WO2018110577A1 - High frequency module and communication device - Google Patents

High frequency module and communication device Download PDF

Info

Publication number
WO2018110577A1
WO2018110577A1 PCT/JP2017/044633 JP2017044633W WO2018110577A1 WO 2018110577 A1 WO2018110577 A1 WO 2018110577A1 JP 2017044633 W JP2017044633 W JP 2017044633W WO 2018110577 A1 WO2018110577 A1 WO 2018110577A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
switch
frequency module
substrate
filter
Prior art date
Application number
PCT/JP2017/044633
Other languages
French (fr)
Japanese (ja)
Inventor
輝道 喜多
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018110577A1 publication Critical patent/WO2018110577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to a high-frequency module and a communication device.
  • a high-frequency device has a filter, a front-stage inductor that is a matching circuit connected to the front stage of the filter, and a rear-stage inductor that is a matching circuit connected to the rear stage of the filter, and the front-stage inductor and the rear-stage inductor are electromagnetically coupled.
  • a module is known (for example, Patent Document 1). With such a configuration, a coupling path by electromagnetic coupling is formed separately from the main path that passes through the filter. The unwanted wave signal flowing through the main path at the connection point between the main path and the coupling path can be obtained by causing the unwanted wave suppression signal having the opposite phase to the unwanted wave signal flowing through the main path to flow through the coupling path. It is canceled out by the unwanted wave suppression signal flowing through the coupling path. Thereby, the attenuation characteristic outside the pass band of the filter can be improved.
  • the conventional high-frequency module has a problem that it is difficult to reduce the size (reducing the height) of the high-frequency module because wirings constituting the inductor are arranged in multiple layers in the substrate included in the high-frequency module. It was.
  • an object of the present invention is to provide a high-frequency module and a communication device that can realize downsizing while improving attenuation characteristics outside the passband.
  • a high-frequency module includes a filter, a semiconductor substrate, a switch provided in the semiconductor substrate, a switch provided in the semiconductor substrate, and connected to the switch and the filter
  • a switch IC having a first inductor, a second inductor connected to the filter, and a substrate on which the switch IC, the filter and the second inductor are provided, the first inductor and the A circuit element constituting the filter is connected between the second inductor and the first inductor and the second inductor are electromagnetically coupled.
  • a coupling path by electromagnetic coupling between the first inductor and the second inductor is formed separately from the main path passing through the filter, and the unwanted wave suppression signal having an opposite phase to the unwanted wave signal outside the passband flowing through the main path.
  • the unnecessary wave signal flowing through the main path at the connection point between the main path and the coupling path can be canceled by the unnecessary wave suppression signal flowing through the coupling path. Therefore, attenuation characteristics outside the pass band of the filter can be improved.
  • the first inductor is not arranged as a wiring over multiple layers in the substrate or mounted on the surface of the substrate and is provided on the semiconductor substrate constituting the switch IC, the high-frequency module can be reduced in size. In this way, it is possible to reduce the size of the high-frequency module while improving the attenuation characteristics outside the passband.
  • the first inductor may be provided on an electrode forming surface of the semiconductor substrate.
  • the semiconductor substrate is provided with an electrode forming surface on which electrodes for connecting to other components (for example, a filter or the like) are formed. Therefore, by providing the first inductor using the pattern for forming the electrode on the electrode formation surface of the switch IC, the first inductor can be provided in the switch IC while maintaining the size of the switch IC. Therefore, the high-frequency module can be reduced in size (reduced in height).
  • first inductor and the second inductor may overlap in a plan view of the substrate.
  • the first inductor and the second inductor overlap with each other in plan view of the substrate, so that the coupling degree of the electromagnetic coupling between the first inductor and the second inductor can be increased.
  • the second inductor may be constituted by a coil pattern.
  • the second inductor may be a mounted component.
  • the second inductor since a mounting component having a high Q value can be used as the second inductor, the insertion loss in the pass band of the filter and the attenuation in the attenuation band can be improved.
  • the second inductor can be selected and used from a plurality of mounted components having different coil winding directions, the coupling degree of electromagnetic coupling can be easily adjusted.
  • a ground pattern is provided on the substrate so as to partially overlap the first inductor and the second inductor between the first inductor and the second inductor in a plan view of the substrate. Also good.
  • the coupling degree of the electromagnetic coupling between the first inductor and the second inductor can be easily adjusted by adjusting the amount of overlap between the first inductor and the second inductor and the ground pattern. Can do.
  • the switch IC may be built in the substrate.
  • the switch IC is built in the substrate, the high-frequency module can be further downsized.
  • the second inductor may be built in the substrate.
  • the second inductor is built in the substrate, the surface mounting area of the substrate can be further reduced, and the high-frequency module can be further downsized.
  • a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that is transmitted between the antenna element and the RF signal processing circuit. And a high-frequency module.
  • the high-frequency module and the communication device according to the present invention can achieve downsizing while improving the attenuation characteristics outside the passband.
  • FIG. 1 is a circuit configuration diagram of the high-frequency module according to the first embodiment.
  • FIG. 2 is a circuit configuration diagram of the filter according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the high-frequency module according to Embodiment 1.
  • FIG. 4 is a cross-sectional view of a high-frequency module according to a modification of the first embodiment.
  • FIG. 5 is a cross-sectional view of the high-frequency module according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the high-frequency module according to Embodiment 3.
  • FIG. 7 is a configuration diagram of a communication apparatus according to the fourth embodiment.
  • FIG. 1 is a circuit configuration diagram of a high-frequency module 1 according to the first embodiment.
  • the high frequency module 1 is, for example, a module disposed in the front end portion of a multi-mode / multi-band mobile phone.
  • the high-frequency module 1 is incorporated in a multi-band mobile phone that complies with a communication standard such as LTE (Long Term Evolution).
  • the high-frequency module 1 has, for example, an input / output terminal 11m and an input / output terminal 11n, the input / output terminal 11m is connected to an antenna element, and the input / output terminal 11n is another component (for example, another different from a switch IC 10 described later). It is connected to an RF signal processing circuit (RFIC) via a switch IC or an amplifier circuit.
  • RFIC RF signal processing circuit
  • the high frequency module 1 transmits a high frequency signal between the antenna element and the RF signal processing circuit.
  • the high-frequency module 1 includes a switch IC 10, a filter 20, and inductors L1 and L2.
  • the switch IC 10 includes a semiconductor substrate 12, a switch SW1 provided on the semiconductor substrate 12, and an inductor L1 provided on the semiconductor substrate 12 and connected to the switch SW1 and the filter 20.
  • the semiconductor substrate 12 will be described later with reference to FIG.
  • switching between conduction and non-conduction of the switch SW ⁇ b> 1 is switched so that passage and blocking of the high-frequency signal between the input / output terminal 11 m and the input / output terminal 11 n are switched.
  • conduction and non-conduction of the switch SW1 are switched by a control signal from a control unit (not shown) included in the high-frequency module 1 or an RF signal processing circuit.
  • the switch SW1 is, for example, a FET (Field Effect Transistor) switch made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), a diode switch, or the like.
  • the filter 20 is, for example, a bandpass filter that passes a signal in a predetermined frequency band.
  • the filter 20 is a filter configured by a circuit element such as a surface acoustic wave (SAW: Surface Acoustic Wave) resonator, a bulk acoustic wave (BAW: Bulk Acoustic Wave) resonator, or an FBAR (Film Bulk Acoustic Resonator).
  • SAW Surface Acoustic Wave
  • BAW Bulk Acoustic Wave
  • FBAR Breast Acoustic Resonator
  • the filter 20 includes a substrate and an IDT (InterDigital Transducer) electrode.
  • the substrate is a substrate having piezoelectricity at least on the surface.
  • the substrate may include, for example, a piezoelectric thin film on the surface, and a laminated body such as a film having a sound speed different from that of the piezoelectric thin film and a supporting substrate.
  • the substrate includes, for example, a laminate including a high sound speed support substrate and a piezoelectric thin film formed on the high sound speed support substrate, a high sound speed support substrate, a low sound speed film formed on the high sound speed support substrate, A laminate including a piezoelectric thin film formed on a sonic film, or a support substrate, a high sonic film formed on the support substrate, a low sonic film formed on the high sonic film, and a low sonic film It may be a laminate including a piezoelectric thin film formed on the substrate.
  • substrate may have piezoelectricity in the whole board
  • the substrate is a piezoelectric substrate composed of one piezoelectric layer.
  • the filter 20 may be an LC resonance circuit configured by circuit elements such as an inductor and a capacitor.
  • the filter 20 is a SAW filter. Accordingly, as described above, the filter 20 can be configured by the IDT electrode formed on the piezoelectric substrate, and thus a small and low-profile filter having a high steep passage characteristic can be realized. A specific circuit configuration of the filter 20 will be described later with reference to FIG.
  • the inductor L1 is a first inductor connected to the switch SW1 and the filter 20. Specifically, the inductor L1 is connected between the connection point x1 between the switch SW1 and the filter 20 and the ground.
  • the inductor L1 is a matching circuit for matching the switch IC 10 (switch SW1) and the filter 20, for example.
  • the inductor L1 may be connected to the filter 20 through other components. Further, the inductor L1 may be connected in series between the switch SW1 and the filter 20.
  • the inductor L2 is a second inductor connected to the filter 20. Specifically, the inductor L2 is connected between the connection point x2 between the filter 20 and the input / output terminal 11n and the ground.
  • the inductor L2 is a matching circuit for matching the filter 20 with a component (for example, another switch IC or an amplifier circuit) connected to the input / output terminal 11n.
  • the inductor L2 may be connected in series between the filter 20 and the input / output terminal 11n.
  • the inductor L1 and the inductor L2 are electromagnetically coupled (inductive coupling or capacitive coupling). Since the inductor L1 and the inductor L2 are electromagnetically coupled, a path from the connection point x1 to the connection point x2 via the inductor L1 and the inductor L2 is formed. This route is called a combined path. On the other hand, a route from the connection point x1 through the filter 20 to the connection point x2 is called a main path.
  • an unnecessary wave suppression signal having a phase opposite to that of the unnecessary wave signal outside the passband flowing through the main path can be passed through the coupling path. That is, the unnecessary wave signal that flows through the main path at the connection point x2 between the main path and the coupling path can be canceled by the unnecessary wave suppression signal that flows through the coupling path.
  • FIG. 2 is a circuit configuration diagram of the filter 20 according to the first embodiment.
  • the filter 20 includes, for example, the series arm resonators s1 to s3 and the parallel arm resonators p1 and p2 as the circuit elements described above, and has a ladder type filter structure as shown in FIG. Filter characteristics can be realized.
  • circuit elements constituting the filter 20 are connected between the inductor L1 and the inductor L2.
  • series arm resonators s1 to s3 constituting the filter 20 are connected between the inductor L1 and the inductor L2.
  • the inductor L2 is connected between the connection point x2 (connection point between the series arm resonator s3 and the input / output terminal 11n) and the ground, but is connected between the parallel arm resonator p1 or p2 and the ground. May be.
  • the series arm resonator s1 and the parallel arm resonator p1 are used as circuit elements constituting the filter 20 between the inductor L1 and the inductor L2. Connected.
  • the inductor L2 is connected to a parallel arm such as the parallel arm resonator p1 or p2 in addition to the case where the inductor L2 is connected to the connection point x2 (series arm connected to the input / output terminal 11n) as shown in FIG. May be.
  • FIG. 3 is a cross-sectional view of the high-frequency module 1 according to the first embodiment.
  • the high-frequency module 1 includes a substrate 30 provided with a switch IC 10, a filter 20, and an inductor L2.
