaga gagtgggggt gatgatgacc
4621 aagaattaca agtagaatgg cagctggaat ttaaggaggg acaagaatca atggataagc 4681 gtgggtggag gaagatccaa acagaaaagt gcaaagttat tccccatctt ccaagggttg 4741 aattctggag gaagaagaca cattcctagt tccccgtgaa cttcctttga cttattgtcc 4801 ccactaaaac aaaacaaaaa acttttaatg ccttccacat taattagatt ttcttgcagt 4861 ttttttatgg cattttttta aagatgccct aagtgttgaa gaagagtttg caaatgcaac
4921 aaaatattta attaccggtt gttaaaactg gtttagcaca atttatattt tccctctctt 4981 gcctttctta tttgcaataa aaggtattga gccatttttt aaatgacatt tttgataaat 5041 tatgtttgta ctagttgatg aaggagtttt ttttaacctg tttatataat tttgcagcag 5101 aagccaaatt ttttgtatat taaagcacca aattcatgta cagcatgcat cacggatcaa 5161 tagactgtac ttattttcca ataaaatttt caaactttgt actgttaaaa aaaaaaaaaa
5221 aaaa
Human IL-1R1 mRNA Variant 5 (SEQ ID NO: 24)
1 aggatggccc atgaagacct ccaaacaagc tggaggggcc agtcacttgc tgaagactag 61 cgaagtggag ggggaaagcc cgagggagct gcagactcga ccactgcgcc ctcccctcct
121 ctccctgcaa ggagcccaag gtagacgcac cctctgaaga tggtgactcc ctcctgagaa 181 gctggacccc ttggtaaaag acaaggcctt ctccaagaag aatatgaaag tgttactcag 241 acttatttgt ttcatagctc tactgatttc ttctctggag gctgataaat gcaaggaacg 301 tgaagaaaaa ataattttag tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct 361 taacccaaat gaacacaaag gcactataac ttggtataaa gatgacagca agacacctgt
421 atctacagaa caagcctcca ggattcatca acacaaagag aaactttggt ttgttcctgc 481 taaggtggag gattcaggac attactattg cgtggtaaga aattcatctt actgcctcag 541 aattaaaata agtgcaaaat ttgtggagaa tgagcctaac ttatgttata atgcacaagc 601 catatttaag cagaaactac ccgttgcagg agacggagga cttgtgtgcc cttatatgga 661 gttttttaaa aatgaaaata atgagttacc taaattacag tggtataagg attgcaaacc
721 tctacttctt gacaatatac actttagtgg agtcaaagat aggctcatcg tgatgaatgt 781 ggctgaaaag catagaggga actatacttg tcatgcatcc tacacatact tgggcaagca 841 atatcctatt acccgggtaa tagaatttat tactctagag gaaaacaaac ccacaaggcc 901 tgtgattgtg agcccagcta atgagacaat ggaagtagac ttgggatccc agatacaatt 961 gatctgtaat gtcaccggcc agttgagtga cattgcttac tggaagtgga atgggtcagt
1021 aattgatgaa gatgacccag tgctagggga agactattac agtgtggaaa atcctgcaaa 1081 caaaagaagg agtaccctca tcacagtgct taatatatcg gaaattgaaa gtagatttta 1141 taaacatcca tttacctgtt ttgccaagaa tacacatggt atagatgcag catatatcca 1201 gttaatatat ccagtcacta atttccagaa gcacatgatt ggtatatgtg tcacgttgac 1261 agtcataatt gtgtgttctg ttttcatcta taaaatcttc aagattgaca ttgtgctttg
1321 gtacagggat tcctgctatg attttctccc aataaaagct tcagatggaa agacctatga 1381 cgcatatata ctgtatccaa agactgttgg ggaagggtct acctctgact gtgatatttt 1441 tgtgtttaaa gtcttgcctg aggtcttgga aaaacagtgt ggatataagc tgttcattta 1501 tggaagggat gactacgttg gggaagacat tgttgaggtc attaatgaaa acgtaaagaa 1561 aagcagaaga ctgattatca ttttagtcag agaaacatca ggcttcagct ggctgggtgg 1621 ttcatctgaa gagcaaatag ccatgtataa tgctcttgtt caggatggaa ttaaagttgt 1681 cctgcttgag ctggagaaaa tccaagacta tgagaaaatg ccagaatcga ttaaattcat 1741 taagcagaaa catggggcta tccgctggtc aggggacttt acacagggac cacagtctgc
1801 aaagacaagg ttctggaaga atgtcaggta ccacatgcca gtccagcgac ggtcaccttc 1861 atctaaacac cagttactgt caccagccac taaggagaaa ctgcaaagag aggctcacgt 1921 gcctctcggg tagcatggag aagttgccaa gagttcttta ggtgcctcct gtcttatggc 1981 gttgcaggcc aggttatgcc tcatgctgac ttgcagagtt catggaatgt aactatatca 2041 tcctttatcc ctgaggtcac ctggaatcag attattaagg gaataagcca tgacgtcaat
2101 agcagcccag ggcacttcag agtagagggc ttgggaagat cttttaaaaa ggcagtaggc 2161 ccggtgtggt ggctcacgcc tataatccca gcactttggg aggctgaagt gggtggatca 2221 ccagaggtca ggagttcgag accagcccag ccaacatggc aaaaccccat ctctactaaa 2281 aatacaaaaa tgagctaggc atggtggcac acgcctgtaa tcccagctac acctgaggct 2341 gaggcaggag aattgcttga accggggaga cggaggttgc agtgagccga gtttgggcca
2401 ctgcactcta gcctggcaac agagcaagac tccgtctcaa aaaaagggca ataaatgccc 2461 tctctgaatg tttgaactgc caagaaaagg catggagaca gcgaactaga agaaagggca 2521 agaaggaaat agccaccgtc tacagatggc ttagttaagt catccacagc ccaagggcgg 2581 ggctatgcct tgtctgggga ccctgtagag tcactgaccc tggagcggct ctcctgagag 2641 gtgctgcagg caaagtgaga ctgacacctc actgaggaag ggagacatat tcttggagaa
2701 ctttccatct gcttgtattt tccatacaca tccccagcca gaagttagtg tccgaagacc 2761 gaattttatt ttacagagct tgaaaactca cttcaatgaa caaagggatt ctccaggatt 2821 ccaaagtttt gaagtcatct tagctttcca caggagggag agaacttaaa aaagcaacag 2881 tagcagggaa ttgatccact tcttaatgct ttcctccctg gcatgaccat cctgtccttt 2941 gttattatcc tgcattttac gtctttggag gaacagctcc ctagtggctt cctccgtctg
3001 caatgtccct tgcacagccc acacatgaac catccttccc atgatgccgc tcttctgtca 3061 tcccgctcct gctgaaacac ctcccagggg ctccacctgt tcaggagctg aagcccatgc 3121 tttcccacca gcatgtcact cccagaccac ctccctgccc tgtcctccag cttcccctcg 3181 ctgtcctgct gtgtgaattc ccaggttggc ctggtggcca tgtcgcctgc ccccagcact 3241 cctctgtctc tgctcttgcc tgcacccttc ctcctccttt gcctaggagg ccttctcgca
3301 ttttctctag ctgatcagaa ttttaccaaa attcagaaca tcctccaatt ccacagtctc 3361 tgggagactt tccctaagag gcgacttcct ctccagcctt ctctctctgg tcaggcccac 3421 tgcagagatg gtggtgagca catctgggag gctggtctcc ctccagctgg aattgctgct 3481 ctctgaggga gaggctgtgg tggctgtctc tgtccctcac tgccttccag gagcaatttg 3541 cacatgtaac atagatttat gtaatgcttt atgtttaaaa acattcccca attatcttat
3601 ttaatttttg caattattct aattttatat atagagaaag tgacctattt tttaaaaaaa
3661 tcacactcta agttctattg aacctaggac ttgagcctcc atttctggct tctagtctgg 3721 tgttctgagt acttgatttc aggtcaataa cggtcccccc tcactccaca ctggcacgtt 3781 tgtgagaaga aatgacattt tgctaggaag tgaccgagtc taggaatgct tttattcaag 3841 acaccaaatt ccaaacttct aaatgttgga attttcaaaa attgtgttta gattttatga
3901 aaaactcttc tactttcatc tattctttcc ctagaggcaa acatttctta aaatgtttca 3961 ttttcattaa aaatgaaagc caaatttata tgccaccgat tgcaggacac aagcacagtt 4021 ttaagagttg tatgaacatg gagaggactt ttggttttta tatttctcgt atttaatatg
4081 ggtgaacacc aacttttatt tggaataata attttcctcc taaacaaaaa cacattgagt 4141 ttaagtctct gactcttgcc tttccacctg ctttctcctg ggcccgcttt gcctgcttga 4201 aggaacagtg ctgttctgga gctgctgttc caacagacag ggcctagctt tcatttgaca 4261 cacagactac agccagaagc ccatggagca gggatgtcac gtcttgaaaa gcctattaga 4321 tgttttacaa atttaatttt gcagattatt ttagtctgtc atccagaaaa tgtgtcagca 4381 tgcatagtgc taagaaagca agccaatttg gaaacttagg ttagtgacaa aattggccag
4441 agagtggggg tgatgatgac caagaattac aagtagaatg gcagctggaa tttaaggagg 4501 gacaagaatc aatggataag cgtgggtgga ggaagatcca aacagaaaag tgcaaagtta 4561 ttccccatct tccaagggtt gaattctgga ggaagaagac acattcctag ttccccgtga 4621 acttcctttg acttattgtc cccactaaaa caaaacaaaa aacttttaat gccttccaca 4681 ttaattagat tttcttgcag tttttttatg gcattttttt aaagatgccc taagtgttga
4741 agaagagttt gcaaatgcaa caaaatattt aattaccggt tgttaaaact ggtttagcac 4801 aatttatatt ttccctctct tgcctttctt atttgcaata aaaggtattg agccattttt
4861 taaatgacat ttttgataaa ttatgtttgt actagttgat gaaggagttt tttttaacct 4921 gtttatataa ttttgcagca gaagccaaat tttttgtata ttaaagcacc aaattcatgt 4981 acagcatgca tcacggatca atagactgta cttattttcc aataaaattt tcaaactttg
5041 tactgttaaa aaaaaaaaaa aaaaa
Human IL-1R1 mRNA Variant 6 (SEQ ID NO: 25)
1 ctgatgccct ggagtcgcca actcaattcg cgggtcgcag ccaggctcca tgggggtagt 61 agagccaggt cgtagtggct aggtagacgc accctctgaa gatggtgact ccctcctgag
121 aagctggacc ccttggtaaa agacaaggcc ttctccaaga agaatatgaa agtgttactc 181 agacttattt gtttcatagc tctactgatt tcttctctgg aggctgataa atgcaaggaa 241 cgtgaagaaa aaataatttt agtgtcatct gcaaatgaaa ttgatgttcg tccctgtcct 301 cttaacccaa atgaacacaa aggcactata acttggtata aagatgacag caagacacct 361 gtatctacag aacaagcctc caggattcat caacacaaag agaaactttg gtttgttcct
421 gctaaggtgg aggattcagg acattactat tgcgtggtaa gaaattcatc ttactgcctc 481 agaattaaaa taagtgcaaa atttgtggag aatgagccta acttatgtta taatgcacaa 541 gccatattta agcagaaact acccgttgca ggagacggag gacttgtgtg cccttatatg 601 gagtttttta aaaatgaaaa taatgagtta cctaaattac agtggtataa ggattgcaaa 661 cctctacttc ttgacaatat acactttagt ggagtcaaag ataggctcat cgtgatgaat
721 gtggctgaaa agcatagagg gaactatact tgtcatgcat cctacacata cttgggcaag 781 caatatccta ttacccgggt aatagaattt attactctag aggaaaacaa acccacaagg 841 cctgtgattg tgagcccagc taatgagaca atggaagtag acttgggatc ccagatacaa 901 ttgatctgta atgtcaccgg ccagttgagt gacattgctt actggaagtg gaatgggtca 961 gtaattgatg aagatgaccc agtgctaggg gaagactatt acagtgtgga aaatcctgca
1021 aacaaaagaa ggagtaccct catcacagtg cttaatatat cggaaattga aagtagattt 1081 tataaacatc catttacctg ttttgccaag aatacacatg gtatagatgc agcatatatc 1141 cagttaatat atccagtcac taatttccag aagcacatga ttggtatatg tgtcacgttg 1201 acagtcataa ttgtgtgttc tgttttcatc tataaaatct tcaagattga cattgtgctt 1261 tggtacaggg attcctgcta tgattttctc ccaataaaag cttcagatgg aaagacctat
1321 gacgcatata tactgtatcc aaagactgtt ggggaagggt ctacctctga ctgtgatatt 1381 tttgtgttta aagtcttgcc tgaggtcttg gaaaaacagt gtggatataa gctgttcatt 1441 tatggaaggg atgactacgt tggggaagac attgttgagg tcattaatga aaacgtaaag 1501 aaaagcagaa gactgattat cattttagtc agagaaacat caggcttcag ctggctgggt 1561 ggttcatctg aagagcaaat agccatgtat aatgctcttg ttcaggatgg aattaaagtt 1621 gtcctgcttg agctggagaa aatccaagac tatgagaaaa tgccagaatc gattaaattc 1681 attaagcaga aacatggggc tatccgctgg tcaggggact ttacacaggg accacagtct 1741 gcaaagacaa ggttctggaa gaatgtcagg taccacatgc cagtccagcg acggtcacct
1801 tcatctaaac accagttact gtcaccagcc actaaggaga aactgcaaag agaggctcac 1861 gtgcctctcg ggtagcatgg agaagttgcc aagagttctt taggtgcctc ctgtcttatg 1921 gcgttgcagg ccaggttatg cctcatgctg acttgcagag ttcatggaat gtaactatat 1981 catcctttat ccctgaggtc acctggaatc agattattaa gggaataagc catgacgtca 2041 atagcagccc agggcacttc agagtagagg gcttgggaag atcttttaaa aaggcagtag
2101 gcccggtgtg gtggctcacg cctataatcc cagcactttg ggaggctgaa gtgggtggat 2161 caccagaggt caggagttcg agaccagccc agccaacatg gcaaaacccc atctctacta 2221 aaaatacaaa aatgagctag gcatggtggc acacgcctgt aatcccagct acacctgagg 2281 ctgaggcagg agaattgctt gaaccgggga gacggaggtt gcagtgagcc gagtttgggc 2341 cactgcactc tagcctggca acagagcaag actccgtctc aaaaaaaggg caataaatgc
2401 cctctctgaa tgtttgaact gccaagaaaa ggcatggaga cagcgaacta gaagaaaggg 2461 caagaaggaa atagccaccg tctacagatg gcttagttaa gtcatccaca gcccaagggc 2521 ggggctatgc cttgtctggg gaccctgtag agtcactgac cctggagcgg ctctcctgag 2581 aggtgctgca ggcaaagtga gactgacacc tcactgagga agggagacat attcttggag 2641 aactttccat ctgcttgtat tttccataca catccccagc cagaagttag tgtccgaaga
2701 ccgaatttta ttttacagag cttgaaaact cacttcaatg aacaaaggga ttctccagga 2761 ttccaaagtt ttgaagtcat cttagctttc cacaggaggg agagaactta aaaaagcaac 2821 agtagcaggg aattgatcca cttcttaatg ctttcctccc tggcatgacc atcctgtcct 2881 ttgttattat cctgcatttt acgtctttgg aggaacagct ccctagtggc ttcctccgtc 2941 tgcaatgtcc cttgcacagc ccacacatga accatccttc ccatgatgcc gctcttctgt
3001 catcccgctc ctgctgaaac acctcccagg ggctccacct gttcaggagc tgaagcccat 3061 gctttcccac cagcatgtca ctcccagacc acctccctgc cctgtcctcc agcttcccct 3121 cgctgtcctg ctgtgtgaat tcccaggttg gcctggtggc catgtcgcct gcccccagca 3181 ctcctctgtc tctgctcttg cctgcaccct tcctcctcct ttgcctagga ggccttctcg 3241 cattttctct agctgatcag aattttacca aaattcagaa catcctccaa ttccacagtc
3301 tctgggagac tttccctaag aggcgacttc ctctccagcc ttctctctct ggtcaggccc 3361 actgcagaga tggtggtgag cacatctggg aggctggtct ccctccagct ggaattgctg 3421 ctctctgagg gagaggctgt ggtggctgtc tctgtccctc actgccttcc aggagcaatt 3481 tgcacatgta acatagattt atgtaatgct ttatgtttaa aaacattccc caattatctt 3541 atttaatttt tgcaattatt ctaattttat atatagagaa agtgacctat tttttaaaaa
3601 aatcacactc taagttctat tgaacctagg acttgagcct ccatttctgg cttctagtct 3661 ggtgttctga gtacttgatt tcaggtcaat aacggtcccc cctcactcca cactggcacg 3721 tttgtgagaa gaaatgacat tttgctagga agtgaccgag tctaggaatg cttttattca 3781 agacaccaaa ttccaaactt ctaaatgttg gaattttcaa aaattgtgtt tagattttat 3841 gaaaaactct tctactttca tctattcttt ccctagaggc aaacatttct taaaatgttt
3901 cattttcatt aaaaatgaaa gccaaattta tatgccaccg attgcaggac acaagcacag 3961 ttttaagagt tgtatgaaca tggagaggac ttttggtttt tatatttctc gtatttaata 4021 tgggtgaaca ccaactttta tttggaataa taattttcct cctaaacaaa aacacattga 4081 gtttaagtct ctgactcttg cctttccacc tgctttctcc tgggcccgct ttgcctgctt 4141 gaaggaacag tgctgttctg gagctgctgt tccaacagac agggcctagc tttcatttga 4201 cacacagact acagccagaa gcccatggag cagggatgtc acgtcttgaa aagcctatta 4261 gatgttttac aaatttaatt ttgcagatta ttttagtctg tcatccagaa aatgtgtcag
4321 catgcatagt gctaagaaag caagccaatt tggaaactta ggttagtgac aaaattggcc 4381 agagagtggg ggtgatgatg accaagaatt acaagtagaa tggcagctgg aatttaagga
4441 gggacaagaa tcaatggata agcgtgggtg gaggaagatc caaacagaaa agtgcaaagt 4501 tattccccat cttccaaggg ttgaattctg gaggaagaag acacattcct agttccccgt 4561 gaacttcctt tgacttattg tccccactaa aacaaaacaa aaaactttta atgccttcca 4621 cattaattag attttcttgc agttttttta tggcattttt ttaaagatgc cctaagtgtt
4681 gaagaagagt ttgcaaatgc aacaaaatat ttaattaccg gttgttaaaa ctggtttagc
4741 acaatttata ttttccctct cttgcctttc ttatttgcaa taaaaggtat tgagccattt
4801 tttaaatgac atttttgata aattatgttt gtactagttg atgaaggagt tttttttaac
4861 ctgtttatat aattttgcag cagaagccaa attttttgta tattaaagca ccaaattcat 4921 gtacagcatg catcacggat caatagactg tacttatttt ccaataaaat tttcaaactt 4981 tgtactgtta aaaaaaaaaa aaaaaaa
Human IL-1R1 mRNA Variant 7 (SEQ ID NO: 26)
1 gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag 61 acaaggcctt ctccaagata aatgcaagga acgtgaagaa aaaataattt tagtgtcatc 121 tgcaaatgaa attgatgttc gtccctgtcc tcttaaccca aatgaacaca aaggcactat
181 aacttggtat aaagatgaca gcaagacacc tgtatctaca gaacaagcct ccaggattca 241 tcaacacaaa gagaaacttt ggtttgttcc tgctaaggtg gaggattcag gacattacta 301 ttgcgtggta agaaattcat cttactgcct cagaattaaa ataagtgcaa aatttgtgga 361 gaatgagcct aacttatgtt ataatgcaca agccatattt aagcagaaac tacccgttgc 421 aggagacgga ggacttgtgt gcccttatat ggagtttttt aaaaatgaaa ataatgagtt
481 acctaaatta cagtggtata aggattgcaa acctctactt cttgacaata tacactttag 541 tggagtcaaa gataggctca tcgtgatgaa tgtggctgaa aagcatagag ggaactatac 601 ttgtcatgca tcctacacat acttgggcaa gcaatatcct attacccggg taatagaatt 661 tattactcta gaggaaaaca aacccacaag gcctgtgatt gtgagcccag ctaatgagac 721 aatggaagta gacttgggat cccagataca attgatctgt aatgtcaccg gccagttgag
781 tgacattgct tactggaagt ggaatgggtc agtaattgat gaagatgacc cagtgctagg 841 ggaagactat tacagtgtgg aaaatcctgc aaacaaaaga aggagtaccc tcatcacagt 901 gcttaatata tcggaaattg aaagtagatt ttataaacat ccatttacct gttttgccaa 961 gaatacacat ggtatagatg cagcatatat ccagttaata tatccagtca ctaatttcca 1021 gaagcacatg attggtatat gtgtcacgtt gacagtcata attgtgtgtt ctgttttcat
1081 ctataaaatc ttcaagattg acattgtgct ttggtacagg gattcctgct atgattttct 1141 cccaataaaa gcttcagatg gaaagaccta tgacgcatat atactgtatc caaagactgt 1201 tggggaaggg tctacctctg actgtgatat ttttgtgttt aaagtcttgc ctgaggtctt 1261 ggaaaaacag tgtggatata agctgttcat ttatggaagg gatgactacg ttggggaaga 1321 cattgttgag gtcattaatg aaaacgtaaa gaaaagcaga agactgatta tcattttagt
1381 cagagaaaca tcaggcttca gctggctggg tggttcatct gaagagcaaa tagccatgta 1441 taatgctctt gttcaggatg gaattaaagt tgtcctgctt gagctggaga aaatccaaga 1501 ctatgagaaa atgccagaat cgattaaatt cattaagcag aaacatgggg ctatccgctg 1561 gtcaggggac tttacacagg gaccacagtc tgcaaagaca aggttctgga agaatgtcag 1621 gtaccacatg ccagtccagc gacggtcacc ttcatctaaa caccagttac tgtcaccagc 1681 cactaaggag aaactgcaaa gagaggctca cgtgcctctc gggtagcatg gagaagttgc 1741 caagagttct ttaggtgcct cctgtcttat ggcgttgcag gccaggttat gcctcatgct 1801 gacttgcaga gttcatggaa tgtaactata tcatccttta tccctgaggt cacctggaat
1861 cagattatta agggaataag ccatgacgtc aatagcagcc cagggcactt cagagtagag 1921 ggcttgggaa gatcttttaa aaaggcagta ggcccggtgt ggtggctcac gcctataatc 1981 ccagcacttt gggaggctga agtgggtgga tcaccagagg tcaggagttc gagaccagcc 2041 cagccaacat ggcaaaaccc catctctact aaaaatacaa aaatgagcta ggcatggtgg 2101 cacacgcctg taatcccagc tacacctgag gctgaggcag gagaattgct tgaaccgggg
2161 agacggaggt tgcagtgagc cgagtttggg ccactgcact ctagcctggc aacagagcaa 2221 gactccgtct caaaaaaagg gcaataaatg ccctctctga atgtttgaac tgccaagaaa 2281 aggcatggag acagcgaact agaagaaagg gcaagaagga aatagccacc gtctacagat 2341 ggcttagtta agtcatccac agcccaaggg cggggctatg ccttgtctgg ggaccctgta 2401 gagtcactga ccctggagcg gctctcctga gaggtgctgc aggcaaagtg agactgacac
2461 ctcactgagg aagggagaca tattcttgga gaactttcca tctgcttgta ttttccatac 2521 acatccccag ccagaagtta gtgtccgaag accgaatttt attttacaga gcttgaaaac 2581 tcacttcaat gaacaaaggg attctccagg attccaaagt tttgaagtca tcttagcttt 2641 ccacaggagg gagagaactt aaaaaagcaa cagtagcagg gaattgatcc acttcttaat 2701 gctttcctcc ctggcatgac catcctgtcc tttgttatta tcctgcattt tacgtctttg
2761 gaggaacagc tccctagtgg cttcctccgt ctgcaatgtc ccttgcacag cccacacatg 2821 aaccatcctt cccatgatgc cgctcttctg tcatcccgct cctgctgaaa cacctcccag 2881 gggctccacc tgttcaggag ctgaagccca tgctttccca ccagcatgtc actcccagac 2941 cacctccctg ccctgtcctc cagcttcccc tcgctgtcct gctgtgtgaa ttcccaggtt 3001 ggcctggtgg ccatgtcgcc tgcccccagc actcctctgt ctctgctctt gcctgcaccc
3061 ttcctcctcc tttgcctagg aggccttctc gcattttctc tagctgatca gaattttacc 3121 aaaattcaga acatcctcca attccacagt ctctgggaga ctttccctaa gaggcgactt 3181 cctctccagc cttctctctc tggtcaggcc cactgcagag atggtggtga gcacatctgg 3241 gaggctggtc tccctccagc tggaattgct gctctctgag ggagaggctg tggtggctgt 3301 ctctgtccct cactgccttc caggagcaat ttgcacatgt aacatagatt tatgtaatgc
3361 tttatgttta aaaacattcc ccaattatct tatttaattt ttgcaattat tctaatttta
3421 tatatagaga aagtgaccta ttttttaaaa aaatcacact ctaagttcta ttgaacctag 3481 gacttgagcc tccatttctg gcttctagtc tggtgttctg agtacttgat ttcaggtcaa 3541 taacggtccc ccctcactcc acactggcac gtttgtgaga agaaatgaca ttttgctagg 3601 aagtgaccga gtctaggaat gcttttattc aagacaccaa attccaaact tctaaatgtt
3661 ggaattttca aaaattgtgt ttagatttta tgaaaaactc ttctactttc atctattctt
3721 tccctagagg caaacatttc ttaaaatgtt tcattttcat taaaaatgaa agccaaattt 3781 atatgccacc gattgcagga cacaagcaca gttttaagag ttgtatgaac atggagagga 3841 cttttggttt ttatatttct cgtatttaat atgggtgaac accaactttt atttggaata
3901 ataattttcc tcctaaacaa aaacacattg agtttaagtc tctgactctt gcctttccac
3961 ctgctttctc ctgggcccgc tttgcctgct tgaaggaaca gtgctgttct ggagctgctg 4021 ttccaacaga cagggcctag ctttcatttg acacacagac tacagccaga agcccatgga 4081 gcagggatgt cacgtcttga aaagcctatt agatgtttta caaatttaat tttgcagatt 4141 attttagtct gtcatccaga aaatgtgtca gcatgcatag tgctaagaaa gcaagccaat 4201 ttggaaactt aggttagtga caaaattggc cagagagtgg gggtgatgat gaccaagaat 4261 tacaagtaga atggcagctg gaatttaagg agggacaaga atcaatggat aagcgtgggt 4321 ggaggaagat ccaaacagaa aagtgcaaag ttattcccca tcttccaagg gttgaattct 4381 ggaggaagaa gacacattcc tagttccccg tgaacttcct ttgacttatt gtccccacta 4441 aaacaaaaca aaaaactttt aatgccttcc acattaatta gattttcttg cagttttttt
4501 atggcatttt tttaaagatg ccctaagtgt tgaagaagag tttgcaaatg caacaaaata 4561 tttaattacc ggttgttaaa actggtttag cacaatttat attttccctc tcttgccttt 4621 cttatttgca ataaaaggta ttgagccatt ttttaaatga catttttgat aaattatgtt 4681 tgtactagtt gatgaaggag ttttttttaa cctgtttata taattttgca gcagaagcca 4741 aattttttgt atattaaagc accaaattca tgtacagcat gcatcacgga tcaatagact
4801 gtacttattt tccaataaaa ttttcaaact ttgtactgtt aaaaaaaaaa aaaaaaaa
Human IL-1R1 mRNA Variant 8 (SEQ ID NO: 27)
1 gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag 61 acaaggcctt ctccaagaag aatatgaaag tgttactcag acttatttgt ttcatagctc
121 tactgatttc ttctctggag gctgataaat gcaaggaacg tgaagaaaaa ataattttag 181 tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct taacccaaat gaacacaaag 241 gcactataac ttggtataaa gatgacagca agacacctgt atctacagaa caagcctcca 301 ggattcatca acacaaagag aaactttggt ttgttcctgc taaggtggag gattcaggac 361 attactattg cgtggtaagg attgcaaacc tctacttctt gacaatatac actttagtgg
421 agtcaaagat aggctcatcg tgatgaatgt ggctgaaaag catagaggga actatacttg 481 tcatgcatcc tacacatact tgggcaagca atatcctatt acccgggtaa tagaatttat 541 tactctagag gaaaacaaac ccacaaggcc tgtgattgtg agcccagcta atgagacaat 601 ggaagtagac ttgggatccc agatacaatt gatctgtaat gtcaccggcc agttgagtga 661 cattgcttac tggaagtgga atgggtcagt aattgatgaa gatgacccag tgctagggga
721 agactattac agtgtggaaa atcctgcaaa caaaagaagg agtaccctca tcacagtgct 781 taatatatcg gaaattgaaa gtagatttta taaacatcca tttacctgtt ttgccaagaa 841 tacacatggt atagatgcag catatatcca gttaatatat ccagtcacta atttccagaa 901 gcacatgatt ggtatatgtg tcacgttgac agtcataatt gtgtgttctg ttttcatcta 961 taaaatcttc aagattgaca ttgtgctttg gtacagggat tcctgctatg attttctccc
1021 aataaaagct tcagatggaa agacctatga cgcatatata ctgtatccaa agactgttgg 1081 ggaagggtct acctctgact gtgatatttt tgtgtttaaa gtcttgcctg aggtcttgga 1141 aaaacagtgt ggatataagc tgttcattta tggaagggat gactacgttg gggaagacat 1201 tgttgaggtc attaatgaaa acgtaaagaa aagcagaaga ctgattatca ttttagtcag 1261 agaaacatca ggcttcagct ggctgggtgg ttcatctgaa gagcaaatag ccatgtataa
1321 tgctcttgtt caggatggaa ttaaagttgt cctgcttgag ctggagaaaa tccaagacta 1381 tgagaaaatg ccagaatcga ttaaattcat taagcagaaa catggggcta tccgctggtc 1441 aggggacttt acacagggac cacagtctgc aaagacaagg ttctggaaga atgtcaggta 1501 ccacatgcca gtccagcgac ggtcaccttc atctaaacac cagttactgt caccagccac 1561 taaggagaaa ctgcaaagag aggctcacgt gcctctcggg tagcatggag aagttgccaa
1621 gagttcttta ggtgcctcct gtcttatggc gttgcaggcc aggttatgcc tcatgctgac 1681 ttgcagagtt catggaatgt aactatatca tcctttatcc ctgaggtcac ctggaatcag 1741 attattaagg gaataagcca tgacgtcaat agcagcccag ggcacttcag agtagagggc 1801 ttgggaagat cttttaaaaa ggcagtaggc ccggtgtggt ggctcacgcc tataatccca 1861 gcactttggg aggctgaagt gggtggatca ccagaggtca ggagttcgag accagcccag 1921 ccaacatggc aaaaccccat ctctactaaa aatacaaaaa tgagctaggc atggtggcac 1981 acgcctgtaa tcccagctac acctgaggct gaggcaggag aattgcttga accggggaga 2041 cggaggttgc agtgagccga gtttgggcca ctgcactcta gcctggcaac agagcaagac
2101 tccgtctcaa aaaaagggca ataaatgccc tctctgaatg tttgaactgc caagaaaagg 2161 catggagaca gcgaactaga agaaagggca agaaggaaat agccaccgtc tacagatggc 2221 ttagttaagt catccacagc ccaagggcgg ggctatgcct tgtctgggga ccctgtagag 2281 tcactgaccc tggagcggct ctcctgagag gtgctgcagg caaagtgaga ctgacacctc 2341 actgaggaag ggagacatat tcttggagaa ctttccatct gcttgtattt tccatacaca
2401 tccccagcca gaagttagtg tccgaagacc gaattttatt ttacagagct tgaaaactca 2461 cttcaatgaa caaagggatt ctccaggatt ccaaagtttt gaagtcatct tagctttcca 2521 caggagggag agaacttaaa aaagcaacag tagcagggaa ttgatccact tcttaatgct 2581 ttcctccctg gcatgaccat cctgtccttt gttattatcc tgcattttac gtctttggag
2641 gaacagctcc ctagtggctt cctccgtctg caatgtccct tgcacagccc acacatgaac
2701 catccttccc atgatgccgc tcttctgtca tcccgctcct gctgaaacac ctcccagggg 2761 ctccacctgt tcaggagctg aagcccatgc tttcccacca gcatgtcact cccagaccac 2821 ctccctgccc tgtcctccag cttcccctcg ctgtcctgct gtgtgaattc ccaggttggc 2881 ctggtggcca tgtcgcctgc ccccagcact cctctgtctc tgctcttgcc tgcacccttc 2941 ctcctccttt gcctaggagg ccttctcgca ttttctctag ctgatcagaa ttttaccaaa
3001 attcagaaca tcctccaatt ccacagtctc tgggagactt tccctaagag gcgacttcct 3061 ctccagcctt ctctctctgg tcaggcccac tgcagagatg gtggtgagca catctgggag 3121 gctggtctcc ctccagctgg aattgctgct ctctgaggga gaggctgtgg tggctgtctc 3181 tgtccctcac tgccttccag gagcaatttg cacatgtaac atagatttat gtaatgcttt 3241 atgtttaaaa acattcccca attatcttat ttaatttttg caattattct aattttatat
3301 atagagaaag tgacctattt tttaaaaaaa tcacactcta agttctattg aacctaggac 3361 ttgagcctcc atttctggct tctagtctgg tgttctgagt acttgatttc aggtcaataa 3421 cggtcccccc tcactccaca ctggcacgtt tgtgagaaga aatgacattt tgctaggaag 3481 tgaccgagtc taggaatgct tttattcaag acaccaaatt ccaaacttct aaatgttgga 3541 attttcaaaa attgtgttta gattttatga aaaactcttc tactttcatc tattctttcc
3601 ctagaggcaa acatttctta aaatgtttca ttttcattaa aaatgaaagc caaatttata 3661 tgccaccgat tgcaggacac aagcacagtt ttaagagttg tatgaacatg gagaggactt 3721 ttggttttta tatttctcgt atttaatatg ggtgaacacc aacttttatt tggaataata
3781 attttcctcc taaacaaaaa cacattgagt ttaagtctct gactcttgcc tttccacctg 3841 ctttctcctg ggcccgcttt gcctgcttga aggaacagtg ctgttctgga gctgctgttc
3901 caacagacag ggcctagctt tcatttgaca cacagactac agccagaagc ccatggagca 3961 gggatgtcac gtcttgaaaa gcctattaga tgttttacaa atttaatttt gcagattatt 4021 ttagtctgtc atccagaaaa tgtgtcagca tgcatagtgc taagaaagca agccaatttg 4081 gaaacttagg ttagtgacaa aattggccag agagtggggg tgatgatgac caagaattac 4141 aagtagaatg gcagctggaa tttaaggagg gacaagaatc aatggataag cgtgggtgga
4201 ggaagatcca aacagaaaag tgcaaagtta ttccccatct tccaagggtt gaattctgga 4261 ggaagaagac acattcctag ttccccgtga acttcctttg acttattgtc cccactaaaa 4321 caaaacaaaa aacttttaat gccttccaca ttaattagat tttcttgcag tttttttatg
4381 gcattttttt aaagatgccc taagtgttga agaagagttt gcaaatgcaa caaaatattt 4441 aattaccggt tgttaaaact ggtttagcac aatttatatt ttccctctct tgcctttctt 4501 atttgcaata aaaggtattg agccattttt taaatgacat ttttgataaa ttatgtttgt 4561 actagttgat gaaggagttt tttttaacct gtttatataa ttttgcagca gaagccaaat 4621 tttttgtata ttaaagcacc aaattcatgt acagcatgca tcacggatca atagactgta 4681 cttattttcc aataaaattt tcaaactttg tactgttaaa aaaaaaaaaa aaaaa
Human IL-1R1 mRNA Variant 9 (SEQ ID NO: 28)
1 gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag 61 acaaggcctt ctccaagaag aatatgaaag tgttactcag acttatttgt ttcatagctc 121 tactgatttc ttctctggag gctgataaat gcaaggaacg tgaagaaaaa ataattttag
181 tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct taacccaaat gaacacaaag 241 gcactataac ttggtataaa gatgacagca agacacctgt atctacagaa caagcctcca 301 ggattcatca acacaaagag aaactttggt ttgttcctgc taaggtggag gattcaggac 361 attactattg cgtggtaaga aattcatctt actgcctcag aattaaaata agtgcaaaat 421 ttgtggagaa tgagcctaac ttatgttata atgcacaagc catatttaag cagaaactac
481 ccgttgcagg agacggagga cttgtgtgcc cttatatgga gttttttaaa aatgaaaata 541 atgagttacc taaattacag tggtataaga ggaaaacaaa cccacaaggc ctgtgattgt 601 gagcccagct aatgagacaa tggaagtaga cttgggatcc cagatacaat tgatctgtaa 661 tgtcaccggc cagttgagtg acattgctta ctggaagtgg aatgggtcag taattgatga 721 agatgaccca gtgctagggg aagactatta cagtgtggaa aatcctgcaa acaaaagaag
781 gagtaccctc atcacagtgc ttaatatatc ggaaattgaa agtagatttt ataaacatcc 841 atttacctgt tttgccaaga atacacatgg tatagatgca gcatatatcc agttaatata 901 tccagtcact aatttccaga agcacatgat tggtatatgt gtcacgttga cagtcataat 961 tgtgtgttct gttttcatct ataaaatctt caagattgac attgtgcttt ggtacaggga 1021 ttcctgctat gattttctcc caataaaagc ttcagatgga aagacctatg acgcatatat
1081 actgtatcca aagactgttg gggaagggtc tacctctgac tgtgatattt ttgtgtttaa 1141 agtcttgcct gaggtcttgg aaaaacagtg tggatataag ctgttcattt atggaaggga 1201 tgactacgtt ggggaagaca ttgttgaggt cattaatgaa aacgtaaaga aaagcagaag 1261 actgattatc attttagtca gagaaacatc aggcttcagc tggctgggtg gttcatctga 1321 agagcaaata gccatgtata atgctcttgt tcaggatgga attaaagttg tcctgcttga
1381 gctggagaaa atccaagact atgagaaaat gccagaatcg attaaattca ttaagcagaa 1441 acatggggct atccgctggt caggggactt tacacaggga ccacagtctg caaagacaag 1501 gttctggaag aatgtcaggt accacatgcc agtccagcga cggtcacctt catctaaaca 1561 ccagttactg tcaccagcca ctaaggagaa actgcaaaga gaggctcacg tgcctctcgg 1621 gtagcatgga gaagttgcca agagttcttt aggtgcctcc tgtcttatgg cgttgcaggc
1681 caggttatgc ctcatgctga cttgcagagt tcatggaatg taactatatc atcctttatc 1741 cctgaggtca cctggaatca gattattaag ggaataagcc atgacgtcaa tagcagccca 1801 gggcacttca gagtagaggg cttgggaaga tcttttaaaa aggcagtagg cccggtgtgg 1861 tggctcacgc ctataatccc agcactttgg gaggctgaag tgggtggatc accagaggtc 1921 aggagttcga gaccagccca gccaacatgg caaaacccca tctctactaa aaatacaaaa
1981 atgagctagg catggtggca cacgcctgta atcccagcta cacctgaggc tgaggcagga 2041 gaattgcttg aaccggggag acggaggttg cagtgagccg agtttgggcc actgcactct 2101 agcctggcaa cagagcaaga ctccgtctca aaaaaagggc aataaatgcc ctctctgaat 2161 gtttgaactg ccaagaaaag gcatggagac agcgaactag aagaaagggc aagaaggaaa 2221 tagccaccgt ctacagatgg cttagttaag tcatccacag cccaagggcg gggctatgcc 2281 ttgtctgggg accctgtaga gtcactgacc ctggagcggc tctcctgaga ggtgctgcag 2341 gcaaagtgag actgacacct cactgaggaa gggagacata ttcttggaga actttccatc 2401 tgcttgtatt ttccatacac atccccagcc agaagttagt gtccgaagac cgaattttat 2461 tttacagagc ttgaaaactc acttcaatga acaaagggat tctccaggat tccaaagttt 2521 tgaagtcatc ttagctttcc acaggaggga gagaacttaa aaaagcaaca gtagcaggga 2581 attgatccac ttcttaatgc tttcctccct ggcatgacca tcctgtcctt tgttattatc
2641 ctgcatttta cgtctttgga ggaacagctc cctagtggct tcctccgtct gcaatgtccc 2701 ttgcacagcc cacacatgaa ccatccttcc catgatgccg ctcttctgtc atcccgctcc 2761 tgctgaaaca cctcccaggg gctccacctg ttcaggagct gaagcccatg ctttcccacc 2821 agcatgtcac tcccagacca cctccctgcc ctgtcctcca gcttcccctc gctgtcctgc 2881 tgtgtgaatt cccaggttgg cctggtggcc atgtcgcctg cccccagcac tcctctgtct 2941 ctgctcttgc ctgcaccctt cctcctcctt tgcctaggag gccttctcgc attttctcta 3001 gctgatcaga attttaccaa aattcagaac atcctccaat tccacagtct ctgggagact 3061 ttccctaaga ggcgacttcc tctccagcct tctctctctg gtcaggccca ctgcagagat 3121 ggtggtgagc acatctggga ggctggtctc cctccagctg gaattgctgc tctctgaggg 3181 agaggctgtg gtggctgtct ctgtccctca ctgccttcca ggagcaattt gcacatgtaa 3241 catagattta tgtaatgctt tatgtttaaa aacattcccc aattatctta tttaattttt
3301 gcaattattc taattttata tatagagaaa gtgacctatt ttttaaaaaa atcacactct 3361 aagttctatt gaacctagga cttgagcctc catttctggc ttctagtctg gtgttctgag 3421 tacttgattt caggtcaata acggtccccc ctcactccac actggcacgt ttgtgagaag 3481 aaatgacatt ttgctaggaa gtgaccgagt ctaggaatgc ttttattcaa gacaccaaat 3541 tccaaacttc taaatgttgg aattttcaaa aattgtgttt agattttatg aaaaactctt
3601 ctactttcat ctattctttc cctagaggca aacatttctt aaaatgtttc attttcatta
3661 aaaatgaaag ccaaatttat atgccaccga ttgcaggaca caagcacagt tttaagagtt 3721 gtatgaacat ggagaggact tttggttttt atatttctcg tatttaatat gggtgaacac 3781 caacttttat ttggaataat aattttcctc ctaaacaaaa acacattgag tttaagtctc 3841 tgactcttgc ctttccacct gctttctcct gggcccgctt tgcctgcttg aaggaacagt 3901 gctgttctgg agctgctgtt ccaacagaca gggcctagct ttcatttgac acacagacta 3961 cagccagaag cccatggagc agggatgtca cgtcttgaaa agcctattag atgttttaca 4021 aatttaattt tgcagattat tttagtctgt catccagaaa atgtgtcagc atgcatagtg 4081 ctaagaaagc aagccaattt ggaaacttag gttagtgaca aaattggcca gagagtgggg 4141 gtgatgatga ccaagaatta caagtagaat ggcagctgga atttaaggag ggacaagaat 4201 caatggataa gcgtgggtgg aggaagatcc aaacagaaaa gtgcaaagtt attccccatc 4261 ttccaagggt tgaattctgg aggaagaaga cacattccta gttccccgtg aacttccttt 4321 gacttattgt ccccactaaa acaaaacaaa aaacttttaa tgccttccac attaattaga 4381 ttttcttgca gtttttttat ggcatttttt taaagatgcc ctaagtgttg aagaagagtt
4441 tgcaaatgca acaaaatatt taattaccgg ttgttaaaac tggtttagca caatttatat 4501 tttccctctc ttgcctttct tatttgcaat aaaaggtatt gagccatttt ttaaatgaca
4561 tttttgataa attatgtttg tactagttga tgaaggagtt ttttttaacc tgtttatata
4621 attttgcagc agaagccaaa ttttttgtat attaaagcac caaattcatg tacagcatgc 4681 atcacggatc aatagactgt acttattttc caataaaatt ttcaaacttt gtactgttaa 4741 aaaaaaaaaa aaaaaa Human IL-1R1 mRNA Variant 10 (SEQ ID NO: 29)
1 attaaagccc taagaggctg tgacacagcc atctccaaaa ccccactttc tccttccttt 61 gagcctccgt accagctggg gcgtccggca agatgtgagt tgtcactctg ctgcggcaca 121 gacctgaatt aacaactcta gctagggctg acttcaaaaa gcactttcgt tttttaataa
181 ccaacatcag ctcagcaggc ttcatttggg aaaagaaacc ttgtcggatt accccgacat 241 tctccacctc ctgggaggcc agccattccc aaatgcccca aggatgaaga acggagacgg 301 tagacgcacc ctctgaagat ggtgactccc tcctgagaag ctggacccct tggtaaaaga 361 caaggccttc tccaagaaga atatgaaagt gttactcaga cttatttgtt tcatagctct 421 actgatttct tctctggagg ctgataaatg caaggaacgt gaagaaaaaa taattttagt
481 gtcatctgca aatgaaattg atgttcgtcc ctgtcctctt aacccaaatg aacacaaagg 541 cactataact tggtataaag atgacagcaa gacacctgta tctacagaac aagcctccag 601 gattcatcaa cacaaagaga aactttggtt tgttcctgct aaggtggagg attcaggaca 661 ttactattgc gtggtaagaa attcatctta ctgcctcaga attaaaataa gtgcaaaatt 721 tgtggagaat gagcctaact tatgttataa tgcacaagcc atatttaagc agaaactacc
781 cgttgcagga gacggaggac ttgtgtgccc ttatatggag ttttttaaaa atgaaaataa 841 tgagttacct aaattacagt ggtataaggt aattttattt taaatatgac atttcacttt
901 tccagaaaat aaaatagttc cctggacaat agaaaaaaaa aaaaaaaaaa Human IL1RAP mRNA Variant 1 (SEQ ID NO: 30)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat 61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg 181 tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc 241 ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa
301 tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa 361 tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga 421 aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc 481 aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg 541 agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca
601 tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag 661 acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca 721 ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta 781 tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta 841 tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta
901 catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag 961 gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg 1021 agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg 1081 attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg 1141 atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga
1201 ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta 1261 gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaagtg ccagctccaa 1321 gatacacagt ggaactggct tgtggttttg gagccacagt cctgctagtg gtgattctca 1381 ttgttgttta ccatgtttac tggctagaga tggtcctatt ttaccgggct cattttggaa 1441 cagatgaaac cattttagat ggaaaagagt atgatattta tgtatcctat gcaaggaatg 1501 cggaagaaga agaatttgta ttactgaccc tccgtggagt tttggagaat gaatttggat 1561 acaagctgtg catctttgac cgagacagtc tgcctggggg aattgtcaca gatgagactt
1621 tgagcttcat tcagaaaagc agacgcctcc tggttgttct aagccccaac tacgtgctcc 1681 agggaaccca agccctcctg gagctcaagg ctggcctaga aaatatggcc tctcggggca 1741 acatcaacgt cattttagta cagtacaaag ctgtgaagga aacgaaggtg aaagagctga 1801 agagggctaa gacggtgctc acggtcatta aatggaaagg ggaaaaatcc aagtatccac 1861 agggcaggtt ctggaagcag ctgcaggtgg ccatgccagt gaagaaaagt cccaggcggt
1921 ctagcagtga tgagcagggc ctctcgtatt catctttgaa aaatgtatga aaggaataat 1981 gaaaagggta aaaagaacaa ggggtgctcc aggaagaaag agtcccccca gtcttcattc 2041 gcagtttatg gtttcatagg caaaaataat ggtctaagcc tcccaatagg gataaattta 2101 gggtgactgt gtggctgact attctgcttc ctcaggcaac actaaagttt agaaagatat 2161 catcaacgtt ctgtcaccag tctctgatgc cactatgttc tttgcaggca aagacttgtt
2221 caatgcgaat ttccccttct acattgtcta tccctgtttt tatatgtctc cattcttttt
2281 aaaatcttaa catatggagc agcctttcct atgaatttaa atatgccttt aaaataagtc 2341 actgttgaca gggtcatgag tttccgagta tagttttctt tttatcttat ttttactcgt
2401 ccgttgaaaa gataatcaag gcctacattt tagctgagga taatgaactt ttttcctcat 2461 tcggctgtat aatacataac cacagcaaga ctgacatcca cttaggatga tacaaagcag
2521 tgtaactgaa aatgtttctt ttaattgatt taaaggactt gtcttctata ccacccttgt
2581 cctcatctca ggtaatttat gaaatctatg taaacttgaa aaatatttct taatttttgt
2641 ttttgctcca gtcaattcct gattatccac aggtcaaccc acattttttc attccttctc
2701 cctatctgct tatatcgcat tgctcattta gagtttgcag gaggctccat actaggttca 2761 gtctgaaaga aatctcctaa tggtgctata gagagggagg taacagaaag actcttttag
2821 ggcatttttc tgactcatga aaagagcaca gaaaaggatg tttggcaatt tgtcttttaa 2881 gtcttaacct tgctaatgtg aatactggga aagtgatttt ttctcactcg tttttgttgc 2941 tccattgtaa agggcggagg tcagtcttag tggccttgag agttgctttt ggcattaata 3001 ttctaagaga attaactgta tttcctgtca cctattcact agtgcaggaa atatacttgc 3061 tccaaataag tcagtatgag aagtcactgt caatgaaagt tgttttgttt gttttcagta
3121 atattttgct gtttttaaga cttggaaaac taagtgcaga gtttacagag tggtaaatat 3181 ctatgttaca tgtagattat acatatatat acacacgtgt atatgagata tatatcttat 3241 atctccacaa acacaaatta tatatataca tatccacaca catacattac atatatctgt 3301 gtatataaat ccacatgcac atgaaatata tatatatata taatttgtgt gtgtgtatgt 3361 gtatgtatat gactttaaat agctatgggt acaatattaa aaaccactgg aactcttgtc
3421 cagtttttaa attatgtttt tactggaatg tttttgtgtc agtgttttct gtacatatta
3481 tttgttaatt cacagctcac agagtgatag ttgtcatagt tcttgccttc cctaagttta 3541 tataaataac ttaagtattg ctacagttta tctaggttgc agtggcatct gctgtgcaca 3601 gagcttccat ggtcactgct aagcagtagc cagccatcgg gcattaattg atttcctact 3661 atattcccag cagacacatt tagaaactaa gctatgttaa cctcagtgct caactatttg
3721 aactgttgag tgataaagga aacaaatata actgtaaatg aatcttggta tcctgtgaaa 3781 cagaataatt cgtaatttaa gaaagccctt atcccggtaa catgaatgtt gatgaacaaa 3841 tgtaaaatta tatcctatat ttaagtaccc ataataaatc atttccctct ataagtgtta
3901 ttgattattt taaattgaaa aaagtttcac ttggatgaaa aaagtagaaa agtaggtcat 3961 tcttggatct actttttttt agccttatta atatttttcc ctattagaaa ccacaattac
4021 tccctctatt aacccttcac ttactagacc agaaaagaac ttattccaga taagctttga 4081 atatcaattc ttacataaac tttaggcaaa cagggaatag tctagtcacc aaaggaccat 4141 tctcttgcca atgctgcatt ccttttgcac ttttggattc catatttatc ccaaatgctg
4201 ttgggcaccc ctagaaatac cttgatgttt tttctattta tatgcctgcc tttggtactt
4261 aattttacaa atgctgtaat ataaagcata tcaagtttat gtgatacgta tcattgcaag 4321 agaatttgtt tcaagatttt tttttaatgt tccagaagat ggccaataga gaacattcaa 4381 gggaaatggg gaaacataat ttagagaaca agaacaaacc atgtctcaaa tttttttaaa 4441 aaaaattaat ggttttaaat atatgctata gggacgttcc atgcccaggt taacaaagaa 4501 ctgtgatata tagagtgtct aattacaaaa tcatatacga tttatttaat tctcttctgt
4561 attgtaactt agatgattcc caaggactct aataaaaaat cacttcattg tatttggaaa 4621 caaaaacatc attcattaat tacttatttt ctttccatag gttttaatat tttgagagtg
4681 tcttttttat ttcattcatg aacttttgta tttttcattt ttcatttgat ttgtaaattt
4741 acttatgtta aaaataaacc atttattttc agctttgaat tttaaaaaaa aaaaaaaaaa 4801 a
Human IL1RAP mRNA Variant 2 (SEQ ID NO: 31)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat 61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg
181 tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc 241 ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa 301 tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa 361 tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga 421 aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc
481 aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg 541 agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca 601 tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag 661 acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca 721 ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta
781 tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta 841 tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta
901 catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag 961 gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg 1021 agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg
1081 attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg 1141 atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga 1201 ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta 1261 gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaaggt aatagatgcg 1321 gtcagtgatg aatctctcag ctccaaatta acattgtggt gaataaggac aaaaggagag
1381 attgagaaca agagagctcc agcacctagc ccgacggcat ctaacccata gtaatgaatc 1441 aaacttaaat gaaaaatatg aaagttttca tctatgtaag atactcaaaa tattgtttct 1501 gatattgtta gtaccgtaat gcccaaatgt agctaaaaaa atcgacgtga gtacagtgag 1561 acacaatttt gtgtctgtac aattatgaaa aattaaaaac aaagaaaata ttcaaagcta 1621 ccaaagatag aaaaaactgg tagagccaca tattgttggt gaattattaa gaccctttta 1681 aaaatcattc atggtagact tcaagagtca taaaaaagat tgcatcatct gacctaagac 1741 tttcggaatt tttcctgaac aaataacaga aagggaatta tatacctttt aatattatta 1801 gaagcattat ctgtagttgt aaaacattat taatagcagc catccaattg tatgcaacta
1861 attaaggtat tgaatgttta ttttccaaaa atgcataatt ataatattat tttaaacact
1921 atgtatcaat atttaagcag gtttataata taccagcagc cacaattgct aaaatgaaaa 1981 tcatttaaat tatgatttta aatggtataa acatgatttc tatgttgata gtactatatt
2041 attctacaat aaatggaaat tataaagcct tcttgtcaga agtgctgctc ctaaaaaaaa 2101 aaaaaaaaaa aaaa
Human IL1RAP mRNA Variant 3 (SEQ ID NO: 32)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat 61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg gctttgacct
181 gaagcttgaa attgagtttg ggacaataat gtgtctcatg gggaattgca tggactcctt 241 atcataagcc aaatgctgag gtaaagctgc ggaattgagt cgtcctccaa gaagggagag 301 aaaatgatgt cttgtgacat ttccagataa ctggcatcgt catgtgatca tcacctaaga 361 actagaacat cagcaggccc tagaagcctc actcttgccc ctccctttaa tatctcaaag 421 gatgacactt ctgtggtgtg tagtgagtct ctacttttat ggaatcctgc aaagtgatgc
481 ctcagaacgc tgcgatgact ggggactaga caccatgagg caaatccaag tgtttgaaga 541 tgagccagct cgcatcaagt gcccactctt tgaacacttc ttgaaattca actacagcac 601 agcccattca gctggcctta ctctgatctg gtattggact aggcaggacc gggaccttga 661 ggagccaatt aacttccgcc tccccgagaa ccgcattagt aaggagaaag atgtgctgtg 721 gttccggccc actctcctca atgacactgg caactatacc tgcatgttaa ggaacactac
781 atattgcagc aaagttgcat ttcccttgga agttgttcaa aaagacagct gtttcaattc 841 ccccatgaaa ctcccagtgc ataaactgta tatagaatat ggcattcaga ggatcacttg 901 tccaaatgta gatggatatt ttccttccag tgtcaaaccg actatcactt ggtatatggg 961 ctgttataaa atacagaatt ttaataatgt aatacccgaa ggtatgaact tgagtttcct 1021 cattgcctta atttcaaata atggaaatta cacatgtgtt gttacatatc cagaaaatgg
1081 acgtacgttt catctcacca ggactctgac tgtaaaggta gtaggctctc caaaaaatgc 1141 agtgccccct gtgatccatt cacctaatga tcatgtggtc tatgagaaag aaccaggaga 1201 ggagctactc attccctgta cggtctattt tagttttctg atggattctc gcaatgaggt 1261 ttggtggacc attgatggaa aaaaacctga tgacatcact attgatgtca ccattaacga 1321 aagtataagt catagtagaa cagaagatga aacaagaact cagattttga gcatcaagaa
1381 agttacctct gaggatctca agcgcagcta tgtctgtcat gctagaagtg ccaaaggcga 1441 agttgccaaa gcagccaagg tgaagcagaa agtgccagct ccaagataca cagtggaact 1501 ggcttgtggt tttggagcca cagtcctgct agtggtgatt ctcattgttg tttaccatgt 1561 ttactggcta gagatggtcc tattttaccg ggctcatttt ggaacagatg aaaccatttt 1621 agatggaaaa gagtatgata tttatgtatc ctatgcaagg aatgcggaag aagaagaatt
1681 tgtattactg accctccgtg gagttttgga gaatgaattt ggatacaagc tgtgcatctt 1741 tgaccgagac agtctgcctg ggggaattgt cacagatgag actttgagct tcattcagaa 1801 aagcagacgc ctcctggttg ttctaagccc caactacgtg ctccagggaa cccaagccct 1861 cctggagctc aaggctggcc tagaaaatat ggcctctcgg ggcaacatca acgtcatttt 1921 agtacagtac aaagctgtga aggaaacgaa ggtgaaagag ctgaagaggg ctaagacggt 1981 gctcacggtc attaaatgga aaggggaaaa atccaagtat ccacagggca ggttctggaa 2041 gcagctgcag gtggccatgc cagtgaagaa aagtcccagg cggtctagca gtgatgagca 2101 gggcctctcg tattcatctt tgaaaaatgt atgaaaggaa taatgaaaag ggtaaaaaga 2161 acaaggggtg ctccaggaag aaagagtccc cccagtcttc attcgcagtt tatggtttca 2221 taggcaaaaa taatggtcta agcctcccaa tagggataaa tttagggtga ctgtgtggct 2281 gactattctg cttcctcagg caacactaaa gtttagaaag atatcatcaa cgttctgtca 2341 ccagtctctg atgccactat gttctttgca ggcaaagact tgttcaatgc gaatttcccc 2401 ttctacattg tctatccctg tttttatatg tctccattct ttttaaaatc ttaacatatg
2461 gagcagcctt tcctatgaat ttaaatatgc ctttaaaata agtcactgtt gacagggtca 2521 tgagtttccg agtatagttt tctttttatc ttatttttac tcgtccgttg aaaagataat
2581 caaggcctac attttagctg aggataatga acttttttcc tcattcggct gtataataca 2641 taaccacagc aagactgaca tccacttagg atgatacaaa gcagtgtaac tgaaaatgtt 2701 tcttttaatt gatttaaagg acttgtcttc tataccaccc ttgtcctcat ctcaggtaat
2761 ttatgaaatc tatgtaaact tgaaaaatat ttcttaattt ttgtttttgc tccagtcaat
2821 tcctgattat ccacaggtca acccacattt tttcattcct tctccctatc tgcttatatc
2881 gcattgctca tttagagttt gcaggaggct ccatactagg ttcagtctga aagaaatctc 2941 ctaatggtgc tatagagagg gaggtaacag aaagactctt ttagggcatt tttctgactc 3001 atgaaaagag cacagaaaag gatgtttggc aatttgtctt ttaagtctta accttgctaa 3061 tgtgaatact gggaaagtga ttttttctca ctcgtttttg ttgctccatt gtaaagggcg 3121 gaggtcagtc ttagtggcct tgagagttgc ttttggcatt aatattctaa gagaattaac 3181 tgtatttcct gtcacctatt cactagtgca ggaaatatac ttgctccaaa taagtcagta 3241 tgagaagtca ctgtcaatga aagttgtttt gtttgttttc agtaatattt tgctgttttt
3301 aagacttgga aaactaagtg cagagtttac agagtggtaa atatctatgt tacatgtaga 3361 ttatacatat atatacacac gtgtatatga gatatatatc ttatatctcc acaaacacaa 3421 attatatata tacatatcca cacacataca ttacatatat ctgtgtatat aaatccacat 3481 gcacatgaaa tatatatata tatataattt gtgtgtgtgt atgtgtatgt atatgacttt
3541 aaatagctat gggtacaata ttaaaaacca ctggaactct tgtccagttt ttaaattatg 3601 tttttactgg aatgtttttg tgtcagtgtt ttctgtacat attatttgtt aattcacagc
3661 tcacagagtg atagttgtca tagttcttgc cttccctaag tttatataaa taacttaagt 3721 attgctacag tttatctagg ttgcagtggc atctgctgtg cacagagctt ccatggtcac 3781 tgctaagcag tagccagcca tcgggcatta attgatttcc tactatattc ccagcagaca 3841 catttagaaa ctaagctatg ttaacctcag tgctcaacta tttgaactgt tgagtgataa 3901 aggaaacaaa tataactgta aatgaatctt ggtatcctgt gaaacagaat aattcgtaat 3961 ttaagaaagc ccttatcccg gtaacatgaa tgttgatgaa caaatgtaaa attatatcct 4021 atatttaagt acccataata aatcatttcc ctctataagt gttattgatt attttaaatt
4081 gaaaaaagtt tcacttggat gaaaaaagta gaaaagtagg tcattcttgg atctactttt 4141 ttttagcctt attaatattt ttccctatta gaaaccacaa ttactccctc tattaaccct
4201 tcacttacta gaccagaaaa gaacttattc cagataagct ttgaatatca attcttacat 4261 aaactttagg caaacaggga atagtctagt caccaaagga ccattctctt gccaatgctg 4321 cattcctttt gcacttttgg attccatatt tatcccaaat gctgttgggc acccctagaa 4381 ataccttgat gttttttcta tttatatgcc tgcctttggt acttaatttt acaaatgctg
4441 taatataaag catatcaagt ttatgtgata cgtatcattg caagagaatt tgtttcaaga 4501 ttttttttta atgttccaga agatggccaa tagagaacat tcaagggaaa tggggaaaca 4561 taatttagag aacaagaaca aaccatgtct caaatttttt taaaaaaaat taatggtttt 4621 aaatatatgc tatagggacg ttccatgccc aggttaacaa agaactgtga tatatagagt 4681 gtctaattac aaaatcatat acgatttatt taattctctt ctgtattgta acttagatga
4741 ttcccaagga ctctaataaa aaatcacttc attgtatttg gaaacaaaaa catcattcat
4801 taattactta ttttctttcc ataggtttta atattttgag agtgtctttt ttatttcatt
4861 catgaacttt tgtatttttc atttttcatt tgatttgtaa atttacttat gttaaaaata
4921 aaccatttat tttcagcttt gaattttaaa aaaaaaaaaa aaaaa Human IL1RAP mRNA Variant 4 (SEQ ID NO: 33)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat 61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg atgacacttc 181 tgtggtgtgt agtgagtctc tacttttatg gaatcctgca aagtgatgcc tcagaacgct 241 gcgatgactg gggactagac accatgaggc aaatccaagt gtttgaagat gagccagctc
301 gcatcaagtg cccactcttt gaacacttct tgaaattcaa ctacagcaca gcccattcag 361 ctggccttac tctgatctgg tattggacta ggcaggaccg ggaccttgag gagccaatta 421 acttccgcct ccccgagaac cgcattagta aggagaaaga tgtgctgtgg ttccggccca 481 ctctcctcaa tgacactggc aactatacct gcatgttaag gaacactaca tattgcagca 541 aagttgcatt tcccttggaa gttgttcaaa aagacagctg tttcaattcc cccatgaaac
601 tcccagtgca taaactgtat atagaatatg gcattcagag gatcacttgt ccaaatgtag 661 atggatattt tccttccagt gtcaaaccga ctatcacttg gtatatgggc tgttataaaa 721 tacagaattt taataatgta atacccgaag gtatgaactt gagtttcctc attgccttaa 781 tttcaaataa tggaaattac acatgtgttg ttacatatcc agaaaatgga cgtacgtttc 841 atctcaccag gactctgact gtaaaggtag taggctctcc aaaaaatgca gtgccccctg
901 tgatccattc acctaatgat catgtggtct atgagaaaga accaggagag gagctactca 961 ttccctgtac ggtctatttt agttttctga tggattctcg caatgaggtt tggtggacca 1021 ttgatggaaa aaaacctgat gacatcacta ttgatgtcac cattaacgaa agtataagtc 1081 atagtagaac agaagatgaa acaagaactc agattttgag catcaagaaa gttacctctg 1141 aggatctcaa gcgcagctat gtctgtcatg ctagaagtgc caaaggcgaa gttgccaaag
1201 cagccaaggt gaagcagaaa gtgccagctc caagatacac agtggaactg gcttgtggtt 1261 ttggagccac agtcctgcta gtggtgattc tcattgttgt ttaccatgtt tactggctag 1321 agatggtcct attttaccgg gctcattttg gaacagatga aaccatttta gatggaaaag 1381 agtatgatat ttatgtatcc tatgcaagga atgcggaaga agaagaattt gtattactga 1441 ccctccgtgg agttttggag aatgaatttg gatacaagct gtgcatcttt gaccgagaca
1501 gtctgcctgg gggaattgtc acagatgaga ctttgagctt cattcagaaa agcagacgcc 1561 tcctggttgt tctaagcccc aactacgtgc tccagggaac ccaagccctc ctggagctca 1621 aggctggcct agaaaatatg gcctctcggg gcaacatcaa cgtcatttta gtacagtaca 1681 aagctgtgaa ggaaacgaag gtgaaagagc tgaagagggc taagacggtg ctcacggtca 1741 ttaaatggaa aggggaaaaa tccaagtatc cacagggcag gttctggaag cagctgcagg
1801 tggccatgcc agtgaagaaa agtcccaggc ggtctagcag tgatgagcag ggcctctcgt 1861 attcatcttt gaaaaatgta tgaaaggaat aatgaaaagg gtaaaaagaa caaggggtgc 1921 tccaggaaga aagagtcccc ccagtcttca ttcgcagttt atggtttcat aggcaaaaat 1981 aatggtctaa gcctcccaat agggataaat ttagggtgac tgtgtggctg actattctgc 2041 ttcctcaggc aacactaaag tttagaaaga tatcatcaac gttctgtcac cagtctctga 2101 tgccactatg ttctttgcag gcaaagactt gttcaatgcg aatttcccct tctacattgt 2161 ctatccctgt ttttatatgt ctccattctt tttaaaatct taacatatgg agcagccttt 2221 cctatgaatt taaatatgcc tttaaaataa gtcactgttg acagggtcat gagtttccga 2281 gtatagtttt ctttttatct tatttttact cgtccgttga aaagataatc aaggcctaca 2341 ttttagctga ggataatgaa cttttttcct cattcggctg tataatacat aaccacagca 2401 agactgacat ccacttagga tgatacaaag cagtgtaact gaaaatgttt cttttaattg 2461 atttaaagga cttgtcttct ataccaccct tgtcctcatc tcaggtaatt tatgaaatct 2521 atgtaaactt gaaaaatatt tcttaatttt tgtttttgct ccagtcaatt cctgattatc 2581 cacaggtcaa cccacatttt ttcattcctt ctccctatct gcttatatcg cattgctcat 2641 ttagagtttg caggaggctc catactaggt tcagtctgaa agaaatctcc taatggtgct 2701 atagagaggg aggtaacaga aagactcttt tagggcattt ttctgactca tgaaaagagc 2761 acagaaaagg atgtttggca atttgtcttt taagtcttaa ccttgctaat gtgaatactg 2821 ggaaagtgat tttttctcac tcgtttttgt tgctccattg taaagggcgg aggtcagtct 2881 tagtggcctt gagagttgct tttggcatta atattctaag agaattaact gtatttcctg 2941 tcacctattc actagtgcag gaaatatact tgctccaaat aagtcagtat gagaagtcac 3001 tgtcaatgaa agttgttttg tttgttttca gtaatatttt gctgttttta agacttggaa 3061 aactaagtgc agagtttaca gagtggtaaa tatctatgtt acatgtagat tatacatata 3121 tatacacacg tgtatatgag atatatatct tatatctcca caaacacaaa ttatatatat 3181 acatatccac acacatacat tacatatatc tgtgtatata aatccacatg cacatgaaat 3241 atatatatat atataatttg tgtgtgtgta tgtgtatgta tatgacttta aatagctatg 3301 ggtacaatat taaaaaccac tggaactctt gtccagtttt taaattatgt ttttactgga 3361 atgtttttgt gtcagtgttt tctgtacata ttatttgtta attcacagct cacagagtga 3421 tagttgtcat agttcttgcc ttccctaagt ttatataaat aacttaagta ttgctacagt 3481 ttatctaggt tgcagtggca tctgctgtgc acagagcttc catggtcact gctaagcagt 3541 agccagccat cgggcattaa ttgatttcct actatattcc cagcagacac atttagaaac 3601 taagctatgt taacctcagt gctcaactat ttgaactgtt gagtgataaa ggaaacaaat 3661 ataactgtaa atgaatcttg gtatcctgtg aaacagaata attcgtaatt taagaaagcc 3721 cttatcccgg taacatgaat gttgatgaac aaatgtaaaa ttatatccta tatttaagta 3781 cccataataa atcatttccc tctataagtg ttattgatta ttttaaattg aaaaaagttt 3841 cacttggatg aaaaaagtag aaaagtaggt cattcttgga tctacttttt tttagcctta 3901 ttaatatttt tccctattag aaaccacaat tactccctct attaaccctt cacttactag 3961 accagaaaag aacttattcc agataagctt tgaatatcaa ttcttacata aactttaggc 4021 aaacagggaa tagtctagtc accaaaggac cattctcttg ccaatgctgc attccttttg 4081 cacttttgga ttccatattt atcccaaatg ctgttgggca cccctagaaa taccttgatg 4141 ttttttctat ttatatgcct gcctttggta cttaatttta caaatgctgt aatataaagc 4201 atatcaagtt tatgtgatac gtatcattgc aagagaattt gtttcaagat ttttttttaa 4261 tgttccagaa gatggccaat agagaacatt caagggaaat ggggaaacat aatttagaga 4321 acaagaacaa accatgtctc aaattttttt aaaaaaaatt aatggtttta aatatatgct 4381 atagggacgt tccatgccca ggttaacaaa gaactgtgat atatagagtg tctaattaca 4441 aaatcatata cgatttattt aattctcttc tgtattgtaa cttagatgat tcccaaggac 4501 tctaataaaa aatcacttca ttgtatttgg aaacaaaaac atcattcatt aattacttat 4561 tttctttcca taggttttaa tattttgaga gtgtcttttt tatttcattc atgaactttt 4621 gtatttttca tttttcattt gatttgtaaa tttacttatg ttaaaaataa accatttatt
4681 ttcagctttg aattttaaaa aaaaaaaaaa aaaa
Human IL1RAP mRNA Variant 5 (SEQ ID NO: 34)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat
61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg atgacacttc 181 tgtggtgtgt agtgagtctc tacttttatg gaatcctgca aagtgatgcc tcagaacgct 241 gcgatgactg gggactagac accatgaggc aaatccaagt gtttgaagat gagccagctc 301 gcatcaagtg cccactcttt gaacacttct tgaaattcaa ctacagcaca gcccattcag
361 ctggccttac tctgatctgg tattggacta ggcaggaccg ggaccttgag gagccaatta 421 acttccgcct ccccgagaac cgcattagta aggagaaaga tgtgctgtgg ttccggccca 481 ctctcctcaa tgacactggc aactatacct gcatgttaag gaacactaca tattgcagca 541 aagttgcatt tcccttggaa gttgttcaaa aagacagctg tttcaattcc cccatgaaac 601 tcccagtgca taaactgtat atagaatatg gcattcagag gatcacttgt ccaaatgtag
661 atggatattt tccttccagt gtcaaaccga ctatcacttg gtatatgggc tgttataaaa 721 tacagaattt taataatgta atacccgaag gtatgaactt gagtttcctc attgccttaa 781 tttcaaataa tggaaattac acatgtgttg ttacatatcc agaaaatgga cgtacgtttc 841 atctcaccag gactctgact gtaaaggtag taggctctcc aaaaaatgca gtgccccctg 901 tgatccattc acctaatgat catgtggtct atgagaaaga accaggagag gagctactca
961 ttccctgtac ggtctatttt agttttctga tggattctcg caatgaggtt tggtggacca 1021 ttgatggaaa aaaacctgat gacatcacta ttgatgtcac cattaacgaa agtataagtc 1081 atagtagaac agaagatgaa acaagaactc agattttgag catcaagaaa gttacctctg 1141 aggatctcaa gcgcagctat gtctgtcatg ctagaagtgc caaaggcgaa gttgccaaag 1201 cagccaaggt gaagcagaaa ggtaatagat gcggtcagtg atgaatctct cagctccaaa
1261 ttaacattgt ggtgaataag gacaaaagga gagattgaga acaagagagc tccagcacct 1321 agcccgacgg catctaaccc atagtaatga atcaaactta aatgaaaaat atgaaagttt 1381 tcatctatgt aagatactca aaatattgtt tctgatattg ttagtaccgt aatgcccaaa 1441 tgtagctaaa aaaatcgacg tgagtacagt gagacacaat tttgtgtctg tacaattatg 1501 aaaaattaaa aacaaagaaa atattcaaag ctaccaaaga tagaaaaaac tggtagagcc
1561 acatattgtt ggtgaattat taagaccctt ttaaaaatca ttcatggtag acttcaagag 1621 tcataaaaaa gattgcatca tctgacctaa gactttcgga atttttcctg aacaaataac 1681 agaaagggaa ttatatacct tttaatatta ttagaagcat tatctgtagt tgtaaaacat 1741 tattaatagc agccatccaa ttgtatgcaa ctaattaagg tattgaatgt ttattttcca 1801 aaaatgcata attataatat tattttaaac actatgtatc aatatttaag caggtttata
1861 atataccagc agccacaatt gctaaaatga aaatcattta aattatgatt ttaaatggta 1921 taaacatgat ttctatgttg atagtactat attattctac aataaatgga aattataaag 1981 ccttcttgtc agaagtgctg ctcctaaaaa aaaaaaaaaa aaaaaaa Human IL1RAP mRNA Variant 6 (SEQ ID NO: 35)
1 aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat 61 ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact 121 gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg 181 tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc 241 ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa 301 tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa 361 tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga 421 aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc
481 aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg 541 agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca 601 tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag 661 acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca 721 ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta
781 tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta 841 tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta
901 catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag 961 gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg 1021 agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg
1081 attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg 1141 atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga 1201 ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta 1261 gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaagtg ccagctccaa 1321 gatacacagt ggaactggct tgtggttttg gagccacagt cctgctagtg gtgattctca
1381 ttgttgttta ccatgtttac tggctagaga tggtcctatt ttaccgggct cattttggaa 1441 cagatgaaac cattttagat ggaaaagagt atgatattta tgtatcctat gcaaggaatg 1501 cggaagaaga agaatttgta ttactgaccc tccgtggagt tttggagaat gaatttggat 1561 acaagctgtg catctttgac cgagacagtc tgcctggggg aaatacagtg gaagcagttt 1621 ttgatttcat tcagagaagc agaaggatga ttgttgttct gagccctgac tatgtgacag
1681 aaaagagcat cagcatgctg gagtttaaac tgggtgtcat gtgccagaac tccattgcca 1741 ccaagctcat tgtggttgag taccgtcccc ttgagcaccc gcacccaggc attcttcagc 1801 tcaaagagtc tgtgtctttt gtgagctgga agggagaaaa gtccaaacat tctggctcta 1861 aattctggaa agctttgcgg ttggctcttc ccctgagaag tctgagtgcc agttctggct 1921 ggaatgagag ctgctcttcc cagtctgaca tcagtctgga tcacgttcaa aggaggagaa
1981 gtcgtttgaa agagccccca gaacttcaga gctcagagag ggctgcaggt agccctccag 2041 ccccaggcac aatgtccaag caccgaggga agtcctccgc cacctgccgc tgttgtgtca 2101 cctactgtga aggagagaat caccttagga acaagagccg ggcagagatt cataaccagc 2161 cccagtggga gacacacctc tgtaagcctg ttccccaaga gtcagaaact caatggatac 2221 aaaatggcac cagattggaa ccccctgctc cccagatctc agcccttgct cttcatcatt
2281 tcacggactt atccaataac aacgactttt atatcctata attactgtgt gtggtgggtg 2341 gtggctacta tctctaccaa ccctctgtat gtcatgaacc tgtgggaaaa tctgacattt 2401 ttatcatcta atggactatc agatttctgt cccctttatt gatttttaaa aactatttat
2461 ttctaggaga caaaagacct gaaggacctg aatccagaat tattgcctct aaaggcctca 2521 gaagagcaca ctcttcttgg gccctagaag gtcagtatgt gaaagttgcc taaagtctga
2581 tcctctatct tgtccaatgg tttaaaactg agctaagaat ttaaatgtgt ttcttttcag
2641 tgagttgatc aacctcacat tataagtcag tcaggtgtac ttgggctatg atgcttacag 2701 ggtgtatgca ttcccaggga gcagcatgga aaggagctgg ttctggtgga agctgtagga 2761 cgaagctcaa cagaaaacct acagcacatt tttcctcaaa gaaccaaaca tacccaccca 2821 gggatacatg gcgttctctg tctcactgta aactagtgtt ctctaaactg cctaacattg 2881 ttagcatcaa taaaattcta tttttacgtc aaaaaaaaaa aaaaaaaaaa
Human IL-18Ra mRNA Variant 1 (SEQ ID NO: 36)
1 tcaggaggcg gagatcgctg cttctcacct actttctgaa cttggcctcc gcagtcgcga
61 cctggcgtga aggaggagct gccgcccccg ccccagcctc ggggacgcct ctctgaagag 121 aagccatttg aagcagaatc caaaccatga attgtagaga attacccttg accctttggg 181 tgcttatatc tgtaagcact gcagaatctt gtacttcacg tccccacatt actgtggttg 241 aaggggaacc tttctatctg aaacattgct cgtgttcact tgcacatgag attgaaacaa 301 ccaccaaaag ctggtacaaa agcagtggat cacaggaaca tgtggagctg aacccaagga
361 gttcctcgag aattgctttg catgattgtg ttttggagtt ttggccagtt gagttgaatg 421 acacaggatc ttactttttc caaatgaaaa attatactca gaaatggaaa ttaaatgtca 481 tcagaagaaa taaacacagc tgtttcactg aaagacaagt aactagtaaa attgtggaag 541 ttaaaaaatt ttttcagata acctgtgaaa acagttacta tcaaacactg gtcaacagca 601 catcattgta taagaactgt aaaaagctac tactggagaa caataaaaac ccaacgataa
661 agaagaacgc cgagtttgaa gatcaggggt attactcctg cgtgcatttc cttcatcata 721 atggaaaact atttaatatc accaaaacct tcaatataac aatagtggaa gatcgcagta 781 atatagttcc ggttcttctt ggaccaaagc ttaaccatgt tgcagtggaa ttaggaaaaa 841 acgtaaggct caactgctct gctttgctga atgaagagga tgtaatttat tggatgttcg 901 gggaagaaaa tggatcggat cctaatatac atgaagagaa agaaatgaga attatgactc
961 cagaaggcaa atggcatgct tcaaaagtat tgagaattga aaatattggt gaaagcaatc 1021 taaatgtttt atataattgc actgtggcca gcacgggagg cacagacacc aaaagcttca 1081 tcttggtgag aaaagcagac atggctgata tcccaggcca cgtcttcaca agaggaatga 1141 tcatagctgt tttgatcttg gtggcagtag tgtgcctagt gactgtgtgt gtcatttata 1201 gagttgactt ggttctattt tatagacatt taacgagaag agatgaaaca ttaacagatg
1261 gaaaaacata tgatgctttt gtgtcttacc taaaagaatg ccgacctgaa aatggagagg 1321 agcacacctt tgctgtggag attttgccca gggtgttgga gaaacatttt gggtataagt 1381 tatgcatatt tgaaagggat gtagtgcctg gaggagctgt tgttgatgaa atccactcac 1441 tgatagagaa aagccgaaga ctaatcattg tcctaagtaa aagttatatg tctaatgagg 1501 tcaggtatga acttgaaagt ggactccatg aagcattggt ggaaagaaaa attaaaataa
1561 tcttaattga atttacacct gttactgact tcacattctt gccccaatca ctaaagcttt 1621 tgaaatctca cagagttctg aagtggaagg ccgataaatc tctttcttat aactcaaggt 1681 tctggaagaa ccttctttac ttaatgcctg caaaaacagt caagccaggt agagacgaac 1741 cggaagtctt gcctgttctt tccgagtctt aatcttcaga aacagtgaac gccaaaaaga 1801 actcaagata ttctggggac tgagcatatg aacctgttca taacaaaggc tgtgactcga
1861 aataattaac tttgtcaaaa tcctgctcac aatttgaaga tgaaacttgt cattaggttg 1921 gcgggaatga gactaaagat tgcgctgtgg gctgtggtca cgtgctccca gaagacctgg 1981 aattcaaaag aaatggagct attctttttc tccctctttc ataactggat gcagctgctc 2041 atactcaatc ccatattcag caagtgtgaa gctggacgtg atgcaaaata accgatgccc 2101 tacaaaaagg gcgcatcttt aagagtttta atgccagtgc ttaattcgaa tgaggggatt
2161 ttaagtgtct gaagaggcat tttctaggga ccagtgggtg actgagtaac tgaaatgctg 2221 ctttcactcc ctaacaccat ggatctggtt gtgcatagga tgtgggagga ggggctggca 2281 gggccgcctt cagaggctgc agggcctcag cctcaggatg catttaatgt atcctggcca 2341 cagttgcagc caacggttct tgaaagctcg gtaaggccct gcaacgcaga gcctgcttat 2401 gtggatctat ttatgggaac ttcttaaaag gaccccagaa tagctcttta tctttcacaa 2461 gagacacaaa ttctaattga gttaattatc tgggcctttc actttggatg ctctgaaaca 2521 tttgttgatt ttgtgtgaat gtttatatca aaatgtttgc caggttgtat tagccattga
2581 atagcaaaaa actgatagtt acttgcttgt tttttaaaaa ttacatatta aaaatgccct
2641 tggcataagg cagcatggtg tggcagttaa gagatgggct gtgcagccca tcctgagctc 2701 cagtcctgag tttgctactt acttctgtgg cctctggaac cttatccaac ctcttggtgc 2761 ttcagtttcc tcatctgtga aattagaatt tataataatt gcacctacct cccaggggta 2821 actaaatgaa taaatataat aaagtactta cagtggttcc tgacacagac tcagcactcc 2881 gtcagtgttg ccatgactat ttttattatc attattaatg attacttaga tcaattattt
2941 agcagtggac taatggaagc tacagagcag ggaagggaag cagatctagg gaggaaggca 3001 gttttgattt gaggaggttt gcacatgtag agaagcatac tggagaagca tatccagagg 3061 gcgaaagata tctctccatt gtgcatctgc ctcttttgac gttggaagac acatgtctta 3121 ctccccaaag ggagcccagc actgggagcc ttcttgatga tctcaaaaat aatagctatt 3181 caagaaaatc accaagtgac tgtgaaaccg tcagttcgga aggctggtta gaacatgtgg
3241 gagcaacatg aatgttctac aaaagtttaa agcagagatt gtttcaaatg ggtgtagtag 3301 atattactga aaaccaaaaa agagtgagat tgtcagtgta agaatgtgat ttaatgtttg 3361 tagtgcttac aattttgtgt accaactgga tgactaaaaa gagtaaaata atttaattaa 3421 tagctcatat tttatgtgtg aaaacatgtt agtgaacata tataatcaaa atagatttca 3481 ttgctattgc atagtctcta atacatagaa tgattttgct tttctctttt attatacttg
3541 ctttaaaata cttgaaatat attttgcatt aaatgcattt caagttaaat gtcttaaatg
3601 tatacattag atgtgtgttt taaaatgcat aaaacacgtt gaaatacatt aatgaaccat 3661 1 Human IL-18Ra mRNA Variant 2 (SEQ ID NO: 37)
1 tcaggaggcg gagatcgctg cttctcacct actttctgaa cttggcctcc gcagtcgcga 61 cctggcgtga aggaggagct gccgcccccg ccccagcctc ggggacgcct ctctgaagag 121 aagccatttg aagcagaatc caaaccatga attgtagaga attacccttg accctttggg 181 tgcttatatc tgtaagcact gcagaaatta tactcagaaa tggaaattaa atgtcatcag 241 aagaaataaa cacagctgtt tcactgaaag acaagtaact agtaaaattg tggaagttaa
301 aaaatttttt cagataacct gtgaaaacag ttactatcaa acactggtca acagcacatc 361 attgtataag ataggaccac ctatttgcag gaaaacaagc tcagggctcc actgattcta 421 cattatgaac tgtaaaaagc tactactgga gaacaataaa aacccaacga taaagaagaa 481 cgccgagttt gaagatcagg ggtattactc ctgcgtgcat ttccttcatc ataatggaaa 541 actatttaat atcaccaaaa ccttcaatat aacaatagtg gaagatcgca gtaatatagt
601 tccggttctt cttggaccaa agcttaacca tgttgcagtg gaattaggaa aaaacgtaag 661 gctcaactgc tctgctttgc tgaatgaaga ggatgtaatt tattggatgt tcggggaaga 721 aaatggatcg gatcctaata tacatgaaga gaaagaaatg agaattatga ctccagaagg 781 caaatggcat gcttcaaaag tattgagaat tgaaaatatt ggtgaaagca atctaaatgt 841 tttatataat tgcactgtgg ccagcacggg aggcacagac accaaaagct tcatcttggt
901 gagaaaagac atggctgata tcccaggcca cgtcttcaca agaggaatga tcatagctgt 961 tttgatcttg gtggcagtag tgtgcctagt gactgtgtgt gtcatttata gagttgactt
1021 ggttctattt tatagacatt taacgagaag agatgaaaca ttaacagatg gaaaaacata 108 tgatgctttt gtgtcttacc taaaagaatg ccgacctgaa aatggagagg agcacacctt 114 tgctgtggag attttgccca gggtgttgga gaaacatttt gggtataagt tatgcatatt 120 tgaaagggat gtagtgcctg gaggagctgt tgttgatgaa atccactcac tgatagagaa 126 aagccgaaga ctaatcattg tcctaagtaa aagttatatg tctaatgagg tcaggtatga 132 acttgaaagt ggactccatg aagcattggt ggaaagaaaa attaaaataa tcttaattga 138 atttacacct gttactgact tcacattctt gccccaatca ctaaagcttt tgaaatctca 144 cagagttctg aagtggaagg ccgataaatc tctttcttat aactcaaggt tctggaagaa 150 ccttctttac ttaatgcctg caaaaacagt caagccaggt agagacgaac cggaagtctt 156 gcctgttctt tccgagtctt aatcttcaga aacagtgaac gccaaaaaga actcaagata 162 ttctggggac tgagcatatg aacctgttca taacaaaggc tgtgactcga aataattaac 168 tttgtcaaaa tcctgctcac aatttgaaga tgaaacttgt cattaggttg gcgggaatga 174 gactaaagat tgcgctgtgg gctgtggtca cgtgctccca gaagacctgg aattcaaaag 180 aaatggagct attctttttc tccctctttc ataactggat gcagctgctc atactcaatc 186 ccatattcag caagtgtgaa gctggacgtg atgcaaaata accgatgccc tacaaaaagg 192 gcgcatcttt aagagtttta atgccagtgc ttaattcgaa tgaggggatt ttaagtgtct 198 gaagaggcat tttctaggga ccagtgggtg actgagtaac tgaaatgctg ctttcactcc 204 ctaacaccat ggatctggtt gtgcatagga tgtgggagga ggggctggca gggccgcctt 210 cagaggctgc agggcctcag cctcaggatg catttaatgt atcctggcca cagttgcagc 216 caacggttct tgaaagctcg gtaaggccct gcaacgcaga gcctgcttat gtggatctat 222 ttatgggaac ttcttaaaag gaccccagaa tagctcttta tctttcacaa gagacacaaa 228 ttctaattga gttaattatc tgggcctttc actttggatg ctctgaaaca tttgttgatt 234 ttgtgtgaat gtttatatca aaatgtttgc caggttgtat tagccattga atagcaaaaa 240 actgatagtt acttgcttgt tttttaaaaa ttacatatta aaaatgccct tggcataagg 246 cagcatggtg tggcagttaa gagatgggct gtgcagccca tcctgagctc cagtcctgag 252 tttgctactt acttctgtgg cctctggaac cttatccaac ctcttggtgc ttcagtttcc 258 tcatctgtga aattagaatt tataataatt gcacctacct cccaggggta actaaatgaa 264 taaatataat aaagtactta cagtggttcc tgacacagac tcagcactcc gtcagtgttg 270 ccatgactat ttttattatc attattaatg attacttaga tcaattattt agcagtggac 276 taatggaagc tacagagcag ggaagggaag cagatctagg gaggaaggca gttttgattt 282 gaggaggttt gcacatgtag agaagcatac tggagaagca tatccagagg gcgaaagata 288 tctctccatt gtgcatctgc ctcttttgac gttggaagac acatgtctta ctccccaaag 294 ggagcccagc actgggagcc ttcttgatga tctcaaaaat aatagctatt caagaaaatc 300 accaagtgac tgtgaaaccg tcagttcgga aggctggtta gaacatgtgg gagcaacatg 306 aatgttctac aaaagtttaa agcagagatt gtttcaaatg ggtgtagtag atattactga 312 aaaccaaaaa agagtgagat tgtcagtgta agaatgtgat ttaatgtttg tagtgcttac 318 aattttgtgt accaactgga tgactaaaaa gagtaaaata atttaattaa tagctcatat 324 tttatgtgtg aaaacatgtt agtgaacata tataatcaaa atagatttca ttgctattgc 330 atagtctcta atacatagaa tgattttgct tttctctttt attatacttg ctttaaaata
336 cttgaaatat attttgcatt aaatgcattt caagttaaat gtcttaaatg tatacattag 342 atgtgtgttt taaaatgcat aaaacacgtt gaaatacatt aatgaaccat t
Human IL-1RL2 mRNA (SEQ ID NO: 38)
1 cccgcccacg gtggcgggga aatacctagg catggaagtg gcatgacagg gctcgtgtcc 61 ctgtcatatt ttccactctc cacgaggtcc tgcgcgcttc aatcctgcag gcagcccggt 121 ttggggatgt ggtccttgct gctctgcggg ttgtccatcg cccttccact gtctgtcaca 181 gcagatggat gcaaggacat ttttatgaaa aatgagatac tttcagcaag ccagcctttt 241 gcttttaatt gtacattccc tcccataaca tctggggaag tcagtgtaac atggtataaa 301 aattctagca aaatcccagt gtccaaaatc atacagtcta gaattcacca ggacgagact
361 tggattttgt ttctccccat ggaatggggg gactcaggag tctaccaatg tgttataaag 421 ggtagagaca gctgtcatag aatacatgta aacctaactg tttttgaaaa acattggtgt 481 gacacttcca taggtggttt accaaattta tcagatgagt acaagcaaat attacatctt 541 ggaaaagatg atagtctcac atgtcatctg cacttcccga agagttgtgt tttgggtcca 601 ataaagtggt ataaggactg taacgagatt aaaggggagc ggttcactgt tttggaaacc
