WO2018110390A1 - Wear measurement system, combustion chamber component and wear measurement method - Google Patents

Wear measurement system, combustion chamber component and wear measurement method Download PDF

Info

Publication number
WO2018110390A1
WO2018110390A1 PCT/JP2017/043849 JP2017043849W WO2018110390A1 WO 2018110390 A1 WO2018110390 A1 WO 2018110390A1 JP 2017043849 W JP2017043849 W JP 2017043849W WO 2018110390 A1 WO2018110390 A1 WO 2018110390A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
measurement
wear
combustion chamber
piston
Prior art date
Application number
PCT/JP2017/043849
Other languages
French (fr)
Japanese (ja)
Inventor
芳彦 木下
浩二 江戸
Original Assignee
三菱重工業株式会社
株式会社ジャパンエンジンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社ジャパンエンジンコーポレーション filed Critical 三菱重工業株式会社
Priority to KR1020197014687A priority Critical patent/KR20190070964A/en
Priority to CN201780074335.XA priority patent/CN110023710A/en
Publication of WO2018110390A1 publication Critical patent/WO2018110390A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to a wear measurement system, a combustion chamber component, and a wear measurement method for measuring the amount of wear of a combustion chamber of a diesel engine.
  • an internal combustion engine as a main engine mounted on a ship includes a piston and a cylinder liner that accommodates the piston, which moves up and down by burning fuel, and an exhaust valve that discharges air from a combustion chamber surrounded by the piston and the cylinder liner.
  • the cylinder liners wear when the pistons slide. As the amount of wear on the cylinder liners increases, replacement is required.
  • Patent Document 1 describes, as a method of measuring the amount of wear of a piston ring, a method of forming a groove and measuring the amount of wear based on the state of the groove.
  • the wear amount of the cylinder liner is measured by a worker entering the inside of the cylinder liner and measuring the diameter of the inside of the cylinder liner.
  • a worker in order for a worker to enter the cylinder liner, it is necessary to remove a member or the like at the top of the cylinder liner of the internal combustion engine, which takes time and requires a large burden on the operation.
  • the exhaust valve which is a portion exposed to the combustion chamber, is also disposed in the combustion chamber, so measurement of the amount of wear takes time, and the work load is large.
  • the piston can visually recognize the state of the surface from the scavenging port for supplying air to the combustion chamber, a dedicated jig is required to measure the amount of wear, and the work load is large.
  • the present invention solves the problems described above, and provides a wear measurement system, combustion chamber parts, and a wear measurement method capable of easily measuring the wear amount of a measurement object in a combustion chamber of a diesel engine. To aim.
  • the present invention for achieving the above object is a wear measurement system for measuring wear of an object in a combustion chamber of a diesel engine, and an imaging device for imaging a reference hole and a measurement hole formed in the object
  • a calculating device that analyzes an image captured by the imaging device, calculates a size of a measurement hole based on a reference hole included in the image, and calculates a wear amount of the object based on a size of the measurement hole And.
  • the reference hole and the measurement hole formed in the object are acquired as an image, and the diameter of the measurement hole is calculated using the reference hole.
  • the imaging device By installing the imaging device on the object, it is possible to measure the amount of wear of the object in the combustion chamber. As a result, the amount of wear can be measured without removing the upper part of the cylinder liner of the internal combustion engine. Further, by calculating the diameter of the measurement hole using the reference hole, the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy.
  • the measurement hole is preferably a tapered hole.
  • the measurement holes are a plurality of holes having different depths.
  • the measurement holes are a plurality of holes having different depths and diameters.
  • the object is a cylinder liner.
  • the cylinder liner preferably has a reference hole and a measurement hole formed on the inner circumferential surface, and the reference hole preferably has a constant diameter.
  • the photographing device be mounted on the upper surface of the piston and photograph a reference hole and a measurement hole formed on the inner circumferential surface of the cylinder liner. Thereby, the wear amount of the cylinder liner can be measured.
  • the measurement hole is formed at the same height position as the reference hole along the moving direction of the piston.
  • the imaging device that moves with the piston can capture the measurement hole and the reference hole more reliably.
  • the measurement hole is formed in a region sandwiched by the piston ring of the piston at the top dead center. This makes it possible to measure wear at a position where wear is likely to occur.
  • the measurement hole is formed at a position where the difference between the temperature of the sliding surface of the cylinder liner and the dew point temperature of water is the smallest. This makes it possible to measure wear at a position where wear is likely to occur.
  • a plurality of the measurement holes are formed in the circumferential direction of the cylinder liner. Thereby, the wear amount at each position in the circumferential direction can be measured.
  • the object is preferably a piston.
  • the wear amount of the piston can be measured.
  • the measurement hole is preferably provided at a position farthest from the cooling medium passage inside the piston in the circumferential direction of the piston. This makes it possible to detect the amount of wear at the position where the temperature rises during operation. Further, the measurement hole is provided at a contact surface position (a position at which a flame approaches) rotated by an angle of 90 ° or more and 180 ° or less in the fuel injection direction from the combustion valve position for injecting fuel in the circumferential direction of the piston. Is also preferred. Thereby, the maximum wear amount of the piston can be measured.
  • the object is preferably an exhaust valve.
  • the wear amount of the exhaust valve can be measured.
  • the measurement hole is moved from the center of the exhaust valve in the radial direction by a distance of 1/4 or more and 1/2 or less of the radius of the umbrella portion of the exhaust valve. It is preferable to provide the Preferably, the measurement hole is provided at a contact surface position rotated by 90 ° to 180 ° in the injection direction from the position of the combustion valve in the circumferential direction of the combustion chamber. Thereby, the maximum wear amount of the exhaust valve can be measured.
  • the measurement hole is a tapered hole. Since the diameter changes linearly according to the amount of wear, the amount of wear can be measured with higher resolution.
  • the measurement holes are a plurality of holes having different depths.
  • the amount of wear can be determined based on the number of holes remaining.
  • the measurement holes are a plurality of holes having different depths and diameters. Since the states of a plurality of holes can be compared, the amount of wear can be easily determined visually.
  • the present invention for achieving the above object is a wear measurement method for measuring the wear of an object in a combustion chamber of a diesel engine, wherein a reference hole and a measurement hole formed in the object with a photographing device are photographed A photographing step, a calculation step of analyzing the photographed image, calculating the size of the measurement hole based on the reference hole included in the image, and calculating the wear amount of the object based on the size of the measurement hole , And.
  • the step of disposing the imaging device on the upper surface of the piston, moving the piston, and imaging the reference hole and the measurement hole formed on the inner circumferential surface of the cylinder liner by the imaging device Calculation step of analyzing the photographed image, calculating the size of the measurement hole based on the reference hole included in the image, and calculating the wear amount of the cylinder liner based on the size of the measurement hole And.
  • the abrasion loss of the target object of a combustion apparatus can be measured easily.
  • FIG. 1 is a schematic configuration view showing a diesel engine of the present embodiment.
  • FIG. 2 is a schematic view showing a schematic configuration of a combustion chamber and a wear measurement system.
  • FIG. 3 is a cross-sectional view of a cylinder liner.
  • FIG. 4 is a front view of the hole unit.
  • FIG. 5 is a cross-sectional view of the hole unit.
  • FIG. 6 is a flowchart showing an example of the process of the wear measurement method.
  • FIG. 7 is a cross-sectional view showing another example of the hole unit.
  • FIG. 8 is a cross-sectional view showing another example of the hole unit.
  • FIG. 9 is a front view for explaining an example of the arrangement position of the hole unit.
  • FIG. 10 is a front view showing another example of the hole unit.
  • FIG. 11 is a perspective view showing a hole unit of a piston.
  • FIG. 12 is a perspective view showing a hole unit of the exhaust valve.
  • FIG. 13 is a
  • FIG. 1 is a schematic view showing a diesel engine.
  • the diesel engine 10 shown in FIG. 1 is, for example, a main engine for ship propulsion, and is a two-stroke one-cycle uniflow scavenging crosshead internal combustion engine.
  • the diesel engine 10 has a base plate 11 positioned below, a frame 12 provided on the base plate 11, and a cylinder jacket 13 provided on the frame 12.
  • the base plate 11, the structure 12, and the cylinder jacket 13 are integrally fastened and fixed by a plurality of tension bolts (tie bolts / connection members) 14 and tension bolt nuts 15 extending in the vertical direction.
  • a cylinder liner 16 is inserted into the cylinder jacket 13, and a cylinder cover 17 is provided at the upper end of the cylinder liner 16.
  • the cylinder liner 16 and the cylinder cover 17 define a space 18, and the piston 19 is provided in the space 18 so as to be capable of reciprocating up and down, whereby a combustion chamber 20 is formed.
  • the cylinder cover 17 is provided with an exhaust valve 21.
  • the exhaust valve 21 opens and closes the combustion chamber 20 and the exhaust gas pipe 22.
  • the exhaust valve 21 only needs to have the function of opening and closing the combustion chamber 20 and the exhaust gas pipe 22, and is not necessarily provided at the center of the cylinder cover 17.
  • a fuel for example, low-quality oil, natural gas, or a mixed fuel thereof supplied from a fuel injection pump (not shown) to combustion chamber 20 and a combustion gas (for example, air) compressed by a compressor (not shown) , EGR gas, or a mixture thereof) is combusted.
  • a combustion gas for example, air
  • the upper end portion of the piston rod 23 is rotatably connected to the lower end portion of the piston 19.
  • the base plate 11 is a crankcase, and a bearing 25 rotatably supporting the crankshaft 24 is provided. Further, the lower end portion of the connecting rod 27 is rotatably connected via the crank 26 to the crankshaft 24.
  • a pair of guide plates 28 extending in the vertical direction is fixed at a predetermined interval, and the crosshead 29 is supported so as to be vertically movable between the pair of guide plates 28.
  • the cross head 29 In the cross head 29, the lower end portion of the piston rod 23 and the upper end portion of the connecting rod 27 are rotatably connected.
  • the piston 19 to which energy has been transferred by combustion is pushed down with the piston rod 23 in the direction of the installation surface of the diesel engine 10 (in the direction of the base plate 11, that is, downward in the vertical direction). Then, the piston rod 23 pushes the crosshead 29 in the same direction, and rotates the crankshaft 24 via the connecting rod 27 and the crank 26.
  • FIG. 2 is a schematic view showing a schematic configuration of a combustion chamber and a wear measurement system.
  • FIG. 3 is a cross-sectional view of a cylinder liner.
  • FIG. 4 is a front view of the hole unit.
  • FIG. 5 is a cross-sectional view of the hole unit.
  • FIG. 6 is a flowchart showing an example of the process of the wear measurement method.
  • the cylinder liner 16 is an area in which the piston 19 reciprocates, and has a cylindrical shape.
  • the scavenging port 90 is connected to the cylinder liner 16.
  • the scavenging port 90 is connected to the scavenging trunk 92.
  • the cylinder liner 16 is supplied with air from the scavenging port 90 to the space between the cylinder cover 17 and the piston 19 when the piston 19 becomes lower than the scavenging port 90 (position away from the cylinder cover 17) during operation. Ru.
  • the cylinder liner 16 has a cooling medium channel 110 formed at least one of the inside and the outside.
  • the cooling medium channel 110 is provided on the entire circumference of the cylinder liner 16 in the circumferential direction.
  • the cooling medium flow path 110 is connected to the cooling medium supply line 112 and the cooling medium discharge line 114.
  • the cooling medium supply line 112 supplies the cooling medium to the cooling medium channel 110.
  • the coolant discharge line 114 discharges the coolant that has flowed through the coolant channel 110. Heating of the cylinder liner 16 is suppressed by supplying the cooling medium to the cooling medium channel 110.
  • Examples of the cooling medium include liquid media such as oil and water.
  • a hole unit 106 is formed on the inner circumferential surface of a stroke range St in which the piston 19 reciprocates. A plurality of hole units 106 of this embodiment are formed. The hole unit 106 is used to measure the amount of wear of the cylinder liner 16. The hole unit 106 will be described later.
  • the wear measurement system 100 includes a calculation device 102 and an imaging device 104.
  • the calculation device 102 is communicably connected to the imaging device 104 in a wired wireless manner, processes an image captured by the imaging device 104, and measures the amount of wear of the cylinder liner 16.
  • the wear measurement system 100 may capture an image (moving image, still image) with the imaging device 104, and output the captured image to the calculation device 102 via communication or a recording medium.
  • the imaging device 104 is a device that can be transported by a worker and captures an image.
  • the imaging device 104 may capture a still image or may capture a moving image.
  • the imaging device 104 may move the imaging region in the circumferential direction and the axial direction of the cylinder liner 16, or may capture 360 degrees of the inner periphery of the cylinder liner 16 in a fixed state.
  • the imaging device 104 may include an imaging unit configured to capture an image, and an illumination unit configured to illuminate the imaging region.
  • the hole unit 106 is photographed by the photographing device 104 when the amount of wear of the cylinder liner 16 is measured.
  • the hole units 106 are formed at a plurality of locations in the circumferential direction of the cylinder liner 16 and at a plurality of locations in the axial direction of the cylinder liner 16 (the direction in which the piston 19 moves).