  • the switch IC 10 and the inductor L2 are built in the substrate 30, for example. Thereby, the surface mounting area of the board
  • the substrate 30 is a multilayer substrate such as a printed circuit board or a LTCC (Low Temperature Co-fired Ceramics) substrate.
  • the switch IC 10 is built in the substrate 30, the substrate 30 may be a printed board that can be easily processed for incorporating the switch IC 10 or the like.
  • the filter 20 is surface-mounted on the substrate 30. The filter 20 may be protected by resin sealing. The filter 20 may be built in the substrate 30.
  • the inductor L1 is provided on the semiconductor substrate 12 constituting the switch IC10.
  • the semiconductor substrate 12 is, for example, a semiconductor chip or a printed board.
  • the shape of the semiconductor substrate 12 is not limited to a plate shape, but may be a cube, a shape that is not a rectangular parallelepiped (circular or other shape), or the like.
  • a pattern for forming the electrodes is used on an electrode forming surface on which electrodes such as bumps for connecting to other components (for example, the filter 20) are formed on one main surface of the semiconductor substrate 12 constituting the switch IC 10.
  • An inductor L1 is provided.
  • the inductor L1 includes a coil pattern provided on the electrode formation surface.
  • the inductor L2 is configured by, for example, a coil pattern provided in the inner layer of the substrate 30.
  • FIG. 3 schematically shows the inductors L1 and L2 with horizontal lines.
  • the inductors L1 and L2 are spirally formed on the electrode formation surface and on the inner layer or surface of the substrate 30 in a plan view of the substrate 30. Is formed. 3 shows a coil pattern provided on the inner layer of the substrate 30 as the inductor L2, the inductor L2 may be a coil pattern provided on the surface of the substrate 30.
  • the inductor L1 and the inductor L2 overlap in a plan view of the substrate 30.
  • the fact that the inductor L1 and the inductor L2 overlap in plan view of the substrate 30 is intended not only that one of the inductors L1 and L2 completely overlaps the other, but also that a part of the inductor L1 and a part of the inductor L2 overlap. To do. Thereby, the coupling degree of the electromagnetic field coupling between the inductor L1 and the inductor L2 can be increased.
  • the degree of coupling of the electromagnetic field coupling is adjusted by adjusting the amount of the inductor L1 and the inductor L2 that overlap in the plan view of the substrate 30 and the distance between the inductor L1 and the inductor L2 in the thickness direction of the substrate 30. be able to. Note that the degree of coupling of electromagnetic field coupling may be adjusted by the method described in FIG.
  • FIG. 4 is a cross-sectional view of a high-frequency module 1a according to a modification of the first embodiment.
  • a ground pattern is provided on the substrate 30 so as to partially overlap the inductors L1 and L2 between the inductor L1 and the inductor L2 in a plan view of the substrate 30.
  • the degree of coupling increases as the amount of overlap between the inductors L1 and L2 and the ground pattern decreases, and the degree of coupling decreases as the amount of overlap increases.
  • the amount of overlap between the inductors L1 and L2 and the ground pattern in the plan view of the substrate 30 the amount of overlap between the inductor L1 and the inductor L2 in the plan view of the substrate 30 or the substrate of the inductor L1 and the inductor L2 is adjusted. Even if the distance in the thickness direction of 30 is not adjusted, the coupling degree of the electromagnetic coupling between the inductor L1 and the inductor L2 can be easily adjusted.
  • the phase characteristic of the signal flowing through the coupling path can be adjusted, and the unwanted wave suppression signal is a signal having a phase opposite to that of the unwanted wave signal. Can be. Therefore, attenuation characteristics outside the passband of the filter 20 can be improved.
  • the inductor L1 is arranged as a wiring over the layers in the substrate 30 and is not mounted on the surface of the substrate 30, and is provided on the semiconductor substrate 12 (for example, a semiconductor chip) constituting the switch IC 10.
  • the high frequency module 1 can be reduced in size. In this way, it is possible to reduce the size of the high-frequency module while improving the attenuation characteristics outside the passband.
  • the input / output terminal 11m is shared with the input / output terminal of another high-frequency module (filter) that passes a signal in a frequency band different from the pass band of the filter 20, so that the high-frequency module 1 and the other A multiplexer such as a duplexer is configured with the high-frequency module. Therefore, when the multiplexer is configured, the isolation characteristic between the high-frequency module 1 and another high-frequency module can be improved by improving the attenuation characteristic outside the passband of the filter 20.
  • the semiconductor substrate 12 is provided with an electrode forming surface on which electrodes for connecting to other components (for example, the filter 20 and the like) are formed. Therefore, by providing the inductor L1 using the pattern for forming the electrode on the electrode formation surface of the switch IC 10, the inductor L1 can be provided in the switch IC 10 while maintaining the size of the switch IC 10. Therefore, the high frequency module 1 can be reduced in size (reduced in height).
  • the switch IC 10 is surface-mounted on the substrate 30.
  • FIG. 5 is a cross-sectional view of the high-frequency module 2 according to the second embodiment.
  • the switch IC 10 is surface-mounted on the substrate 30 by connecting bumps on the electrode forming surface of the switch IC 10 to one main surface of the substrate 30.
  • the inductor L1 is provided on the electrode formation surface.
  • an electrode 50 is provided on the one main surface of the substrate 30 of the high-frequency module 2.
  • the electrode 50 may be a copper pillar, an electrode such as plating or copper paste, or solder.
  • the high frequency module 2 is mounted on a mother board (not shown), for example, and receives a high frequency signal from the mother board via the electrode 50.
  • the switch IC 10 is protected by resin sealing with the resin 40, and the reliability can be improved.
  • the entire one main surface of the substrate 30 is covered with the resin 40, but only the switch IC 10 may be sealed with a resin such as an underfill, for example.
  • a shield electrode may be formed on the resin 40.
  • invasion of the external noise to the high frequency module 2 can be suppressed, or the spreading
  • the inductor L2 is a mounted component.
  • FIG. 6 is a cross-sectional view of the high-frequency module 3 according to the third embodiment.
  • the inductor L ⁇ b> 2 is a mounting component (chip inductor) that is surface-mounted on the substrate 30.
  • the inductor L2 as a mounting component has a high Q value, and can improve the insertion loss in the pass band of the filter 20 to which the inductor L2 having the high Q value is connected and the attenuation in the attenuation band.
  • the filter 20 and the inductor L2 may be protected by resin sealing. Further, the inductor L1 and the inductor L2 (chip inductor) overlap in the plan view of the substrate 30.
  • the inductor L2 can be selected and used from a plurality of mounted components having different coil winding directions, the coupling degree of electromagnetic coupling can be easily adjusted.
  • the other functions of the high-frequency module 3 are the same as those of the high-frequency module 1, and thus the description thereof is omitted.
  • the high frequency module of the present invention can be applied to a communication device.
  • FIG. 7 is a configuration diagram of the communication apparatus 100 according to the fourth embodiment.
  • FIG. 7 shows the high-frequency module 4, the antenna element ANT, and the RF signal processing circuit (RFIC) 70.
  • the high frequency module 4 and the RFIC 70 constitute a communication device 100.
  • the antenna element ANT, the high-frequency module 4, and the RFIC 70 are disposed, for example, in a front end portion of a mobile phone that supports multimode / multiband.
  • the antenna element ANT is a multiband antenna that transmits and receives a high-frequency signal and conforms to a communication standard such as LTE.
  • the antenna element ANT may be built in the communication device 100.
  • the high frequency module 4 is a circuit that transmits a high frequency signal between the antenna element ANT and the RFIC 70. Specifically, the high frequency module 4 transmits a high frequency signal received by the antenna element ANT to the RFIC 70 via the reception side signal path.
  • the high-frequency module 4 includes switch ICs 10a to 10d, filters 20a to 20e, inductors (first inductors) L1a to L1e, inductors (second inductors) L2a to L2e, inductors L3a to L3d, and amplifier circuits 60a and 60b.
  • the switch IC 10a includes a switch SW1a including a common terminal and a plurality of selection terminals that are selectively connected to the common terminal.
  • the common terminal is connected to the antenna element ANT, and the plurality of selection terminals are connected to the filters 20a to 20e, respectively.
  • the switch SW1a is a switch that divides the high-frequency signal received by the antenna element ANT into paths for the filters 20a to 20e.
  • Each of the filters 20a to 20e is, for example, a band-pass filter that passes signals in different frequency bands.
  • the inductors L1a to L1e are first inductors connected to the switch IC 10a between the switch IC 10a and the filters 20a to 20e, respectively.
  • the inductors L1a to L1e are, for example, matching circuits for matching the switch IC 10a and the filters 20a to 20e.
  • the inductors L1a to L1e are provided in the switch IC 10a.
  • the inductors L1a to L1e are provided on the switch IC 10a or built in the switch IC 10a.
  • the inductors L2a to L2e are second inductors connected to the filters 20a to 20e so that circuit elements constituting the filters 20a to 20e are connected between the inductors L1a to L1e.
  • the inductors L2a to L2e are matching circuits for matching the filters 20a to 20e and the switch ICs 10b and 10c.
  • the inductor L1a and the inductor L2a are electromagnetically coupled.
  • inductors L1b and L2b, inductors L1c and L2c, inductors L1d and L2d, and inductors L1e and L2e are electromagnetically coupled, respectively.
  • a main path passing through each filter and a coupling path passing through each set of inductors that are electromagnetically coupled are formed.
  • the unwanted wave suppression signal out of the passband flowing through the main path to flow in the coupling path
  • the unwanted wave signal flowing in the main path is converted into the unwanted wave suppression signal flowing in the coupling path by the unwanted wave suppression signal flowing in the coupling path.
  • the switch ICs 10b and 10c have a switch composed of a common terminal and a plurality of selection terminals selectively connected to the common terminal.
  • a common terminal included in the switch IC 10b is connected to the inductor L3a, and a plurality of selection terminals included in the switch IC 10b are connected to the filters 20a and 20b, respectively.
  • a common terminal included in the switch IC 10c is connected to the inductor L3c, and a plurality of selection terminals included in the switch IC 10c are connected to the filters 20c to 20e.
  • the switches included in the switch ICs 10b and 10c are switches that group paths for the filters 20a to 20e.
  • the inductors L3a and L3b are matching circuits for matching the switch IC 10b and the amplifier circuit 60a.
  • the inductors L3c and L3d are matching circuits for matching the switch IC 10c and the amplifier circuit 60b.
  • Amplifying circuits 60a and 60b are circuits that amplify high-frequency signals propagating through the paths integrated by the switch ICs 10b and 10c.
  • the amplifier circuits 60a and 60b are, for example, low noise amplifiers that amplify a high frequency received signal.
  • the amplifier circuits 60a and 60b are not limited to low noise amplifiers, and may be power amplifiers that amplify high-frequency transmission signals, for example.
  • the amplifier circuits 60a and 60b may be incorporated in any of the switch ICs 10a to 10d.
  • the switch IC 10d includes a switch including a common terminal and a plurality of selection terminals that are selectively connected to the common terminal.
  • the common terminal is connected to the RFIC 70, and the plurality of selection terminals are connected to the amplifier circuits 60a and 60b, respectively.
  • the switch included in the switch IC 10d is a switch that combines a plurality of paths through which the high-frequency signals amplified by the amplifier circuits 60a and 60b propagate into paths connected to terminals for acquiring the high-frequency signals included in the RFIC 70.
  • the RFIC 70 is an RF signal processing circuit that processes high-frequency signals transmitted and received by the antenna element ANT. Specifically, the RFIC 70 performs signal processing on the high-frequency signal input from the antenna element ANT via the reception-side signal path of the high-frequency module 4 by down-conversion or the like, and based on the reception signal generated by the signal processing Output to a band signal processing circuit (not shown).
  • the high frequency module 4 can improve the attenuation characteristics outside the passband, and can be reduced in size because the inductors L1a to L1e are provided in the switch IC 10a. Therefore, it is possible to provide a communication device that can achieve downsizing while improving attenuation characteristics outside the passband.
  • the communication device 100 includes the high frequency module 4, but may include the high frequency module 1, 1a, 2 or 3.
  • the present invention can be widely used in communication devices such as mobile phones as small high-frequency modules and communication devices applicable to multiband systems.
  • RFIC RF signal processing circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transceivers (AREA)