661 aggcttttgg tgagcaatgt ctcggcagag gacagaggga actacgcgtg tcaagccata 721 ctgacacact cagggaagca gtacgaggtt ttaaatggca tcactgtgag cattacagaa 781 agagctggat atggaggaag tgtccctaaa atcatttatc caaaaaatca ttcaattgaa 841 gtacagcttg gtaccactct gattgtggac tgcaatgtaa cagacaccaa ggataataca 901 aatctacgat gctggagagt caataacact ttggtggatg attactatga tgaatccaaa
961 cgaatcagag aaggggtgga aacccatgtc tcttttcggg aacataattt gtacacagta 1021 aacatcacct tcttggaagt gaaaatggaa gattatggcc ttcctttcat gtgccacgct 1081 ggagtgtcca cagcatacat tatattacag ctcccagctc cggattttcg agcttacttg 1141 ataggagggc ttatcgcctt ggtggctgtg gctgtgtctg ttgtgtacat atacaacatt 1201 tttaagatcg acattgttct ttggtatcga agtgccttcc attctacaga gaccatagta
1261 gatgggaagc tgtatgacgc ctatgtctta taccccaagc cccacaagga aagccagagg 1321 catgccgtgg atgccctggt gttgaatatc ctgcccgagg tgttggagag acaatgtgga 1381 tataagttgt ttatattcgg cagagatgaa ttccctggac aagccgtggc caatgtcatc 1441 gatgaaaacg ttaagctgtg caggaggctg attgtcattg tggtccccga atcgctgggc 1501 tttggcctgt tgaagaacct gtcagaagaa caaatcgcgg tctacagtgc cctgatccag
1561 gacgggatga aggttattct cattgagctg gagaaaatcg aggactacac agtcatgcca 1621 gagtcaattc agtacatcaa acagaagcat ggtgccatcc ggtggcatgg ggacttcacg 1681 gagcagtcac agtgtatgaa gaccaagttt tggaagacag tgagatacca catgccgccc 1741 agaaggtgtc ggccgtttcc tccggtccag ctgctgcagc acacaccttg ctaccgcacc 1801 gcaggcccag aactaggctc aagaagaaag aagtgtactc tcacgactgg ctaagacttg
1861 ctggactgac acctatggct ggaagatgac ttgttttgct ccatgtctcc tcattcctac 1921 acctattttc tgctgcagga tgaggctagg gttagcattc taga
Human IL1RL1 mRNA Variant 1 (SEQ ID NO: 39)
1 aaagagaggc tggctgttgt atttagtaaa gctataaagc tgtaagagaa attggctttc
61 tgagttgtga aactgtgggc agaaagttga ggaagaaaga actcaagtac aacccaatga 121 ggttgagata taggctactc ttcccaactc agtcttgaag agtatcacca actgcctcat 181 gtgtggtgac cttcactgtc gtatgccagt gactcatctg gagtaatctc aacaacgagt 241 taccaatact tgctcttgat tgataaacag aatggggttt tggatcttag caattctcac 301 aattctcatg tattccacag cagcaaagtt tagtaaacaa tcatggggcc tggaaaatga
361 ggctttaatt gtaagatgtc ctagacaagg aaaacctagt tacaccgtgg attggtatta 421 ctcacaaaca aacaaaagta ttcccactca ggaaagaaat cgtgtgtttg cctcaggcca 481 acttctgaag tttctaccag ctgcagttgc tgattctggt atttatacct gtattgtcag 541 aagtcccaca ttcaatagga ctggatatgc gaatgtcacc atatataaaa aacaatcaga 601 ttgcaatgtt ccagattatt tgatgtattc aacagtatct ggatcagaaa aaaattccaa 661 aatttattgt cctaccattg acctctacaa ctggacagca cctcttgagt ggtttaagaa 721 ttgtcaggct cttcaaggat caaggtacag ggcgcacaag tcatttttgg tcattgataa 781 tgtgatgact gaggacgcag gtgattacac ctgtaaattt atacacaatg aaaatggagc
841 caattatagt gtgacggcga ccaggtcctt cacggtcaag gatgagcaag gcttttctct 901 gtttccagta atcggagccc ctgcacaaaa tgaaataaag gaagtggaaa ttggaaaaaa 961 cgcaaaccta acttgctctg cttgttttgg aaaaggcact cagttcttgg ctgccgtcct 1021 gtggcagctt aatggaacaa aaattacaga ctttggtgaa ccaagaattc aacaagagga 1081 agggcaaaat caaagtttca gcaatgggct ggcttgtcta gacatggttt taagaatagc
1141 tgacgtgaag gaagaggatt tattgctgca gtacgactgt ctggccctga atttgcatgg 1201 cttgagaagg cacaccgtaa gactaagtag gaaaaatcca attgatcatc atagcatcta 1261 ctgcataatt gcagtatgta gtgtattttt aatgctaatc aatgtcctgg ttatcatcct 1321 aaaaatgttc tggattgagg ccactctgct ctggagagac atagctaaac cttacaagac 1381 taggaatgat ggaaagctct atgatgctta tgttgtctac ccacggaact acaaatccag
1441 tacagatggg gccagtcgtg tagagcactt tgttcaccag attctgcctg atgttcttga 1501 aaataaatgt ggctatacct tatgcattta tgggagagat atgctacctg gagaagatgt 1561 agtcactgca gtggaaacca acatacgaaa gagcaggcgg cacattttca tcctgacccc 1621 tcagatcact cacaataagg agtttgccta cgagcaggag gttgccctgc actgtgccct 1681 catccagaac gacgccaagg tgatacttat tgagatggag gctctgagcg agctggacat
1741 gctgcaggct gaggcgcttc aggactccct ccagcatctt atgaaagtac aggggaccat 1801 caagtggagg gaggaccaca ttgccaataa aaggtccctg aattctaaat tctggaagca 1861 cgtgaggtac caaatgcctg tgccaagcaa aattcccaga aaggcctcta gtttgactcc 1921 cttggctgcc cagaagcaat agtgcctgct gtgatgtgca aaggcatctg agtttgaagc 1981 tttcctgact tctcctagct ggcttatgcc cctgcactga agtgtgagga gcaggaatat
2041 taaagggatt caggcctc
Human ILIRLI mRNA Variant 2 (SEQ ID NO: 40)
1 agtctatgag gagggaccta caaagactgg aaactattct tagctccgtc actgactcca 61 agttcatccc ctctgtcttt cagtttggtt gagatatagg ctactcttcc caactcagtc
121 ttgaagagta tcaccaactg cctcatgtgt ggtgaccttc actgtcgtat gccagtgact 181 catctggagt aatctcaaca acgagttacc aatacttgct cttgattgat aaacagaatg 241 gggttttgga tcttagcaat tctcacaatt ctcatgtatt ccacagcagc aaagtttagt 301 aaacaatcat ggggcctgga aaatgaggct ttaattgtaa gatgtcctag acaaggaaaa 361 cctagttaca ccgtggattg gtattactca caaacaaaca aaagtattcc cactcaggaa
421 agaaatcgtg tgtttgcctc aggccaactt ctgaagtttc taccagctgc agttgctgat 481 tctggtattt atacctgtat tgtcagaagt cccacattca ataggactgg atatgcgaat 541 gtcaccatat ataaaaaaca atcagattgc aatgttccag attatttgat gtattcaaca 601 gtatctggat cagaaaaaaa ttccaaaatt tattgtccta ccattgacct ctacaactgg 661 acagcacctc ttgagtggtt taagaattgt caggctcttc aaggatcaag gtacagggcg
721 cacaagtcat ttttggtcat tgataatgtg atgactgagg acgcaggtga ttacacctgt 781 aaatttatac acaatgaaaa tggagccaat tatagtgtga cggcgaccag gtccttcacg 841 gtcaaggatg agcaaggctt ttctctgttt ccagtaatcg gagcccctgc acaaaatgaa 901 ataaaggaag tggaaattgg aaaaaacgca aacctaactt gctctgcttg ttttggaaaa 961 ggcactcagt tcttggctgc cgtcctgtgg cagcttaatg gaacaaaaat tacagacttt 1021 ggtgaaccaa gaattcaaca agaggaaggg caaaatcaaa gtttcagcaa tgggctggct 1081 tgtctagaca tggttttaag aatagctgac gtgaaggaag aggatttatt gctgcagtac 1141 gactgtctgg ccctgaattt gcatggcttg agaaggcaca ccgtaagact aagtaggaaa
1201 aatccaagta aggagtgttt ctgagacttt gatcacctga actttctcta gcaagtgtaa 1261 gcagaatgga gtgtggttcc aagagatcca tcaagacaat gggaatggcc tgtgccataa 1321 aatgtgcttc tcttcttcgg gatgttgttt gctgtctgat ctttgtagac tgttcctgtt
1381 tgctgggagc ttctctgctg cttaaattgt tcgtcctccc ccactccctc ctatcgttgg 1441 tttgtctaga acactcagct gcttctttgg tcatccttgt tttctaactt tatgaactcc
1501 ctctgtgtca ctgtatgtga aaggaaatgc accaacaacc gtaaactgaa cgtgttcttt 1561 tgtgctcttt tataacttgc attacatgtt gtaagcatgg tccgttctat acctttttct
1621 ggtcataatg aacactcatt ttgttagcga gggtggtaaa gtgaacaaaa aggggaagta 1681 tcaaactact gccatttcag tgagaaaatc ctaggtgcta ctttataata agacatttgt 1741 taggccattc ttgcattgat ataaagaaat acctgagact gggtgattta tatgaaaaga
1801 ggtttaattg gctcacagtt ctgcaggctg tatgggaagc atggcggcat ctgcttctgg 1861 ggacacctca ggagctttac tcatggcaga aggcaaagca aaggcaggca cttcacacag 1921 taaaagcagg agcgagagag aggtgccaca ctgaaacagc cagatctcat gagaagtcac 1981 tcactattgc aaggacagca tcaaagagat ggtgctaaac cattcatgat gaactcaccc 2041 ccatgatcca atcacctccc accaggctcc acctcgaata ctggggatta ccattcagca
2101 tgagatttgg gcaggaacac agacccaaac cataccacac acattatcat tgttaaactt 2161 tgtaaagtat ttaaggtaca tggaacacac gggaagtctg gtagctcagc ccatttcttt 2221 attgcatctg ttattcacca tgtaattcag gtaccacgta ttccagggag cctttcttgg 2281 ccctcagttt gcagtataca cactttccaa gtactcttgt agcatcctgt ttgtatcata 2341 gcactggtca cattgcctta cctaaatctg tttgacagtc tgctcaacac gactgcaagc
2401 tccatgaggg cagggacatc atctcttcca tctttgggtc cttagtgcaa tacctggcag 2461 ctagccagtg ctcagctaaa tatttgttga ctgaataaat gaatgcacaa ccaaattatt 2521 gataccaaat gttttttttg tgtacatttc tacttctcta gctataagtc ttaattatac
2581 aacaaaatac tatttttata tttatgtttg gtaaattcaa taactttcct catcatttgg
2641 aaagtcaaat tgtttattgc ttccctacag ttttttctga atctagcagg attttaatga
2701 tatcattata atttgacaca ataaaaggac aacatgaaac tgatgaatct ttattgggtt 2761 aatttcagac actatataat cttttaaaaa tgtaacattc ttttttatat ataaataatt
2821 ggtggcatca caaatagcca aagcagggtg gagagagtga tccttcctgg gtgcaggcaa 2881 gaaggggata tgttttctac agagttttca aaacagtgat aaagctgtct acaagtcatt 2941 gtgcttttta tcatcactat gcccagacaa tgtgaaacat cagagatgaa gtgctcttcc
3001 cacagaggtg gactgatcct tctccccact cccttggtgt gtctctgaat gcaatgttgt 3061 cttggaaaac agctttccaa gcatttcact cctgagcact tgccagtttc ctcacttgtt 3121 cttcacatat ccaggcaaag acatcctgtt tgctatatga agcattgtat cccgtataaa 3181 aggaaggaaa gagagaaata tatttttaca ctcatcactc ctcaggggct gtacaatcat 3241 gtagaaattg tttaatgtgc ctgtcaaata gccaaagagt gttaaaccct gagttcccac
3301 ccatgtgtgt ggtatggtta ggattcatcc agatacacag agagaggcac aacaggagga 3361 gaaaggatag gggtgtgggg acagcgggcc cccaatatgg tgtaatcgtg gcaggtctct 3421 gcctgaagtg ctatgtgggg tttttcttgt tttaattttg actttaaccc ctgatttgta
3481 agtttttcat aaaataaaca gaatcataac tcatgtagat ggctataagt gccgtagtgt 3541 tctgtgggtc tctggtgtct gccagtgata agtgtggcac cccaggaagg ctgtggaccc 3601 catcaaggtg ctatgtgagg gccatgcttg gggtggtggt gggcccagta gaccctgcag 3661 ccatccatcc agcctgccca ctcacactgc ccttgtgtac tcctgctttg ctacgttatc 3721 attgatcaat gtccctggtt acctatgtgt ttgaattatc ttcgtgttac aggtgtttaa
3781 tgattttgct ccttctagct tatttgtatt tcacctgttt ttctttaaat caacatggtt
3841 acactctgtt tcagcaactg tataaattaa acacaaatta ttactactgc taaaaaaaaa 3901 aaaaaaaaa
Human IL1RL1 mRNA Variant 3 (SEQ ID NO: 41)
1 aaagagaggc tggctgttgt atttagtaaa gctataaagc tgtaagagaa attggctttc
61 tgagttgtga aactgtgggc agaaagttga ggaagaaaga actcaagtac aacccaatga 121 gggccaactt ctgaagtttc taccagctgc agttgctgat tctggtattt atacctgtat 181 tgtcagaagt cccacattca ataggactgg atatgcgaat gtcaccatat ataaaaaaca 241 atcagattgc aatgttccag attatttgat gtattcaaca gtatctggat cagaaaaaaa 301 ttccaaaatt tattgtccta ccattgacct ctacaactgg acagcacctc ttgagtggtt
361 taagaattgt caggctcttc aaggatcaag gtacagggcg cacaagtcat ttttggtcat 421 tgataatgtg atgactgagg acgcaggtga ttacacctgt aaatttatac acaatgaaaa 481 tggagccaat tatagtgtga cggcgaccag gtccttcacg gtcaaggatg agcaaggctt 541 ttctctgttt ccagtaatcg gagcccctgc acaaaatgaa ataaaggaag tggaaattgg 601 aaaaaacgca aacctaactt gctctgcttg ttttggaaaa ggcactcagt tcttggctgc
661 cgtcctgtgg cagcttaatg gaacaaaaat tacagacttt ggtgaaccaa gaattcaaca 721 agaggaaggg caaaatcaaa gtttcagcaa tgggctggct tgtctagaca tggttttaag 781 aatagctgac gtgaaggaag aggatttatt gctgcagtac gactgtctgg ccctgaattt 841 gcatggcttg agaaggcaca ccgtaagact aagtaggaaa aatccaagta aggagtgttt 901 ctgagacttt gatcacctga actttctcta gcaagtgtaa gcagaatgga gtgtggttcc
961 aagagatcca tcaagacaat gggaatggcc tgtgccataa aatgtgcttc tcttcttcgg 1021 gatgttgttt gctgtctgat ctttgtagac tgttcctgtt tgctgggagc ttctctgctg
1081 cttaaattgt tcgtcctccc ccactccctc ctatcgttgg tttgtctaga acactcagct 1141 gcttctttgg tcatccttgt tttctaactt tatgaactcc ctctgtgtca ctgtatgtga
1201 aaggaaatgc accaacaacc gtaaactgaa cgtgttcttt tgtgctcttt tataacttgc
1261 attacatgtt gtaagcatgg tccgttctat acctttttct ggtcataatg aacactcatt 1321 ttgttagcga gggtggtaaa gtgaacaaaa aggggaagta tcaaactact gccatttcag 1381 tgagaaaatc ctaggtgcta ctttataata agacatttgt taggccattc ttgcattgat 1441 ataaagaaat acctgagact gggtgattta tatgaaaaga ggtttaattg gctcacagtt 1501 ctgcaggctg tatgggaagc atggcggcat ctgcttctgg ggacacctca ggagctttac
1561 tcatggcaga aggcaaagca aaggcaggca cttcacacag taaaagcagg agcgagagag 1621 aggtgccaca ctgaaacagc cagatctcat gagaagtcac tcactattgc aaggacagca 1681 tcaaagagat ggtgctaaac cattcatgat gaactcaccc ccatgatcca atcacctccc 1741 accaggctcc acctcgaata ctggggatta ccattcagca tgagatttgg gcaggaacac 1801 agacccaaac cataccacac acattatcat tgttaaactt tgtaaagtat ttaaggtaca
1861 tggaacacac gggaagtctg gtagctcagc ccatttcttt attgcatctg ttattcacca 1921 tgtaattcag gtaccacgta ttccagggag cctttcttgg ccctcagttt gcagtataca 1981 cactttccaa gtactcttgt agcatcctgt ttgtatcata gcactggtca cattgcctta 204 cctaaatctg tttgacagtc tgctcaacac gactgcaagc tccatgaggg cagggacatc
210 atctcttcca tctttgggtc cttagtgcaa tacctggcag ctagccagtg ctcagctaaa
216 tatttgttga ctgaataaat gaatgcacaa ccaaattatt gataccaaat gttttttttg
222 tgtacatttc tacttctcta gctataagtc ttaattatac aacaaaatac tatttttata
228 tttatgtttg gtaaattcaa taactttcct catcatttgg aaagtcaaat tgtttattgc
234 ttccctacag ttttttctga atctagcagg attttaatga tatcattata atttgacaca
240 ataaaaggac aacatgaaac tgatgaatct ttattgggtt aatttcagac actatataat
246 cttttaaaaa tgtaacattc ttttttatat ataaataatt ggtggcatca caaatagcca
252 aagcagggtg gagagagtga tccttcctgg gtgcaggcaa gaaggggata tgttttctac
258 agagttttca aaacagtgat aaagctgtct acaagtcatt gtgcttttta tcatcactat
264 gcccagacaa tgtgaaacat cagagatgaa gtgctcttcc cacagaggtg gactgatcct
270 tctccccact cccttggtgt gtctctgaat gcaatgttgt cttggaaaac agctttccaa
276 gcatttcact cctgagcact tgccagtttc ctcacttgtt cttcacatat ccaggcaaag
282 acatcctgtt tgctatatga agcattgtat cccgtataaa aggaaggaaa gagagaaata
288 tatttttaca ctcatcactc ctcaggggct gtacaatcat gtagaaattg tttaatgtgc
294 ctgtcaaata gccaaagagt gttaaaccct gagttcccac ccatgtgtgt ggtatggtta
300 ggattcatcc agatacacag agagaggcac aacaggagga gaaaggatag gggtgtgggg
306 acagcgggcc cccaatatgg tgtaatcgtg gcaggtctct gcctgaagtg ctatgtgggg
312 tttttcttgt tttaattttg actttaaccc ctgatttgta agtttttcat aaaataaaca
318 gaatcataac tcatgtagat ggctataagt gccgtagtgt tctgtgggtc tctggtgtct
324 gccagtgata agtgtggcac cccaggaagg ctgtggaccc catcaaggtg ctatgtgagg
330 gccatgcttg gggtggtggt gggcccagta gaccctgcag ccatccatcc agcctgccca
336 ctcacactgc ccttgtgtac tcctgctttg ctacgttatc attgatcaat gtccctggtt
342 acctatgtgt ttgaattatc ttcgtgttac aggtgtttaa tgattttgct ccttctagct
348 tatttgtatt tcacctgttt ttctttaaat caacatggtt acactctgtt tcagcaactg
354 tataaattaa acacaaatta ttactactgc taaaaaaaaa aaaaaaaaa
An antisense nucleic acid molecule can be complementary to all or part of a non- coding region of the coding strand of a nucleotide sequence encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein. Non-coding regions (5' and 3' untranslated regions) are the 5' and 3' sequences that flank the coding region in a gene and are not translated into amino acids.
Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL- 18Ra, IL-1RL2, or ILIRLI protein described herein. Antisense nucleic acids targeting a nucleic acid encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein can be designed using the software available at the Integrated DNA Technologies website. An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7- methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D- mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6- isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2- thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3- N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).
The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, ILIRAP, IL-18Ra, IL-1RL2, or ILIRLI protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector). An antisense nucleic acid can be an a-anomeric nucleic acid molecule. An a- anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al, Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2'-0-methylribonucleotide (Inoue et al, Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al, FEB S Lett. 215:327-330, 1987).
Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 protein (e.g., specificity for an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA, e.g., specificity for any one of SEQ ID NOs: 1-41). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA can be designed based upon the nucleotide sequence of any of the IL-la, IL-Ιβ, IL- 18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS
RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36P, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA (see, e.g., U.S. Patent. Nos. 4,987,071 and 5, 116,742). Alternatively, a SMAD7 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al, Science 261 : 1411-1418, 1993.
An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36P, IL-36y, IL- 38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-lRl, IL1RAP, IL-18Ra, IL-1RL2, or ILIRLI polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N Y. Acad. Set 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.
In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al, Bioorganic Medicinal Chem. 4(l):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a
pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al, Proc. Natl. Acad. Sci.
U.S.A. 93 : 14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence- specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA- DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.
The synthesis of PNA-DNA chimeras can be performed as described in Finn et al, Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al, Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al, Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al, Bioorganic Med. Chem. Lett. 5: 1119-11124, 1975).
In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al, Proc. Natl. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al, Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
Another means by which expression of an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36P, IL- 36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21 -23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3' terminus of the siRNA (see Sharp et al, Genes Dev. 15:485-490, 2001, and Hammond et al, Nature Rev. Gen. 2: 110-119, 2001).
RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al, Proc. Natl. Acad. Sci. U.S.A. 99: 1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Patent No. 6,506,559 and US
2003/0056235, which are hereby incorporated by reference.
Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.
The siRNA molecules used to decrease expression of an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 mRNA can vary in a number of ways. For example, they can include a 3' hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3' end, the 5' end, or both ends. For example, at least one strand of the RNA molecule can have a 3' overhang from about 1 to about 6 nucleotides (e.g., 1 -5, 1-3, 2-4, or 3- 5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.
To further enhance the stability of the RNA duplexes, the 3' overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3' overhangs by 2'-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing an IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or ILIRLI mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 1-7, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).
As described herein, inhibitory nucleic acids preferentially bind (e.g., hybridize) to a nucleic acid encoding IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or ILIRLI protein to treat allergic diseases (e.g., asthma (Corren et al, N. Engl. J. Med. 365: 1088-1098, 2011)), radiation lung injury (Chung et al, Sci. Rep. 6: 39714, 2016), ulcerative colitis (Hua et al, Br. J. Clin. Pharmacol. 80: 101-109, 2015), dermatitis (Guttman-Yassky et al, Exp. Opin. Biol. Ther. 13(4): 1517, 2013), and chronic obstructive pulmonary disease (COPD) (Walsh et al. (2010) Curr. Opin. Investig Drugs. 11(11): 1305-1312, 2010). Exemplary IL-1 inhibitors that are antisense nucleic acids are described in Yilmaz- Elis et al, Mol. Ther. Nucleic Acids 2(1): e66, 2013; Lu et al, J. Immunol. 190(12): 6570- 6578, 2013), small interfering RNA (siRNA) (e.g., Ma et al, Ann. Hepatol. 15(2): 260-270, 2016), or combinations thereof. In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding IL-1 a, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or lLlRLl protein can be administered to a subject (e.g., a human subject) in need thereof.
In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5' or 3 'end of DNA or RNA.
As is known in the art, the term "thermal melting point (Tm)" refers to the
temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.
In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or IL1RL1) with a Tm of greater than 20 °C, greater than 22 °C, greater than 24 °C, greater than 26 °C, greater than 28 °C, greater than 30 °C, greater than 32 °C, greater than 34 °C, greater than 36 °C, greater than 38 °C, greater than 40 °C, greater than 42 °C, greater than 44 °C, greater than 46 °C, greater than 48 °C, greater than 50 °C, greater than 52 °C, greater than 54 °C, greater than 56 °C, greater than 58 °C, greater than 60 °C, greater than 62 °C, greater than 64 °C, greater than 66 °C, greater than 68 °C, greater than 70 °C, greater than 72 °C, greater than 74 °C, greater than 76 °C, greater than 78 °C, or greater than 80 °C, e.g., as measured in phosphate buffered saline using a UV spectrophotometer.
In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-la, IL-Ιβ, IL-18, IL-36a, IL-36p, IL-36y, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL- 1RL2, or IL1RL1) with a Tm of about 20 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, about 32 °C, about 30 °C, about 28 °C, about 26 °C, about 24 °C, or about 22 °C (inclusive); about 22 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, about 32 °C, about 30 °C, about 28 °C, about 26 °C, or about 24 °C (inclusive); about 24 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, about 32 °C, about 30 °C, about 28 °C, or about 26 °C (inclusive); about 26 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, about 32 °C, about 30 °C, or about 28 °C (inclusive); about 28 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, about 32 °C, or about 30 °C (inclusive); about 30 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, about 34 °C, or about 32 °C (inclusive); about 32 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, about 36 °C, or about 34 °C (inclusive); about 34 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, about 38 °C, or about 36 °C (inclusive); about 36 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, about 40 °C, or about 38 °C (inclusive); about 38 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, about 42 °C, or about 40 °C (inclusive); about 40 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, about 44 °C, or about 42 °C
(inclusive); about 42 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, about 46 °C, or about 44 °C (inclusive); about 44 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, about 48 °C, or about 46 °C (inclusive); about 46 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, about 50 °C, or about 48 °C (inclusive); about 48 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, about 52 °C, or about 50 °C (inclusive); about 50 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, about 54 °C, or about 52 °C (inclusive); about 52 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, about 56 °C, or about 54 °C (inclusive); about 54 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, about 58 °C, or about 56 °C (inclusive); about 56 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, about 60 °C, or about 58 °C (inclusive); about 58 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, about 62 °C, or about 60 °C (inclusive); about 60 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, about 64 °C, or about 62 °C (inclusive); about 62 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, about 66 °C, or about 64 °C (inclusive); about 64 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, about 68 °C, or about 66 °C
(inclusive); about 66 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, about 70 °C, or about 68 °C (inclusive); about 68 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, about 72 °C, or about 70 °C (inclusive); about 70 °C to about 80 °C, about 78 °C, about 76 °C, about 74 °C, or about 72 °C (inclusive); about 72 °C to about 80 °C, about 78 °C, about 76 °C, or about 74 °C (inclusive); about 74 °C to about 80 °C, about 78 °C, or about 76 °C (inclusive); about 76 °C to about 80 °C or about 78 °C (inclusive); or about 78 °C to about 80 °C (inclusive),
In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al,
Pharmaceutical Nanotechnol. 367: 195-203, 2009; Yang et al, ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6bl6556, 2017; Perepelyuk et al, Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al, Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.
In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al, J. Control Release 158(3): 362-370, 2012; Scarabel et al, Expert Opin. DrugDeliv. 17: 1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al, BioMacromolecules 17:246-255, 2016; Wu et al, Nanotechnology, doi: 10.1088/1361- 6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al, Nature Biotechnol. 31 :653-658, 2013; and Lin et al,
Nanomedicine 9(1): 105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.
In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.
In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.
Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.
Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.
In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin,
hydroxymethylcellulose and polyvinylpyrrolidone.
In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.
In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.
In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.
In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these
embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents.
Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.
Antibodies
In some embodiments, the IL-1 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen- binding fragment described herein binds specifically to any one of IL-1 a, IL-Ιβ, IL-18, IL- 36a, IL-36P, IL-36y, IL-38, and IL-33. In some embodiments, an antibody or antigen- binding fragment of an antibody described herein can bind specifically to one or both of IL- 1R1 and IL1RAP. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to IL-18Ra. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to one or both of ILIRLI and ILIRAP. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind to one or both of IL-1RL2 and IL-1RAP.
In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-l-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL- Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in- holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, k -body, orthogonal Fab, DVD -IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body,
miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab')2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFvl-PEG-scFv2.
Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab')2 fragment, and a Fab' fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgGl, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgGl, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgAl or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgAl or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).
In some embodiments, the IL-1 inhibitor is canakinumab (ACZ885, Ilaris®
(Dhimolea, MAbs 2(1): 3-13, 2010; Yokota et al, Clin. Exp. Rheumatol. 2016; Torene et al, Ann. Rheum. Dis. 76(l):303-309, 2017; Gram, Curr. Opin. Chem. Biol. 32: 1-9, 2016;
Kontzias et al, Semin. Arthritis Rheum 42(2):201-205, 2012). In some embodiments, the IL- 1 inhibitor is anakinra (Kineret®; Beynon et al, J. Clin. Rheumatol. 23(3): 181-183, 2017; Stanam et al, Oncotarget 7(46): 76087-76100, 2016; Nayki et al, J. Obstet Gynaecol. Res. 42(11): 1525-1533, 2016; Greenhalgh et al, Dis. Model Mech. 5(6):823-833, 2012), or a variant thereof. In some embodiments, the IL-1 inhibitor is gevokizumab (XOMA 052;
Knicklebein et al, Am. J Ophthalmol. 172: 104-110, 2016; Roubille et al, Atherosclerosis 236(2):277-285, 2014; Issafras et al, J. Pharmacol. Exp. Ther. 348(1):202-215, 2014; Handa et al, Obesity 21(2): 306-309, 2013; Geiler et al, Curr. Opin. Mol. Ther. 12(6):755-769, 2010), LY2189102 (Bihorel et al, AAPSJ. 16(5): 1009-1117, 2014; Sloan-Lancaster et al, Diabetes Care 36(8):2239-2246, 2013), MABpl (Hickish et al, Lancey Oncol. 18(2): 192- 201, 2017; Timper et al, J. Diabetes Complications 29(7): 955 -960, 2015), CDP-484
(Braddock et al, Drug Discov. 3 :330-339, 2004), or a variant thereof (Dinarello et al, Nat. Rev. Drug Discov. 11(8): 633-652, 2012).
Further teachings of IL-1 inhibitors that are antibodies or antigen-binding fragments thereof are described in U.S. Patent Nos. 5,075,222; 7,446, 175; 7,531, 166; 7,744,865;
7,829,093; and 8,273,350; US 2016/0326243; US 2016/0194392, and US 2009/0191187, each of which is incorporated by reference in its entirety.
In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1 x 10"5 M (e.g., less than 0.5 x 10"5 M, less than 1 x 10"6 M, less than 0.5 x 10"6 M, less than 1 x 10"7 M, less than 0.5 x 10"7 M, less than 1 x 10"8 M, less than 0.5 x 10"8 M, less than 1 x 10"9 M, less than 0.5 x 10"9 M, less than 1 x 10"10 M, less than 0.5 x 10"10 M, less than 1 x 10"11 M, less than 0.5 x 10"U M, or less than 1 x 10"12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).
In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1 x 10"12 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10" 8 M, about 1 x 10"9 M, about 0.5 x 10"9 M, about 1 x 10"10 M, about 0.5 x 10"10 M, about 1 x 10"11 M, or about 0.5 x 10"11 M (inclusive); about 0.5 x 10"11 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10"8 M, about 1 x 10"9 M, about 0.5 x 10"9 M, about 1 x 10"10 M, about 0.5 x 10"10 M, or about 1 x 10"11 M (inclusive); about 1 x 10"u M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10"8 M, about 1 x 10"9 M, about 0.5 x 10"9 M, about 1 x 10"10 M, or about 0.5 x 10"10 M (inclusive); about 0.5 x 10"10 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10"8 M, about 1 x 10"9 M, about 0.5 x 10"9 M, or about 1 x 10"10 M (inclusive); about 1 x 10"10 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10"8 M, about 1 x 10"9 M, or about 0.5 x 10"9 M (inclusive); about 0.5 x 10"9 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, about 0.5 x 10"8 M, or about 1 x 10"9 M (inclusive); about 1 x 10"9 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10"7 M, about 1 x 10"8 M, or about 0.5 x 10"8 M (inclusive); about 0.5 x 10"8 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, about 0.5 x 10" 7 M, or about 1 x 10"8 M (inclusive); about 1 x 10"8 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, about 1 x 10"7 M, or about 0.5 x 10"7 M (inclusive); about 0.5 x 10"7 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, about 0.5 x 10"6 M, or about 1 x 10"7 M (inclusive); about 1 x 10"7 M to about 1 x 10"5 M, about 0.5 x 10"5 M, about 1 x 10"6 M, or about 0.5 x 10"6 M (inclusive); about 0.5 x 10"6 M to about 1 x 10"5 M, about 0.5 x 10"5 M, or about 1 x 10"6 M (inclusive); about 1 x 10"6 M to about 1 x 10"5 M or about 0.5 x 10"5 M (inclusive); or about 0.5 x 10"5 M to about 1 x 10"5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).
In some embodiments, any of the antibodies or antigen-binding fragments described herein has a K0ff of about 1 x 10"6 s"1 to about 1 x 10"3 s"1, about 0.5 x 10"3 s"1, about 1 x 10"4 s" about 0.5 x 10"4 s"1, about 1 x 10"5 s"1, or about 0.5 x 10"5 s"1 (inclusive); about 0.5 x 10"5 s"1 to about 1 x 10"3 s"1, about 0.5 x 10"3 s"1, about 1 x 10"4 s"1, about 0.5 x 10"4 s"1, or about 1 x 10"5 s"1 (inclusive); about 1 x 10"5 s"1 to about 1 x 10"3 s"1, about 0.5 x 10"3 s"1, about 1 x 10"4 s" 1, or about 0.5 x 10"4 s"1 (inclusive); about 0.5 x 10"4 s"1 to about 1 x 10"3 s"1, about 0.5 x 10"3 s"1, or about 1 x 10"4 s"1 (inclusive); about 1 x 10"4 s"1 to about 1 x 10"3 s"1, or about 0.5 x 10"3 s"1 (inclusive); or about 0.5 x 10"5 s_1 to about 1 x 10"3 s"1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).
In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1 x 102 M'V1 to about 1 x 106 M_1s_1, about 0.5 x 106 M'V1, about 1 x 10s M- 1, about 0.5 x 105 Mls about 1 x 104 M'V1, about 0.5 x 104 M'V1, about 1 x 103 M'V1, or about 0.5 x 103 M'V1 (inclusive); about 0.5 x 103 M'V1 to about 1 x 106 M_1s_1, about 0.5 x 106 M'V1, about 1 x 10s MV1, about 0.5 x 105 M'V1, about 1 x 104 M'V1, about 0.5 x 104 M'V1, or about 1 x 103 M'V1 (inclusive); about 1 x 103 M' ^o about 1 x 106 M_1s" about 0.5 x 106 M'V1, about 1 x 10s M' 1, about 0.5 x 105 M'V1, about 1 x 104 M'V1, or about 0.5 x 104 M'V1 (inclusive); about 0.5 x 104 M'V1 to about 1 x 106 M-1s_1, about 0.5 x 106 M'V1, about 1 x 10s M' 1, about 0.5 x 105 M'V1, or about 1 x 104 M'V1 (inclusive); about 1 x 104 M'V1 to about 1 x K^ M 1, about 0.5 x 106 M'V1, about 1 x 10s M' 1, or about 0.5 x 105 M'V1 (inclusive); about 0.5 x 105 M_1s_1 to about 1 x 106 M_1s_1, about 0.5 x 106 M'V1, or about 1 x K^ TvT 1 (inclusive); about 1 x 105 M^s 1 to about 1 x 106 M_1s_1, or about 0.5 x 106 M'V1 (inclusive); or about 0.5 x 106 M'V1 to about 1 x 106 M^s"1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR). Fusion Proteins or Soluble Receptors