  • the hole unit 106 is preferably formed at a position overlapping the scavenging port 90 in the circumferential direction of the cylinder liner 16.
  • the hole unit 106 is formed in the range included in the stroke area St in the axial direction of the cylinder liner 16.
  • the hole unit 106 has a reference hole 122 and a measurement hole 124 as shown in FIGS. 4 and 5.
  • the reference holes 122 and the measurement holes 124 are formed on the surface of the cylinder liner 16.
  • the reference hole 122 is a hole whose diameter is constant in the range of depth at which wear is measured.
  • the measurement hole 124 is a tapered hole whose diameter changes in the depth direction.
  • the reference hole 122 and the measurement hole 124 have a length in the axial direction of the cylinder liner 16 shorter than the width of the piston ring (the distance in the axial direction of the cylinder liner 16) which is a seal member disposed in the piston 19 .
  • the length is shorter than the shortest piston ring.
  • the piston 19 is moved below the scavenging port 90, that is, the piston 19 is moved to the bottom dead center side, and the scavenging port 90 is connected to the region surrounded by the cylinder liner 16 and the piston 19 (step S12). ).
  • the photographing device 104 is installed on the upper surface of the piston 19 (step S14). Specifically, a worker carries the imaging device 104 and accesses it from the scavenging air manifold 30 or the inspection window 31 on the fuel pump side, inserts the imaging device 104 into the cylinder liner 16 from the scavenging air port 90, and Install. Since the upper surface of the piston 19 can be confirmed from the scavenging port 90, the operator can install the imaging device 104 on the upper surface of the piston 19 without entering the cylinder liner 16. Next, after the imaging device 104 is installed, the piston 19 is moved to image the cylinder liner 16 (step S16). By imaging the cylinder liner 16, an image of the hole unit 106 included in the imaging area is acquired.
  • the hole unit 106 is detected from the acquired image (step S18).
  • the diameter of the measurement hole 124 is calculated based on the reference hole 122 (step S20). Specifically, the relative relationship between the size on the image and the actual diameter is specified based on the reference hole having a constant diameter, and the diameter of the measurement hole is based on the specified relative relationship and the size of the measurement hole of the image.
  • the amount of wear is calculated based on the diameter of the measurement hole (step S22). Specifically, the amount of wear is measured based on the relationship between the diameter and the depth of the tapered measurement hole and the current diameter of the measurement hole 124.
  • the wear measurement system 100 acquires the reference hole 122 and the measurement hole 124 formed in the cylinder liner 16 as an image, calculates the diameter of the measurement hole 124 using the reference hole 122, and measures the measurement hole 124. Measure the amount of wear based on the diameter of
  • the imaging device 104 can be installed inside the cylinder liner 16
  • the imaging device 104 can be installed from the scavenging port 90, the amount of wear can be measured without an operator entering the inside of the cylinder liner. That is, measurement can be performed without removing the upper cover of the cylinder liner.
  • the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy. That is, even if the imaging position and the position of the hole unit 106 change, the diameter of the measurement hole 124 can be calculated by the reference hole 122. For this reason, since the operator only needs to install the imaging device 104 at a position where the hole unit 106 can capture an image, the installation can be easily performed, and the wear amount can be measured with high accuracy. Further, by setting the measurement target as the hole unit 106, that is, by providing the measurement target in a part of the cylinder liner 16 in the circumferential direction, the influence of the hole unit 106 on the movement of the piston 19 can be reduced.
  • the hole unit 106 is provided by making the axial length of the reference hole 122 and the measurement hole 124 in the axial direction of the cylinder liner 16 shorter than the width of the piston ring, sealing performance between the cylinder liner 16 and the piston 19 is provided. Can be maintained.
  • the cylinder liner 16 can calculate the diameter of the measurement hole using the reference hole, and can be a cylinder liner that can easily measure the amount of wear.
  • the diameter changes linearly in accordance with the amount of wear, so the amount of wear can be measured with higher resolution.
  • the cylinder liner 16 is provided at a position where the hole unit 106 overlaps the scavenging port 90 in the circumferential direction.
  • the hole unit 106 can be formed near the position where the imaging device is installed, the hole unit 106 can be photographed more reliably, and the wear amount can be easily measured.
  • FIG. 7 is a cross-sectional view showing another example of the hole unit.
  • the hole unit 106 a has measurement holes 132, 134, 136 and a reference hole 138.
  • the measurement holes 132, 134, 136 are holes having different depths.
  • the measurement holes 132, 134, 136 are holes having a constant diameter.
  • the hole unit 106a can change the remaining holes according to the amount of wear by having the measurement holes 132, 134, 136 having different depths. By providing the plurality of holes in this manner, the state of the plurality of holes can be compared, so the amount of wear can be easily determined visually.
  • one of the plurality of holes basically, the deepest hole is used as a reference hole, and the measurement remaining accurately by comparing the positional relationship (distance) between the reference hole and the other measurement holes Holes can be identified. By identifying the remaining measurement holes, the amount of wear of the cylinder liner can be measured.
  • FIG. 8 is a cross-sectional view showing another example of the hole unit.
  • the hole unit 106b a plurality of measurement holes and reference holes are overlapped, and a step hole 140 in which a step is formed is formed.
  • the step holes 140 have steps 141, 142, 144, and 146. As described above, the same effect as described above can be obtained by arranging the holes one on top of the other.
  • the hole unit 106 be disposed in an area between the piston ring of the piston 19 and the piston 19 moved to the top dead center. That is, it is preferable to arrange the hole unit 106 at a position overlapping the region where the piston ring of the piston 19 at the top dead center is disposed in the axial direction of the cylinder liner 16.
  • FIG. 9 is a front view for explaining an example of the arrangement position of the hole unit.
  • the cooling medium supply line 114 for supplying the cooling medium to the cylinder liner and the cooling medium flow passage 110. It is formed in the area
  • the measurement hole 124 and the reference hole 122 are disposed in the area overlapping the cooling medium supply line 112, but the measurement hole is at the position where the difference between the temperature of the liner sliding surface and the dew point temperature of water is the smallest. It is preferable to arrange.
  • FIG. 10 is a front view showing another example of the hole unit.
  • the hole unit 106 c shown in FIG. 10 has one measurement hole 124 and two reference holes 122.
  • the hole unit 106 c is aligned in the same straight line in the order of the reference hole 122, the measurement hole 124, and the reference hole 122 with respect to the moving direction 170 of the piston 19.
  • By forming the reference hole 122 at a position overlapping the measurement hole 124 in the direction parallel to the movement direction 170 of the piston it is possible to capture more reliably the measurement hole and the reference hole with the imaging device that moves with the piston .
  • the wear measurement system of the above-mentioned embodiment formed a hole unit in a cylinder liner in order to measure the amount of wear of a cylinder liner, it is not limited to this.
  • the wear measurement system can measure the amount of wear of each part exposed at least in part to the combustion chamber 20.
  • holes are formed in a region which is an inner surface of the combustion chamber 20 of the combustion chamber component which is at least a part of which is exposed to the combustion chamber 20, that is, a region constituting a part of the combustion chamber.
  • FIG. 11 is a perspective view showing a hole unit of a piston.
  • the piston 19 shown in FIG. 11 is provided with a piston ring 202 at its periphery.
  • the piston ring 202 contacts the cylinder liner 16.
  • the piston 19 is provided with a hole unit 106 d on the surface opposite to the surface connected to the piston rod 23, that is, the surface exposed to the combustion chamber 20.
  • the hole unit 106 d has a reference hole 122 and a measurement hole 124.
  • the reference holes 122 are disposed at different positions in the radial direction of the measurement hole 124 and the piston 19. That is, in the piston 19, the reference hole 122 and the measurement hole 124 are formed at different positions from the center 212 of the piston 19.
  • the wear measurement system 100 can accurately measure the diameter of the measurement hole 124 by providing the reference hole 122 and the measurement hole 124 also by providing the hole unit 106 d on the surface of the piston 19, and wear of the piston 19. The quantity can be measured.
  • the respective holes can be easily identified.
  • the hole unit 106d may arrange the reference holes 122 and the measurement holes 124 in the circumferential direction, that is, the hole unit 106d may arrange the reference holes 122 and the measurement holes 124 at the same height position.
  • the reference hole 122 and the measurement hole 124 can be compared at the same height, and the wear amount can be measured with high accuracy.
  • the hole unit 106 including the measurement hole 124 is preferably provided at a position farthest from the cooling medium passage 110 inside the piston 19 in the circumferential direction of the piston 19. This makes it possible to detect the amount of wear at the position where the temperature rises during operation. Further, in the circumferential direction of the piston 19, the hole unit 106d including the measurement hole 124 is a contact surface position rotated by an angle of 90 ° or more and 180 ° or less in the fuel injection direction from the combustion valve position which is a position for injecting It is also preferable to provide it at a position where the flame approaches or in contact with the flame. Thereby, the maximum wear amount of the piston can be measured.
  • FIG. 12 is a perspective view showing a hole unit of the exhaust valve.
  • a hole unit 106e is provided on the tip end surface, that is, the surface exposed to the combustion chamber 20.
  • the hole unit 106 e has a reference hole 122 and a measurement hole 124.
  • the reference holes 122 are disposed at different positions in the radial direction of the measurement holes 124 and the exhaust valve 21. That is, in the exhaust valve 21, the reference hole 122 and the measurement hole 124 are formed at different positions from the center 302 of the exhaust valve 21.
  • the wear measurement system 100 can accurately measure the diameter of the measurement hole 124 by providing the reference hole 122 and the measurement hole 124 by providing the hole unit 106 e on the surface of the exhaust valve 21. Can measure the amount of wear.
  • the exhaust valve 21 can make it easier to identify the respective holes even if the exhaust valve 21 rotates.
  • the hole unit 106e may be arranged in the circumferential direction.
  • the exhaust valve 21 is provided with the hole unit 106e in a region of a distance 1/4 Rb to 1/2 Rb from the center 212 of the piston. Is preferred. That is, it is preferable to provide the measurement hole in the contact surface position moved in the radial direction from the center of the exhaust valve 21 by a distance of 1/4 or more and 1/2 or less of the radius of the umbrella portion of the exhaust valve 21.
  • the hole unit 106e is also preferably provided at the contact surface position rotated 90 ° to 180 ° in the injection direction from the position of the combustion valve in the circumferential direction of the combustion chamber. This makes it possible to measure the wear at the most worn position.
  • FIG. 13 is a flowchart showing an example of the process of the wear measurement method.
  • the photographing device 104 is installed (step S32). Specifically, the worker carries the imaging device 104 and installs the imaging device 104 at a position where the hole units 106d and 106e of the object (the piston 19 or the exhaust valve 21) can image.
  • the object is the piston 19
  • the piston 19 is moved below the scavenging port 90
  • the photographing device 104 is inserted from the scavenging port 90, and the upper surface of the piston 19 is photographed.
  • the photographing device 104 is installed on the upper surface of the piston 19, and the piston 19 is moved to a position where the photographing device 104 can photograph the exhaust valve 21, such as top dead center or near top dead center. .
  • step S34 when the photographing device 104 is installed, the object is photographed (step S34). By photographing the object, the images of the hole units 106d and 106e included in the photographing area are acquired.
  • the hole units 106d and 106e are detected from the acquired image (step S36).
  • the diameter of the measurement hole is calculated based on the reference hole (step S38). Specifically, the relative relationship between the size on the image and the actual diameter is specified based on the reference hole having a constant diameter, and the diameter of the measurement hole is based on the specified relative relationship and the size of the measurement hole of the image.
  • the amount of wear is calculated based on the diameter of the measurement hole (step S40). Specifically, the amount of wear is measured based on the relationship between the diameter and the depth of the tapered measurement hole and the current diameter of the measurement hole 124.
  • the wear measurement system 100 acquires the reference hole 122 and the measurement hole 124 formed in the object as an image, calculates the diameter of the measurement hole 124 using the reference hole 122, and measures the diameter of the measurement hole 124. Measure the amount of wear based on the diameter.
  • the imaging device 104 inside the cylinder liner 16
  • the imaging device can be installed from the scavenging port 90 for any object.
  • the amount of wear can be measured without an operator entering the inside of the cylinder liner. That is, measurement can be performed without removing the upper cover of the cylinder liner 16.
  • the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy. That is, even if the positions of the imaging position and the hole units 106d and 106e change, the diameter of the measurement hole 124 can be calculated by the reference hole 122. For this reason, since the operator only needs to install the imaging device 104 at a position where the hole units 106d and 106e can image, it can be easily installed and the wear amount can be measured with high accuracy. Further, by setting the measurement target to the hole units 106d and 106e, that is, by providing the measurement target in a part of the object, the influence of the hole units 106d and 106e on the object can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