Abstract

This high frequency module (1) is provided with: a filter (20); a switch IC (10) which comprises a semiconductor substrate (12), a switch (SW1) that is provided on the semiconductor substrate (12), and an inductor (L1) that is provided on the semiconductor substrate (12) and is connected to the switch (SW1) and the filter (20); an inductor (L2) which is connected to the filter (20); and a substrate (30) on which the switch IC (10), the filter (20) and the inductor (L2) are provided. A circuit element that constitutes the filter (20) is connected between the inductor (L1) and the inductor (L2); and the inductor (L1) and the inductor (L2) are electromagnetically coupled to each other.

Description

高周波モジュール及び通信装置High frequency module and communication device
 本発明は、高周波モジュール及び通信装置に関する。 The present invention relates to a high-frequency module and a communication device.
 従来、フィルタと、フィルタの前段に接続される整合回路である前段インダクタと、フィルタの後段に接続される整合回路である後段インダクタとを有し、前段インダクタと後段インダクタとが電磁界結合する高周波モジュールが知られている(例えば、特許文献1)。このような構成により、フィルタを通過するメインパスとは別に電磁界結合による結合パスが形成される。そして、メインパスを流れる通過帯域外の不要波信号と逆位相の不要波抑圧信号が結合パスを流れるようにすることで、メインパスと結合パスとの接続点でメインパスを流れる不要波信号が結合パスを流れる不要波抑圧信号によって相殺される。これにより、当該フィルタの通過帯域外の減衰特性を改善することができる。 2. Description of the Related Art Conventionally, a high-frequency device has a filter, a front-stage inductor that is a matching circuit connected to the front stage of the filter, and a rear-stage inductor that is a matching circuit connected to the rear stage of the filter, and the front-stage inductor and the rear-stage inductor are electromagnetically coupled. A module is known (for example, Patent Document 1). With such a configuration, a coupling path by electromagnetic coupling is formed separately from the main path that passes through the filter. The unwanted wave signal flowing through the main path at the connection point between the main path and the coupling path can be obtained by causing the unwanted wave suppression signal having the opposite phase to the unwanted wave signal flowing through the main path to flow through the coupling path. It is canceled out by the unwanted wave suppression signal flowing through the coupling path. Thereby, the attenuation characteristic outside the pass band of the filter can be improved.
国際公開第2015/019794号International Publication No. 2015/019794
 近年、部品の高密度実装化に伴い、高周波モジュールの更なる小型化が求められている。しかしながら、上記従来の高周波モジュールでは、当該高周波モジュールが備える基板内において何層にもわたってインダクタを構成する配線が配置されるため、高周波モジュールの小型化(低背化)が難しいという問題があった。 In recent years, further miniaturization of high-frequency modules has been demanded as components are mounted with high density. However, the conventional high-frequency module has a problem that it is difficult to reduce the size (reducing the height) of the high-frequency module because wirings constituting the inductor are arranged in multiple layers in the substrate included in the high-frequency module. It was.
 そこで、本発明は、通過帯域外の減衰特性を改善しつつ、小型化を実現できる高周波モジュール及び通信装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a high-frequency module and a communication device that can realize downsizing while improving attenuation characteristics outside the passband.
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、フィルタと、半導体基板と、当該半導体基板に設けられたスイッチと、当該半導体基板に設けられ、当該スイッチ及び前記フィルタに接続された第1インダクタとを有するスイッチICと、前記フィルタに接続された第2インダクタと、前記スイッチIC、前記フィルタ及び前記第2インダクタが設けられた基板と、を備え、前記第1インダクタと前記第2インダクタとの間に前記フィルタを構成する回路素子が接続され、前記第1インダクタと前記第2インダクタとは電磁界結合している。 In order to achieve the above object, a high-frequency module according to one embodiment of the present invention includes a filter, a semiconductor substrate, a switch provided in the semiconductor substrate, a switch provided in the semiconductor substrate, and connected to the switch and the filter A switch IC having a first inductor, a second inductor connected to the filter, and a substrate on which the switch IC, the filter and the second inductor are provided, the first inductor and the A circuit element constituting the filter is connected between the second inductor and the first inductor and the second inductor are electromagnetically coupled.
 これにより、フィルタを通過するメインパスとは別に第1インダクタと第2インダクタとの電磁界結合による結合パスが形成され、メインパスを流れる通過帯域外の不要波信号と逆位相の不要波抑圧信号が結合パスを流れるようにすることで、メインパスと結合パスとの接続点でメインパスを流れる不要波信号を、結合パスを流れる不要波抑圧信号によって相殺することができる。よって、当該フィルタの通過帯域外の減衰特性を改善することができる。また、第1インダクタは、基板内において何層にもわたって配線として配置されたり、基板表面において実装されたりせず、スイッチICを構成する半導体基板に設けられるため、高周波モジュールを小型化できる。このように、通過帯域外の減衰特性を改善しつつ、高周波モジュールの小型化を実現できる。 As a result, a coupling path by electromagnetic coupling between the first inductor and the second inductor is formed separately from the main path passing through the filter, and the unwanted wave suppression signal having an opposite phase to the unwanted wave signal outside the passband flowing through the main path. By flowing through the coupling path, the unnecessary wave signal flowing through the main path at the connection point between the main path and the coupling path can be canceled by the unnecessary wave suppression signal flowing through the coupling path. Therefore, attenuation characteristics outside the pass band of the filter can be improved. Further, since the first inductor is not arranged as a wiring over multiple layers in the substrate or mounted on the surface of the substrate and is provided on the semiconductor substrate constituting the switch IC, the high-frequency module can be reduced in size. In this way, it is possible to reduce the size of the high-frequency module while improving the attenuation characteristics outside the passband.
 また、前記第1インダクタは、前記半導体基板の電極形成面に設けられてもよい。 The first inductor may be provided on an electrode forming surface of the semiconductor substrate.
 半導体基板には、他の部品(例えばフィルタ等)と接続するための電極が形成された電極形成面が設けられている。したがって、スイッチICの電極形成面における電極を形成するためのパターンを利用して第1インダクタが設けられることで、スイッチICのサイズを維持したまま、第1インダクタをスイッチICに設けることができる。よって、高周波モジュールを小型化(低背化)できる。 The semiconductor substrate is provided with an electrode forming surface on which electrodes for connecting to other components (for example, a filter or the like) are formed. Therefore, by providing the first inductor using the pattern for forming the electrode on the electrode formation surface of the switch IC, the first inductor can be provided in the switch IC while maintaining the size of the switch IC. Therefore, the high-frequency module can be reduced in size (reduced in height).
 また、前記第1インダクタと前記第2インダクタとは、前記基板の平面視において重なってもよい。 Further, the first inductor and the second inductor may overlap in a plan view of the substrate.
 これにより、第1インダクタと第2インダクタとが基板の平面視において重なることで、第1インダクタと第2インダクタとの電磁界結合の結合度を高めることができる。 Thereby, the first inductor and the second inductor overlap with each other in plan view of the substrate, so that the coupling degree of the electromagnetic coupling between the first inductor and the second inductor can be increased.
 また、前記第2インダクタは、コイルパターンで構成されていてもよい。 Further, the second inductor may be constituted by a coil pattern.
 これにより、電磁界結合として、誘導性結合だけでなく、コイルパターン間での容量性結合も実現できる。 This makes it possible to realize not only inductive coupling but also capacitive coupling between coil patterns as electromagnetic coupling.
 また、前記第2インダクタは、実装部品であってもよい。 Further, the second inductor may be a mounted component.
 これにより、第2インダクタとしてQ値の高い実装部品を使用することができるため、フィルタの通過帯域における挿入損失、及び減衰帯域における減衰量を改善できる。また、第2インダクタとして、互いにコイルの巻き方向の異なる複数の実装部品から選択して使用することができるため、電磁界結合の結合度の調整を容易にできる。 Thereby, since a mounting component having a high Q value can be used as the second inductor, the insertion loss in the pass band of the filter and the attenuation in the attenuation band can be improved. In addition, since the second inductor can be selected and used from a plurality of mounted components having different coil winding directions, the coupling degree of electromagnetic coupling can be easily adjusted.
 また、前記基板の平面視において、前記第1インダクタと前記第2インダクタとの間で、前記第1インダクタ及び前記第2インダクタと部分的に重なるように、グランドパターンが前記基板に設けられていてもよい。 In addition, a ground pattern is provided on the substrate so as to partially overlap the first inductor and the second inductor between the first inductor and the second inductor in a plan view of the substrate. Also good.
 これにより、基板の平面視において、第1インダクタ及び第2インダクタとグランドパターンとが重なる量を調整することで、第1インダクタと第2インダクタとの電磁界結合の結合度を容易に調整することができる。 Thereby, in the plan view of the substrate, the coupling degree of the electromagnetic coupling between the first inductor and the second inductor can be easily adjusted by adjusting the amount of overlap between the first inductor and the second inductor and the ground pattern. Can do.
 また、前記スイッチICは、前記基板に内蔵されていてもよい。 The switch IC may be built in the substrate.
 これにより、スイッチICが基板に内蔵されるため、高周波モジュールをより小型化できる。 Thereby, since the switch IC is built in the substrate, the high-frequency module can be further downsized.
 また、前記第2インダクタは、前記基板に内蔵されていてもよい。 Further, the second inductor may be built in the substrate.
 これにより、第2インダクタが基板に内蔵されるため、基板の表面実装面積をより削減することができ、高周波モジュールをより小型化できる。 Thereby, since the second inductor is built in the substrate, the surface mounting area of the substrate can be further reduced, and the high-frequency module can be further downsized.
 また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波モジュールと、を備える。 In addition, a communication device according to one embodiment of the present invention includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that is transmitted between the antenna element and the RF signal processing circuit. And a high-frequency module.
 これによれば、通過帯域外の減衰特性を改善しつつ、小型化を実現できる通信装置を提供できる。 According to this, it is possible to provide a communication device that can realize downsizing while improving attenuation characteristics outside the passband.
 本発明に係る高周波モジュール及び通信装置によれば、通過帯域外の減衰特性を改善しつつ、小型化を実現できる。 The high-frequency module and the communication device according to the present invention can achieve downsizing while improving the attenuation characteristics outside the passband.
図1は、実施の形態1に係る高周波モジュールの回路構成図である。FIG. 1 is a circuit configuration diagram of the high-frequency module according to the first embodiment. 図2は、実施の形態1に係るフィルタの回路構成図である。FIG. 2 is a circuit configuration diagram of the filter according to the first embodiment. 図3は、実施の形態1に係る高周波モジュールの断面図である。FIG. 3 is a cross-sectional view of the high-frequency module according to Embodiment 1. 図4は、実施の形態1の変形例に係る高周波モジュールの断面図である。FIG. 4 is a cross-sectional view of a high-frequency module according to a modification of the first embodiment. 図5は、実施の形態2に係る高周波モジュールの断面図である。FIG. 5 is a cross-sectional view of the high-frequency module according to the second embodiment. 図6は、実施の形態3に係る高周波モジュールの断面図である。FIG. 6 is a cross-sectional view of the high-frequency module according to Embodiment 3. 図7は、実施の形態4に係る通信装置の構成図である。FIG. 7 is a configuration diagram of a communication apparatus according to the fourth embodiment.
 以下、本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさは、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to examples and drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as optional constituent elements. Also, the size of the components shown in the drawings is not necessarily exact. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description may be abbreviate | omitted or simplified.
 (実施の形態1)
 [1.高周波モジュールの回路構成]
 図1は、実施の形態1に係る高周波モジュール1の回路構成図である。
(Embodiment 1)
[1. Circuit configuration of high-frequency module]
FIG. 1 is a circuit configuration diagram of a high-frequency module 1 according to the first embodiment.