In some embodiments, the IL-1 inhibitor is a fusion protein or a soluble receptor. For example, a fusion can include an extracellular domain of any one of IL-1R1, ILIRAP, IL- 18Ra, IL-1RL2, and ILIRLI fused to a partner amino acid sequence (e.g., a stabilizing domain, e.g., an IgG Fc region, e.g., a human IgG Fc region). In some embodiments, the IL- 1 inhibitor is a soluble version of one or both of IL-lRLl and ILIRAP. In some
embodiments, the IL-1 inhibitor is a soluble version of IL-18Ra. In some embodiments, the IL-1 inhibitor is a soluble version of one or both of IL-1RL2 and IL-1RAP.
In some embodiments, the IL-1 inhibitor is a fusion protein comprising or consisting of rilonacept (IL-1 Trap, Arcalyst®) (see, e.g., Kapur & Bonk, P. T. 34(3): 138-141, 2009; Church et al, Biologies 2(4):733-742, 2008; McDermott, Drugs Today (Bare) 45(6):423-430, 2009). In some embodiments, the IL-1 inhibitor is a fusion protein that is chimeric (e.g., EBI-005 (Isunakinra®) (Furfine et al, Invest. Ophthalmol. Vis. Sci. 53(14):2340-2340, 2012; Goldstein et al, Eye Contact Lens 41(3): 145-155, 2015; Goldstein et al, Eye Contact Lens, 2016)).
In some embodiments, the IL-1 inhibitor is a soluble receptor that comprises or consists of sIL-lRI and/or sIL-lRII (Svenson et al, Eur. J. Immunol. 25(10): 2842-2850, 1995).
Endogenous IL-1 Inhibitor Peptides
In some embodiments, the IL-1 inhibitor can be an endogenous ligand or an active fragment thereof, e.g., IL-IRa or IL-36Ra. IL-lRa is an endogenous soluble protein that decreases the ability of IL-la and IL-Ιβ to bind to their receptor (e.g., a complex of IL-1R1 and ILIRAP proteins). IL-36Ra is an endogenous soluble protein that decreases the ability of IL-36a, IL-36P, and IL-36y to bind to their receptor (e.g., a complex of IL-1RL2 and IL- lRAP proteins). Exemplary sequences for IL-IRa and IL-36Ra are shown below.
Human IL-IRa mRNA Transcript 1 (SEQ ID NO: 42)
1 atttctttat aaaccacaac tctgggcccg caatggcagt ccactgcctt getgeagtea 61 cagaatggaa atctgcagag gcctccgcag tcacctaatc actctcctcc tcttcctgtt 121 ccattcagag acgatctgcc gaccctctgg gagaaaatcc agcaagatgc aagccttcag 181 aatctgggat gttaaccaga agaccttcta tctgaggaac aaccaactag ttgctggata 241 cttgcaagga ccaaatgtca atttagaaga aaagatagat gtggtaccca ttgagcctca 301 tgctctgttc ttgggaatcc atggagggaa gatgtgcctg tcctgtgtca agtctggtga
361 tgagaccaga ctccagctgg aggcagttaa catcactgac ctgagcgaga acagaaagca 421 ggacaagcgc ttcgccttca tccgctcaga cagtggcccc accaccagtt ttgagtctgc 481 cgcctgcccc ggttggttcc tctgcacagc gatggaagct gaccagcccg tcagcctcac 541 caatatgcct gacgaaggcg tcatggtcac caaattctac ttccaggagg acgagtagta 601 ctgcccaggc ctgcctgttc ccattcttgc atggcaagga ctgcagggac tgccagtccc
661 cctgccccag ggctcccggc tatgggggca ctgaggacca gccattgagg ggtggaccct 721 cagaaggcgt cacaacaacc tggtcacagg actctgcctc ctcttcaact gaccagcctc 781 catgctgcct ccagaatggt ctttctaatg tgtgaatcag agcacagcag cccctgcaca 841 aagcccttcc atgtcgcctc tgcattcagg atcaaacccc gaccacctgc ccaacctgct 901 ctcctcttgc cactgcctct tcctccctca ttccaccttc ccatgccctg gatccatcag
961 gccacttgat gacccccaac caagtggctc ccacaccctg ttttacaaaa aagaaaagac 1021 cagtccatga gggaggtttt taagggtttg tggaaaatga aaattaggat ttcatgattt 1081 ttttttttca gtccccgtga aggagagccc ttcatttgga gattatgttc tttcggggag 1141 aggctgagga cttaaaatat tcctgcattt gtgaaatgat ggtgaaagta agtggtagct 1201 tttcccttct ttttcttctt tttttgtgat gtcccaactt gtaaaaatta aaagttatgg
1261 tactatgtta gccccataat tttttttttc cttttaaaac acttccataa tctggactcc
1321 tctgtccagg cactgctgcc cagcctccaa gctccatctc cactccagat tttttacagc 1381 tgcctgcagt actttacctc ctatcagaag tttctcagct cccaaggctc tgagcaaatg 1441 tggctcctgg gggttctttc ttcctctgct gaaggaataa attgctcctt gacattgtag 1501 agcttctggc acttggagac ttgtatgaaa gatggctgtg cctctgcctg tctcccccac
1561 cgggctggga gctctgcaga gcaggaaaca tgactcgtat atgtctcagg tccctgcagg 1621 gccaagcacc tagcctcgct cttggcaggt actcagcgaa tgaatgctgt atatgttggg 1681 tgcaaagttc cctacttcct gtgacttcag ctctgtttta caataaaatc ttgaaaatgc
1741 ctaaaaaaaa 3333333333 3333333333 3333333333 3333333333 3333
Human IL-lRa mRNA Transcript 2 (SEQ ID NO: 43)
1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg 61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc 121 ctccccatgg ctttagctga cttgtatgaa gaaggaggtg gaggaggagg agaaggtgaa 181 gacaatgctg actcaaagga gacgatctgc cgaccctctg ggagaaaatc cagcaagatg
241 caagccttca gaatctggga tgttaaccag aagaccttct atctgaggaa caaccaacta 301 gttgctggat acttgcaagg accaaatgtc aatttagaag aaaagataga tgtggtaccc 361 attgagcctc atgctctgtt cttgggaatc catggaggga agatgtgcct gtcctgtgtc 421 aagtctggtg atgagaccag actccagctg gaggcagtta acatcactga cctgagcgag 481 aacagaaagc aggacaagcg cttcgccttc atccgctcag acagtggccc caccaccagt
541 tttgagtctg ccgcctgccc cggttggttc ctctgcacag cgatggaagc tgaccagccc 601 gtcagcctca ccaatatgcc tgacgaaggc gtcatggtca ccaaattcta cttccaggag 661 gacgagtagt actgcccagg cctgcctgtt cccattcttg catggcaagg actgcaggga 721 ctgccagtcc ccctgcccca gggctcccgg ctatgggggc actgaggacc agccattgag 781 gggtggaccc tcagaaggcg tcacaacaac ctggtcacag gactctgcct cctcttcaac 841 tgaccagcct ccatgctgcc tccagaatgg tctttctaat gtgtgaatca gagcacagca 901 gcccctgcac aaagcccttc catgtcgcct ctgcattcag gatcaaaccc cgaccacctg 961 cccaacctgc tctcctcttg ccactgcctc ttcctccctc attccacctt cccatgccct
1021 ggatccatca ggccacttga tgacccccaa ccaagtggct cccacaccct gttttacaaa 1081 aaagaaaaga ccagtccatg agggaggttt ttaagggttt gtggaaaatg aaaattagga 1141 tttcatgatt tttttttttc agtccccgtg aaggagagcc cttcatttgg agattatgtt 1201 ctttcgggga gaggctgagg acttaaaata ttcctgcatt tgtgaaatga tggtgaaagt 1261 aagtggtagc ttttcccttc tttttcttct ttttttgtga tgtcccaact tgtaaaaatt
1321 aaaagttatg gtactatgtt agccccataa tttttttttt ccttttaaaa cacttccata 1381 atctggactc ctctgtccag gcactgctgc ccagcctcca agctccatct ccactccaga 1441 ttttttacag ctgcctgcag tactttacct cctatcagaa gtttctcagc tcccaaggct 1501 ctgagcaaat gtggctcctg ggggttcttt cttcctctgc tgaaggaata aattgctcct 1561 tgacattgta gagcttctgg cacttggaga cttgtatgaa agatggctgt gcctctgcct
1621 gtctccccca ccgggctggg agctctgcag agcaggaaac atgactcgta tatgtctcag 1681 gtccctgcag ggccaagcac ctagcctcgc tcttggcagg tactcagcga atgaatgctg 1741 tatatgttgg gtgcaaagtt ccctacttcc tgtgacttca gctctgtttt acaataaaat 1801 cttgaaaatg cctaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1861 aaaaa
Human IL-IRa mRNA Transcript 3 (SEQ ID NO: 44)
1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg 61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc 121 ctccccatgg ctttagagac gatctgccga ccctctggga gaaaatccag caagatgcaa
181 gccttcagaa tctgggatgt taaccagaag accttctatc tgaggaacaa ccaactagtt 241 gctggatact tgcaaggacc aaatgtcaat ttagaagaaa agatagatgt ggtacccatt 301 gagcctcatg ctctgttctt gggaatccat ggagggaaga tgtgcctgtc ctgtgtcaag 361 tctggtgatg agaccagact ccagctggag gcagttaaca tcactgacct gagcgagaac 421 agaaagcagg acaagcgctt cgccttcatc cgctcagaca gtggccccac caccagtttt
481 gagtctgccg cctgccccgg ttggttcctc tgcacagcga tggaagctga ccagcccgtc 541 agcctcacca atatgcctga cgaaggcgtc atggtcacca aattctactt ccaggaggac 601 gagtagtact gcccaggcct gcctgttccc attcttgcat ggcaaggact gcagggactg 661 ccagtccccc tgccccaggg ctcccggcta tgggggcact gaggaccagc cattgagggg 721 tggaccctca gaaggcgtca caacaacctg gtcacaggac tctgcctcct cttcaactga
781 ccagcctcca tgctgcctcc agaatggtct ttctaatgtg tgaatcagag cacagcagcc 841 cctgcacaaa gcccttccat gtcgcctctg cattcaggat caaaccccga ccacctgccc 901 aacctgctct cctcttgcca ctgcctcttc ctccctcatt ccaccttccc atgccctgga 961 tccatcaggc cacttgatga cccccaacca agtggctccc acaccctgtt ttacaaaaaa 1021 gaaaagacca gtccatgagg gaggttttta agggtttgtg gaaaatgaaa attaggattt
1081 catgattttt ttttttcagt ccccgtgaag gagagccctt catttggaga ttatgttctt 1141 tcggggagag gctgaggact taaaatattc ctgcatttgt gaaatgatgg tgaaagtaag 1201 tggtagcttt tcccttcttt ttcttctttt tttgtgatgt cccaacttgt aaaaattaaa 1261 agttatggta ctatgttagc cccataattt tttttttcct tttaaaacac ttccataatc
1321 tggactcctc tgtccaggca ctgctgccca gcctccaagc tccatctcca ctccagattt 1381 tttacagctg cctgcagtac tttacctcct atcagaagtt tctcagctcc caaggctctg 1441 agcaaatgtg gctcctgggg gttctttctt cctctgctga aggaataaat tgctccttga 1501 cattgtagag cttctggcac ttggagactt gtatgaaaga tggctgtgcc tctgcctgtc
1561 tcccccaccg ggctgggagc tctgcagagc aggaaacatg actcgtatat gtctcaggtc 1621 cctgcagggc caagcaccta gcctcgctct tggcaggtac tcagcgaatg aatgctgtat 1681 atgttgggtg caaagttccc tacttcctgt gacttcagct ctgttttaca ataaaatctt 1741 gaaaatgcct
1801 aa
Human IL-IRa mRNA Transcript 4 (SEQ ID NO: 45)
1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg 61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc 121 ctccccatgg ctttaggggg attataaaac taatcatcaa agccaagaag gcaagagcaa
181 gcatgtaccg ctgaaaacac aagataactg cataagtaat gactttcagt gcagattcat 241 agctaaccca taaactgctg gggcaaaaat catcttggaa ggctctgaac ctcagaaagg 301 attcacaaga cgatctgccg accctctggg agaaaatcca gcaagatgca agccttcaga 361 atctgggatg ttaaccagaa gaccttctat ctgaggaaca accaactagt tgctggatac 421 ttgcaaggac caaatgtcaa tttagaagaa aagatagatg tggtacccat tgagcctcat
481 gctctgttct tgggaatcca tggagggaag atgtgcctgt cctgtgtcaa gtctggtgat 541 gagaccagac tccagctgga ggcagttaac atcactgacc tgagcgagaa cagaaagcag 601 gacaagcgct tcgccttcat ccgctcagac agtggcccca ccaccagttt tgagtctgcc 661 gcctgccccg gttggttcct ctgcacagcg atggaagctg accagcccgt cagcctcacc 721 aatatgcctg acgaaggcgt catggtcacc aaattctact tccaggagga cgagtagtac
781 tgcccaggcc tgcctgttcc cattcttgca tggcaaggac tgcagggact gccagtcccc 841 ctgccccagg gctcccggct atgggggcac tgaggaccag ccattgaggg gtggaccctc 901 agaaggcgtc acaacaacct ggtcacagga ctctgcctcc tcttcaactg accagcctcc 961 atgctgcctc cagaatggtc tttctaatgt gtgaatcaga gcacagcagc ccctgcacaa 1021 agcccttcca tgtcgcctct gcattcagga tcaaaccccg accacctgcc caacctgctc
1081 tcctcttgcc actgcctctt cctccctcat tccaccttcc catgccctgg atccatcagg 1141 ccacttgatg acccccaacc aagtggctcc cacaccctgt tttacaaaaa agaaaagacc 1201 agtccatgag ggaggttttt aagggtttgt ggaaaatgaa aattaggatt tcatgatttt 1261 tttttttcag tccccgtgaa ggagagccct tcatttggag attatgttct ttcggggaga 1321 ggctgaggac ttaaaatatt cctgcatttg tgaaatgatg gtgaaagtaa gtggtagctt
1381 ttcccttctt tttcttcttt ttttgtgatg tcccaacttg taaaaattaa aagttatggt
1441 actatgttag ccccataatt ttttttttcc ttttaaaaca cttccataat ctggactcct 1501 ctgtccaggc actgctgccc agcctccaag ctccatctcc actccagatt ttttacagct 1561 gcctgcagta ctttacctcc tatcagaagt ttctcagctc ccaaggctct gagcaaatgt 1621 ggctcctggg ggttctttct tcctctgctg aaggaataaa ttgctccttg acattgtaga
1681 gcttctggca cttggagact tgtatgaaag atggctgtgc ctctgcctgt ctcccccacc 1741 gggctgggag ctctgcagag caggaaacat gactcgtata tgtctcaggt ccctgcaggg 1801 ccaagcacct agcctcgctc ttggcaggta ctcagcgaat gaatgctgta tatgttgggt 1861 gcaaagttcc ctacttcctg tgacttcagc tctgttttac aataaaatct tgaaaatgcc
1921 taaaaaaaaa 3333333333 3333333333 3333333333 3333333333 333
Human IL-36Ra mRNA Variant 1 (SEQ ID NO: 46)
1 cgctgggaat cctgctcctc ctcaggtcct ggcagtttca gggcccctcc ctaggcctta
61 cttaaaaggc tgaggcatcc ttggaggaac aggcagactc cacagctccc gccaggagaa 121 aggaacattc tgaggggagt ctacaccctg tggagctcaa gatggtcctg agtggggcgc 181 tgtgcttccg aatgaaggac tcggcattga aggtgcttta tctgcataat aaccagcttc 241 tagctggagg gctgcatgca gggaaggtca ttaaaggtga agagatcagc gtggtcccca 301 atcggtggct ggatgccagc ctgtcccccg tcatcctggg tgtccagggt ggaagccagt
361 gcctgtcatg tggggtgggg caggagccga ctctaacact agagccagtg aacatcatgg 421 agctctatct tggtgccaag gaatccaaga gcttcacctt ctaccggcgg gacatggggc 481 tcacctccag cttcgagtcg gctgcctacc cgggctggtt cctgtgcacg gtgcctgaag 541 ccgatcagcc tgtcagactc acccagcttc ccgagaatgg tggctggaat gcccccatca 601 cagacttcta cttccagcag tgtgactagg gcaacgtgcc ccccagaact ccctgggcag
661 agccagctcg ggtgaggggt gagtggagga gacccatggc ggacaatcac tctctctgct 721 ctcaggaccc ccacgtctga cttagtgggc acctgaccac tttgtcttct ggttcccagt 781 ttggataaat tctgagattt ggagctcagt ccacggtcct cccccactgg atggtgctac 841 tgctgtggaa tcttgtaaaa accatgtggg gtaaactggg aataacatga aaagatttct 901 gtggaggtgg ggtgggggag tggtgggaat cattcctgct taatggtaac tgaccagtgt
961 taccctgagc cccgcaggcc aacccatccc cagttgagcc ttatagggtc agtagctctc 1021 cacatgaaga cctgtcactc accactatgc aggagaggga ggtggtcata gagtcaggga 1081 tctatggccc ttggcccagc cccacctcct tccctttaat cctgccactg tcatatgcta 1141 cctttcctat ctcttccctc atcatcttgt tgtgggcatg aggaggtgct gatgtcagaa 1201 gaaatggctc gagctcagaa gataaaagat aagtagggta tgctgatcct cttttaaaaa
1261 cccaagatac aatcaaaatc ccagatgctg gtctctattc ccatgaaaaa gtgctcatga 1321 catattgaga agacctactt acaaagtggc atatattgca atttatttta attaaaagat 1381 acctatttat atatttcttt atagaaaaaa gtctggaaga gtttacttca attgtagcaa 1441 tgtcagggtg gtggcagtat aggtgatttt tcttttaatt ctgttaattt acctgtattt
1501 cctaattttt ctacaatgaa gatgaattcc ttgtataaaa ataagaaaag aaattaatct
1561 tgaggtaagc agagtagaca tcatctctga ttgtcctcag cctccacttc cccagagtaa 1621 attcaaattg aatcgagctc tgctgctctg gttggttgta gtagtgatca ggaaacagat 1681 ctcagcaaag ccactgagga ggaggctgtg ctgagtttgt gtggctggaa tctctgggta 1741 aggaacttaa agaacaaaaa tcatctggta attctttcct agaaggatca cagcccctgg 1801 gattccaagg cattggatcc agtctctaag aaggctgctg tactggttga attgtgtccc
1861 cctcaaattc acatccttct tggaatctca gtctgtgagt ttatttggag ataaggtctc 1921 tgcagatgta gttagttaag acaaggtcat gctggatgaa ggtagaccta aattcaatat 1981 gactggtttc cttgtatgaa aaggagagga cacagagaca gaggagatgc ggggaagact 2041 atgtaaagat gaaggcagag atcggagttt tgcagccaca agctaagaaa caccaaggat 2101 tgtggcaacc atcagaagct tggaagaggc aaagaagaat tcttccctag aggctttaga
2161 gggataacgg ctctgctgaa accttaatct cagacttcca gcctcctgaa cgaagaaaga 2221 ataaatttcg gctgttttaa gccaccaagg ataattggtt acagcagctc taggaaacta 2281 atacagctgc taaaatgatc cctgtctcct cgtgtttaca ttctgtgtgt gtcccctccc 2341 acaatgtacc aaagttgtct ttgtgaccaa tagaatatgg cagaagtgat ggcatgccac 2401 ttccaagatt aggttataaa agacactgca gcttctactt gagccctctc tctctgccac 2461 ccaccgcccc caatctatct tggctcactc gctctggggg aagctagctg ccatgctatg 2521 agcaggccta taaagagact tacgtggtaa aaaatgaagt ctcctgccca cagccacatt 2581 agtgaaccta gaagcagaga ctctgtgaga taatcgatgt ttgttgtttt aagttgctca
2641 gttttggtct aacttgttat gcagcaatag ataaataata tgcagagaaa gagaaaaaaa 2701
Human IL-36Ra mRNA Variant 2 (SEQ ID NO: 47)
1 ggagagtccc acctctaaca tctcctgtag gcctggcaat ggcaggcagg aaagacagag
61 gaaggaagga gggagaaggg aaggagtgaa ggaaggagtg aaaaagggga gtctacaccc 121 tgtggagctc aagatggtcc tgagtggggc gctgtgcttc cgaatgaagg actcggcatt 181 gaaggtgctt tatctgcata ataaccagct tctagctgga gggctgcatg cagggaaggt 241 cattaaaggt gaagagatca gcgtggtccc caatcggtgg ctggatgcca gcctgtcccc 301 cgtcatcctg ggtgtccagg gtggaagcca gtgcctgtca tgtggggtgg ggcaggagcc
361 gactctaaca ctagagccag tgaacatcat ggagctctat cttggtgcca aggaatccaa 421 gagcttcacc ttctaccggc gggacatggg gctcacctcc agcttcgagt cggctgccta 481 cccgggctgg ttcctgtgca cggtgcctga agccgatcag cctgtcagac tcacccagct 541 tcccgagaat ggtggctgga atgcccccat cacagacttc tacttccagc agtgtgacta 601 gggcaacgtg ccccccagaa ctccctgggc agagccagct cgggtgaggg gtgagtggag
661 gagacccatg gcggacaatc actctctctg ctctcaggac ccccacgtct gacttagtgg 721 gcacctgacc actttgtctt ctggttccca gtttggataa attctgagat ttggagctca 781 gtccacggtc ctcccccact ggatggtgct actgctgtgg aatcttgtaa aaaccatgtg 841 gggtaaactg ggaataacat gaaaagattt ctgtggaggt ggggtggggg agtggtggga 901 atcattcctg cttaatggta actgaccagt gttaccctga gccccgcagg ccaacccatc
961 cccagttgag ccttataggg tcagtagctc tccacatgaa gacctgtcac tcaccactat 1021 gcaggagagg gaggtggtca tagagtcagg gatctatggc ccttggccca gccccacctc 1081 cttcccttta atcctgccac tgtcatatgc tacctttcct atctcttccc tcatcatctt
1141 gttgtgggca tgaggaggtg ctgatgtcag aagaaatggc tcgagctcag aagataaaag 1201 ataagtaggg tatgctgatc ctcttttaaa aacccaagat acaatcaaaa tcccagatgc
1261 tggtctctat tcccatgaaa aagtgctcat gacatattga gaagacctac ttacaaagtg 1321 gcatatattg caatttattt taattaaaag atacctattt atatatttct ttatagaaaa
1381 aagtctggaa gagtttactt caattgtagc aatgtcaggg tggtggcagt ataggtgatt 1441 tttcttttaa ttctgttaat ttacctgtat ttcctaattt ttctacaatg aagatgaatt
1501 ccttgtataa aaataagaaa agaaattaat cttgaggtaa gcagagtaga catcatctct
1561 gattgtcctc agcctccact tccccagagt aaattcaaat tgaatcgagc tctgctgctc 1621 tggttggttg tagtagtgat caggaaacag atctcagcaa agccactgag gaggaggctg 1681 tgctgagttt gtgtggctgg aatctctggg taaggaactt aaagaacaaa aatcatctgg 1741 taattctttc ctagaaggat cacagcccct gggattccaa ggcattggat ccagtctcta 1801 agaaggctgc tgtactggtt gaattgtgtc cccctcaaat tcacatcctt cttggaatct
1861 cagtctgtga gtttatttgg agataaggtc tctgcagatg tagttagtta agacaaggtc 1921 atgctggatg aaggtagacc taaattcaat atgactggtt tccttgtatg aaaaggagag 1981 gacacagaga cagaggagat gcggggaaga ctatgtaaag atgaaggcag agatcggagt 2041 tttgcagcca caagctaaga aacaccaagg attgtggcaa ccatcagaag cttggaagag 2101 gcaaagaaga attcttccct agaggcttta gagggataac ggctctgctg aaaccttaat
2161 ctcagacttc cagcctcctg aacgaagaaa gaataaattt cggctgtttt aagccaccaa
2221 ggataattgg ttacagcagc tctaggaaac taatacagct gctaaaatga tccctgtctc
2281 ctcgtgttta cattctgtgt gtgtcccctc ccacaatgta ccaaagttgt ctttgtgacc
2341 aatagaatat ggcagaagtg atggcatgcc acttccaaga ttaggttata aaagacactg
2401 cagcttctac ttgagccctc tctctctgcc acccaccgcc cccaatctat cttggctcac
2461 tcgctctggg ggaagctagc tgccatgcta tgagcaggcc tataaagaga cttacgtggt
2521 aaaaaatgaa gtctcctgcc cacagccaca ttagtgaacc tagaagcaga gactctgtga
2581 gataatcgat gtttgttgtt ttaagttgct cagttttggt ctaacttgtt atgcagcaat
2641 agataaataa tatgcagaga aagagaaaaa aaaaaaaaaa aaaaaaaaa
Exemplary embodiments: The following exemplary embodiments 1) - 94) are provided herein:
1) A method of treating a disease of the gastro-intestinal tract in a subject, comprising: delivering an IL-1 inhibitor at a location in the gastrointestinal tract of the subject, wherein the method comprises administering orally to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor.
2) The method of exemplary embodiment 1, wherein the disease of the GI tract is an inflammatory bowel disease. 3) The method of exemplary embodiment 1, wherein the disease of the GI tract is ulcerative colitis.
4) The method of exemplary embodiment 1, wherein the disease of the GI tract is Crohn's disease.
5) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the large intestine of the subject.
6) The method of exemplary embodiment 5, wherein the location is in the proximal portion of the large intestine. ) The method of exemplary embodiment 5, wherein the location is in the distal portion of the large intestine. ) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the ascending colon of the subject. ) The method of exemplary embodiment 8, wherein the location is in the proximal portion of the ascending colon. 0) The method of exemplary embodiment 8, wherein the location is in the distal portion of the ascending colon. 1) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the cecum of the subject. 2) The method of exemplary embodiment 11, wherein the location is in the proximal portion of the cecum. 3) The method of exemplary embodiment 11, wherein the location is in the distal portion of the cecum. 4) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the sigmoid colon of the subject. 5) The method of exemplary embodiment 14, wherein the location is in the proximal portion of the sigmoid colon. 6) The method of exemplary embodiment 14, wherein the location is in the distal portion of the sigmoid colon. 7) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the transverse colon of the subject. 18) The method of exemplary embodiment 17, wherein the location is in the proximal portion of the transverse colon.
19) The method of exemplary embodiment 17, wherein the location is in the distal portion of the transverse colon.
20) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the descending colon of the subject. 21) The method of exemplary embodiment 20, wherein the location is in the proximal portion of the descending colon.
22) The method of exemplary embodiment 20, wherein the location is in the distal portion of the descending colon.
23) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the small intestine of the subject.
24) The method of exemplary embodiment 23, wherein the location is in the proximal portion of the small intestine.
25) The method of exemplary embodiment 23, wherein the location is in the distal portion of the small intestine. 26) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the duodenum of the subject.
27) The method of exemplary embodiment 26, wherein the location is in the proximal portion of the duodenum.
28) The method of exemplary embodiment 26, wherein the location is in the distal portion of the duodenum. ) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the jejunum of the subject. ) The method of exemplary embodiment 29, wherein the location is in the proximal portion of the jejunum. ) The method of exemplary embodiment 29, wherein the location is in the distal portion of the jejunum. ) The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein the IL-1 inhibitor is delivered at a location in the ileum of the subject. ) The method of exemplary embodiment 32, wherein the location is in the proximal portion of the ileum. ) The method of exemplary embodiment 32, wherein the location is in the distal portion of the ileum. ) The method of any one of the preceding exemplary embodiments, wherein the location is proximate to one or more sites of disease. ) The method of exemplary embodiment 35, further comprising identifying the one or more sites of disease by a method comprising imaging of the gastrointestinal tract. ) The method of any one of the preceding exemplary embodiments, wherein the IL-1 inhibitor is delivered to the location by mucosal contact. ) The method of any one of the preceding exemplary embodiments, wherein the IL-1 inhibitor is delivered to the location by a process that does not comprise systemic transport of the IL-1 inhibitor. ) The method of any one of the preceding exemplary embodiments, wherein the amount of the IL-1 inhibitor that is administered is from about 1 mg to about 300 mg. 40) The method of exemplary embodiment 39, wherein the amount of the IL-1 inhibitor that is administered is from about 1 mg to about 100 mg.
41) The method of exemplary embodiment 40, wherein the amount of the IL-1 inhibitor that is administered is from about 5 mg to about 40 mg.
42) The method of any one of exemplary embodiments 1 to 41, wherein the amount of the IL-1 inhibitor is less than an amount that is effective when the IL-1 inhibitor is administered systemically.
43) The method of any one of the preceding exemplary embodiments, comprising
administering (i) an amount of the IL-1 inhibitor that is an induction dose.
44) The method of exemplary embodiment 43, further comprising (ii) administering an amount of the IL-1 inhibitor that is a maintenance dose following the administration of the induction dose.
45) The method of exemplary embodiment 43 or 44, wherein the induction dose is
administered once a day.
46) The method of exemplary embodiment 43 or 44, wherein the induction dose is
administered once every three days.
47) The method of exemplary embodiment 43 or 44, wherein the induction dose is
administered once a week.
48) The method of exemplary embodiment 44, wherein step (ii) is repeated one or more times. 49) The method of exemplary embodiment 44, wherein the induction dose is equal to the maintenance dose.
50) The method of exemplary embodiment 44, wherein the induction dose is greater than the maintenance dose. ) The method of exemplary embodiment 44, wherein the induction dose is 5 greater than the maintenance dose. ) The method of exemplary embodiment 44, wherein the induction dose is 2 greater than the maintenance dose. ) The method of any one of the preceding exemplary embodiments, wherein the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract as a single bolus. ) The method of any one of exemplary embodiments 1 to 52, wherein the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract as more than one bolus. ) The method of any one of exemplary embodiments 1 to 52, wherein the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract in a continuous manner. ) The method of exemplary embodiment 55, wherein the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract over a time period of 20 or more minutes. ) The method of any one of the preceding exemplary embodiments, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3 μg/ml. ) The method of exemplary embodiment 57, wherein the method provides a
concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.3 ) The method of exemplary embodiment 58, wherein the method provides a
concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.01 60) The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering an IL-1 inhibitor rectally to the subject.
61) The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering an IL-1 inhibitor via an enema to the subject.
62) The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering an IL-1 inhibitor via suppository to the subject.
63) The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering an IL-1 inhibitor via instillation to the rectum of the subject.
64) The method of exemplary embodiment 63, wherein the IL-1 inhibitor is Anakinra (Kineret®); modifications thereof having at least 90% sequence homology;
modifications thereof differing in the glycosylation pattern; and modifications thereof having at least 90% sequence homology and differing in the glycosylation pattern.
65) The method of exemplary embodiment 63, wherein the IL-1 inhibitor is Anakinra (Kineret®).
66) The method of any one of the preceding exemplary embodiments, wherein the
pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
a storage reservoir located within the housing and containing the IL-1 inhibitor, wherein a first end of the storage reservoir is connected to the first end of the housing; a mechanism for releasing the IL-1 inhibitor from the storage reservoir;
and;
an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the storage reservoir.
67) The method of exemplary embodiment 66, wherein the ingestible device further
comprises:
an electronic component located within the housing; and a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas.
68) The method of exemplary embodiment 66 or 67, wherein the ingestible device further comprises:
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
69) The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an electronic component located within the housing; a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;
a storage reservoir located within the housing,
wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
an exit valve located at the first end of the housing,
wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the storage reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
70) The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an electronic component located within the housing,
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;
a storage reservoir located within the housing,
wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
an injection device located at the first end of the housing,
wherein the jet injection device is configured to inject the dispensable substance out of the housing from the storage reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing.
71) The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an optical sensing unit located on a side of the housing,
wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;
a storage reservoir located within the housing, wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
a membrane in contact with the gas generating cell and configured to move or deform into the storage reservoir by a pressure generated by the gas generating cell; and
a dispensing outlet placed at the first end of the housing,
wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the storage reservoir.
72) The method of any one of exemplary embodiments 1-71, wherein the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.
73) The method of any one of exemplary embodiments 1-71, wherein the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US2015/052500, incorporated by reference herein in its entirety.
74) The method of any one of exemplary embodiments 1-73, wherein the pharmaceutical composition is not a dart-like dosage form.
75) A method of treating a disease of the large intestine of a subject, comprising:
delivering of an IL-1 inhibitor at a location in the proximal portion of the large intestine of the subject,
wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor.
76) The method of exemplary embodiment 75, wherein the disease of the large intestine is an inflammatory bowel disease.
77) The method of exemplary embodiment 75, wherein the disease of the large intestine is ulcerative colitis. 78) The method of exemplary embodiment 75, wherein the disease the large intestine is Crohn's disease.
79) The method of any one of exemplary embodiments 75 to 78, wherein the IL-1
inhibitor is delivered at a location in the proximal portion of the ascending colon.
80) The method of any one of exemplary embodiments 75 to 78, wherein the IL-1
inhibitor is delivered at a location in the proximal portion of the cecum.
81) The method of any one of exemplary embodiments 75 to 78, wherein the IL-1
inhibitor is delivered at a location in the proximal portion of the sigmoid colon.
82) The method of any one of exemplary embodiments 75 to 78, wherein the IL-1
inhibitor is delivered at a location in the proximal portion of the transverse colon.
83) The method of any one of exemplary embodiments 75 to 78, wherein the IL-1
inhibitor is delivered at a location in the proximal portion of the descending colon.
84) The method of any one of the preceding exemplary embodiments, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is the same IL-1 inhibitor as in exemplary embodiment 1 or 75; a different IL-1 inhibitor; or an agent having a different biological target from the IL-1 inhibitor.
85) The method of any one of the preceding exemplary embodiments, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is an agent suitable for treating an inflammatory bowel disease.
86) The method of exemplary embodiment 84 or 85, wherein the IL-1 inhibitor is
administered prior to the second agent.
87) The method of exemplary embodiment 84 or 85, wherein the IL-1 inhibitor is
administered after the second agent. 88) The method of exemplary embodiment 84 or 85, wherein the IL-1 inhibitor and the second agent are administered substantially at the same time.
89) The method of any one of exemplary embodiments 84 to 88, wherein the second
agent is administered intravenously.
90) The method of any one of exemplary embodiments 84 to 88, wherein the second
agent is administered subcutaneously. 91) The method of any one of exemplary embodiments 84 to 90, wherein the amount of the second agent is less than the amount of the second agent when the IL-1 inhibitor and the second agent are both administered systemically.
92) The method of exemplary embodiment 91, wherein the second agent is an IL-1
inhibitor.
93) In some aspects of these embodiments, the second agent is methotrexate.
94) The method of any one of exemplary embodiments 1 to 83, wherein the method does not comprise administering a second agent.
Endoscopes. Ingestible Devices, and Reservoirs containing the drug Direct visualization of the GI mucosa is useful to detect subtle mucosal alterations, as in inflammatory bowel diseases, as well as any flat or sessile lesions. The GI tract can be imaged using endoscopes, or more recently ingestible devices that are swallowed.
The technology behind standard colonoscopy consists of a long, semi-rigid insertion tube with a steerable tip (stiff if compared to the colon), which is pushed by the physician from the outside. However, invasiveness, patient discomfort, fear of pain, and -more often than not- the need for conscious sedation limit the take-up of screening colonoscopy.
Diagnosis and treatment in the GI tract are dominated by the use of flexible endoscopes. A few large companies, namely Olympus Medical Systems Co. (Tokyo, Japan), Pentax Medical Co. (Montvale, NJ, USA), Fujinon, Inc. (Wayne, NJ, USA) and Karl Storz GmbH & Co. KG (Tuttlingen, Germany), cover the majority of the market in flexible GI endoscopy. In a review of robotic endoscopic capsules, Journal of Micro-Bio Robotics 11.1-4 (2016): 1- 18, Ciuti et al. state that progress in micro-electromechanical systems (MEMS) technologies have led to the development of new endoscopic capsules with enhanced diagnostic capabilities, in addition to traditional visualization of mucosa (embedding, e.g. pressure, pH, blood detection and temperature sensors).