A wear measurement system, a wear measurement method and a combustion chamber component are provided which make it easy to measure the amount of wear of a target. This wear measurement system, for measuring wear of a target in a combustion chamber of a diesel engine, is provided with an imaging device which images a measurement hole and a reference hole formed in the target, and a calculation unit which analyzes the image captured by the imaging device, calculates the size of the measurement hole on the basis of the reference hole contained in the image, and calculates the amount of wear of the target on the basis of the size of the measurement hole.

Description

摩耗計測システム、燃焼室部品及び摩耗計測方法Wear measurement system, combustion chamber parts and wear measurement method
 本発明は、ディーゼルエンジンの燃焼室の摩耗量を計測する摩耗計測システム、燃焼室部品及び摩耗計測方法に関するものである。 The present invention relates to a wear measurement system, a combustion chamber component, and a wear measurement method for measuring the amount of wear of a combustion chamber of a diesel engine.
 例えば、船舶に搭載される主機としての内燃機関は、燃料の燃焼で上下動するピストンとピストンを収容するシリンダライナと、ピストンとシリンダライナとで囲まれる燃焼室から空気を排出する排気弁と、を有する。シリンダライナは、ピストンが摺動するため使用することで、摩耗が発生する。シリンダライナの摩耗量が多くなると、交換が必要となる。特許文献1には、ピストンリングの摩耗量の計測方法として、溝を形成し、溝の状態に基づいて摩耗量を計測する方法が記載されている。 For example, an internal combustion engine as a main engine mounted on a ship includes a piston and a cylinder liner that accommodates the piston, which moves up and down by burning fuel, and an exhaust valve that discharges air from a combustion chamber surrounded by the piston and the cylinder liner. Have. The cylinder liners wear when the pistons slide. As the amount of wear on the cylinder liners increases, replacement is required. Patent Document 1 describes, as a method of measuring the amount of wear of a piston ring, a method of forming a groove and measuring the amount of wear based on the state of the groove.
特開昭61-31768号公報Japanese Patent Application Laid-Open No. 61-31768
 ここで、例えば、シリンダライナの摩耗量は、シリンダライナの内部に作業員が入り、シリンダライナの内部の径を計測することで、測定している。しかしながら、シリンダライナに作業員が入るためには、内燃機関のシリンダライナの上部の部材等を取り外す必要があり、作業に時間がかかり、また、作業の負担が大きい。また、同様に燃焼室に露出している部分である排気弁も、燃焼室内に配置されているため、摩耗量の計測に時間がかかり、作業の負担が大きい。また、ピストンは、燃焼室に空気を供給する掃気ポートから表面の状態を視認することができるが、摩耗量を計測するためには、専用の冶具が必要となり、作業の負担が大きい。 Here, for example, the wear amount of the cylinder liner is measured by a worker entering the inside of the cylinder liner and measuring the diameter of the inside of the cylinder liner. However, in order for a worker to enter the cylinder liner, it is necessary to remove a member or the like at the top of the cylinder liner of the internal combustion engine, which takes time and requires a large burden on the operation. Similarly, the exhaust valve, which is a portion exposed to the combustion chamber, is also disposed in the combustion chamber, so measurement of the amount of wear takes time, and the work load is large. Further, although the piston can visually recognize the state of the surface from the scavenging port for supplying air to the combustion chamber, a dedicated jig is required to measure the amount of wear, and the work load is large.
 本発明は、上述した課題を解決するものであり、ディーゼルエンジンの燃焼室の測定対象物の摩耗量を簡単に計測することができる摩耗計測システム、燃焼室部品及び摩耗計測方法を提供することを目的とする。 The present invention solves the problems described above, and provides a wear measurement system, combustion chamber parts, and a wear measurement method capable of easily measuring the wear amount of a measurement object in a combustion chamber of a diesel engine. To aim.
 上記の目的を達成するための本発明は、ディーゼルエンジンの燃焼室の対象物の摩耗を計測する摩耗計測システムであって、前記対象物に形成された基準穴と計測穴を撮影する撮影装置と、前記撮影装置が撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記対象物の摩耗量を算出する算出装置と、を備えることを特徴とする。 The present invention for achieving the above object is a wear measurement system for measuring wear of an object in a combustion chamber of a diesel engine, and an imaging device for imaging a reference hole and a measurement hole formed in the object A calculating device that analyzes an image captured by the imaging device, calculates a size of a measurement hole based on a reference hole included in the image, and calculates a wear amount of the object based on a size of the measurement hole And.
 対象物に形成された基準穴と計測穴を画像で取得し、基準穴を用いて、計測穴の径を算出する。これにより、撮影装置を対象物に対して設置することで、燃焼室内の対象物の摩耗量を計測することができる。これにより、内燃機関のシリンダライナの上部の部品等を取り外さずに、摩耗量を計測できる。また、基準穴を用いて計測穴の径を算出することで、撮影装置による撮影位置を任意の位置にすることができ、計測が簡単になる。 The reference hole and the measurement hole formed in the object are acquired as an image, and the diameter of the measurement hole is calculated using the reference hole. Thus, by installing the imaging device on the object, it is possible to measure the amount of wear of the object in the combustion chamber. As a result, the amount of wear can be measured without removing the upper part of the cylinder liner of the internal combustion engine. Further, by calculating the diameter of the measurement hole using the reference hole, the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy.
 また、ディーゼルエンジンの燃焼室に少なくとも一部が露出した燃焼室部品であって、前記燃焼室の内周面に形成された基準穴と計測穴とを有し、前記基準穴は、径が一定であることを特徴とする。 A combustion chamber component at least a part of which is exposed in a combustion chamber of a diesel engine, and has a reference hole and a measurement hole formed on the inner peripheral surface of the combustion chamber, and the reference hole has a constant diameter It is characterized by being.
 ここで、前記計測穴は、テーパー穴であることが好ましい。 Here, the measurement hole is preferably a tapered hole.
 また、前記計測穴は、深さが異なる複数の穴であることが好ましい。 Preferably, the measurement holes are a plurality of holes having different depths.
 また、前記計測穴は、深さと径が異なる複数の穴であることが好ましい。 Preferably, the measurement holes are a plurality of holes having different depths and diameters.
 また、前記対象物は、シリンダライナであることが好ましい。シリンダライナは、内周面に形成された基準穴と計測穴とを有し、前記基準穴は、径が一定であることが好ましい。 Preferably, the object is a cylinder liner. The cylinder liner preferably has a reference hole and a measurement hole formed on the inner circumferential surface, and the reference hole preferably has a constant diameter.
 また、前記撮影装置は、前記ピストンの上面に載置され、前記シリンダライナの内周面に形成された基準穴と計測穴を撮影することが好ましい。これにより、シリンダライナの摩耗量を計測することができる。 Further, it is preferable that the photographing device be mounted on the upper surface of the piston and photograph a reference hole and a measurement hole formed on the inner circumferential surface of the cylinder liner. Thereby, the wear amount of the cylinder liner can be measured.
 また、前記計測穴は、前記ピストンの移動方向に沿って、前記基準穴と同じ高さ位置に形成されていることが好ましい。ピストンとともに移動する撮影装置で、計測穴と基準穴をより確実に撮影することができる。 Preferably, the measurement hole is formed at the same height position as the reference hole along the moving direction of the piston. The imaging device that moves with the piston can capture the measurement hole and the reference hole more reliably.
 また、前記計測穴は、上死点にある前記ピストンのピストンリングに挟まれる領域に形成されていることが好ましい。これにより、摩耗が発生しやすい位置の摩耗を計測することができる。 Further, it is preferable that the measurement hole is formed in a region sandwiched by the piston ring of the piston at the top dead center. This makes it possible to measure wear at a position where wear is likely to occur.
 また、前記計測穴は、前記シリンダライナの摺動面の温度と水の露点温度との差が最も小さい位置に形成されていることが好ましい。これにより、摩耗が発生しやすい位置の摩耗を計測することができる。 Preferably, the measurement hole is formed at a position where the difference between the temperature of the sliding surface of the cylinder liner and the dew point temperature of water is the smallest. This makes it possible to measure wear at a position where wear is likely to occur.
 また、前記計測穴は、前記シリンダライナの周方向に複数形成されていることが好ましい。これにより、周方向の各位置での摩耗量を計測することができる。 Preferably, a plurality of the measurement holes are formed in the circumferential direction of the cylinder liner. Thereby, the wear amount at each position in the circumferential direction can be measured.
 また、前記対象物は、ピストンであることが好ましい。これにより、ピストンの摩耗量を計測することができる。また、対象物がピストンである場合、前記計測穴は、ピストンの周方向において、前記ピストンの内部の冷却媒体通路から最も遠い位置に設けることが好ましい。これにより、運転時に温度が高くなる位置の摩耗量を検出することができる。また、前記計測穴は、ピストンの周方向において、燃料を噴射する燃焼弁位置から燃料の噴射方向に90°以上180°以下の角度回転させた触火面位置(火炎が接近する位置)に設けることも好ましい。これにより、ピストンの最大摩耗量を計測することができる。 The object is preferably a piston. Thereby, the wear amount of the piston can be measured. When the object is a piston, the measurement hole is preferably provided at a position farthest from the cooling medium passage inside the piston in the circumferential direction of the piston. This makes it possible to detect the amount of wear at the position where the temperature rises during operation. Further, the measurement hole is provided at a contact surface position (a position at which a flame approaches) rotated by an angle of 90 ° or more and 180 ° or less in the fuel injection direction from the combustion valve position for injecting fuel in the circumferential direction of the piston. Is also preferred. Thereby, the maximum wear amount of the piston can be measured.
 また、前記対象物は、排気弁であることが好ましい。これにより、排気弁の摩耗量を計測することができる。また、対象物が排気弁である場合、前記計測穴は、前記排気弁の中心から半径方向へ前記排気弁の傘部の半径の1/4以上1/2以下の距離移動した触火面位置に設けることが好ましい。また、前記計測穴は、燃焼室の周方向において、燃焼弁の位置から噴射方向に90°から180°角度回転させた触火面位置に設けることも好ましい。これにより、排気弁の最大摩耗量を計測することができる。 The object is preferably an exhaust valve. Thereby, the wear amount of the exhaust valve can be measured. In the case where the object is an exhaust valve, the measurement hole is moved from the center of the exhaust valve in the radial direction by a distance of 1/4 or more and 1/2 or less of the radius of the umbrella portion of the exhaust valve. It is preferable to provide the Preferably, the measurement hole is provided at a contact surface position rotated by 90 ° to 180 ° in the injection direction from the position of the combustion valve in the circumferential direction of the combustion chamber. Thereby, the maximum wear amount of the exhaust valve can be measured.
 また、前記計測穴は、テーパー穴であることが好ましい。摩耗量に応じて径が線形で変化するため、摩耗量をより高い分解能で計測することができる。 Preferably, the measurement hole is a tapered hole. Since the diameter changes linearly according to the amount of wear, the amount of wear can be measured with higher resolution.
 また、前記計測穴は、深さが異なる複数の穴であることが好ましい。残っている穴の数に基づいて、摩耗量を判定することができる。 Preferably, the measurement holes are a plurality of holes having different depths. The amount of wear can be determined based on the number of holes remaining.
 また、前記計測穴は、深さと径が異なる複数の穴であることが好ましい。複数の穴の状態を比較できるため、目視でも摩耗量を判定しやすくなる。 Preferably, the measurement holes are a plurality of holes having different depths and diameters. Since the states of a plurality of holes can be compared, the amount of wear can be easily determined visually.
 上記の目的を達成するための本発明は、ディーゼルエンジンの燃焼室の対象物の摩耗を計測する摩耗計測方法であって、撮影装置で前記対象物に形成された基準穴と計測穴を撮影する撮影ステップと、撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記対象物の摩耗量を算出する算出ステップと、を備えることを特徴とする。 The present invention for achieving the above object is a wear measurement method for measuring the wear of an object in a combustion chamber of a diesel engine, wherein a reference hole and a measurement hole formed in the object with a photographing device are photographed A photographing step, a calculation step of analyzing the photographed image, calculating the size of the measurement hole based on the reference hole included in the image, and calculating the wear amount of the object based on the size of the measurement hole , And.
 例えば、前記シリンダライナの摩耗計測の場合、ピストンの上面に撮影装置を配置するステップと、前記ピストンを移動させ、前記撮影装置でシリンダライナの内周面に形成された基準穴と計測穴を撮影する撮影ステップと、撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記シリンダライナの摩耗量を算出する算出ステップと、を備えることを特徴とする。 For example, in the case of wear measurement of the cylinder liner, the step of disposing the imaging device on the upper surface of the piston, moving the piston, and imaging the reference hole and the measurement hole formed on the inner circumferential surface of the cylinder liner by the imaging device Calculation step of analyzing the photographed image, calculating the size of the measurement hole based on the reference hole included in the image, and calculating the wear amount of the cylinder liner based on the size of the measurement hole And.
 本発明によれば、簡単に燃焼機器の対象物の摩耗量を計測することができる。 ADVANTAGE OF THE INVENTION According to this invention, the abrasion loss of the target object of a combustion apparatus can be measured easily.