 高周波モジュール1は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置されるモジュールである。高周波モジュール1は、例えばLTE(Long Term Evolution)等の通信規格に準拠したマルチバンド対応の携帯電話に内蔵される。 The high frequency module 1 is, for example, a module disposed in the front end portion of a multi-mode / multi-band mobile phone. The high-frequency module 1 is incorporated in a multi-band mobile phone that complies with a communication standard such as LTE (Long Term Evolution).
 高周波モジュール1は、例えば、入出力端子11m及び入出力端子11nを有し、入出力端子11mはアンテナ素子に接続され、入出力端子11nは他の部品(例えば後述するスイッチIC10とは異なる他のスイッチIC又は増幅回路等)を介してRF信号処理回路(RFIC)に接続される。高周波モジュール1は、アンテナ素子とRF信号処理回路との間で高周波信号を伝達する。 The high-frequency module 1 has, for example, an input / output terminal 11m and an input / output terminal 11n, the input / output terminal 11m is connected to an antenna element, and the input / output terminal 11n is another component (for example, another different from a switch IC 10 described later). It is connected to an RF signal processing circuit (RFIC) via a switch IC or an amplifier circuit. The high frequency module 1 transmits a high frequency signal between the antenna element and the RF signal processing circuit.
 図1に示すように、高周波モジュール1は、スイッチIC10、フィルタ20、インダクタL1及びL2を備える。 As shown in FIG. 1, the high-frequency module 1 includes a switch IC 10, a filter 20, and inductors L1 and L2.
 スイッチIC10は、半導体基板12と、半導体基板12に設けられたスイッチSW1と、半導体基板12に設けられ、スイッチSW1及びフィルタ20に接続されたインダクタL1とを有する。半導体基板12については、後述する図3で説明する。スイッチIC10では、スイッチSW1の導通及び非導通が切り替えられることで、入出力端子11mと入出力端子11nとの間の高周波信号の通過及び遮断が切り替えられる。例えば、高周波モジュール1が備える制御部(図示せず)又はRF信号処理回路等からの制御信号によって、スイッチSW1の導通及び非導通が切り替えられる。スイッチSW1は、例えば、GaAs若しくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、又は、ダイオードスイッチ等である。 The switch IC 10 includes a semiconductor substrate 12, a switch SW1 provided on the semiconductor substrate 12, and an inductor L1 provided on the semiconductor substrate 12 and connected to the switch SW1 and the filter 20. The semiconductor substrate 12 will be described later with reference to FIG. In the switch IC 10, switching between conduction and non-conduction of the switch SW <b> 1 is switched so that passage and blocking of the high-frequency signal between the input / output terminal 11 m and the input / output terminal 11 n are switched. For example, conduction and non-conduction of the switch SW1 are switched by a control signal from a control unit (not shown) included in the high-frequency module 1 or an RF signal processing circuit. The switch SW1 is, for example, a FET (Field Effect Transistor) switch made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), a diode switch, or the like.
 フィルタ20は、例えば、所定の周波数帯域の信号を通過させるバンドパスフィルタである。フィルタ20は、弾性表面波(SAW:Surface Acoustic Wave)共振子、バルク弾性波(BAW:Bulk Acoustic Wave)共振子又はFBAR(Film Bulk Acoustic Resonator)等の回路素子により構成されるフィルタである。フィルタ20は、SAW共振子により構成されたSAWフィルタの場合、基板とIDT(InterDigital Transducer)電極とを備えている。基板は、少なくとも表面に圧電性を有する基板である。基板は、例えば、表面に圧電薄膜を備え、当該圧電薄膜と音速の異なる膜、および支持基板などの積層体で構成されていてもよい。当該基板は、例えば、高音速支持基板と、高音速支持基板上に形成された圧電薄膜とを含む積層体、高音速支持基板と、高音速支持基板上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体、または、支持基板と、支持基板上に形成された高音速膜と、高音速膜上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体であってもよい。また、基板は、基板全体に圧電性を有していても良い。この場合、基板は、圧電体層一層からなる圧電基板である。なお、フィルタ20は、インダクタ及びキャパシタ等の回路素子により構成されるLC共振回路等であってもよい。ここでは、フィルタ20は、SAWフィルタであるとする。これにより、上述したようにフィルタ20を、圧電基板上に形成されたIDT電極により構成できるので、急峻度の高い通過特性を有する小型かつ低背のフィルタを実現できる。フィルタ20の具体的な回路構成については、後述する図2で説明する。 The filter 20 is, for example, a bandpass filter that passes a signal in a predetermined frequency band. The filter 20 is a filter configured by a circuit element such as a surface acoustic wave (SAW: Surface Acoustic Wave) resonator, a bulk acoustic wave (BAW: Bulk Acoustic Wave) resonator, or an FBAR (Film Bulk Acoustic Resonator). In the case of a SAW filter constituted by SAW resonators, the filter 20 includes a substrate and an IDT (InterDigital Transducer) electrode. The substrate is a substrate having piezoelectricity at least on the surface. The substrate may include, for example, a piezoelectric thin film on the surface, and a laminated body such as a film having a sound speed different from that of the piezoelectric thin film and a supporting substrate. The substrate includes, for example, a laminate including a high sound speed support substrate and a piezoelectric thin film formed on the high sound speed support substrate, a high sound speed support substrate, a low sound speed film formed on the high sound speed support substrate, A laminate including a piezoelectric thin film formed on a sonic film, or a support substrate, a high sonic film formed on the support substrate, a low sonic film formed on the high sonic film, and a low sonic film It may be a laminate including a piezoelectric thin film formed on the substrate. Moreover, the board | substrate may have piezoelectricity in the whole board | substrate. In this case, the substrate is a piezoelectric substrate composed of one piezoelectric layer. The filter 20 may be an LC resonance circuit configured by circuit elements such as an inductor and a capacitor. Here, it is assumed that the filter 20 is a SAW filter. Accordingly, as described above, the filter 20 can be configured by the IDT electrode formed on the piezoelectric substrate, and thus a small and low-profile filter having a high steep passage characteristic can be realized. A specific circuit configuration of the filter 20 will be described later with reference to FIG.
 インダクタL1は、スイッチSW1とフィルタ20とに接続された第1インダクタである。具体的には、インダクタL1は、スイッチSW1とフィルタ20との接続点x1とグランドとの間に接続される。インダクタL1は、例えば、スイッチIC10(スイッチSW1)とフィルタ20との整合を取るための整合回路である。なお、インダクタL1は、他の部品を介してフィルタ20に接続されてもよい。また、インダクタL1は、スイッチSW1とフィルタ20との間においてこれらと直列に接続されてもよい。 The inductor L1 is a first inductor connected to the switch SW1 and the filter 20. Specifically, the inductor L1 is connected between the connection point x1 between the switch SW1 and the filter 20 and the ground. The inductor L1 is a matching circuit for matching the switch IC 10 (switch SW1) and the filter 20, for example. The inductor L1 may be connected to the filter 20 through other components. Further, the inductor L1 may be connected in series between the switch SW1 and the filter 20.
 インダクタL2は、フィルタ20に接続された第2インダクタである。具体的には、インダクタL2は、フィルタ20と入出力端子11nとの接続点x2とグランドとの間に接続される。インダクタL2は、フィルタ20と、入出力端子11nに接続される部品(例えば他のスイッチIC又は増幅回路等)との整合を取るための整合回路である。なお、インダクタL2は、フィルタ20と入出力端子11nとの間においてこれらと直列に接続されてもよい。 The inductor L2 is a second inductor connected to the filter 20. Specifically, the inductor L2 is connected between the connection point x2 between the filter 20 and the input / output terminal 11n and the ground. The inductor L2 is a matching circuit for matching the filter 20 with a component (for example, another switch IC or an amplifier circuit) connected to the input / output terminal 11n. The inductor L2 may be connected in series between the filter 20 and the input / output terminal 11n.
 インダクタL1とインダクタL2とは電磁界結合(誘導性結合又は容量性結合)している。インダクタL1とインダクタL2とが電磁界結合しているため、接続点x1からインダクタL1及びインダクタL2を経由して接続点x2に至る経路が形成される。当該経路を結合パスと呼ぶ。一方、接続点x1からフィルタ20を経由して接続点x2に至る経路をメインパスと呼ぶ。インダクタL1とインダクタL2との電磁界結合の結合度を調整することによって、メインパスを流れる通過帯域外の不要波信号とは逆位相の不要波抑圧信号を結合パスに流すことができる。つまり、メインパスと結合パスとの接続点x2でメインパスを流れる不要波信号を、結合パスを流れる不要波抑圧信号によって相殺することができる。 The inductor L1 and the inductor L2 are electromagnetically coupled (inductive coupling or capacitive coupling). Since the inductor L1 and the inductor L2 are electromagnetically coupled, a path from the connection point x1 to the connection point x2 via the inductor L1 and the inductor L2 is formed. This route is called a combined path. On the other hand, a route from the connection point x1 through the filter 20 to the connection point x2 is called a main path. By adjusting the coupling degree of the electromagnetic coupling between the inductor L1 and the inductor L2, an unnecessary wave suppression signal having a phase opposite to that of the unnecessary wave signal outside the passband flowing through the main path can be passed through the coupling path. That is, the unnecessary wave signal that flows through the main path at the connection point x2 between the main path and the coupling path can be canceled by the unnecessary wave suppression signal that flows through the coupling path.
 次に、フィルタ20の回路構成について図2を用いて説明する。 Next, the circuit configuration of the filter 20 will be described with reference to FIG.
 図2は、実施の形態1に係るフィルタ20の回路構成図である。 FIG. 2 is a circuit configuration diagram of the filter 20 according to the first embodiment.
 フィルタ20は、例えば、上述した回路素子として直列腕共振子s1~s3、並びに、並列腕共振子p1及びp2により構成され、図2に示すようにラダー型のフィルタ構造を有することで、良好なフィルタ特性を実現できる。本実施の形態では、インダクタL1とインダクタL2との間にフィルタ20を構成する回路素子が接続される。具体的には、インダクタL1とインダクタL2との間にフィルタ20を構成する直列腕共振子s1~s3が接続される。なお、インダクタL2は、接続点x2(直列腕共振子s3と入出力端子11nとの接続点)とグランドとの間に接続されたが、並列腕共振子p1又はp2とグランドとの間に接続されてもよい。例えば、インダクタL2が並列腕共振子p1とグランドとの間に接続される場合、インダクタL1とインダクタL2との間にフィルタ20を構成する回路素子として直列腕共振子s1及び並列腕共振子p1が接続される。つまり、インダクタL2は、図1に示すように接続点x2(入出力端子11nに接続される直列腕)に接続される場合の他に、並列腕共振子p1又はp2等の並列腕に接続されてもよい。 The filter 20 includes, for example, the series arm resonators s1 to s3 and the parallel arm resonators p1 and p2 as the circuit elements described above, and has a ladder type filter structure as shown in FIG. Filter characteristics can be realized. In the present embodiment, circuit elements constituting the filter 20 are connected between the inductor L1 and the inductor L2. Specifically, series arm resonators s1 to s3 constituting the filter 20 are connected between the inductor L1 and the inductor L2. The inductor L2 is connected between the connection point x2 (connection point between the series arm resonator s3 and the input / output terminal 11n) and the ground, but is connected between the parallel arm resonator p1 or p2 and the ground. May be. For example, when the inductor L2 is connected between the parallel arm resonator p1 and the ground, the series arm resonator s1 and the parallel arm resonator p1 are used as circuit elements constituting the filter 20 between the inductor L1 and the inductor L2. Connected. In other words, the inductor L2 is connected to a parallel arm such as the parallel arm resonator p1 or p2 in addition to the case where the inductor L2 is connected to the connection point x2 (series arm connected to the input / output terminal 11n) as shown in FIG. May be.
 [2.高周波モジュールの構造]
 次に、高周波モジュール1の構造について図3を用いて説明する。
[2. Structure of high frequency module]
Next, the structure of the high frequency module 1 will be described with reference to FIG.
 図3は、実施の形態1に係る高周波モジュール1の断面図である。 FIG. 3 is a cross-sectional view of the high-frequency module 1 according to the first embodiment.
 高周波モジュール1は、スイッチIC10、フィルタ20及びインダクタL2が設けられた基板30を備える。 The high-frequency module 1 includes a substrate 30 provided with a switch IC 10, a filter 20, and an inductor L2.
 スイッチIC10及びインダクタL2は、例えば、基板30に内蔵されている。これにより、基板30の表面実装面積をより削減することができ、高周波モジュール1を小型化できる。基板30は、例えばプリント基板又はLTCC(Low Temperature Co-fired Ceramics)基板等の多層基板である。なお、スイッチIC10が基板30に内蔵される場合、基板30は、スイッチIC10等を内蔵するための加工が容易なプリント基板であってもよい。フィルタ20は、基板30に表面実装されている。フィルタ20は、樹脂封止されて保護されてもよい。なお、フィルタ20は、基板30に内蔵されてもよい。 The switch IC 10 and the inductor L2 are built in the substrate 30, for example. Thereby, the surface mounting area of the board | substrate 30 can be reduced more, and the high frequency module 1 can be reduced in size. The substrate 30 is a multilayer substrate such as a printed circuit board or a LTCC (Low Temperature Co-fired Ceramics) substrate. When the switch IC 10 is built in the substrate 30, the substrate 30 may be a printed board that can be easily processed for incorporating the switch IC 10 or the like. The filter 20 is surface-mounted on the substrate 30. The filter 20 may be protected by resin sealing. The filter 20 may be built in the substrate 30.