Endoscopes may comprise a catheter. As an example, the catheter may be a spray catheter. As an example, a spray catheter may be used to deliver dyes for diagnostic purposes. As an example, a spray catheter may be used to deliver a therapeutic agent at the site of disease in the GI tract. For example, the Olypmus PW-205 V is a ready-to-use spray catheter that enables efficient spraying for maximal differentiation of tissue structures during endoscopy, but may also be used to deliver drugs diseased tissue.
FIG. 1, disclosed in US Provisional Application No. 62/385,553, incorporated by reference herein in its entirety, illustrates an example of an ingestible device for localized delivery of pharmaceutical compositions disclosed herein, in accordance with particular implementations. The ingestible device 100 includes a piston or drive element 134 to push for drug delivery, in accordance with particular implementations described herein. The ingestible device 100 may have one or more batteries 131 placed at one end 102a of a housing 101 to provide power for the ingestible device 100. A printed circuit board (PCB) 132 may be placed adjacent to a battery or other power source 131, and a gas generating cell 103 may be mounted on or above the PCB 132. The gas generating cell 103 may be sealed from the bottom chamber (e.g., space including 131 and 132) of the ingestible device 100. A movable piston 134 may be placed adjacent to the gas generating cell 103. In this way, gas generation from the gas generating cell 103 may propel a piston 134 to move towards another end 102b of the housing 101 such that the dispensable substance in a reservoir compartment 135 can be pushed out of the housing through a dispensing outlet 107, e.g., the movement is shown at 136, with the piston 134 at a position after dispensing the substance. The dispensing outlet 107 may comprise a plug. The reservoir compartment 135 can store the dispensable substance (e.g., drug substance), or alternatively the reservoir compartment can house a storage reservoir 161 which comprises the dispensable substance. The reservoir
compartment 135 or storage reservoir 161 may have a volume of approximately 600 μΙ_, or even more dispensable substance, which may be dispensed in a single bolus, or gradually over a period of time. The battery cells 131 may have a height of 1.65 mm each, and one to three batteries may be used. The height of the piston may be reduced with custom molded part for around 1.5mm to save space. If the gas generating cell 103 is integrated with the piston 134, the overall height of the PCB, batteries and gas generating cell in total can be reduced to around 5 mm, thus providing more space for drug storage. For example, for an ingestible device of 7.8 mm in length (e.g., from end 102a to the other end 102b), a reservoir compartment 135 or a storage reservoir 161 of approximately 600μΙ. may be used for drug delivery. For another example, for an ingestible device of 17.5 mm in length, a reservoir compartment 135 or a storage reservoir 161 of approximately 1300μΙ. may be used for drug release.
In some implementations, at the reservoir 135 or 161 for storing a therapeutically effective amount of the IL-1 inhibitor forms at least a portion of the device housing 101. The therapeutically effective amount of the IL-1 inhibitor can be stored in the reservoir 135 or 161 at a particular pressure, for example, determined to be higher than a pressure inside the GI tract so that once the reservoir 135 or 161 is in fluid communication with the GI tract, the IL-1 inhibitor is automatically released. In certain implementations, the reservoir compartment 135 includes a plurality of chambers, and each of the plurality of the chambers stores a different dispensable substance or a different storage reservoir 161.
In certain embodiments, the storage reservoir 161 is a compressible component or has compressible side walls. In particular embodiments, the compressible component can be composed, at least in part, or coated (e.g., internally) with polyvinyl chloride (PVC), silicone, DEUP (di-2-ethylhexyl phthalate), Tyvek, polyester film, polyolefin, polyethylene, polyurethane, or other materials that inhibit the IL-1 inhibitor from sticking to the reservoir and provide a sterile reservoir environment for the IL-1 inhibitor. The storage reservoir 161 can be hermetically sealed. The reservoir compartment 135 or storage reservoir 161 can be configured to store IL-1 inhibitor in quantities in the range of 0.01 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.6mL - 2 mL. In some embodiments, the storage reservoir 161 is attachable to the device housing 101, for example, in the reservoir compartment. Accordingly, the storage reservoir 135 can be loaded with the IL-1 inhibitor prior to being positioned in and/or coupled to the ingestible device housing 101. The ingestible device housing 101 includes one or more openings configured as a loading port to load the dispensable substance into the reservoir compartment. In another embodiment, the ingestible device housing 101 includes one or more openings configured as a vent. In certain embodiments, the ingestible device housing 101 includes one or more actuation systems (e.g., gas generating cell 103) for pumping the IL-1 inhibitor from the reservoir 135. In some embodiments, the actuation system can include a mechanical, electrical, electromechanical, hydraulic, and/or fluid actuation system. For example, a chemical actuation means may use chemical reaction of mixing one or more reagents to generate a sufficient volume of gas to propel the piston or drive element 134 for drug release. The actuation system can be integrated into the reservoir compartment 135 or can be an auxiliary system acting on or outside of the reservoir compartment 135. For example, the actuation system can include pumping system for pushing/pulling the IL-1 inhibitor out of the reservoir compartment 135 or the actuation system can be configured to cause the reservoir compartment 135 to change structurally so that the volume inside of the reservoir
compartment 135 changes, thereby dispensing the IL-1 inhibitor from the reservoir compartment 135. The actuation system can include an energy storage component such as a battery or a capacitor for powering the actuation system. The actuation system can be actuated via gas pressure or a system storing potential energy, such as energy from an elastic reservoir component being expanded during loading of the reservoir and after being positioned in the ingestible device housing 101 being subsequently released from the expanded state when the ingestible device housing is at the location for release within the GI tract. In certain embodiments, the reservoir compartment 135 can include a membrane portion, whereby the IL-1 inhibitor is dispensed from the reservoir compartment 135 or storage reservoir 161 via osmotic pressure.
In particular embodiments the storage reservoir 161 is in a form of a bellow that is configured to be compressed via a pressure from the gas generating cell. The IL-1 inhibitor may be loaded into the bellow, which may be compressed by gas generation from the gas generating cell or other actuation means to dispense the dispensable substance through the dispensing outlet 107 and out of the housing 101. In some embodiments, the ingestible device includes a capillary plate placed between the gas generating cell and the first end of the housing, and a wax seal between the gas generating cell and the reservoir, wherein the wax seal is configured to melt and the dispensable substance is pushed through the capillary plate by a pressure from the gas generating cell. The shape of the bellow may aid in controlled delivery. The reservoir compartment 135 includes a dispensing outlet, such as a valve or dome slit 162 extending out of an end of the housing 101, in accordance with particular implementations. Thus when the bellow is being compressed, the dispensable substance may be propelled out of the bellow through the valve or the dome slit.
In certain embodiments, the reservoir compartment 135 includes one or more valves (e.g. a valve in the dispensing outlet 107) that are configured to move or open to fluidly couple the reservoir compartment 135 to the GI tract. In certain embodiments, a housing wall of the housing 101 can form a portion of the reservoir compartment 135. In certain embodiments, the housing walls of the reservoir serve as a gasket. One or more of the one or more valves are positioned in the housing wall of the device housing 101 , in accordance with particular implementations. One or more conduits may extend from the reservoir 135 to the one or more valves, in certain implementations.
In certain embodiments, a housing wall of the housing 101 can be formed of a material that is configured to dissolve, for example, in response to contact at the disease site. In certain embodiments, a housing wall of the housing 101 can be configured to dissolve in response to a chemical reaction or an electrical signal. The one or more valves and/or the signals for causing the housing wall of the housing 101 to dissolve or dissipate can be controlled by one or more processors or controllers positioned on PCB 132 in the device housing 101. The controller is communicably coupled to one or more sensors or detectors configured to determine when the device housing 101 is proximate to a disease site. The sensors or detectors comprise a plurality of electrodes comprising a coating, in certain implementations. Releasing of the IL-1 inhibitor from the reservoir compartment 135 is triggered by an electric signal from the electrodes resulting from the interaction of the coating with the one or more sites of disease site. The one or more sensors can include a chemical sensor, an electrical sensor, an optical sensor, an electromagnetic sensor, a light sensor, and/or a radiofrequency sensor.
In particular embodiments, the device housing 101 can include one or more pumps configured to pump the therapeutically effective amount of the IL-1 inhibitor from the reservoir compartment 135. The pump is communicably coupled to the one or more controllers. The controller is configured to activate the pump in response to detection by the one or more detectors of the disease site and activation of the valves to allow the reservoir 135 to be in fluid communication with the GI tract. The pump can include a fluid actuated pump, an electrical pump, or a mechanical pump.
In certain embodiments, the device housing 101 comprises one or more anchor systems for anchoring the device housing 101 or a portion thereof at a particular location in the GI tract adjacent the disease site. In some embodiments, a storage reservoir comprises an anchor system, and the storage reservoir comprising a releasable substance is anchored to the GI tract. The anchor system can be activated by the controller in response to detection by the one or more detectors of the disease site. In certain implementations, the anchor system includes legs or spikes configured to extend from the housing wall(s) of the device housing 101. The spikes can be configured to retract and/or can be configured to dissolve over time. An example of an attachable device that becomes fixed to the interior surface of the GI tract is described in PCT Patent Application PCT/US2015/012209, "Gastrointestinal Sensor Implantation System", filed January 21, 2015, which is hereby incorporated by reference herein in its entirety.
In certain embodiments, the reservoir is an anchorable reservoir, which is a reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract adjacent the disease site. In certain embodiments, the anchor system includes legs or spikes or other securing means such as a piercing element, a gripping element, a magnetic-flux-guiding element, or an adhesive material, configured to extend from the anchorable reservoir of the device housing. The spikes can be configured to retract and/or can be configured to dissolve over time. In some embodiments, the anchorable reservoir is suitable for localizing,positioning and/or anchoring. In some embodiments, the anchorable reservoir is suitable for localizing, and positioning and/or anchoring by an endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for oral administration. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for rectal administration. Accordingly, provided herein in some embodiments is an anchorable reservoir is connected to an endoscope wherein the anchorable reservoir comprises a therapeutically effective amount of the IL-1 inhibitor. In some embodiments the endoscope is fitted with a spray catheter.
Exemplary embodiments of anchorable reservoirs are as follows. In more particular examples of the following exemplary embodiments the reservoir is connected to an endoscope.
In one embodiment, the anchorable reservoir comprises an implant capsule for insertion into a body canal to apply radiation treatment to a selected portion of the body canal. The reservoir includes a body member defining at least one therapeutic treatment material receiving chamber and at least one resilient arm member associated with the body member for removably engaging the body canal when the device is positioned therein.
In one embodiment the anchorable reservoir has multiple suction ports and permits multiple folds of tissue to be captured in the suction ports with a single positioning of the device and attached together by a tissue securement mechanism such as a suture, staple or other form of tissue bonding. The suction ports may be arranged in a variety of configurations on the reservoir to best suit the desired resulting tissue orientation.
In some embodiments an anchorable reservoir comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened. The catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa. A second stimulation/sense electrode is located at the fixation site.
In some embodiments a reservoir for sensing one or more parameters of a patient is anchored to a tissue at a specific site and is released from a device, using a single actuator operated during a single motion. As an example, a delivery device may anchor the capsule to the tissue site and release the reservoir from the delivery device during a single motion of the actuator.
In some embodiments a device is provided comprising: a reservoir configured to contain a fluid, the reservoir having at least one outlet through which the fluid may exit the reservoir; a fluid contained within the reservoir; a primary material contained within the reservoir and having a controllable effective concentration in the fluid; and at least one electromagnetically responsive control element located in the reservoir or in a wall of the reservoir and adapted for modifying the distribution of the primary material between a first active form carried in the fluid and a second form within the reservoir in response to an incident electromagnetic control signal, the effective concentration being the concentration of the first active form in the fluid, whereby fluid exiting the reservoir carries the primary material in the first active form at the effective concentration.
In some embodiments systems and methods are provided for implementing or deploying medical or veterinary devices or reservoirs (a) operable for anchoring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of anchoring, (e) facilitating a "primary" material supply deployable within a stomach for an extended and/or controllable period, (f) anchored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.
In certain embodiments, the reservoir is attachable to an ingestible device. In certain embodiments, the ingestible device comprises a housing and the reservoir is attachable to the housing. In certain embodiments, the attachable reservoir is also an anchorable reservoir, such as an anchorable reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract as disclosed hereinabove.
Accordingly, in certain embodiments, provided herein is an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract as disclosed herein, wherein the IL-1 inhibitor is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.
In certain embodiments, provided herein is an attachable reservoir containing an IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein the IL-1 inhibitor is released by device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
In certain embodiments, provided herein is an attachable reservoir containing an IL-1 inhibitor, wherein the reservoir is attachable to a device housing to form an ingestible device that is suitable for oral administration to a subject and that is capable of releasing the IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
In particular implementation the ingestible device includes cameras (e.g., video cameras) that affords inspection of the entire GI tract without discomfort or the need for sedation, thus avoiding many of the potential risks of conventional endoscopy. Video imaging can be used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease). In some embodiments, the ingestible device 101 may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device. Examples of video imaging capsules include Medtronic' s PillCam™, Olympus' Endocapsule®, and Intro Medic's MicroCam™. For a review of imaging capsules, see Basar et al. "Ingestible Wireless Capsule Technology: A Review of Development and Future Indication" International Journal of Antennas and Propagation (2012); 1-14). Other imaging technologies implemented with the device 101 can include thermal imaging cameras, and those that employ ultrasound or Doppler principles to generate different images (see Chinese patent application
CN104473611 : "Capsule endoscope system having ultrasonic positioning function".
Ingestible devices can be equipped with sources for generating reflected light, including light in the Ultraviolet, Visible, Near-infrared and/or Mid-infrared spectrum, and the corresponding detectors for spectroscopy and hyperspectral imaging. Likewise, autofluorescense may be used to characterize GI tissue (e.g., subsurface vessel information), or low-dose radiation (see Check-Cap™) can be used to obtain 3D reconstructed images.
Device Components
An ingestible device in accordance with particular embodiments of the present invention may comprise a component made of a non-digestible material and containing the IL-1 inhibitor. In some embodiments, the material is plastic.
It is envisaged that the device is single-use. The device is loaded with a drug prior to the time of administration. In some embodiments, it may be preferred that there is provided a medicinal product comprising the device pre-filled with the drug.
Localization components Various implementations may be used for localization of ingestible devices within the GI tract. For example, certain implementations can include one or more electromagnetic sensor coils, magnetic fields, electromagnetic waves, electric potential values, ultrasound positioning systems, gamma scintigraphy techniques or other radio-tracker technology have been described by others. Alternatively, imaging can be used to localize, for example, using anatomical landmarks or more complex algorithms for 3D reconstruction based on multiple images. Other technologies rely on radio frequency, which relies on sensors placed externally on the body to receive the strength of signals emitted by the capsule. Ingestible devices may also be localized based on reflected light in the medium surrounding the device; pH;
temperature; time following ingestion; and/or acoustic signals.
Anchoring components Several systems may actively actuate and control the capsule position and orientation in different sections of the GI tract. Examples include leg-like or anchor-like mechanisms that can be deployed by an ingestible device to resist peristaltic forces in narrowed sections of the GI tract, such as the intestine, and anchor the device to a location. Other systems employ magnetic shields of different shapes that can interact with external magnetic fields to move the device. These mechanisms may be particularly useful in areas outside of the small intestine, like the cecum and large intestine.
An anchoring mechanism may be a mechanical mechanism. For example, a device may be a capsule comprising a plurality of legs configured to steer the capsule. The number of legs in the capsule may be, for example, two, four, six, eight, ten or twelve. The aperture between the legs of the device may be up to about 35 mm; about 30 to about 35 mm; about 35 to about 75 mm; or about 70 to about 75 mm. The contact area of each leg may be varied to reduce impact on the tissue. One or more motors in the capsule may each actuate a set of legs independently from the other. The motors may be battery-powered motors.
An anchoring mechanism may be a non-mechanical mechanism. For example, a device may be a capsule comprising a permanent magnet located inside the capsule. The capsule may be anchored at the desired location of the GI tract by an external magnetic field. An anchoring mechanism may comprise a non-mechanical mechanism and a mechanical mechanism. For example, a device may be a capsule comprising one or more legs, one or more of which are coated with an adhesive material.
Locomotion components
Ingestible devices can be active or passive, depending on whether they have controlled or non-controlled locomotion. Passive (non-controlled) locomotion is more commonly used among ingestible devices given the challenges of implementing a locomotion module. Active (controlled) locomotion is more common in endoscopic ingestible capsules. For example, a capsule may comprise a miniaturized locomotion system (internal locomotion). Internal locomotion mechanisms may employ independent miniaturized propellers actuated by DC brushed motors, or the use of water jets. As an example, a mechanism may comprise flagellar or flap-based swimming mechanisms. As an example, a mechanism may comprise cyclic compression/extension shape-memory alloy (SMA) spring actuators and anchoring systems based on directional micro-needles. As an example, a mechanism may comprise six SMA actuated units, each provided with two SMA actuators for enabling bidirectional motion. As an example, a mechanism may comprise a motor adapted to electrically stimulating the GI muscles to generate a temporary restriction in the bowel.
As an example, a capsule may comprise a magnet and motion of the capsule is caused by an external magnetic field. For example, a locomotion system may comprise an ingestible capsule and an external magnetic field source. For example, the system may comprise an ingestible capsule and magnetic guidance equipment such as, for example, magnetic resonance imaging and computer tomography, coupled to a dedicated control interface. In some embodiments drug release mechanisms may also be triggered by an external condition, such as temperature, pH, movement, acoustics, or combinations thereof.
Use of an endoscope or an ingestible device in biopsy and surgery
Ingestible devices may comprise a mechanism adapted to permit the collection of tissue samples. In some examples, this is achieved using electro-mechanical solutions to collect and store the sample inside an ingestible device. As an example, a biopsy mechanism may include a rotational tissue cutting razor fixed to a torsional spring or the use of microgrippers to fold and collect small biopsies. As an example, Over-the-scope clips (OTSC®) may be used to perform endoscopic surgery and/or biopsy. As an example of the methods disclosed herein, the method may comprise releasing an IL-1 inhibitor and collecting a sample inside the device. As an example, the method may comprise releasing an IL-1 inhibitor and collecting a sample inside the device in a single procedure.
Communication systems An ingestible device may be equipped with a communication system adapted to transmit and/or receive data, including imaging and/or localization data. As an example, a communication system may employ radiofrequency transmission. Ingestible devices using radiofrequency communication are attractive because of their efficient transmission through the layers of the skin. This is especially true for low frequency transmission (UHF-433 ISM and lower, including the Medical Device Radio Communication Service band (MDRS) band 402-406MHz). In another embodiment, acoustics are used for communications, including the transmission of data. For example, an ingestible capsule may be able to transmit information by applying one or more base voltages to an electromechanical transducer or piezoelectric (e.g., PZT, PVDF, etc.) device to cause the piezoelectric device to ring at particular frequencies, resulting in an acoustic transmission. A multi-sensor array for receiving the acoustic transmission may include a plurality of acoustic transducers that receive the acoustic transmission from a movable device such as an ingestible capsule as described in US Patent Application No. 11/851214 filed September 6, 2007, incorporated by reference herein in its entirety.
As an example, a communication system may employ human body communication technology. Human body communication technology uses the human body as a conductive medium, which generally requires a large number of sensor electrodes on the skin. As an example, a communication system may integrate a data storage system. Environmental Sensors
In some embodiments the device may comprise environmental sensors to measure pH, temperature, transit times, or combinations thereof. Other examples of environmental sensors include, but are not limited to a capacitance sensor, an impedance sensor, a heart rate sensor, acoustic sensor such as a microphone or hydrophone, image sensor, and/or a movement sensor. In one embodiment, the ingestible device comprises a plurality of different environmental sensors for generating different kinds of environmental data.
In order to avoid the problem of capsule retention, a thorough past medical and surgical history should be undertaken. In addition, several other steps have been proposed, including performing investigations such as barium follow -through. In cases where it is suspected that there is a high risk of retention, the patient is given a patency capsule a few days before swallowing an ingestible device. Any dissolvable non-endoscopic capsule may be used to determine the patency of the GI tract. The patency capsule is usually the same size as the ingestible device and can be made of cellophane. In some embodiments, the patency capsule contains a mixture of barium and lactose, which allows visualization by x-ray.
The patency capsule may also include a radiotag or other label, which allows for it to be detected by radio-scanner externally. The patency capsule may comprise wax plugs, which allow for intestinal fluid to enter and dissolve the content, thereby dividing the capsule into small particles.
Accordingly, in some embodiments, the methods herein comprise (a) identifying a subject having a disease of the gastrointestinal tract and (b) evaluating the subject for suitability to treatment. In some embodiments, the methods herein comprise evaluating for suitability to treatment a subject identified as having a disease of the gastrointestinal tract. In some embodiments, evaluating the subject for suitability to treatment comprises determining the patency of the subject's GI tract.
In some embodiments, an ingestible device comprises a tissue anchoring mechanism for anchoring the ingestible device to a subject's tissue. For example, an ingestible device could be administered to a subject and once it reaches the desired location, the tissue attachment mechanism can be activated or deployed such that the ingestible device, or a portion thereof, is anchored to the desired location. In some embodiments, the tissue anchoring mechanism is reversible such that after initial anchoring, the tissue attachment device is retracted, dissolved, detached, inactivated or otherwise rendered incapable of anchoring the ingestible device to the subject's tissue. In some embodiments the attachment mechanism is placed endoscopically. In some embodiments, a tissue anchoring mechanism comprises an osmotically- driven sucker. In some embodiments, the osmotically-driven sucker comprises a first valve on the near side of the osmotically-driven sucker (e.g., near the subject's tissue) and a second one-way valve that is opened by osmotic pressure on the far side of the osmotically-driven sucker, and an internal osmotic pump system comprising salt crystals and semi -permeable membranes positioned between the two valves. In such embodiments, osmotic pressure is used to adhere the ingestible device to the subject's tissue without generating a vacuum within the ingestible capsule. After the osmotic system is activated by opening the first valve, fluid is drawn in through the sucker and expelled through the second burst valve. Fluid continues to flow until all the salt contained in the sucker is dissolved or until tissue is drawn into the sucker. As liminal fluid is drawn through the osmotic pump system, solutes build up between the tissue and the first valve, reducing osmotic pressure. In some embodiments, the solute buildup stalls the pump before the tissue contacts the valve, preventing tissue damage. In some embodiments, a burst valve is used on the far side of the osmotically-driven sucker rather than a one-way valve, such that luminal fluid eventually clears the saline chamber and the osmotic flow reverses, actively pushing the subject's tissue out of the sucker. In some embodiments, the ingestible device may be anchored to the interior surface of tissues forming the GI tract of a subject. In one embodiment, the ingestible device comprises a connector for anchoring the device to the interior surface of the GI tract. The connector may be operable to ingestible device to the interior surface of the GI tract using an adhesive, negative pressure and/or fastener.
In some embodiments a device comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened. The catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa. A second stimulation/sense electrode is located at the fixation site.
In some embodiments a device includes a fixation mechanism to anchor the device to tissue within a body lumen, and a mechanism to permit selective de-anchoring of the device from the tissue anchoring site without the need for endoscopic or surgical intervention. An electromagnetic device may be provided to mechanically actuate the de-anchoring
mechanism. Alternatively, a fuse link may be electrically blown to de-anchor the device. As a further alternative, a rapidly degradable bonding agent may be exposed to a degradation agent to de-anchor the device from a bonding surface within the body lumen.
In some embodiments a device is as disclosed in patent publication
WO2015112575 Al, incorporated by reference herein in its entirety. The patent publication is directed to a gastrointestinal sensor implantation system. In some embodiments an orally- administrable capsule comprises a tissue capture device or reservoir removably coupled to the orally-administrable capsule, where the tissue capture device including a plurality of fasteners for anchoring the tissue capture device to gastrointestinal tissue within a body
In some embodiments, the ingestible device contains an electric energy emitting means, a radio signal transmitting means, a medicament storage means and a remote actuatable medicament releasing means. The capsule signals a remote receiver as it progresses through the alimentary tract in a previously mapped route and upon reaching a specified site is remotely triggered to release a dosage of medicament. Accordingly, in some embodiments, releasing the IL-1 inhibitor is triggered by a remote electromagnetic signal.
In some embodiments, the ingestible device includes a housing introducible into a body cavity and of a material insoluble in the body cavity fluids, but formed with an opening covered by a material which is soluble in body cavity fluids. A diaphragm divides the interior of the housing into a medication chamber including the opening, and a control chamber. An electrolytic cell in the control chamber generates a gas when electrical current is passed therethrough to deliver medication from the medication chamber through the opening into the body cavity at a rate controlled by the electrical current. Accordingly, in some embodiments, releasing the IL-1 inhibitor is triggered by generation in the composition of a gas in an amount sufficient to expel the IL-1 inhibitor.