図1は、本実施形態のディーゼルエンジンを表す概略構成図である。FIG. 1 is a schematic configuration view showing a diesel engine of the present embodiment. 図2は、燃焼室及び摩耗計測システムの概略構成を示す模式図である。FIG. 2 is a schematic view showing a schematic configuration of a combustion chamber and a wear measurement system. 図3は、シリンダライナの断面図である。FIG. 3 is a cross-sectional view of a cylinder liner. 図4は、穴ユニットの正面図である。FIG. 4 is a front view of the hole unit. 図5は、穴ユニットの断面図である。FIG. 5 is a cross-sectional view of the hole unit. 図6は、摩耗計測方法の処理の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the process of the wear measurement method. 図7は、穴ユニットの他の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the hole unit. 図8は、穴ユニットの他の例を示す断面図である。FIG. 8 is a cross-sectional view showing another example of the hole unit. 図9は、穴ユニットの配置位置の一例を説明する正面図である。FIG. 9 is a front view for explaining an example of the arrangement position of the hole unit. 図10は、穴ユニットの他の例を示す正面図である。FIG. 10 is a front view showing another example of the hole unit. 図11は、ピストンの穴ユニットを示す斜視図である。FIG. 11 is a perspective view showing a hole unit of a piston. 図12は、排気弁の穴ユニットを示す斜視図である。FIG. 12 is a perspective view showing a hole unit of the exhaust valve. 図13は、摩耗計測方法の処理の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of the process of the wear measurement method.
 以下に添付図面を参照して、本発明に係る好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited by the embodiments, and in the case where there are a plurality of embodiments, the present invention also includes those configured by combining the respective embodiments.
 本発明のシリンダライナを有する内燃機関の一例を説明する。図1は、ディーゼルエンジンを表す概略図である。図1に示すディーゼルエンジン10は、例えば、船舶推進用の主機として用いられ、2ストローク1サイクルのユニフロー掃気方式のクロスヘッド式内燃機関である。このディーゼルエンジン10は、下方に位置する台板11と、台板11上に設けられる架構12と、架構12上に設けられるシリンダジャケット13とを有している。この台板11と架構12とシリンダジャケット13は、上下方向に延在する複数のテンションボルト(タイボルト/連結部材)14及びテンションボルトナット15により一体に締結されて固定されている。 An example of an internal combustion engine having a cylinder liner of the present invention will be described. FIG. 1 is a schematic view showing a diesel engine. The diesel engine 10 shown in FIG. 1 is, for example, a main engine for ship propulsion, and is a two-stroke one-cycle uniflow scavenging crosshead internal combustion engine. The diesel engine 10 has a base plate 11 positioned below, a frame 12 provided on the base plate 11, and a cylinder jacket 13 provided on the frame 12. The base plate 11, the structure 12, and the cylinder jacket 13 are integrally fastened and fixed by a plurality of tension bolts (tie bolts / connection members) 14 and tension bolt nuts 15 extending in the vertical direction.
 シリンダジャケット13は、シリンダライナ16が挿入され、シリンダライナ16の上端にシリンダカバー17が設けられている。シリンダライナ16とシリンダカバー17は、空間部18を区画しており、この空間部18内にピストン19が上下に往復動自在に設けられることで、燃焼室20が形成される。また、シリンダカバー17は、排気弁21が設けられている。この排気弁21は、燃焼室20と排ガス管22とを開閉するものである。なお、排気弁21は、燃焼室20と排ガス管22とを開閉する機能を有していればよく、必ずしもシリンダカバー17の中央部に設ける必要はない。 A cylinder liner 16 is inserted into the cylinder jacket 13, and a cylinder cover 17 is provided at the upper end of the cylinder liner 16. The cylinder liner 16 and the cylinder cover 17 define a space 18, and the piston 19 is provided in the space 18 so as to be capable of reciprocating up and down, whereby a combustion chamber 20 is formed. The cylinder cover 17 is provided with an exhaust valve 21. The exhaust valve 21 opens and closes the combustion chamber 20 and the exhaust gas pipe 22. The exhaust valve 21 only needs to have the function of opening and closing the combustion chamber 20 and the exhaust gas pipe 22, and is not necessarily provided at the center of the cylinder cover 17.
 そのため、燃焼室20に対して、図示しない燃料噴射ポンプから供給された燃料(例えば、低質油、天然ガス、またはその混合燃料)と、図示しない圧縮機により圧縮された燃焼用ガス(例えば、空気、EGRガス、またはその混合ガス)が供給されることで燃焼する。そして、この燃焼で発生したエネルギによりピストン19が上下動する。また、このとき、排気弁21により燃焼室20が開放されると、燃焼によって生じた排ガスが排ガス管22に押し出される一方、図示しない掃気ポートから燃焼用ガスが燃焼室20に導入される。 Therefore, a fuel (for example, low-quality oil, natural gas, or a mixed fuel thereof) supplied from a fuel injection pump (not shown) to combustion chamber 20 and a combustion gas (for example, air) compressed by a compressor (not shown) , EGR gas, or a mixture thereof) is combusted. Then, the piston 19 moves up and down by the energy generated by this combustion. At this time, when the combustion chamber 20 is opened by the exhaust valve 21, the exhaust gas generated by the combustion is pushed out to the exhaust gas pipe 22, while the combustion gas is introduced into the combustion chamber 20 from a scavenging port not shown.
 ピストン19は、下端部にピストン棒23の上端部が回動可能に連結されている。台板11は、クランクケースとされており、クランクシャフト24を回転自在に支持する軸受25が設けられている。また、クランクシャフト24は、クランク26を介して連接棒27の下端部が回動自在に連結されている。架構12は、上下方向に延在する一対のガイド板28が所定間隔を空けて固定されており、一対のガイド板28の間にクロスヘッド29が上下に移動自在に支持されている。クロスヘッド29は、ピストン棒23の下端部と連接棒27の上端部がそれぞれ回動自在に連結されている。 The upper end portion of the piston rod 23 is rotatably connected to the lower end portion of the piston 19. The base plate 11 is a crankcase, and a bearing 25 rotatably supporting the crankshaft 24 is provided. Further, the lower end portion of the connecting rod 27 is rotatably connected via the crank 26 to the crankshaft 24. In the frame 12, a pair of guide plates 28 extending in the vertical direction is fixed at a predetermined interval, and the crosshead 29 is supported so as to be vertically movable between the pair of guide plates 28. In the cross head 29, the lower end portion of the piston rod 23 and the upper end portion of the connecting rod 27 are rotatably connected.
 そのため、燃焼によりエネルギが伝達されたピストン19は、ピストン棒23と共に、ディーゼルエンジン10の設置面の方向(台板11側の方向、即ち、鉛直方向における下向き)に押し下げる。すると、ピストン棒23は、クロスヘッド29を同方向に押し下げ、連接棒27及びクランク26を介してクランクシャフト24を回転させる。 Therefore, the piston 19 to which energy has been transferred by combustion is pushed down with the piston rod 23 in the direction of the installation surface of the diesel engine 10 (in the direction of the base plate 11, that is, downward in the vertical direction). Then, the piston rod 23 pushes the crosshead 29 in the same direction, and rotates the crankshaft 24 via the connecting rod 27 and the crank 26.
 次に、図2から図6を用いて、シリンダライナを含む燃焼室と、摩耗計測システムについて、説明する。本実施形態では、燃焼室20の一部となるシリンダライナ16の摩耗量を計測する場合として説明する。図2は、燃焼室及び摩耗計測システムの概略構成を示す模式図である。図3は、シリンダライナの断面図である。図4は、穴ユニットの正面図である。図5は、穴ユニットの断面図である。図6は、摩耗計測方法の処理の一例を示すフローチャートである。 Next, a combustion chamber including a cylinder liner and a wear measurement system will be described using FIGS. 2 to 6. In this embodiment, the case where the amount of wear of the cylinder liner 16 which is a part of the combustion chamber 20 is measured will be described. FIG. 2 is a schematic view showing a schematic configuration of a combustion chamber and a wear measurement system. FIG. 3 is a cross-sectional view of a cylinder liner. FIG. 4 is a front view of the hole unit. FIG. 5 is a cross-sectional view of the hole unit. FIG. 6 is a flowchart showing an example of the process of the wear measurement method.
 シリンダライナ16は、ピストン19が往復移動する領域であり、筒形状である。シリンダライナ16は、掃気ポート90が接続されている。掃気ポート90は、掃気トランク92に接続されている。シリンダライナ16は、運転時、ピストン19が掃気ポート90よりも下側(シリンダカバー17から離れた位置)となると、シリンダカバー17とピストン19との間の空間に掃気ポート90から空気が供給される。 The cylinder liner 16 is an area in which the piston 19 reciprocates, and has a cylindrical shape. The scavenging port 90 is connected to the cylinder liner 16. The scavenging port 90 is connected to the scavenging trunk 92. The cylinder liner 16 is supplied with air from the scavenging port 90 to the space between the cylinder cover 17 and the piston 19 when the piston 19 becomes lower than the scavenging port 90 (position away from the cylinder cover 17) during operation. Ru.
 シリンダライナ16は、内部及び外部の少なくとも一方に冷却媒体流路110が形成されている。冷却媒体流路110は、シリンダライナ16の周方向の全周に設けられている。冷却媒体流路110は、冷却媒体供給ライン112と、冷却媒体排出ライン114に接続されている。冷却媒体供給ライン112は、冷却媒体流路110に冷却媒体を供給する。冷却媒体排出ライン114は、冷却媒体流路110を流れた冷却媒体が排出される。シリンダライナ16は、冷却媒体流路110に冷却媒体が供給されることで加熱が抑制される。冷却媒体としては、油、水等の液体の媒体が例示される。シリンダライナ16は、ピストン19が往復移動するストローク範囲Stの内周面に穴ユニット106が形成されている。本実施形態の穴ユニット106は、複数形成されている。穴ユニット106は、シリンダライナ16の摩耗量の計測に用いられる。穴ユニット106については、後述する。 The cylinder liner 16 has a cooling medium channel 110 formed at least one of the inside and the outside. The cooling medium channel 110 is provided on the entire circumference of the cylinder liner 16 in the circumferential direction. The cooling medium flow path 110 is connected to the cooling medium supply line 112 and the cooling medium discharge line 114. The cooling medium supply line 112 supplies the cooling medium to the cooling medium channel 110. The coolant discharge line 114 discharges the coolant that has flowed through the coolant channel 110. Heating of the cylinder liner 16 is suppressed by supplying the cooling medium to the cooling medium channel 110. Examples of the cooling medium include liquid media such as oil and water. In the cylinder liner 16, a hole unit 106 is formed on the inner circumferential surface of a stroke range St in which the piston 19 reciprocates. A plurality of hole units 106 of this embodiment are formed. The hole unit 106 is used to measure the amount of wear of the cylinder liner 16. The hole unit 106 will be described later.
 摩耗計測システム100は、算出装置102と、撮影装置104と、を有する。算出装置102は、撮影装置104と有線無線で通信可能に接続されており、撮影装置104で撮影した画像を処理して、シリンダライナ16の摩耗量を計測する。摩耗計測システム100は、撮影装置104で画像(動画、静止画)を撮影し、撮影した画像を通信または記録媒体を介して算出装置102に出力してもよい。 The wear measurement system 100 includes a calculation device 102 and an imaging device 104. The calculation device 102 is communicably connected to the imaging device 104 in a wired wireless manner, processes an image captured by the imaging device 104, and measures the amount of wear of the cylinder liner 16. The wear measurement system 100 may capture an image (moving image, still image) with the imaging device 104, and output the captured image to the calculation device 102 via communication or a recording medium.
 撮影装置104は、作業員によって搬送可能で画像を撮影する装置である。撮影装置104は、静止画を撮影しても、動画を撮影してもよい。撮影装置104は、撮影領域をシリンダライナ16の周方向及び軸方向に移動可能にしてもよいし、固定された状態で、シリンダライナ16の内周の360度を撮影可能としてもよい。また、撮影装置104は、画像を撮影する撮影部と、撮影領域を照明する照明部と、を有してもよい。 The imaging device 104 is a device that can be transported by a worker and captures an image. The imaging device 104 may capture a still image or may capture a moving image. The imaging device 104 may move the imaging region in the circumferential direction and the axial direction of the cylinder liner 16, or may capture 360 degrees of the inner periphery of the cylinder liner 16 in a fixed state. In addition, the imaging device 104 may include an imaging unit configured to capture an image, and an illumination unit configured to illuminate the imaging region.
 穴ユニット106は、シリンダライナ16の摩耗量の計測時に撮影装置104で撮影される。穴ユニット106は、シリンダライナ16の周方向の複数個所、及びシリンダライナ16の軸方向(ピストン19が移動する方向)の複数個所に形成されている。穴ユニット106は、シリンダライナ16の周方向において、掃気ポート90と重なる位置に形成されていることが好ましい。また、穴ユニット106は、シリンダライナ16の軸方向において、ストローク領域Stに含まれる範囲に形成されている。穴ユニット106は、図4及び図5に示すように、基準穴122と、計測穴124と、を有する。基準穴122と計測穴124は、シリンダライナ16の表面に形成されている。基準穴122は、摩耗を計測する深さの範囲で径が一定の穴である。計測穴124は、深さ方向で径が変化するテーパー穴である。また、基準穴122と計測穴124とは、シリンダライナ16の軸方向における長さが、ピストン19に配置されたシール部材であるピストンリングの幅(シリンダライナ16の軸方向の距離)よりも短い。ここで、ピストンリングが複数ある場合は、最も幅が短いピストンリングよりも長さが短い。 The hole unit 106 is photographed by the photographing device 104 when the amount of wear of the cylinder liner 16 is measured. The hole units 106 are formed at a plurality of locations in the circumferential direction of the cylinder liner 16 and at a plurality of locations in the axial direction of the cylinder liner 16 (the direction in which the piston 19 moves). The hole unit 106 is preferably formed at a position overlapping the scavenging port 90 in the circumferential direction of the cylinder liner 16. The hole unit 106 is formed in the range included in the stroke area St in the axial direction of the cylinder liner 16. The hole unit 106 has a reference hole 122 and a measurement hole 124 as shown in FIGS. 4 and 5. The reference holes 122 and the measurement holes 124 are formed on the surface of the cylinder liner 16. The reference hole 122 is a hole whose diameter is constant in the range of depth at which wear is measured. The measurement hole 124 is a tapered hole whose diameter changes in the depth direction. Further, the reference hole 122 and the measurement hole 124 have a length in the axial direction of the cylinder liner 16 shorter than the width of the piston ring (the distance in the axial direction of the cylinder liner 16) which is a seal member disposed in the piston 19 . Here, when there are a plurality of piston rings, the length is shorter than the shortest piston ring.