 インダクタL1は、スイッチIC10を構成する半導体基板12に設けられている。半導体基板12は、例えば半導体チップ又はプリント基板等である。なお、半導体基板12の形状は板状だけでなく、立方体や、直方体ではない形状(円形、その他の形状)等であってもよい。スイッチIC10を構成する半導体基板12の一方主面において他の部品(例えばフィルタ20)と接続するためのバンプ等の電極が形成される電極形成面に、当該電極を形成するためのパターンを利用してインダクタL1は設けられている。インダクタL1は、例えば、電極形成面に設けられたコイルパターンで構成されている。 The inductor L1 is provided on the semiconductor substrate 12 constituting the switch IC10. The semiconductor substrate 12 is, for example, a semiconductor chip or a printed board. The shape of the semiconductor substrate 12 is not limited to a plate shape, but may be a cube, a shape that is not a rectangular parallelepiped (circular or other shape), or the like. A pattern for forming the electrodes is used on an electrode forming surface on which electrodes such as bumps for connecting to other components (for example, the filter 20) are formed on one main surface of the semiconductor substrate 12 constituting the switch IC 10. An inductor L1 is provided. For example, the inductor L1 includes a coil pattern provided on the electrode formation surface.
 インダクタL2は、例えば、基板30の内層に設けられたコイルパターンで構成されている。これにより、電磁界結合として、誘導性結合だけでなく、コイルパターン間での容量性結合も実現できる。なお、図3は、インダクタL1及びL2を模式的に横線で示しているが、インダクタL1及びL2は、例えば、基板30の平面視において電極形成面上及び基板30の内層又は表面で渦巻状に形成されている。また、図3では、インダクタL2として基板30の内層に設けられたコイルパターンが示されているが、インダクタL2は、基板30の表面に設けられたコイルパターンであってもよい。 The inductor L2 is configured by, for example, a coil pattern provided in the inner layer of the substrate 30. As a result, not only inductive coupling but also capacitive coupling between coil patterns can be realized as electromagnetic coupling. FIG. 3 schematically shows the inductors L1 and L2 with horizontal lines. For example, the inductors L1 and L2 are spirally formed on the electrode formation surface and on the inner layer or surface of the substrate 30 in a plan view of the substrate 30. Is formed. 3 shows a coil pattern provided on the inner layer of the substrate 30 as the inductor L2, the inductor L2 may be a coil pattern provided on the surface of the substrate 30.
 また、インダクタL1とインダクタL2とは、基板30の平面視において重なる。インダクタL1とインダクタL2とが基板30の平面視において重なるとは、インダクタL1及びL2の一方が他方に完全に重なることはもとより、インダクタL1の一部とインダクタL2の一部とが重なることも意図する。これにより、インダクタL1とインダクタL2との電磁界結合の結合度を高めることができる。 Further, the inductor L1 and the inductor L2 overlap in a plan view of the substrate 30. The fact that the inductor L1 and the inductor L2 overlap in plan view of the substrate 30 is intended not only that one of the inductors L1 and L2 completely overlaps the other, but also that a part of the inductor L1 and a part of the inductor L2 overlap. To do. Thereby, the coupling degree of the electromagnetic field coupling between the inductor L1 and the inductor L2 can be increased.
 例えば、インダクタL1とインダクタL2との基板30の平面視において重なる量や、インダクタL1とインダクタL2との基板30の厚み方向における距離が調整されることで、当該電磁界結合の結合度を調整することができる。なお、図4で説明する方法で電磁界結合の結合度が調整されてもよい。 For example, the degree of coupling of the electromagnetic field coupling is adjusted by adjusting the amount of the inductor L1 and the inductor L2 that overlap in the plan view of the substrate 30 and the distance between the inductor L1 and the inductor L2 in the thickness direction of the substrate 30. be able to. Note that the degree of coupling of electromagnetic field coupling may be adjusted by the method described in FIG.
 図4は、実施の形態1の変形例に係る高周波モジュール1aの断面図である。高周波モジュール1aでは、基板30の平面視において、インダクタL1とインダクタL2との間で、インダクタL1及びL2と部分的に重なるように、グランドパターンが基板30に設けられている。例えば、インダクタL1及びL2とグランドパターンとが重なる量が少なくなるほど結合度は強くなり、当該重なる量が多くなるほど結合度は弱くなる。したがって、基板30の平面視においてインダクタL1及びL2とグランドパターンとが重なる量を調整することで、インダクタL1とインダクタL2との基板30の平面視において重なる量や、インダクタL1とインダクタL2との基板30の厚み方向における距離を調整しなくても、インダクタL1とインダクタL2との電磁界結合の結合度を容易に調整することができる。 FIG. 4 is a cross-sectional view of a high-frequency module 1a according to a modification of the first embodiment. In the high-frequency module 1a, a ground pattern is provided on the substrate 30 so as to partially overlap the inductors L1 and L2 between the inductor L1 and the inductor L2 in a plan view of the substrate 30. For example, the degree of coupling increases as the amount of overlap between the inductors L1 and L2 and the ground pattern decreases, and the degree of coupling decreases as the amount of overlap increases. Therefore, by adjusting the amount of overlap between the inductors L1 and L2 and the ground pattern in the plan view of the substrate 30, the amount of overlap between the inductor L1 and the inductor L2 in the plan view of the substrate 30 or the substrate of the inductor L1 and the inductor L2 is adjusted. Even if the distance in the thickness direction of 30 is not adjusted, the coupling degree of the electromagnetic coupling between the inductor L1 and the inductor L2 can be easily adjusted.
 [3.効果等]
 以上説明したように、実施の形態1に係る高周波モジュール1では、フィルタ20を通過するメインパスとは別にインダクタL1とインダクタL2との電磁界結合による結合パスが形成され、メインパスを流れる通過帯域外の不要波信号と逆位相の不要波抑圧信号が結合パスを流れるようにすることで、メインパスと結合パスとの接続点x2でメインパスを流れる不要波信号を、結合パスを流れる不要波抑圧信号によって相殺することができる。例えば、インダクタL1とインダクタL2との電磁界結合の結合度を調整することで、結合パスを流れる信号の位相特性を調整することができ、不要波抑圧信号を不要波信号とは逆位相の信号にすることができる。よって、フィルタ20の通過帯域外の減衰特性を改善することができる。また、インダクタL1は、基板30内において何層にもわたって配線として配置されたり、基板30表面において実装されたりせず、スイッチIC10を構成する半導体基板12(例えば半導体チップ等)に設けられるため、高周波モジュール1を小型化できる。このように、通過帯域外の減衰特性を改善しつつ、高周波モジュールの小型化を実現できる。
[3. Effect]
As described above, in the high-frequency module 1 according to the first embodiment, in addition to the main path that passes through the filter 20, a coupling path by electromagnetic coupling between the inductor L1 and the inductor L2 is formed, and the passband that flows through the main path An unnecessary wave signal that flows through the main path at the connection point x2 between the main path and the coupling path is converted into an unnecessary wave that flows through the coupling path by allowing the unnecessary wave suppression signal having the opposite phase to the unnecessary wave signal to flow through the coupling path. It can be canceled out by the suppression signal. For example, by adjusting the coupling degree of the electromagnetic coupling between the inductor L1 and the inductor L2, the phase characteristic of the signal flowing through the coupling path can be adjusted, and the unwanted wave suppression signal is a signal having a phase opposite to that of the unwanted wave signal. Can be. Therefore, attenuation characteristics outside the passband of the filter 20 can be improved. Further, the inductor L1 is arranged as a wiring over the layers in the substrate 30 and is not mounted on the surface of the substrate 30, and is provided on the semiconductor substrate 12 (for example, a semiconductor chip) constituting the switch IC 10. The high frequency module 1 can be reduced in size. In this way, it is possible to reduce the size of the high-frequency module while improving the attenuation characteristics outside the passband.
 また、例えば、入出力端子11mがフィルタ20の通過帯域とは異なる周波数帯域の信号を通過させる他の高周波モジュール(フィルタ)の入出力端子と共通端子化されることで、高周波モジュール1と当該他の高周波モジュールとでデュプレクサ等のマルチプレクサが構成される。したがって、マルチプレクサが構成される場合、フィルタ20の通過帯域外の減衰特性が改善されることで、高周波モジュール1と他の高周波モジュールとのアイソレーション特性を改善することができる。 Further, for example, the input / output terminal 11m is shared with the input / output terminal of another high-frequency module (filter) that passes a signal in a frequency band different from the pass band of the filter 20, so that the high-frequency module 1 and the other A multiplexer such as a duplexer is configured with the high-frequency module. Therefore, when the multiplexer is configured, the isolation characteristic between the high-frequency module 1 and another high-frequency module can be improved by improving the attenuation characteristic outside the passband of the filter 20.
 また、半導体基板12には、他の部品(例えばフィルタ20等)と接続するための電極が形成された電極形成面が設けられている。したがって、スイッチIC10の電極形成面における電極を形成するためのパターンを利用してインダクタL1が設けられることで、スイッチIC10のサイズを維持したまま、インダクタL1をスイッチIC10に設けることができる。よって、高周波モジュール1を小型化(低背化)できる。 In addition, the semiconductor substrate 12 is provided with an electrode forming surface on which electrodes for connecting to other components (for example, the filter 20 and the like) are formed. Therefore, by providing the inductor L1 using the pattern for forming the electrode on the electrode formation surface of the switch IC 10, the inductor L1 can be provided in the switch IC 10 while maintaining the size of the switch IC 10. Therefore, the high frequency module 1 can be reduced in size (reduced in height).
 (実施の形態2)
 実施の形態2では、スイッチIC10は基板30に表面実装される。
(Embodiment 2)
In the second embodiment, the switch IC 10 is surface-mounted on the substrate 30.
 図5は、実施の形態2に係る高周波モジュール2の断面図である。図5に示すように、スイッチIC10は、スイッチIC10の電極形成面におけるバンプが基板30の一方主面に接続されることで、基板30に表面実装されている。本実施の形態においても、インダクタL1は、当該電極形成面に設けられている。 FIG. 5 is a cross-sectional view of the high-frequency module 2 according to the second embodiment. As shown in FIG. 5, the switch IC 10 is surface-mounted on the substrate 30 by connecting bumps on the electrode forming surface of the switch IC 10 to one main surface of the substrate 30. Also in the present embodiment, the inductor L1 is provided on the electrode formation surface.
 また、高周波モジュール2の基板30の当該一方主面には、電極50が設けられる。なお、電極50は、銅ピラー、めっき若しくは銅ペースト等の電極、又ははんだ等であってもよい。高周波モジュール2は、例えば、マザー基板(図示せず)に実装され、マザー基板からの高周波信号を、電極50を介して受ける。また、スイッチIC10は、樹脂40によって樹脂封止されることで保護され、信頼性を向上させることができる。なお、図5では、基板30の一方主面全体が樹脂40で覆われているが、例えば、アンダーフィル等の樹脂によりスイッチIC10のみを封止してもよい。さらに、樹脂40上にシールド電極が形成されてもよい。これにより、高周波モジュール2への外部ノイズの侵入を抑制したり、高周波モジュール2から放射されるノイズの拡散を抑制したりできる。なお、高周波モジュール2のその他の機能については、高周波モジュール1と同じであるため説明を省略する。 Further, an electrode 50 is provided on the one main surface of the substrate 30 of the high-frequency module 2. The electrode 50 may be a copper pillar, an electrode such as plating or copper paste, or solder. The high frequency module 2 is mounted on a mother board (not shown), for example, and receives a high frequency signal from the mother board via the electrode 50. Further, the switch IC 10 is protected by resin sealing with the resin 40, and the reliability can be improved. In FIG. 5, the entire one main surface of the substrate 30 is covered with the resin 40, but only the switch IC 10 may be sealed with a resin such as an underfill, for example. Furthermore, a shield electrode may be formed on the resin 40. Thereby, the penetration | invasion of the external noise to the high frequency module 2 can be suppressed, or the spreading | diffusion of the noise radiated | emitted from the high frequency module 2 can be suppressed. Since the other functions of the high frequency module 2 are the same as those of the high frequency module 1, the description thereof is omitted.
 (実施の形態3)
 実施の形態3では、インダクタL2は、実装部品である。
(Embodiment 3)
In the third embodiment, the inductor L2 is a mounted component.
 図6は、実施の形態3に係る高周波モジュール3の断面図である。図6に示すように、インダクタL2は、基板30に表面実装された実装部品(チップインダクタ)である。実装部品としてのインダクタL2は、Q値が高く、当該Q値の高いインダクタL2が接続されたフィルタ20の通過帯域における挿入損失、及び減衰帯域における減衰量を改善できる。フィルタ20及びインダクタL2は、樹脂封止されて保護されてもよい。また、インダクタL1とインダクタL2(チップインダクタ)とは、基板30の平面視において重なる。また、インダクタL2として、互いにコイルの巻き方向の異なる複数の実装部品から選択して使用することができるため、電磁界結合の結合度の調整を容易にできる。なお、高周波モジュール3のその他の機能については、高周波モジュール1と同じであるため説明を省略する。 FIG. 6 is a cross-sectional view of the high-frequency module 3 according to the third embodiment. As shown in FIG. 6, the inductor L <b> 2 is a mounting component (chip inductor) that is surface-mounted on the substrate 30. The inductor L2 as a mounting component has a high Q value, and can improve the insertion loss in the pass band of the filter 20 to which the inductor L2 having the high Q value is connected and the attenuation in the attenuation band. The filter 20 and the inductor L2 may be protected by resin sealing. Further, the inductor L1 and the inductor L2 (chip inductor) overlap in the plan view of the substrate 30. Further, since the inductor L2 can be selected and used from a plurality of mounted components having different coil winding directions, the coupling degree of electromagnetic coupling can be easily adjusted. The other functions of the high-frequency module 3 are the same as those of the high-frequency module 1, and thus the description thereof is omitted.