In some embodiments, the ingestible device includes an oral drug delivery device having a housing with walls of water permeable material and having at least two chambers separated by a displaceable membrane. The first chamber receives drug and has an orifice through which the drug is expelled under pressure. The second chamber contains at least one of two spaced apart electrodes forming part of an electric circuit which is closed by the ingress of an aqueous ionic solution into the second chamber. When current flows through the circuit, gas is generated and acts on the displaceable membrane to compress the first chamber and expel the active ingredient through the orifice for progressive delivery to the gastrointestinal tract.
In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.
In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.
In some embodiments, the ingestible device is a device a swallowable capsule. A sensing module is disposed in the capsule. A bioactive substance dispenser is disposed in the capsule. A memory and logic component is disposed in the capsule and in communication with the sensing module and the dispenser.
In some embodiments, localized administration is implemented via an electronic probe which is introduced into the intestinal tract of a living organism and which operates autonomously therein, adapted to deliver one or more therapy agents. In one embodiment, the method includes loading the probe with one or more therapy agents, and selectively releasing the agents from the probe at a desired location of the intestinal tract in order to provide increased efficacy over traditional oral ingestion or intravenous introduction of the agent(s).
In some embodiments, the ingestible device includes electronic control means for dispensing the drug substantially to the diseased tissue sites of the GI tract, according to a pre-determined drug release profile obtained prior to administration from the specific mammal. Accordingly, in some embodiments, releasing the IL-1 inhibitor is triggered by an electromagnetic signal generated within the device. The releasing may occur according to a pre-determined drug release profile.
In some embodiments, the ingestible device can include at least one guide tube, one or more tissue penetrating members positioned in the guide tube, a delivery member, an actuating mechanism and a release element. The release element degrades upon exposure to various conditions in the intestine so as to release and actuate the actuating mechanism.
Embodiments of the invention are particularly useful for the delivery of drugs which are poorly absorbed, tolerated and/or degraded within the GI tract.
In some embodiments, the ingestible device includes an electronic pill comprising at least one reservoir with a solid powder or granulate medicament or formulation, a discharge opening and an actuator responsive to control circuitry for displacing medicine from the reservoir to the discharge opening. The medicament or formulation comprises a dispersion of one or more active ingredients~e.g., solids in powder or granulate form—in an inert carrier matrix. Optionally, the active ingredients are dispersed using intestinal moisture absorbed into the pill via a semi-permeable wall section.
In some embodiments, the ingestible device includes a sensor comprising a plurality of electrodes having a miniature size and a lower power consumption and a coating exterior to the electrodes, wherein the coating interacts with a target condition thereby producing a change in an electrical property of the electrodes, wherein the change is transduced into an electrical signal by the electrodes. Accordingly, in some embodiments, releasing the IL-1 inhibitor is triggered by an electric signal by the electrodes resulting from the interaction of the coating with the one or more sites of disease. Further provided herein is a system for medication delivery comprising such sensor and a pill.
In some embodiments, the ingestible device includes an electronic pill comprising a plurality of reservoirs, each of the reservoirs comprising a discharge opening covered by a removable cover. The pill comprises at least one actuator responsive to control circuitry for removing the cover from the discharge opening. The actuator can for example be a spring loaded piston breaking a foil cover when dispensing the medicament. Alternatively, the cover can be a rotatable disk or cylinder with an opening which can be brought in line with the discharge opening of a reservoir under the action of the actuator.
In some embodiments, the ingestible device includes an electronically and remotely controlled pill or medicament delivery system. The pill includes a housing; a reservoir for storing a medicament; an electronically controlled release valve or hatch for dispensing one or more medicaments stored in the reservoir while traversing the gastrointestinal tract; control and timing circuitry for opening and closing the valve; and a battery. The control and timing circuitry opens and closes the valve throughout a dispensing time period in accordance with a preset dispensing timing pattern which is programmed within the control and timing circuitry. RF communication circuitry receives control signals for remotely overriding the preset dispensing timing pattern, reprogramming the control and timing circuitry or terminating the dispensing of the medicament within the body. The pill includes an RFID tag for tracking, identification, inventory and other purposes.
In some embodiments, the ingestible device includes an electronic capsule which has a discrete drive element comprising: a housing, electronics for making the electronic capsule operable, a pumping mechanism for dosing and displacing a substance, a power source for powering the electronic capsule and enabling the electronics and the pumping mechanism to operate, and a locking mechanism; and a discrete payload element comprising: a housing, a reservoir for storing the substance, one or more openings in the housing for releasing the substance from the reservoir and a locking mechanism for engaging the drive element locking mechanism. Engagement of the drive element locking mechanism with the payload element locking mechanism secures the drive element to the payload element, thereby making the electronic capsule operable and specific.
In some embodiments, the ingestible device may be a mucoadhesive device configured for release of an active agent.
In some embodiments, the ingestible device includes an apparatus that includes an ingestible medical treatment device, which is configured to initially assume a contracted state having a volume of less than 4 cm3. The device includes a gastric anchor, which initially assumes a contracted size, and which is configured to, upon coming in contact with a liquid, expand sufficiently to prevent passage of the anchor through a round opening having a diameter of between 1 cm and 3 cm. The device also includes a duodenal unit, which is configured to pass through the opening, and which is coupled to the gastric anchor such that the duodenal unit is held between 1 cm and 20 cm from the gastric anchor.
In some embodiments, the ingestible device includes a medical robotic system and method of operating such comprises taking intraoperative external image data of a patient anatomy, and using that image data to generate a modeling adjustment for a control system of the medical robotic system (e.g., updating anatomic model and/or refining instrument registration), and/or adjust a procedure control aspect (e.g., regulating substance or therapy delivery, improving targeting, and/or tracking performance).
In one embodiment the ingestible device may also include one or more environmental sensors. Environmental sensor may be used to generate environmental data for the environment external to device in the gastrointestinal (GI) tract of the subject. In some embodiments, environmental data is generated at or near the location within the GI tract of the subject where a drug is delivered. Examples of environmental sensor include, but are not limited to a capacitance sensor, a temperature sensor, an impedance sensor, a pH sensor, a heart rate sensor, acoustic sensor, image sensor (e.g., a hydrophone), and/or a movement sensor (e.g., an accelerometer). In one embodiment, the ingestible device comprises a plurality of different environmental sensors for generating different kinds of environmental data.
In one embodiment, the image sensor is a video camera suitable for obtaining images in vivo of the tissues forming the GI tract of the subject. In one embodiment, the
environmental data is used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease). In some embodiments, the ingestible device may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device.
In another embodiment, the ingestible device described herein may be localized using a gamma scintigraphy technique or other radio-tracker technology as employed by Phaeton Research's Enterion™ capsule (See Teng, Renli, and Juan Maya. "Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers." Journal of Drug Assessment 3.1 (2014): 43-50), or monitoring the magnetic field strength of permanent magnet in the ingestible device (see T. D. Than, et al, "A review of localization systems for robotic endoscopic capsules," IEEE Trans. Biomed. Eng., vol. 59, no. 9, pp. 2387-2399, Sep. 2012). In one embodiment, drug delivery is triggered when it encounters the site of disease in the GI tract.
In one embodiment, the one or more environmental sensors measure pH, temperature, transit times, or combinations thereof.
In some embodiments, releasing the IL-1 inhibitor is dependent on the pH at or in the vicinity of the location. In some embodiments the pH in the jejunum is from 6.1 to 7.2, such as 6.6. In some embodiments the pH in the mid small bowel is from 7.0 to 7.8, such as 7.4. In some embodiments the pH in the ileum is from 7.0 to 8.0, such as 7.5. In some embodiments the pH in the right colon is from 5.7 to 7.0, such as 6.4. In some embodiments the pH in the mid colon is from 5.7 to 7.4, such as 6.6. In some embodiments the pH in the left colon is from 6.3 to 7.7, such as 7.0. In some embodiments, the gastric pH in fasting subjects is from about 1.1 to 2.1, such as from 1.4 to 2.1, such as from 1.1 to 1.6, such as from 1.4 to 1.6. In some embodiments, the gastric pH in fed subjects is from 3.9 to 7.0, such as from 3.9 to 6.7, such as from 3.9 to 6.4, such as from 3.9 to 5.8, such as from 3.9 to 5.5, such as from 3.9 to 5.4, such as from 4.3 to 7.0, such as from 4.3 to 6.7, such as from 4.3 to
6.4, such as from 4.3 to 5.8, such as from 4.3 to 5.5, such as from 4.3 to 5.4. In some embodiments, the pH in the duodenum is from 5.8 to 6.8, such as from 6.0 to 6.8, such as from 6.1 to 6.8, such as from 6.2 to 6.8, such as from 5.8 to 6.7, such as from 6.0 to 6.7, such as from 6.1 to 6.7, such as from 6.2 to 6.7, such as from 5.8 to 6.6, such as from 6.0 to 6.6, such as from 6.1 to 6.6, such as from 6.2 to 6.6, such as from 5.8 to 6.5, such as from 6.0 to
6.5, such as from 6.1 to 6.5, such as from 6.2 to 6.5.
In some embodiments, releasing the IL-1 inhibitor is not dependent on the pH at or in the vicinity of the location. In some embodiments, releasing the IL-1 inhibitor is triggered by degradation of a release component located in the capsule. In some embodiments, the IL-1 inhibitor is not triggered by degradation of a release component located in the capsule. In some embodiments, wherein releasing the IL-1 inhibitor is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments, releasing the IL-1 inhibitor is not dependent on bacterial activity at or in the vicinity of the location.
In some embodiments, the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
a reservoir located within the housing and containing the IL-1 inhibitor, wherein a first end of the reservoir is attached to the first end of the housing;
a mechanism for releasing the IL-1 inhibitor from the reservoir;
and;
an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the reservoir.
In some embodiments, the ingestible device further comprises:
an electronic component located within the housing; and
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas.
In some embodiments, the ingestible device further comprises:
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
In some embodiments, the pharmaceutical composition is an ingestible device, comprising: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
an exit valve located at the first end of the housing,
wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and
a safety device placed within or attached to the housing, wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
In some embodiments, the pharmaceutical composition is an ingestible device, comprising: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an electronic component located within the housing,
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
an injection device located at the first end of the housing,
wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing.
In some embodiments, the pharmaceutical composition is an ingestible device, comprising: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an optical sensing unit located on a side of the housing,
wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance; a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and
a dispensing outlet placed at the first end of the housing,
wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir. In some embodiments, the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.
In some embodiments, the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application
PCT/US2015/052500, incorporated by reference herein in its entirety.
In some embodiments, the pharmaceutical composition is not a dart-like dosage form.
In case of conflict between the present specification and any subject matter incorporated by reference herein, the present specification, including definitions, will control. Locations of treatment
In some embodiments, the IL-1 inhibitor is delivered at a location in the large intestine of the subject. In some embodiments, the location is in the proximal portion of the large intestine. In some embodiments, the location is in the distal portion of the large intestine.
In some embodiments, the IL-1 inhibitor is delivered at a location in the ascending colon of the subject. In some embodiments, the location is in the proximal portion of the ascending colon. In some embodiments, the location is in the distal portion of the ascending colon.
In some embodiments, the IL-1 inhibitor is delivered at a location in the cecum of the subject. In some embodiments, the location is in the proximal portion of the cecum. In some embodiments, the location is in the distal portion of the cecum. In some embodiments, the IL-1 inhibitor is delivered at a location in the sigmoid colon of the subject. In some embodiments, the location is in the proximal portion of the sigmoid colon. In some embodiments, the location is in the distal portion of the sigmoid colon.
In some embodiments, the IL-1 inhibitor is delivered at a location in the transverse colon of the subject. In some embodiments, the location is in the proximal portion of the transverse colon. In some embodiments, the location is in the distal portion of the transverse colon.
In some embodiments, the IL-1 inhibitor is delivered at a location in the descending colon of the subject. In some embodiments, the location is in the proximal portion of the descending colon. In some embodiments, the location is in the distal portion of the descending colon.
In some embodiments, the IL-1 inhibitor is delivered at a location in the small intestine of the subject. In some embodiments, the location is in the proximal portion of the small intestine. In some embodiments, the location is in the distal portion of the small intestine.
In some embodiments, the IL-1 inhibitor is delivered at a location in the duodenum of the subject. In some embodiments, the location is in the proximal portion of the duodenum. In some embodiments, the location is in the distal portion of the duodenum.
In some embodiments, the IL-1 inhibitor is delivered at a location in the jejunum of the subject. In some embodiments, the location is in the proximal portion of the jejunum. In some embodiments, the location is in the distal portion of the jejunum.
In some embodiments, the IL-1 inhibitor is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract. In some
embodiments, the IL-1 inhibitor is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the duodenum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the duodenum and a second site of disease is in the stomach and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the duodenum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the duodenum and a second site of disease is in the stomach and no site of disease is present at other locations in the
gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the jejunum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the jejunum and a second site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the jejunum of the subject and is not delivered at other locations in the
gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the jejunum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the jejunum and a second site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the jejunum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the jejunum and a second site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the ileum of the subject. In some embodiments, the location is in the proximal portion of the ileum. In some embodiments, the location is in the distal portion of the ileum.
In some embodiments, the IL-1 inhibitor is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract. In some
embodiments, the IL-1 inhibitor is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the ileum of the subject and is not delivered at other locations in the
gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the
gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the
gastrointestinal tract.
In some embodiments, the IL-1 inhibitor is delivered at a location in the cecum of the subject and is not delivered at other locations in the gastrointestinal tract. In some
embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the cecum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, the IL-1 inhibitor is delivered at a location in the distal portion of the ileum or the proximal portion of the ascending colon of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the cecum and a second site of disease is in the ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, the location at which the IL-1 inhibitor is delivered is proximate to a site of disease. The site of disease may be, for example, an injury, inflamed tissue, or one or more lesions. In some embodiments, the location at which the IL-1 inhibitor is delivered is proximate to one or more sites of disease. In some embodiments, the IL-1 inhibitor is delivered 50 cm or less from the one or more sites of disease. In some
embodiments, the IL-1 inhibitor is delivered 40 cm or less from the one or more sites of disease. In some embodiments, the IL-1 inhibitor is delivered 30 cm or less from the one or more sites of disease. In some embodiments, the IL-1 inhibitor is delivered 20 cm or less from the one or more sites of disease. In some embodiments, the IL-1 inhibitor is delivered 10 cm or less from the one or more sites of disease. In some embodiments, the IL-1 inhibitor is delivered 5 cm or less from the one or more sites of disease. In some embodiments, the IL- 1 inhibitor is delivered 2 cm or less from the one or more sites of disease. In some embodiments, the method further comprises identifying the one or more sites of disease by a method comprising imaging of the gastrointestinal tract. In some embodiments, imaging of the gastrointestinal tract comprises video imaging. In some embodiments, imaging of the gastrointestinal tract comprises thermal imaging. In some embodiments, imaging of the gastrointestinal tract comprises ultrasound imaging. In some embodiments, imaging of the gastrointestinal tract comprises Doppler imaging.
In some embodiments the method does not comprise releasing more than 20 % of the IL-1 inhibitor at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 10 % of the IL-1 inhibitor at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 5 % of the IL-1 inhibitor at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 4 % of the IL-1 inhibitor at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 3 % of the IL-1 inhibitor at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 2 % of the IL-1 inhibitor at a location that is not proximate to a site of disease.
In some embodiments the method comprises releasing the IL-1 inhibitor at a location that is proximate to a site of disease, wherein the IL-1 inhibitor and, if applicable, any carriers, excipients or stabilizers admixed with the IL-1 inhibitor, are substantially
unchanged, at the time of release of the IL-1 inhibitor at the location, relatively to the time of administration of the composition to the subject.
In some embodiments the method comprises releasing the IL-1 inhibitor at a location that is proximate to a site of disease, wherein the IL-1 inhibitor and, if applicable, any carriers, excipients or stabilizers admixed with the IL-1 inhibitor, are substantially unchanged by any physiological process (such as, but not limited to, degradation in the stomach), at the time of release of the IL-1 inhibitor at the location, relatively to the time of administration of the composition to the subject. In some embodiments, the IL-1 inhibitor is delivered to the location by mucosal contact.
In some embodiments, the IL-1 inhibitor is delivered to the location by a process that does not comprise systemic transport of the IL-1 inhibitor.
In some embodiments, the amount of the IL-1 inhibitor that is administered is from about 1 mg to about 500 mg. In some embodiments, the amount of the IL-1 inhibitor that is administered is from about 1 mg to about 100 mg. In some embodiments, the amount of the IL-1 inhibitor that is administered is from about 5 mg to about 40 mg.
In some embodiments, the amount of the IL-1 inhibitor that is administered is less than an amount that is effective when the IL-1 inhibitor is delivered systemically.
In some embodiments, the amount of the IL-1 inhibitor that is administered is an induction dose. In some embodiments, such induction dose is effective to induce remission of the T F and cytokine storm and healing of acute inflammation and lesions. In some embodiments, the induction dose is administered once a day. In some embodiments, the induction dose is administered once every three days. In some embodiments, the induction dose is administered once a week. In some embodiments, the induction dose is administered once a day, once every three days, or once a week, over a period of about 6-8 weeks.
In some embodiments, the method comprises administering (i) an amount of the IL-1 inhibitor that is an induction dose, and (ii) an amount of the IL-1 inhibitor that is a maintenance dose, in this order. In some embodiments, step (ii) is repeated one or more times. In some embodiments, the induction dose is equal to the maintenance dose. In some embodiments, the induction dose is greater than the maintenance dose. In some
embodiments, the induction dose is five times greater than the maintenance dose. In some embodiments, the induction dose is two times greater than the maintenance dose.
In some embodiments an induction dose of IL-1 inhibitor and a maintenance dose of IL-1 inhibitor are each administered to the subject by administering a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the pharmaceutical composition is a device. In some embodiments an induction dose of IL-1 inhibitor is administered to the subject in a different manner from the maintenance dose. As an example, the induction dose may be administered systemically. In some embodiments, the induction dose may be administered other than orally. As an example, the induction dose may be administered rectally. As an example, the induction dose may be administered intravenously. As an example, the induction dose may be administered subcutaneously. In some embodiments, the induction dose may be administered by spray catheter.
In some embodiments, the concentration of the IL-1 inhibitor delivered at the location in the gastrointestinal tract is 10%, 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500%, 1000%, 2000% greater than the concentration of IL-1 inhibitor in plasma.
In some embodiments, the method provides a concentration of the IL-1 inhibitor at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not a site of disease or proximate to a site of disease.
In some embodiments, the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract as a single bolus.
In some embodiments, the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract as more than one bolus.
In some embodiments, the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract in a continuous manner.
In some embodiments, the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract over a time period of 20 or more minutes.
In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 10 μg/ml. In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3 μg/ml. In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 1 μg/ml. In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.3 μg/ml. In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.1 μg/ml. In some embodiments, the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.01 μg/ml. In some embodiments, the values of the concentration of the IL-1 inhibitor in the plasma of the subject provided herein refer to Ctrough, that is, the lowest value of the concentration prior to administration of the next dose.
In some embodiments, the method does not comprise delivering an IL-1 inhibitor rectally to the subj ect .
In some embodiments, the method does not comprise delivering an IL-1 inhibitor via an enema to the subject. In some embodiments, the method does not comprise delivering an IL-1 inhibitor via suppository to the subject.
In some embodiments, the method does not comprise delivering an IL-1 inhibitor via instillation to the rectum of a subject.
In some embodiments, the methods disclosed herein comprise producing a
therapeutically effective degradation product of the IL-1 inhibitor in the gastrointestinal tract. In some embodiments, the degradation product is a therapeutic antibody fragment. In some embodiments, a therapeutically effective amount of the degradation product is produced.
In some embodiments, the methods comprising administering the IL-1 inhibitor in the manner disclosed herein disclosed herein result in a reduced immunosuppressive properties relative to methods of administration of the IL-1 inhibitor systemically.
In some embodiments, the methods comprising administering the IL-1 inhibitor in the manner disclosed herein disclosed herein result in reduced immunogenicity relative to methods of administration of the IL-1 inhibitor systemically.
Markers
In some embodiments, the methods provided herein comprise monitoring the progress of the disease. In some embodiments, monitoring the progress of the disease comprises measuring the levels of IBD serological markers. In some embodiments, monitoring the progress of the disease comprises determining mucosal healing at the location of release. In some embodiments, monitoring the progress of the disease comprises determining the Crohn's Disease Activity Index (CDAI) over a period of about 6-8 weeks, or over a period of about 52 weeks, following administration of the IL-1 inhibitor. In some embodiments, monitoring the progress of the disease comprises determining the Harvey-Bradshaw Index (HBI) following administration of the IL-1 inhibitor. Possible markers may include the following: anti-glycan antibodies: anti-Saccharomices cerevisiae (ASCA); anti- laminaribioside (ALCA); anti-chitobioside (ACCA); anti-mannobioside (AMCA); anti- laminarin (anti-L); anti-chitin (anti-C) antibodies: anti-outer membrane porin C (anti-OmpC), anti-Cbirl flagellin; anti-12 antibody; autoantibodies targeting the exocrine pancreas (PAB); perinuclear anti-neutrophil antibody (pANCA). In some embodiments, monitoring the progress of the disease comprises measuring IL-1 inhibitor levels in serum over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor, including at the 6-8 week time point. In some embodiments, monitoring the progress of the disease comprises measuring IL-1 inhibitor levels in serum over a period of about 52 weeks following administration of the IL-1 inhibitor, including at the 52 week time point.
Patients condition, diagnosis and treatment
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises one or more of the following:
a) identifying a subject having a disease of the gastrointestinal tract, for example by endoscopy or colonoscopy;
b) determination of the severity of the disease, for example with reference to the Mayo Clinic Score, the Crohn's Disease Activity Index (CDAI), the Harvey-Bradshaw Index (HBI), or a combination of the above;
c) determination of the location of the disease, for example as determined by the
presence of lesions indicative of the disease;
d) evaluating the subject for suitability to treatment, for example by determining the patency of the subject's GI tract, for example if the indication is small intestinal diseases, pancolitis, Crohn's disease, or if the patients has strictures or fistulae;
e) administration of an induction dose or of a maintenance dose of a drug, such as the IL-1 inhibitor or such as another drug that is effective in the treatment of IBD conditions;
f) monitoring the progress of the disease, for example with reference to the Mayo Clinic Score, the Crohn's Disease Activity Index (CDAI), the Harvey-Bradshaw Index (HBI), the PRO, PR02 or PR03 tools, or a combination of the above; and/or g) optionally repeating steps e) and f) one or more times, for example over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor, including at the 6-8 week time point, or over a period of about 52 weeks following administration of the IL-1 inhibitor, including at the 52 week time point.
As used herein, an induction dose is a dose of drug that may be administered, for example, at the beginning of a course of treatment, and that is higher than the maintenance dose administered during treatment. An induction dose may also be administered during treatment, for example if the condition of the patients becomes worse.
As used herein, a maintenance dose is a dose of drug that is provided on a repetitive basis, for example at regular dosing intervals.
In some embodiments the IL-1 inhibitor is released from an ingestible device.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises e) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises f) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises g) hereinabove.
In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and b) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and c) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and c) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises e) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing an IL-1 inhibitor at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises g) hereinabove.