 次に、図6を用いて、摩耗計測システムを用いた摩耗計測方法について説明する。まず、ピストン19を掃気ポート90よりも下側、つまり、ピストン19を下死点側に移動させ、掃気ポート90をシリンダライナ16とピストン19で囲まれた領域に繋がった状態とする(ステップS12)。 Next, a wear measurement method using the wear measurement system will be described with reference to FIG. First, the piston 19 is moved below the scavenging port 90, that is, the piston 19 is moved to the bottom dead center side, and the scavenging port 90 is connected to the region surrounded by the cylinder liner 16 and the piston 19 (step S12). ).
 次に、撮影装置104をピストン19の上面に設置する(ステップS14)。具体的には、作業員が撮影装置104を所持して掃気マニホールド30もしくは燃料ポンプ側の点検窓31からアクセスし、掃気ポート90からシリンダライナ16内に撮影装置104を入れ、ピストン19の上面に設置する。掃気ポート90からピストン19の上面を確認できる状態なので、作業員は、シリンダライナ16の中に入らずにピストン19の上面に撮影装置104を設置することができる。次に、撮影装置104を設置したら、ピストン19を移動させ、シリンダライナ16を撮影する(ステップS16)。シリンダライナ16を撮影することで、撮影領域に含まれる穴ユニット106の画像を取得する。 Next, the photographing device 104 is installed on the upper surface of the piston 19 (step S14). Specifically, a worker carries the imaging device 104 and accesses it from the scavenging air manifold 30 or the inspection window 31 on the fuel pump side, inserts the imaging device 104 into the cylinder liner 16 from the scavenging air port 90, and Install. Since the upper surface of the piston 19 can be confirmed from the scavenging port 90, the operator can install the imaging device 104 on the upper surface of the piston 19 without entering the cylinder liner 16. Next, after the imaging device 104 is installed, the piston 19 is moved to image the cylinder liner 16 (step S16). By imaging the cylinder liner 16, an image of the hole unit 106 included in the imaging area is acquired.
 撮影装置104で画像を取得したら、取得した画像から穴ユニット106を検出する(ステップS18)。穴ユニット106の画像を検出したら、基準穴122に基づいて計測穴124の径を算出する(ステップS20)。具体的には、径が一定の基準穴に基づいて画像上の大きさと実際の径との相対関係を特定し、特定した相対関係と画像の計測穴の大きさに基づいて、計測穴の径を算出する。計測穴の径を算出したら、計測穴の径に基づいて、摩耗量を算出する(ステップS22)。具体的には、テーパー形状の計測穴の径と深さとの関係と、計測穴124の現在の径に基づいて、摩耗量を計測する。 When an image is acquired by the imaging device 104, the hole unit 106 is detected from the acquired image (step S18). When the image of the hole unit 106 is detected, the diameter of the measurement hole 124 is calculated based on the reference hole 122 (step S20). Specifically, the relative relationship between the size on the image and the actual diameter is specified based on the reference hole having a constant diameter, and the diameter of the measurement hole is based on the specified relative relationship and the size of the measurement hole of the image. Calculate After calculating the diameter of the measurement hole, the amount of wear is calculated based on the diameter of the measurement hole (step S22). Specifically, the amount of wear is measured based on the relationship between the diameter and the depth of the tapered measurement hole and the current diameter of the measurement hole 124.
 以上のように、摩耗計測システム100は、シリンダライナ16に形成された基準穴122と計測穴124を画像で取得し、基準穴122を用いて、計測穴124の径を算出し、計測穴124の径に基づいて摩耗量を計測する。これにより、撮影装置104をシリンダライナ16の内部に設置することで、シリンダライナ16の摩耗量を計測することができる。また、掃気ポート90から撮影装置104を設置できるため、シリンダライナの内部に作業員が入らずに、摩耗量を計測できる。つまり、シリンダライナの上部のカバーを取り外さずに計測することができる。また、基準穴122を用いて計測穴124の径を算出することで、撮影装置による撮影位置を任意の位置にすることができ、計測が簡単になる。つまり、撮影位置と穴ユニット106との位置が変化しても、基準穴122で計測穴124の径を算出することができる。このため、作業者は穴ユニット106が撮影できる位置に撮影装置104を設置すればよいため、簡単に設置ができ、かつ高い精度で摩耗量を計測することができる。また、測定対象を穴ユニット106とすることで、つまり、シリンダライナ16の周方向の一部に設ける構造とすることで、穴ユニット106がピストン19の移動に与える影響を少なくすることができる。基準穴122と計測穴124のシリンダライナ16の軸方向における長さを、ピストンリングの幅よりも短くすることで、穴ユニット106を設けても、シリンダライナ16とピストン19との間のシール性を維持することができる。 As described above, the wear measurement system 100 acquires the reference hole 122 and the measurement hole 124 formed in the cylinder liner 16 as an image, calculates the diameter of the measurement hole 124 using the reference hole 122, and measures the measurement hole 124. Measure the amount of wear based on the diameter of Thus, by installing the imaging device 104 inside the cylinder liner 16, the amount of wear of the cylinder liner 16 can be measured. Moreover, since the imaging device 104 can be installed from the scavenging port 90, the amount of wear can be measured without an operator entering the inside of the cylinder liner. That is, measurement can be performed without removing the upper cover of the cylinder liner. Further, by calculating the diameter of the measurement hole 124 using the reference hole 122, the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy. That is, even if the imaging position and the position of the hole unit 106 change, the diameter of the measurement hole 124 can be calculated by the reference hole 122. For this reason, since the operator only needs to install the imaging device 104 at a position where the hole unit 106 can capture an image, the installation can be easily performed, and the wear amount can be measured with high accuracy. Further, by setting the measurement target as the hole unit 106, that is, by providing the measurement target in a part of the cylinder liner 16 in the circumferential direction, the influence of the hole unit 106 on the movement of the piston 19 can be reduced. Even if the hole unit 106 is provided by making the axial length of the reference hole 122 and the measurement hole 124 in the axial direction of the cylinder liner 16 shorter than the width of the piston ring, sealing performance between the cylinder liner 16 and the piston 19 is provided. Can be maintained.
 また、シリンダライナ16は、基準穴を用いて、計測穴の径を算出することが可能となり、摩耗量を計測しやすいシリンダライナとすることができる。計測穴124をテーパー穴とすることで、摩耗量に応じて径が線形で変化するため、摩耗量をより高い分解能で計測することができる。 Also, the cylinder liner 16 can calculate the diameter of the measurement hole using the reference hole, and can be a cylinder liner that can easily measure the amount of wear. By making the measurement hole 124 a tapered hole, the diameter changes linearly in accordance with the amount of wear, so the amount of wear can be measured with higher resolution.
 また、シリンダライナ16は、周方向において、穴ユニット106を掃気ポート90と重なる位置に設けることが好ましい。これにより、撮影装置を設置する位置の近くに穴ユニット106を形成することができ、穴ユニット106をより確実に撮影することができ、摩耗量を簡単に計測することができる。 Preferably, the cylinder liner 16 is provided at a position where the hole unit 106 overlaps the scavenging port 90 in the circumferential direction. Thus, the hole unit 106 can be formed near the position where the imaging device is installed, the hole unit 106 can be photographed more reliably, and the wear amount can be easily measured.
 図7は、穴ユニットの他の例を示す断面図である。穴ユニット106aは、計測穴132、134、136と基準穴138とを有する。計測穴132、134、136は、深さが異なる穴である。計測穴132、134、136は、径が一定の穴である。穴ユニット106aは、深さが異なる計測穴132、134、136を有することで、摩耗量に応じて残っている穴を変化させることができる。このように複数の穴を設けることで、複数の穴の状態を比較できるため、目視でも摩耗量を判定しやすくなる。また、複数の穴のうち、1つ、基本的には、最も深い穴を基準穴とし、基準穴と他の計測穴との位置関係(距離)を比較することで、正確に残っている計測穴を特定することができる。残っている計測穴を特定することで、シリンダライナの摩耗量を測定することができる。 FIG. 7 is a cross-sectional view showing another example of the hole unit. The hole unit 106 a has measurement holes 132, 134, 136 and a reference hole 138. The measurement holes 132, 134, 136 are holes having different depths. The measurement holes 132, 134, 136 are holes having a constant diameter. The hole unit 106a can change the remaining holes according to the amount of wear by having the measurement holes 132, 134, 136 having different depths. By providing the plurality of holes in this manner, the state of the plurality of holes can be compared, so the amount of wear can be easily determined visually. Also, one of the plurality of holes, basically, the deepest hole is used as a reference hole, and the measurement remaining accurately by comparing the positional relationship (distance) between the reference hole and the other measurement holes Holes can be identified. By identifying the remaining measurement holes, the amount of wear of the cylinder liner can be measured.
 図8は、穴ユニットの他の例を示す断面図である。穴ユニット106bは、複数の計測穴と基準穴が重ねられ、段差が形成された段差穴140が形成されている。段差穴140は、段差141、142、144、146を有する。このように、穴を重ねて配置しても上記と同様の効果を得ることができる。 FIG. 8 is a cross-sectional view showing another example of the hole unit. In the hole unit 106b, a plurality of measurement holes and reference holes are overlapped, and a step hole 140 in which a step is formed is formed. The step holes 140 have steps 141, 142, 144, and 146. As described above, the same effect as described above can be obtained by arranging the holes one on top of the other.
 また、穴ユニット106は、ピストン19が上死点に移動した状態において、ピストン19のピストンリングで挟まれる領域に配置することが好ましい。つまり、穴ユニット106は、シリンダライナ16の軸方向において、上死点にあるピストン19のピストンリングが配置された領域に重なる位置に配置することが好ましい。 Further, it is preferable that the hole unit 106 be disposed in an area between the piston ring of the piston 19 and the piston 19 moved to the top dead center. That is, it is preferable to arrange the hole unit 106 at a position overlapping the region where the piston ring of the piston 19 at the top dead center is disposed in the axial direction of the cylinder liner 16.
 図9は、穴ユニットの配置位置の一例を説明する正面図である。図9に示す穴ユニット106は、計測穴124及び基準穴122が、シリンダライナ16の軸中心から見た場合、シリンダライナに冷却媒体を供給する冷却媒体供給ライン114と冷却媒体流路110との接続位置である冷却媒体供給ライン112と重なる領域に形成されている。これにより、摩耗が発生しやすい位置の摩耗を計測することができる。具体的には、冷却媒体が供給され、温度が低くなる領域の摩耗量を計測することができる。なお、本実施形態では、冷却媒体供給ライン112と重なる領域に計測穴124と基準穴122を配置したが、ライナ摺動面の温度と水の露点温度との差が最も小さい位置に計測穴を配置することが好ましい。 FIG. 9 is a front view for explaining an example of the arrangement position of the hole unit. In the hole unit 106 shown in FIG. 9, when the measurement hole 124 and the reference hole 122 are viewed from the axial center of the cylinder liner 16, the cooling medium supply line 114 for supplying the cooling medium to the cylinder liner and the cooling medium flow passage 110. It is formed in the area | region which overlaps with the cooling-medium supply line 112 which is a connection position. This makes it possible to measure wear at a position where wear is likely to occur. Specifically, the amount of wear of the area where the cooling medium is supplied and the temperature is low can be measured. In the present embodiment, the measurement hole 124 and the reference hole 122 are disposed in the area overlapping the cooling medium supply line 112, but the measurement hole is at the position where the difference between the temperature of the liner sliding surface and the dew point temperature of water is the smallest. It is preferable to arrange.
 図10は、穴ユニットの他の例を示す正面図である。図10に示す穴ユニット106cは、1つの計測穴124と2つの基準穴122とを有する。穴ユニット106cは、ピストン19の移動方向170に対して、基準穴122、計測穴124、基準穴122の順で同一直線状に並んでいる。基準穴122を、ピストンの移動方向170と平行な方向において、計測穴124と重なる位置に形成することで、ピストンとともに移動する撮影装置で、計測穴と基準穴をより確実に撮影することができる。 FIG. 10 is a front view showing another example of the hole unit. The hole unit 106 c shown in FIG. 10 has one measurement hole 124 and two reference holes 122. The hole unit 106 c is aligned in the same straight line in the order of the reference hole 122, the measurement hole 124, and the reference hole 122 with respect to the moving direction 170 of the piston 19. By forming the reference hole 122 at a position overlapping the measurement hole 124 in the direction parallel to the movement direction 170 of the piston, it is possible to capture more reliably the measurement hole and the reference hole with the imaging device that moves with the piston .
 ここで、上記実施形態の摩耗計測システムは、シリンダライナの摩耗量を計測するため、シリンダライナに穴ユニットを形成したが、これに限定されない。摩耗計測システムは、少なくとも一部が燃焼室20に露出している各部の摩耗量を計測することができる。具体的には、摩耗計測システムは、少なくとも一部が燃焼室20に露出している各部である燃焼室部品の燃焼室20の内面となる領域、つまり燃焼室の一部を構成する領域に穴ユニットを形成し、形成した穴ユニットを計測することで、穴ユニットを形成している部品の摩耗量を計測することができる。 Here, although the wear measurement system of the above-mentioned embodiment formed a hole unit in a cylinder liner in order to measure the amount of wear of a cylinder liner, it is not limited to this. The wear measurement system can measure the amount of wear of each part exposed at least in part to the combustion chamber 20. Specifically, in the wear measurement system, holes are formed in a region which is an inner surface of the combustion chamber 20 of the combustion chamber component which is at least a part of which is exposed to the combustion chamber 20, that is, a region constituting a part of the combustion chamber. By forming a unit and measuring the formed hole unit, it is possible to measure the amount of wear of the parts forming the hole unit.