 (実施の形態4)
 本発明の高周波モジュールは、通信装置に適用できる。
(Embodiment 4)
The high frequency module of the present invention can be applied to a communication device.
 図7は、実施の形態4に係る通信装置100の構成図である。図7には、高周波モジュール4と、アンテナ素子ANTと、RF信号処理回路(RFIC)70とが示されている。高周波モジュール4及びRFIC70は、通信装置100を構成している。アンテナ素子ANT、高周波モジュール4、及び、RFIC70は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置される。 FIG. 7 is a configuration diagram of the communication apparatus 100 according to the fourth embodiment. FIG. 7 shows the high-frequency module 4, the antenna element ANT, and the RF signal processing circuit (RFIC) 70. The high frequency module 4 and the RFIC 70 constitute a communication device 100. The antenna element ANT, the high-frequency module 4, and the RFIC 70 are disposed, for example, in a front end portion of a mobile phone that supports multimode / multiband.
 アンテナ素子ANTは、高周波信号を送受信する、例えばLTE等の通信規格に準拠したマルチバンド対応のアンテナである。アンテナ素子ANTは、通信装置100に内蔵されていてもかまわない。 The antenna element ANT is a multiband antenna that transmits and receives a high-frequency signal and conforms to a communication standard such as LTE. The antenna element ANT may be built in the communication device 100.
 高周波モジュール4は、アンテナ素子ANTとRFIC70との間で高周波信号を伝達する回路である。具体的には、高周波モジュール4は、アンテナ素子ANTで受信された高周波信号を、受信側信号経路を介してRFIC70に伝達する。高周波モジュール4は、スイッチIC10a~10d、フィルタ20a~20e、インダクタ(第1インダクタ)L1a~L1e、インダクタ(第2インダクタ)L2a~L2e、インダクタL3a~L3d、並びに、増幅回路60a及び60bを備える。 The high frequency module 4 is a circuit that transmits a high frequency signal between the antenna element ANT and the RFIC 70. Specifically, the high frequency module 4 transmits a high frequency signal received by the antenna element ANT to the RFIC 70 via the reception side signal path. The high-frequency module 4 includes switch ICs 10a to 10d, filters 20a to 20e, inductors (first inductors) L1a to L1e, inductors (second inductors) L2a to L2e, inductors L3a to L3d, and amplifier circuits 60a and 60b.
 スイッチIC10aは、共通端子及び当該共通端子に選択的に接続される複数の選択端子からなるスイッチSW1aを有する。当該共通端子はアンテナ素子ANTに接続され、当該複数の選択端子は、それぞれ、フィルタ20a~20eに接続される。スイッチSW1aは、アンテナ素子ANTで受信された高周波信号を、フィルタ20a~20e毎の経路に分けるスイッチである。 The switch IC 10a includes a switch SW1a including a common terminal and a plurality of selection terminals that are selectively connected to the common terminal. The common terminal is connected to the antenna element ANT, and the plurality of selection terminals are connected to the filters 20a to 20e, respectively. The switch SW1a is a switch that divides the high-frequency signal received by the antenna element ANT into paths for the filters 20a to 20e.
 フィルタ20a~20eは、それぞれ、例えば、互いに異なる周波数帯域の信号を通過させるバンドパスフィルタである。 Each of the filters 20a to 20e is, for example, a band-pass filter that passes signals in different frequency bands.
 インダクタL1a~L1eは、それぞれ、スイッチIC10aとフィルタ20a~20eとの間でスイッチIC10aに接続された第1インダクタである。インダクタL1a~L1eは、それぞれ、例えば、スイッチIC10aとフィルタ20a~20eとの整合を取るための整合回路である。インダクタL1a~L1eは、スイッチIC10aに設けられる。例えば、インダクタL1a~L1eは、スイッチIC10a上に設けられたり、スイッチIC10aに内蔵されたりする。 The inductors L1a to L1e are first inductors connected to the switch IC 10a between the switch IC 10a and the filters 20a to 20e, respectively. The inductors L1a to L1e are, for example, matching circuits for matching the switch IC 10a and the filters 20a to 20e. The inductors L1a to L1e are provided in the switch IC 10a. For example, the inductors L1a to L1e are provided on the switch IC 10a or built in the switch IC 10a.
 インダクタL2a~L2eは、インダクタL1a~L1eとの間にフィルタ20a~20eを構成する回路素子が接続されるように、フィルタ20a~20eに接続された第2インダクタである。インダクタL2a~L2eは、フィルタ20a~20eと、スイッチIC10b及び10cとの整合を取るための整合回路である。 The inductors L2a to L2e are second inductors connected to the filters 20a to 20e so that circuit elements constituting the filters 20a to 20e are connected between the inductors L1a to L1e. The inductors L2a to L2e are matching circuits for matching the filters 20a to 20e and the switch ICs 10b and 10c.
 インダクタL1aとインダクタL2aとは電磁界結合している。同様に、インダクタL1b及びL2b、インダクタL1c及びL2c、インダクタL1d及びL2d、並びに、インダクタL1e及びL2eは、それぞれ、電磁界結合している。これにより、各フィルタを経由するメインパスと、電磁界結合しているインダクタの各組を経由する結合パスとが形成される。そして、メインパスを流れる通過帯域外の不要波信号と逆位相の不要波抑圧信号が結合パスを流れるようにすることで、メインパスを流れる不要波信号を、結合パスを流れる不要波抑圧信号によって相殺できる。よって、各フィルタの通過帯域外の減衰特性を改善することができ、各メインパス同士のアイソレーション特性を改善できる。 The inductor L1a and the inductor L2a are electromagnetically coupled. Similarly, inductors L1b and L2b, inductors L1c and L2c, inductors L1d and L2d, and inductors L1e and L2e are electromagnetically coupled, respectively. As a result, a main path passing through each filter and a coupling path passing through each set of inductors that are electromagnetically coupled are formed. Then, by causing the unwanted wave suppression signal out of the passband flowing through the main path to flow in the coupling path, the unwanted wave signal flowing in the main path is converted into the unwanted wave suppression signal flowing in the coupling path by the unwanted wave suppression signal flowing in the coupling path. Can be offset. Therefore, the attenuation characteristics outside the passband of each filter can be improved, and the isolation characteristics between the main paths can be improved.
 スイッチIC10b及び10cは、共通端子及び当該共通端子に選択的に接続される複数の選択端子からなるスイッチを有する。スイッチIC10bが有する共通端子はインダクタL3aに接続され、スイッチIC10bが有する複数の選択端子はそれぞれフィルタ20a及び20bに接続される。スイッチIC10cが有する共通端子はインダクタL3cに接続され、スイッチIC10cが有する複数の選択端子はフィルタ20c~20eに接続される。スイッチIC10b及び10cがそれぞれ有するスイッチは、フィルタ20a~20e毎の経路をまとめるスイッチである。 The switch ICs 10b and 10c have a switch composed of a common terminal and a plurality of selection terminals selectively connected to the common terminal. A common terminal included in the switch IC 10b is connected to the inductor L3a, and a plurality of selection terminals included in the switch IC 10b are connected to the filters 20a and 20b, respectively. A common terminal included in the switch IC 10c is connected to the inductor L3c, and a plurality of selection terminals included in the switch IC 10c are connected to the filters 20c to 20e. The switches included in the switch ICs 10b and 10c are switches that group paths for the filters 20a to 20e.
 インダクタL3a及びL3bは、スイッチIC10bと増幅回路60aとの整合を取るための整合回路である。同様に、インダクタL3c及びL3dは、スイッチIC10cと増幅回路60bとの整合を取るための整合回路である。 The inductors L3a and L3b are matching circuits for matching the switch IC 10b and the amplifier circuit 60a. Similarly, the inductors L3c and L3d are matching circuits for matching the switch IC 10c and the amplifier circuit 60b.
 増幅回路60a及び60bは、スイッチIC10b及び10cでまとめられた経路を伝搬する高周波信号を増幅する回路である。増幅回路60a及び60bは、例えば、高周波受信信号を増幅するローノイズアンプである。なお、増幅回路60a及び60bは、ローノイズアンプに限らず、例えば、高周波送信信号を増幅するパワーアンプであってもよい。また、増幅回路60a及び60bは、スイッチIC10a~10dのいずれかに内蔵されてもよい。 Amplifying circuits 60a and 60b are circuits that amplify high-frequency signals propagating through the paths integrated by the switch ICs 10b and 10c. The amplifier circuits 60a and 60b are, for example, low noise amplifiers that amplify a high frequency received signal. The amplifier circuits 60a and 60b are not limited to low noise amplifiers, and may be power amplifiers that amplify high-frequency transmission signals, for example. The amplifier circuits 60a and 60b may be incorporated in any of the switch ICs 10a to 10d.
 スイッチIC10dは、共通端子及び当該共通端子に選択的に接続される複数の選択端子からなるスイッチを有する。当該共通端子はRFIC70に接続され、当該複数の選択端子はそれぞれ増幅回路60a及び60bに接続される。スイッチIC10dが有するスイッチは、増幅回路60a及び60bで増幅された高周波信号が伝搬する複数の経路をRFIC70が有する高周波信号を取得するための端子に接続される経路にまとめるスイッチである。 The switch IC 10d includes a switch including a common terminal and a plurality of selection terminals that are selectively connected to the common terminal. The common terminal is connected to the RFIC 70, and the plurality of selection terminals are connected to the amplifier circuits 60a and 60b, respectively. The switch included in the switch IC 10d is a switch that combines a plurality of paths through which the high-frequency signals amplified by the amplifier circuits 60a and 60b propagate into paths connected to terminals for acquiring the high-frequency signals included in the RFIC 70.
 RFIC70は、アンテナ素子ANTで送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC70は、アンテナ素子ANTから高周波モジュール4の受信側信号経路を介して入力された高周波信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(図示せず)へ出力する。 The RFIC 70 is an RF signal processing circuit that processes high-frequency signals transmitted and received by the antenna element ANT. Specifically, the RFIC 70 performs signal processing on the high-frequency signal input from the antenna element ANT via the reception-side signal path of the high-frequency module 4 by down-conversion or the like, and based on the reception signal generated by the signal processing Output to a band signal processing circuit (not shown).
 高周波モジュール4は、高周波モジュール1と同じように、通過帯域外の減衰特性を改善でき、また、スイッチIC10aにインダクタL1a~L1eが設けられるため小型化が可能である。よって、通過帯域外の減衰特性を改善しつつ、小型化を実現できる通信装置を提供できる。 As with the high frequency module 1, the high frequency module 4 can improve the attenuation characteristics outside the passband, and can be reduced in size because the inductors L1a to L1e are provided in the switch IC 10a. Therefore, it is possible to provide a communication device that can achieve downsizing while improving attenuation characteristics outside the passband.
 なお、通信装置100は、高周波モジュール4を備えたが、高周波モジュール1、1a、2又は3を備えてもよい。 The communication device 100 includes the high frequency module 4, but may include the high frequency module 1, 1a, 2 or 3.
 (その他の実施の形態)
 以上、本発明の実施の形態に係る高周波モジュール及び通信装置について、実施の形態1~4を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。
(Other embodiments)
As described above, the high-frequency module and the communication device according to the embodiment of the present invention have been described with reference to the first to fourth embodiments. However, the present invention is not limited to the above-described embodiment. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, and modifications obtained by applying various modifications conceivable by those skilled in the art to the above-described embodiment without departing from the gist of the present invention. Examples are also included in the present invention.
 本発明は、マルチバンドシステムに適用できる小型の高周波モジュール及び通信装置として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication devices such as mobile phones as small high-frequency modules and communication devices applicable to multiband systems.
 1、1a、2、3、4  高周波モジュール
 10、10a~10d  スイッチIC
 11m、11n 入出力端子
 12  半導体基板
 20、20a~20e  フィルタ
 30  基板
 40  樹脂
 50  電極
 60a、60b  増幅回路
 70  RF信号処理回路(RFIC)
 100  通信装置
 SW1、SW1a  スイッチ
 L1、L1a~L1e  インダクタ(第1インダクタ)
 L2、L2a~L2e  インダクタ(第2インダクタ)
 L3a~L3d  インダクタ
 s1~s3  直列腕共振子
 p1、p2  並列腕共振子
 x1、x2  接続点
 ANT  アンテナ素子
1, 1a, 2, 3, 4 High- frequency module 10, 10a-10d Switch IC
11m, 11n I / O terminal 12 Semiconductor substrate 20, 20a to 20e Filter 30 Substrate 40 Resin 50 Electrode 60a, 60b Amplifier circuit 70 RF signal processing circuit (RFIC)
100 Communication device SW1, SW1a Switch L1, L1a to L1e Inductor (first inductor)
L2, L2a to L2e Inductor (second inductor)
L3a to L3d Inductors s1 to s3 Series arm resonator p1, p2 Parallel arm resonator x1, x2 Connection point ANT Antenna element