In some embodiments, one or more steps a) to e) herein comprise endoscopy of the gastrointestinal tract. In some embodiments, one or more steps a) to e) herein comprise colonoscopy of the gastrointestinal tract. In some embodiments, one or more steps a) to e) herein is performed one or more times. In some embodiments, such one or more of such one or more steps a) to e) is performed after releasing the IL-1 inhibitor at the location in the gastrointestinal tract that is proximate to one or more sites of disease.
In some embodiments, the method comprises administering one or more maintenance doses following administration of the induction dose in step e). In some embodiments an induction dose of IL-1 inhibitor and a maintenance dose of IL-1 inhibitor are each administered to the subject by administering a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor. In some embodiments an induction dose of IL-1 inhibitor is administered to the subject in a different manner from the maintenance dose. As an example, the maintenance dose may be administered systemically, while the maintenance dose is administered locally using a device. In one embodiment, a maintenance dose is administered systemically, and an induction dose is administered using a device every 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30, 35, 40, or 45 days. In another embodiment, a maintenance dose is administered systemically, and an induction dose is administered when a disease flare up is detected or suspected.
In some embodiments, the induction dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein.
In some embodiments, the induction dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of the IL-1 inhibitor delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously.
In some embodiments, the induction dose is a dose of the IL-1 inhibitor delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein.
In some embodiments, the induction dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of a second agent as disclosed herein delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously.
In some embodiments, the induction dose is a dose of a second agent as disclosed herein delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein.
In one embodiment of the methods provided herein, the patient is not previously treated with an IL-1 inhibitor. In one embodiment, the gastrointestinal inflammatory disorder is an inflammatory bowel disease. In one embodiment, the inflammatory bowel disease is ulcerative colitis or Crohn's disease. In one embodiment, the inflammatory bowel disease is ulcerative colitis and the response is selected from clinical response, mucosal healing and remission. In certain embodiments, remission in the patient is determined to be induced when the Mayo Clinic Score < 2 and no individual subscore >1, which is also referred to as clinical remission. In certain embodiments, mucosal healing is determined to have occurred when the patient is determined to have an endoscopy subscore of 0 or 1 as assessed by flexible sigmoidoscopy. In certain such embodiments, patients who experience mucosal healing are determined to have an endoscopy subscore of 0. In certain embodiments, clinical response is determined to have occurred when the patient experiences a 3 -point decrease and 30% reduction from baseline in MCS and > 1 -point decrease in rectal bleeding subscore or absolute rectal bleeding score of 0 or 1.
In some embodiments, the method comprises identifying the disease site substantially at the same time as releasing the IL-1 inhibitor.
In some embodiments, the method comprises monitoring the progress of the disease. In some embodiments, monitoring the progress of the disease comprises measuring the weight of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor, including at the 6-8 week time point, or over a period of about 52 weeks following administration of the IL-1 inhibitor, including at the 52 week time point. In some embodiments, monitoring the progress of the disease comprises measuring the food intake of the subject; measuring the level of blood in the feces of the subject; measuring the level of abdominal pain of the subject; and/or a combination of the above, for example over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor, including at the 6-8 week time point, or over a period of about 52 weeks following administration of the IL-1 inhibitor, including at the 52 week time point.
In some embodiments, the method comprises administering an IL-1 inhibitor with a spray catheter. For example, administering an IL-1 inhibitor with a spray catheter may be performed in step (e) hereinabove.
In some embodiments, the method does not comprise administering an IL-1 inhibitor with a spray catheter. Pharmaceutical Formulations
As used herein, a "formulation" of an IL-1 inhibitor may refer to either the IL-1 inhibitor in pure form - such as, for example, the lyophilized IL-1 inhibitor - or a mixture of the IL-1 inhibitor with one or more physiologically acceptable carriers, excipients or stabilizers. Thus, therapeutic formulations or medicaments can be prepared by mixing the IL-1 inhibitor having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids;
antioxidants including ascorbic acid and methionine; preservatives (such as
octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) antibody; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt- forming counter-ions such as sodium; metal complexes (e.g. , Zn- protein complexes); and/or non- ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
Exemplary pharmaceutically acceptable carriers herein further include insterstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20
(HYLE EX<®>, Baxter International, Inc.). Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases. Exemplary lyophilized formulations are described in US Patent No. 6,267,958. Aqueous formulations include those described in US Patent No. 6, 171,586 and WO2006/044908, the latter formulations including a histidine- acetate buffer.
A formulation of an IL-1 inhibitor as disclosed herein, e.g., sustained-release formulations, can further include a mucoadhesive agent, e.g., one or more of polyvinyl pyrolidine, methyl cellulose, sodium carboxyl methyl cellulose, hydroxyl propyl cellulose, carbopol, a polyacrylate, chitosan, a eudragit analogue, a polymer, and a thiomer. Additional examples of mucoadhesive agents that can be included in a formulation with an IL-1 inhibitor are described in, e.g., Peppas et al, Biomaterials 17(16): 1553-1561, 1996; Kharenko et al, Pharmaceutical Chemistry J. 43(4):200-208, 2009; Salamat-Miller et al, Adv. Drug Deliv. Reviews 57(11): 1666-1691, 2005; Bernkop-Schnurch, Adv. Drug Deliv. Rev. 57(11): 1569- 1582, 2005; and Harding et al, Biotechnol. Genet. Eng. News 16(l):41-86, 1999. In some embodiments, components of a formulation may include any one of the following components, or any combination thereof:
Acacia, Alginate, Alginic Acid, Aluminum Acetate, an antiseptic, Benzyl Alcohol, Butyl Paraben, Butylated Hydroxy Toluene, an antioxidant. Citric acid, Calcium carbonate, Candelilla wax, a binder, Croscarmellose sodium, Confectioner sugar, Colloidal silicone dioxide, Cellulose, Carnuba wax, Corn starch, Carboxymethylcellulose calcium, Calcium stearate, Calcium disodium EDTA, Chelation agents, Copolyvidone, Castor oil hydrogenated, Calcium hydrogen phosphate dehydrate, Cetylpyridine chloride, Cysteine HC1,
Crosspovidone, Dibasic Calcium Phosphate, Disodium hydrogen phosphate, Dimethicone, Erythrosine Sodium, Ethyl Cellulose, Gelatin, Glyceryl monooleate, Glycerin, Glycine, Glyceryl monostearate, Glyceryl behenate, Hydroxy propyl cellulose, Hydroxyl propyl methyl cellulose, Hypromellose, HPMC Pthalate, Iron oxides or ferric oxide, Iron oxide yellow, Iron oxide red or ferric oxide, Lactose (hydrous or anhydrous or monohydrate or spray dried), Magnesium stearate, Microcrystalline cellulose, Mannitol, Methyl cellulose,, Magnesium carbonate, Mineral oil, Methacrylic acid copolymer, Magnesium oxide, Methyl paraben, PEG, Polysorbate 80, Propylene glycol, Polyethylene oxide, Propylene paraben, Polaxamer 407 or 188 or plain, Potassium bicarbonate, Potassium sorbate, Potato starch, Phosphoric acid, Polyoxyl40 stearate, Sodium starch glycolate, Starch pregelatinized, Sodium crossmellose, Sodium lauryl sulfate, Starch, Silicon dioxide, Sodium benzoate,, Stearic acid, Sucrose base for medicated confectionery, a granulating agent, Sorbic acid, Sodium carbonate, Saccharin sodium, Sodium alginate, Silica gel, Sorbiton monooleate, Sodium stearyl fumarate, Sodium chloride, Sodium metabisulfite, Sodium citrate dehydrate, Sodium starch, Sodium carboxy methyl cellulose, Succinic acid, Sodium propionate,
Titanium dioxide, Talc, Triacetin, Triethyl citrate.
Accordingly, in some embodiments of the method of treating a disease as disclosed herein, the method comprises administering to the subject a pharmaceutical composition that is a formulation as disclosed herein. In some embodiments the formulation is a dosage form, which may be, as an example, a solid form such as, for example, a capsule, a tablet, a sachet, or a lozenge; or which may be, as an example, a liquid form such as, for example, a solution, a suspension, an emulsion, or a syrup.
In some embodiments the formulation is not comprised in an ingestible device. In some embodiments wherein the formulation is not comprised in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments wherein the formulation is not comprised in an ingestible device, the formulation may be suitable for rectal administration. The formulation may be, for example, a dosage form such as a suppository or an enema. In embodiments where the formulation is not comprised in an ingestible device, the formulation releases the IL-1 inhibitor at a location in the
gastrointestinal tract of the subject that is proximate to one or more sites of disease. Such localized release may be achieved, for example, with a formulation comprising an enteric coating. Such localized release may be achieved, an another example, with a formulation comprising a core comprising one or more polymers suitable for controlled release of an active substance. A non-limiting list of such polymers includes: poly(2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, poly(ethylene glycol), poly(2- aminoethyl methacrylate), (2-hydroxypropyl)methacrylamide, poly(P-benzyl-l-aspartate), poly(N-isopropylacrylamide), and cellulose derivatives.
In some embodiments the formulation is comprised in an ingestible device as disclosed herein. In some embodiments wherein the formulation is comprised in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments the formulation is suitable for introduction and optionally for storage in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in the reservoir comprised in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in the reservoir comprised in the device. Thus, in some embodiments, provided herein is a reservoir comprising a therapeutically effective amount of an IL-1 inhibitor, wherein the reservoir is configured to fit into an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of an IL-1 inhibitor is attachable to an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of an IL-1 inhibitor is capable of anchoring itself to the subject's tissue. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises silicone. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises polyvinyl chloride.
In some embodiments the formulation is suitable for introduction in the spray catheters disclosed herein. The formulation/medicament herein may also contain more than one active compound as necessary for the particular indication being treated, for example, those with
complementary activities that do not adversely affect each other. For instance, the
formulation may further comprise another IL-1 inhibitor or a chemotherapeutic agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for
example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in
macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
Sustained-release preparations may be prepared. Suitable examples of sustained- release preparations include semipermeable matrices of solid hydrophobic polymers containing the IL-1 inhibitor, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2- hydroxy ethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl -L-glutamate, non-degradable ethylene- vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene- vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated IL-1 inhibitors remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in
immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
Pharmaceutical formulations may contain one or more IL-1 inhibitors. The pharmaceutical formulations may be formulated in any manner known in the art. In some embodiments the formulations include one or more of the following components: a sterile diluent (e.g., sterile water or saline), a fixed oil, polyethylene glycol, glycerin, propylene glycol, or other synthetic solvents, antibacterial or antifungal agents, such as benzyl alcohol or methyl parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like, antioxidants, such as ascorbic acid or sodium bisulfite, chelating agents, such as
ethylenediaminetetraacetic acid, buffers, such as acetates, citrates, or phosphates, and isotonic agents, such as sugars (e.g., dextrose), polyalcohols (e.g., mannitol or sorbitol), or salts (e.g., sodium chloride), or any combination thereof. Liposomal suspensions can also be used as pharmaceutically acceptable carriers (see, e.g., U.S. Patent No. 4,522,811, incorporated by reference herein in its entirety). The formulations can be formulated and enclosed in ampules, disposable syringes, or multiple dose vials. Where required, proper fluidity can be maintained by, for example, the use of a coating, such as lecithin, or a surfactant. Controlled release of the IL-1 inhibitor can be achieved by implants and microencapsulated delivery systems, which can include biodegradable, biocompatible polymers (e.g., ethylene vinyl acetate, poly anhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid; Alza Corporation and Nova Pharmaceutical, Inc.).
In some embodiments, the IL-1 inhibitor is present in a pharmaceutical formulation within the device.
In some embodiments, the IL-1 inhibitor is present in solution within the device.
In some embodiments, the IL-1 inhibitor is present in a suspension in a liquid medium within the device.
In some embodiments, data obtained from cell culture assays and animal studies can be used in formulating an appropriate dosage of any given IL-1 inhibitor. The effectiveness and dosing of any IL-1 inhibitor can be determined by a health care professional or veterinary professional using methods known in the art, as well as by the observation of one or more disease symptoms in a subject (e.g., a human). Certain factors may influence the dosage and timing required to effectively treat a subject (e.g., the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and the presence of other diseases). In some embodiments, the subject is further administered an additional therapeutic agent (e.g., any of the additional therapeutic agents described herein). The additional therapeutic agent can be administered to the subject at substantially the same time as the IL-1 inhibitor or pharmaceutical composition comprising it is administered and/or at one or more other time points. In some embodiments, the additional therapeutic agent is formulated together with the IL-1 inhibitor (e.g., using any of the examples of formulations described herein).
In some embodiments, the subject is administered a dose of the IL-1 inhibitor at least once a month (e.g., at least twice a month, at least three times a month, at least four times a month, at least once a week, at least twice a week, three times a week, once a day, or twice a day). The IL-1 inhibitor may be administered to a subject chronically. Chronic treatments include any form of repeated administration for an extended period of time, such as repeated administrations for one or more months, between a month and a year, one or more years, more than five years, more than 10 years, more than 15 years, more than 20 years, more than 25 years, more than 30 years, more than 35 years, more than 40 years, more than 45 years, or longer. Alternatively or in addition, chronic treatments may be administered. Chronic treatments can involve regular administrations, for example one or more times a day, one or more times a week, or one or more times a month. For example, chronic treatment can include administration (e.g., intravenous administration) about every two weeks (e.g., between about every 10 to 18 days).
A suitable dose may be the amount that is the lowest dose effective to produce a desired therapeutic effect. Such an effective dose will generally depend upon the factors described herein. If desired, an effective daily dose of IL-1 inhibitor can be administered as two, three, four, five, or six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
Combination therapy:
The IL-1 inhibitors disclosed herein may be optionally be used with additional agents in the treatment of the diseases disclosed herein. Nonlimiting examples of such agents for treating or preventing inflammatory bowel disease in such adjunct therapy (e.g., Crohn's disease, ulcerative colitis) include substances that suppress cytokine production, down-regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include 2- amino-6-aryl-5 -substituted pyrimidines (see U.S. Patent No. 4,665,077); nonsteroidal antiinflammatory drugs (NSAIDs); ganciclovir; tacrolimus; lucocorticoids such as Cortisol or aldosterone; anti-inflammatory agents such as a cyclooxygenase inhibitor; a 5 - lipoxygenase inhibitor; or a leukotriene receptor antagonist; purine antagonists such as azathioprine or mycophenolate mofetil (MMF); alkylating agents such as cyclophosphamide; bromocryptine; danazol; dapsone; glutaraldehyde (which masks the MHC antigens, as described in U.S. Patent No. 4, 120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporine; 6-mercaptopurine; steroids such as corticosteroids or glucocorticosteroids or glucocorticoid analogs, e.g., prednisone, methylprednisolone, including SOLU-MEDROL®, methylprednisolone sodium succinate, and dexamethasone; dihydrofolate reductase inhibitors such as methotrexate (oral or subcutaneous); anti-malarial agents such as chloroquine and hydroxychloroquine; sulfasalazine; leflunomide; cytokine or cytokine receptor antibodies or antagonists including anti-interferon-alpha, -beta, or -gamma antibodies, anti-tumor necrosis factor(TNF)-alpha antibodies (infliximab (REMICADE®) or adalimumab), anti-TNF- alpha immunoadhesin (etanercept), anti-TNF-beta antibodies, anti- interleukin-2 (IL-2) antibodies and anti-IL-2 receptor antibodies, and anti-interleukin-6 (IL-6) receptor antibodies and antagonists; anti-LFA-1 antibodies, including anti-CD 1 la and anti- CD 18 antibodies; anti- L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, anti-CD3 or anti- CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul. 26, 1990); streptokinase; transforming growth factor-beta (TGF-beta); streptodomase; RNA or DNA from the host; FK506; RS-61443; chlorambucil; deoxyspergualin; rapamycin; T-cell receptor (Cohen et al, U.S. Patent No. 5, 114,721); T-cell receptor fragments (Offner et al, Science, 251 : 430-432 (1991); WO 90/11294; laneway, Nature, 341 : 482 (1989); and WO 91/01133); BAFF antagonists such as BAFF or BR3 antibodies or immunoadhesins and zTNF4 antagonists (for review, see
Mackay and Mackay, Trends Immunol, 23 : 113-5 (2002) and see also definition below); biologic agents that interfere with T cell helper signals, such as anti-CD40 receptor or anti- CD40 ligand (CD 154), including blocking antibodies to CD40-CD40 ligand.(e.g., Durie et al, Science, 261 : 1328-30 (1993); Mohan et al, J. Immunol, 154: 1470-80 (1995)) and CTLA4-Ig (Finck et al, Science, 265: 1225-7 (1994)); and T-cell receptor antibodies (EP 340, 109) such as T10B9. Non-limiting examples of adjunct agents also include the following: budenoside; epidermal growth factor; aminosalicylates; metronidazole;
mesalamine; olsalazine; balsalazide; antioxidants; thromboxane inhibitors; IL-1 inhibitors; anti-IL-1 monoclonal antibodies; growth factors; elastase inhibitors; pyridinyl -imidazole compounds; TNF antagonists; IL-4, IL-10, IL-13 and/or TGFP cytokines or agonists thereof (e.g., agonist antibodies); IL-11; glucuronide- or dextran-conjugated prodrugs of
prednisolone, dexamethasone or budesonide; ICAM-I antisense phosphorothioate
oligodeoxynucleotides (ISIS 2302; Isis Pharmaceuticals, Inc.); soluble complement receptor 1 (TPIO; T Cell Sciences, Inc.); slow-release mesalazine; antagonists of platelet activating factor (PAF); ciprofloxacin; and lignocaine. Examples of agents for UC are sulfasalazine and related salicylate-containing drugs for mild cases and corticosteroid drugs in severe cases. Topical administration of either salicylates or corticosteroids is sometimes effective, particularly when the disease is limited to the distal bowel, and is associated with decreased side effects compared with systemic use. Supportive measures such as administration of iron and antidiarrheal agents are sometimes indicated. Azathioprine, 6-mercaptopurine and methotrexate are sometimes also prescribed for use in refractory corticosteroid-dependent cases.
In other embodiments, an IL-1 inhibitor as described herein can be administered with one or more of: a CHST15 inhibitor, a IL-6 receptor inhibitor, an IL-12/IL-23 inhibitor, an integrin inhibitor, a JAK inhibitor, a SMAD7 inhibitor, a IL-13 inhibitor, a TNF inhibitor, a TLR agonist, an immunosuppressant, or a stem cell. In other embodiments, a TNF inhibitor as described herein can be administered with a vitamin C infusion, one or more
corticosteroids, and optionally thiamine.
In some embodiments, the methods disclosed herein comprise administering (i) the IL-1 inhibitor as disclosed herein, and (ii) a second agent orally, intravenously or
subcutaneously, wherein the second agent in (ii) is the same IL-1 inhibitor in (i); a different IL-1 inhibitor; or an agent having a different biological target from the IL-1 inhibitor.
In some embodiments, the methods disclosed herein comprise administering (i) the
IL-1 inhibitor in the manner disclosed herein, and (ii) a second agent orally, intravenously or subcutaneously, wherein the second agent in (ii) is an agent suitable for treating an inflammatory bowel disease.
In some embodiments, the IL-1 inhibitor is administered prior to the second agent. In some embodiments, the IL-1 inhibitor is administered after the second agent. In some embodiments, the IL-1 inhibitor and the second agent are administered substantially at the same time. In some embodiments, the IL-1 inhibitor is delivered prior to the second agent. In some embodiments, the IL-1 inhibitor is delivered after the second agent. In some embodiments, the IL-1 inhibitor and the second agent are delivered substantially at the same time.
In some embodiments, the second agent is an agent suitable for the treatment of a disease of the gastrointestinal tract. In some embodiments, the second agent is an agent suitable for the treatment of an inflammatory bowel disease. In some embodiments, the second agent is administered intravenously. In some embodiments, the second agent is administered subcutaneously. In some embodiments, the second agent is methotrexate.
In some embodiments, delivery of the IL-1 inhibitor to the location, such as delivery to the location by mucosal contact, results in systemic immunogenicity levels at or below systemic immunogenicity levels resulting from administration of the IL-1 inhibitor systemically. In some embodiments comprising administering the IL-1 inhibitor in the manner disclosed herein and a second agent systemically, delivery of the IL-1 inhibitor to the location, such as delivery to the location by mucosal contact, results in systemic
immunogenicity levels at or below systemic immunogenicity levels resulting from administration of the IL-1 inhibitor systemically and the second agent systemically. In some embodiments, the method comprises administering the IL-1 inhibitor in the manner disclosed herein and a second agent, wherein the amount of the second agent is less than the amount of the second agent when the IL-1 inhibitor and the second agent are both administered systemically. In some aspects of these embodiments, the second agent is an IL-1 inhibitor.
In some embodiments, the method comprises administering the IL-1 inhibitor in the manner disclosed herein and does not comprise administering a second agent.
Examples: Example 1 - Preclinical Murine Colitis Model
Experimental Induction of Colitis
Colitis is experimentally induced to in mice via the dextran sulfate sodium (DSS)- induced colitis model. This model is widely used because of its simplicity and many similarities with human ulcerative colitis. Briefly, mice are subjected to DSS via cecal catheterization, which is thought to be directly toxic to colonic epithelial cells of the basal crypts, for several days until colitis is induced.
Groups Mice are allocated to one of seven cohorts, depending on the agent that is administered:
1. Control (no agent)
2. Anakinra (2.0 mg/kg)
3. Anakinra (2.0 mg/kg)
4. Anakinra (2.0 mg/kg)
The control or agent is applied to a damaged mucosal surface of the bowel via administration through a cecal catheter at the dose levels described above.
Additionally, for each cohort, the animals are separated into two groups. One group receives a single dose of the control or agent on day 10 or 12. The other group receives daily (or similar) dosing of the control or agent.
Analysis
For each animal, efficacy is determined (e.g., by endoscopy, histology, etc.), and TLR levels are determined in blood, feces, and tissue (tissue levels are determined after animal sacrifice). For tissue samples, levels FIER2 are additionally determined, and the level of TLR is normalized to the level of FIER2. Additionally, other cytokine levels are determined in tissue (e.g., phospho STAT 1, STAT 3 and STAT 5), in plasma (e.g., VEGF, VCAM, ICAM, IL-6), or both.
Pharmacokinetics are determined both systemically (e.g., in the plasma) and locally (e.g., in colon tissue). For systemic pharmacokinetic analysis, blood and/or feces is collected from the animals at one or more timepoints after administration (e.g., plasma samples are collected at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, and/or 8 hours after
administration). Local/colon tissue samples are collected once after animal sacrifice.
Example 2a - Development of Preclinical Porcine Colitis Model Experimental Induction of Colitis
Female swine weighing approximately 35 to 45 kg at study start are fasted at least 24 hours prior to intra-rectal administration of trinitrobenzene sulfonic acid (TNBS). Animals are lightly anesthetized during the dosing and endoscopy procedure. An enema to clean the colon is used, if necessary. One animal is administered 40 ml of 100% EtOH mixed with 5 grams of TNBS diluted in 10 ml of water via an enema using a ball -tipped catheter. The enema is deposited in the proximal portion of the descending colon just past the bend of the transverse colon. The TNBS is retained at the dose site for 12 minutes by use of two Foley catheters with 60-ml balloons placed in the mid-section of the descending colon below the dose site. A second animal is similarly treated, but with a solution containing 10 grams of TNBS. An Endoscope is employed to positively identify the dose site in both animals prior to TNBS administration. Dosing and endoscopy are performed by a veterinary surgeon
Seven (7) days after TNBS administration, after light anesthesia, the dose site and mucosal tissues above and below the dose site are evaluated by the veterinary surgeon using an endoscope. Pinch Biopsies are obtained necessary, as determined by the surgeon. Based on the endoscopy findings, the animals may be euthanized for tissue collection on that day, or may proceed on study pending the results of subsequent endoscopy exams for 1 to 4 more days. Macroscopic and microscopic alterations of colonic architecture, possible necrosis, thickening of the colon, and substantial histologic changes are observed at the proper TNBS dose.
Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded at least daily during acclimation and throughout the study. Additional pen-side observations are conducted twice daily (once-daily on weekends). Body weight is measured for both animals Days 1 and 7 (and on the day of euthanasia if after Day 7).
On the day of necropsy, the animals are euthanized via injection of a veterinarian- approved euthanasia solution. Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic finings related to TNBS- damage. Photos are taken. Tissue samples are taken from the proximal, mid, and distal transverse colon; the dose site; the distal colon; the rectum; and the anal canal. Samples are placed into NBF and evaluated by a board certified veterinary pathologist.
Example 2b Animal Model
Animals are subjected to intra-rectal administration of trinitrobenzene Sulfonic acid (TNBS) to induce chronic colitis on Day -6. All animals are fasted prior to colitis induction on Day -7. The TNBS is dissolved in 25% ethanol then instilled into the colon intra-rectally using a flexible plastic ball-tip gavage needle. Approximately seven (7) days after induction, macroscopic and microscopic alterations of colonic architecture are apparent: some necrosis, thickening of the colon, substantial histologic changes that only partially resolve by Day 60.
Groups
Sixteen (16) swine (approximately 35 to 45 kg at study start) are allocated to one of five groups:
1. Vehicle Control: (3.2 mL saline); intra-rectal; (n=2)
2. Treated Control: Anakinra (100 mg in 3.2mL saline); subcutaneous; (n=2)
3. Anakinra (low): Anakinra (75 mg in 3.2mL saline); intra-rectal; (n=4)
4. Anakinra (med): Anakinra (125 mg in 3.2 mL saline); intra-rectal; (n=4)
5. Anakinra (high): Anakinra (200 mg in 3.2 mL saline); intra-rectal; (n=4)
On Day 0, the test article is applied to a damaged mucosal surface of the bowel via intra-rectal administration or subcutaneous injection by a veterinary surgeon at the dose levels and volume described above.
Clinical Observations and Body Weight
Clinical observations are conducted at least once daily. Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded on all appropriate animals at least daily prior to the initiation of experiment and throughout the study until termination. Additional clinical observations may be performed if deemed necessary. Animals whose health condition warrants further evaluation are examined by a Clinical Veterinarian. Body weight is measured for all animals Days -6, 0, and after the last blood collections.
Samples
Blood:
Blood is collected (cephalic, jugular, and/or catheter) into EDTA tubes during acclimation on Day-7, just prior to dose on Day 0, and 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 hours post-dose. The EDTA samples are split into two aliquots and one is centrifuged for pharmacokinetic plasma and either analyzed immediately, or stored frozen (-80°C) for later pharmacokinetic analyses. The remaining sample of whole blood is used for
pharmacodynamic analyses. Feces:
Feces is collected Day -7, 0 and 0.5, 1, 2, 4, 6, 8, 12, 24 and 48 hours post-dose, and either analyzed immediately, or flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug levels and inflammatory cytokines.
Tissue:
Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic finings related to TNBS-damage. Triplicate samples of normal and damaged tissues are either analyzed immediately, or are flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug concentration,
inflammatory cytokines and histology.
Samples are analyzed for drug levels (local mucosal tissue levels and systemic circulation levels), and for levels of TLR.
Terminal Procedures
Animals are euthanized as per a schedule where one animal each of Vehicle and Treated Control groups is euthanized at 6 and 48 hours post-dose, and one animal of each the drug groups are euthanized at 6, 12, 24 and 48 hours post-dose. Animals are discarded after the last blood collection unless retained for a subsequent study.

Claims

Claims:
1. A method of treating a disease of the gastrointestinal tract in a subject,
comprising:
releasing an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.
2. The method of claim 1, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.
3. The method of claim 1 or 2, wherein the method does not comprise releasing more than 10% of the IL-1 inhibitor at a location that is not proximate to a site of disease.
4. The method of claim 1 or 2, wherein the method provides a concentration of the IL-1 inhibitor at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not proximate to a site of disease.
5. The method of any one of the preceding claims, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3
6. The method of claim 5, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.3 μg/ml.
7. The method of claim 6, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.01 μg/ml.
8. The method of any one of claims 1 to 4, wherein the method provides a C24 value of the IL-1 inhibitor in the plasma of the subject that is less than 3 μg/ml.
9. The method of claim 8, wherein the method provides a C24 value of the IL-1
inhibitor in the plasma of the subject that is less than 0.3 μg/ml.
10. The method of claim 9, wherein the method provides a C24 value of the IL-1
inhibitor in the plasma of the subject that is less than 0.01 μg/ml.
1 1. The method of any one of claims 1 to 10, wherein the IL-1 inhibitor is an
inhibitory nucleic acid.
12. The method of any one of claims 1 to 10, wherein the IL-1 inhibitor is an antibody or fragment thereof.
13. The method of any one of claims 1 to 10, wherein the IL-1 inhibitor is an
antibody.
14. The method of any one of claims 1 to 10, wherein the IL-1 inhibitor is a fragment of an antibody.
15. The method of any one of claims 1 to 10, wherein the IL-1 inhibitor is an
antisense nucleic acid, a ribozyme, or a small interfering RNA.
16. The method of any one of claims 2 to 15, wherein the IL-1 inhibitor is present in a pharmaceutical formulation within the device.
17. The method of claim 16, wherein the formulation is a solution of the IL-1
inhibitor in a liquid medium.
18. The method of claim 17, wherein the formulation is a suspension of the IL-1 inhibitor in a liquid medium.
19. The method of any one of claims 1 to 18, wherein the disease of the GI tract is an inflammatory bowel disease.
20. The method of any one of claims 1 to 18, wherein the disease of the GI tract is ulcerative colitis.
21. The method of any one of claims 1 to 18, wherein the disease of the GI tract is Crohn's disease.
22. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the large intestine of the subject.
23. The method of claim 22, wherein the location is in the proximal portion of the large intestine.
24. The method of claim 22, wherein the location is in the distal portion of the large intestine.
25. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the ascending colon of the subject.
26. The method of claim 25, wherein the location is in the proximal portion of the ascending colon.
27. The method of claim 25, wherein the location is in the distal portion of the
ascending colon.
28. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the cecum of the subject.
29. The method of claim 28, wherein the location is in the proximal portion of the cecum.
30. The method of claim 28, wherein the location is in the distal portion of the cecum.
31. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the sigmoid colon of the subject.
32. The method of claim 31, wherein the location is in the proximal portion of the sigmoid colon.
33. The method of claim 31, wherein the location is in the distal portion of the
sigmoid colon.
34. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the transverse colon of the subject.
35. The method of claim 34, wherein the location is in the proximal portion of the transverse colon.
36. The method of claim 34, wherein the location is in the distal portion of the
transverse colon.
37. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the descending colon of the subject.
38. The method of claim 37, wherein the location is in the proximal portion of the descending colon.
39. The method of claim 37, wherein the location is in the distal portion of the
descending colon.
40. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the small intestine of the subject.
41. The method of claim 40, wherein the location is in the proximal portion of the small intestine.
42. The method of claim 40, wherein the location is in the distal portion of the small intestine.
43. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the duodenum of the subject.
44. The method of claim 43, wherein the location is in the proximal portion of the duodenum.
45. The method of claim 43, wherein the location is in the distal portion of the
duodenum.
46. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the jejunum of the subject.
47. The method of claim 46, wherein the location is in the proximal portion of the jejunum.
48. The method of claim 46, wherein the location is in the distal portion of the
jejunum.
49. The method of any one of claims 1 to 21, wherein the IL-1 inhibitor is released at a location in the ileum of the subject.
50. The method of claim 49, wherein the location is in the proximal portion of the ileum.
51. The method of claim 49, wherein the location is in the distal portion of the ileum.
52. The method of any one of the preceding claims, wherein the location at which the IL-1 inhibitor is released is 10 cm or less from one or more sites of disease.
53. The method of any one of the preceding claims, wherein the location at which the IL-1 inhibitor is released is 5 cm or less from one or more sites of disease.
54. The method of any one of the preceding claims, wherein the location at which the IL-1 inhibitor is released is 2 cm or less from one or more sites of disease.
55. The method of any one of the preceding claims, wherein the IL-1 inhibitor is released by mucosal contact.
56. The method of any one of the preceding claims, wherein the IL-1 inhibitor is delivered to the location by a process that does not comprise systemic transport of the IL-1 inhibitor.
57. The method of any one of the preceding claims, further comprising identifying the one or more sites of disease by a method comprising imaging of the
gastrointestinal tract.
58. The method of claim any one of the preceding claims, wherein the method
comprises identifying the disease site prior to administering the pharmaceutical composition.
59. The method of claim 58, wherein the method comprises releasing the IL-1
inhibitor substantially at the same time as identifying the disease site.
60. The method of any one of the preceding claims, comprising (a) identifying a subject having a disease of the gastrointestinal tract and (b) evaluating the subject for suitability to treatment.
61. The method of any one of claims 1 or 3 to 15 or 17 to 60, wherein releasing the IL-1 inhibitor is triggered by one or more of: a pH in the jejunum from 6.1 to 7.2, a pH in the mid small bowel from 7.0 to 7.8, a pH in the ileum from 7.0 to 8.0, a pH in the right colon from 5.7 to 7.0, a pH in the mid colon from 5.7 to 7.4, a pH in the left colon from 6.3 to 7.7, such as 7.0.
62. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is not dependent on the pH at or in the vicinity of the location.
63. The method of any one of claims 1 or 3 to 15 or 17 to 60, wherein releasing the IL-1 inhibitor is triggered by degradation of a release component located in the device.
64. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is not triggered by degradation of a release component located in the device.
65. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is not dependent on enzymatic activity at or in the vicinity of the location.
66. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is not dependent on bacterial activity at or in the vicinity of the location.
67. The method of any one of claims 1 to 60, wherein the composition comprises a plurality of electrodes comprising a coating, and releasing the IL-1 inhibitor is triggered by an electric signal by the electrodes resulting from the interaction of the coating with the one or more sites of disease.
68. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is triggered by a remote electromagnetic signal.
69. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is triggered by generation in the composition of a gas in an amount sufficient to expel the IL-1 inhibitor.
70. The method of any one of claims 1 to 60, wherein releasing the IL-1 inhibitor is triggered by an electromagnetic signal generated within the device according to a pre-determined drug release profile.
71. The method of any one of claims 2 to 60, wherein the ingestible device comprises an ingestible housing, wherein a reservoir storing the IL-1 inhibitor is attached to the housing.
72. The method of claim 71, further comprising:
detecting when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease,
wherein releasing the IL-1 inhibitor comprises releasing the therapeutically effective amount of the IL-1 inhibitor from the reservoir proximate the respective disease site in response to the detection.
73. The method of claim72, wherein detecting comprises detecting via one or more sensors coupled to the ingestible housing.
74. The method of claim 73, wherein the one or more sensors comprise a plurality of coated electrodes and wherein detecting comprises receiving an electric signal by one or more of the coated electrodes responsive to the one or more electrode contacting the respective disease site.
75. The method of claim 72, wherein releasing comprises opening one or more valves in fluid communication with the reservoir.
76. The method of claim 75, wherein the one or more valves is communicably
coupled to a processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect the one or more sites of disease.
77. The method of claim 72, wherein releasing comprises pumping the therapeutically effective amount of the IL-1 inhibitor from the reservoir via pump positioned in the ingestible housing.
78. The method of claim 77, wherein the pump is communicably coupled to a
processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect the one or more sites of disease.
79. The method of claim 71, wherein the therapeutically effective amount of the IL-1 inhibitor is stored in the reservoir at a reservoir pressure higher than a pressure in the gastrointestinal tract of the subject.
80. The method of claim 71, further comprising anchoring the ingestible housing at a location proximate to the respective disease site in response to the detection.
81. The method of claim 80, wherein anchoring the ingestible housing comprises one or more legs to extend from the ingestible housing.
82. The method of any one of the preceding claims, wherein the amount of the IL-1 inhibitor that is administered is from about 1 mg to about 500 mg.
83. The method of any one of the preceding claims, wherein the IL-1 inhibitor is complementary to all or a part of any one of SEQ ID NOs: 1 -41.
84. The method of claim 83, wherein the IL-1 inhibitor is complementary to any one of SEQ ID NOs: 1-41.
85. The method of any one of claims 1 to 84, wherein the amount of the IL-1 inhibitor is less than an amount that is effective when IL-1 inhibitor is administered systemically.
86. The method of any one of the preceding claims, comprising administering (i) an amount of the IL-1 inhibitor that is an induction dose.
87. The method of claim 86, further comprising (ii) administering an amount of the IL-1 inhibitor that is a maintenance dose following the administration of the induction dose.
88. The method of claim 86 or 87, wherein the induction dose is administered once a day.
89. The method of claim 86 or 87, wherein the induction dose is administered once every three days.
90. The method of claim 86 or 87, wherein the induction dose is administered once a week.
91. The method of claim 87, wherein step (ii) is repeated one or more times.
92. The method of claim 87, wherein step (ii) is repeated once a day over a period of about 6-8 weeks.
93. The method of claim 87, wherein step (ii) is repeated once every three days over a period of about 6-8 weeks.
94. The method of claim 87, wherein step (ii) is repeated once a week over a period of about 6-8 weeks.
95. The method of claim 87, wherein the induction dose is equal to the maintenance dose.
96. The method of claim 87, wherein the induction dose is greater than the
maintenance dose.
97. The method of claim 87, wherein the induction dose is 5 times greater than the maintenance dose.
98. The method of claim 87, wherein the induction dose is 2 times greater than the maintenance dose.
99. The method of any one of the preceding claims, wherein the method comprises releasing the IL-1 inhibitor at the location in the gastrointestinal tract as a single bolus.
100. The method of any one of claims 1 to 98, wherein the method comprises
releasing the IL-1 inhibitor at the location in the gastrointestinal tract as more than one bolus.
101. The method of any one of claims 1 to 98, wherein the method comprises
delivering the IL-1 inhibitor at the location in the gastrointestinal tract in a continuous manner.
102. The method of claim 101, wherein the method comprises delivering the IL-1 inhibitor at the location in the gastrointestinal tract over a time period of 20 or more minutes.
103. The method of any one of claims 1 to 102, wherein the method does not
comprise delivering an IL-1 inhibitor rectally to the subject.
104. The method of any one of claims 1 to 102, wherein the method does not
comprise delivering an IL-1 inhibitor via an enema to the subject.
105. The method of any one of claims 1 to 102, wherein the method does not
comprise delivering an IL-1 inhibitor via suppository to the subject.
106. The method of any one of claims 1 to 102, wherein the method does not
comprise delivering an IL-1 inhibitor via instillation to the rectum of the subject.
107. The method of any one of claims 1 to 102, wherein the method does not
comprise surgical implantation.
108. The method of any one of claims 1 to 107, wherein the IL-1 inhibitor decreases the expression of an IL-1 cytokine or an IL-1 receptor and/or decreases the ability of an IL-1 cytokine to bind specifically to an IL-1 receptor
109. The method of claim 108, wherein the IL-1 cytokine is IL-1 a.
110. The method of claim 108, wherein the IL-1 cytokine is IL-Ιβ.
111. The method of claim 108, wherein the IL-1 cytokine is IL-18.
112. The method of claim 108, wherein the IL-1 cytokine is IL-36a.
113. The method of any one of claims 1 to 67 or 69 to 112, wherein the composition is an autonomous device.
114. The method of any one of claims 1 to 113, wherein the composition comprises a mechanism capable of releasing the IL-1 inhibitor.
115. The method of any one of claims 1 to 114, wherein the composition comprises a tissue anchoring mechanism for anchoring the composition to the location.
116. The method of claim 115, wherein the tissue anchoring mechanism is capable of activation for anchoring to the location.
117. The method of claim 115 to 116, wherein the tissue anchoring mechanism
comprises an osmotically-driven sucker.
118. The method of claim 115, 116, or 117, wherein the tissue anchoring mechanism comprises a connector operable to anchor the composition to the location.
119. The method of claim 118, wherein the connector is operable to anchor the
composition to the location using an adhesive, negative pressure and/or fastener.
120. The method of claim 71, wherein the reservoir is an anchorable reservoir.
121. The method of any one of claims 1 to 60, wherein the pharmaceutical
composition is an ingestible device, comprising:
a housing;
a reservoir located within the housing and containing the IL-1 inhibitor, a mechanism for releasing the IL-1 inhibitor from the reservoir;
and;
an exit valve configured to allow the IL-1 inhibitor to be released out of the housing from the reservoir.
122. The method of claim 121, wherein the ingestible device further comprises: an electronic component located within the housing; and
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas.
123. The method of claim 121 or 122, wherein the ingestible device further comprises:
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
124. The method of claim 1 to 60, wherein the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
an exit valve located at the first end of the housing,
wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
125. The method of claim 1 to 60, wherein the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an electronic component located within the housing,
a gas generating cell located within the housing and adjacent to the electronic component, wherein the electronic component is configured to activate the gas generating cell to generate gas;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
an injection device located at the first end of the housing,
wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing.
126. The method of claim 1 to 60, wherein the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an optical sensing unit located on a side of the housing,
wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and a dispensing outlet placed at the first end of the housing,
wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.
127. The method of any one of claims 1 to 60, wherein the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.
128. The method of any one of claims 1 to 60, wherein the pharmaceutical
composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US2015/052500, incorporated by reference herein in its entirety.
129. The method of any one of claims 1 to 60, wherein the pharmaceutical
composition is not a dart-like dosage form.
130. A method of treating a disease of the large intestine of a subject, comprising: releasing an IL-1 inhibitor at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease,
wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of the IL-1 inhibitor, wherein the method does not comprise releasing more than 20% of the IL-1 inhibitor at a location that is not proximate to a site of disease.
131. A method of treating a disease of the gastrointestinal tract in a subject,
comprising:
releasing an IL-1 inhibitor at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease, wherein the method comprises administering endoscopically to the subject a
pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor, wherein the pharmaceutical composition is an ingestible device.
132. The method of claim 130 or 131, wherein the method does not comprise
releasing more than 20% of the IL-1 inhibitor at a location that is not proximate to a site of disease.
133. The method of claim 130, 131 or 132 wherein the method does not comprise releasing more than 10% of the IL-1 inhibitor at a location that is not proximate to a site of disease.
134. The method of any one of claims 130, 131 or 132, wherein the method provides a concentration of the IL-1 inhibitor at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not proximate to a site of disease.
135. The method of any one of claims 130 to 134, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 3
136. The method of claim 135, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.3 μg/ml.
137. The method of claim 136, wherein the method provides a concentration of the IL-1 inhibitor in the plasma of the subject that is less than 0.01 μg/ml.
138. The method of any one of claims 130 to 134, wherein the method provides a C24 value of the IL-1 inhibitor in the plasma of the subject that is less than 3 μg/ml.
139. The method of any one of claims 130 to 134, wherein the method provides a C24 value of the IL-1 inhibitor in the plasma of the subject that is less than 0.3 μg/ml.
140. The method of any one of claims 130 to 134, wherein the method provides a C24 value of the IL-1 inhibitor in the plasma of the subject that is less than 0.01 μg/ml.
141. The method of any one of claims 130 to 134, wherein the composition does not comprise an enteric coating.
142. The method of any one of claims 130 to 141, wherein the IL-1 inhibitor is not a cyclic peptide.
143. The method of any one of claims 130 to 141, wherein the IL-1 inhibitor is present in a pharmaceutical formulation within the device.
144. The method of claim 143, wherein the formulation is a solution of the IL-1 inhibitor in a liquid medium.
145. The method of claim 143, wherein the formulation is a suspension of the IL-1 inhibitor in a liquid medium.
146. The method of any one of claims 130 to 145, wherein the disease of the large intestine is an inflammatory bowel disease.
147. The method of any one of claims 130 to 145, wherein the disease of the large intestine is ulcerative colitis.
148. The method of any one of claims 130 to 145, wherein the disease the large intestine is Crohn's disease.
149. The method of any one of claims 130 to 148, wherein the IL-1 inhibitor is released at a location in the proximal portion of the ascending colon.
150. The method of any one of claims 130 to 148, wherein the IL-1 inhibitor is released at a location in the proximal portion of the cecum.
151. The method of any one of claims 130 to 148, wherein the IL-1 inhibitor is released at a location in the proximal portion of the sigmoid colon.
152. The method of any one of claims 130 to 148, wherein the IL-1 inhibitor is released at a location in the proximal portion of the transverse colon.
153. The method of any one of claims 130 to 148, wherein the IL-1 inhibitor is released at a location in the proximal portion of the descending colon.
154. The method of any one of claims 130 to 148, wherein the method comprises administering to the subject a reservoir comprising the therapeutically effective amount of the IL-1 inhibitor, wherein the reservoir is connected to the endoscope.
155. The method of any one of the preceding claims, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is the same IL-1 inhibitor; a different IL-1 inhibitor; or an agent having a different biological target from the IL-1 inhibitor, wherein the second agent is an agent suitable for treating an inflammatory bowel disease.
156. The method of claim 155, wherein the IL-1 inhibitor is administered prior to the second agent.
157. The method of claim 155, wherein the IL-1 inhibitor is administered after the second agent.
158. The method of claim 155, wherein the IL-1 inhibitor and the second agent are administered substantially at the same time.
159. The method of any one of claims 155, wherein the second agent is administered intravenously.
160. The method of any one of claims 155, wherein the second agent is administered subcutaneously.
161. The method of any one of claims 155 to 160, wherein the amount of the second agent is less than the amount of the second agent when the IL-1 inhibitor and the second agent are both administered systemically.
162. The method of claim 161, wherein the second agent is an IL-1 inhibitor.
163. The method of claim 161, wherein second agent is methotrexate.
164. The method of any one of claims 1 to 154, wherein the method does not
comprise administering a second agent.
165. The method of any one of claims 119 to 164, wherein the method comprises identifying the disease site prior to endoscopic administration.
166. The method of any one of claims 119 to 164, wherein the method comprises identifying the disease site substantially at the same time as releasing the IL-1 inhibitor.
167. The method of any one of the preceding claims, wherein the method comprising monitoring the progress of the disease.
168. The method of claim 167, wherein monitoring the progress of the disease
comprises measuring the weight of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor.
169. The method of claim 167 or 168, wherein monitoring the progress of the disease comprises measuring the food intake of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor.
170. The method of claim 167, 168 or 169, wherein monitoring the progress of the disease comprises measuring the level of blood in the feces of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor.
171. The method of claim 167, 168 or 169, wherein monitoring the progress of the disease comprises measuring the level of abdominal pain of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the IL-1 inhibitor.
172. The method of any one of claims 1 to 171, wherein the method does not
comprise administering an IL-1 inhibitor with a spray catheter.
173. The method of any one of claims 1 to 172, wherein the method comprises
administering an IL-1 inhibitor with a spray catheter.
174. A method of treating a disease of the gastrointestinal tract in a subject,
comprising: releasing an IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor the method comprising one or more of the following steps:
a) identifying a subject having a disease of the gastrointestinal tract; b) determination of the severity of the disease;
c) determination of the location of the disease;
d) evaluating the subject for suitability to treatment;
e) administration of an induction dose of the IL-1 inhibitor;
f) monitoring the progress of the disease; and/or
g) optionally repeating steps e) and f) one or more times.
175. The method of claim 174, wherein the pharmaceutical composition is an
ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.
176. The method of claim 174 or 175, wherein the method comprises administering one or more maintenance doses following administration of the induction dose in step e).
177. The method of claim 176, wherein the induction dose is a dose of the IL-1
inhibitor administered in an ingestible device.
178. The method of claim 176 or 177, wherein the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device as disclosed herein.
179. The method of claim 176 or 177, wherein the maintenance dose is a dose of the IL-1 inhibitor delivered systemically.
180. The method of claim 176, wherein the induction dose is a dose of the IL-1
inhibitor delivered systemically.
181. The method of claim 176 or 180, wherein the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device.
182. The method of claim 176, wherein the induction dose is a dose of a second agent as delivered systemically.
183. The method of claim 176 or 180, wherein the maintenance dose is a dose of the IL-1 inhibitor administered in an ingestible device.
184. An IL-1 inhibitor delivery apparatus comprising:
an ingestible housing comprising a reservoir having a pharmaceutical composition comprising a therapeutically effective amount of the IL-1 inhibitor stored therein;
a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease;
a valve system in fluid communication with the reservoir system; and a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective disease site so as to release the therapeutically effective amount of the IL-1 inhibitor at the respective disease site.
185. The IL-1 inhibitor delivery apparatus according to claim 184, further comprising a pump positioned in the ingestible housing, the pump configured to pump the therapeutically effective amount of the IL-1 inhibitor from the reservoir in response to activation of the pump by the controller responsive to detection by the detector of the ingestible housing being proximate to the respective disease site.
186. The IL-1 inhibitor delivery apparatus according to claim 185, wherein the
controller is configured to cause the pump to pump the therapeutically effective amount of the IL-1 inhibitor from the reservoir according to the following protocol.
187. The IL-1 inhibitor delivery apparatus according to claim 184, wherein the valve system comprises a dissolvable coating.
188. The IL-1 inhibitor delivery apparatus according to claim 184, wherein the valve system comprises one or more doors configured for actuation by at least one of sliding, pivoting, and rotating.
189. The IL-1 inhibitor delivery apparatus according to claim 184, wherein the valve system comprises an electrostatic shield.
190. The IL-1 inhibitor delivery apparatus according to claim 184, wherein the
reservoir comprises a pressurized cell.
191. The IL-1 inhibitor delivery apparatus according to claim 184, further comprising at least one actuatable anchor configured to retain the ingestible housing at the respective disease site upon actuation.
192. The IL-1 inhibitor delivery apparatus according to claim 184, herein the
actuatable anchor is retractable.
193. A composition comprising a therapeutically effective amount of the IL-1
inhibitor of any one of the preceding claims, wherein the composition is capable of releasing the IL-1 inhibitor at a location in the gastrointestinal tract of the subject.
194. The composition of claim 193, wherein the composition comprises a tissue anchoring mechanism for anchoring the composition to the location.
195. The composition of claim 194, wherein the tissue anchoring mechanism is capable of anchoring for anchoring to the location.
196. The composition of claim 194 or 195, wherein the tissue anchoring mechanism comprises an osmotically-driven sucker.
197. The composition of claim 194, 195 or 196, wherein the tissue anchoring
mechanism comprises a connector operable to anchor the composition to the location.
198. The composition of claim 197, wherein the connector is operable to anchor the composition to the location using an adhesive, negative pressure and/or fastener.
199. An IL-1 inhibitor for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with the IL-1 inhibitor, wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
200. The IL-1 inhibitor for use of claim 199, wherein the IL-1 inhibitor is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.
201. An attachable reservoir containing an IL-1 inhibitor for use in a method of
treating a disease of the gastrointestinal tract, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein the TLR agonist is released by device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
202. A composition comprising or consisting of an ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, for use in a method of treatment, wherein the method comprises orally administering the composition to the subject, wherein the IL-1 inhibitor is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
203. The IL-1 inhibitor for use according to claim 199 or 200, the attachable reservoir compartment for use according to claim 201, or the composition for use according to claim 202, wherein the sites of disease have been pre-determined.
204. The IL-1 inhibitor for use according to claim 199 or 200, the attachable reservoir compartment for use according to claim 201, or the composition for use according to claim 202, wherein the ingestible device further comprises an environmental sensor and the method further comprises using the environmental sensor to identify the location of one or more sites of disease.
205. The IL-1 inhibitor for use, the attachable reservoir compartment for use the composition for use, according to claim 204, wherein the environmental sensor is an imaging sensor and the method further comprising imaging the gastrointestinal tract to identify the location of one or more sites of disease.
206. The IL-1 inhibitor for use, the attachable reservoir compartment for use, or the composition for use, according to claim 205, wherein the imaging detects inflamed tissue and/or lesions associated with a disease of the gastrointestinal tract.
207. The IL-1 inhibitor for use, the attachable reservoir compartment for use or the composition for use, according to any one of claims 199 to 205, wherein the disease of the GI tract is one or more of an inflammatory bowel disease, ulcerative colitis and Crohn's disease.
208. An ingestible device loaded with a therapeutically effective amount of an IL-1 inhibitor, wherein the device is controllable to release the IL-1 inhibitor at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
209. The device of claim 208 for use in a method of treatment of the human or animal body.
210. The IL-1 inhibitor for use, the attachable reservoir compartment for use or the composition for use according to any one of claims 199 to 207, or the device according to claim 208 or claim 209, wherein the ingestible device comprises: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; a reservoir located within the housing and containing the IL-1 inhibitor wherein a first end of the reservoir is connected to the first end of the housing; a mechanism for releasing the IL-1 inhibitor from the reservoir;
and an exit value configured to allow the IL-1 inhibitor to be released out of the housing from the reservoir.
211. The IL-1 inhibitor for use, the attachable reservoir compartment for use or the composition for use according to any one of claims 199 to 207, or the device according to claim 208 or claim 209, wherein the ingestible device comprises: an ingestible housing comprising a reservoir compartment having a therapeutically effective amount of the IL-1 inhibitor stored therein;
a release mechanism having a closed state which retains the IL-1 inhibitor in the reservoir and an open state which releases the IL-1 inhibitor from the reservoir to the exterior of the device; and
an actuator which changes the state of the release mechanism from the closed to the open state.
212. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to claims 210 or 211, wherein the ingestible device further comprises an environmental sensor for detecting the location of the device in the gut and/or for detecting the presence of disease in the GI tract.
213. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to claim 212, wherein the ingestible device further comprises a communication system for transmitting data from the environmental sensor to an external receiver.
214. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to claim 212 or 213, wherein the ingestible device further comprises a processor or controller which is coupled to the environmental sensor and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of diseased tissue and/or is in a location in the gut that has been predetermined to be proximal to diseased tissue.
215. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to claim 213, wherein the communication system further comprises means for receiving a signal from an external transmitter, and wherein the actuator is adapted to be triggered in response to the signal.
216. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of claims 210 to 215, wherein the ingestible device further comprises a communication system for transmitting localization data to an external receiver.
217. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of claims 210 to 213, wherein the ingestible device further comprises a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; wherein the actuator is adapted to be triggered in response to the signal.
218. The IL-1 inhibitor for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of claims 119 to 217, wherein the ingestible device further comprises a deployable anchoring system and an actuator for deploying the anchoring system, wherein the anchoring system is capable of anchoring or attaching the ingestible device to the subject's tissue.
PCT/US2017/025143 2016-12-14 2017-03-30 Methods and ingestible devices for the regio-specific release of il-1 inhibitors at the site of gastrointestinal tract disease WO2018111329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662434372P 2016-12-14 2016-12-14
US62/434,372 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018111329A1 true WO2018111329A1 (en) 2018-06-21

Family

ID=62559037

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/025116 WO2018111326A1 (en) 2016-12-14 2017-03-30 Methods and ingestible devices for the regio-specific release of immunosuppressants at the site of gastrointestinal tract disease
PCT/US2017/025143 WO2018111329A1 (en) 2016-12-14 2017-03-30 Methods and ingestible devices for the regio-specific release of il-1 inhibitors at the site of gastrointestinal tract disease

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2017/025116 WO2018111326A1 (en) 2016-12-14 2017-03-30 Methods and ingestible devices for the regio-specific release of immunosuppressants at the site of gastrointestinal tract disease

Country Status (1)

Country Link
WO (2) WO2018111326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038572A1 (en) * 2019-08-29 2021-03-04 Teva Pharmaceutical Industries Ltd. Devices and methods for regio-specific drug release at ileocecal region
WO2023220560A1 (en) * 2022-05-09 2023-11-16 Minerva Biotechnologies Corporation Chimeric antigen receptor and il-18 receptor compositions and methods of use therein

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106750A1 (en) * 2018-11-19 2020-05-28 Progenity, Inc. Methods and devices for treating a disease with biotherapeutics
GB201900780D0 (en) * 2019-01-21 2019-03-06 Vibrant Ltd Device and method for delivering a flowable ingestible medicament into the gastrointestinal tract of a user

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021307A1 (en) * 1991-05-30 1992-12-10 Schentag Jerome J Telemetry capsule and process
US5318557A (en) * 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
WO2001045789A2 (en) * 1999-12-21 2001-06-28 Phaeton Research Ltd Ingestible device for the release of substances at distinct locations in the alimentary canal
WO2008053396A2 (en) * 2006-10-31 2008-05-08 Koninklijke Philips Electronics N.V. Design of swallowable multi-nozzle, dosing device for releasing medicines in the gastrointesinal tract
WO2012158648A1 (en) * 2011-05-13 2012-11-22 Massachusetts Institute Of Technology Method and apparatus for delivering a substance
CN104013618A (en) * 2014-06-20 2014-09-03 南京大学 Application of left ornidazole in preparation of medicine for treating inflammatory bowel disease
WO2016049602A1 (en) * 2014-09-25 2016-03-31 Progenity, Inc. Electromechanical pill device with localization capabilities
US20160213234A1 (en) * 2015-01-26 2016-07-28 The Chinese University Of Hong Kong Endoscopic capsule and endoscopic system
WO2016193964A1 (en) * 2015-05-31 2016-12-08 Check-Cap Ltd. Drug delivery capsule

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166024A (en) * 1995-03-30 2000-12-26 Mayo Foundation For Medical Education And Research Use of topical azathioprine and thioguanine to treat colorectal adenomas
JP2009541298A (en) * 2006-06-20 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic capsule for treating gastrointestinal disorders
WO2009035387A1 (en) * 2007-09-14 2009-03-19 Softcure Pharmaceuticals Ab A medicament prepared using methotrexate and suitable for topical administration, for the treatment of a lower gastrointestinal tract inflammatory disease
GB0808537D0 (en) * 2008-05-12 2008-06-18 Archimedes Dev Ltd Compositions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021307A1 (en) * 1991-05-30 1992-12-10 Schentag Jerome J Telemetry capsule and process
US5318557A (en) * 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
WO2001045789A2 (en) * 1999-12-21 2001-06-28 Phaeton Research Ltd Ingestible device for the release of substances at distinct locations in the alimentary canal
WO2008053396A2 (en) * 2006-10-31 2008-05-08 Koninklijke Philips Electronics N.V. Design of swallowable multi-nozzle, dosing device for releasing medicines in the gastrointesinal tract
WO2012158648A1 (en) * 2011-05-13 2012-11-22 Massachusetts Institute Of Technology Method and apparatus for delivering a substance
CN104013618A (en) * 2014-06-20 2014-09-03 南京大学 Application of left ornidazole in preparation of medicine for treating inflammatory bowel disease
WO2016049602A1 (en) * 2014-09-25 2016-03-31 Progenity, Inc. Electromechanical pill device with localization capabilities
US20160213234A1 (en) * 2015-01-26 2016-07-28 The Chinese University Of Hong Kong Endoscopic capsule and endoscopic system
WO2016193964A1 (en) * 2015-05-31 2016-12-08 Check-Cap Ltd. Drug delivery capsule

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CARDANI, D. ET AL.: "Oral administration of interleukin-10 and anti-IL-1 antibody ameliorates experimental intestinal inflammation", GASTROENTEROLOGY RESEARCH, vol. 6, no. 4, 9 September 2013 (2013-09-09), pages 124 - 133, XP055619805, DOI: 10.4021/gr556w *
DINARELLO, C.A. ET AL.: "Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases", NATURE REVIEWS DRUG DISCOVERY, vol. 11, no. 8, 2012, pages 633 - 652, XP0555051238, DOI: 10.1038/nrd3800 *
LOHER, FLORIAN ET AL.: "The Interleukin-1 -Converting Enzyme Inhibitor Pralnacasan Reduces Dextran Sulfate Sodium-Induced Murine Colitis and T Helper 1 T-Cell Activation", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS , vol. 308, no. 2, 2004, pages 583 - 590, XP055619813, DOI: 10.1124/jpet.103.057059 *
VAN DER SCHAAR, P.J. ET AL.: "A novel ingestible electronic drug delivery and monitoring device.", GASTROINTESTINAL ENDOSCOPY, vol. 78, no. 3, 14 May 2013 (2013-05-14), pages 520 - 528, XP055349388, DOI: 10.1016/j.gie.2013.03.170 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038572A1 (en) * 2019-08-29 2021-03-04 Teva Pharmaceutical Industries Ltd. Devices and methods for regio-specific drug release at ileocecal region
WO2023220560A1 (en) * 2022-05-09 2023-11-16 Minerva Biotechnologies Corporation Chimeric antigen receptor and il-18 receptor compositions and methods of use therein

Also Published As

Publication number Publication date
WO2018111326A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US20200323772A1 (en) Treatment of inflammatory disease using ingestible device to release immune modulator
AU2020203573B2 (en) Oligonucleotides for inducing paternal UBE3A expression
KR20200140805A (en) CAMK2D antisense oligonucleotide and uses thereof
AU2018203564A1 (en) Antisense modulation of gccr expression
CN110167589B (en) Treatment of gastrointestinal disorders using integrin inhibitors
WO2018182641A1 (en) Methods and ingestible devices for the regio-specific release of il-13 inhibitors at the site of gastrointestinal tract disease
WO2018111329A1 (en) Methods and ingestible devices for the regio-specific release of il-1 inhibitors at the site of gastrointestinal tract disease
KR102110469B1 (en) Phosphodiesterase 4d7 as marker for malignant, hormone-sensitive prostate cancer
WO2018182623A1 (en) Methods and ingestible devices for the regio-specific release of chst15 inhibitors at the site of gastrointestinal tract disease
KR20210138587A (en) Combination Gene Targets for Improved Immunotherapy
CN108359668A (en) Method and composition for adjusting apolipoprotein (a) expression
KR20230034198A (en) Methods for activating and expanding tumor-infiltrating lymphocytes
US20200315540A1 (en) Treatment of a disease of the gastrointestinal tract with an il-1 inhibitor
WO2018111327A1 (en) Methods and ingestible devices for the regio-specific release of jak inhibitors at the site of gastrointestinal tract disease
DK2809400T3 (en) COMBINATION THERAPY INCLUDING A GROWTH HORMON VARIANT AND AN OIGONUCLEOTIDE BINDING TO THE GROWTH HORMON RECEPTOR
US20230009902A1 (en) Treatment of a disease or condition in a tissue orginating from the endoderm
KR20210144822A (en) Compounds and methods for modulating UBE3A-ATS
WO2018111321A1 (en) Methods and ingestible devices for the regio-specific release of il-12/il-23 inhibitors at the site of gastrointestinal tract disease
WO2018111323A1 (en) Methods and ingestible devices for the regio-specific release of smad7 inhibitors at the site of gastrointestinal tract disease
CN116157522A (en) Use of A1CF inhibitors for the treatment of hepatitis B virus infection
WO2018111322A1 (en) Methods and ingestible devices for the regio-specific release of integrin inhibitors at the site of gastrointestinal tract disease
KR20210095859A (en) Nucleic Acids for Cell Recognition and Integration
WO2018111325A1 (en) Methods and ingestible devices for the regio-specific release of il-6r inhibitors at the site of gastrointestinal tract disease
WO2018111328A1 (en) Methods and ingestible devices for the regio-specific release of tnf inhibitors at the site of gastrointestinal tract disease
NZ715825B2 (en) Combination therapy for treatment of acromegaly

Legal Events

Date Code Title Description
WD Withdrawal of designations after international publication