 図11は、ピストンの穴ユニットを示す斜視図である。図11に示すピストン19は、周囲にピストンリング202が設けられている。ピストンリング202は、シリンダライナ16と接する。ピストン19は、ピストン棒23と接続されている面と反対側の面、つまり、燃焼室20に露出する面に穴ユニット106dが設けられている。穴ユニット106dは、基準穴122と、計測穴124と、を有する。基準穴122は、計測穴124とピストン19の径方向の異なる位置に配置されている。つまり、ピストン19は、ピストン19の中心212からの距離が異なる位置に基準穴122と計測穴124とが形成されている。 FIG. 11 is a perspective view showing a hole unit of a piston. The piston 19 shown in FIG. 11 is provided with a piston ring 202 at its periphery. The piston ring 202 contacts the cylinder liner 16. The piston 19 is provided with a hole unit 106 d on the surface opposite to the surface connected to the piston rod 23, that is, the surface exposed to the combustion chamber 20. The hole unit 106 d has a reference hole 122 and a measurement hole 124. The reference holes 122 are disposed at different positions in the radial direction of the measurement hole 124 and the piston 19. That is, in the piston 19, the reference hole 122 and the measurement hole 124 are formed at different positions from the center 212 of the piston 19.
 摩耗計測システム100は、ピストン19の表面に穴ユニット106dを設けることでも、基準穴122と計測穴124とを設けることで、計測穴124の径を正確に計測することができ、ピストン19の摩耗量を計測することができる。 The wear measurement system 100 can accurately measure the diameter of the measurement hole 124 by providing the reference hole 122 and the measurement hole 124 also by providing the hole unit 106 d on the surface of the piston 19, and wear of the piston 19. The quantity can be measured.
 また、ピストン19は、穴ユニット106dをピストン19の径方向において異なる位置に設けることで、それぞれの穴を判別しやすくすることができる。 Further, by providing the hole units 106 d at different positions in the radial direction of the piston 19, the respective holes can be easily identified.
 なお、穴ユニット106dは、基準穴122と計測穴124とを周方向に並べて配置、つまり、穴ユニット106dは、同じ高さ位置に基準穴122と計測穴124を配置してもよい。これにより、同じ高さで基準穴122と計測穴124を比較することができ、摩耗量を高い精度で計測することができる。 The hole unit 106d may arrange the reference holes 122 and the measurement holes 124 in the circumferential direction, that is, the hole unit 106d may arrange the reference holes 122 and the measurement holes 124 at the same height position. Thus, the reference hole 122 and the measurement hole 124 can be compared at the same height, and the wear amount can be measured with high accuracy.
 計測穴124を含む穴ユニット106は、ピストン19の周方向において、ピストン19の内部の冷却媒体通路110から最も遠い位置に設けることが好ましい。これにより、運転時に温度が高くなる位置の摩耗量を検出することができる。また、計測穴124を含む穴ユニット106dは、ピストン19の周方向において、燃料を噴射する位置となる燃焼弁位置から燃料の噴射方向に90°以上180°以下の角度回転させた触火面位置(火炎が接近する位置又は火炎と接触する位置)に設けることも好ましい。これにより、ピストンの最大摩耗量を計測することができる。 The hole unit 106 including the measurement hole 124 is preferably provided at a position farthest from the cooling medium passage 110 inside the piston 19 in the circumferential direction of the piston 19. This makes it possible to detect the amount of wear at the position where the temperature rises during operation. Further, in the circumferential direction of the piston 19, the hole unit 106d including the measurement hole 124 is a contact surface position rotated by an angle of 90 ° or more and 180 ° or less in the fuel injection direction from the combustion valve position which is a position for injecting It is also preferable to provide it at a position where the flame approaches or in contact with the flame. Thereby, the maximum wear amount of the piston can be measured.
 図12は、排気弁の穴ユニットを示す斜視図である。図12に示す排気弁21は、先端面、つまり燃焼室20に露出する面に穴ユニット106eが設けられている。穴ユニット106eは、基準穴122と、計測穴124と、を有する。基準穴122は、計測穴124と排気弁21の径方向の異なる位置に配置されている。つまり、排気弁21は、排気弁21の中心302からの距離が異なる位置に基準穴122と計測穴124とが形成されている。 FIG. 12 is a perspective view showing a hole unit of the exhaust valve. In the exhaust valve 21 shown in FIG. 12, a hole unit 106e is provided on the tip end surface, that is, the surface exposed to the combustion chamber 20. The hole unit 106 e has a reference hole 122 and a measurement hole 124. The reference holes 122 are disposed at different positions in the radial direction of the measurement holes 124 and the exhaust valve 21. That is, in the exhaust valve 21, the reference hole 122 and the measurement hole 124 are formed at different positions from the center 302 of the exhaust valve 21.
 摩耗計測システム100は、排気弁21の表面に穴ユニット106eを設けることでも、基準穴122と計測穴124とを設けることで、計測穴124の径を正確に計測することができ、排気弁21の摩耗量を計測することができる。 The wear measurement system 100 can accurately measure the diameter of the measurement hole 124 by providing the reference hole 122 and the measurement hole 124 by providing the hole unit 106 e on the surface of the exhaust valve 21. Can measure the amount of wear.
 また、排気弁21は、穴ユニット106eを排気弁21の径方向において異なる位置に設けることで、排気弁21が回転してもそれぞれの穴を判別しやすくすることができる。なお、周方向に穴ユニット106eを配置してもよい。 Further, by providing the hole units 106e at different positions in the radial direction of the exhaust valve 21, the exhaust valve 21 can make it easier to identify the respective holes even if the exhaust valve 21 rotates. The hole unit 106e may be arranged in the circumferential direction.
 また、排気弁21は、排気弁21の傘部の半径(先端面の径)をRbとした場合、穴ユニット106eをピストンの中心212から距離1/4Rb以上1/2Rb以下の領域に設けることが好ましい。つまり、計測穴は、排気弁21の中心から半径方向へ排気弁21の傘部の半径の1/4以上1/2以下の距離移動した触火面位置に設けることが好ましい。また、穴ユニット106eは、燃焼室の周方向において、燃焼弁の位置から噴射方向に90°から180°角度回転させた触火面位置に設けることも好ましい。これにより、最も摩耗する位置での摩耗を計測することができる。 In addition, when the radius (diameter of the tip end face) of the umbrella portion of the exhaust valve 21 is Rb, the exhaust valve 21 is provided with the hole unit 106e in a region of a distance 1/4 Rb to 1/2 Rb from the center 212 of the piston. Is preferred. That is, it is preferable to provide the measurement hole in the contact surface position moved in the radial direction from the center of the exhaust valve 21 by a distance of 1/4 or more and 1/2 or less of the radius of the umbrella portion of the exhaust valve 21. The hole unit 106e is also preferably provided at the contact surface position rotated 90 ° to 180 ° in the injection direction from the position of the combustion valve in the circumferential direction of the combustion chamber. This makes it possible to measure the wear at the most worn position.
 次に、図13を用いて、摩耗計測システムをピストン19または排気弁21の摩耗量の計測に用いた摩耗計測方法について説明する。図13は、摩耗計測方法の処理の一例を示すフローチャートである。まず、撮影装置104を設置する(ステップS32)。具体的には、作業員が撮影装置104を所持して対象物(ピストン19または排気弁21)の穴ユニット106d、106eが撮影できる位置に撮影装置104を設置する。対象物がピストン19である場合、ピストン19を掃気ポート90よりも下側に移動させ、撮影装置104を掃気ポート90から挿入し、ピストン19の上面を撮影する。対象物が排気弁21である場合、撮影装置104をピストン19の上面に設置し、ピストン19を上死点または上死点の近傍等、撮影装置104が排気弁21を撮影できる位置まで移動させる。 Next, a wear measurement method using the wear measurement system for measuring the wear amount of the piston 19 or the exhaust valve 21 will be described with reference to FIG. FIG. 13 is a flowchart showing an example of the process of the wear measurement method. First, the photographing device 104 is installed (step S32). Specifically, the worker carries the imaging device 104 and installs the imaging device 104 at a position where the hole units 106d and 106e of the object (the piston 19 or the exhaust valve 21) can image. When the object is the piston 19, the piston 19 is moved below the scavenging port 90, the photographing device 104 is inserted from the scavenging port 90, and the upper surface of the piston 19 is photographed. When the object is the exhaust valve 21, the photographing device 104 is installed on the upper surface of the piston 19, and the piston 19 is moved to a position where the photographing device 104 can photograph the exhaust valve 21, such as top dead center or near top dead center. .
 次に、撮影装置104を設置したら、対象物を撮影する(ステップS34)。対象物を撮影することで、撮影領域に含まれる穴ユニット106d、106eの画像を取得する。 Next, when the photographing device 104 is installed, the object is photographed (step S34). By photographing the object, the images of the hole units 106d and 106e included in the photographing area are acquired.
 撮影装置104で画像を取得したら、取得した画像から穴ユニット106d、106eを検出する(ステップS36)。穴ユニット106d、106eの画像を検出したら、基準穴に基づいて計測穴の径を算出する(ステップS38)。具体的には、径が一定の基準穴に基づいて画像上の大きさと実際の径との相対関係を特定し、特定した相対関係と画像の計測穴の大きさに基づいて、計測穴の径を算出する。計測穴の径を算出したら、計測穴の径に基づいて、摩耗量を算出する(ステップS40)。具体的には、テーパー形状の計測穴の径と深さとの関係と、計測穴124の現在の径に基づいて、摩耗量を計測する。 When an image is acquired by the imaging device 104, the hole units 106d and 106e are detected from the acquired image (step S36). When the images of the hole units 106d and 106e are detected, the diameter of the measurement hole is calculated based on the reference hole (step S38). Specifically, the relative relationship between the size on the image and the actual diameter is specified based on the reference hole having a constant diameter, and the diameter of the measurement hole is based on the specified relative relationship and the size of the measurement hole of the image. Calculate After calculating the diameter of the measurement hole, the amount of wear is calculated based on the diameter of the measurement hole (step S40). Specifically, the amount of wear is measured based on the relationship between the diameter and the depth of the tapered measurement hole and the current diameter of the measurement hole 124.
 以上のように、摩耗計測システム100は、対象物に形成された基準穴122と計測穴124を画像で取得し、基準穴122を用いて、計測穴124の径を算出し、計測穴124の径に基づいて摩耗量を計測する。これにより、撮影装置104をシリンダライナ16の内部に設置することで、対象物の摩耗量を計測することができる。また、いずれの対象物の場合も掃気ポート90から撮影装置を設置できる。また、掃気ポート90から撮影できるため、シリンダライナの内部に作業員が入らずに、摩耗量を計測できる。つまり、シリンダライナ16の上部のカバーを取り外さずに計測することができる。また、基準穴122を用いて計測穴124の径を算出することで、撮影装置による撮影位置を任意の位置にすることができ、計測が簡単になる。つまり、撮影位置と穴ユニット106d、106eとの位置が変化しても、基準穴122で計測穴124の径を算出することができる。このため、作業者は穴ユニット106d、106eが撮影できる位置に撮影装置104を設置すればよいため、簡単に設置ができ、かつ高い精度で摩耗量を計測することができる。また、測定対象を穴ユニット106d、106eとすることで、つまり、対象物の一部に設ける構造とすることで、穴ユニット106d、106eが対象物に与える影響を少なくすることができる。 As described above, the wear measurement system 100 acquires the reference hole 122 and the measurement hole 124 formed in the object as an image, calculates the diameter of the measurement hole 124 using the reference hole 122, and measures the diameter of the measurement hole 124. Measure the amount of wear based on the diameter. Thus, by installing the imaging device 104 inside the cylinder liner 16, the amount of wear of the object can be measured. Further, the imaging device can be installed from the scavenging port 90 for any object. In addition, since imaging can be performed from the scavenging port 90, the amount of wear can be measured without an operator entering the inside of the cylinder liner. That is, measurement can be performed without removing the upper cover of the cylinder liner 16. Further, by calculating the diameter of the measurement hole 124 using the reference hole 122, the photographing position of the photographing device can be set to an arbitrary position, and the measurement becomes easy. That is, even if the positions of the imaging position and the hole units 106d and 106e change, the diameter of the measurement hole 124 can be calculated by the reference hole 122. For this reason, since the operator only needs to install the imaging device 104 at a position where the hole units 106d and 106e can image, it can be easily installed and the wear amount can be measured with high accuracy. Further, by setting the measurement target to the hole units 106d and 106e, that is, by providing the measurement target in a part of the object, the influence of the hole units 106d and 106e on the object can be reduced.
 10 ディーゼルエンジン(クロスヘッド式内燃機関)
 11 台板
 12 架構
 13 シリンダジャケット
 14 テンションボルト(連結部材)
 15 テンションボルトナット
 16 シリンダライナ
 17 シリンダカバー
 18 空間部
 19 ピストン
 20 燃焼室
 21 排気弁
 22 排ガス管
 23 ピストン棒
 24 クランクシャフト
 25 軸受
 26 クランク
 27 連接棒
 28 ガイド板
 29 クロスヘッド
 30 掃気マニホールド
 31 点検窓
100 摩耗計測システム
102 算出装置
104 撮影装置
106 穴ユニット
110 冷却媒体流路
112 冷却媒体供給ライン
114 冷却媒体排出ライン
122 基準穴
124 計測穴
10 diesel engine (crosshead internal combustion engine)
11 base plate 12 frame structure 13 cylinder jacket 14 tension bolt (connection member)
15 tension bolt nut 16 cylinder liner 17 cylinder cover 18 space 19 piston 20 combustion chamber 21 exhaust valve 22 exhaust pipe 23 piston rod 24 crankshaft 25 bearing 26 crank 27 connecting rod 28 guide plate 29 cross head 30 scavenging manifold 31 inspection window 100 Wear measurement system 102 Calculation device 104 Imaging device 106 Hole unit 110 Coolant channel 112 Coolant supply line 114 Coolant discharge line 122 Reference hole 124 Measurement hole