Claims (9)

  1.  フィルタと、
     半導体基板と、当該半導体基板に設けられたスイッチと、当該半導体基板に設けられ、当該スイッチ及び前記フィルタに接続された第1インダクタとを有するスイッチICと、
     前記フィルタに接続された第2インダクタと、
     前記スイッチIC、前記フィルタ及び前記第2インダクタが設けられた基板と、を備え、
     前記第1インダクタと前記第2インダクタとの間に前記フィルタを構成する回路素子が接続され、
     前記第1インダクタと前記第2インダクタとは電磁界結合している
     高周波モジュール。
    Filters,
    A switch IC having a semiconductor substrate, a switch provided on the semiconductor substrate, and a first inductor provided on the semiconductor substrate and connected to the switch and the filter;
    A second inductor connected to the filter;
    A board provided with the switch IC, the filter, and the second inductor,
    A circuit element constituting the filter is connected between the first inductor and the second inductor;
    The first inductor and the second inductor are electromagnetically coupled to each other.
  2.  前記第1インダクタは、前記半導体基板の電極形成面に設けられる
     請求項1に記載の高周波モジュール。
    The high-frequency module according to claim 1, wherein the first inductor is provided on an electrode formation surface of the semiconductor substrate.
  3.  前記第1インダクタと前記第2インダクタとは、前記基板の平面視において重なる
     請求項1又は2に記載の高周波モジュール。
    The high-frequency module according to claim 1, wherein the first inductor and the second inductor overlap in a plan view of the substrate.
  4.  前記第2インダクタは、コイルパターンで構成されている
     請求項1~3のいずれか1項に記載の高周波モジュール。
    The high-frequency module according to any one of claims 1 to 3, wherein the second inductor includes a coil pattern.
  5.  前記第2インダクタは、実装部品である
     請求項1~3のいずれか1項に記載の高周波モジュール。
    The high-frequency module according to any one of claims 1 to 3, wherein the second inductor is a mounting component.
  6.  前記基板の平面視において、前記第1インダクタと前記第2インダクタとの間で、前記第1インダクタ及び前記第2インダクタと部分的に重なるように、グランドパターンが前記基板に設けられている
     請求項1~5のいずれか1項に記載の高周波モジュール。
    The ground pattern is provided on the substrate so as to partially overlap the first inductor and the second inductor between the first inductor and the second inductor in a plan view of the substrate. 6. The high frequency module according to any one of 1 to 5.
  7.  前記スイッチICは、前記基板に内蔵されている
     請求項1~6のいずれか1項に記載の高周波モジュール。
    The high-frequency module according to any one of claims 1 to 6, wherein the switch IC is built in the substrate.
  8.  前記第2インダクタは、前記基板に内蔵されている
     請求項1~7のいずれか1項に記載の高周波モジュール。
    The high-frequency module according to any one of claims 1 to 7, wherein the second inductor is built in the substrate.
  9.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項1~8のいずれか1項に記載の高周波モジュールと、を備える
     通信装置。
    An RF signal processing circuit for processing a high-frequency signal transmitted and received by the antenna element;
    A high-frequency module according to any one of claims 1 to 8, wherein the high-frequency signal is transmitted between the antenna element and the RF signal processing circuit.
PCT/JP2017/044633 2016-12-16 2017-12-12 High frequency module and communication device WO2018110577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244821 2016-12-16
JP2016-244821 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110577A1 true WO2018110577A1 (en) 2018-06-21