Claims (20)

  1.  ディーゼルエンジンの燃焼室の対象物の摩耗を計測する摩耗計測システムであって、
     前記対象物に形成された基準穴と計測穴を撮影する撮影装置と、
     前記撮影装置が撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記対象物の摩耗量を算出する算出装置と、を備えることを特徴とする摩耗計測システム。
    A wear measurement system for measuring the wear of an object in a combustion chamber of a diesel engine, comprising:
    An imaging device for imaging a reference hole and a measurement hole formed in the object;
    A calculating device that analyzes an image captured by the imaging device, calculates the size of the measurement hole based on the reference hole included in the image, and calculates the wear amount of the object based on the size of the measurement hole A wear measuring system comprising:
  2.  前記対象物は、シリンダライナであり、
     前記撮影装置は、ピストンの上面に載置され、前記シリンダライナの内周面に形成された基準穴と計測穴を撮影することを特徴とする請求項1に記載の摩耗計測システム。
    The object is a cylinder liner,
    The wear measuring system according to claim 1, wherein the photographing device is mounted on an upper surface of a piston and photographs a reference hole and a measurement hole formed on an inner circumferential surface of the cylinder liner.
  3.  前記計測穴は、前記ピストンの移動方向に沿って、前記基準穴と同じ高さ位置に形成されていることを特徴とする請求項2に記載の摩耗計測システム。 The wear measurement system according to claim 2, wherein the measurement hole is formed at the same height position as the reference hole along the movement direction of the piston.
  4.  前記計測穴は、上死点にある前記ピストンのピストンリングに挟まれる領域に形成されていることを特徴とする請求項2または3に記載の摩耗計測システム。 The wear measurement system according to claim 2 or 3, wherein the measurement hole is formed in a region sandwiched by a piston ring of the piston at a top dead center.
  5.  前記計測穴は、前記シリンダライナの摺動面の温度と水の露点温度との差が最も小さい位置に形成されていることを特徴とする請求項2または3に記載の摩耗計測システム。 The wear measurement system according to claim 2 or 3, wherein the measurement hole is formed at a position where the difference between the temperature of the sliding surface of the cylinder liner and the dew point temperature of water is the smallest.
  6.  前記計測穴は、前記シリンダライナの周方向に複数形成されていることを特徴とする請求項2から5のいずれか一項に記載の摩耗計測システム。 The wear measurement system according to any one of claims 2 to 5, wherein a plurality of the measurement holes are formed in the circumferential direction of the cylinder liner.
  7.  前記対象物は、ピストンであることを特徴とする請求項1に記載の摩耗計測システム。 The wear measurement system according to claim 1, wherein the object is a piston.
  8.  前記対象物は、排気弁であることを特徴とする請求項1に記載の摩耗計測システム。 The wear measurement system according to claim 1, wherein the object is an exhaust valve.
  9.  前記計測穴は、テーパー穴であることを特徴とする請求項1から8のいずれか一項に記載の摩耗計測システム。 The wear measurement system according to any one of claims 1 to 8, wherein the measurement hole is a tapered hole.
  10.  前記計測穴は、深さが異なる複数の穴であることを特徴とする請求項1から8のいずれか一項に記載の摩耗計測システム。 The wear measurement system according to any one of claims 1 to 8, wherein the measurement holes are a plurality of holes having different depths.
  11.  前記計測穴は、深さと径が異なる複数の穴であることを特徴とする請求項1から8のいずれか一項に記載の摩耗計測システム。 The wear measurement system according to any one of claims 1 to 8, wherein the measurement holes are a plurality of holes having different depths and diameters.
  12.  ディーゼルエンジンの燃焼室に少なくとも一部が露出した燃焼室部品であって、
     前記燃焼室の内周面に形成された基準穴と計測穴とを有し、
     前記基準穴は、径が一定であることを特徴とする燃焼室部品。
    A combustion chamber part exposed at least partially to a combustion chamber of a diesel engine,
    It has a reference hole and a measurement hole formed on the inner circumferential surface of the combustion chamber,
    The combustion chamber component, wherein the reference hole has a constant diameter.
  13.  前記計測穴は、テーパー穴であることを特徴とする請求項12に記載の燃焼室部品。 The combustion chamber component according to claim 12, wherein the measurement hole is a tapered hole.
  14.  前記計測穴は、深さが異なる複数の穴であることを特徴とする請求項12に記載の燃焼室部品。 The combustion chamber component according to claim 12, wherein the measurement hole is a plurality of holes having different depths.
  15.  前記計測穴は、深さと径が異なる複数の穴であることを特徴とする請求項12に記載の燃焼室部品。 The combustion chamber component according to claim 12, wherein the measurement hole is a plurality of holes having different depths and diameters.
  16.  前記燃焼室部品は、シリンダライナであり、前記計測穴は、ピストンの移動方向に沿って、前記基準穴と同じ高さ位置に形成されていることを特徴とする請求項12から15のいずれか一項に記載の燃焼室部品。 The combustion chamber component is a cylinder liner, and the measurement hole is formed at the same height position as the reference hole along the movement direction of the piston. Combustion chamber parts according to one of the claims.
  17.  前記燃焼室部品は、シリンダライナであり、前記計測穴は、上死点にあるピストンのピストンリングに挟まれる領域に形成されていることを特徴とする請求項12から16のいずれか一項に記載の燃焼室部品。 17. The combustion chamber component is a cylinder liner, and the measurement hole is formed in a region sandwiched by a piston ring of a piston at a top dead center, according to any one of claims 12 to 16. Combustion chamber parts described.
  18.  前記燃焼室部品は、シリンダライナであり、前記計測穴は、前記燃焼室の摺動面の温度と水の露点温度との差が最も小さい位置に形成されていることを特徴とする請求項12から17のいずれか一項に記載の燃焼室部品。 The combustion chamber part is a cylinder liner, and the measurement hole is formed at a position where the difference between the temperature of the sliding surface of the combustion chamber and the dew point temperature of water is the smallest. The combustion chamber component according to any one of 17.
  19.  ディーゼルエンジンの燃焼室の対象物の摩耗を計測する摩耗計測方法であって、
     撮影装置で前記対象物に形成された基準穴と計測穴を撮影する撮影ステップと、
     撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記対象物の摩耗量を算出する算出ステップと、を備えることを特徴とする摩耗計測方法。
    A wear measurement method for measuring the wear of an object in a combustion chamber of a diesel engine, comprising:
    An imaging step of imaging a reference hole and a measurement hole formed on the object with an imaging device;
    Calculating the size of the measurement hole based on the reference hole included in the image by analyzing the photographed image, and calculating the wear amount of the object based on the size of the measurement hole. Wear measurement method characterized by
  20.  ピストンの上面に撮影装置を配置するステップと、
     前記ピストンを移動させ、前記撮影装置でシリンダライナの内周面に形成された基準穴と計測穴を撮影する撮影ステップと、
     撮影した画像を解析し、前記画像に含まれる基準穴に基づいて計測穴の大きさを算出し、計測穴の大きさに基づいて前記シリンダライナの摩耗量を算出する算出ステップと、を備えることを特徴とする摩耗計測方法。
    Placing an imaging device on top of the piston;
    An imaging step of moving the piston and imaging the reference hole and the measurement hole formed on the inner circumferential surface of the cylinder liner with the imaging device;
    Calculating the size of the measurement hole based on the reference hole included in the image by analyzing the photographed image, and calculating the wear amount of the cylinder liner based on the size of the measurement hole. Wear measurement method characterized by
PCT/JP2017/043849 2016-12-13 2017-12-06 Wear measurement system, combustion chamber component and wear measurement method WO2018110390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197014687A KR20190070964A (en) 2016-12-13 2017-12-06 Wear measurement system, combustion chamber parts and wear measurement method
CN201780074335.XA CN110023710A (en) 2016-12-13 2017-12-06 Wear measurement system, combustion chamber components and wear measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-241416 2016-12-13
JP2016241416A JP2018096837A (en) 2016-12-13 2016-12-13 Abrasion measuring system, combustion chamber component, and method for measuring abrasion

Publications (1)

Publication Number Publication Date
WO2018110390A1 true WO2018110390A1 (en) 2018-06-21

Family

ID=62558462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043849 WO2018110390A1 (en) 2016-12-13 2017-12-06 Wear measurement system, combustion chamber component and wear measurement method

Country Status (4)

Country Link
JP (1) JP2018096837A (en)
KR (1) KR20190070964A (en)
CN (1) CN110023710A (en)
WO (1) WO2018110390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240062886A (en) 2022-11-02 2024-05-09 서강대학교산학협력단 Apparatus and method for calculating the wear amount of a surface having a curvature shape

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925684Y2 (en) * 1979-11-15 1984-07-27 横浜ゴム株式会社 tire
JPS59119976U (en) * 1983-02-01 1984-08-13 トヨタ自動車株式会社 Cylinder bore warming promotion and cooling device
US6253724B1 (en) * 1999-12-06 2001-07-03 Samyoung Machinery Co., Ltd. Cylinder liner with oil pocket
JP2002052908A (en) * 2000-08-10 2002-02-19 Yokohama Rubber Co Ltd:The Pneumatic tire and its tread abrasion loss measuring method
JP2004307975A (en) * 2003-04-10 2004-11-04 Riken Corp Sliding member
JP2014530320A (en) * 2011-10-07 2014-11-17 ターボメカTurbomeca Centrifugal compressor provided with a marker for measuring wear, and method for monitoring wear using said marker
WO2016132457A1 (en) * 2015-02-17 2016-08-25 日本郵船株式会社 System and method for cylinder liner inspection, holding tool for imaging device, and cylinder liner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131768A (en) 1984-07-23 1986-02-14 Mitsubishi Heavy Ind Ltd Detecting method of wearing quantity in piston ring
US6769383B2 (en) * 2001-06-29 2004-08-03 Deltahawk, Inc. Internal combustion engine
JP3910118B2 (en) * 2002-08-05 2007-04-25 株式会社プラントテクノス Liquid particle image analyzer
DE102005048566A1 (en) * 2005-10-11 2007-04-12 Man Nutzfahrzeuge Ag Auto-ignition internal combustion engine with combustion chambers for high ignition pressures
KR20110036910A (en) * 2008-06-18 2011-04-12 크리스-마린 에이비 Cylinder diameter measurement
EP2192381B1 (en) * 2008-11-28 2012-11-21 John Rosenskjold A method of measuring cylinder liner diameter in a two-stroke crosshead internal combustion engine and a diameter gauge device for use in the method.
US9121697B2 (en) * 2010-02-10 2015-09-01 Komatsu Ltd. Wear amount measuring device, wear amount measuring method, wear amount measuring program and storage medium
JP6126928B2 (en) * 2013-07-10 2017-05-10 日立Geニュークリア・エナジー株式会社 Cylinder liner sliding surface inspection jig and wear inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925684Y2 (en) * 1979-11-15 1984-07-27 横浜ゴム株式会社 tire
JPS59119976U (en) * 1983-02-01 1984-08-13 トヨタ自動車株式会社 Cylinder bore warming promotion and cooling device
US6253724B1 (en) * 1999-12-06 2001-07-03 Samyoung Machinery Co., Ltd. Cylinder liner with oil pocket
JP2002052908A (en) * 2000-08-10 2002-02-19 Yokohama Rubber Co Ltd:The Pneumatic tire and its tread abrasion loss measuring method
JP2004307975A (en) * 2003-04-10 2004-11-04 Riken Corp Sliding member
JP2014530320A (en) * 2011-10-07 2014-11-17 ターボメカTurbomeca Centrifugal compressor provided with a marker for measuring wear, and method for monitoring wear using said marker
WO2016132457A1 (en) * 2015-02-17 2016-08-25 日本郵船株式会社 System and method for cylinder liner inspection, holding tool for imaging device, and cylinder liner

Also Published As

Publication number Publication date
CN110023710A (en) 2019-07-16
JP2018096837A (en) 2018-06-21
KR20190070964A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
RU2490487C2 (en) Monitoring system of blow-down performance and monitoring method of processing method during blow-down of large two-stroke diesel engine with uniflow blow-down
WO2018110390A1 (en) Wear measurement system, combustion chamber component and wear measurement method
KR102110588B1 (en) A cylinder liner for a two-stroke crosshead engine
CN106948959A (en) The method for determining the cylinder health status in conventional engine
DK179020B1 (en) A cylinder liner for a two-stroke crosshead engine
Schäffer et al. Development of a Measuring System for the Visualization of the Oil Film between the Piston and Cylinder Liner of a Gasoline Engine
JP2008232734A (en) Measurement method and measurement apparatus of cylinder bore
TW202010933A (en) Operation monitoring system
JP7309109B2 (en) engine system
JP7266545B2 (en) fuel injection controller
US11650043B2 (en) Non-contact process for engine deposit layer measurement
FI124243B (en) Procedure for taking lubricating oil samples in a piston engine
KR20200141004A (en) Variable compression ratio(vcr) engine
JP2007146729A (en) Device and method for measuring oil consumption quantity
JP2018096837A5 (en)
JP7309110B2 (en) engine system
Kaul et al. Enterprise: a reduced-scale, flexible fuel, single-cylinder crosshead marine diesel research engine
Ohsawa et al. Visualization study on lubricant oil film behavior around piston skirt
JP6703868B2 (en) Valve gear and crosshead internal combustion engine
JP6675889B2 (en) Valve train and crosshead internal combustion engine
RU2532825C2 (en) Diagnostics method of piston packing of internal combustion engine as per indicator diagram
KR101860474B1 (en) A cylinder liner for a two-stroke crosshead engine
KR100489136B1 (en) Guaging apparatus to design a head gasket
Koszałka et al. Wear profile of the cylinder liner in a motor truck diesel engine
Sukumaran et al. Durability Improvement for 2-Stroke Forced Air Cooled SI Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014687

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881715

Country of ref document: EP

Kind code of ref document: A1