Family

ID=62558593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044633 WO2018110577A1 (en) 2016-12-16 2017-12-12 High frequency module and communication device

Country Status (1)

Country Link
WO (1) WO2018110577A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235276A1 (en) * 2018-06-06 2019-12-12 株式会社村田製作所 Multiplexer
WO2021002238A1 (en) * 2019-07-03 2021-01-07 株式会社村田製作所 High-frequency module and communication device
CN113412578A (en) * 2019-03-01 2021-09-17 株式会社村田制作所 High-frequency module and communication device
CN114080756A (en) * 2019-07-09 2022-02-22 株式会社村田制作所 High-frequency module and communication device
CN115039345A (en) * 2020-02-07 2022-09-09 株式会社村田制作所 High-frequency module and communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176700A (en) * 1993-07-26 1995-07-14 T I F:Kk Inductor element and semiconductor device
JP2008028539A (en) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd High frequency circuit device
JP2014154941A (en) * 2013-02-05 2014-08-25 Taiyo Yuden Co Ltd Module
WO2015104882A1 (en) * 2014-01-10 2015-07-16 株式会社村田製作所 High-frequency module
WO2016125719A1 (en) * 2015-02-05 2016-08-11 株式会社村田製作所 High-frequency switch module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176700A (en) * 1993-07-26 1995-07-14 T I F:Kk Inductor element and semiconductor device
JP2008028539A (en) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd High frequency circuit device
JP2014154941A (en) * 2013-02-05 2014-08-25 Taiyo Yuden Co Ltd Module
WO2015104882A1 (en) * 2014-01-10 2015-07-16 株式会社村田製作所 High-frequency module
WO2016125719A1 (en) * 2015-02-05 2016-08-11 株式会社村田製作所 High-frequency switch module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235276A1 (en) * 2018-06-06 2019-12-12 株式会社村田製作所 Multiplexer
US11881844B2 (en) 2018-06-06 2024-01-23 Murata Manufacturing Co., Ltd. Multiplexer
CN113412578A (en) * 2019-03-01 2021-09-17 株式会社村田制作所 High-frequency module and communication device
CN113412578B (en) * 2019-03-01 2024-04-02 株式会社村田制作所 High frequency module and communication device
WO2021002238A1 (en) * 2019-07-03 2021-01-07 株式会社村田製作所 High-frequency module and communication device
US11777534B2 (en) 2019-07-03 2023-10-03 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
CN114080756A (en) * 2019-07-09 2022-02-22 株式会社村田制作所 High-frequency module and communication device
CN114080756B (en) * 2019-07-09 2023-08-18 株式会社村田制作所 High frequency module and communication device
CN115039345A (en) * 2020-02-07 2022-09-09 株式会社村田制作所 High-frequency module and communication device
CN115039345B (en) * 2020-02-07 2023-11-14 株式会社村田制作所 High-frequency module and communication device

Similar Documents

Publication Publication Date Title
JP6725059B2 (en) High frequency module and communication device
CN110121768B (en) Front-end module and communication device
US10873352B2 (en) Radio-frequency module and communication apparatus
CN111133683B (en) Semiconductor element, high-frequency circuit, and communication device
WO2018110577A1 (en) High frequency module and communication device
US11757429B2 (en) Hybrid filter device and multiplexer
KR101460416B1 (en) Circuit substrate
US9136817B2 (en) Filter module and duplexer module
KR101389149B1 (en) Circuit board
CN111164899B (en) High-frequency circuit and communication device
US9941859B2 (en) Ladder-type filter, duplexer, and module
CN213879810U (en) High-frequency module and communication device
WO2020261769A1 (en) High-frequency module, and communication device
CN213213453U (en) High-frequency module and communication device
CN110476355B (en) Multiplexer, high-frequency front-end circuit and communication device
JP6105358B2 (en) Circuit board
JP6919664B2 (en) Multiplexer and communication device
US20210135645A1 (en) Multiplexer
WO2020250734A1 (en) High-frequency circuit, high-frequency module, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP