WO2018110307A1 - Flapping device - Google Patents

Flapping device Download PDF

Info

Publication number
WO2018110307A1
WO2018110307A1 PCT/JP2017/043166 JP2017043166W WO2018110307A1 WO 2018110307 A1 WO2018110307 A1 WO 2018110307A1 JP 2017043166 W JP2017043166 W JP 2017043166W WO 2018110307 A1 WO2018110307 A1 WO 2018110307A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
slider
flapping
roller
rotating body
Prior art date
Application number
PCT/JP2017/043166
Other languages
French (fr)
Japanese (ja)
Inventor
中村 和敬
俊樹 西脇
濱本 将樹
秀樹 江藤
Original Assignee
株式会社村田製作所
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, シャープ株式会社 filed Critical 株式会社村田製作所
Publication of WO2018110307A1 publication Critical patent/WO2018110307A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor

Definitions

  • the present disclosure relates to a flapping apparatus that obtains levitation force by driving and swinging a wing body by a power source assembled to the housing.
  • a wing is provided on each of the port side and the starboard side of the skeleton, and the wing is driven by a power source assembled to the skeleton. At this time, the wing swings so that the distal end located on the side opposite to the proximal end moves in the front-rear direction with the proximal end located on the housing side as the rotation center.
  • a rocker arm is assembled to the base end of a mast to which a wing is attached, and a rotary motion output from a rotary motor as a power source.
  • the rocker arm is periodically pushed and pulled by being converted into a reciprocating linear motion by the crank, and the flutter is configured to swing in the front-rear direction when the mast is driven by the rocker arm.
  • the power transmission mechanism that transmits power from the power source to the wings is easy to increase in size due to the inclusion of various mechanisms, and accordingly, the frame tends to increase in size, and the downsizing thereof is required. By the way.
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a flapping apparatus that can be configured more compactly than in the past.
  • a flapping apparatus is driven by a housing, a power source assembled to the housing, a power transmission mechanism that transmits power generated by the power source, and the power transmission mechanism. And wings.
  • the power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power from the power source, and is rotatably supported by the housing, And a rotating body that reciprocates in the rotational direction about a rotational axis that extends in a second direction orthogonal to the first direction upon receiving power transmission.
  • the tip of the rotating body reciprocates in the rotational direction so that the tip of the wing body swings substantially along the first direction.
  • the housing includes a plurality of slide guides arranged in parallel with each other so as to penetrate the slider in the first direction so as to guide the slider along the first direction.
  • the outer dimension of the slider in the third direction orthogonal to both the first direction and the second direction is smaller than the outer dimension of the slider in the second direction.
  • the plurality of slide guides are arranged side by side along the second direction.
  • the housing may further include a rectangular frame-shaped support frame that supports the plurality of slide guides. It is preferable that a frame surrounds the slider and the plurality of slide guides in the first direction and the second direction.
  • the casing is disposed at a different position in the second direction and the plurality of stems arranged in parallel to each other extending along the second direction.
  • And may further include a pair of base frames.
  • each of the pair of base frames is preferably supported by the plurality of stems, and in that case, the support frame is sandwiched between the pair of base frames in the second direction. It is preferable to be fixed to the pair of base frames.
  • the power source may include an output shaft that outputs a rotational motion.
  • the power transmission mechanism may include the output shaft. It is preferable to further include a crank mechanism for converting the rotary motion generated in the slider into the reciprocating linear motion of the slider. In that case, the crank mechanism straddles a part of the space surrounded by the support frame in the third direction. Therefore, it is preferable that the crank mechanism is disposed adjacent to the slider in the second direction.
  • the plurality of slide guides are unevenly distributed at positions near the end of the slider opposite to the end on the crank mechanism side. Is preferred.
  • the power transmission mechanism may further include an elastic belt that is partially fixed to the slider. It is preferable that the non-fixed portion of the elastic belt is wound or fixed on the rotating body, whereby the rotating body reciprocates in the rotational direction as the slider reciprocates linearly.
  • a flapping apparatus is driven by a housing, a power source assembled to the housing, a power transmission mechanism that transmits power generated by the power source, and the power transmission mechanism.
  • the power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power from the power source, and is rotatably supported by the housing, It includes a first rotating body and a second rotating body that reciprocate in the rotation direction around a rotation axis extending in a second direction orthogonal to the first direction upon receiving power transmission.
  • the first rotating body and the second rotating body are arranged side by side so as to sandwich the slider in a third direction orthogonal to both the first direction and the second direction.
  • the base end of the first wing body is fixed to the first rotating body so that the distal end of the first wing body is located on the side opposite to the side on which the second rotating body is positioned when viewed from the first rotating body.
  • the base end of the second wing body is fixed to the second rotating body so that the tip of the second wing body is located on the side opposite to the side on which the first rotating body is positioned when viewed from the second rotating body.
  • the first wing and the second wing are reciprocated in the rotation direction of the first rotator and the second rotator, so that the tips of the first wing and the second wing are moved substantially along the first direction.
  • the housing includes a plurality of slide guides arranged in parallel with each other so as to penetrate the slider in the first direction so as to guide the slider along the first direction.
  • the outer dimension of the slider in the third direction is smaller than the outer dimension of the slider in the second direction.
  • the plurality of slide guides are arranged side by side along the second direction.
  • FIG. 1 is a schematic perspective view of a flapping apparatus in Embodiment 1.
  • FIG. It is a schematic perspective view of the principal part of the flapping apparatus shown in FIG. It is a perspective view of the power transmission mechanism of the flapping apparatus shown in FIG. It is a side view which shows the structure of the rotation motion transmission part of the flapping apparatus shown in FIG. 1, and the structure of the vicinity of a 1st motion conversion part, and the top view which shows the structure of a 1st motion conversion part.
  • It is sectional drawing which shows the assembly structure of the 1st crank arm of the 1st motion conversion part of the flapping apparatus shown in FIG. 1, and a 2nd crank arm.
  • FIG. 1 is a schematic perspective view of a flapping apparatus in Embodiment 1.
  • FIG. It is a schematic perspective view of the principal part of the flapping apparatus shown in FIG. It is a perspective view of the power transmission mechanism of the flapping apparatus shown in FIG. It is a side view which shows the structure of the rotation motion transmission part of
  • FIG. 3 is a plan view showing a configuration in the vicinity of a right second motion conversion unit and a left second motion conversion unit of the flapping apparatus shown in FIG. 1 and behaviors of the right and left wings during hovering. It is a perspective view, a top view, and a side view showing the configuration and operation of the right roller control mechanism of the flapping apparatus shown in FIG. It is a perspective view, a top view, and a side view showing the configuration and operation of the left roller control mechanism of the flapping apparatus shown in FIG. It is a functional block diagram which shows the structure of the flapping control mechanism and flight mode control part of the flapping apparatus shown in FIG. It is the top view and side view for demonstrating operation
  • FIG. 1 shows the behavior of the right-side body and the left-side body in the flight mode 28 of the flapping apparatus shown in FIG. It is a top view which shows the behavior of the right side body and the left side body in the flight mode 29 of the flapping apparatus shown in FIG. It is a top view which shows the behavior of the right side body and the left side body in the flight mode 32 of the flapping apparatus shown in FIG. It is a schematic diagram which shows the behavior of the front frame part of the support frame as a 1st biasing part of the flapping apparatus which concerns on the modification based on Embodiment 1.
  • FIG. 1 shows the behavior of the front frame part of the support frame as a 1st biasing part of the flapping apparatus which concerns on the modification based on Embodiment 1.
  • FIG. 1 is a schematic perspective view of a flapping apparatus 1A according to Embodiment 1
  • FIG. 2 is a schematic perspective view of a main part of the flapping apparatus 1A.
  • 3A and 3B are perspective views of the power transmission mechanism 30.
  • FIG. 4A is a side view showing a configuration in the vicinity of the rotary motion transmitting unit 30A and the first motion converting unit 30B
  • FIG. 4B is a plan view showing the configuration of the first motion converting unit 30B. is there.
  • FIG. 5A and FIG. 5B are cross-sectional views showing the assembly structure of the first crank arm 33A and the second crank arm 33B of the first motion converter 30B.
  • FIG. 6 is a plan view showing the configuration in the vicinity of the right second motion conversion unit 30C1 and the left second motion conversion unit 30C2 and the behavior of the right wing 40R and the left wing 40L during hovering.
  • FIGS. 7A and 7B are a perspective view showing a configuration of the right roller control mechanism 50A and a plan view showing a movable range of the right roller 37R.
  • FIGS. 7C and 7D are FIGS.
  • FIG. 10 is a side view showing the operation of the right roller control mechanism 50A.
  • 8A and 8B are a perspective view showing the configuration of the left roller control mechanism 50B and a plan view showing the movable range of the left roller 37L.
  • FIGS. 8C and 8D are views.
  • FIG. 10 is a side view showing the operation of the left roller control mechanism 50B.
  • FIG. 9 is a functional block diagram showing the configuration of the flapping control mechanism 50 and the flight mode control unit 80.
  • the flapping apparatus 1 ⁇ / b> A includes a housing 10, a main rotary motor 20 as a power source assembled to the housing 10, and a power transmission mechanism 30 that transmits power generated by the main rotary motor 20.
  • Flapping control mechanism 50 for changing the above and a battery (not shown) for supplying electric power to main rotating motor 20 described above.
  • the X-axis, Y-axis, and Z-axis are respectively taken in front, back, left, and right of the flapping device 1A, and the directions toward the front side and the rear side viewed from the flapping device 1A are respectively set.
  • the X1 direction and the X2 direction are defined, the directions toward the right side and the left side as viewed from the flapping device 1A are defined as the Y1 direction and the Y2 direction, respectively, and the upper side and the lower side as viewed from the flapping device 1A.
  • the directing directions are defined as a Z1 direction and a Z2 direction, respectively, and in the following description, these axes and directions are used.
  • the front-rear direction of the flapping apparatus 1A which is the direction in which the X axis extends, corresponds to the first direction in which the slider 35 described later reciprocates linearly, and the Z axis described above extends.
  • the up-and-down direction of the flapping apparatus 1A which is the existing direction, corresponds to the second direction in which second rotating shafts 102R and 102L (see FIG. 6) of the right-side rotating body 38R and the left-side rotating body 38L described later extend.
  • the left-right direction of the flapping apparatus 1A which is the direction in which the Y axis extends, corresponds to a third direction, which is a direction in which a right-side rotating body 38R and a left-side rotating body 38L described later are arranged.
  • the housing 10 is a member that constitutes the main body of the flapping apparatus 1 ⁇ / b> A, and is assembled with the main rotating motor 20, the power transmission mechanism 30, the flapping control mechanism 50, and the battery described above. It will be.
  • the casing 10 is configured by a framework in which a plurality of frame-shaped members are combined, and may include a cover (not shown) that covers the framework in addition to this.
  • the housing 10 includes a lower frame 11 and an upper frame 12 as a pair of substantially flat base frames, a support frame 13 having a rectangular frame shape, and a columnar frame 14 extending in a rod shape. And a plurality of stems 15.
  • Each of the plurality of stems 15 is arranged in parallel to each other so as to extend in the Z-axis direction. As shown in the figure, in the present embodiment, a total of four stems 15 are used, and these four stems 15 are respectively located on the right front, right rear, left front and left rear of the flapping apparatus 1A. Has been placed.
  • the lower frame 11 and the upper frame 12 are supported by the plurality of stems 15 by being installed on the plurality of stems 15.
  • the lower frame 11 and the upper frame 12 are arranged at different positions in the Z-axis direction. Yes. More specifically, the lower frame 11 is disposed at a substantially central portion in the vertical direction of the flapping device 1A, and the upper frame 12 is disposed at a position near the upper end portion in the vertical direction of the flapping device 1A.
  • the support frame 13 is disposed between the lower frame 11 and the upper frame 12. More specifically, the support frame 13 is sandwiched between the lower frame 11 and the upper frame 12 in the Z-axis direction, and is fixed to the lower frame 11 and the upper frame 12. The support frame 13 is disposed such that the pair of opening surfaces face the Y1 direction and the Y2 direction.
  • the columnar frame 14 is fixed to the upper frame 12 and is erected so as to extend upward from the upper frame 12.
  • the plurality of stems 15 described above are preferably made of carbon fiber rod-shaped members, and the above-described lower frame 11, upper frame 12, support frame 13 and columnar frame 14 are all made of resin. It is preferable to be configured. By comprising in this way, flapping apparatus 1A can be reduced in weight, ensuring high rigidity.
  • the lower frame 11, the upper frame 12, the support frame 13, and the columnar frame 14 are preferably provided with holes, cutouts, and the like while ensuring necessary rigidity for weight reduction.
  • the support frame 13 is fixed to the lower frame 11 and the upper frame 12 while being sandwiched between the lower frame 11 and the upper frame 12 in the Z-axis direction.
  • the lower frame 11, the upper frame 12, and the support frame that are arranged and fixed so as to be orthogonal to each other at a substantially central portion of the housing 10 configured by combining a plurality of frame-shaped members. 13 will be located, and the rigidity of the entire housing 10 will be dramatically increased. Therefore, by adopting this configuration, the flapping apparatus 1A can be prevented from being damaged.
  • the main rotary motor 20 is disposed at the lower part of the flapping apparatus 1 ⁇ / b> A and is assembled to the housing 10 by being fixed to the lower frame 11.
  • the main rotary motor 20 includes an output shaft 20 a (see FIG. 4A) that outputs rotational motion, and the output shaft 20 a extends along the Z-axis direction. It is arranged to exist.
  • a gear 20b is fixed to the tip of the output shaft 20a. The gear 20b rotates with the output shaft 20a as the output shaft 20a rotates about the axis.
  • the operation of the main rotary motor 20 is controlled by a user or a control unit to which a control instruction is given by an automated algorithm.
  • the control unit variably adjusts the electric power supplied from the above-described battery (not shown) to the main rotary electric motor 20, thereby controlling the output (that is, the rotation speed) of the main rotary electric motor 20.
  • the above-described operation control of the main rotating motor 20 is a conventionally known general method, and thus detailed description thereof is omitted here.
  • the power transmission mechanism 30 includes a rotary motion transmission unit 30A, a first motion conversion unit 30B, a right second motion conversion unit 30C1 that is a pair of second motion conversion units, and a left side 2 motion conversion part 30C2.
  • the rotary motion transmission unit 30A is a power transmission unit that transmits the rotary motion generated on the output shaft 20a of the main rotary motor 20 as it is as a rotary motion.
  • the first motion conversion unit 30B is a power transmission unit that converts the rotational motion transmitted from the rotational motion transmission unit 30A into a reciprocating linear motion and transmits it.
  • the right second motion conversion unit 30C1 is provided on the starboard of the flapping apparatus 1A, and converts the reciprocating linear motion transmitted from the first motion conversion unit 30B into a reciprocating motion along the rotational direction and transmits it. It is.
  • the left second motion conversion unit 30C2 is provided on the port side of the flapping apparatus 1A, and converts the reciprocating linear motion transmitted from the first motion conversion unit 30B into a reciprocating motion along the rotation direction and transmits the power transmission unit. It is.
  • the rotational motion transmission unit 30 ⁇ / b> A includes a first transmission member 31 and a second transmission member 32.
  • the first transmission member 31 and the second transmission member 32 are both assembled to the housing 10 by being rotatably supported by the support frame 13.
  • the first transmission member 31 is fixed to the first connection rod 31a extending along the Z-axis direction, the gear 31b fixed to one end of the first connection rod 31a, and the other end of the first connection rod 31a. And a gear 31c. Both the gear 31b and the gear 31c rotate around the axis of the first connecting rod 31a together with the first connecting rod 31a.
  • the second transmission member 32 is fixed at a predetermined position of the second connection rod 32a, a second connection rod 32a extending along the Z-axis direction, a gear 32b fixed at a predetermined position of the second connection rod 32a. And a disk 32c as a rotation transmitting member. Both the gear 32b and the disk 32c rotate around the axis of the second connecting rod 32a together with the second connecting rod 32a.
  • the gear 31b fixed to one end of the first connecting rod 31a meshes with the gear 20b fixed to the tip of the output shaft 20a. Further, the gear 32b fixed at a predetermined position of the second connecting rod 32a meshes with a gear 31c fixed to the other end of the first connecting rod 31a.
  • the rotational motion generated in the output shaft 20a of the main rotary electric motor 20 is transmitted to the first transmission member 31 and the second transmission member 32 as the rotational motion, and as a result, the rotational motion transmission unit 30A
  • the disk 32c as a rotation transmission member, which is an output part, rotates around the axis of the second connecting rod 32a. That is, the disk 32c rotates around the first rotation shaft 101 (see FIG. 4B) extending in a direction parallel to the extending direction of the second connecting rod 32a (that is, the Z-axis direction).
  • the first transmission member 31 and the second transmission member 32 function as a speed reducer by adjusting the number of teeth of the gears 31b, 31c, and 32b.
  • the first motion conversion unit 30B is disposed above the main rotary electric motor 20 and the rotational motion transmission unit 30A, and includes the first crank arm 33A, the second crank arm 33B, and the crankpin.
  • a crank mechanism including 34a, 34b1, and 34b2 (see FIG. 4) and a slider 35 are included.
  • the slider 35 has a substantially flat shape in which the outer dimension in the Y-axis direction is smaller than both the outer dimension in the X-axis direction and the outer dimension in the Z-axis direction, and the second transmission member of the rotary motion transmission unit 30A. 32 is located above.
  • the slider 35 is movably supported by the housing 10.
  • the slider 35 is movably supported by a pair of slide guides 16 a and 16 b provided on the support frame 13.
  • the slide guides 16a and 16b extend along the X-axis direction and are supported by the support frame 13 so as to be arranged side by side in the Z-axis direction.
  • 16b are provided with a plurality of through holes.
  • the slide guides 16a and 16b are inserted through the plurality of through holes, whereby the slider 35 is guided by the pair of slide guides 16a and 16b along the X-axis direction that is the first direction. .
  • the slider 35 and the pair of slide guides 16 a and 16 b are disposed inside the support frame 13. More specifically, the pair of slide guides 16a and 16b are provided so as to bridge the front frame portion and the rear frame portion of the support frame 13, and the slider 35 is movable by the pair of slide guides 16a and 16b. It is supported by. That is, the support frame 13 surrounds the slider 35 and the pair of slide guides 16a and 16b in the X-axis direction and the Z-axis direction.
  • the power transmission mechanism 30 where the slider 35 is disposed can be thinned as a whole, and the flapping apparatus 1A can be downsized.
  • the slider 35 is provided with a hole, a notch, or the like while ensuring necessary rigidity for weight reduction.
  • the support frame 13 is reinforced by the pair of slide guides 16a and 16b. An effect can be obtained.
  • the pair of slide guides 16a and 16b is connected to the end portion (that is, the lower frame portion of the support frame 13) opposite to the end portion of the slider 35 where the crank mechanism is located (that is, the lower frame portion).
  • the reinforcing effect can be further enhanced by installing the support frame 13 so as to be unevenly distributed at a position near the upper frame portion). Therefore, the rigidity of the support frame 13 is increased, and as a result, the slider 35 is hardly deformed such as bending or twisting, and a stable operation of the slider 35 can be realized.
  • the crank mechanism including the first crank arm 33A and the second crank arm 33B is disposed below the slider 35 and above the second transmission member 32. More specifically, the crank mechanism is disposed adjacent to the slider 35 in the Z-axis direction so as to straddle a part of the space surrounded by the support frame 13 in the Y-axis direction.
  • the first crank arm 33A and the second crank arm 33B are both arranged so that their extending directions are parallel to the XY plane.
  • the first crank arm 33A has one end rotatably assembled to the eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a, and the other end is a slider by the crank pin 34b1. 35 is rotatably assembled at the front end position.
  • the one end of the first crank arm 33A is provided with a hole 33a1, and the crank pin 34a is attached to the disk 32c so as to be inserted into the hole 33a1.
  • the hole 33a1 has a predetermined clearance for reducing friction so that the one end of the first crank arm 33A is rotatably assembled to the disk 32c. Is formed to be slightly larger than the crank pin 34a in the portion through which the shaft is inserted.
  • a hole 33a2 is provided at the other end of the first crank arm 33A, and a crank pin 34b1 is attached to the front end position of the lower surface of the slider 35 so as to be inserted into the hole 33a2.
  • the hole 33a2 is remarkably larger than the outer shape of the crank pin 34b1 at a portion through which the hole 33a2 is inserted at least along the direction in which the first crank arm 33A extends (that is, a predetermined value for reducing friction).
  • a predetermined value for reducing friction For example, a long hole as shown in the figure.
  • the crank pin 34b1 is loosely fitted in the hole 33a2.
  • the other end of the first crank arm 33A is not only rotatably attached to the slider 35, but is further attached so as to be slidable relative to the slider 35 in the XY plane direction.
  • one end of the second crank arm 33B is rotatably assembled to the eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a, and the other end is a slider by the crank pin 34b2. 35 is rotatably assembled at the rear end position.
  • the one end of the second crank arm 33B is provided with a hole 33b1, and the crank pin 34a is attached to the disk 32c so as to be inserted into the hole 33b1.
  • the hole 33b1 has a predetermined clearance for reducing friction so that the one end of the second crank arm 33B is rotatably assembled to the disk 32c. Is formed to be slightly larger than the crank pin 34a in the portion through which the shaft is inserted.
  • the other end of the second crank arm 33B is provided with a hole 33b2, and the crank pin 34b2 is attached to the rear end position of the lower surface of the slider 35 so as to be inserted into the hole 33b2.
  • the hole 33b2 is remarkably larger than the outer shape of the crank pin 34b2 in a portion through which the hole 33b2 is inserted at least along the direction in which the second crank arm 33B extends (that is, a predetermined value for reducing friction). For example, a long hole as shown in the figure. Thereby, the crank pin 34b2 is loosely fitted in the hole 33b2.
  • the other end of the second crank arm 33B is not only rotatably attached to the slider 35, but is also attached so as to be slidable relative to the slider 35 in the XY plane direction.
  • the one end of the first crank arm 33A and the one end of the second crank arm 33B are rotatably assembled to the disk 32c by the common crank pin 34a. Therefore, one end of each of the first crank arm 33A and the second crank arm 33B has a common rotating shaft extending in a direction parallel to the extending direction of the first rotating shaft 101 of the disk 32c (that is, the Z-axis direction). As a rotation center, the disk 32c is connected to an eccentric position so as to be rotatable.
  • crank pins 34b1 and 34b2 are assembled to the slider 35 so as to be rotatable and slidable by different crank pins 34b1 and 34b2, as described above. It has been.
  • each of the first crank arm 33A and the second crank arm 33B extends in a direction parallel to the extending direction (that is, the Z-axis direction) of the first rotating shaft 101 of the disk 32c and the slider 35
  • the rotary shafts that are different from each other in the X-axis direction, which is the moving direction, are connected to the slider 35 so as to be rotatable about different rotation axes, and the extending direction of the first rotary shaft 101 of the disk 32c (that is, the Z-axis). In the direction orthogonal to (direction), the slider 35 is connected to be slidable.
  • the disk 32c as the rotation transmission member which is the output part of the rotational movement transmission unit 30A, rotates about the first rotation shaft 101 in the direction indicated by the arrow DR0.
  • the one end of the first crank arm 33A and the one end of the second crank arm 33B (that is, the end portion on the side where the crank pin 34a is located) assembled to the disk 32c are also arrows with the first rotation shaft 101 as the center of rotation. It will rotate in the DR0 direction.
  • the slider 35 serving as the output unit of the first motion conversion unit 30B is periodically pushed and pulled by the first crank arm 33A and the second crank arm 33B, and the slide guides 16a and 16b are extended. A reciprocating linear motion is made along the X-axis direction.
  • the slider 35 includes a front urging member 60 ⁇ / b> A as a first urging member that is an elastic urging mechanism and a rear urging member 60 ⁇ / b> B as a second urging member.
  • the details of the elastic biasing mechanism will be described later.
  • the second right motion conversion unit 30 ⁇ / b> C ⁇ b> 1 is disposed on the right side of the slider 35, and the right front elastic belt 36 ⁇ / b> R ⁇ b> 1 and the right rear elastic belt as the first elastic belt.
  • 36R2 a right roller 37R as a first hooked body, and a right rotating body 38R as a first rotating body are mainly included.
  • the right side rotating body 38R has a substantially columnar shape and is rotatably supported by the housing 10. More specifically, the right rotating body 38R is fixed to the lower frame 11 and the upper frame 12, and is rotatably attached to the right guide shaft 18R extending along the Z-axis direction. As a result, the right rotating body 38R is disposed so that its circumferential surface faces the right side 35R of the slider 35, and extends in a direction parallel to the extending direction of the right guide shaft 18R (that is, the Z-axis direction).
  • the second rotary shaft 102R (see FIG. 6) is supported so as to be rotatable about the center of rotation.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 are respectively suspended on the slider 35 and the right rotating body 38R. More specifically, one end of the right front elastic belt 36R1 is fixed to the front end portion of the right side surface 35R of the slider 35, and the other end corresponding to the non-fixed portion with respect to the slider 35 is the peripheral surface of the right side rotator 38R. It is fixed in place. Further, one end of the right rear elastic belt 36R2 is fixed to the rear end portion of the right side surface 35R of the slider 35, and the other end corresponding to an unfixed portion with respect to the slider 35 is a predetermined surface on the peripheral surface of the right side rotator 38R. Fixed in position.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 are arranged at positions shifted from each other in the Z-axis direction. More specifically, the right front elastic belt 36R1 is disposed at a position above the right rear elastic belt 36R2, and the right rear elastic belt 36R2 is disposed at a position below the right front elastic belt 36R1. ing. Thus, the right front elastic belt 36R1 and the right rear elastic belt 36R2 independently connect the slider 35 and the right rotating body 38R without interfering with each other.
  • Each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 is a member for transmitting power from the slider 35 to the right rotating body 38R, and is made of a resin or rubber member having appropriate elasticity. ing.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 are configured with members having moderate elasticity in this way, the right wing body 40R is applied to the main rotary motor 20 by performing a flapping operation. Is absorbed to a considerable extent by the expansion and contraction of the right front elastic belt 36R1 and the right rear elastic belt 36R2, and the fluctuation of the load can be suppressed, and the exercise efficiency of the flapping apparatus 1A is improved. .
  • the right roller 37R is disposed between the slider 35 and the right rotating body 38R, and is supported by the housing 10 so as to be rotatable about the second rotating shaft 102R of the right rotating body 38R described above.
  • a right upper arm 19R1 and a right lower arm which are a pair of arms, are provided on the right guide shaft 18R that rotatably supports the right rotating body 38R described above so as to be rotatable with respect to the right guide shaft 18R.
  • 19R2 is assembled, and the right roller 37R is rotatably attached to the right roller shaft 17R extending along the Z-axis direction by being fixed to the right upper arm 19R1 and the right lower arm 19R2.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 located between the slider 35 and the right rotating body 38R are respectively wound around the right roller 37R.
  • the right roller 37R has the right front elastic belt 36R1 and the right rear side so that a predetermined amount of tension is applied to each of the right front elastic belt 36R1 and the right rear elastic belt 36R2. It is in contact with the elastic belt 36R2.
  • each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 extends in an S shape so that the slider 35, the right roller 37R, and the right rotation It spans over the body 38R and intersects at a position between the slider 35 and the right roller 37R and a position between the right roller 37R and the right rotating body 38R so as to overlap each other. Accordingly, the right roller 37R is sandwiched between the right front elastic belt 36R1 and the right rear elastic belt 36R2.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 fixed to the right rotating body 38R rotate the right rotating body 38R. Accordingly, the right rotating body 38R as the output unit of the right second motion converting unit 30C1 reciprocates in the rotational direction with the second rotating shaft 102R as the rotation center. become.
  • each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 is wound around the right roller 37R, various flight modes can be realized. Will be described later.
  • the right front elastic belt 36R1 and the right rear elastic belt 36R2 are configured by friction belts having no teeth, and the right roller 37R and the right rotating body 38R are both teeth.
  • both the right front elastic belt 36R1 and the right rear elastic belt 36R2 are formed by toothed belts, and the right roller 37R.
  • Each of the right-side rotating body 38R may be constituted by a toothed roller (gear).
  • the slider 35 and the right rotating body 38R are connected by using two elastic belts including the right front elastic belt 36R1 and the right rear elastic belt 36R2. It is also possible to connect with an elastic belt. In this case, one end of one elastic belt is fixed to the front end portion of the slider 35 and the other end is fixed to the rear end portion of the slider 35, and the non-fixed portion of the one elastic belt with respect to the slider 35 is set to the right side. What is necessary is just to wind or fix to the rotary body 38R.
  • the second left motion conversion unit 30 ⁇ / b> C ⁇ b> 2 is disposed on the left side of the slider 35, and the left front elastic belt 36 ⁇ / b> L ⁇ b> 1 and the left rear elastic belt as the second elastic belt.
  • 36L2 a left roller 37L as a second hooked body, and a left rotating body 38L as a second rotating body are mainly included.
  • the left side rotating body 38L has a substantially cylindrical shape and is rotatably supported by the housing 10. More specifically, the left rotation body 38L is rotatably attached to the left guide shaft 18L extending along the Z-axis direction by being fixed to the lower frame 11 and the upper frame 12. Thereby, the left rotating body 38L is disposed so that the peripheral surface thereof faces the left side surface 35L of the slider 35, and extends in a direction parallel to the extending direction of the left guide shaft 18L (that is, the Z-axis direction).
  • the second rotary shaft 102L (see FIG. 6) is supported so as to be rotatable about the center of rotation.
  • the left front elastic belt 36L1 and the left rear elastic belt 36L2 are hung on the slider 35 and the left rotating body 38L. More specifically, one end of the left front elastic belt 36L1 is fixed to the front end portion of the left side surface 35L of the slider 35, and the other end corresponding to the non-fixed portion with respect to the slider 35 is the peripheral surface of the left rotating body 38L. It is fixed in place. Further, one end of the left rear elastic belt 36L2 is fixed to the rear end portion of the left side surface 35L of the slider 35, and the other end corresponding to an unfixed portion with respect to the slider 35 is a predetermined surface on the peripheral surface of the left rotating body 38L. Fixed in position.
  • the left front elastic belt 36L1 and the left rear elastic belt 36L2 are arranged at positions shifted from each other in the Z-axis direction. More specifically, the left front elastic belt 36L1 is disposed at a position above the left rear elastic belt 36L2, and the left rear elastic belt 36L2 is disposed at a position below the left front elastic belt 36L1. ing. Thus, the left front elastic belt 36L1 and the left rear elastic belt 36L2 independently connect the slider 35 and the left rotating body 38L without interfering with each other.
  • Each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 is a member for transmitting power from the slider 35 to the left rotating body 38L, and is configured by a resin or rubber member having appropriate elasticity. ing.
  • the left front elastic belt 36L1 and the left rear elastic belt 36L2 are configured with members having moderate elasticity in this way, the left wing body 40L is applied to the main rotary motor 20 by performing a flapping operation. Is absorbed to a considerable extent by the expansion and contraction of the left front elastic belt 36L1 and the left rear elastic belt 36L2, and the fluctuation of the load can be suppressed, and the exercise efficiency of the flapping apparatus 1A is improved. .
  • the left roller 37L is disposed between the slider 35 and the left rotating body 38L, and is supported by the housing 10 so as to be rotatable about the second rotating shaft 102L of the left rotating body 38L described above.
  • a left upper arm 19L1 and a left lower arm that are a pair of arms are provided on the left guide shaft 18L that rotatably supports the left rotating body 38L described above so as to be rotatable with respect to the left guide shaft 18L.
  • 19L2 is assembled, and the left roller 37L is rotatably attached to the left roller shaft 17L extending along the Z-axis direction by being fixed to the left upper arm 19L1 and the left lower arm 19L2.
  • the left front elastic belt 36L1 and the left rear elastic belt 36L2 of the portion located between the slider 35 and the left rotating body 38L are respectively wound around the left roller 37L.
  • the left roller 37L is configured such that the left front elastic belt 36L1 and the left rear elastic belt 36L1 and the left rear elastic belt 36L2 are each given a predetermined magnitude of tension. It is in contact with the elastic belt 36L2.
  • each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 extends in an S shape so that the slider 35, the left roller 37L, and the left rotation It spans over the body 38L and intersects with each other at a position between the slider 35 and the left roller 37L and a position between the left roller 37L and the left rotating body 38L.
  • the left roller 37L is sandwiched between the left front elastic belt 36L1 and the left rear elastic belt 36L2.
  • the left front elastic belt 36L1 and the left rear elastic belt 36L2 fixed to the left rotating body 38L rotate the left rotating body 38L. Accordingly, the left rotating body 38L as the output unit of the left second motion conversion unit 30C2 reciprocates in the rotation direction around the second rotation shaft 102L as the rotation center. become.
  • each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 is wound around the left roller 37L, so that various flight modes can be realized. Will be described later.
  • both the left front elastic belt 36L1 and the left rear elastic belt 36L2 are constituted by friction belts having no teeth, and the left roller 37L and the left rotating body 38L are both teeth.
  • the left and right elastic belts 36L1 and 36L2 are both constituted by toothed belts, and the left roller.
  • Both 37L and left-hand side rotation body 38L are good also as comprising a toothed roller (gear).
  • the slider 35 and the left rotating body 38L are connected using two elastic belts including the left front elastic belt 36L1 and the left rear elastic belt 36L2. It is also possible to connect with an elastic belt. In this case, one end of one elastic belt is fixed to the front end portion of the slider 35 and the other end is fixed to the rear end portion of the slider 35, and the non-fixed portion of the one elastic belt with respect to the slider 35 is set to the left side. What is necessary is just to wind or fix to the rotary body 38L.
  • right wing 40R and left wing 40L are respectively attached to a right mast 39R and a left mast 39L extending in a rod shape. More specifically, the upper edge of right wing 40R is fixed to right mast 39R, and the upper edge of left wing 40L is fixed to left mast 39L.
  • the right rotator 38R and the left rotator 38L are arranged on the right and left sides of the slider 35. More specifically, the right rotating body 38R and the left rotating body 38L are arranged side by side in the Y-axis direction so as to sandwich the slider 35 therebetween.
  • the right mast 39R and the left mast 39L described above are assembled to the right rotator 38R and the left rotator 38L arranged side by side in the Y-axis direction, whereby the right wing 40R and the left wing 40L are Each is located on the starboard side and port side of the flapping apparatus 1A.
  • a base end which is one end of the right mast 39R is fixed to an end of the right side rotator 38R opposite to the side where the slider 35 is located, and the slider 35 of the left side rotator 38L is fixed.
  • a base end which is one end of the left mast 39L is fixed to an end opposite to the side on which it is positioned.
  • the right wing 40R extends in the Y1 direction so that the tip of the right wing 40R is located on the side opposite to the side on which the left rotator 38L is located when viewed from the right rotator 38R.
  • the body 40L extends in the Y2 direction so that the tip of the body 40L is positioned on the side opposite to the side on which the right rotating body 38R is positioned when viewed from the left rotating body 38L.
  • the right side mast 39R and the left side mast 38R and the left side mast 38L reciprocate synchronously in the rotation direction around the second rotation shafts 102R and 102L, respectively.
  • 39L is driven by the right rotating body 38R and the left rotating body 38L, respectively, and swings synchronously.
  • the right wing 40R and the left wing 40L also reciprocate synchronously in the rotation direction around the second rotation shafts 102R and 102L described above, respectively. 40L rocks synchronously so that its tip moves approximately along the X-axis direction.
  • the range of movement of the center of gravity of the slider 35 during the reciprocating linear movement of the slider 35 is indicated by an arrow AR1
  • the swing range of the right wing 40R and the left wing 40L is indicated by an arrow AR2.
  • the position when the slider 35 is disposed at the foremost position is defined as the first position
  • the position when the slider 35 is disposed at the most rearward is defined as the second position.
  • first position and second position are also used.
  • the flapping control mechanism 50 includes a right roller control mechanism 50A for changing the flapping operation of the right wing 40R, and a left roller control mechanism 50B for changing the flapping operation of the left wing 40L. Is included.
  • the right roller control mechanism 50A is disposed on the starboard side of the flapping device 1A where the right roller 37R is located, and is configured by various components assembled to the columnar frame 14. Yes.
  • the right roller control mechanism 50A variably adjusts the position of the right roller 37R and variably adjusts the degree of shaft shake of the right roller 37R.
  • the right roller control mechanism 50A includes a first stage 51a fixed to the columnar frame 14, a first sub-rotary motor 52a and a first feed mechanism unit 53a assembled to the first stage 51a, The connecting member 54a assembled to the first feeding mechanism 53a, the second stage 55a fixed to the connecting member 54a, the second sub-rotary motor 56a and the second feeding mechanism 57a assembled to the second stage 55a. And a guide member 58a assembled to the second feed mechanism portion 57a.
  • a pinion gear is assembled to the rotating shaft of the first auxiliary rotating motor 52a.
  • the first feed mechanism 53a includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spur gear assembled to the end of the worm gear, and a nut portion that meshes with the worm gear. And a movable body.
  • the worm gear is arranged such that its axial direction is parallel to the X-axis direction.
  • the pinion gear assembled to the rotation shaft of the first sub-rotation motor 52a meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the first sub-rotation motor 52a rotates.
  • the worm gear rotates.
  • the movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the X-axis direction) as the worm gear rotates.
  • a pinion gear is assembled to the rotating shaft of the second auxiliary rotating electric motor 56a.
  • the second feed mechanism portion 57a includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spur gear assembled to the end of the worm gear, and a nut portion that meshes with the worm gear. Includes a movable body.
  • the worm gear is arranged so that its axial direction is parallel to the Z-axis direction.
  • the pinion gear assembled to the rotation shaft of the second sub-rotation motor 56a meshes with a spur gear assembled to the end of the worm gear, whereby the rotation shaft of the second sub-rotation motor 56a rotates.
  • the worm gear rotates.
  • the movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the Z-axis direction) as the worm gear rotates.
  • the guide member 58a has a guide portion 58a1 at its lower end.
  • a groove extending along the Y-axis direction is formed on the lower surface of the guide portion 58a1.
  • the distance between the pair of wall portions that define the groove portion of the guide portion 58a1 is configured to be different along the Z-axis direction. More specifically, the distance between the pair of wall portions is lower. It is comprised so that it may decrease gradually as it goes upwards.
  • the upper end of the right roller shaft 17R that rotatably supports the right roller 37R is accommodated in the groove.
  • the upper end of the right roller shaft 17R is sandwiched between the pair of wall portions of the guide portion 58a1 in the X-axis direction.
  • the connecting member 54a is assembled to the first feeding mechanism portion 53a. More specifically, one end of the connecting member 54a is fixed to the movable body of the first feeding mechanism portion 53a, and the other end is fixed to the second stage 55a as described above.
  • the guide member 58a is assembled to the second feed mechanism portion 57a. More specifically, the upper end of the guide member 58a is fixed to the movable body of the second feed mechanism portion 57a, and the above-described guide portion 58a1 is provided at the lower end.
  • the guide portion 58a1 of the guide member 58a moves along the X-axis direction that is parallel to the axial direction of the worm gear of the first feed mechanism portion 53a. It moves in the direction (see FIG. 7A). Further, by driving the second auxiliary rotary motor 56a, the guide portion 58a1 of the guide member 58a is in the direction of the arrow DR32A along the Z-axis direction that is parallel to the axial direction of the worm gear of the second feed mechanism portion 57a. (See FIG. 7A).
  • the guide portion 58a1 moves in the direction of the arrow DR31A, thereby defining the pair of the above-described grooves that define the groove portion of the guide portion 58a1.
  • the wall portion comes into contact with the upper end of the right roller shaft 17R, and the right roller shaft 17R moves.
  • right roller shaft 17R is rotatably assembled to right guide shaft 18R via right upper arm 19R1 and right lower arm 19R2.
  • the right roller shaft 17R rotates and moves around the second rotation shaft 102R of the right rotating body 38R.
  • the right roller 37R rotates and moves in the direction of the arrow AR3 in the figure with the second rotation shaft 102R of the right rotating body 38R as the rotation center.
  • the first auxiliary rotary motor 52a and the first feed mechanism portion 53a variably adjust the position of the right roller 37R. Will function as.
  • the guide member 58a corresponds to a restricting portion that restricts the shaft shake of the right roller 37R, and also configures the right roller control mechanism 50A.
  • the second sub-rotary motor 56a and the second feed mechanism 57a particularly function as a shaft shake adjusting mechanism that variably adjusts the size of the shaft shake of the right roller 37R.
  • the left roller control mechanism 50B is arranged on the port side of the flapping apparatus 1A where the left roller 37L is located, and is configured by various components assembled to the columnar frame 14. Yes.
  • the left roller control mechanism 50B variably adjusts the position of the left roller 37L and variably adjusts the degree of shaft runout of the left roller 37L.
  • the left roller control mechanism 50B includes a first stage 51b fixed to the columnar frame 14, a first auxiliary rotary motor 52b and a first feed mechanism 53b assembled to the first stage 51b, The connecting member 54b assembled to the first feed mechanism portion 53b, the second stage 55b fixed to the connecting member 54b, the second sub-rotary motor 56b and the second feed mechanism portion 57b assembled to the second stage 55b. And a guide member 58b assembled to the second feed mechanism portion 57b.
  • a pinion gear is assembled to the rotating shaft of the first auxiliary rotating motor 52b.
  • the first feed mechanism portion 53b includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spar gear assembled to an end portion of the worm gear, and a nut portion that meshes with the worm gear. And a movable body.
  • the worm gear is arranged such that its axial direction is parallel to the X-axis direction.
  • the pinion gear assembled to the rotation shaft of the first sub-rotation motor 52b meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the first sub-rotation motor 52b rotates.
  • the worm gear rotates.
  • the movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the X-axis direction) as the worm gear rotates.
  • a pinion gear is assembled to the rotation shaft of the second auxiliary rotary electric motor 56b.
  • the second feed mechanism portion 57b includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spar gear assembled to an end portion of the worm gear, and a nut portion that meshes with the worm gear. Includes a movable body.
  • the worm gear is arranged so that its axial direction is parallel to the Z-axis direction.
  • the pinion gear assembled to the rotation shaft of the second sub-rotation motor 56b meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the second sub-rotation motor 56b rotates.
  • the worm gear rotates.
  • the movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the Z-axis direction) as the worm gear rotates.
  • the guide member 58b has a guide portion 58b1 at its lower end.
  • a groove portion extending along the Y-axis direction is formed on the lower surface of the guide portion 58b1.
  • the distance between the pair of wall portions defining the groove portion of the guide portion 58b1 is configured to be different along the Z-axis direction. More specifically, the distance between the pair of wall portions is lower. It is comprised so that it may decrease gradually as it goes upwards.
  • the upper end of the left roller shaft 17L that rotatably supports the left roller 37L is accommodated in the groove. Accordingly, the upper end of the left roller shaft 17L is sandwiched between the pair of wall portions of the guide portion 58b1 in the X-axis direction.
  • the connecting member 54b is assembled to the first feeding mechanism portion 53b. More specifically, one end of the connecting member 54b is fixed to the movable body of the first feed mechanism portion 53b, and the other end is fixed to the second stage 55b as described above.
  • the guide member 58b is assembled to the second feed mechanism portion 57b. More specifically, the upper end of the guide member 58b is fixed to the movable body of the second feed mechanism portion 57b, and the above-described guide portion 58b1 is provided at the lower end.
  • the guide portion 58b1 of the guide member 58b moves along the arrow DR31B along the X-axis direction that is parallel to the axial direction of the worm gear of the first feed mechanism portion 53b. It moves in the direction (see FIG. 8A). Further, by driving the second sub-rotary motor 56b, the guide portion 58b1 of the guide member 58b is in the direction of the arrow DR32B along the Z-axis direction that is parallel to the axial direction of the worm gear of the second feed mechanism portion 57b. (See FIG. 8A).
  • the left roller shaft 17L is rotatably assembled to the left guide shaft 18L via the left upper arm 19L1 and the left lower arm 19L2.
  • the left roller shaft 17L rotates around the second rotating shaft 102L of the left rotating body 38L.
  • the left roller 37L rotates and moves in the direction of arrow AR3 in the drawing with the second rotation shaft 102L of the left rotating body 38L as the center of rotation.
  • the first auxiliary rotary motor 52b and the first feed mechanism portion 53b variably adjust the position of the left roller 37L. Will function as.
  • the guide member 58b corresponds to a restricting portion that restricts the shaft shake of the left roller 37L, and also constitutes the left roller control mechanism 50B.
  • the second auxiliary rotary motor 56b and the second feed mechanism portion 57b function as a shaft shake adjusting mechanism that variably adjusts the size of the shaft shake of the left roller 37L.
  • the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B described above is operated by a flight mode control unit 80 to which a control instruction is given by a user or an automated algorithm. Be controlled.
  • the flight mode control unit 80 includes a first control unit 81 that controls the operation of the engaged body position adjusting mechanism that variably adjusts the positions of the right roller 37R and the left roller 37L, and the shaft runout of the right roller 37R and the left roller 37L.
  • a second control unit 82 that controls the operation of the shaft shake adjusting mechanism that variably adjusts the size.
  • the first control unit 81 variably adjusts the position of the right roller 37R by controlling the operation of the first sub-rotary motor 52a of the right roller control mechanism 50A, and also controls the left roller control mechanism 50B. By controlling the operation of the first auxiliary rotary motor 52b, the position of the left roller 37L is variably adjusted.
  • the first control unit 81 independently performs the operation control of the first sub-rotation motor 52a and the operation control of the first sub-rotation motor 52b, whereby the position of the right roller 37R and the position of the left roller 37L. And adjust separately.
  • the second controller 82 controls the operation of the second auxiliary rotary motor 56a of the right roller control mechanism 50A to variably adjust the size of the shaft shake of the right roller 37R, and the left roller control mechanism 50B.
  • the second control unit 82 independently performs the operation control of the second sub-rotation motor 56a and the operation control of the second sub-rotation motor 56b, so that the shaft roller size of the right roller 37R and the left roller The size of the 37L shaft runout is individually adjusted.
  • the operation of the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B is controlled by the flight mode control unit 80 including the first control unit 81 and the second control unit 82.
  • the flight mode control unit 80 including the first control unit 81 and the second control unit 82.
  • FIGS. 10 to 13 are diagrams for explaining the operation of the power transmission mechanism 30 of the flapping apparatus 1A.
  • (A) and (B) in each figure are the top view and side view for demonstrating operation
  • (C) in each figure is a right side 2nd motion conversion part. It is a top view for demonstrating operation
  • the operation of the power transmission mechanism 30 described below is an operation during a period in which the disk 32c as a rotation transmission member, which is an output part of the rotary motion transmission unit 30A, makes one counterclockwise rotation from the state shown in FIG. 10 to 13 illustrate this in time series.
  • the period in which the disk 32c rotates once counterclockwise corresponds to one cycle of the synchronous flapping operation of the right wing 40R and the left wing 40L.
  • the slider 35 is at the center position within the movable range of the reciprocating linear motion of the slider 35.
  • the right wing 40R and the left wing 40L are located at the 3 o'clock position and the 9 o'clock position, respectively, and when viewed from above in the Z2 direction, the right wing body 40R and the left wing body 40L are Located on the same straight line.
  • the one end of the first crank arm 33A and the one end of the second crank arm 33B that is, the end on the side where the pin 34a is located
  • the one end of the first crank arm 33A and the one end of the second crank arm 33B assembled to the disk 32c are referred to as “connection points”.
  • the disk 32c rotates 90 ° counterclockwise from the state shown in FIG.
  • the slider 35 moves in the DR11 direction shown in the figure, and accordingly, the position of the center of gravity of the slider 35 also moves in the X2 direction.
  • the slider 35 is disposed at the second position which is the last part within the movable range.
  • the right wing 40R and the left wing 40L are directed toward the DR21 direction shown in the figure by rotating the right rotator 38R and the left rotator 38L clockwise and counterclockwise, respectively (that is, Each move toward the 6 o'clock position), but this movement is generally in the X2 direction.
  • the right wing 40R and the left wing 40L are directed toward the direction DR22 shown in the drawing by rotating the right rotator 38R and the left rotator 38L counterclockwise and clockwise respectively (ie, The movement is toward the 3 o'clock position and 9 o'clock position, respectively, but this movement is generally toward the X1 direction.
  • the disk 32c is further rotated 90 ° counterclockwise from the state shown in FIG.
  • the slider 35 moves in the DR13 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X1 direction.
  • the slider 35 is arranged at the first position which is the foremost part within the movable range.
  • the right wing 40R and the left wing 40L are directed toward the DR23 direction shown in the drawing by rotating the right rotator 38R and the left rotator 38L counterclockwise and clockwise respectively (ie, Each move toward the 12 o'clock position), but this movement is generally towards the X1 direction.
  • the right wing 40R and the left wing 40L are directed toward the DR24 direction shown in the drawing by rotating the right rotator 38R and the left rotator 38L clockwise and counterclockwise, respectively (that is, The movement is toward the 3 o'clock position and 9 o'clock position, respectively, but this movement is generally in the X2 direction.
  • the power generated in main rotating motor 20 as a power source is transmitted to right wing 40R and left wing 40L through power transmission mechanism 30.
  • the right wing 40R and the left wing 40L swing in a predetermined cycle synchronously.
  • a predetermined lift described later is generated in the right wing 40R and the left wing 40L, thereby enabling the flight of the flapping apparatus 1A.
  • FIG. 14 is a schematic diagram showing the flapping operation of the right wing 40R and the left wing 40L during the hovering of the flapping apparatus 1A.
  • the flapping operation of the right wing 40R and the left wing 40L during hovering of the flapping apparatus 1A will be described with reference to FIG.
  • right wing 40R and left wing 40L are swung, so that right wing 40R and left wing 40L are moved in the rearward direction during one flapping operation.
  • Four operations are continuously performed: flapping, flapping forward, flapping forward, flapping backward.
  • these four operations are represented by a simple cross section showing the shape change of the right wing 40R in time series.
  • the state of the flapping apparatus 1A during these four operations is shown in a simplified plan view.
  • the cross section of the right wing 40R shown in the upper part of FIG. 14 shows a cross section in a direction orthogonal to the extending direction of the right wing 40R (that is, the extending direction of the right mast 39R).
  • the front side of the flapping apparatus 1A and the right side of the figure corresponds to the rear side of the flapping apparatus 1A.
  • the backward turn is an operation when the right wing 40R and the left wing 40L come to the end of the swing range (see arrow AR2 in the drawing) shown in FIG. 6 (that is, when they are in the state shown in FIG. 10).
  • the forward flapping includes when the right wing 40R and the left wing 40L move from the rearmost part to the foremost part of the swing range shown in FIG. 6 (see arrow AR2 in the figure) (this includes the state shown in FIG. 11).
  • the right wing 40R and the left wing 40L are maintained while the inclined postures of the right wing 40R and the left wing 40L are maintained in a state where the respective upper edges are in front of the lower edges. Is an operation of moving relatively forward.
  • the forward turning is an operation when the right wing 40R and the left wing 40L come to the forefront of the swing range (see arrow AR2 in the drawing) shown in FIG. 6 (that is, in the state shown in FIG. 12).
  • the back flapping includes the state shown in FIG. 13 when the right wing 40R and the left wing 40L move from the foremost part to the last part of the swinging range shown in FIG. 6 (see arrow AR2 in the figure).
  • the right wing 40R and the left wing 40L are maintained while the inclined postures of the right wing 40R and the left wing 40L are maintained in a state in which the respective lower edges are in front of the upper edges. Is an operation of moving relatively backward.
  • a fluid force is generated obliquely upward on the wing body 40R.
  • the horizontal component of the fluid force (corresponding to the arrow F1 shown in the figure) generated when flapping forward
  • the horizontal component of the fluid force (corresponding to the arrow F2 shown in the figure) generated when flapping backward
  • upward lifting force is generated in the right wing 40R.
  • the description is omitted here, the same upward lifting force is generated in the left wing 40L.
  • the right wing 40R and the left wing 40L are driven so as to reciprocate synchronously in the front-rear direction. Therefore, the operation of each wing is a mirror surface as shown in the lower part of FIG. Due to the symmetry, the lifting force generated in the right wing 40R and the lifting force generated in the left wing 40L generate a lifting force upward in the flapping apparatus 1A. Thereby, the flight of the flapping apparatus 1A can be realized.
  • FIG. 15 is a schematic graph comparing the slider speed changes of the flapping apparatus 1A according to the present embodiment and the flapping apparatus according to the comparative embodiment. Next, with reference to this FIG. 15, the effect by employ
  • the first motion conversion unit 30B includes two crank arms (that is, the first crank arm 33A and the second crank arm 33B).
  • the crank mechanism used constitutes this, and the end portions of these two crank arms (that is, the other end of each of the first crank arm 33A and the second crank arm 33B) can be rotated with respect to the slider 35.
  • the slider 35 is slidably connected to the slider 35 (see FIGS. 2 to 5).
  • the horizontal axis represents the crank rotation angle (that is, the disk rotation angle), and the vertical axis represents the slider 35 speed. Since the right wing 40R and the left wing 40L are both driven almost directly by the movement of the slider 35, the speed of the slider 35 is the same as that of the right wing 40R and the left wing 40L. You may think.
  • the flapping apparatus according to the comparison mode differs from the flapping apparatus 1A according to the present embodiment in the configuration of the crank mechanism that connects the disk and the slider, and the general one crank described above.
  • the disk and slider are connected using an arm.
  • the second crank arm described above is not provided, and the disk and the slider are connected only by the first crank arm.
  • one end of the first crank arm is assembled at an eccentric position of the disk so that it can only be rotated relative to the disk, and the other end of the first crank arm is attached to the slider.
  • it is assembled at the front end position of the slider so that it can be assembled only in a rotatable manner (that is, it is not assembled so as to be slidable relative to the slider).
  • the change in the moving speed of the slider when the slider is near the foremost part in the movable range is near the rearmost part in the movable range of the slider.
  • the degree of change is greater than the change in the moving speed of the slider. This is because the other end of one crank arm connecting the disk and the slider is connected to the front end position of the slider.
  • the operation in which the wing is turned back by placing the slider near the rearmost portion is relatively smoothly performed according to the inertia due to the small speed change of the wing.
  • the operation of turning the wings ie, the front turning operation
  • the forward turning operation becomes incomplete.
  • the change in the moving speed of the slider 35 when the slider 35 is in the vicinity of the foremost part in the movable range of the slider 35 that is, the vicinity of the first position
  • Changes in the moving speed of the slider 35 in the vicinity of the rearmost part that is, in the vicinity of the second position
  • the degree of the change is sufficiently small.
  • the other ends of the first crank arm 33A and the second crank arm 33B are not only rotatably connected to the slider 35 but also slidable relative to the slider 35. As a result, there is formed a state in which the slider 35 runs idle for a predetermined time at the timing when the slider 35 is located near the foremost part and the timing when the slider 35 is located near the rearmost part. Because.
  • the hole 33a2 provided at the other end of the first crank arm 33A and the hole 33b2 provided at the other end of the second crank arm 33B are both Since the corresponding crank pins 34b1 and 34b2 are configured to be larger than the size in the front-rear direction, the peripheral surface of the crank pin 34b1 that moves with the rotation of the disk 32c and the wall surface of the hole 33a2 at the two timings described above. And the contact between the peripheral surface of the crank pin 34b2 moving with the rotation of the disk 32c and the wall surface of the hole 33b2 are temporarily released. As a result, a state occurs in which the slider 35 is not temporarily driven by the first crank arm 33A and the second crank arm 33B.
  • the state in which the slider 35 is idling is formed for a predetermined time at the predetermined timing described above, so that the vicinity of the frontmost portion (that is, the vicinity of the first position) and the vicinity of the rearmost portion (that is, the second position) within the movable range of the slider 35.
  • the degree of change in the moving speed of the slider 35 in the case of the vicinity of the position is sufficiently reduced, and as a result, both the forward turning operation and the backward turning operation are performed more smoothly and stably.
  • the flapping apparatus 1A it is possible to suppress the occurrence of a situation in which the turning operation of the right wing 40R and the left wing 40L is not complete as described above, and the flapping apparatus 1A.
  • the posture is more stable, and an effect that the exercise efficiency is significantly improved as compared with the conventional case can be obtained.
  • the state in which the slider 35 idles is formed over a predetermined time at a predetermined timing, so that the front turning operation is changed to the rear turning operation. Movement toward the rear of the wing (ie, flapping back), and movement toward the front of the wing from back turning to forward turning (ie, flapping forward) , The moving speed of the wings becomes larger (that is, faster), so that a greater levitation force can be obtained. Therefore, also in this sense, the exercise efficiency is greatly improved, and a flapping apparatus having excellent flight performance can be obtained.
  • the flapping apparatus 1A at the timing when the maximum load is generated in the flapping apparatus according to the comparative mode (that is, when the right wing 40R and the left wing 40L are turned back), At the timing when there is almost no load applied to the main rotary motor 20 and the driving force by the main rotary motor 20 is transmitted to the slider 35, the reaction caused by the reversing operation of the right wing 40R and the left wing 40L is disc. It is in the state which does not prevent rotation of 32c. Therefore, by using the flapping apparatus 1A in the present embodiment, not only can the fluctuation of the load on the main rotary motor 20 be suppressed, but also the load itself applied to the main rotary motor 20 can be reduced, and the drive Efficiency will be dramatically improved.
  • the right wing 40R and the left wing 40L are connected to the discs 32c of the first crank arm 33A and the second crank arm 33B in a state where the right wing 40R and the left wing 40L are disposed at the 3 o'clock and 9 o'clock positions, respectively.
  • An example is shown in which the one end (that is, the end on the side where the crank pin 34a is located) is arranged at the 3 o'clock or 9 o'clock position with respect to the first rotation shaft 101 of the disk 32c. In this case, there is a strict difference between the swing range toward the front side and the swing range toward the rear side of the right wing 40R and the left wing 40L from the above state. Become.
  • the right wing 40R when the swing range toward the front side and the swing range toward the rear side of the right wing 40R and the left wing 40L from the above state are made the same size, the right wing 40R.
  • the left and right wings 40L are arranged at the 3 o'clock and 9 o'clock positions, respectively, the one end of the first crank arm 33A and the one end of the second crank arm 33B are in relation to the first rotating shaft 101 of the disk 32c.
  • the first crank arm 33A and the second crank arm 33B are arranged on the front side (that is, on the 2 o'clock side as viewed from the 3 o'clock position and on the 10 o'clock side as viewed from the 9 o'clock position). What is necessary is just to adjust each length appropriately.
  • the front urging member 60A serving as the first urging member and the rear urging member serving as the second urging member, which are elastic urging mechanisms, are applied to the slider 35.
  • 60B is provided (see FIGS. 2 to 4).
  • the front urging member 60 ⁇ / b> A is assembled to the front end portion of the slider 35 so that a part of the slider 35 protrudes from the slider 35.
  • the front urging member 60A is constituted by a so-called contact probe, and is arranged between the barrel, the plunger inserted through the barrel, and the barrel between the barrel and the plunger. And a spring as a first elastic body.
  • the front urging member 60A is assembled to the flapping apparatus 1A by fixing the barrel to the slider 35 so that the axial direction thereof matches the X-axis direction, and the plunger is attached to the barrel along the X-axis direction. It is comprised so that it can move relatively.
  • the plunger is pushed into the barrel (that is, when the plunger moves relative to the barrel in the X2 direction), it resists the movement of the plunger. As a result, a biasing force in the X1 direction is generated on the plunger.
  • a rear urging member 60 ⁇ / b> B is assembled to the rear end portion of the slider 35 so that a part thereof protrudes from the slider 35.
  • the rear urging member 60B is also constituted by a so-called contact probe, and a barrel, a plunger inserted through the barrel, and the inside of the barrel between the barrel and the plunger. And a spring as a second elastic body arranged.
  • the rear urging member 60B is assembled to the flapping apparatus 1A by fixing the barrel to the slider 35 so that the axial direction thereof matches the X-axis direction, and the plunger moves along the X-axis direction. It is comprised so that it can move relatively with respect to.
  • the elastic force of the spring described above when the plunger is pushed into the barrel (that is, when the plunger moves in the X1 direction relative to the barrel), it resists the movement of the plunger. As a result, a biasing force in the X2 direction is generated on the plunger.
  • the front urging member 60A and the rear urging member 60B are each composed of two contact probes, and the front urging member 60A, the rear urging member 60B, A total of four are arranged in the order of the rear urging member 60B and the front urging member 60A.
  • the front urging member 60A and the rear urging member 60B can be arranged inside the rectangular frame-like support frame 13, and as a result, the front urging member 60A is supported by the support frame.
  • the rear urging member 60 ⁇ / b> B can be disposed to face the rear frame portion of the support frame 13.
  • FIG. 16 is a schematic diagram showing the behavior of the front urging member 60A as the first urging unit of the flapping apparatus 1A.
  • the behavior of the front urging member 60A as the first urging portion will be described in detail.
  • the front biasing member 60A is represented as a simple spring, and the behavior of the front biasing member 60A is shown in time series in the order of (A) to (E). It shows.
  • the moving direction of the slider 35 As shown in FIG. 16A, in the state in which the slider 35 is moving forward in the direction approaching the front frame portion of the support frame 13 (that is, in the direction of the arrow DR51 in the figure), the moving direction of the slider 35
  • the first crank arm 33A extends so as to intersect with.
  • the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. This is only the power of the main rotary motor 20 to be performed.
  • the slider 35 moves forward in the direction approaching the front frame portion of the support frame 13 (that is, the direction of the arrow DR51 in the figure), and the front biasing member 60A moves to the front of the support frame 13.
  • the front biasing member 60 ⁇ / b> A is sandwiched between the front frame portion of the support frame 13 and the slider 35. Therefore, the elastic urging force by the front urging member 60 ⁇ / b> A starts to be applied to the slider 35 so as to resist the forward movement of the slider 35.
  • the slider 35 moves further forward in the direction approaching the front frame portion of the support frame 13 (that is, the arrow DR51 direction in the figure), and the slider 35 moves to the foremost portion (in the movable range). That is, in the state reached to the first position), the front urging member 60A is compressed to the maximum by the front frame portion of the support frame 13 and the slider 35, and the moving direction of the slider 35 and the first crank arm 33A are The extending direction will overlap.
  • the elastic biasing force that is applied to the slider 35 by the front biasing member 60A described above is This acts as a braking force for the slider 35. Therefore, it is possible to cause the slider 35 to decelerate more rapidly by appropriately overlapping the period in which the brake force is applied to the above-described period in which the slider 35 is idling. Large inertia force can be applied by the right wing 40R and the left wing 40L.
  • the timing at which the front biasing member 60A starts to contact the front frame portion of the support frame 13 is such that the smaller one of the angles formed by the first crank arm 33A and the X axis is about 20 °. It is preferable to set the timing.
  • the slider 35 is moved away from the front frame portion of the support frame 13 from the state where the slider 35 is disposed at the foremost portion (that is, the first position) within the movable range (that is, in the direction of the arrow DR52 in the figure).
  • the first crank arm 33 ⁇ / b> A extends again so as to intersect the moving direction of the slider 35.
  • the slider 35 is elastically urged rearward based on the restoring force of the front urging member 60A in the compressed state. It will be. Therefore, the slider 35 is pushed backward based on the elastic biasing force of the front biasing member 60 ⁇ / b> A, and the elastic biasing force of the front biasing member 60 ⁇ / b> A acts as an acceleration force of the slider 35.
  • the slider 35 is accelerated rapidly, and the moving speed of the right wing 40R and the left wing 40L is sufficiently increased at the beginning of the rear flapping operation of the right wing 40R and the left wing 40L. can do. Therefore, a greater levitation force can be obtained in the backward flapping operation, and the motion efficiency of the flapping device 1A can be further improved.
  • the slider 35 moves further rearward in the direction away from the front frame portion of the support frame 13 (that is, the direction of the arrow DR52 in the figure), and the front urging member 60A moves to the support frame 13.
  • the elastic biasing of the front biasing member 60A against the slider 35 is released, and the external force applied to the slider 35 is basically generated by the first crank arm 33A and the second crank arm 33B. Only the power of the main rotary motor 20 to be transmitted is provided.
  • the period in which the elastic biasing force of the front biasing member 60A acts as the acceleration force of the slider 35 is appropriately superimposed on the slider 35 to be applied to the slider 35.
  • the driving force can be smoothly switched from driving by the front urging member 60A to driving by the first crank arm 33A and the second crank arm 33B.
  • the timing at which the front urging member 60A moves away from the front frame portion of the support frame 13 is a timing at which the smaller one of the angles formed by the first crank arm 33A and the X axis is about 20 °. It is preferable that
  • the behavior of the rear side urging member 60B also conforms to the behavior of the front side urging member 60A. Therefore, by installing the rear side urging member 60B, it is possible to dramatically improve the exercise efficiency of the flapping apparatus 1A in the period before and after the right wing 40R and the left wing 40L perform the backward turning operation. It is possible to provide a flapping apparatus with excellent flight capability.
  • the first urging portion and the second urging portion constituting the elastic urging mechanism have been described by exemplifying the case where contact probes are used, but these are not necessarily the contact probes. It is not necessary to constitute in this, and it is also possible to constitute this with other members.
  • a spring may be used as the first urging unit and the second urging unit, or a leaf spring, a rubber member, or the like may be used.
  • the case where the first urging portion and the second urging portion constituting the elastic urging mechanism are assembled to the slider so as to protrude from the front end portion and the rear end portion of the slider, respectively, is exemplified.
  • the assembly position is not limited to this, and it may be assembled to another part.
  • the case where the first urging portion and the second urging portion constituting the elastic urging mechanism are assembled to the slider has been described as an example. It is good also as assembling
  • FIG. 17 is a table showing the main flight modes of the flapping apparatus 1A, and FIGS. 18 to 27 show the flight modes 1, 3, 5, 8, 11, 14, 17, respectively shown in FIG. 17 of the flapping apparatus 1A.
  • 20 is a plan view showing the behavior of the right wing 40R and the left wing 40L at 20, 23 and 26.
  • FIG. FIG. 28 is a table showing the flight mode followed by the flapping apparatus 1A, and FIGS. 29 to 31 respectively show the right wing 40R and the right wing 40R in the flight modes 28, 29, and 32 shown in FIG. 28 of the flapping apparatus 1A. It is a top view which shows the behavior of the left side wing 40L.
  • FIG. 6 described above and FIGS. 17 to 32
  • the right second motion conversion unit 30C1 is provided with the right roller 37R, and the right front elastic belt 36R1 and the right rear elastic belt 36R2 are wound around the right roller 37R and the left first
  • the two-motion converting unit 30C2 is provided with a left roller 37L, and the left front elastic belt 36L1 and the left rear elastic belt 36L2 are wound around the left roller 37L.
  • the right roller control mechanism 50A for adjusting the position of the right roller 37R and the size of the shaft shake
  • the left roller control for adjusting the position of the left roller 37L and the size of the shaft shake.
  • a flapping control mechanism 50 including the mechanism 50B is provided, and a flight mode control unit 80 for controlling the operation of the flapping control mechanism 50 is provided.
  • the flapping apparatus 1A can fly in various flight modes based on the control operation of the flight mode control unit 80.
  • the typical flight modes will be described in order. explain.
  • the flight modes shown below are only a part of the flight modes that can be realized based on the above configuration, and various flight modes can be realized by variously changing the control operation of the flight mode control unit 80. it can.
  • the positions of the right roller 37R and the left roller 37L, the size of the shaft shake, and the flapping. Each frequency is variably adjusted. Note that the magnitude of the shaft runout of the right roller 37R and the left roller 37L is determined by whether or not the right roller shaft 17R and the left roller shaft 17L are fixed and the degree of fixing, as will be described later.
  • the position of the right roller 37R is configured to be adjustable to three positions of “front position”, “center position”, and “rear position” in the X-axis direction.
  • the “center position” is a position in a state where the central axis of the right roller 37R is arranged on a plane including the second rotation shaft 102R of the right rotation body 38R and the second rotation shaft 102L of the left rotation body 38L.
  • the “front position” and the “rear position” are positions in a state where the right roller 37R has moved a predetermined distance in the X1 direction and the X2 direction from the center position, respectively.
  • the swing center of the right wing 40R is “rear position” and “center position”, respectively. , It will be changed to “front position”. This is because the state of the right front elastic belt 36R1 and the right rear elastic belt 36R2 installed between the slider 35 and the right rotating body 38R is changed by changing the position of the right roller 37R. To do.
  • the swing center CR of the right wing body 40R is the second rotation shaft 102R of the right rotator 38R and the left side.
  • the rotating body 38L is disposed on a plane including the second rotating shaft 102L, and this position corresponds to the “center position” of the swing center of the right wing body 40R.
  • the swing center CR of the right wing 40R is centered on the second rotation shaft 102R of the right rotator 38R.
  • this position corresponds to the “rear position” of the swing center of the right wing 40R.
  • the swing center CR of the right wing body 40R is centered on the second rotation shaft 102R of the right rotator 38R.
  • this position corresponds to the “front position” of the swing center of the right wing 40R.
  • the position of the left roller 37L is configured to be adjustable to three positions of “front position”, “center position”, and “rear position” in the X-axis direction.
  • the “center position” is a position in a state where the central axis of the left roller 37L is arranged on a plane including the second rotation shaft 102R of the right rotation body 38R and the second rotation shaft 102L of the left rotation body 38L.
  • the “front position” and the “rear position” are positions in a state where the left roller 37L has moved by a predetermined distance in the X1 direction and the X2 direction from the center position, respectively.
  • the swing center of the left wing 40L is “rear position” and “center position”, respectively. , It will be changed to “front position”. This is because the state of the left front elastic belt 36L1 and the left rear elastic belt 36L2 installed between the slider 35 and the left rotating body 38L changes by changing the position of the left roller 37L. To do.
  • the swing center CL of the left wing body 40L is the second rotation shaft 102R of the right rotator 38R and the left side.
  • the rotating body 38L is disposed on a plane including the second rotating shaft 102L, and this position corresponds to the “center position” of the swing center of the left wing body 40L.
  • the swing center CL of the left wing body 40L is centered on the second rotation shaft 102L of the left rotator 38L.
  • this position corresponds to the “rear position” of the swing center of the left wing 40L.
  • the swing center CL of the left wing body 40L is centered on the second rotation shaft 102L of the left rotator 38L.
  • this position corresponds to the “front position” of the swing center of the left wing 40L.
  • the flapping frequency of the right wing 40R and the left wing 40L can be adjusted to three states of “high”, “medium”, and “low” by adjusting the output of the main rotating motor 20. This is because when the output of the main rotary motor 20 is relatively high, the rotational speed of the disk 32c increases and the flapping frequency of the right wing 40R and the left wing 40L increases, while the main rotary motor 20 increases. This is because the rotational speed of the disk 32c decreases and the flapping frequency of the right wing 40R and the left wing 40L decreases.
  • the flapping frequency of the right wing 40R and the left wing 40L By variably adjusting the flapping frequency of the right wing 40R and the left wing 40L to the above three states of “high”, “medium”, and “low”, it corresponds to the swing range of the right wing 40R.
  • the swing angle is changed to “large”, “medium”, and “small”. This is mainly due to an increase or decrease in the inertial force that is generated in the slider 35 when the slider 35 moves as the rotation speed of the main rotary motor 20 increases or decreases.
  • the flapping frequency of the right wing 40R and the left wing 40L is “medium”, for example, referring to FIG. 6, it corresponds to the swing range of the right wing 40R and the left wing 40L.
  • the swing angle is an angle ⁇ 0 each having a predetermined size, and this state corresponds to “medium” of the swing angles of the right wing 40R and the left wing 40L.
  • the flapping frequency of the right wing 40R and the left wing 40L is “high”, for example, referring to FIG. 18, the swing corresponding to the swing range of the right wing 40R and the left wing 40L.
  • the moving angle is an angle ⁇ 1, which has a predetermined size larger than the angle ⁇ 0 described above, and this state corresponds to “large” of the swing angle of the right wing 40R and the left wing 40L.
  • the swing corresponding to the swing range of the right wing 40R and the left wing 40L is “low”, for example, referring to FIG. 19, the swing corresponding to the swing range of the right wing 40R and the left wing 40L.
  • the moving angle is an angle ⁇ 2 having a predetermined size smaller than the angle ⁇ 0 described above, and this state corresponds to “small” of the swing angle of the right wing 40R and the left wing 40L.
  • the amount of shaft runout of the right roller 37R is determined by whether or not the guide member 58a is fixed to the right roller shaft 17R that rotatably supports the right roller 37R, and the degree of fixing (that is, in what restraint state the right roller shaft 17R is in) It is configured to be adjustable in three states. That is, the state in which the right side roller shaft 17R is firmly fixed by the guide member 58a so that the right side roller 37R is not substantially shaken is the state in which the right side roller shaft 17R is fixed. A state in which the right roller shaft 17R is lightly fixed by the guide member 58a so that a considerable degree of shaft runout occurs in the right roller 37R is a state in which the right roller shaft 17R is fixed to “present (lightly fixed)”. The state in which the right roller shaft 17R is not fixed by the guide member 58a so that the right roller shaft 37R is extremely shaken is the state in which the right roller shaft 17R is fixed.
  • the swing range of the right wing 40R is fixed.
  • the swing angle corresponding to is changed to “significantly small” and “minimal”. This is because the transmission rate of the power by the right front elastic belt 36R1 and the right rear elastic belt 36R2 installed between the slider 35 and the right rotating body 38R as the size of the shaft shake of the right roller 37R changes. Due to the change.
  • the swing angle corresponding to the swing range of the right wing 40R is described above.
  • the swing angle of the right wing 40R is one of the above-mentioned “large”, “medium”, and “small”.
  • the right roller shaft 17R is fixed to “present (lightly fixed)”
  • the right roller 37R has a considerable amount of shaft runout, and the right front elastic belt 36R1 and the right rear elastic belt.
  • the transmission ratio of power by 36R2 is considerably reduced. Therefore, in this case, for example, referring to FIG. 29, the swing angle corresponding to the swing range of right wing 40R is an angle ⁇ 3 considerably smaller than angle ⁇ 2, and swing of right wing 40R is performed.
  • the angle is “substantially small” as described above.
  • the swing angle corresponding to the swing range of right wing 40R is an angle ⁇ 4 smaller than angle ⁇ 3, and the swing angle of right wing 40R is The “minimum” described above.
  • the size of the shaft runout of the left roller 37L is determined by whether or not the guide roller 58b is fixed to the left roller shaft 17L that rotatably supports the left roller 37L and the degree of fixing (that is, in what constraint state the left roller shaft 17L is It is configured to be adjustable in three states. That is, the state where the left roller shaft 17L is firmly fixed by the guide member 58b so that the left roller 37L is not substantially shaken is the state where the left roller shaft 17L is fixed. The state in which the left roller shaft 17L is slightly fixed by the guide member 58b so that a considerable degree of shaft runout occurs in the left roller 37L is the state in which the left roller shaft 17L is fixed as “present (lightly fixed)”. The state where the left roller shaft 17L is not fixed by the guide member 58b so that the left roller 37L is extremely shaken is the state where the left roller shaft 17L is fixed.
  • the swinging range of the left wing 40L can be adjusted by variably adjusting the presence / absence and degree of fixation of the left roller shaft 17L to the above-mentioned three states of “present”, “present (lightly fixed)”, and “none”.
  • the swing angle corresponding to is changed to “significantly small” and “minimal”. This is because the transmission rate of the power by the left front elastic belt 36L1 and the left rear elastic belt 36L2 provided between the slider 35 and the left rotating body 38L is changed with the change of the shaft shake of the left roller 37L. Due to the change.
  • the swing angle corresponding to the swing range of the left wing 40L is described above.
  • One of the angles ⁇ 0, ⁇ 1, and ⁇ 2 is set, and the swing angle of the left wing 40L is one of the above-described “large”, “medium”, and “small”.
  • the swing angle corresponding to the swing range of the right wing 40R is an angle ⁇ 3 (equivalent to the swing angle of the right wing 40R in FIG. 29) that is considerably smaller than the angle ⁇ 2.
  • the swing angle of the left wing 40L is “significantly small” as described above.
  • the swing angle corresponding to the swing range of the left wing 40L is an angle ⁇ 4 that is smaller than the angle ⁇ 3 (equivalent to the swing angle of the right wing 40R in FIG. 30).
  • the swing angle of the body 40L is the “minimum” described above.
  • ⁇ Flight modes 1 to 3> Referring to FIG. 17, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1A takes one of the flight modes of vertical ascending, hovering, and vertical descending.
  • flight mode 2 as a representative example of flight modes 1 to 3, as shown in FIGS. 17 and 6, in flight mode 2, the position of the swing center CR of the right wing 40R is “center”.
  • the left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the right wing 40R swings to generate a thrust toward the left (that is, in the Y2 direction), and the left wing 40L swings to the right. Thrust is generated toward (i.e., in the Y1 direction), but these cancel each other, so that the thrust does not work on the flapping apparatus 1A in any direction in the XY plane.
  • the lift generated on the right wing 40R and the left wing 40L is adjusted upward by adjusting the flapping frequency of the right wing 40R and the left wing 40L.
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping apparatus 1A is stationary in the air without moving in any direction and hovering.
  • the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 2 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping apparatus 1A moves upward (that is, in the Z1 direction) and rises vertically.
  • the flapping device 1A moves downward (that is, in the Z2 direction) and vertically descends.
  • ⁇ Flight modes 4 to 6> Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 4 to 6 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending forward, horizontal forward, and descending forward.
  • the position of the swing center CR of the right wing 40R is “rearward”.
  • the left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the right wing 40R swings to generate a thrust toward the left front (that is, in the X1 direction and the Y2 direction), and the left wing 40L swings. Generates a thrust toward the right front (that is, in the X1 direction and the Y1 direction).
  • the flapping device 1A is directed forward (that is, in the direction of the arrow DR101 shown in FIG. 20). Thrust will work.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping apparatus 1A moves forward (that is, in the X1 direction), and moves horizontally.
  • flight mode 4 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 5 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes larger than the gravity applied to 1A.
  • the flapping apparatus 1A moves forward and upward (that is, in the X1 direction and the Z1 direction), and moves upward.
  • flight mode 6 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 5 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the flapping device 1A moves forward and downward (that is, in the X1 direction and the Z2 direction), and moves downward.
  • ⁇ Flight modes 7 to 9> Referring to FIG. 17, the position of right roller 37R is “rear position”, the position of left roller 37L is “rear position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1A takes one of the flight modes of ascending / retreating, horizontal retreating, and descending / retreating.
  • the position of the swing center CR of the right wing 40R is “front”.
  • the position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping device 1A moves backward (that is, in the X2 direction), and retreats horizontally.
  • flight mode 7 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 8 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the lift generated upward in the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L. It becomes larger than the gravity applied to 1A.
  • the flapping device 1A moves backward and upward (that is, in the X2 direction and the Z1 direction), and moves up and backwards.
  • flight mode 9 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 8 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the flapping device 1A moves backward and downward (that is, in the X2 direction and the Z2 direction), and moves downward.
  • ⁇ Flight modes 10 to 12> Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “center position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 10 to 12 that are “present”, the flapping apparatus 1A takes one of the flight modes of ascending right diagonal advance, horizontal right diagonal advance, and descending right diagonal advance.
  • the position of the swing center CR of the right wing 40R is “rearward”.
  • the left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift force generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping device 1A moves toward the right front (that is, toward the X1 direction and the Y1 direction), and moves forward diagonally to the right.
  • flight mode 10 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 11 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the lift generated on the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L. It becomes larger than the gravity applied to 1A.
  • the flapping device 1A moves to the right front and upward (that is, in the X1 direction, the Y1 direction, and the Z1 direction), and moves up diagonally to the right.
  • flight mode 12 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 11 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the lift generated on the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L. It becomes smaller than the gravity applied to 1A.
  • the flapping apparatus 1A moves forward right and downward (that is, in the X1, Y1, and Z2 directions), and moves downward diagonally to the right.
  • ⁇ Flight modes 13 to 15> Referring to FIG. 17, the position of the right roller 37R is “center position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed.
  • the flapping apparatus 1A takes one of the flight modes of ascending left diagonal advance, horizontal left diagonal advance, and descending left diagonal advance.
  • the position of the swing center CR of the right wing 40R is “center”.
  • the left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • this flight mode 14 a thrust is generated toward the left (that is, in the Y2 direction) when the right wing 40R swings, and a right front is generated when the left wing 40L swings.
  • a thrust is generated in the flapping device 1A toward the left front (that is, in the direction of the arrow DR104 shown in FIG. 23). Will work.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping device 1A moves toward the left front (that is, toward the X1 direction and the Y2 direction), and moves forward diagonally to the left.
  • flight mode 13 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 14 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping device 1A moves left frontward and upward (that is, in the X1 direction, the Y2 direction, and the Z1 direction), and moves up diagonally to the left.
  • flight mode 15 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 14 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
  • the flapping device 1A moves left forward and downward (that is, in the X1 direction, the Y2 direction, and the Z2 direction), and moves downward diagonally to the left.
  • ⁇ Flight modes 16 to 18> Referring to FIG. 17, the position of the right roller 37R is “rear position”, the position of the left roller 37L is “center position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 16 to 18 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending right diagonal retreat, horizontal right diagonal retreat, and descending right diagonal retreat.
  • the position of the swing center CR of the right wing body 40R is “front”.
  • the left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the right wing 40R swings to generate a thrust toward the right rear (that is, in the X2 direction and the Y1 direction), and the left wing 40L swings. Generates a thrust toward the right (that is, in the Y1 direction).
  • the flapping device 1A has a thrust toward the right rear (that is, toward the arrow DR105 shown in FIG. 24). Will work.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping apparatus 1A moves toward the right rear (that is, in the X2 direction and the Y1 direction), and moves backward in the horizontal right direction.
  • flight mode 16 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 17 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping device 1 ⁇ / b> A moves to the right rear and upward (that is, in the X2 direction, the Y1 direction, and the Z1 direction), and ascends to the right.
  • flight mode 18 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 17 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the flapping device 1A moves rearward rightward and downward (ie, in the X2, Y1, and Z2 directions), and descends diagonally to the right.
  • ⁇ Flight modes 19 to 21> Referring to FIG. 17, the position of right roller 37R is “center position”, the position of left roller 37L is “rear position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight modes 19 to 21 that are “present”, the flapping apparatus 1A takes any one of the flight modes of ascending left diagonal receding, horizontal left diagonal receding, and descending left diagonal receding.
  • the position of the swing center CR of the right wing 40R is “center”.
  • the position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the flapping apparatus 1A by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L;
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping device 1A moves toward the left rear (that is, in the X2 direction and the Y2 direction), and moves backward in the horizontal left direction.
  • flight mode 19 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 20 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping device 1A moves left rearward and upward (that is, in the X2, Y2, and Z1 directions), and ascends to the left diagonally.
  • flight mode 21 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 20 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
  • the flapping device 1A moves left rearward and downward (that is, in the X2, Y2, and Z2 directions), and descends diagonally to the left.
  • ⁇ Flight modes 22 to 24> Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “rear position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 22 to 24 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending right rotation, horizontal right rotation, and descending right rotation.
  • the position of the swing center CR of the right wing 40R is “rearward”.
  • the position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the right wing 40R swings to generate a thrust toward the left front (that is, in the X1 direction and the Y2 direction), and the left wing 40L swings.
  • thrust is generated toward the right rear (that is, in the X2 direction and the Y1 direction), and as a result, the flapping apparatus 1A has a clockwise rotation direction (that is, in the direction of the arrow DR107 shown in FIG. 26). The thrust) will work.
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping apparatus 1A rotates clockwise on the spot, and rotates horizontally right.
  • flight mode 22 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 23 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping device 1 ⁇ / b> A moves upward while rotating clockwise (that is, in the Z ⁇ b> 1 direction), and rotates to the right.
  • flight mode 24 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 23 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the lift generated upward in the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 ⁇ / b> R and the left wing 40 ⁇ / b> L. It becomes smaller than the gravity applied to 1A.
  • the flapping apparatus 1A moves downward (that is, in the Z2 direction) while rotating clockwise, and rotates downward to the right.
  • ⁇ Flight modes 25 to 27> Referring to FIG. 17, the position of the right roller 37R is “rear position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 25 to 27 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending left rotation, horizontal left rotation, and descending left rotation.
  • the position of the swing center CR of the right wing 40R is “front”.
  • the left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”.
  • the rocking angle of 40R is “medium” at an angle ⁇ 0, and the rocking angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the gravity applied to the flapping apparatus 1A is configured to balance each other.
  • the flapping device 1A rotates counterclockwise on the spot, and rotates horizontally to the left.
  • flight mode 25 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 26 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle ⁇ 1, and the swing angle of the left wing 40L becomes “large” at an angle ⁇ 1.
  • the flapping apparatus 1A moves upward (that is, in the Z1 direction) while rotating counterclockwise, and rotates counterclockwise.
  • flight mode 27 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 26 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle ⁇ 2, and the swing angle of the left wing 40L becomes “small” at an angle ⁇ 2.
  • the flapping device 1A moves downward (that is, in the Z2 direction) while rotating counterclockwise, and rotates downward to the left.
  • ⁇ Flight mode 28> Referring to FIG. 28, the position of the right roller 37R is “center position”, the position of the left roller 37L is “center position”, and the right roller shaft 17R is fixed “present (lightly fixed)”. In the flight mode 28 in which the fixing of 17L is “present”, the flapping apparatus 1A takes a flight mode of moving toward the lower right while tilting to the right.
  • the position of the swing center CR of the right wing 40R is in the “center position”, and the position of the swing center CL of the left wing 40L is “center”.
  • the flapping frequency of the right wing 40R and the left wing 40L is “medium”
  • the fixing of the right roller shaft 17R is “present (lightly fixed)” as described above.
  • the swing angle of the wing 40R is “significantly small”, which is an angle ⁇ 3
  • the swing angle of the left wing 40L is “medium”, which is an angle ⁇ 0.
  • the lift generated upward on the right wing 40R and the left wing 40L is smaller than the gravity applied to the flapping apparatus 1A.
  • the flapping device 1A moves toward the lower right (ie, in the Y1 direction and the Z2 direction) while tilting to the right.
  • ⁇ Flight mode 29> Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “none”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1 ⁇ / b> A takes a flight mode in which it vertically descends while tilting to the right.
  • the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is “center”.
  • the flapping frequency of the right wing 40R and the left wing 40L is “medium”
  • the fixing of the right roller shaft 17R is “none” as described above.
  • the swing angle is “minimum” at an angle ⁇ 4
  • the swing angle of the left wing 40L is “medium” at an angle ⁇ 0.
  • the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A.
  • the flapping apparatus 1A does not substantially have a sufficient levitation force.
  • ⁇ Flight mode 30> Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1 ⁇ / b> A takes a flight mode that moves toward the lower left while tilting to the left.
  • the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is at the “center position”. Further, although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the fixing of the left roller shaft 17L is “present (lightly fixed)” as described above, and therefore the right wing 40R. The swing angle of the left wing 40L is “medium”, and the swing angle of the left wing 40L is “significantly small”.
  • the lift generated upward on the right wing 40R and the left wing 40L is smaller than the gravity applied to the flapping device 1A.
  • the flapping apparatus 1A moves toward the lower left (that is, in the Y2 direction and the Z2 direction) while tilting to the left.
  • ⁇ Flight mode 31> Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1 ⁇ / b> A takes a flight mode in which it vertically descends while tilting to the left.
  • the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is at the “center position”.
  • the flapping frequency of the right wing 40R and the left wing 40L is “medium”
  • the left roller shaft 17L is fixed to “none” as described above. Becomes “medium” at an angle ⁇ 0, and the swing angle of the left wing 40L becomes “minimum” at an angle ⁇ 4.
  • the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A.
  • the flapping apparatus 1A does not substantially have a sufficient levitation force.
  • ⁇ Flight mode 32> Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “none”, and left roller shaft 17L is fixed.
  • the flapping apparatus 1A takes a flight mode of gliding depending on conditions.
  • the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is “center”.
  • the flapping frequency of the right wing 40R and the left wing 40L is “medium”
  • the fixing of the right roller shaft 17R and the left roller shaft 17L is “none” as described above. Therefore, the swing angle of the right wing 40R becomes “minimum” at an angle ⁇ 4
  • the swing angle of the left wing 40L becomes “minimum” at an angle ⁇ 4.
  • the right wing 40R swings to generate a thrust toward the left (that is, in the Y2 direction), and the left wing 40L swings to the right. Thrust is generated toward (i.e., in the Y1 direction), but these cancel each other, so that the thrust does not work on the flapping apparatus 1A in any direction in the XY plane.
  • the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A.
  • the flapping apparatus 1A does not substantially have a sufficient levitation force.
  • the flapping apparatus 1A performs various flight operations by variably adjusting the position, the size of the axial shake, and the flapping frequency of each of the right roller 37R and the left roller 37L. Aspect can be realized. Therefore, by using the flapping apparatus 1A, it is possible to obtain a flapping apparatus having excellent flight capability.
  • the flapping apparatus 1A ′ (see FIG. 32) according to this modification described below is different only in the configuration of the elastic biasing mechanism when compared with the flapping apparatus 1A described above.
  • the flapping device 1A ′ includes a front urging member 60A as a first urging member and a rear urging member 60B as a second urging member (FIG. 2) that the fluttering device 1A described above includes. (Refer to FIG. 4 etc.), and instead of this, the front frame portion of the support frame 13 is used as the first biasing portion, and the rear frame portion of the support frame 13 is used as the second biasing portion.
  • an elastic urging mechanism is constituted by the support frame 13.
  • the support frame 13 has a rectangular frame shape, and is formed of, for example, a resin member. Therefore, the support frame 13 has flexibility, and can be appropriately bent and deformed when an external force is applied. Therefore, in the flapping apparatus 1A ′, by utilizing the flexibility of the support frame 13, the front frame portion of the support frame 13 as the first frame portion and the rear frame portion as the second frame portion are respectively used.
  • the first urging unit and the second urging unit are configured.
  • FIG. 32 is a schematic diagram showing the behavior of the front frame portion of the support frame 13 as the first urging portion of the flapping apparatus 1A ′ according to the present modification.
  • the behavior of the front frame portion of the support frame 13 as the first urging portion will be described in detail with reference to FIG.
  • the behavior of the front frame portion of the support frame 13 is shown in time series in the order of (A) to (E).
  • the first crank arm 33 ⁇ / b> A extends so as to intersect the moving direction of the slider 35.
  • the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. Only the power of the rotary motor 20 is provided.
  • the slider 35 moves further forward in the direction approaching the front frame portion of the support frame 13 (that is, in the direction of arrow DR51 in the figure), and the slider 35 moves to the foremost portion (in the movable range). That is, the slider 35 contacts the front frame portion of the support frame 13 in the state of reaching the first position). Due to the contact of the slider 35, the front frame portion of the support frame 13 is bent and deformed.
  • the timing at which the slider 35 starts to contact the front frame portion of the support frame 13 is such that the smaller one of the angles formed by the first crank arm 33A and the X axis is about 5 °. It is preferable to use timing.
  • the slider 35 is moved away from the front frame portion of the support frame 13 from the state where the slider 35 is disposed at the foremost portion (that is, the first position) within the movable range (that is, in the direction indicated by the arrow DR52).
  • the first crank arm 33 ⁇ / b> A extends again so as to intersect the moving direction of the slider 35.
  • the slider 35 since the slider 35 is still idle, in this state, the slider 35 is elastically biased rearward based on the restoring force of the front frame portion of the support frame 13 in the deformed state. Will be. Therefore, the slider 35 is pushed backward based on the elastic biasing force of the front frame portion of the support frame 13, and the elastic biasing force of the front frame portion of the support frame 13 acts as an acceleration force of the slider 35. .
  • the slider 35 is accelerated rapidly, and the moving speed of the right wing 40R and the left wing 40L is sufficiently increased at the beginning of the rear flapping operation of the right wing 40R and the left wing 40L. can do. Therefore, a greater levitation force can be obtained in the backward flapping operation, and the motion efficiency of the flapping device 1A 'can be further improved.
  • the slider 35 moves further rearward in the direction away from the front frame portion of the support frame 13 (that is, the arrow DR52 direction in the figure), and the slider 35 moves to the front frame portion of the support frame 13.
  • the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. It becomes only the motive power of the main rotary motor 20 to be performed.
  • the timing at which the slider 35 moves away from the front frame portion of the support frame 13 is the timing at which the smaller one of the angles formed by the first crank arm 33A and the X axis is approximately 10 °. Is preferred.
  • the motion efficiency of the flapping device 1A ′ can be increased in the period before and after the right wing 40R and the left wing 40L perform the front turning operation. It can be improved dramatically, and a flapping apparatus with excellent flight capability can be obtained.
  • the behavior of the rear frame portion of the support frame 13 as the second urging portion is also the behavior of the front frame portion of the support frame 13 as the first urging portion described above. It becomes the thing according to. Therefore, by using the rear frame portion of the support frame 13 as the second urging portion, the motion efficiency of the flapping device 1A ′ jumps in the period before and after the right wing 40R and the left wing 40L perform the backward turning operation. Therefore, it is possible to provide a flapping apparatus with excellent flight capability.
  • FIGS. 33 (A) to 33 (C) show changes in the behavior of the right wing 40R when the position of the right roller 37R is changed along the X-axis direction.
  • FIG. 34B shows a change in behavior of the right wing 40R when the position of the right roller 37R is changed along the Y-axis direction.
  • the flapping device 1B differs in the movable range of the right roller 37R and the left roller 37L when compared with the flapping device 1A in the first embodiment described above. Specifically, in the flapping apparatus 1A in the first embodiment described above, the right roller 37R and the left roller 37L respectively move the second rotating shaft 102R of the right rotating body 38R and the second rotating shaft 102L of the left rotating body 38L. In the flapping apparatus 1B, the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively. It can be placed at any position on the plane.
  • the position of the swing center CR of the right wing 40R can be variously changed while generally maintaining the swing angle ⁇ corresponding to the swing range of 40R.
  • the swing center CR of the right wing 40R is determined by the position of the right wing 40R in a state where the slider 35 is disposed at the center of the movable range.
  • the swing center CR of the right wing 40R is the same as the center axis of the right roller 37R and the second rotation shaft 102R of the right rotator 38R in a state where the slider 35 is disposed at the center of the movable range. It is arranged on a plane that includes the plane and is parallel to the Z-axis direction.
  • the swing angle ⁇ of the right wing 40R is determined by the size of the movable range of the slider 35 if the position of the right roller 37R in the Y-axis direction is the same.
  • the slider 35 and the right rotating body 38R are connected by the right front elastic belt 36R1 and the right rear elastic belt 36R2 having appropriate elasticity, the position of the right roller 37R along the X-axis direction is changed. Even if they are different, if the movable range of the slider 35 is the same, the swing angle ⁇ of the right wing 40R does not substantially change.
  • the right roller 37R is disposed at a position separated by a distance D1 on the front side (ie, in the X1 direction) side from the YZ plane including the second rotation shaft 102R of the right rotating body 38R.
  • the swing center CR of the right wing body 40R is clockwise by a predetermined angle (angle ⁇ 1 shown in the figure) corresponding to the distance D1 clockwise around the second rotation shaft 102R of the right rotator 38R. It will be placed at the rotated position.
  • the swing angle ⁇ of the right wing 40R in that case is substantially the same as that in the case of FIG.
  • the swing center CR of the right wing 40R rotates counterclockwise about the second rotation shaft 102R of the right rotator 38R by a predetermined angle (angle ⁇ 2 shown in the drawing) according to the distance D2. It will be arranged at the position. Note that the swing angle ⁇ of the right wing 40R in that case is substantially the same as that in the case of FIG.
  • the right wing 40R by changing the position of the right roller 37R along the Y-axis direction while maintaining the position of the right roller 37R in the X-axis direction, the right wing 40R.
  • the swing angle ⁇ corresponding to the swing range of the right wing 40R can be variously changed while maintaining the position of the swing center CR.
  • the swing center CR of the right wing 40R is determined by the position of the right wing 40R in a state where the slider 35 is disposed at the center of the movable range
  • the swing angle ⁇ of the wing body 40R is determined by the position of the right roller 37R in the Y-axis direction if the size of the movable range of the slider 35 is the same.
  • the swing angle ⁇ of the right wing 40R can be variously changed. Therefore, the right roller 37R can be changed in the Y-axis direction.
  • Various flapping modes can be realized by adjusting the position along the line.
  • the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively, so that the right roller can be placed at an arbitrary position on the XY plane.
  • 37R and left roller 37L can be arranged. For this reason, by configuring in this way, the positions of the swing centers CR and CL and the swing angle ⁇ of the right wing 40R and the left wing 40L can be changed in various ways. An aspect can be realized.
  • the right roller 37R and the left roller 37L are each configured to be movable to an arbitrary position in the Y-axis direction at an arbitrary position in the X-axis direction.
  • the swing angle ⁇ of the right wing 40R and the left wing 40L can be variously changed without providing the shaft shake adjustment mechanism provided in the flapping apparatus 1A.
  • the case where the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively, is illustrated, but it is not always necessary to configure as such. Instead, the right roller 37R and the left roller 37L may be configured to be movable only in either the X-axis direction or the Y-axis direction. Even in such a case, it is possible to realize flight modes that are considerably rich in variations.
  • flapping apparatus 1B in the present embodiment has basically the same configuration as flapping apparatus 1A in the above-described first embodiment except for the configuration described above, and thus adopts these configurations. The effect obtained by this can also be obtained in the flapping apparatus 1B in the present embodiment.
  • FIG. 35 is a schematic perspective view of a main part of the flapping apparatus 1C according to the third embodiment
  • FIG. 36 is a plan view showing a configuration of a roller position adjusting mechanism in the flapping apparatus 1C.
  • flapping apparatus 1C according to the present embodiment will be described with reference to FIG. 35 and FIG.
  • the flapping device 1C has a common configuration in that it includes a right roller 37R and a left roller 37L as an engaged body when compared with the flapping device 1A in the first embodiment described above.
  • the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B is not provided. Instead, the roller including the right roller position adjustment mechanism 70A and the left roller position adjustment mechanism 70B is provided.
  • the configuration is basically different in that the position adjusting mechanism 70 is provided.
  • the flapping operation of the right wing 40R and the left wing 40L is not variably controlled by the positions of the right roller 37R and the left roller 37L and the size of the shaft shake, and the roller position adjustment is performed.
  • the mechanism 70 By operating the mechanism 70, the positions of the right roller 37R and the left roller 37L are adjusted, so that the assembly position accuracy of the right blade 40R and the left blade 40L with respect to the housing can be adjusted with high accuracy. It is configured.
  • the roller position adjusting mechanism 70 includes a right roller position adjusting mechanism 70A for adjusting the assembly position of the right wing 40R and an assembly of the left wing 40L. And a left roller position adjusting mechanism 70B for adjusting the position.
  • the right roller position adjustment mechanism 70A includes a feed screw 71a and a guide member 72a.
  • the feed screw 71a has a screw head at one end thereof, and is rotatably assembled to the upper frame 12 so as to bridge the front frame portion and the rear frame portion of the upper frame 12 of the housing 10.
  • the guide member 72a includes a nut portion that meshes with the feed screw 71a, and is screwed to a portion of the feed screw 71a located between the front frame portion and the rear frame portion of the upper frame 12.
  • the guide member 72a has a groove portion extending in the Z-axis direction on the right side surface thereof, and the vicinity of the upper end of the right roller shaft 17R that rotatably supports the right roller 37R is inserted into the groove portion. Yes. Thereby, the vicinity of the upper end of the right roller shaft 17R is in a state of being sandwiched in the X-axis direction by the pair of wall portions that define the groove portion of the guide member 72a. The rotation of the guide member 72a is restricted by being sandwiched in the Y-axis direction by a part of the upper frame 12 and the right roller shaft 17R.
  • the left roller position adjusting mechanism 70B includes a feed screw 71b and a guide member 72b.
  • the feed screw 71b has a screw head at one end thereof, and is rotatably assembled to the upper frame 12 so as to bridge the front frame portion and the rear frame portion of the upper frame 12 of the housing 10.
  • the guide member 72b includes a nut portion that meshes with the feed screw 71b, and is screwed into a portion of the feed screw 71b located between the front frame portion and the rear frame portion of the upper frame 12.
  • the guide member 72b is formed with a groove portion extending in the Z-axis direction on the left side surface thereof, and the vicinity of the upper end of the left roller shaft 17L that rotatably supports the left roller 37L is inserted into the groove portion. Yes. Thereby, the vicinity of the upper end of the left roller shaft 17L is sandwiched in the X-axis direction by the pair of wall portions that define the groove portion of the guide member 72b.
  • the guide member 72b is restricted in rotation by being sandwiched in the Y-axis direction by a part of the upper frame 12 and the left roller shaft 17L.
  • the guide member 72a moves relative to the feed screw 71a by rotating the feed screw 71a with a tool, and accompanying this, the arrow shown in FIG.
  • the guide member 72a moves in the DR41 direction (that is, the X-axis direction). Therefore, the position of the right roller shaft 17R can be adjusted, and the position of the swing center CR of the right wing body 40R can be adjusted with high accuracy.
  • the guide member 72b moves relative to the feed screw 71b, and accordingly, in the direction of the arrow DR42 shown in FIG.
  • the guide member 72b moves in the direction (X-axis direction). Therefore, the position of the left roller shaft 17L can be adjusted, and the position of the swing center CL of the left wing body 40L can be adjusted with high accuracy.
  • roller position adjusting mechanism 70 including the right roller position adjusting mechanism 70A and the left roller position adjusting mechanism 70B described above functions as an engaged body position adjusting mechanism that variably adjusts the positions of the right roller 37R and the left roller 37L. become.
  • the positions of the right roller 37R and the left roller 37L are adjusted by using the roller position adjusting mechanism 70, so that the swing center CR of the right blade 40R and the swing center of the left blade 40L are adjusted.
  • the position of CL can be adjusted individually and easily with high accuracy.
  • the positions of the right roller 37R and the left roller 37L are adjusted using the roller position adjusting mechanism 70, so that the swing center CR of the right blade 40R and the left blade 40L can be adjusted.
  • the positional deviation of the swing center CL can be corrected individually and easily.
  • flapping apparatus 1C in the present embodiment has basically the same configuration as flapping apparatus 1A in the above-described first embodiment except for the configuration described above, and therefore adopts these configurations.
  • the effect obtained by the above can also be obtained in the flapping apparatus 1C in the present embodiment.
  • the power generated by a single power source is distributed by the power transmission mechanism, so that the wings provided on the starboard of the chassis and the port on the chassis.
  • the case where the provided wings are configured to be driven at the same time has been described as an example, but the wings provided on the starboard side of the case and the wings provided on the port side of the case are separately provided. You may comprise so that it may drive with the power source provided independently.
  • 1A to 1C, 1A 'flapping apparatus 10 housing, 11 lower frame, 12 upper frame, 13 support frame, 14 columnar frame, 15 stem, 16a, 16b slide guide, 17R right roller shaft, 17L left roller shaft, 18R right guide Shaft, 18L left guide shaft, 19R1 right upper arm, 19R2 right lower arm, 19L1 left upper arm, 19L2 left lower arm, 20 main rotating motor, 20a output shaft, 20b gear, 30 power transmission mechanism, 30A rotational motion transmission unit, 30B 1st motion conversion part, 30C1 Right side 2nd motion conversion part, 30C2 Left side 2nd motion conversion part, 31 1st transmission member, 31a 1st connection rod, 31b, 31c gear, 32 2nd transmission member, 32a 2nd connection B 32b gear, 32c disc, 33A first crank arm, 33B second crank arm, 33a1, 33a2, 33b1, 33b2 hole, 34a, 34b1, 34b2 crank pin, 35 slider, 35R right side, 35L left side, 36R1 Right front

Abstract

This flapping device (1A) is provided with: a skeletal body (10); a power source (20); a power transmission mechanism (30); and wing bodies (40R, 40L) driven by the power transmission mechanism (30). The power transmission mechanism (30) includes: a slider (35) which receives power transmitted from the power source (20) and linearly reciprocates in an X-axis direction; and rotating bodies (38R, 38L) which receive power transmitted from the slider (35) and reciprocate in a rotation direction centering on a rotation shaft extending in a Z-axis direction. The wing bodies (40R, 40L) swing by means of the rotating bodies (38R, 38L) reciprocating in the rotation direction. The skeletal body (10) includes a plurality of slide guides (16a, 16b) which guide the slider (35) in the X-direction. The external dimension of the slider (35) in a Y-axis direction is smaller than the external dimension of the slider (35) in the Z-axis direction, and the plurality of slide guides (16a, 16b) are arranged and disposed in the Z-axis direction.

Description

羽ばたき装置Flapping equipment
 本開示は、躯体に組付けられた動力源によって羽体が駆動されて揺動することで浮上力を得る羽ばたき装置に関する。 The present disclosure relates to a flapping apparatus that obtains levitation force by driving and swinging a wing body by a power source assembled to the housing.
 通常、羽ばたき装置においては、躯体の左舷および右舷のそれぞれに羽体が設けられており、躯体に組付けられた動力源によって当該羽体が駆動される。その際、羽体は、躯体側に位置する基端を回転中心として当該基端とは反対側に位置する先端が概ね前後方向に向けて移動するように揺動する。 Usually, in a flapping apparatus, a wing is provided on each of the port side and the starboard side of the skeleton, and the wing is driven by a power source assembled to the skeleton. At this time, the wing swings so that the distal end located on the side opposite to the proximal end moves in the front-rear direction with the proximal end located on the housing side as the rotation center.
 たとえば、特表2012-529398号公報(特許文献1)の図9には、羽体が取付けられたマストの基端にロッカーアームが組付けられ、動力源としての回転電動機から出力される回転運動がクランクによって往復直線運動に変換されることでロッカーアームが周期的に押し引きされ、これによりロッカーアームによってマストが駆動されることで羽体が前後方向に揺動するように構成された羽ばたき装置が開示されている。 For example, in FIG. 9 of JP 2012-529398 A (Patent Document 1), a rocker arm is assembled to the base end of a mast to which a wing is attached, and a rotary motion output from a rotary motor as a power source. The rocker arm is periodically pushed and pulled by being converted into a reciprocating linear motion by the crank, and the flutter is configured to swing in the front-rear direction when the mast is driven by the rocker arm. Is disclosed.
特表2012-529398号公報Special table 2012-529398 gazette
 ここで、羽ばたき装置1Aにおいて飛行能力を高めるためには、羽ばたき装置の躯体を小型にかつ軽量に構成することが必要である。特に、動力源からの動力を羽体に伝達する動力伝達機構は、各種の機構を含むことで大型化し易く、これに伴って躯体が大型化する傾向にあり、その小型化が求められているところである。 Here, in order to increase the flight capability of the flapping apparatus 1A, it is necessary to make the flapping apparatus housing small and lightweight. In particular, the power transmission mechanism that transmits power from the power source to the wings is easy to increase in size due to the inclusion of various mechanisms, and accordingly, the frame tends to increase in size, and the downsizing thereof is required. By the way.
 したがって、本開示は、上述した問題に鑑みてなされたものであり、従来に比して小型に構成することができる羽ばたき装置を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a flapping apparatus that can be configured more compactly than in the past.
 本開示の第1の局面に基づく羽ばたき装置は、躯体と、上記躯体に組付けられた動力源と、上記動力源にて発生した動力を伝達する動力伝達機構と、上記動力伝達機構によって駆動される羽体とを備えている。上記動力伝達機構は、上記躯体によって移動可能に支持され、上記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、上記躯体によって回転可能に支持され、上記スライダからの動力の伝達を受けて上記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する回転体とを含んでいる。上記羽体は、その基端が上記回転体に固定されることにより、上記回転体が上記回転方向に往復運動することでその先端が概ね上記第1方向に沿って移動するように揺動する。上記躯体は、上記スライダを上記第1方向に沿って案内するように上記第1方向において上記スライダを貫通する互いに平行に配置された複数のスライドガイドを含んでいる。上記第1方向および上記第2方向の双方に直交する第3方向における上記スライダの外形寸法は、上記第2方向における上記スライダの外形寸法よりも小さい。上記複数のスライドガイドは、上記第2方向に沿って並んで配置されている。 A flapping apparatus according to a first aspect of the present disclosure is driven by a housing, a power source assembled to the housing, a power transmission mechanism that transmits power generated by the power source, and the power transmission mechanism. And wings. The power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power from the power source, and is rotatably supported by the housing, And a rotating body that reciprocates in the rotational direction about a rotational axis that extends in a second direction orthogonal to the first direction upon receiving power transmission. When the base end of the wing body is fixed to the rotating body, the tip of the rotating body reciprocates in the rotational direction so that the tip of the wing body swings substantially along the first direction. . The housing includes a plurality of slide guides arranged in parallel with each other so as to penetrate the slider in the first direction so as to guide the slider along the first direction. The outer dimension of the slider in the third direction orthogonal to both the first direction and the second direction is smaller than the outer dimension of the slider in the second direction. The plurality of slide guides are arranged side by side along the second direction.
 上記本開示の第1の局面に基づく羽ばたき装置にあっては、上記躯体が、上記複数のスライドガイドを支持する矩形枠状の支持フレームをさらに含んでいてもよく、その場合には、上記支持フレームが、上記第1方向および上記第2方向において上記スライダおよび上記複数のスライドガイドを取り囲んでいることが好ましい。 In the flapping apparatus according to the first aspect of the present disclosure, the housing may further include a rectangular frame-shaped support frame that supports the plurality of slide guides. It is preferable that a frame surrounds the slider and the plurality of slide guides in the first direction and the second direction.
 上記本開示の第1の局面に基づく羽ばたき装置にあっては、上記躯体が、上記第2方向に沿って延在する互いに平行に配置された複数のステムと、上記第2方向における異なる位置に配置され一対のベースフレームとをさらに含んでいてもよい。その場合には、上記一対のベースフレームの各々が、上記複数のステムによって支持されていることが好ましく、またその場合には、上記支持フレームが、上記第2方向において上記一対のベースフレームによって挟み込まれた状態で当該一対のベースフレームに固定されていることが好ましい。 In the flapping apparatus according to the first aspect of the present disclosure, the casing is disposed at a different position in the second direction and the plurality of stems arranged in parallel to each other extending along the second direction. And may further include a pair of base frames. In that case, each of the pair of base frames is preferably supported by the plurality of stems, and in that case, the support frame is sandwiched between the pair of base frames in the second direction. It is preferable to be fixed to the pair of base frames.
 上記本開示の第1の局面に基づく羽ばたき装置にあっては、上記動力源が、回転運動を出力する出力シャフトを含んでいてもよく、その場合には、上記動力伝達機構が、上記出力シャフトに生じた回転運動を上記スライダの往復直線運動に変換するクランク機構をさらに含んでいることが好ましく、またその場合には、上記支持フレームによって囲まれた空間の一部に上記第3方向において跨ることとなるように、上記クランク機構が、上記第2方向において上記スライダと隣り合うように配設されていることが好ましい。 In the flapping apparatus according to the first aspect of the present disclosure, the power source may include an output shaft that outputs a rotational motion. In that case, the power transmission mechanism may include the output shaft. It is preferable to further include a crank mechanism for converting the rotary motion generated in the slider into the reciprocating linear motion of the slider. In that case, the crank mechanism straddles a part of the space surrounded by the support frame in the third direction. Therefore, it is preferable that the crank mechanism is disposed adjacent to the slider in the second direction.
 上記本開示の第1の局面に基づく羽ばたき装置にあっては、上記複数のスライドガイドが、上記スライダの上記クランク機構側の端部とは反対側の端部寄りの位置に偏在していることが好ましい。 In the flapping apparatus based on the first aspect of the present disclosure, the plurality of slide guides are unevenly distributed at positions near the end of the slider opposite to the end on the crank mechanism side. Is preferred.
 上記本開示の第1の局面に基づく羽ばたき装置にあっては、上記動力伝達機構が、上記スライダに一部が固定された弾性ベルトをさらに含んでいてもよく、その場合には、上記スライダに対する上記弾性ベルトの非固定部分が上記回転体に巻回または固定されることにより、上記スライダが往復直線運動することで上記回転体が上記回転方向に往復運動することが好ましい。 In the flapping apparatus according to the first aspect of the present disclosure, the power transmission mechanism may further include an elastic belt that is partially fixed to the slider. It is preferable that the non-fixed portion of the elastic belt is wound or fixed on the rotating body, whereby the rotating body reciprocates in the rotational direction as the slider reciprocates linearly.
 本開示の第2の局面に基づく羽ばたき装置は、躯体と、上記躯体に組付けられた動力源と、上記動力源にて発生した動力を伝達する動力伝達機構と、上記動力伝達機構によって駆動される第1羽体および第2羽体とを備えている。上記動力伝達機構は、上記躯体によって移動可能に支持され、上記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、上記躯体によって回転可能に支持され、上記スライダからの動力の伝達を受けて上記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する第1回転体および第2回転体とを含んでいる。上記第1回転体および上記第2回転体は、上記第1方向および上記第2方向の双方に直交する第3方向において上記スライダを挟み込むように並んで配置されている。上記第1羽体は、その先端が上記第1回転体から見て上記第2回転体が位置する側とは反対側に位置するようにその基端が上記第1回転体に固定されている。上記第2羽体は、その先端が上記第2回転体から見て上記第1回転体が位置する側とは反対側に位置するようにその基端が上記第2回転体に固定されている。上記第1羽体および上記第2羽体は、上記第1回転体および上記第2回転体がそれぞれ回転方向に往復運動することで各々の先端が同期的に概ね上記第1方向に沿って移動するように揺動する。上記躯体は、上記スライダを上記第1方向に沿って案内するように上記第1方向において上記スライダを貫通する互いに平行に配置された複数のスライドガイドを含んでいる。上記第3方向における上記スライダの外形寸法は、上記第2方向における上記スライダの外形寸法よりも小さい。上記複数のスライドガイドは、上記第2方向に沿って並んで配置されている。 A flapping apparatus according to a second aspect of the present disclosure is driven by a housing, a power source assembled to the housing, a power transmission mechanism that transmits power generated by the power source, and the power transmission mechanism. A first wing and a second wing. The power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power from the power source, and is rotatably supported by the housing, It includes a first rotating body and a second rotating body that reciprocate in the rotation direction around a rotation axis extending in a second direction orthogonal to the first direction upon receiving power transmission. The first rotating body and the second rotating body are arranged side by side so as to sandwich the slider in a third direction orthogonal to both the first direction and the second direction. The base end of the first wing body is fixed to the first rotating body so that the distal end of the first wing body is located on the side opposite to the side on which the second rotating body is positioned when viewed from the first rotating body. . The base end of the second wing body is fixed to the second rotating body so that the tip of the second wing body is located on the side opposite to the side on which the first rotating body is positioned when viewed from the second rotating body. . The first wing and the second wing are reciprocated in the rotation direction of the first rotator and the second rotator, so that the tips of the first wing and the second wing are moved substantially along the first direction. Oscillate to The housing includes a plurality of slide guides arranged in parallel with each other so as to penetrate the slider in the first direction so as to guide the slider along the first direction. The outer dimension of the slider in the third direction is smaller than the outer dimension of the slider in the second direction. The plurality of slide guides are arranged side by side along the second direction.
 本開示によれば、従来に比して小型に構成することができる羽ばたき装置を提供することができる。 According to the present disclosure, it is possible to provide a flapping apparatus that can be configured smaller than conventional ones.
実施の形態1における羽ばたき装置の概略斜視図である。1 is a schematic perspective view of a flapping apparatus in Embodiment 1. FIG. 図1に示す羽ばたき装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の動力伝達機構の斜視図である。It is a perspective view of the power transmission mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の回転運動伝達部および第1運動変換部の近傍の構成を示す側面図ならびに第1運動変換部の構成を示す平面図である。It is a side view which shows the structure of the rotation motion transmission part of the flapping apparatus shown in FIG. 1, and the structure of the vicinity of a 1st motion conversion part, and the top view which shows the structure of a 1st motion conversion part. 図1に示す羽ばたき装置の第1運動変換部の第1クランクアームおよび第2クランクアームの組付構造を示す断面図である。It is sectional drawing which shows the assembly structure of the 1st crank arm of the 1st motion conversion part of the flapping apparatus shown in FIG. 1, and a 2nd crank arm. 図1に示す羽ばたき装置の右側第2運動変換部および左側第2運動変換部の近傍の構成ならびにホバリング時の右側羽体および左側羽体の挙動を示す平面図である。FIG. 3 is a plan view showing a configuration in the vicinity of a right second motion conversion unit and a left second motion conversion unit of the flapping apparatus shown in FIG. 1 and behaviors of the right and left wings during hovering. 図1に示す羽ばたき装置の右側ローラ制御機構の構成および動作を示す斜視図、平面図および側面図である。It is a perspective view, a top view, and a side view showing the configuration and operation of the right roller control mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の左側ローラ制御機構の構成および動作を示す斜視図、平面図および側面図である。It is a perspective view, a top view, and a side view showing the configuration and operation of the left roller control mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の羽ばたき制御機構および飛行態様制御部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the flapping control mechanism and flight mode control part of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の動力伝達機構の動作を説明するための平面図および側面図である。It is the top view and side view for demonstrating operation | movement of the power transmission mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の動力伝達機構の動作を説明するための平面図および側面図である。It is the top view and side view for demonstrating operation | movement of the power transmission mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の動力伝達機構の動作を説明するための平面図および側面図である。It is the top view and side view for demonstrating operation | movement of the power transmission mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の動力伝達機構の動作を説明するための平面図および側面図である。It is the top view and side view for demonstrating operation | movement of the power transmission mechanism of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置のホバリング時の右側羽体および左側羽体の羽ばたき動作を示す模式図である。It is a schematic diagram which shows the flapping operation of the right wing and the left wing during the hovering of the flapping apparatus shown in FIG. 実施の形態1における羽ばたき装置と比較形態に係る羽ばたき装置とのスライダの速度変化を比較した模式的なグラフである。It is the typical graph which compared the speed change of the slider of the flapping apparatus in Embodiment 1, and the flapping apparatus which concerns on a comparison form. 図1に示す羽ばたき装置の第1付勢部としての前側付勢部材の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the front side biasing member as a 1st biasing part of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の主たる飛行態様を示した表である。It is the table | surface which showed the main flight aspect of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様1における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 1 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様3における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 3 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様5における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 5 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様8における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 8 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様11における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 11 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様14における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight aspect 14 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様17における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight aspect 17 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様20における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 20 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様23における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 23 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様26における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 26 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の従たる飛行態様を示した表である。It is the table | surface which showed the flight aspect which the flapping apparatus shown in FIG. 1 followed. 図1に示す羽ばたき装置の飛行態様28における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right-side body and the left-side body in the flight mode 28 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様29における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 29 of the flapping apparatus shown in FIG. 図1に示す羽ばたき装置の飛行態様32における右側羽体および左側羽体の挙動を示す平面図である。It is a top view which shows the behavior of the right side body and the left side body in the flight mode 32 of the flapping apparatus shown in FIG. 実施の形態1に基づいた変形例に係る羽ばたき装置の第1付勢部としての支持フレームの前枠部の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the front frame part of the support frame as a 1st biasing part of the flapping apparatus which concerns on the modification based on Embodiment 1. FIG. 実施の形態2における羽ばたき装置の右側ローラの位置と右側羽体の挙動との関係を示す平面図である。It is a top view which shows the relationship between the position of the right side roller of the flapping apparatus in Embodiment 2, and the behavior of a right side wing. 図33に示す羽ばたき装置の右側ローラの位置と右側羽体の挙動との関係を示す平面図である。It is a top view which shows the relationship between the position of the right side roller of the flapping apparatus shown in FIG. 33, and the behavior of a right side wing. 実施の形態3における羽ばたき装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the flapping apparatus in Embodiment 3. 図35に示す羽ばたき装置のローラ位置調節機構の構成を示す平面図である。It is a top view which shows the structure of the roller position adjustment mechanism of the flapping apparatus shown in FIG.
 以下、実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the following embodiments, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated.
 (実施の形態1)
 <羽ばたき装置1Aの構成>
 図1は、実施の形態1における羽ばたき装置1Aの概略斜視図であり、図2は、羽ばたき装置1Aの要部の概略斜視図である。図3(A)および図3(B)は、動力伝達機構30の斜視図である。図4(A)は、回転運動伝達部30Aおよび第1運動変換部30Bの近傍の構成を示す側面図であり、図4(B)は、第1運動変換部30Bの構成を示す平面図である。図5(A)および図5(B)は、第1運動変換部30Bの第1クランクアーム33Aおよび第2クランクアーム33Bの組付構造を示す断面図である。図6は、右側第2運動変換部30C1および左側第2運動変換部30C2の近傍の構成ならびにホバリング時の右側羽体40Rおよび左側羽体40Lの挙動を示す平面図である。図7(A)および図7(B)は、右側ローラ制御機構50Aの構成を示す斜視図および右側ローラ37Rの可動範囲を示す平面図であり、図7(C)および図7(D)は、右側ローラ制御機構50Aの動作を示す側面図である。図8(A)および図8(B)は、左側ローラ制御機構50Bの構成を示す斜視図および左側ローラ37Lの可動範囲を示す平面図であり、図8(C)および図8(D)は、左側ローラ制御機構50Bの動作を示す側面図である。図9は、羽ばたき制御機構50および飛行態様制御部80の構成を示す機能ブロック図である。まず、これら図1ないし図9を参照して、本実施の形態における羽ばたき装置1Aの構成について説明する。
(Embodiment 1)
<Configuration of Flapping Device 1A>
FIG. 1 is a schematic perspective view of a flapping apparatus 1A according to Embodiment 1, and FIG. 2 is a schematic perspective view of a main part of the flapping apparatus 1A. 3A and 3B are perspective views of the power transmission mechanism 30. FIG. 4A is a side view showing a configuration in the vicinity of the rotary motion transmitting unit 30A and the first motion converting unit 30B, and FIG. 4B is a plan view showing the configuration of the first motion converting unit 30B. is there. FIG. 5A and FIG. 5B are cross-sectional views showing the assembly structure of the first crank arm 33A and the second crank arm 33B of the first motion converter 30B. FIG. 6 is a plan view showing the configuration in the vicinity of the right second motion conversion unit 30C1 and the left second motion conversion unit 30C2 and the behavior of the right wing 40R and the left wing 40L during hovering. FIGS. 7A and 7B are a perspective view showing a configuration of the right roller control mechanism 50A and a plan view showing a movable range of the right roller 37R. FIGS. 7C and 7D are FIGS. FIG. 10 is a side view showing the operation of the right roller control mechanism 50A. 8A and 8B are a perspective view showing the configuration of the left roller control mechanism 50B and a plan view showing the movable range of the left roller 37L. FIGS. 8C and 8D are views. FIG. 10 is a side view showing the operation of the left roller control mechanism 50B. FIG. 9 is a functional block diagram showing the configuration of the flapping control mechanism 50 and the flight mode control unit 80. First, with reference to these FIG. 1 thru | or FIG. 9, the structure of 1 A of flapping apparatuses in this Embodiment is demonstrated.
 <羽ばたき装置1Aの全体構成>
 図1に示すように、羽ばたき装置1Aは、躯体10と、躯体10に組付けられた動力源としての主回転電動機20と、主回転電動機20にて発生した動力を伝達する動力伝達機構30と、動力伝達機構30によって駆動される一対の羽体である第1羽体としての右側羽体40Rおよび第2羽体としての左側羽体40Lと、右側羽体40Rおよび左側羽体40Lの羽ばたき動作を変更させるための羽ばたき制御機構50と、上述した主回転電動機20に電力を供給するための図示しないバッテリとを備えている。
<Overall configuration of flapping apparatus 1A>
As shown in FIG. 1, the flapping apparatus 1 </ b> A includes a housing 10, a main rotary motor 20 as a power source assembled to the housing 10, and a power transmission mechanism 30 that transmits power generated by the main rotary motor 20. The flapping operation of the right wing 40R as the first wing and the left wing 40L as the second wing, and the right wing 40R and the left wing 40L as a pair of wings driven by the power transmission mechanism 30. Flapping control mechanism 50 for changing the above and a battery (not shown) for supplying electric power to main rotating motor 20 described above.
 ここで、図1に示すように、羽ばたき装置1Aの前後、左右および上下にそれぞれX軸、Y軸およびZ軸をとり、羽ばたき装置1Aから見た前方側および後方側に向けての方向をそれぞれX1方向およびX2方向と定義し、羽ばたき装置1Aから見た右方側および左方側に向けての方向をそれぞれY1方向およびY2方向と定義し、羽ばたき装置1Aから見た上方側および下方側に向けての方向をそれぞれZ1方向およびZ2方向と定義し、以下においては、これら軸および方向を用いて説明を行なう。 Here, as shown in FIG. 1, the X-axis, Y-axis, and Z-axis are respectively taken in front, back, left, and right of the flapping device 1A, and the directions toward the front side and the rear side viewed from the flapping device 1A are respectively set. The X1 direction and the X2 direction are defined, the directions toward the right side and the left side as viewed from the flapping device 1A are defined as the Y1 direction and the Y2 direction, respectively, and the upper side and the lower side as viewed from the flapping device 1A. The directing directions are defined as a Z1 direction and a Z2 direction, respectively, and in the following description, these axes and directions are used.
 なお、図2を参照して、上述したX軸が延在する方向である羽ばたき装置1Aの前後方向が、後述するスライダ35が往復直線運動する第1方向に該当し、上述したZ軸が延在する方向である羽ばたき装置1Aの上下方向が、後述する右側回転体38Rおよび左側回転体38Lの各々の第2回転軸102R,102L(図6参照)が延在する第2方向に該当する。また、上述したY軸が延在する方向である羽ばたき装置1Aの左右方向が、後述する右側回転体38Rおよび左側回転体38Lが並ぶ方向である第3方向に該当する。 With reference to FIG. 2, the front-rear direction of the flapping apparatus 1A, which is the direction in which the X axis extends, corresponds to the first direction in which the slider 35 described later reciprocates linearly, and the Z axis described above extends. The up-and-down direction of the flapping apparatus 1A, which is the existing direction, corresponds to the second direction in which second rotating shafts 102R and 102L (see FIG. 6) of the right-side rotating body 38R and the left-side rotating body 38L described later extend. Further, the left-right direction of the flapping apparatus 1A, which is the direction in which the Y axis extends, corresponds to a third direction, which is a direction in which a right-side rotating body 38R and a left-side rotating body 38L described later are arranged.
 <躯体10の構成>
 図1および図2に示すように、躯体10は、羽ばたき装置1Aの本体部を構成する部材であり、上述した主回転電動機20、動力伝達機構30、羽ばたき制御機構50およびバッテリが組付けられてなるものである。躯体10は、複数のフレーム状の部材が組み合わされた骨組みにて構成されており、これに加えて当該骨組みを覆う図示しないカバーを含んでいてもよい。
<Configuration of housing 10>
As shown in FIGS. 1 and 2, the housing 10 is a member that constitutes the main body of the flapping apparatus 1 </ b> A, and is assembled with the main rotating motor 20, the power transmission mechanism 30, the flapping control mechanism 50, and the battery described above. It will be. The casing 10 is configured by a framework in which a plurality of frame-shaped members are combined, and may include a cover (not shown) that covers the framework in addition to this.
 具体的には、図2に示すように、躯体10は、略平板状の一対のベースフレームとしての下フレーム11および上フレーム12と、矩形枠状の支持フレーム13と、棒状に延びる柱状フレーム14と、複数のステム15とを含んでいる。 Specifically, as shown in FIG. 2, the housing 10 includes a lower frame 11 and an upper frame 12 as a pair of substantially flat base frames, a support frame 13 having a rectangular frame shape, and a columnar frame 14 extending in a rod shape. And a plurality of stems 15.
 複数のステム15の各々は、Z軸方向に延在するように互いに平行に配置されている。図示するように、本実施の形態においては、合計で4本のステム15が用いられており、これら4本のステム15が、それぞれ羽ばたき装置1Aの右前部、右後部、左前部および左後部に配置されている。 Each of the plurality of stems 15 is arranged in parallel to each other so as to extend in the Z-axis direction. As shown in the figure, in the present embodiment, a total of four stems 15 are used, and these four stems 15 are respectively located on the right front, right rear, left front and left rear of the flapping apparatus 1A. Has been placed.
 下フレーム11および上フレーム12は、複数のステム15に架設されることで当該複数のステム15によって支持されており、これら下フレーム11および上フレーム12は、Z軸方向の異なる位置に配置されている。より詳細には、下フレーム11は、羽ばたき装置1Aの上下方向の略中央部に配置されており、上フレーム12は、羽ばたき装置1Aの上下方向の上端部寄りの位置に配置されている。 The lower frame 11 and the upper frame 12 are supported by the plurality of stems 15 by being installed on the plurality of stems 15. The lower frame 11 and the upper frame 12 are arranged at different positions in the Z-axis direction. Yes. More specifically, the lower frame 11 is disposed at a substantially central portion in the vertical direction of the flapping device 1A, and the upper frame 12 is disposed at a position near the upper end portion in the vertical direction of the flapping device 1A.
 支持フレーム13は、下フレーム11と上フレーム12との間に配置されている。より詳細には、支持フレーム13は、Z軸方向において下フレーム11と上フレーム12とによって挟み込まれた状態にあり、これら下フレーム11と上フレーム12とに固定されている。支持フレーム13は、その一対の開口面がY1方向およびY2方向を向くように配設されている。 The support frame 13 is disposed between the lower frame 11 and the upper frame 12. More specifically, the support frame 13 is sandwiched between the lower frame 11 and the upper frame 12 in the Z-axis direction, and is fixed to the lower frame 11 and the upper frame 12. The support frame 13 is disposed such that the pair of opening surfaces face the Y1 direction and the Y2 direction.
 柱状フレーム14は、上フレーム12に固定されており、当該上フレーム12から上方に向けて延在するように立設されている。 The columnar frame 14 is fixed to the upper frame 12 and is erected so as to extend upward from the upper frame 12.
 上述した複数のステム15は、炭素繊維製の棒状部材にて構成されていることが好ましく、上述した下フレーム11、上フレーム12、支持フレーム13および柱状フレーム14は、いずれも樹脂製の部材にて構成されていることが好ましい。このように構成することにより、高い剛性を確保しつつ、羽ばたき装置1Aを軽量化することができる。なお、下フレーム11、上フレーム12、支持フレーム13および柱状フレーム14には、軽量化のために、必要な剛性を確保した上で孔や切り欠き等が設けられていることが好ましい。 The plurality of stems 15 described above are preferably made of carbon fiber rod-shaped members, and the above-described lower frame 11, upper frame 12, support frame 13 and columnar frame 14 are all made of resin. It is preferable to be configured. By comprising in this way, flapping apparatus 1A can be reduced in weight, ensuring high rigidity. The lower frame 11, the upper frame 12, the support frame 13, and the columnar frame 14 are preferably provided with holes, cutouts, and the like while ensuring necessary rigidity for weight reduction.
 ここで、上述したように、本実施の形態においては、支持フレーム13がZ軸方向において下フレーム11と上フレーム12とによって挟み込まれた状態でこれら下フレーム11と上フレーム12とに固定されている。このように構成することにより、複数のフレーム状の部材を組み合わせることで構成された躯体10の略中央部に、互いに直交するように配置されて固定された下フレーム11、上フレーム12および支持フレーム13が位置することになり、躯体10の全体としての剛性が飛躍的に高まることになる。したがって、当該構成を採用することにより、羽ばたき装置1Aの破損が未然に防止できることになる。 Here, as described above, in the present embodiment, the support frame 13 is fixed to the lower frame 11 and the upper frame 12 while being sandwiched between the lower frame 11 and the upper frame 12 in the Z-axis direction. Yes. With this configuration, the lower frame 11, the upper frame 12, and the support frame that are arranged and fixed so as to be orthogonal to each other at a substantially central portion of the housing 10 configured by combining a plurality of frame-shaped members. 13 will be located, and the rigidity of the entire housing 10 will be dramatically increased. Therefore, by adopting this configuration, the flapping apparatus 1A can be prevented from being damaged.
 <主回転電動機20の構成>
 図1および図2に示すように、主回転電動機20は、羽ばたき装置1Aの下部に配置されており、下フレーム11に固定されることで躯体10に組付けられている。図2ないし図4に示すように、主回転電動機20は、回転運動を出力する出力シャフト20a(図4(A)参照)を含んでおり、当該出力シャフト20aは、Z軸方向に沿って延在するように配置されている。出力シャフト20aの先端には、ギヤ20bが固定されている。ギヤ20bは、出力シャフト20aの軸線回りの回転に伴って出力シャフト20aと共に回転する。
<Configuration of main rotating motor 20>
As shown in FIGS. 1 and 2, the main rotary motor 20 is disposed at the lower part of the flapping apparatus 1 </ b> A and is assembled to the housing 10 by being fixed to the lower frame 11. As shown in FIGS. 2 to 4, the main rotary motor 20 includes an output shaft 20 a (see FIG. 4A) that outputs rotational motion, and the output shaft 20 a extends along the Z-axis direction. It is arranged to exist. A gear 20b is fixed to the tip of the output shaft 20a. The gear 20b rotates with the output shaft 20a as the output shaft 20a rotates about the axis.
 主回転電動機20は、使用者もしくは自動化されたアルゴリズムにより制御指示が与えられる制御部によってその動作が制御される。具体的には、当該制御部により、上述した図示しないバッテリから主回転電動機20に供給される電力が可変に調節され、これによって主回転電動機20の出力(すなわち回転数)が制御される。なお、上述した主回転電動機20の動作制御は、従来公知の一般的な手法であるため、ここではその詳細な説明は省略する。 The operation of the main rotary motor 20 is controlled by a user or a control unit to which a control instruction is given by an automated algorithm. Specifically, the control unit variably adjusts the electric power supplied from the above-described battery (not shown) to the main rotary electric motor 20, thereby controlling the output (that is, the rotation speed) of the main rotary electric motor 20. The above-described operation control of the main rotating motor 20 is a conventionally known general method, and thus detailed description thereof is omitted here.
 <動力伝達機構30の全体構成>
 図2および図3に示すように、動力伝達機構30は、回転運動伝達部30Aと、第1運動変換部30Bと、一対の第2運動変換部である右側第2運動変換部30C1および左側第2運動変換部30C2とを含んでいる。回転運動伝達部30Aは、主回転電動機20の出力シャフト20aに生じた回転運動をそのまま回転運動として伝達する動力伝達部である。第1運動変換部30Bは、回転運動伝達部30Aから伝達された回転運動を往復直線運動に変換して伝達する動力伝達部である。右側第2運動変換部30C1は、羽ばたき装置1Aの右舷に設けられており、第1運動変換部30Bから伝達された往復直線運動を回転方向に沿った往復運動に変換して伝達する動力伝達部である。左側第2運動変換部30C2は、羽ばたき装置1Aの左舷に設けられており、第1運動変換部30Bから伝達された往復直線運動を回転方向に沿った往復運動に変換して伝達する動力伝達部である。
<Overall configuration of power transmission mechanism 30>
As shown in FIGS. 2 and 3, the power transmission mechanism 30 includes a rotary motion transmission unit 30A, a first motion conversion unit 30B, a right second motion conversion unit 30C1 that is a pair of second motion conversion units, and a left side 2 motion conversion part 30C2. The rotary motion transmission unit 30A is a power transmission unit that transmits the rotary motion generated on the output shaft 20a of the main rotary motor 20 as it is as a rotary motion. The first motion conversion unit 30B is a power transmission unit that converts the rotational motion transmitted from the rotational motion transmission unit 30A into a reciprocating linear motion and transmits it. The right second motion conversion unit 30C1 is provided on the starboard of the flapping apparatus 1A, and converts the reciprocating linear motion transmitted from the first motion conversion unit 30B into a reciprocating motion along the rotational direction and transmits it. It is. The left second motion conversion unit 30C2 is provided on the port side of the flapping apparatus 1A, and converts the reciprocating linear motion transmitted from the first motion conversion unit 30B into a reciprocating motion along the rotation direction and transmits the power transmission unit. It is.
 <回転運動伝達部30Aの構成>
 図2ないし図4に示すように、回転運動伝達部30Aは、第1伝達部材31と第2伝達部材32とを含んでいる。第1伝達部材31および第2伝達部材32は、いずれも支持フレーム13によって回転可能に支持されることで躯体10に組付けられている。
<Configuration of Rotating Motion Transmitter 30A>
As illustrated in FIGS. 2 to 4, the rotational motion transmission unit 30 </ b> A includes a first transmission member 31 and a second transmission member 32. The first transmission member 31 and the second transmission member 32 are both assembled to the housing 10 by being rotatably supported by the support frame 13.
 第1伝達部材31は、Z軸方向に沿って延在する第1接続ロッド31aと、第1接続ロッド31aの一端に固定されたギヤ31bと、第1接続ロッド31aの他端に固定されたギヤ31cとを有している。ギヤ31bおよびギヤ31cは、いずれも第1接続ロッド31aと共に第1接続ロッド31aの軸線回りに回転する。 The first transmission member 31 is fixed to the first connection rod 31a extending along the Z-axis direction, the gear 31b fixed to one end of the first connection rod 31a, and the other end of the first connection rod 31a. And a gear 31c. Both the gear 31b and the gear 31c rotate around the axis of the first connecting rod 31a together with the first connecting rod 31a.
 第2伝達部材32は、Z軸方向に沿って延在する第2接続ロッド32aと、第2接続ロッド32aの所定位置に固定されたギヤ32bと、第2接続ロッド32aの所定位置に固定された回転伝達部材としてのディスク32cとを有している。ギヤ32bおよびディスク32cは、いずれも第2接続ロッド32aと共に第2接続ロッド32aの軸線回りに回転する。 The second transmission member 32 is fixed at a predetermined position of the second connection rod 32a, a second connection rod 32a extending along the Z-axis direction, a gear 32b fixed at a predetermined position of the second connection rod 32a. And a disk 32c as a rotation transmitting member. Both the gear 32b and the disk 32c rotate around the axis of the second connecting rod 32a together with the second connecting rod 32a.
 第1接続ロッド31aの一端に固定されたギヤ31bは、出力シャフト20aの先端に固定されたギヤ20bと歯合している。また、第2接続ロッド32aの所定位置に固定されたギヤ32bは、第1接続ロッド31aの他端に固定されたギヤ31cと歯合している。 The gear 31b fixed to one end of the first connecting rod 31a meshes with the gear 20b fixed to the tip of the output shaft 20a. Further, the gear 32b fixed at a predetermined position of the second connecting rod 32a meshes with a gear 31c fixed to the other end of the first connecting rod 31a.
 以上により、主回転電動機20の出力シャフト20aに生じた回転運動が、第1伝達部材31および第2伝達部材32に回転運動のまま伝達されることになり、その結果、回転運動伝達部30Aの出力部である回転伝達部材としてのディスク32cが第2接続ロッド32aの軸線回りに回転運動することになる。すなわち、ディスク32cは、第2接続ロッド32aの延在方向と平行な方向(すなわちZ軸方向)に延在する第1回転軸101(図4(B)参照)を回転中心として回転する。なお、第1伝達部材31および第2伝達部材32は、ギヤ31b,31c,32bの歯数が調節されることにより、減速機として機能する。 As described above, the rotational motion generated in the output shaft 20a of the main rotary electric motor 20 is transmitted to the first transmission member 31 and the second transmission member 32 as the rotational motion, and as a result, the rotational motion transmission unit 30A The disk 32c as a rotation transmission member, which is an output part, rotates around the axis of the second connecting rod 32a. That is, the disk 32c rotates around the first rotation shaft 101 (see FIG. 4B) extending in a direction parallel to the extending direction of the second connecting rod 32a (that is, the Z-axis direction). The first transmission member 31 and the second transmission member 32 function as a speed reducer by adjusting the number of teeth of the gears 31b, 31c, and 32b.
 <第1運動変換部30Bの構成>
 図2ないし図4に示すように、第1運動変換部30Bは、主回転電動機20および回転運動伝達部30Aの上方に配置されており、第1クランクアーム33Aおよび第2クランクアーム33Bならびにクランクピン34a,34b1,34b2(図4参照)からなるクランク機構と、スライダ35とを含んでいる。
<Configuration of the first motion conversion unit 30B>
As shown in FIGS. 2 to 4, the first motion conversion unit 30B is disposed above the main rotary electric motor 20 and the rotational motion transmission unit 30A, and includes the first crank arm 33A, the second crank arm 33B, and the crankpin. A crank mechanism including 34a, 34b1, and 34b2 (see FIG. 4) and a slider 35 are included.
 スライダ35は、Y軸方向における外形寸法がX軸方向における外形寸法およびZ軸方向における外形寸法のいずれよりも小さい略平板状の形状を有しており、回転運動伝達部30Aの第2伝達部材32の上方に位置している。スライダ35は、躯体10によって移動可能に支持されている。 The slider 35 has a substantially flat shape in which the outer dimension in the Y-axis direction is smaller than both the outer dimension in the X-axis direction and the outer dimension in the Z-axis direction, and the second transmission member of the rotary motion transmission unit 30A. 32 is located above. The slider 35 is movably supported by the housing 10.
 より詳細には、スライダ35は、支持フレーム13に設けられた一対のスライドガイド16a,16bによって移動可能に支持されている。スライドガイド16a,16bは、X軸方向に沿って延在するとともにZ軸方向に並んで配設されるように支持フレーム13によって支持されており、スライダ35の所定位置には、当該スライドガイド16a,16bが挿通される複数の貫通孔が設けられている。これにより、当該複数の貫通孔にスライドガイド16a,16bが挿通されることにより、スライダ35が、第1方向であるX軸方向に沿って一対のスライドガイド16a,16bよって案内されることになる。 More specifically, the slider 35 is movably supported by a pair of slide guides 16 a and 16 b provided on the support frame 13. The slide guides 16a and 16b extend along the X-axis direction and are supported by the support frame 13 so as to be arranged side by side in the Z-axis direction. , 16b are provided with a plurality of through holes. As a result, the slide guides 16a and 16b are inserted through the plurality of through holes, whereby the slider 35 is guided by the pair of slide guides 16a and 16b along the X-axis direction that is the first direction. .
 ここで、スライダ35および一対のスライドガイド16a,16bは、支持フレーム13の内部に配置されている。より詳細には、一対のスライドガイド16a,16bは、支持フレーム13の前枠部および後枠部を橋渡すように設けられており、スライダ35は、この一対のスライドガイド16a,16bによって移動可能に支持されている。すなわち、支持フレーム13は、X軸方向およびZ軸方向においてスライダ35および一対のスライドガイド16a,16bを取り囲んでいる。 Here, the slider 35 and the pair of slide guides 16 a and 16 b are disposed inside the support frame 13. More specifically, the pair of slide guides 16a and 16b are provided so as to bridge the front frame portion and the rear frame portion of the support frame 13, and the slider 35 is movable by the pair of slide guides 16a and 16b. It is supported by. That is, the support frame 13 surrounds the slider 35 and the pair of slide guides 16a and 16b in the X-axis direction and the Z-axis direction.
 このように構成することにより、スライダ35が配置される部分の動力伝達機構30を全体として薄型化することができ、羽ばたき装置1Aの小型化が可能になる。なお、スライダ35には、軽量化のために、必要な剛性を確保した上で孔や切り欠き等が設けられていることが好ましい。 With this configuration, the power transmission mechanism 30 where the slider 35 is disposed can be thinned as a whole, and the flapping apparatus 1A can be downsized. In addition, it is preferable that the slider 35 is provided with a hole, a notch, or the like while ensuring necessary rigidity for weight reduction.
 また、上述したように、矩形枠状の形状を有する支持フレーム13に橋渡すように一対のスライドガイド16a,16bを設けることにより、支持フレーム13が当該一対のスライドガイド16a,16bによって補強される効果を得ることができる。 Further, as described above, by providing the pair of slide guides 16a and 16b so as to bridge the support frame 13 having a rectangular frame shape, the support frame 13 is reinforced by the pair of slide guides 16a and 16b. An effect can be obtained.
 その場合、図示するように、一対のスライドガイド16a,16bをスライダ35のうちのクランク機構が位置する側の端部(すなわち、支持フレーム13の下枠部)とは反対側の端部(すなわち、支持フレーム13の上枠部)寄りの位置に偏在するように設置することにより、当該補強効果をより高めることができる。したがって、支持フレーム13の剛性が高まることにより、結果としてスライダ35に撓みや捩れといった変形が生じ難くなり、安定したスライダ35の動作が実現できることになる。 In that case, as shown in the drawing, the pair of slide guides 16a and 16b is connected to the end portion (that is, the lower frame portion of the support frame 13) opposite to the end portion of the slider 35 where the crank mechanism is located (that is, the lower frame portion). Further, the reinforcing effect can be further enhanced by installing the support frame 13 so as to be unevenly distributed at a position near the upper frame portion). Therefore, the rigidity of the support frame 13 is increased, and as a result, the slider 35 is hardly deformed such as bending or twisting, and a stable operation of the slider 35 can be realized.
 第1クランクアーム33Aおよび第2クランクアーム33Bを含むクランク機構は、スライダ35の下方であって第2伝達部材32の上方に配置されている。より詳細には、クランク機構は、支持フレーム13によって囲まれた空間の一部にY軸方向において跨ることとなるように、Z軸方向においてスライダ35と隣り合うように配設されている。第1クランクアーム33Aおよび第2クランクアーム33Bは、いずれもその延在方向がXY平面と平行となるように配置されている。 The crank mechanism including the first crank arm 33A and the second crank arm 33B is disposed below the slider 35 and above the second transmission member 32. More specifically, the crank mechanism is disposed adjacent to the slider 35 in the Z-axis direction so as to straddle a part of the space surrounded by the support frame 13 in the Y-axis direction. The first crank arm 33A and the second crank arm 33B are both arranged so that their extending directions are parallel to the XY plane.
 図4に示すように、第1クランクアーム33Aは、その一端がクランクピン34aによって第2伝達部材32のディスク32cの偏心位置に回転可能に組付けられており、その他端がクランクピン34b1によってスライダ35の前端位置に回転可能に組付けられている。 As shown in FIG. 4, the first crank arm 33A has one end rotatably assembled to the eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a, and the other end is a slider by the crank pin 34b1. 35 is rotatably assembled at the front end position.
 より詳細には、図5に示すように、第1クランクアーム33Aの上記一端には、孔部33a1が設けられており、当該孔部33a1に挿通するようにクランクピン34aがディスク32cに取付けられている。ここで、第1クランクアーム33Aの上記一端がディスク32cに対して回転可能に組付けられることとなるように、孔部33a1は、摩擦を低減するための所定のクリアランス分だけ、当該孔部33a1を挿通する部分のクランクピン34aよりも僅かに大きく形成されている。 More specifically, as shown in FIG. 5, the one end of the first crank arm 33A is provided with a hole 33a1, and the crank pin 34a is attached to the disk 32c so as to be inserted into the hole 33a1. ing. Here, the hole 33a1 has a predetermined clearance for reducing friction so that the one end of the first crank arm 33A is rotatably assembled to the disk 32c. Is formed to be slightly larger than the crank pin 34a in the portion through which the shaft is inserted.
 一方、第1クランクアーム33Aの上記他端には、孔部33a2が設けられており、当該孔部33a2に挿通するようにクランクピン34b1がスライダ35の下面の前端位置に取付けられている。ここで、孔部33a2は、少なくとも第1クランクアーム33Aが延びる方向に沿って、当該孔部33a2を挿通する部分のクランクピン34b1の外形よりも顕著に大きく(すなわち、摩擦を低減するための所定のクリアランス分よりも十分に大きく)形成されており、たとえば図示する如くの長孔によって構成されている。これにより、クランクピン34b1は、孔部33a2に遊嵌されている。 On the other hand, a hole 33a2 is provided at the other end of the first crank arm 33A, and a crank pin 34b1 is attached to the front end position of the lower surface of the slider 35 so as to be inserted into the hole 33a2. Here, the hole 33a2 is remarkably larger than the outer shape of the crank pin 34b1 at a portion through which the hole 33a2 is inserted at least along the direction in which the first crank arm 33A extends (that is, a predetermined value for reducing friction). For example, a long hole as shown in the figure. Thereby, the crank pin 34b1 is loosely fitted in the hole 33a2.
 そのため、第1クランクアーム33Aの上記他端は、スライダ35に回転可能に組付けられるばかりでなく、さらに、XY平面内方向において、スライダ35に対してスライド移動可能に組付けられることになる。 Therefore, the other end of the first crank arm 33A is not only rotatably attached to the slider 35, but is further attached so as to be slidable relative to the slider 35 in the XY plane direction.
 図4に示すように、第2クランクアーム33Bは、その一端がクランクピン34aによって第2伝達部材32のディスク32cの偏心位置に回転可能に組付けられており、その他端がクランクピン34b2によってスライダ35の後端位置に回転可能に組付けられている。 As shown in FIG. 4, one end of the second crank arm 33B is rotatably assembled to the eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a, and the other end is a slider by the crank pin 34b2. 35 is rotatably assembled at the rear end position.
 より詳細には、図5に示すように、第2クランクアーム33Bの上記一端には、孔部33b1が設けられており、当該孔部33b1に挿通するようにクランクピン34aがディスク32cに取付けられている。ここで、第2クランクアーム33Bの上記一端がディスク32cに対して回転可能に組付けられることとなるように、孔部33b1は、摩擦を低減するための所定のクリアランス分だけ、当該孔部33b1を挿通する部分のクランクピン34aよりも僅かに大きく形成されている。 More specifically, as shown in FIG. 5, the one end of the second crank arm 33B is provided with a hole 33b1, and the crank pin 34a is attached to the disk 32c so as to be inserted into the hole 33b1. ing. Here, the hole 33b1 has a predetermined clearance for reducing friction so that the one end of the second crank arm 33B is rotatably assembled to the disk 32c. Is formed to be slightly larger than the crank pin 34a in the portion through which the shaft is inserted.
 一方、第2クランクアーム33Bの上記他端には、孔部33b2が設けられており、当該孔部33b2に挿通するようにクランクピン34b2がスライダ35の下面の後端位置に取付けられている。ここで、孔部33b2は、少なくとも第2クランクアーム33Bが延びる方向に沿って、当該孔部33b2を挿通する部分のクランクピン34b2の外形よりも顕著に大きく(すなわち、摩擦を低減するための所定のクリアランス分よりも十分に大きく)形成されており、たとえば図示する如くの長孔によって構成されている。これにより、クランクピン34b2は、孔部33b2に遊嵌されている。 On the other hand, the other end of the second crank arm 33B is provided with a hole 33b2, and the crank pin 34b2 is attached to the rear end position of the lower surface of the slider 35 so as to be inserted into the hole 33b2. Here, the hole 33b2 is remarkably larger than the outer shape of the crank pin 34b2 in a portion through which the hole 33b2 is inserted at least along the direction in which the second crank arm 33B extends (that is, a predetermined value for reducing friction). For example, a long hole as shown in the figure. Thereby, the crank pin 34b2 is loosely fitted in the hole 33b2.
 そのため、第2クランクアーム33Bの上記他端は、スライダ35に回転可能に組付けられるばかりでなく、さらに、XY平面内方向において、スライダ35に対してスライド移動可能に組付けられることになる。 Therefore, the other end of the second crank arm 33B is not only rotatably attached to the slider 35, but is also attached so as to be slidable relative to the slider 35 in the XY plane direction.
 ここで、第1クランクアーム33Aの上記一端と第2クランクアーム33Bの上記一端とは、上述したように、共通のクランクピン34aによってディスク32cに回転可能に組付けられている。そのため、第1クランクアーム33Aおよび第2クランクアーム33Bの各々の一端は、ディスク32cの第1回転軸101の延在方向(すなわちZ軸方向)と平行な方向に延在する共通の回転軸を回転中心として、当該ディスク32cの偏心位置に回転可能に接続されることになる。 Here, as described above, the one end of the first crank arm 33A and the one end of the second crank arm 33B are rotatably assembled to the disk 32c by the common crank pin 34a. Therefore, one end of each of the first crank arm 33A and the second crank arm 33B has a common rotating shaft extending in a direction parallel to the extending direction of the first rotating shaft 101 of the disk 32c (that is, the Z-axis direction). As a rotation center, the disk 32c is connected to an eccentric position so as to be rotatable.
 一方、第1クランクアーム33Aの上記他端と第2クランクアーム33Bの上記他端とは、上述したように、それぞれ互いに異なるクランクピン34b1,34b2によってスライダ35に回転可能かつスライド移動可能に組付けられている。そのため、第1クランクアーム33Aおよび第2クランクアーム33Bの各々の他端は、ディスク32cの第1回転軸101の延在方向(すなわちZ軸方向)と平行な方向に延在しかつスライダ35の移動方向であるX軸方向において距離をもって位置する互いに異なる回転軸を回転中心として、スライダ35に対して回転可能に接続されるとともに、ディスク32cの第1回転軸101の延在方向(すなわちZ軸方向)と直交する方向において、スライダ35に対してスライド移動可能に接続されることになる。 On the other hand, the other end of the first crank arm 33A and the other end of the second crank arm 33B are assembled to the slider 35 so as to be rotatable and slidable by different crank pins 34b1 and 34b2, as described above. It has been. Therefore, the other end of each of the first crank arm 33A and the second crank arm 33B extends in a direction parallel to the extending direction (that is, the Z-axis direction) of the first rotating shaft 101 of the disk 32c and the slider 35 The rotary shafts that are different from each other in the X-axis direction, which is the moving direction, are connected to the slider 35 so as to be rotatable about different rotation axes, and the extending direction of the first rotary shaft 101 of the disk 32c (that is, the Z-axis). In the direction orthogonal to (direction), the slider 35 is connected to be slidable.
 以上により、図4に示すように、回転運動伝達部30Aの出力部である回転伝達部材としてのディスク32cが第1回転軸101を回転中心として図中に示す矢印DR0方向に回転運動することにより、ディスク32cに組付けられた第1クランクアーム33Aの上記一端および第2クランクアーム33Bの上記一端(すなわち、クランクピン34aが位置する側の端部)も第1回転軸101を回転中心として矢印DR0方向に回転することになる。これに伴い、第1運動変換部30Bの出力部としてのスライダ35は、第1クランクアーム33Aおよび第2クランクアーム33Bによって周期的に押し引きされることになり、スライドガイド16a,16bの延在方向であるX軸方向に沿って往復直線運動することになる。 As described above, as shown in FIG. 4, the disk 32c as the rotation transmission member, which is the output part of the rotational movement transmission unit 30A, rotates about the first rotation shaft 101 in the direction indicated by the arrow DR0. The one end of the first crank arm 33A and the one end of the second crank arm 33B (that is, the end portion on the side where the crank pin 34a is located) assembled to the disk 32c are also arrows with the first rotation shaft 101 as the center of rotation. It will rotate in the DR0 direction. Accordingly, the slider 35 serving as the output unit of the first motion conversion unit 30B is periodically pushed and pulled by the first crank arm 33A and the second crank arm 33B, and the slide guides 16a and 16b are extended. A reciprocating linear motion is made along the X-axis direction.
 なお、図2ないし図4に示すように、スライダ35には、弾性付勢機構である第1付勢部としての前側付勢部材60Aおよび第2付勢部としての後側付勢部材60Bが設けられているが、当該弾性付勢機構の詳細については、後述することとする。 As shown in FIGS. 2 to 4, the slider 35 includes a front urging member 60 </ b> A as a first urging member that is an elastic urging mechanism and a rear urging member 60 </ b> B as a second urging member. The details of the elastic biasing mechanism will be described later.
 <右側第2運動変換部30C1の構成>
 図2、図3および図6に示すように、右側第2運動変換部30C1は、スライダ35の右方に配置されており、第1弾性ベルトとしての右前側弾性ベルト36R1および右後側弾性ベルト36R2と、第1被掛合体としての右側ローラ37Rと、第1回転体としての右側回転体38Rとを主として含んでいる。
<Configuration of Right Second Motion Conversion Unit 30C1>
As shown in FIGS. 2, 3, and 6, the second right motion conversion unit 30 </ b> C <b> 1 is disposed on the right side of the slider 35, and the right front elastic belt 36 </ b> R <b> 1 and the right rear elastic belt as the first elastic belt. 36R2, a right roller 37R as a first hooked body, and a right rotating body 38R as a first rotating body are mainly included.
 右側回転体38Rは、略円柱状の形状を有しており、躯体10によって回転可能に支持されている。より詳細には、右側回転体38Rは、下フレーム11および上フレーム12に固定されることでZ軸方向に沿って延在する右側ガイドシャフト18Rに回転可能に取付けられている。これにより、右側回転体38Rは、その周面がスライダ35の右側面35Rに対向するように配置されているとともに、右側ガイドシャフト18Rの延在方向(すなわちZ軸方向)と平行な方向に延在する第2回転軸102R(図6参照)を回転中心として回転可能に支持されている。 The right side rotating body 38R has a substantially columnar shape and is rotatably supported by the housing 10. More specifically, the right rotating body 38R is fixed to the lower frame 11 and the upper frame 12, and is rotatably attached to the right guide shaft 18R extending along the Z-axis direction. As a result, the right rotating body 38R is disposed so that its circumferential surface faces the right side 35R of the slider 35, and extends in a direction parallel to the extending direction of the right guide shaft 18R (that is, the Z-axis direction). The second rotary shaft 102R (see FIG. 6) is supported so as to be rotatable about the center of rotation.
 右前側弾性ベルト36R1および右後側弾性ベルト36R2は、それぞれスライダ35および右側回転体38Rに掛架されている。より詳細には、右前側弾性ベルト36R1は、その一端がスライダ35の右側面35Rの前端部に固定されており、スライダ35に対する非固定部分に該当するその他端が右側回転体38Rの周面の所定位置に固定されている。また、右後側弾性ベルト36R2は、その一端がスライダ35の右側面35Rの後端部に固定されており、スライダ35に対する非固定部分に該当するその他端が右側回転体38Rの周面の所定位置に固定されている。 The right front elastic belt 36R1 and the right rear elastic belt 36R2 are respectively suspended on the slider 35 and the right rotating body 38R. More specifically, one end of the right front elastic belt 36R1 is fixed to the front end portion of the right side surface 35R of the slider 35, and the other end corresponding to the non-fixed portion with respect to the slider 35 is the peripheral surface of the right side rotator 38R. It is fixed in place. Further, one end of the right rear elastic belt 36R2 is fixed to the rear end portion of the right side surface 35R of the slider 35, and the other end corresponding to an unfixed portion with respect to the slider 35 is a predetermined surface on the peripheral surface of the right side rotator 38R. Fixed in position.
 ここで、右前側弾性ベルト36R1および右後側弾性ベルト36R2は、Z軸方向において互いにずれた位置に配置されている。より詳細には、右前側弾性ベルト36R1は、右後側弾性ベルト36R2よりも上方の位置に配置されており、右後側弾性ベルト36R2は、右前側弾性ベルト36R1よりも下方の位置に配置されている。これにより、右前側弾性ベルト36R1および右後側弾性ベルト36R2は、互いに干渉することなく独立してスライダ35と右側回転体38Rとを接続している。 Here, the right front elastic belt 36R1 and the right rear elastic belt 36R2 are arranged at positions shifted from each other in the Z-axis direction. More specifically, the right front elastic belt 36R1 is disposed at a position above the right rear elastic belt 36R2, and the right rear elastic belt 36R2 is disposed at a position below the right front elastic belt 36R1. ing. Thus, the right front elastic belt 36R1 and the right rear elastic belt 36R2 independently connect the slider 35 and the right rotating body 38R without interfering with each other.
 右前側弾性ベルト36R1および右後側弾性ベルト36R2は、いずれもスライダ35から右側回転体38Rに動力を伝達するための部材であり、適度な弾性を有する樹脂製またはゴム製の部材にて構成されている。このように適度な弾性を有する部材にて右前側弾性ベルト36R1および右後側弾性ベルト36R2を構成することにより、右側羽体40Rが羽ばたき動作を行なうことによって主回転電動機20に印加されることとなる負荷が、当該右前側弾性ベルト36R1および右後側弾性ベルト36R2が伸縮することによって相当程度に吸収され、当該負荷の変動が抑制できることになり、羽ばたき装置1Aの運動効率が向上することになる。 Each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 is a member for transmitting power from the slider 35 to the right rotating body 38R, and is made of a resin or rubber member having appropriate elasticity. ing. By configuring the right front elastic belt 36R1 and the right rear elastic belt 36R2 with members having moderate elasticity in this way, the right wing body 40R is applied to the main rotary motor 20 by performing a flapping operation. Is absorbed to a considerable extent by the expansion and contraction of the right front elastic belt 36R1 and the right rear elastic belt 36R2, and the fluctuation of the load can be suppressed, and the exercise efficiency of the flapping apparatus 1A is improved. .
 右側ローラ37Rは、スライダ35と右側回転体38Rとの間に配置されており、躯体10によって上述した右側回転体38Rの第2回転軸102Rを回転中心として回転移動可能に支持されている。具体的には、上述した右側回転体38Rを回転可能に支持する右側ガイドシャフト18Rに、当該右側ガイドシャフト18Rに対して回転可能となるように一対のアームである右側上アーム19R1および右側下アーム19R2が組付けられており、当該右側上アーム19R1および右側下アーム19R2に固定されることでZ軸方向に沿って延在する右側ローラシャフト17Rに、右側ローラ37Rが回転可能に取付けられている。 The right roller 37R is disposed between the slider 35 and the right rotating body 38R, and is supported by the housing 10 so as to be rotatable about the second rotating shaft 102R of the right rotating body 38R described above. Specifically, a right upper arm 19R1 and a right lower arm, which are a pair of arms, are provided on the right guide shaft 18R that rotatably supports the right rotating body 38R described above so as to be rotatable with respect to the right guide shaft 18R. 19R2 is assembled, and the right roller 37R is rotatably attached to the right roller shaft 17R extending along the Z-axis direction by being fixed to the right upper arm 19R1 and the right lower arm 19R2. .
 スライダ35と右側回転体38Rとの間に位置する部分の右前側弾性ベルト36R1および右後側弾性ベルト36R2は、それぞれ右側ローラ37Rに掛け回されている。換言すれば、右側ローラ37Rは、右前側弾性ベルト36R1および右後側弾性ベルト36R2の各々に所定の大きさの張力が付与されることとなるように、これら右前側弾性ベルト36R1および右後側弾性ベルト36R2に当接している。 The right front elastic belt 36R1 and the right rear elastic belt 36R2 located between the slider 35 and the right rotating body 38R are respectively wound around the right roller 37R. In other words, the right roller 37R has the right front elastic belt 36R1 and the right rear side so that a predetermined amount of tension is applied to each of the right front elastic belt 36R1 and the right rear elastic belt 36R2. It is in contact with the elastic belt 36R2.
 ここで、Z軸方向に沿って見た場合に、右前側弾性ベルト36R1および右後側弾性ベルト36R2の各々は、いずれもS字状に延在するようにスライダ35、右側ローラ37Rおよび右側回転体38Rに跨って掛架されており、スライダ35と右側ローラ37Rとの間の位置および右側ローラ37Rと右側回転体38Rとの間の位置において、互いに重なるように交差している。これにより、右側ローラ37Rは、右前側弾性ベルト36R1および右後側弾性ベルト36R2によって挟み込まれることになる。 Here, when viewed along the Z-axis direction, each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 extends in an S shape so that the slider 35, the right roller 37R, and the right rotation It spans over the body 38R and intersects at a position between the slider 35 and the right roller 37R and a position between the right roller 37R and the right rotating body 38R so as to overlap each other. Accordingly, the right roller 37R is sandwiched between the right front elastic belt 36R1 and the right rear elastic belt 36R2.
 以上により、上述したスライダ35のX軸方向に沿った往復直線運動に伴い、右側回転体38Rに固定された部分の右前側弾性ベルト36R1および右後側弾性ベルト36R2がそれぞれ右側回転体38Rの回転方向に沿って送られることになり、これに伴って右側第2運動変換部30C1の出力部としての右側回転体38Rが、上述した第2回転軸102Rを回転中心として回転方向に往復運動することになる。 As described above, along with the reciprocating linear motion of the slider 35 along the X-axis direction, the right front elastic belt 36R1 and the right rear elastic belt 36R2 fixed to the right rotating body 38R rotate the right rotating body 38R. Accordingly, the right rotating body 38R as the output unit of the right second motion converting unit 30C1 reciprocates in the rotational direction with the second rotating shaft 102R as the rotation center. become.
 なお、上述したように、右前側弾性ベルト36R1および右後側弾性ベルト36R2の各々が右側ローラ37Rに掛け回されていることにより、各種の飛行態様を実現することが可能になるが、その詳細については後述することとする。 As described above, since each of the right front elastic belt 36R1 and the right rear elastic belt 36R2 is wound around the right roller 37R, various flight modes can be realized. Will be described later.
 ここで、本実施の形態においては、右前側弾性ベルト36R1および右後側弾性ベルト36R2をいずれも歯を有さない摩擦ベルトにて構成するとともに、右側ローラ37Rおよび右側回転体38Rをいずれも歯を有さない摩擦ローラにて構成しているが、必ずしもこのように構成する必要はなく右前側弾性ベルト36R1および右後側弾性ベルト36R2をいずれも歯付きベルトにて構成するとともに、右側ローラ37Rおよび右側回転体38Rをいずれも歯付きローラ(ギヤ)にて構成することとしてもよい。 Here, in the present embodiment, the right front elastic belt 36R1 and the right rear elastic belt 36R2 are configured by friction belts having no teeth, and the right roller 37R and the right rotating body 38R are both teeth. However, it is not always necessary to make such a configuration, and both the right front elastic belt 36R1 and the right rear elastic belt 36R2 are formed by toothed belts, and the right roller 37R. Each of the right-side rotating body 38R may be constituted by a toothed roller (gear).
 また、本実施の形態においては、右前側弾性ベルト36R1および右後側弾性ベルト36R2からなる2本の弾性ベルトを用いてスライダ35と右側回転体38Rとを接続しているが、これを1本の弾性ベルトにて接続することも可能である。その場合には、1本の弾性ベルトの一端をスライダ35の前端部に固定するとともに他端をスライダ35の後端部に固定し、スライダ35に対する当該1本の弾性ベルトの非固定部分を右側回転体38Rに巻回または固定することとすればよい。 In the present embodiment, the slider 35 and the right rotating body 38R are connected by using two elastic belts including the right front elastic belt 36R1 and the right rear elastic belt 36R2. It is also possible to connect with an elastic belt. In this case, one end of one elastic belt is fixed to the front end portion of the slider 35 and the other end is fixed to the rear end portion of the slider 35, and the non-fixed portion of the one elastic belt with respect to the slider 35 is set to the right side. What is necessary is just to wind or fix to the rotary body 38R.
 <左側第2運動変換部30C2の構成>
 図2、図3および図6に示すように、左側第2運動変換部30C2は、スライダ35の左方に配置されており、第2弾性ベルトとしての左前側弾性ベルト36L1および左後側弾性ベルト36L2と、第2被掛合体としての左側ローラ37Lと、第2回転体としての左側回転体38Lとを主として含んでいる。
<Configuration of Left Second Motion Conversion Unit 30C2>
As shown in FIGS. 2, 3, and 6, the second left motion conversion unit 30 </ b> C <b> 2 is disposed on the left side of the slider 35, and the left front elastic belt 36 </ b> L <b> 1 and the left rear elastic belt as the second elastic belt. 36L2, a left roller 37L as a second hooked body, and a left rotating body 38L as a second rotating body are mainly included.
 左側回転体38Lは、略円柱状の形状を有しており、躯体10によって回転可能に支持されている。より詳細には、左側回転体38Lは、下フレーム11および上フレーム12に固定されることでZ軸方向に沿って延在する左側ガイドシャフト18Lに回転可能に取付けられている。これにより、左側回転体38Lは、その周面がスライダ35の左側面35Lに対向するように配置されているとともに、左側ガイドシャフト18Lの延在方向(すなわちZ軸方向)と平行な方向に延在する第2回転軸102L(図6参照)を回転中心として回転可能に支持されている。 The left side rotating body 38L has a substantially cylindrical shape and is rotatably supported by the housing 10. More specifically, the left rotation body 38L is rotatably attached to the left guide shaft 18L extending along the Z-axis direction by being fixed to the lower frame 11 and the upper frame 12. Thereby, the left rotating body 38L is disposed so that the peripheral surface thereof faces the left side surface 35L of the slider 35, and extends in a direction parallel to the extending direction of the left guide shaft 18L (that is, the Z-axis direction). The second rotary shaft 102L (see FIG. 6) is supported so as to be rotatable about the center of rotation.
 左前側弾性ベルト36L1および左後側弾性ベルト36L2は、スライダ35および左側回転体38Lに掛架されている。より詳細には、左前側弾性ベルト36L1は、その一端がスライダ35の左側面35Lの前端部に固定されており、スライダ35に対する非固定部分に該当するその他端が左側回転体38Lの周面の所定位置に固定されている。また、左後側弾性ベルト36L2は、その一端がスライダ35の左側面35Lの後端部に固定されており、スライダ35に対する非固定部分に該当するその他端が左側回転体38Lの周面の所定位置に固定されている。 The left front elastic belt 36L1 and the left rear elastic belt 36L2 are hung on the slider 35 and the left rotating body 38L. More specifically, one end of the left front elastic belt 36L1 is fixed to the front end portion of the left side surface 35L of the slider 35, and the other end corresponding to the non-fixed portion with respect to the slider 35 is the peripheral surface of the left rotating body 38L. It is fixed in place. Further, one end of the left rear elastic belt 36L2 is fixed to the rear end portion of the left side surface 35L of the slider 35, and the other end corresponding to an unfixed portion with respect to the slider 35 is a predetermined surface on the peripheral surface of the left rotating body 38L. Fixed in position.
 ここで、左前側弾性ベルト36L1および左後側弾性ベルト36L2は、Z軸方向において互いにずれた位置に配置されている。より詳細には、左前側弾性ベルト36L1は、左後側弾性ベルト36L2よりも上方の位置に配置されており、左後側弾性ベルト36L2は、左前側弾性ベルト36L1よりも下方の位置に配置されている。これにより、左前側弾性ベルト36L1および左後側弾性ベルト36L2は、互いに干渉することなく独立してスライダ35と左側回転体38Lとを接続している。 Here, the left front elastic belt 36L1 and the left rear elastic belt 36L2 are arranged at positions shifted from each other in the Z-axis direction. More specifically, the left front elastic belt 36L1 is disposed at a position above the left rear elastic belt 36L2, and the left rear elastic belt 36L2 is disposed at a position below the left front elastic belt 36L1. ing. Thus, the left front elastic belt 36L1 and the left rear elastic belt 36L2 independently connect the slider 35 and the left rotating body 38L without interfering with each other.
 左前側弾性ベルト36L1および左後側弾性ベルト36L2は、いずれもスライダ35から左側回転体38Lに動力を伝達するための部材であり、適度な弾性を有する樹脂製またはゴム製の部材にて構成されている。このように適度な弾性を有する部材にて左前側弾性ベルト36L1および左後側弾性ベルト36L2を構成することにより、左側羽体40Lが羽ばたき動作を行なうことによって主回転電動機20に印加されることとなる負荷が、当該左前側弾性ベルト36L1および左後側弾性ベルト36L2が伸縮することによって相当程度に吸収され、当該負荷の変動が抑制できることになり、羽ばたき装置1Aの運動効率が向上することになる。 Each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 is a member for transmitting power from the slider 35 to the left rotating body 38L, and is configured by a resin or rubber member having appropriate elasticity. ing. By configuring the left front elastic belt 36L1 and the left rear elastic belt 36L2 with members having moderate elasticity in this way, the left wing body 40L is applied to the main rotary motor 20 by performing a flapping operation. Is absorbed to a considerable extent by the expansion and contraction of the left front elastic belt 36L1 and the left rear elastic belt 36L2, and the fluctuation of the load can be suppressed, and the exercise efficiency of the flapping apparatus 1A is improved. .
 左側ローラ37Lは、スライダ35と左側回転体38Lとの間に配置されており、躯体10によって上述した左側回転体38Lの第2回転軸102Lを回転中心として回転移動可能に支持されている。具体的には、上述した左側回転体38Lを回転可能に支持する左側ガイドシャフト18Lに、当該左側ガイドシャフト18Lに対して回転可能となるように一対のアームである左側上アーム19L1および左側下アーム19L2が組付けられており、当該左側上アーム19L1および左側下アーム19L2に固定されることでZ軸方向に沿って延在する左側ローラシャフト17Lに、左側ローラ37Lが回転可能に取付けられている。 The left roller 37L is disposed between the slider 35 and the left rotating body 38L, and is supported by the housing 10 so as to be rotatable about the second rotating shaft 102L of the left rotating body 38L described above. Specifically, a left upper arm 19L1 and a left lower arm that are a pair of arms are provided on the left guide shaft 18L that rotatably supports the left rotating body 38L described above so as to be rotatable with respect to the left guide shaft 18L. 19L2 is assembled, and the left roller 37L is rotatably attached to the left roller shaft 17L extending along the Z-axis direction by being fixed to the left upper arm 19L1 and the left lower arm 19L2. .
 スライダ35と左側回転体38Lとの間に位置する部分の左前側弾性ベルト36L1および左後側弾性ベルト36L2は、それぞれ左側ローラ37Lに掛け回されている。換言すれば、左側ローラ37Lは、左前側弾性ベルト36L1および左後側弾性ベルト36L2の各々に所定の大きさの張力が付与されることとなるように、これら左前側弾性ベルト36L1および左後側弾性ベルト36L2に当接している。 The left front elastic belt 36L1 and the left rear elastic belt 36L2 of the portion located between the slider 35 and the left rotating body 38L are respectively wound around the left roller 37L. In other words, the left roller 37L is configured such that the left front elastic belt 36L1 and the left rear elastic belt 36L1 and the left rear elastic belt 36L2 are each given a predetermined magnitude of tension. It is in contact with the elastic belt 36L2.
 ここで、Z軸方向に沿って見た場合に、左前側弾性ベルト36L1および左後側弾性ベルト36L2の各々は、いずれもS字状に延在するようにスライダ35、左側ローラ37Lおよび左側回転体38Lに跨って掛架されており、スライダ35と左側ローラ37Lとの間の位置および左側ローラ37Lと左側回転体38Lとの間の位置において、互いに重なるように交差している。これにより、左側ローラ37Lは、左前側弾性ベルト36L1および左後側弾性ベルト36L2によって挟み込まれることになる。 Here, when viewed along the Z-axis direction, each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 extends in an S shape so that the slider 35, the left roller 37L, and the left rotation It spans over the body 38L and intersects with each other at a position between the slider 35 and the left roller 37L and a position between the left roller 37L and the left rotating body 38L. Thereby, the left roller 37L is sandwiched between the left front elastic belt 36L1 and the left rear elastic belt 36L2.
 以上により、上述したスライダ35のX軸方向に沿った往復直線運動に伴い、左側回転体38Lに固定された部分の左前側弾性ベルト36L1および左後側弾性ベルト36L2がそれぞれ左側回転体38Lの回転方向に沿って送られることになり、これに伴って左側第2運動変換部30C2の出力部としての左側回転体38Lが、上述した第2回転軸102Lを回転中心として回転方向に往復運動することになる。 As described above, along with the reciprocating linear motion of the slider 35 along the X-axis direction, the left front elastic belt 36L1 and the left rear elastic belt 36L2 fixed to the left rotating body 38L rotate the left rotating body 38L. Accordingly, the left rotating body 38L as the output unit of the left second motion conversion unit 30C2 reciprocates in the rotation direction around the second rotation shaft 102L as the rotation center. become.
 なお、上述したように、左前側弾性ベルト36L1および左後側弾性ベルト36L2の各々が左側ローラ37Lに掛け回されていることにより、各種の飛行態様を実現することが可能になるが、その詳細については後述することとする。 As described above, each of the left front elastic belt 36L1 and the left rear elastic belt 36L2 is wound around the left roller 37L, so that various flight modes can be realized. Will be described later.
 ここで、本実施の形態においては、左前側弾性ベルト36L1および左後側弾性ベルト36L2をいずれも歯を有さない摩擦ベルトにて構成するとともに、左側ローラ37Lおよび左側回転体38Lをいずれも歯を有さない摩擦ローラにて構成しているが、必ずしもこのように構成する必要はなく、左前側弾性ベルト36L1および左後側弾性ベルト36L2をいずれも歯付きベルトにて構成するとともに、左側ローラ37Lおよび左側回転体38Lをいずれも歯付きローラ(ギヤ)にて構成することとしてもよい。 Here, in the present embodiment, both the left front elastic belt 36L1 and the left rear elastic belt 36L2 are constituted by friction belts having no teeth, and the left roller 37L and the left rotating body 38L are both teeth. However, the left and right elastic belts 36L1 and 36L2 are both constituted by toothed belts, and the left roller. Both 37L and left-hand side rotation body 38L are good also as comprising a toothed roller (gear).
 また、本実施の形態においては、左前側弾性ベルト36L1および左後側弾性ベルト36L2からなる2本の弾性ベルトを用いてスライダ35と左側回転体38Lとを接続しているが、これを1本の弾性ベルトにて接続することも可能である。その場合には、1本の弾性ベルトの一端をスライダ35の前端部に固定するとともに他端をスライダ35の後端部に固定し、スライダ35に対する当該1本の弾性ベルトの非固定部分を左側回転体38Lに巻回または固定することとすればよい。 In the present embodiment, the slider 35 and the left rotating body 38L are connected using two elastic belts including the left front elastic belt 36L1 and the left rear elastic belt 36L2. It is also possible to connect with an elastic belt. In this case, one end of one elastic belt is fixed to the front end portion of the slider 35 and the other end is fixed to the rear end portion of the slider 35, and the non-fixed portion of the one elastic belt with respect to the slider 35 is set to the left side. What is necessary is just to wind or fix to the rotary body 38L.
 <動力伝達機構30の小括>
 以上において説明した動力伝達機構30とすることにより、主回転電動機20の動力が右側回転体38Rおよび左側回転体38Lに分配されて伝達されることになり、右側回転体38Rおよび左側回転体38Lが、それぞれ第2回転軸102R,102Lを回転中心として回転方向に同期的に往復運動することになる。
<Summary of power transmission mechanism 30>
By using the power transmission mechanism 30 described above, the power of the main rotary electric motor 20 is distributed and transmitted to the right side rotary body 38R and the left side rotary body 38L, and the right side rotary body 38R and the left side rotary body 38L are transmitted. The reciprocating motion is synchronously performed in the rotational direction with the second rotation shafts 102R and 102L as the rotation centers.
 <右側羽体40Rおよび左側羽体40Lの構成>
 図1、図2および図6に示すように、右側羽体40Rおよび左側羽体40Lは、それぞれ棒状に延びる右側マスト39Rおよび左側マスト39Lに取付けられている。より詳細には、右側羽体40Rは、その上縁部が右側マスト39Rに固定されており、左側羽体40Lは、その上縁部が左側マスト39Lに固定されている。
<Configuration of right wing 40R and left wing 40L>
As shown in FIGS. 1, 2 and 6, the right wing 40R and the left wing 40L are respectively attached to a right mast 39R and a left mast 39L extending in a rod shape. More specifically, the upper edge of right wing 40R is fixed to right mast 39R, and the upper edge of left wing 40L is fixed to left mast 39L.
 ここで、上述したように、右側回転体38Rおよび左側回転体38Lは、スライダ35の右方および左方に配置されている。より詳細には、右側回転体38Rおよび左側回転体38Lは、スライダ35を挟むようにY軸方向において並んで配置されている。 Here, as described above, the right rotator 38R and the left rotator 38L are arranged on the right and left sides of the slider 35. More specifically, the right rotating body 38R and the left rotating body 38L are arranged side by side in the Y-axis direction so as to sandwich the slider 35 therebetween.
 上述した右側マスト39Rおよび左側マスト39Lは、これらY軸方向において並んで配置された右側回転体38Rおよび左側回転体38Lに組付けられており、これにより右側羽体40Rおよび左側羽体40Lは、それぞれ羽ばたき装置1Aの右舷側および左舷側に位置することになる。 The right mast 39R and the left mast 39L described above are assembled to the right rotator 38R and the left rotator 38L arranged side by side in the Y-axis direction, whereby the right wing 40R and the left wing 40L are Each is located on the starboard side and port side of the flapping apparatus 1A.
 より具体的には、右側回転体38Rのスライダ35が位置する側とは反対側の端部には、右側マスト39Rの一端である基端が固定されており、左側回転体38Lのスライダ35が位置する側とは反対側の端部には、左側マスト39Lの一端である基端が固定されている。これにより、右側羽体40Rは、その先端が右側回転体38Rから見て左側回転体38Lが位置する側とは反対側に位置するようにY1方向に向けて延在することになり、左側羽体40Lは、その先端が左側回転体38Lから見て右側回転体38Rが位置する側とは反対側に位置するようにY2方向に向けて延在することになる。 More specifically, a base end which is one end of the right mast 39R is fixed to an end of the right side rotator 38R opposite to the side where the slider 35 is located, and the slider 35 of the left side rotator 38L is fixed. A base end which is one end of the left mast 39L is fixed to an end opposite to the side on which it is positioned. As a result, the right wing 40R extends in the Y1 direction so that the tip of the right wing 40R is located on the side opposite to the side on which the left rotator 38L is located when viewed from the right rotator 38R. The body 40L extends in the Y2 direction so that the tip of the body 40L is positioned on the side opposite to the side on which the right rotating body 38R is positioned when viewed from the left rotating body 38L.
 以上により、図6に示すように、右側回転体38Rおよび左側回転体38Lがそれぞれ第2回転軸102R,102Lを回転中心として回転方向に同期的に往復運動することにより、右側マスト39Rおよび左側マスト39Lは、それぞれ右側回転体38Rおよび左側回転体38Lに駆動されて同期的に揺動することになる。 As described above, as shown in FIG. 6, the right side mast 39R and the left side mast 38R and the left side mast 38L reciprocate synchronously in the rotation direction around the second rotation shafts 102R and 102L, respectively. 39L is driven by the right rotating body 38R and the left rotating body 38L, respectively, and swings synchronously.
 その際、右側羽体40Rおよび左側羽体40Lも、それぞれ上述した第2回転軸102R,102Lを回転中心として回転方向に同期的に往復運動することになるため、右側羽体40Rおよび左側羽体40Lは、その先端がそれぞれX軸方向に概ね沿って移動するように同期的に揺動することになる。 At this time, the right wing 40R and the left wing 40L also reciprocate synchronously in the rotation direction around the second rotation shafts 102R and 102L described above, respectively. 40L rocks synchronously so that its tip moves approximately along the X-axis direction.
 ここで、図6においては、スライダ35の往復直線運動の際のスライダ35の重心位置の移動範囲を矢印AR1にて表わしており、右側羽体40Rおよび左側羽体40Lの揺動範囲を矢印AR2にてそれぞれ表わしている。なお、スライダ35の可動範囲のうち、スライダ35が最も前方に配置された場合における位置を第1位置とするとともに、スライダ35が最も後方に配置された場合における位置を第2位置として、以下の説明においては、これら第1位置および第2位置という用語もあわせて使用する。 Here, in FIG. 6, the range of movement of the center of gravity of the slider 35 during the reciprocating linear movement of the slider 35 is indicated by an arrow AR1, and the swing range of the right wing 40R and the left wing 40L is indicated by an arrow AR2. Respectively. Of the movable range of the slider 35, the position when the slider 35 is disposed at the foremost position is defined as the first position, and the position when the slider 35 is disposed at the most rearward is defined as the second position. In the description, the terms “first position” and “second position” are also used.
 <羽ばたき制御機構50の全体構成>
 図2に示すように、羽ばたき制御機構50は、右側羽体40Rの羽ばたき動作を変更させるための右側ローラ制御機構50Aと、左側羽体40Lの羽ばたき動作を変更させるための左側ローラ制御機構50Bとを含んでいる。
<Overall configuration of flapping control mechanism 50>
As shown in FIG. 2, the flapping control mechanism 50 includes a right roller control mechanism 50A for changing the flapping operation of the right wing 40R, and a left roller control mechanism 50B for changing the flapping operation of the left wing 40L. Is included.
 <右側ローラ制御機構50Aの構成>
 図2および図7に示すように、右側ローラ制御機構50Aは、右側ローラ37Rが位置する羽ばたき装置1Aの右舷側に配置されており、柱状フレーム14に組付けられた各種の部品によって構成されている。右側ローラ制御機構50Aは、右側ローラ37Rの位置を可変に調節するとともに、右側ローラ37Rの軸ぶれの程度を可変に調節する。
<Configuration of Right Roller Control Mechanism 50A>
As shown in FIGS. 2 and 7, the right roller control mechanism 50A is disposed on the starboard side of the flapping device 1A where the right roller 37R is located, and is configured by various components assembled to the columnar frame 14. Yes. The right roller control mechanism 50A variably adjusts the position of the right roller 37R and variably adjusts the degree of shaft shake of the right roller 37R.
 具体的には、右側ローラ制御機構50Aは、柱状フレーム14に固定された第1ステージ51aと、第1ステージ51aに組付けられた第1副回転電動機52aおよび第1送り機構部53aと、第1送り機構部53aに組付けられた連結部材54aと、連結部材54aに固定された第2ステージ55aと、第2ステージ55aに組付けられた第2副回転電動機56aおよび第2送り機構部57aと、第2送り機構部57aに組付けられたガイド部材58aとを含んでいる。 Specifically, the right roller control mechanism 50A includes a first stage 51a fixed to the columnar frame 14, a first sub-rotary motor 52a and a first feed mechanism unit 53a assembled to the first stage 51a, The connecting member 54a assembled to the first feeding mechanism 53a, the second stage 55a fixed to the connecting member 54a, the second sub-rotary motor 56a and the second feeding mechanism 57a assembled to the second stage 55a. And a guide member 58a assembled to the second feed mechanism portion 57a.
 第1副回転電動機52aの回転軸には、ピニオンギヤが組付けられている。第1送り機構部53aは、スリットが設けられたギヤボックスと、ギヤボックスによって回転可能に支持されたウォームギヤと、ウォームギヤの端部に組付けられたスパーギヤと、ウォームギヤに歯合するナット部を含む可動体とを有している。なお、ウォームギヤは、その軸方向がX軸方向に平行となるように配置されている。 A pinion gear is assembled to the rotating shaft of the first auxiliary rotating motor 52a. The first feed mechanism 53a includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spur gear assembled to the end of the worm gear, and a nut portion that meshes with the worm gear. And a movable body. The worm gear is arranged such that its axial direction is parallel to the X-axis direction.
 第1副回転電動機52aの回転軸に組付けられたピニオンギヤは、ウォームギヤの端部に組付けられたスパーギヤに歯合しており、これにより第1副回転電動機52aの回転軸が回転することに伴い、ウォームギヤが回転する。可動体は、ギヤボックスに設けられたスリットにその一部が挿通するように配置されており、ウォームギヤが回転することでウォームギヤの軸方向(すなわちX軸方向)に沿って移動する。 The pinion gear assembled to the rotation shaft of the first sub-rotation motor 52a meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the first sub-rotation motor 52a rotates. Along with this, the worm gear rotates. The movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the X-axis direction) as the worm gear rotates.
 第2副回転電動機56aの回転軸には、ピニオンギヤが組付けられている。第2送り機構部57aは、スリットが設けられたギヤボックスと、ギヤボックスによって回転可能に支持されたウォームギヤと、ウォームギヤの端部に組付けられたスパーギヤと、ウォームギヤに歯合するナット部を含む可動体とを含んでいる。なお、ウォームギヤは、その軸方向がZ軸方向に平行となるように配置されている。 A pinion gear is assembled to the rotating shaft of the second auxiliary rotating electric motor 56a. The second feed mechanism portion 57a includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spur gear assembled to the end of the worm gear, and a nut portion that meshes with the worm gear. Includes a movable body. The worm gear is arranged so that its axial direction is parallel to the Z-axis direction.
 第2副回転電動機56aの回転軸に組付けられたピニオンギヤは、ウォームギヤの端部に組付けられたスパーギヤに歯合しており、これにより第2副回転電動機56aの回転軸が回転することに伴い、ウォームギヤが回転する。可動体は、ギヤボックスに設けられたスリットにその一部が挿通するように配置されており、ウォームギヤが回転することでウォームギヤの軸方向(すなわちZ軸方向)に沿って移動する。 The pinion gear assembled to the rotation shaft of the second sub-rotation motor 56a meshes with a spur gear assembled to the end of the worm gear, whereby the rotation shaft of the second sub-rotation motor 56a rotates. Along with this, the worm gear rotates. The movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the Z-axis direction) as the worm gear rotates.
 ガイド部材58aは、その下端にガイド部58a1を有している。ガイド部58a1の下面には、Y軸方向に沿って延在する溝部が形成されている。ガイド部58a1の上記溝部を規定する一対の壁部の間の距離は、Z軸方向に沿って異なるように構成されており、より詳細には、当該一対の壁部の間の距離が、下方から上方に向かうにつれて徐々に減じるように構成されている。 The guide member 58a has a guide portion 58a1 at its lower end. A groove extending along the Y-axis direction is formed on the lower surface of the guide portion 58a1. The distance between the pair of wall portions that define the groove portion of the guide portion 58a1 is configured to be different along the Z-axis direction. More specifically, the distance between the pair of wall portions is lower. It is comprised so that it may decrease gradually as it goes upwards.
 当該溝部には、右側ローラ37Rを回転可能に支持する右側ローラシャフト17Rの上端が収容されている。これにより、右側ローラシャフト17Rの上端は、ガイド部58a1の上記一対の壁部により、X軸方向において挟まれた状態とされている。 The upper end of the right roller shaft 17R that rotatably supports the right roller 37R is accommodated in the groove. Thus, the upper end of the right roller shaft 17R is sandwiched between the pair of wall portions of the guide portion 58a1 in the X-axis direction.
 ここで、上述したように、第1送り機構部53aには、連結部材54aが組付けられている。より詳細には、連結部材54aは、その一端が第1送り機構部53aの可動体に固定されており、その他端が、上述したように第2ステージ55aに固定されている。また、上述したように、第2送り機構部57aには、ガイド部材58aが組付けられている。より詳細には、ガイド部材58aは、その上端が第2送り機構部57aの可動体に固定されており、その下端に、上述したガイド部58a1を有している。 Here, as described above, the connecting member 54a is assembled to the first feeding mechanism portion 53a. More specifically, one end of the connecting member 54a is fixed to the movable body of the first feeding mechanism portion 53a, and the other end is fixed to the second stage 55a as described above. As described above, the guide member 58a is assembled to the second feed mechanism portion 57a. More specifically, the upper end of the guide member 58a is fixed to the movable body of the second feed mechanism portion 57a, and the above-described guide portion 58a1 is provided at the lower end.
 以上により、第1副回転電動機52aが駆動されることにより、ガイド部材58aのガイド部58a1は、第1送り機構部53aのウォームギヤの軸方向と平行な方向であるX軸方向に沿って矢印DR31A方向(図7(A)参照)に移動することになる。また、第2副回転電動機56aが駆動されることにより、ガイド部材58aのガイド部58a1は、第2送り機構部57aのウォームギヤの軸方向と平行な方向であるZ軸方向に沿って矢印DR32A方向(図7(A)参照)に移動することになる。 As described above, when the first sub-rotary motor 52a is driven, the guide portion 58a1 of the guide member 58a moves along the X-axis direction that is parallel to the axial direction of the worm gear of the first feed mechanism portion 53a. It moves in the direction (see FIG. 7A). Further, by driving the second auxiliary rotary motor 56a, the guide portion 58a1 of the guide member 58a is in the direction of the arrow DR32A along the Z-axis direction that is parallel to the axial direction of the worm gear of the second feed mechanism portion 57a. (See FIG. 7A).
 ここで、図7(A)を参照して、第1副回転電動機52aが駆動されることでガイド部58a1が矢印DR31A方向に移動することにより、ガイド部58a1の溝部を規定する上述した一対の壁部が、右側ローラシャフト17Rの上端に当接することになり、右側ローラシャフト17Rが移動することになる。 Here, referring to FIG. 7A, when the first sub-rotary motor 52a is driven, the guide portion 58a1 moves in the direction of the arrow DR31A, thereby defining the pair of the above-described grooves that define the groove portion of the guide portion 58a1. The wall portion comes into contact with the upper end of the right roller shaft 17R, and the right roller shaft 17R moves.
 その際、図2および図3を参照して、前述のように、右側ローラシャフト17Rは、右側上アーム19R1および右側下アーム19R2を介して右側ガイドシャフト18Rに回転可能に組付けられているため、当該右側ローラシャフト17Rは、右側回転体38Rの第2回転軸102Rを回転中心として回転移動することになる。その結果、図7(B)に示すように、右側ローラ37Rは、右側回転体38Rの第2回転軸102Rを回転中心として図中矢印AR3方向に回転移動することになる。 At this time, referring to FIGS. 2 and 3, as described above, right roller shaft 17R is rotatably assembled to right guide shaft 18R via right upper arm 19R1 and right lower arm 19R2. The right roller shaft 17R rotates and moves around the second rotation shaft 102R of the right rotating body 38R. As a result, as shown in FIG. 7B, the right roller 37R rotates and moves in the direction of the arrow AR3 in the figure with the second rotation shaft 102R of the right rotating body 38R as the rotation center.
 すなわち、右側ローラ制御機構50Aを構成する上述した各種の部品のうち、特に第1副回転電動機52aおよび第1送り機構部53aが、右側ローラ37Rの位置を可変に調節する被掛合体位置調節機構として機能することになる。 That is, among the above-described various components constituting the right roller control mechanism 50A, in particular, the first auxiliary rotary motor 52a and the first feed mechanism portion 53a variably adjust the position of the right roller 37R. Will function as.
 一方、図7(A)を参照して、第2副回転電動機56aが駆動されることでガイド部58a1が矢印DR32A方向に移動することにより、ガイド部58a1の溝部に対する右側ローラシャフト17Rの上端の挿入量が変化することになる。ここで、上述したように、ガイド部58a1の溝部を規定する一対の壁部の間の距離がZ軸方向に沿って異なっているため、ガイド部58a1の溝部に対する右側ローラシャフト17Rの上端の挿入量が変化することに伴い、当該一対の壁部と右側ローラシャフト17Rの上端との間の距離も変化することになる。 On the other hand, referring to FIG. 7A, when the second auxiliary rotating motor 56a is driven, the guide portion 58a1 moves in the direction of the arrow DR32A, so that the upper end of the right roller shaft 17R with respect to the groove portion of the guide portion 58a1. The amount of insertion will change. Here, as described above, since the distance between the pair of wall portions defining the groove portion of the guide portion 58a1 is different along the Z-axis direction, the upper end of the right roller shaft 17R is inserted into the groove portion of the guide portion 58a1. As the amount changes, the distance between the pair of wall portions and the upper end of the right roller shaft 17R also changes.
 これにより、ガイド部58a1の右側ローラシャフト17Rに対する当接状態に変化が生じることになり、これに伴ってガイド部材58aによる右側ローラシャフト17Rの拘束状態が変化し、結果として右側ローラシャフト17Rに生じる軸ぶれ(すなわち、右側ローラ37Rに生じる軸ぶれ)の大きさが可変に調節されることになる。 As a result, a change occurs in the contact state of the guide portion 58a1 with the right roller shaft 17R, and accordingly, the restraining state of the right roller shaft 17R by the guide member 58a changes, resulting in the right roller shaft 17R. The magnitude of the shaft shake (that is, the shaft shake generated in the right roller 37R) is variably adjusted.
 すなわち、右側ローラ制御機構50Aを構成する上述した各種の部品のうち、ガイド部材58aが、右側ローラ37Rの軸ぶれを規制する規制部に該当することになり、また、右側ローラ制御機構50Aを構成する上述した各種の部品のうち、特に第2副回転電動機56aおよび第2送り機構部57aが、右側ローラ37Rの軸ぶれの大きさを可変に調節する軸ぶれ調節機構として機能することになる。 That is, among the various components described above that configure the right roller control mechanism 50A, the guide member 58a corresponds to a restricting portion that restricts the shaft shake of the right roller 37R, and also configures the right roller control mechanism 50A. Among the various parts described above, the second sub-rotary motor 56a and the second feed mechanism 57a particularly function as a shaft shake adjusting mechanism that variably adjusts the size of the shaft shake of the right roller 37R.
 <左側ローラ制御機構50Bの構成>
 図2および図8に示すように、左側ローラ制御機構50Bは、左側ローラ37Lが位置する羽ばたき装置1Aの左舷側に配置されており、柱状フレーム14に組付けられた各種の部品によって構成されている。左側ローラ制御機構50Bは、左側ローラ37Lの位置を可変に調節するとともに、左側ローラ37Lの軸ぶれの程度を可変に調節する。
<Configuration of Left Roller Control Mechanism 50B>
As shown in FIGS. 2 and 8, the left roller control mechanism 50B is arranged on the port side of the flapping apparatus 1A where the left roller 37L is located, and is configured by various components assembled to the columnar frame 14. Yes. The left roller control mechanism 50B variably adjusts the position of the left roller 37L and variably adjusts the degree of shaft runout of the left roller 37L.
 具体的には、左側ローラ制御機構50Bは、柱状フレーム14に固定された第1ステージ51bと、第1ステージ51bに組付けられた第1副回転電動機52bおよび第1送り機構部53bと、第1送り機構部53bに組付けられた連結部材54bと、連結部材54bに固定された第2ステージ55bと、第2ステージ55bに組付けられた第2副回転電動機56bおよび第2送り機構部57bと、第2送り機構部57bに組付けられたガイド部材58bとを含んでいる。 Specifically, the left roller control mechanism 50B includes a first stage 51b fixed to the columnar frame 14, a first auxiliary rotary motor 52b and a first feed mechanism 53b assembled to the first stage 51b, The connecting member 54b assembled to the first feed mechanism portion 53b, the second stage 55b fixed to the connecting member 54b, the second sub-rotary motor 56b and the second feed mechanism portion 57b assembled to the second stage 55b. And a guide member 58b assembled to the second feed mechanism portion 57b.
 第1副回転電動機52bの回転軸には、ピニオンギヤが組付けられている。第1送り機構部53bは、スリットが設けられたギヤボックスと、ギヤボックスによって回転可能に支持されたウォームギヤと、ウォームギヤの端部に組付けられたスパーギヤと、ウォームギヤに歯合するナット部を含む可動体とを有している。なお、ウォームギヤは、その軸方向がX軸方向に平行となるように配置されている。 A pinion gear is assembled to the rotating shaft of the first auxiliary rotating motor 52b. The first feed mechanism portion 53b includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spar gear assembled to an end portion of the worm gear, and a nut portion that meshes with the worm gear. And a movable body. The worm gear is arranged such that its axial direction is parallel to the X-axis direction.
 第1副回転電動機52bの回転軸に組付けられたピニオンギヤは、ウォームギヤの端部に組付けられたスパーギヤに歯合しており、これにより第1副回転電動機52bの回転軸が回転することに伴い、ウォームギヤが回転する。可動体は、ギヤボックスに設けられたスリットにその一部が挿通するように配置されており、ウォームギヤが回転することでウォームギヤの軸方向(すなわちX軸方向)に沿って移動する。 The pinion gear assembled to the rotation shaft of the first sub-rotation motor 52b meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the first sub-rotation motor 52b rotates. Along with this, the worm gear rotates. The movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the X-axis direction) as the worm gear rotates.
 第2副回転電動機56bの回転軸には、ピニオンギヤが組付けられている。第2送り機構部57bは、スリットが設けられたギヤボックスと、ギヤボックスによって回転可能に支持されたウォームギヤと、ウォームギヤの端部に組付けられたスパーギヤと、ウォームギヤに歯合するナット部を含む可動体とを含んでいる。なお、ウォームギヤは、その軸方向がZ軸方向に平行となるように配置されている。 A pinion gear is assembled to the rotation shaft of the second auxiliary rotary electric motor 56b. The second feed mechanism portion 57b includes a gear box provided with a slit, a worm gear rotatably supported by the gear box, a spar gear assembled to an end portion of the worm gear, and a nut portion that meshes with the worm gear. Includes a movable body. The worm gear is arranged so that its axial direction is parallel to the Z-axis direction.
 第2副回転電動機56bの回転軸に組付けられたピニオンギヤは、ウォームギヤの端部に組付けられたスパーギヤに歯合しており、これにより第2副回転電動機56bの回転軸が回転することに伴い、ウォームギヤが回転する。可動体は、ギヤボックスに設けられたスリットにその一部が挿通するように配置されており、ウォームギヤが回転することでウォームギヤの軸方向(すなわちZ軸方向)に沿って移動する。 The pinion gear assembled to the rotation shaft of the second sub-rotation motor 56b meshes with the spur gear assembled to the end of the worm gear, whereby the rotation shaft of the second sub-rotation motor 56b rotates. Along with this, the worm gear rotates. The movable body is arranged so that a part of the movable body is inserted into a slit provided in the gear box, and moves along the axial direction of the worm gear (that is, the Z-axis direction) as the worm gear rotates.
 ガイド部材58bは、その下端にガイド部58b1を有している。ガイド部58b1の下面には、Y軸方向に沿って延在する溝部が形成されている。ガイド部58b1の上記溝部を規定する一対の壁部の間の距離は、Z軸方向に沿って異なるように構成されており、より詳細には、当該一対の壁部の間の距離が、下方から上方に向かうにつれて徐々に減じるように構成されている。 The guide member 58b has a guide portion 58b1 at its lower end. A groove portion extending along the Y-axis direction is formed on the lower surface of the guide portion 58b1. The distance between the pair of wall portions defining the groove portion of the guide portion 58b1 is configured to be different along the Z-axis direction. More specifically, the distance between the pair of wall portions is lower. It is comprised so that it may decrease gradually as it goes upwards.
 当該溝部には、左側ローラ37Lを回転可能に支持する左側ローラシャフト17Lの上端が収容されている。これにより、左側ローラシャフト17Lの上端は、ガイド部58b1の上記一対の壁部により、X軸方向において挟まれた状態とされている。 The upper end of the left roller shaft 17L that rotatably supports the left roller 37L is accommodated in the groove. Accordingly, the upper end of the left roller shaft 17L is sandwiched between the pair of wall portions of the guide portion 58b1 in the X-axis direction.
 ここで、上述したように、第1送り機構部53bには、連結部材54bが組付けられている。より詳細には、連結部材54bは、その一端が第1送り機構部53bの可動体に固定されており、その他端が、上述したように第2ステージ55bに固定されている。また、上述したように、第2送り機構部57bには、ガイド部材58bが組付けられている。より詳細には、ガイド部材58bは、その上端が第2送り機構部57bの可動体に固定されており、その下端に、上述したガイド部58b1を有している。 Here, as described above, the connecting member 54b is assembled to the first feeding mechanism portion 53b. More specifically, one end of the connecting member 54b is fixed to the movable body of the first feed mechanism portion 53b, and the other end is fixed to the second stage 55b as described above. In addition, as described above, the guide member 58b is assembled to the second feed mechanism portion 57b. More specifically, the upper end of the guide member 58b is fixed to the movable body of the second feed mechanism portion 57b, and the above-described guide portion 58b1 is provided at the lower end.
 以上により、第1副回転電動機52bが駆動されることにより、ガイド部材58bのガイド部58b1は、第1送り機構部53bのウォームギヤの軸方向と平行な方向であるX軸方向に沿って矢印DR31B方向(図8(A)参照)に移動することになる。また、第2副回転電動機56bが駆動されることにより、ガイド部材58bのガイド部58b1は、第2送り機構部57bのウォームギヤの軸方向と平行な方向であるZ軸方向に沿って矢印DR32B方向(図8(A)参照)に移動することになる。 As described above, when the first sub-rotation motor 52b is driven, the guide portion 58b1 of the guide member 58b moves along the arrow DR31B along the X-axis direction that is parallel to the axial direction of the worm gear of the first feed mechanism portion 53b. It moves in the direction (see FIG. 8A). Further, by driving the second sub-rotary motor 56b, the guide portion 58b1 of the guide member 58b is in the direction of the arrow DR32B along the Z-axis direction that is parallel to the axial direction of the worm gear of the second feed mechanism portion 57b. (See FIG. 8A).
 ここで、図8(A)を参照して、第1副回転電動機52bが駆動されることでガイド部58b1が矢印DR31B方向に移動することにより、ガイド部58b1の溝部を規定する上述した一対の壁部が、左側ローラシャフト17Lの上端に当接することになり、左側ローラシャフト17Lが移動することになる。 Here, referring to FIG. 8 (A), when the first sub-rotary electric motor 52b is driven, the guide portion 58b1 moves in the direction of the arrow DR31B, thereby defining the pair of the above-mentioned grooves that define the groove portion of the guide portion 58b1. The wall portion comes into contact with the upper end of the left roller shaft 17L, and the left roller shaft 17L moves.
 その際、図2および図3を参照して、前述のように、左側ローラシャフト17Lは、左側上アーム19L1および左側下アーム19L2を介して左側ガイドシャフト18Lに回転可能に組付けられているため、当該左側ローラシャフト17Lは、左側回転体38Lの第2回転軸102Lを回転中心として回転移動することになる。その結果、図8(B)に示すように、左側ローラ37Lは、左側回転体38Lの第2回転軸102Lを回転中心として図中矢印AR3方向に回転移動することになる。 At that time, as described above with reference to FIGS. 2 and 3, the left roller shaft 17L is rotatably assembled to the left guide shaft 18L via the left upper arm 19L1 and the left lower arm 19L2. The left roller shaft 17L rotates around the second rotating shaft 102L of the left rotating body 38L. As a result, as shown in FIG. 8B, the left roller 37L rotates and moves in the direction of arrow AR3 in the drawing with the second rotation shaft 102L of the left rotating body 38L as the center of rotation.
 すなわち、左側ローラ制御機構50Bを構成する上述した各種の部品のうち、特に第1副回転電動機52bおよび第1送り機構部53bが、左側ローラ37Lの位置を可変に調節する被掛合体位置調節機構として機能することになる。 That is, among the above-described various components constituting the left roller control mechanism 50B, in particular, the first auxiliary rotary motor 52b and the first feed mechanism portion 53b variably adjust the position of the left roller 37L. Will function as.
 一方、図8(A)を参照して、第2副回転電動機56bが駆動されることでガイド部58b1が矢印DR32B方向に移動することにより、ガイド部58b1の溝部に対する左側ローラシャフト17Lの上端の挿入量が変化することになる。ここで、上述したように、ガイド部58b1の溝部を規定する一対の壁部の間の距離がZ軸方向に沿って異なっているため、ガイド部58b1の溝部に対する左側ローラシャフト17Lの上端の挿入量が変化することに伴い、当該一対の壁部と左側ローラシャフト17Lの上端との間の距離も変化することになる。 On the other hand, referring to FIG. 8A, when the second auxiliary rotating motor 56b is driven, the guide portion 58b1 moves in the direction of the arrow DR32B, so that the upper end of the left roller shaft 17L with respect to the groove portion of the guide portion 58b1 is moved. The amount of insertion will change. Here, as described above, since the distance between the pair of wall portions defining the groove portion of the guide portion 58b1 is different along the Z-axis direction, the upper end of the left roller shaft 17L is inserted into the groove portion of the guide portion 58b1. As the amount changes, the distance between the pair of wall portions and the upper end of the left roller shaft 17L also changes.
 これにより、ガイド部58b1の左側ローラシャフト17Lに対する当接状態に変化が生じることになり、これに伴ってガイド部材58bによる左側ローラシャフト17Lの拘束状態が変化し、結果として左側ローラシャフト17Lに生じる軸ぶれ(すなわち、左側ローラ37Lに生じる軸ぶれ)の大きさが可変に調節されることになる。 As a result, a change occurs in the contact state of the guide portion 58b1 with the left roller shaft 17L, and the constraining state of the left roller shaft 17L by the guide member 58b changes accordingly, resulting in the left roller shaft 17L. The size of the shaft shake (that is, the shaft shake generated in the left roller 37L) is variably adjusted.
 すなわち、左側ローラ制御機構50Bを構成する上述した各種の部品のうち、ガイド部材58bが、左側ローラ37Lの軸ぶれを規制する規制部に該当することになり、また、左側ローラ制御機構50Bを構成する上述した各種の部品のうち、特に第2副回転電動機56bおよび第2送り機構部57bが、左側ローラ37Lの軸ぶれの大きさを可変に調節する軸ぶれ調節機構として機能することになる。 That is, among the above-described various parts constituting the left roller control mechanism 50B, the guide member 58b corresponds to a restricting portion that restricts the shaft shake of the left roller 37L, and also constitutes the left roller control mechanism 50B. Among the various components described above, in particular, the second auxiliary rotary motor 56b and the second feed mechanism portion 57b function as a shaft shake adjusting mechanism that variably adjusts the size of the shaft shake of the left roller 37L.
 <羽ばたき制御機構50の動作制御>
 図9に示すように、上述した右側ローラ制御機構50Aおよび左側ローラ制御機構50Bを含む羽ばたき制御機構50は、使用者もしくは自動化されたアルゴリズムにより制御指示が与えられる飛行態様制御部80によってその動作が制御される。飛行態様制御部80は、右側ローラ37Rおよび左側ローラ37Lの位置を可変に調節する被掛合体位置調節機構の動作を制御する第1制御部81と、右側ローラ37Rおよび左側ローラ37Lの軸ぶれの大きさを可変に調節する軸ぶれ調節機構の動作を制御する第2制御部82とを含んでいる。
<Operation control of flapping control mechanism 50>
As shown in FIG. 9, the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B described above is operated by a flight mode control unit 80 to which a control instruction is given by a user or an automated algorithm. Be controlled. The flight mode control unit 80 includes a first control unit 81 that controls the operation of the engaged body position adjusting mechanism that variably adjusts the positions of the right roller 37R and the left roller 37L, and the shaft runout of the right roller 37R and the left roller 37L. And a second control unit 82 that controls the operation of the shaft shake adjusting mechanism that variably adjusts the size.
 具体的には、第1制御部81は、右側ローラ制御機構50Aの第1副回転電動機52aの動作を制御することにより、右側ローラ37Rの位置を可変に調節するとともに、左側ローラ制御機構50Bの第1副回転電動機52bの動作を制御することにより、左側ローラ37Lの位置を可変に調節する。ここで、第1制御部81は、第1副回転電動機52aの動作制御と、第1副回転電動機52bの動作制御とを独立して行なうことにより、右側ローラ37Rの位置と左側ローラ37Lの位置とを個別に調節する。 Specifically, the first control unit 81 variably adjusts the position of the right roller 37R by controlling the operation of the first sub-rotary motor 52a of the right roller control mechanism 50A, and also controls the left roller control mechanism 50B. By controlling the operation of the first auxiliary rotary motor 52b, the position of the left roller 37L is variably adjusted. Here, the first control unit 81 independently performs the operation control of the first sub-rotation motor 52a and the operation control of the first sub-rotation motor 52b, whereby the position of the right roller 37R and the position of the left roller 37L. And adjust separately.
 また、第2制御部82は、右側ローラ制御機構50Aの第2副回転電動機56aの動作を制御することにより、右側ローラ37Rの軸ぶれの大きさを可変に調節するとともに、左側ローラ制御機構50Bの第2副回転電動機56bの動作を制御することにより、左側ローラ37Lの軸ぶれの大きさを可変に調節する。ここで、第2制御部82は、第2副回転電動機56aの動作制御と、第2副回転電動機56bの動作制御とを独立して行なうことにより、右側ローラ37Rの軸ぶれの大きさと左側ローラ37Lの軸ぶれの大きさとを個別に調節する。 Further, the second controller 82 controls the operation of the second auxiliary rotary motor 56a of the right roller control mechanism 50A to variably adjust the size of the shaft shake of the right roller 37R, and the left roller control mechanism 50B. By controlling the operation of the second auxiliary rotary motor 56b, the size of the shaft shake of the left roller 37L is variably adjusted. Here, the second control unit 82 independently performs the operation control of the second sub-rotation motor 56a and the operation control of the second sub-rotation motor 56b, so that the shaft roller size of the right roller 37R and the left roller The size of the 37L shaft runout is individually adjusted.
 このように、右側ローラ制御機構50Aおよび左側ローラ制御機構50Bを含む羽ばたき制御機構50の動作が、第1制御部81および第2制御部82を含む飛行態様制御部80によって制御されることにより、各種の飛行態様が実現されることになるが、その詳細については後述することとする。 As described above, the operation of the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B is controlled by the flight mode control unit 80 including the first control unit 81 and the second control unit 82. Various flight modes will be realized, and details thereof will be described later.
 <動力伝達機構30、右側羽体40Rおよび左側羽体40Lの動作>
 図10ないし図13は、羽ばたき装置1Aの動力伝達機構30の動作を説明するための図である。ここで、各図における(A)および(B)は、第1運動変換部30Bの動作を説明するための平面図および側面図であり、各図における(C)は、右側第2運動変換部30C1および左側第2運動変換部30C2の動作を説明するための平面図である。次に、これら図10ないし図13と、前述の図6とを参照して、羽ばたき装置1Aの動力伝達機構30の動作について説明する。
<Operation of Power Transmission Mechanism 30, Right Wing Body 40R, and Left Wing Body 40L>
10 to 13 are diagrams for explaining the operation of the power transmission mechanism 30 of the flapping apparatus 1A. Here, (A) and (B) in each figure are the top view and side view for demonstrating operation | movement of the 1st motion conversion part 30B, (C) in each figure is a right side 2nd motion conversion part. It is a top view for demonstrating operation | movement of 30C1 and left side 2nd motion conversion part 30C2. Next, the operation of the power transmission mechanism 30 of the flapping apparatus 1A will be described with reference to FIGS. 10 to 13 and FIG. 6 described above.
 以下において説明する動力伝達機構30の動作は、図6に示す状態から、回転運動伝達部30Aの出力部である回転伝達部材としてのディスク32cが反時計回りに1回転する期間における動作であり、図10ないし図13は、時系列でこれを示している。なお、このディスク32cが反時計回りに1回転する期間が、右側羽体40Rおよび左側羽体40Lの同期的な羽ばたき動作の1周期に該当することになる。 The operation of the power transmission mechanism 30 described below is an operation during a period in which the disk 32c as a rotation transmission member, which is an output part of the rotary motion transmission unit 30A, makes one counterclockwise rotation from the state shown in FIG. 10 to 13 illustrate this in time series. The period in which the disk 32c rotates once counterclockwise corresponds to one cycle of the synchronous flapping operation of the right wing 40R and the left wing 40L.
 図6に示す状態においては、スライダ35が、スライダ35の往復直線運動の可動範囲内の中央位置にある。この場合、右側羽体40Rおよび左側羽体40Lは、それぞれ3時の位置および9時の位置にあり、上方からZ2方向に向けて見下ろした場合に、これら右側羽体40Rおよび左側羽体40Lが同一直線上に位置している。なお、その際、ディスク32cに組付けられた第1クランクアーム33Aの上記一端および第2クランクアーム33Bの上記一端(すなわち、ピン34aが位置する側の端部)は、9時の位置にある(図4参照)。なお、以下においては、このディスク32cに組付けられた第1クランクアーム33Aの上記一端および第2クランクアーム33Bの上記一端のことを「接続点」と称する。 In the state shown in FIG. 6, the slider 35 is at the center position within the movable range of the reciprocating linear motion of the slider 35. In this case, the right wing 40R and the left wing 40L are located at the 3 o'clock position and the 9 o'clock position, respectively, and when viewed from above in the Z2 direction, the right wing body 40R and the left wing body 40L are Located on the same straight line. At this time, the one end of the first crank arm 33A and the one end of the second crank arm 33B (that is, the end on the side where the pin 34a is located) assembled to the disk 32c are at the 9 o'clock position. (See FIG. 4). Hereinafter, the one end of the first crank arm 33A and the one end of the second crank arm 33B assembled to the disk 32c are referred to as “connection points”.
 まず、図10に示すように、主回転電動機20の動力の伝達を受けてディスク32cが図6に示す状態から反時計回りに90°回転することにより、上記接続点が9時の位置から6時の位置にまで達するに際しては、スライダ35が図中に示すDR11方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX2方向に向けて移動する。そして、上記接続点が6時の位置に達することにより、スライダ35が可動範囲内の最後部である第2位置に配置されることになる。 First, as shown in FIG. 10, the disk 32c rotates 90 ° counterclockwise from the state shown in FIG. When reaching the hour position, the slider 35 moves in the DR11 direction shown in the figure, and accordingly, the position of the center of gravity of the slider 35 also moves in the X2 direction. Then, when the connection point reaches the 6 o'clock position, the slider 35 is disposed at the second position which is the last part within the movable range.
 また、その際、右側羽体40Rおよび左側羽体40Lは、右側回転体38Rおよび左側回転体38Lがそれぞれ時計回りおよび反時計回りに回転することによって図中に示すDR21方向に向けて(すなわち、それぞれ6時の位置側に向けて)移動することになるが、この移動は概ねX2方向に向けての移動となる。 Further, at that time, the right wing 40R and the left wing 40L are directed toward the DR21 direction shown in the figure by rotating the right rotator 38R and the left rotator 38L clockwise and counterclockwise, respectively (that is, Each move toward the 6 o'clock position), but this movement is generally in the X2 direction.
 次に、図11に示すように、主回転電動機20の動力の伝達を受けてディスク32cが図10に示す状態からさらに反時計回りに90°回転することにより、上記接続点が6時の位置から3時の位置にまで達するに際しては、スライダ35が図中に示すDR12方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX1方向に向けて移動する。 Next, as shown in FIG. 11, when the power of the main rotary motor 20 is transmitted, the disk 32c further rotates 90 ° counterclockwise from the state shown in FIG. When reaching the 3 o'clock position, the slider 35 moves in the DR12 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X1 direction.
 また、その際、右側羽体40Rおよび左側羽体40Lは、右側回転体38Rおよび左側回転体38Lがそれぞれ反時計回りおよび時計回りに回転することによって図中に示すDR22方向に向けて(すなわち、それぞれ3時の位置側および9時の位置側に向けて)移動することになるが、この移動は概ねX1方向に向けての移動となる。 At that time, the right wing 40R and the left wing 40L are directed toward the direction DR22 shown in the drawing by rotating the right rotator 38R and the left rotator 38L counterclockwise and clockwise respectively (ie, The movement is toward the 3 o'clock position and 9 o'clock position, respectively, but this movement is generally toward the X1 direction.
 次に、図12に示すように、主回転電動機20の動力の伝達を受けてディスク32cが図11に示す状態からさらに反時計回りに90°回転することにより、上記接続点が3時の位置から12時の位置にまで達するに際しては、スライダ35が図中に示すDR13方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX1方向に向けて移動する。そして、上記接続点が12時の位置に達することにより、スライダ35が可動範囲内の最前部である第1位置に配置されることになる。 Next, as shown in FIG. 12, the disk 32c is further rotated 90 ° counterclockwise from the state shown in FIG. When reaching the 12 o'clock position, the slider 35 moves in the DR13 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X1 direction. Then, when the connection point reaches the 12 o'clock position, the slider 35 is arranged at the first position which is the foremost part within the movable range.
 また、その際、右側羽体40Rおよび左側羽体40Lは、右側回転体38Rおよび左側回転体38Lがそれぞれ反時計回りおよび時計回りに回転することによって図中に示すDR23方向に向けて(すなわち、それぞれ12時の位置側に向けて)移動することになるが、この移動は概ねX1方向に向けての移動となる。 Further, at that time, the right wing 40R and the left wing 40L are directed toward the DR23 direction shown in the drawing by rotating the right rotator 38R and the left rotator 38L counterclockwise and clockwise respectively (ie, Each move toward the 12 o'clock position), but this movement is generally towards the X1 direction.
 次に、図13に示すように、主回転電動機20の動力の伝達を受けてディスク32cが図12に示す状態からさらに反時計回りに90°回転することにより、上記接続点が12時の位置から9時の位置にまで達するに際しては、スライダ35が図中に示すDR14方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX2方向に向けて移動する。 Next, as shown in FIG. 13, when the power of the main rotary motor 20 is transmitted, the disk 32c further rotates 90 ° counterclockwise from the state shown in FIG. When reaching the 9 o'clock position, the slider 35 moves in the DR14 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X2 direction.
 また、その際、右側羽体40Rおよび左側羽体40Lは、右側回転体38Rおよび左側回転体38Lがそれぞれ時計回りおよび反時計回りに回転することによって図中に示すDR24方向に向けて(すなわち、それぞれ3時の位置側および9時の位置側に向けて)移動することになるが、この移動は概ねX2方向に向けての移動となる。 Further, at that time, the right wing 40R and the left wing 40L are directed toward the DR24 direction shown in the drawing by rotating the right rotator 38R and the left rotator 38L clockwise and counterclockwise, respectively (that is, The movement is toward the 3 o'clock position and 9 o'clock position, respectively, but this movement is generally in the X2 direction.
 以上において説明したように、本実施の形態における羽ばたき装置1Aにおいては、動力源としての主回転電動機20にて発生した動力が動力伝達機構30を介して右側羽体40Rおよび左側羽体40Lに伝達されることでこれら右側羽体40Rおよび左側羽体40Lが同期的に所定の周期で揺動することになる。これに伴い、当該右側羽体40Rおよび左側羽体40Lに後述する所定の揚力が発生することになり、これによって羽ばたき装置1Aの飛行が実現可能とされている。 As described above, in flapping apparatus 1A according to the present embodiment, the power generated in main rotating motor 20 as a power source is transmitted to right wing 40R and left wing 40L through power transmission mechanism 30. As a result, the right wing 40R and the left wing 40L swing in a predetermined cycle synchronously. Along with this, a predetermined lift described later is generated in the right wing 40R and the left wing 40L, thereby enabling the flight of the flapping apparatus 1A.
 <右側羽体40Rおよび左側羽体40Lの羽ばたき動作>
 図14は、羽ばたき装置1Aのホバリング時の右側羽体40Rおよび左側羽体40Lの羽ばたき動作を示す模式図である。次に、この図14を参照して、羽ばたき装置1Aのホバリング時の右側羽体40Rおよび左側羽体40Lの羽ばたき動作について説明する。
<Flapping operation of right wing 40R and left wing 40L>
FIG. 14 is a schematic diagram showing the flapping operation of the right wing 40R and the left wing 40L during the hovering of the flapping apparatus 1A. Next, the flapping operation of the right wing 40R and the left wing 40L during hovering of the flapping apparatus 1A will be described with reference to FIG.
 図14を参照して、上述したように右側羽体40Rおよび左側羽体40Lが揺動することにより、これら右側羽体40Rおよび左側羽体40Lは、羽ばたき動作の1周期の間に順に、後方切り返し、前方羽ばたき、前方切り返し、後方羽ばたきの4つの動作を連続的に行なう。 Referring to FIG. 14, as described above, right wing 40R and left wing 40L are swung, so that right wing 40R and left wing 40L are moved in the rearward direction during one flapping operation. Four operations are continuously performed: flapping, flapping forward, flapping forward, flapping backward.
 ここで、図14の上段においては、右側羽体40Rに注目して、この4つの動作を当該右側羽体40Rの形状変化を時系列で示す簡易的な断面にて表わしており、図14の下段においては、この4つの動作の際の羽ばたき装置1Aの状態を簡易的な平面図にてそれぞれ示している。なお、図14の上段に示す右側羽体40Rの断面は、当該右側羽体40Rの延在方向(すなわち、右側マスト39Rの延在方向)と直交する方向の断面を示しており、図の左側が羽ばたき装置1Aの前方側に相当し、図の右側が羽ばたき装置1Aの後方側に相当する。 Here, in the upper part of FIG. 14, paying attention to the right wing 40R, these four operations are represented by a simple cross section showing the shape change of the right wing 40R in time series. In the lower part, the state of the flapping apparatus 1A during these four operations is shown in a simplified plan view. The cross section of the right wing 40R shown in the upper part of FIG. 14 shows a cross section in a direction orthogonal to the extending direction of the right wing 40R (that is, the extending direction of the right mast 39R). Corresponds to the front side of the flapping apparatus 1A, and the right side of the figure corresponds to the rear side of the flapping apparatus 1A.
 後方切り返しは、右側羽体40Rおよび左側羽体40Lが図6において示した揺動範囲(図中矢印AR2参照)の最後部にきた際(すなわち、図10に示す状態にある際)の動作であり、右側羽体40Rおよび左側羽体40Lの傾斜姿勢が、それぞれの上縁部が下縁部よりも後方にある状態から、上縁部が下縁部よりも前方にある状態に切り換わる動作である。 The backward turn is an operation when the right wing 40R and the left wing 40L come to the end of the swing range (see arrow AR2 in the drawing) shown in FIG. 6 (that is, when they are in the state shown in FIG. 10). There is an operation in which the inclined postures of the right wing 40R and the left wing 40L are switched from a state in which the upper edge portion is behind the lower edge portion to a state in which the upper edge portion is in front of the lower edge portion. It is.
 前方羽ばたきは、右側羽体40Rおよび左側羽体40Lが図6において示した揺動範囲(図中矢印AR2参照)の最後部から最前部へと移動する際(図11に示す状態がこれに含まれる)の動作であり、右側羽体40Rおよび左側羽体40Lの傾斜姿勢が、それぞれの上縁部が下縁部よりも前方にある状態が維持されつつ、右側羽体40Rおよび左側羽体40Lが相対的に前方に向けて移動する動作である。 The forward flapping includes when the right wing 40R and the left wing 40L move from the rearmost part to the foremost part of the swing range shown in FIG. 6 (see arrow AR2 in the figure) (this includes the state shown in FIG. 11). The right wing 40R and the left wing 40L are maintained while the inclined postures of the right wing 40R and the left wing 40L are maintained in a state where the respective upper edges are in front of the lower edges. Is an operation of moving relatively forward.
 前方切り返しは、右側羽体40Rおよび左側羽体40Lが図6において示した揺動範囲(図中矢印AR2参照)の最前部にきた際(すなわち、図12に示す状態にある際)の動作であり、右側羽体40Rおよび左側羽体40Lの傾斜姿勢が、それぞれの下縁部が上縁部よりも後方にある状態から、下縁部が上縁部よりも前方にある状態に切り換わる動作である。 The forward turning is an operation when the right wing 40R and the left wing 40L come to the forefront of the swing range (see arrow AR2 in the drawing) shown in FIG. 6 (that is, in the state shown in FIG. 12). There is an operation in which the inclined postures of the right wing 40R and the left wing 40L are switched from a state in which the lower edge portion is behind the upper edge portion to a state in which the lower edge portion is ahead of the upper edge portion. It is.
 後方羽ばたきは、右側羽体40Rおよび左側羽体40Lが図6において示した揺動範囲(図中矢印AR2参照)の最前部から最後部へと移動する際(図13に示す状態がこれに含まれる)の動作であり、右側羽体40Rおよび左側羽体40Lの傾斜姿勢が、それぞれの下縁部が上縁部よりも前方にある状態が維持されつつ、右側羽体40Rおよび左側羽体40Lが相対的に後方に向けて移動する動作である。 The back flapping includes the state shown in FIG. 13 when the right wing 40R and the left wing 40L move from the foremost part to the last part of the swinging range shown in FIG. 6 (see arrow AR2 in the figure). The right wing 40R and the left wing 40L are maintained while the inclined postures of the right wing 40R and the left wing 40L are maintained in a state in which the respective lower edges are in front of the upper edges. Is an operation of moving relatively backward.
 上記の後方切り返し、前方羽ばたき、前方切り返し、後方羽ばたきの4つの動作のうち、特に前方羽ばたきおよび後方羽ばたきの2つの動作中においては、図14の上段において矢印F1,F2にて示すように、右側羽体40Rに斜め上方に向けての流体力が発生する。ここで、前方羽ばたきの際に発生する流体力(図中に示す矢印F1に該当)の水平成分と、後方羽ばたきの際に発生する流体力(図中に示す矢印F2に該当)の水平成分とが、前後方向において釣り合うことにより、右側羽体40Rには、上方に向けての揚力が発生することになる。なお、ここではその説明は省略するが、左側羽体40Lにも、同様の上方に向けての揚力が発生することになる。 Among the four operations of the above-described backward flapping, forward flapping, forward flapping, and backward flapping, particularly during the two operations of flapping forward and flapping, as shown by arrows F1 and F2 in the upper part of FIG. A fluid force is generated obliquely upward on the wing body 40R. Here, the horizontal component of the fluid force (corresponding to the arrow F1 shown in the figure) generated when flapping forward, and the horizontal component of the fluid force (corresponding to the arrow F2 shown in the figure) generated when flapping backward However, by balancing in the front-rear direction, upward lifting force is generated in the right wing 40R. In addition, although the description is omitted here, the same upward lifting force is generated in the left wing 40L.
 上述したように、右側羽体40Rと左側羽体40Lとは、前後方向において同期的に往復運動するように駆動されるため、各々の羽体の動作は、図14の下段に示すように鏡面対称となり、右側羽体40Rに発生する揚力と左側羽体40Lに発生する揚力とにより、羽ばたき装置1Aに上方に向けての浮上力が発生することになる。これにより、羽ばたき装置1Aの飛行が実現できることになる。 As described above, the right wing 40R and the left wing 40L are driven so as to reciprocate synchronously in the front-rear direction. Therefore, the operation of each wing is a mirror surface as shown in the lower part of FIG. Due to the symmetry, the lifting force generated in the right wing 40R and the lifting force generated in the left wing 40L generate a lifting force upward in the flapping apparatus 1A. Thereby, the flight of the flapping apparatus 1A can be realized.
 <第1運動変換部30Bによる運動効率の向上>
 図15は、本実施の形態における羽ばたき装置1Aと比較形態に係る羽ばたき装置とのスライダの速度変化を比較した模式的なグラフである。次に、この図15を参照して、羽ばたき装置1Aにおいて、上述した如くの第1運動変換部30Bを採用することによる効果について説明する。
<Improvement of exercise efficiency by the first exercise conversion unit 30B>
FIG. 15 is a schematic graph comparing the slider speed changes of the flapping apparatus 1A according to the present embodiment and the flapping apparatus according to the comparative embodiment. Next, with reference to this FIG. 15, the effect by employ | adopting the 1st motion conversion part 30B as mentioned above in the flapping apparatus 1A is demonstrated.
 上述したように、本実施の形態においては、第1運動変換部30Bとして、一般的なクランク機構とは異なり、2本のクランクアーム(すなわち、第1クランクアーム33Aおよび第2クランクアーム33B)を用いたクランク機構にてこれを構成するとともに、これら2本のクランクアームの端部(すなわち、第1クランクアーム33Aおよび第2クランクアーム33Bの各々の上記他端)をスライダ35に対して回転可能に接続するばかりでなく、スライダ35に対してスライド移動可能に接続している(図2ないし図5等参照)。このように構成することにより、従来に比して運動効率が大幅に向上する効果を得ることができる。 As described above, in the present embodiment, unlike the general crank mechanism, the first motion conversion unit 30B includes two crank arms (that is, the first crank arm 33A and the second crank arm 33B). The crank mechanism used constitutes this, and the end portions of these two crank arms (that is, the other end of each of the first crank arm 33A and the second crank arm 33B) can be rotated with respect to the slider 35. The slider 35 is slidably connected to the slider 35 (see FIGS. 2 to 5). By configuring in this way, it is possible to obtain an effect that the exercise efficiency is significantly improved as compared with the conventional case.
 図15に示すグラフにおいては、その横軸がクランクの回転角度(すなわちディスクの回転角度)を表わしており、縦軸がスライダ35の速度を表わしている。なお、右側羽体40Rおよび左側羽体40Lは、いずれもスライダ35の移動によってほぼ直接的に駆動されるものであるため、スライダ35の速度は、そのまま右側羽体40Rおよび左側羽体40Lの速度と考えてよい。 In the graph shown in FIG. 15, the horizontal axis represents the crank rotation angle (that is, the disk rotation angle), and the vertical axis represents the slider 35 speed. Since the right wing 40R and the left wing 40L are both driven almost directly by the movement of the slider 35, the speed of the slider 35 is the same as that of the right wing 40R and the left wing 40L. You may think.
 ここで、比較形態に係る羽ばたき装置は、本実施の形態における羽ばたき装置1Aと比較した場合に、ディスクとスライダとを接続するクランク機構の構成において異なっており、上述した一般的な1本のクランクアームを用いてこれらディスクとスライダとを接続した構成のものである。 Here, the flapping apparatus according to the comparison mode differs from the flapping apparatus 1A according to the present embodiment in the configuration of the crank mechanism that connects the disk and the slider, and the general one crank described above. The disk and slider are connected using an arm.
 具体的には、比較形態に係る羽ばたき装置においては、上述した第2クランクアームが設けられておらず、ディスクとスライダとが、第1クランクアームによってのみ接続されている。ここで、第1クランクアームの一端は、ディスクに対して回転可能にのみ組付けられることとなるように、ディスクの偏心位置に組付けられており、第1クランクアームの他端は、スライダに対して回転可能にのみ組付けられることとなるように(すなわち、スライダに対してスライド移動可能に組付けられることがないように)、スライダの前端位置に組付けられている。 Specifically, in the flapping apparatus according to the comparative embodiment, the second crank arm described above is not provided, and the disk and the slider are connected only by the first crank arm. Here, one end of the first crank arm is assembled at an eccentric position of the disk so that it can only be rotated relative to the disk, and the other end of the first crank arm is attached to the slider. On the other hand, it is assembled at the front end position of the slider so that it can be assembled only in a rotatable manner (that is, it is not assembled so as to be slidable relative to the slider).
 図15に示すように、比較形態に係る羽ばたき装置においては、スライダが可動範囲内の最前部付近にある場合におけるスライダの移動速度の変化が、スライダの可動範囲内における最後部付近にある場合におけるスライダの移動速度の変化よりも、その変化の度合いが大きくなっている。これは、ディスクとスライダとを接続する1本のクランクアームの上記他端が、スライダの前端位置に接続されていることに起因する。 As shown in FIG. 15, in the flapping apparatus according to the comparative embodiment, the change in the moving speed of the slider when the slider is near the foremost part in the movable range is near the rearmost part in the movable range of the slider. The degree of change is greater than the change in the moving speed of the slider. This is because the other end of one crank arm connecting the disk and the slider is connected to the front end position of the slider.
 そのため、スライダが最後部付近に配置されることで羽体が切り返される動作(すなわち、後方切り返し動作)が、羽体の速度変化が小さいことによって慣性に従って比較的スムーズに行われることとなる反面、スライダが最前部付近に配置されることで羽体が切り返される動作(すなわち、前方切り返し動作)が、羽体の速度変化が大きいことによって十分にスムーズに行われ難い状態となってしまい、場合によっては、当該前方切り返し動作が不完全になってしまう場合が生じ得る。 For this reason, the operation in which the wing is turned back by placing the slider near the rearmost portion (that is, the backward turning operation) is relatively smoothly performed according to the inertia due to the small speed change of the wing, When the slider is placed near the foremost part, the operation of turning the wings (ie, the front turning operation) becomes difficult to perform sufficiently smoothly due to the large speed change of the wings. May occur when the forward turning operation becomes incomplete.
 この前方切り返し動作が不完全となってしまった場合には、羽体のはばたき動作が意図したものとはならないため、羽ばたき装置の姿勢が安定しなくなり、結果として動力源としての主回転電動機の出力シャフトに加わる負荷の変動が大きくなってしまい、運動効率の低下に繋がることになる。 If this forward turning operation is incomplete, the flapping operation of the wings will not be as intended, so the posture of the flapping device will become unstable, and as a result the output of the main rotating motor as the power source The fluctuation of the load applied to the shaft becomes large, leading to a decrease in exercise efficiency.
 一方、本実施の形態における羽ばたき装置1Aにおいては、スライダ35の可動範囲内の最前部付近(すなわち第1位置付近)にある場合におけるスライダ35の移動速度の変化と、スライダ35が可動範囲内の最後部付近(すなわち第2位置付近)にある場合におけるスライダ35の移動速度の変化とが、いずれも同程度となり、その変化の度合いが十分に小さくなっている。 On the other hand, in the flapping apparatus 1A according to the present embodiment, the change in the moving speed of the slider 35 when the slider 35 is in the vicinity of the foremost part in the movable range of the slider 35 (that is, the vicinity of the first position) Changes in the moving speed of the slider 35 in the vicinity of the rearmost part (that is, in the vicinity of the second position) are almost the same, and the degree of the change is sufficiently small.
 これは、上述したように、第1クランクアーム33Aおよび第2クランクアーム33Bの各々の上記他端が、スライダ35に対して回転可能に接続されるばかりでなく、スライダ35に対してスライド移動可能に接続されているためであり、これにより、スライダ35が最前部付近に位置するタイミングと、スライダ35が最後部付近に位置するタイミングとにおいて、所定時間にわたってスライダ35が空走する状態が形成されるためである。 As described above, the other ends of the first crank arm 33A and the second crank arm 33B are not only rotatably connected to the slider 35 but also slidable relative to the slider 35. As a result, there is formed a state in which the slider 35 runs idle for a predetermined time at the timing when the slider 35 is located near the foremost part and the timing when the slider 35 is located near the rearmost part. Because.
 より詳細には、図5に示したように、第1クランクアーム33Aの上記他端に設けられた孔部33a2および第2クランクアーム33Bの上記他端に設けられた孔部33b2が、いずれも、対応するクランクピン34b1,34b2の前後方向における大きさよりも大きく構成されているため、上述した2つのタイミングにおいて、ディスク32cの回転に伴って移動するクランクピン34b1の周面と孔部33a2の壁面との当接、ならびに、ディスク32cの回転に伴って移動するクランクピン34b2の周面と孔部33b2の壁面との当接が、一時的に解除される状態が発生する。これに伴い、スライダ35が第1クランクアーム33Aおよび第2クランクアーム33Bによって一時的に駆動されない状態が発生する。 More specifically, as shown in FIG. 5, the hole 33a2 provided at the other end of the first crank arm 33A and the hole 33b2 provided at the other end of the second crank arm 33B are both Since the corresponding crank pins 34b1 and 34b2 are configured to be larger than the size in the front-rear direction, the peripheral surface of the crank pin 34b1 that moves with the rotation of the disk 32c and the wall surface of the hole 33a2 at the two timings described above. And the contact between the peripheral surface of the crank pin 34b2 moving with the rotation of the disk 32c and the wall surface of the hole 33b2 are temporarily released. As a result, a state occurs in which the slider 35 is not temporarily driven by the first crank arm 33A and the second crank arm 33B.
 そのため、図15に示すように、スライダ35が第1クランクアーム33Aおよび第2クランクアーム33Bによって駆動された状態から上述した空走する状態に切り替わった直後においては、スライダ35に急激な減速が生じることになり、これに伴って右側羽体40Rおよび左側羽体40Lに大きな慣性力が付与されることになる。その結果、右側羽体40Rおよび左側羽体40Lのそれぞれの前方切り返し動作および後方切り返し動作が行なわれ易くなる。 Therefore, as shown in FIG. 15, immediately after the slider 35 is switched from the state driven by the first crank arm 33A and the second crank arm 33B to the above-described idle running state, the slider 35 is suddenly decelerated. As a result, a large inertial force is applied to the right wing 40R and the left wing 40L. As a result, the front turning operation and the rear turning operation of the right wing 40R and the left wing 40L are easily performed.
 したがって、スライダ35が空走する状態が上述した所定のタイミングにおいて所定時間にわたって形成されることにより、スライダ35の可動範囲内の最前部付近(すなわち第1位置付近)および最後部付近(すなわち第2位置付近)にある場合におけるスライダ35の移動速度の変化の度合いが十分に小さく抑えられることとなって、結果として前方切り返し動作および後方切り返し動作のいずれもがよりスムーズに安定的に行なわれることになる。 Accordingly, the state in which the slider 35 is idling is formed for a predetermined time at the predetermined timing described above, so that the vicinity of the frontmost portion (that is, the vicinity of the first position) and the vicinity of the rearmost portion (that is, the second position) within the movable range of the slider 35. The degree of change in the moving speed of the slider 35 in the case of the vicinity of the position is sufficiently reduced, and as a result, both the forward turning operation and the backward turning operation are performed more smoothly and stably. Become.
 このように、本実施の形態における羽ばたき装置1Aにおいては、上述した如くの右側羽体40Rおよび左側羽体40Lの切り返し動作が不完全となってしまう状況の発生が抑制できることになり、羽ばたき装置1Aの姿勢がより安定することになり、従来に比して運動効率が大幅に向上する効果を得ることができる。 Thus, in the flapping apparatus 1A according to the present embodiment, it is possible to suppress the occurrence of a situation in which the turning operation of the right wing 40R and the left wing 40L is not complete as described above, and the flapping apparatus 1A. The posture is more stable, and an effect that the exercise efficiency is significantly improved as compared with the conventional case can be obtained.
 また、上記構成を採用した場合には、図15から理解されるように、スライダ35が空走する状態が所定のタイミングにおいて所定時間にわたって形成されることにより、前方切り返し動作から後方切り返し動作に至るまでの羽体の後方に向けての移動動作(すなわち、後方羽ばたき動作)と、後方切り返し動作から前方切り返し動作に至るまでの羽体の前方に向けての移動動作(すなわち、前方羽ばたき動作)とにおいて、羽体の移動速度もより大きく(すなわち速く)なるため、より大きな浮上力を得ることが可能になる。したがって、この意味においても運動効率が大幅に向上することになり、飛行能力に優れた羽ばたき装置とすることができる。 Further, when the above configuration is adopted, as understood from FIG. 15, the state in which the slider 35 idles is formed over a predetermined time at a predetermined timing, so that the front turning operation is changed to the rear turning operation. Movement toward the rear of the wing (ie, flapping back), and movement toward the front of the wing from back turning to forward turning (ie, flapping forward) , The moving speed of the wings becomes larger (that is, faster), so that a greater levitation force can be obtained. Therefore, also in this sense, the exercise efficiency is greatly improved, and a flapping apparatus having excellent flight performance can be obtained.
 なお、比較形態に係る羽ばたき装置においては、上述した如くのスライダが空走する状態がないため、右側羽体および左側羽体をはじめとした駆動部に常時負荷がかかることになり、結果として動力源としての主回転電動機に対する負荷の変動が大きくなる。特に、右側羽体および左側羽体の切り返し動作時においては、右側羽体および左側羽体ならびにスライドに慣性力が作用し、大きな負荷の変動が主回転電動機に加わることになる。 In the flapping apparatus according to the comparative embodiment, since the slider as described above does not run idle, a load is always applied to the drive unit including the right wing and the left wing. The fluctuation of the load on the main rotary motor as the source becomes large. In particular, during the turning operation of the right and left wings, inertial force acts on the right and left wings and the slide, and a large load fluctuation is applied to the main rotating motor.
 一方、本実施の形態における羽ばたき装置1Aにおいては、比較形態に係る羽ばたき装置において最大の負荷が発生するタイミング(すなわち、右側羽体40Rおよび左側羽体40Lの切り返し動作時)において、動力源としての主回転電動機20に加わる負荷が殆どなく、さらに主回転電動機20による駆動力がスライダ35に伝達されるタイミングにおいては、右側羽体40Rおよび左側羽体40Lの切り返し動作に伴って発生する反動がディスク32cの回転を妨げない状態にある。そのため、本実施の形態における羽ばたき装置1Aとすることにより、主回転電動機20に対する負荷の変動が抑制できるばかりでなく、主回転電動機20に加わる負荷の大きさ自体をも低減することができ、駆動効率が飛躍的に向上することになる。 On the other hand, in the flapping apparatus 1A according to the present embodiment, at the timing when the maximum load is generated in the flapping apparatus according to the comparative mode (that is, when the right wing 40R and the left wing 40L are turned back), At the timing when there is almost no load applied to the main rotary motor 20 and the driving force by the main rotary motor 20 is transmitted to the slider 35, the reaction caused by the reversing operation of the right wing 40R and the left wing 40L is disc. It is in the state which does not prevent rotation of 32c. Therefore, by using the flapping apparatus 1A in the present embodiment, not only can the fluctuation of the load on the main rotary motor 20 be suppressed, but also the load itself applied to the main rotary motor 20 can be reduced, and the drive Efficiency will be dramatically improved.
 なお、本実施の形態においては、右側羽体40Rおよび左側羽体40Lがそれぞれ3時および9時の位置に配置された状態において、第1クランクアーム33Aおよび第2クランクアーム33Bのディスク32cに接続された一端(すなわち、クランクピン34aが位置する側の端部)が、ディスク32cの第1回転軸101に対して3時または9時の位置に配置されるように構成した場合を例示したが、この場合には、上記状態からの右側羽体40Rおよび左側羽体40Lの前方側に向けての揺動範囲と後方側に向けての揺動範囲とに厳密な意味において差が生じることになる。 In the present embodiment, the right wing 40R and the left wing 40L are connected to the discs 32c of the first crank arm 33A and the second crank arm 33B in a state where the right wing 40R and the left wing 40L are disposed at the 3 o'clock and 9 o'clock positions, respectively. An example is shown in which the one end (that is, the end on the side where the crank pin 34a is located) is arranged at the 3 o'clock or 9 o'clock position with respect to the first rotation shaft 101 of the disk 32c. In this case, there is a strict difference between the swing range toward the front side and the swing range toward the rear side of the right wing 40R and the left wing 40L from the above state. Become.
 そのため、上記状態からの右側羽体40Rおよび左側羽体40Lの前方側に向けての揺動範囲と後方側に向けての揺動範囲とを同じ大きさにする場合には、右側羽体40Rおよび左側羽体40Lがそれぞれ3時および9時の位置に配置された状態において第1クランクアーム33Aの上記一端および第2クランクアーム33Bの上記一端が、ディスク32cの第1回転軸101に対して前方側(すなわち、3時の位置から見て2時側および9時の位置から見て10時側に)に配置されることとなるように、第1クランクアーム33Aおよび第2クランクアーム33Bの長さをそれぞれ適切に調節すればよい。 Therefore, when the swing range toward the front side and the swing range toward the rear side of the right wing 40R and the left wing 40L from the above state are made the same size, the right wing 40R. When the left and right wings 40L are arranged at the 3 o'clock and 9 o'clock positions, respectively, the one end of the first crank arm 33A and the one end of the second crank arm 33B are in relation to the first rotating shaft 101 of the disk 32c. The first crank arm 33A and the second crank arm 33B are arranged on the front side (that is, on the 2 o'clock side as viewed from the 3 o'clock position and on the 10 o'clock side as viewed from the 9 o'clock position). What is necessary is just to adjust each length appropriately.
 <前側付勢部材60Aおよび後側付勢部材60Bによる運動効率の向上>
 本実施の形態における羽ばたき装置1Aにおいては、上述したように、スライダ35に弾性付勢機構である第1付勢部としての前側付勢部材60Aおよび第2付勢部としての後側付勢部材60Bが設けられている(図2ないし図4等参照)。このように構成することにより、さらに運動効率が大幅に向上する効果を得ることができる。以下、その詳細について説明する。
<Improvement of exercise efficiency by the front urging member 60A and the rear urging member 60B>
In the flapping apparatus 1A in the present embodiment, as described above, the front urging member 60A serving as the first urging member and the rear urging member serving as the second urging member, which are elastic urging mechanisms, are applied to the slider 35. 60B is provided (see FIGS. 2 to 4). By configuring in this way, it is possible to obtain an effect that the exercise efficiency is further greatly improved. The details will be described below.
 図2ないし図4に示すように、スライダ35の前端部には、その一部がスライダ35から突出するように前側付勢部材60Aが組付けられている。本実施の形態においては、前側付勢部材60Aが、いわゆるコンタクトプローブにて構成されており、バレルと、当該バレルに挿通されたプランジャと、バレルの内部であってバレルとプランジャとの間に配置された第1弾性体としてのスプリングとを含んでいる。 As shown in FIGS. 2 to 4, the front urging member 60 </ b> A is assembled to the front end portion of the slider 35 so that a part of the slider 35 protrudes from the slider 35. In the present embodiment, the front urging member 60A is constituted by a so-called contact probe, and is arranged between the barrel, the plunger inserted through the barrel, and the barrel between the barrel and the plunger. And a spring as a first elastic body.
 前側付勢部材60Aは、その軸方向がX軸方向に合致するようにスライダ35にバレルが固定されることで羽ばたき装置1Aに組付けられており、当該X軸方向に沿ってプランジャがバレルに対して相対的に移動できるように構成されている。ここで、上述したスプリングが有する弾性力に基づき、プランジャがバレルに対して押し込まれた場合(すなわち、プランジャがバレルに対して相対的にX2方向に移動した場合)には、プランジャの移動に抗するように当該プランジャにX1方向に向けての付勢力が発生することになる。 The front urging member 60A is assembled to the flapping apparatus 1A by fixing the barrel to the slider 35 so that the axial direction thereof matches the X-axis direction, and the plunger is attached to the barrel along the X-axis direction. It is comprised so that it can move relatively. Here, based on the elastic force of the spring described above, when the plunger is pushed into the barrel (that is, when the plunger moves relative to the barrel in the X2 direction), it resists the movement of the plunger. As a result, a biasing force in the X1 direction is generated on the plunger.
 一方、スライダ35の後端部には、その一部がスライダ35から突出するように後側付勢部材60Bが組付けられている。本実施の形態においては、後側付勢部材60Bも、いわゆるコンタクトプローブにて構成されており、バレルと、当該バレルに挿通されたプランジャと、バレルの内部であってバレルとプランジャとの間に配置された第2弾性体としてのスプリングとを含んでいる。 On the other hand, a rear urging member 60 </ b> B is assembled to the rear end portion of the slider 35 so that a part thereof protrudes from the slider 35. In the present embodiment, the rear urging member 60B is also constituted by a so-called contact probe, and a barrel, a plunger inserted through the barrel, and the inside of the barrel between the barrel and the plunger. And a spring as a second elastic body arranged.
 後側付勢部材60Bは、その軸方向がX軸方向に合致するようにスライダ35にバレルが固定されることで羽ばたき装置1Aに組付けられており、当該X軸方向に沿ってプランジャがバレルに対して相対的に移動できるように構成されている。ここで、上述したスプリングが有する弾性力に基づき、プランジャがバレルに対して押し込まれた場合(すなわち、プランジャがバレルに対して相対的にX1方向に移動した場合)には、プランジャの移動に抗するように当該プランジャにX2方向に向けての付勢力が発生することになる。 The rear urging member 60B is assembled to the flapping apparatus 1A by fixing the barrel to the slider 35 so that the axial direction thereof matches the X-axis direction, and the plunger moves along the X-axis direction. It is comprised so that it can move relatively with respect to. Here, based on the elastic force of the spring described above, when the plunger is pushed into the barrel (that is, when the plunger moves in the X1 direction relative to the barrel), it resists the movement of the plunger. As a result, a biasing force in the X2 direction is generated on the plunger.
 なお、本実施の形態においては、前側付勢部材60Aおよび後側付勢部材60Bがそれぞれ2本のコンタクトプローブにて構成されており、上方から前側付勢部材60A、後側付勢部材60B、後側付勢部材60B、前側付勢部材60Aの順で合計4本並んで配置されている。このように構成することにより、前側付勢部材60Aおよび後側付勢部材60Bを矩形枠状の支持フレーム13の内部に配置することが可能になり、その結果、前側付勢部材60Aを支持フレーム13の前枠部に対向して配置することが可能になるとともに、後側付勢部材60Bを支持フレーム13の後枠部に対向して配置することが可能になる。 In the present embodiment, the front urging member 60A and the rear urging member 60B are each composed of two contact probes, and the front urging member 60A, the rear urging member 60B, A total of four are arranged in the order of the rear urging member 60B and the front urging member 60A. By configuring in this way, the front urging member 60A and the rear urging member 60B can be arranged inside the rectangular frame-like support frame 13, and as a result, the front urging member 60A is supported by the support frame. The rear urging member 60 </ b> B can be disposed to face the rear frame portion of the support frame 13.
 これにより、図10に示すように、スライダ35が可動範囲内の最後部付近(すなわち第2位置付近)にある場合においては、後側付勢部材60Bのプランジャが支持フレーム13の後枠部に当接することにより、スライダ35には、X1方向に向けて前方側(すなわち第2位置側)への弾性付勢力が発生することになる。 Thus, as shown in FIG. 10, when the slider 35 is in the vicinity of the rearmost part within the movable range (that is, in the vicinity of the second position), the plunger of the rear biasing member 60 </ b> B is placed on the rear frame part of the support frame 13. By abutting, the slider 35 generates an elastic biasing force toward the front side (that is, the second position side) in the X1 direction.
 一方、図12に示すように、スライダ35が可動範囲内の最前部付近(すなわち第1位置付近)にある場合においては、前側付勢部材60Aのプランジャが支持フレーム13の前枠部に当接することにより、スライダ35には、X2方向に向けて後方側(すなわち第1位置側)への弾性付勢力が発生することになる。 On the other hand, as shown in FIG. 12, when the slider 35 is in the vicinity of the foremost part (that is, in the vicinity of the first position) within the movable range, the plunger of the front urging member 60 </ b> A contacts the front frame part of the support frame 13. As a result, an elastic biasing force toward the rear side (that is, the first position side) is generated in the slider 35 in the X2 direction.
 図16は、羽ばたき装置1Aの第1付勢部としての前側付勢部材60Aの挙動を示す模式図である。以下、この図16を参照して、第1付勢部としての前側付勢部材60Aの挙動について詳細に説明する。なお、図16においては、理解を容易とするために、前側付勢部材60Aを単なるスプリングとして表記するとともに、当該前側付勢部材60Aの挙動を(A)ないし(E)の順で時系列にて示している。 FIG. 16 is a schematic diagram showing the behavior of the front urging member 60A as the first urging unit of the flapping apparatus 1A. Hereinafter, with reference to FIG. 16, the behavior of the front urging member 60A as the first urging portion will be described in detail. In FIG. 16, for ease of understanding, the front biasing member 60A is represented as a simple spring, and the behavior of the front biasing member 60A is shown in time series in the order of (A) to (E). It shows.
 図16(A)に示すように、スライダ35が支持フレーム13の前枠部に近づく方向(すなわち図中矢印DR51方向)に向けて前方に移動している状態においてには、スライダ35の移動方向と交差するように第1クランクアーム33Aが延在している。ここで、未だ前側付勢部材60Aが支持フレーム13の前枠部に達していない状態においては、スライダ35に付与される外力は、基本的に第1クランクアーム33Aおよび第2クランクアーム33Bによって伝達される主回転電動機20の動力のみである。 As shown in FIG. 16A, in the state in which the slider 35 is moving forward in the direction approaching the front frame portion of the support frame 13 (that is, in the direction of the arrow DR51 in the figure), the moving direction of the slider 35 The first crank arm 33A extends so as to intersect with. Here, in a state where the front biasing member 60A has not yet reached the front frame portion of the support frame 13, the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. This is only the power of the main rotary motor 20 to be performed.
 図16(B)に示すように、スライダ35が支持フレーム13の前枠部に近づく方向(すなわち図中矢印DR51方向)に向けて前方に移動し、前側付勢部材60Aが支持フレーム13の前枠部に当接した状態においては、前側付勢部材60Aが支持フレーム13の前枠部とスライダ35とによって挟み込まれた状態となる。そのため、スライダ35の前方に向けての移動に抗するように前側付勢部材60Aによる弾性付勢力がスライダ35に対して付与され始めることになる。 As shown in FIG. 16B, the slider 35 moves forward in the direction approaching the front frame portion of the support frame 13 (that is, the direction of the arrow DR51 in the figure), and the front biasing member 60A moves to the front of the support frame 13. In the state of contacting the frame portion, the front biasing member 60 </ b> A is sandwiched between the front frame portion of the support frame 13 and the slider 35. Therefore, the elastic urging force by the front urging member 60 </ b> A starts to be applied to the slider 35 so as to resist the forward movement of the slider 35.
 図16(C)に示すように、スライダ35が支持フレーム13の前枠部に近づく方向(すなわち図中矢印DR51方向)に向けてさらに前方に移動し、スライダ35が可動範囲内の最前部(すなわち第1位置)に達した状態においては、前側付勢部材60Aが支持フレーム13の前枠部とスライダ35とによって最大限圧縮された状態となり、スライダ35の移動方向と第1クランクアーム33Aの延在方向とが重なることになる。 As shown in FIG. 16C, the slider 35 moves further forward in the direction approaching the front frame portion of the support frame 13 (that is, the arrow DR51 direction in the figure), and the slider 35 moves to the foremost portion (in the movable range). That is, in the state reached to the first position), the front urging member 60A is compressed to the maximum by the front frame portion of the support frame 13 and the slider 35, and the moving direction of the slider 35 and the first crank arm 33A are The extending direction will overlap.
 ここで、図16(B)に示す状態から図16(C)に示す状態に至るまでの間においては、上述した前側付勢部材60Aによってスライダ35に付与されることとなる弾性付勢力が、スライダ35に対してのブレーキ力として作用することになる。そのため、上述したスライダ35が空走する期間に当該ブレーキ力が作用する期間を適切に時間的に重ね合わせることにより、スライダ35にさらに急激な減速を生じさせることが可能になり、これに伴って右側羽体40Rおよび左側羽体40Lにより大きな慣性力が付与可能になる。 Here, during the period from the state shown in FIG. 16B to the state shown in FIG. 16C, the elastic biasing force that is applied to the slider 35 by the front biasing member 60A described above is This acts as a braking force for the slider 35. Therefore, it is possible to cause the slider 35 to decelerate more rapidly by appropriately overlapping the period in which the brake force is applied to the above-described period in which the slider 35 is idling. Large inertia force can be applied by the right wing 40R and the left wing 40L.
 したがって、右側羽体40Rおよび左側羽体40Lのそれぞれの前方切り返し動作がより確実に行なわれることになり、前方切り返し動作が不完全となってしまう状況の発生がさらに確実に回避できることになり、結果として羽ばたき装置1Aの姿勢が安定して運動効率が飛躍的に向上することになる。なお、前側付勢部材60Aが支持フレーム13の前枠部に当接を開始するタイミングとしては、第1クランクアーム33AとX軸とが成す角度のうちの小さい方の角度が、おおよそ20°程度となったタイミングとすることが好ましい。 Therefore, the front turn-back operation of each of the right wing 40R and the left wing 40L is more reliably performed, and the occurrence of a situation in which the front turn-back operation is incomplete can be more reliably avoided. As a result, the posture of the flapping apparatus 1A is stabilized and the exercise efficiency is dramatically improved. The timing at which the front biasing member 60A starts to contact the front frame portion of the support frame 13 is such that the smaller one of the angles formed by the first crank arm 33A and the X axis is about 20 °. It is preferable to set the timing.
 図16(D)に示すように、スライダ35が可動範囲内の最前部(すなわち第1位置)に配置された状態から支持フレーム13の前枠部から遠ざかる方向(すなわち図中矢印DR52方向)に向けて後方に移動を開始した状態においては、スライダ35の移動方向と交差するように第1クランクアーム33Aが再び延在することになる。 As shown in FIG. 16D, the slider 35 is moved away from the front frame portion of the support frame 13 from the state where the slider 35 is disposed at the foremost portion (that is, the first position) within the movable range (that is, in the direction of the arrow DR52 in the figure). In a state in which movement toward the rear is started, the first crank arm 33 </ b> A extends again so as to intersect the moving direction of the slider 35.
 その際、スライダ35は、依然として空走した状態にあるため、当該状態においては、圧縮された状態にある前側付勢部材60Aの復元力に基づき、スライダ35が後方に向けて弾性付勢されることになる。そのため、スライダ35は、前側付勢部材60Aの弾性付勢力に基づいて後方に向けて押し出されることになり、前側付勢部材60Aの弾性付勢力がスライダ35の加速力として作用する。 At that time, since the slider 35 is still idle, in this state, the slider 35 is elastically urged rearward based on the restoring force of the front urging member 60A in the compressed state. It will be. Therefore, the slider 35 is pushed backward based on the elastic biasing force of the front biasing member 60 </ b> A, and the elastic biasing force of the front biasing member 60 </ b> A acts as an acceleration force of the slider 35.
 その結果、スライダ35が急激に加速することになり、右側羽体40Rおよび左側羽体40Lのそれぞれの後方羽ばたき動作の開始初期において、右側羽体40Rおよび左側羽体40Lの移動速度を十分に大きくすることができる。したがって、後方羽ばたき動作においてより大きな浮上力が得られることになり、羽ばたき装置1Aの運動効率をさらに向上させることができる。 As a result, the slider 35 is accelerated rapidly, and the moving speed of the right wing 40R and the left wing 40L is sufficiently increased at the beginning of the rear flapping operation of the right wing 40R and the left wing 40L. can do. Therefore, a greater levitation force can be obtained in the backward flapping operation, and the motion efficiency of the flapping device 1A can be further improved.
 図16(E)に示すように、スライダ35が支持フレーム13の前枠部から遠ざかる方向(すなわち図中矢印DR52方向)に向けてさらに後方に移動し、前側付勢部材60Aが支持フレーム13の前枠部から離れた状態においては、スライダ35に対する前側付勢部材60Aの弾性付勢が解除され、スライダ35に付与される外力は、基本的に第1クランクアーム33Aおよび第2クランクアーム33Bによって伝達される主回転電動機20の動力のみとなる。 As shown in FIG. 16E, the slider 35 moves further rearward in the direction away from the front frame portion of the support frame 13 (that is, the direction of the arrow DR52 in the figure), and the front urging member 60A moves to the support frame 13. In a state away from the front frame portion, the elastic biasing of the front biasing member 60A against the slider 35 is released, and the external force applied to the slider 35 is basically generated by the first crank arm 33A and the second crank arm 33B. Only the power of the main rotary motor 20 to be transmitted is provided.
 ここで、上述したスライダ35が空走する期間に、前側付勢部材60Aの弾性付勢力がスライダ35の加速力として作用する期間を適切に時間的に重ね合わせることにより、スライダ35に印加される駆動力を前側付勢部材60Aによる駆動から第1クランクアーム33Aおよび第2クランクアーム33Bによる駆動にスムーズに切り替えることができる。なお、前側付勢部材60Aが支持フレーム13の前枠部から離れるタイミングとしては、第1クランクアーム33AとX軸とが成す角度のうちの小さい方の角度が、おおよそ20°程度となったタイミングとすることが好ましい。 Here, during the period in which the slider 35 is idling, the period in which the elastic biasing force of the front biasing member 60A acts as the acceleration force of the slider 35 is appropriately superimposed on the slider 35 to be applied to the slider 35. The driving force can be smoothly switched from driving by the front urging member 60A to driving by the first crank arm 33A and the second crank arm 33B. The timing at which the front urging member 60A moves away from the front frame portion of the support frame 13 is a timing at which the smaller one of the angles formed by the first crank arm 33A and the X axis is about 20 °. It is preferable that
 以上により、上述した前側付勢部材60Aを設置することにより、右側羽体40Rおよび左側羽体40Lが前方切り返し動作を行なう前後の期間において、羽ばたき装置1Aの運動効率を飛躍的に向上させることができ、飛行能力に優れた羽ばたき装置とすることが可能になる。 As described above, by installing the above-described front urging member 60A, it is possible to dramatically improve the exercise efficiency of the flapping apparatus 1A during the period before and after the right wing 40R and the left wing 40L perform the front turning operation. Therefore, it is possible to provide a flapping apparatus with excellent flight capability.
 なお、ここではその詳細な説明は省略するが、後側付勢部材60Bの挙動についても、上述した前側付勢部材60Aの挙動に準じたものとなる。そのため、後側付勢部材60Bを設置することにより、右側羽体40Rおよび左側羽体40Lが後方切り返し動作を行なう前後の期間において、羽ばたき装置1Aの運動効率を飛躍的に向上させることができ、飛行能力に優れた羽ばたき装置とすることが可能になる。 In addition, although the detailed description is abbreviate | omitted here, the behavior of the rear side urging member 60B also conforms to the behavior of the front side urging member 60A. Therefore, by installing the rear side urging member 60B, it is possible to dramatically improve the exercise efficiency of the flapping apparatus 1A in the period before and after the right wing 40R and the left wing 40L perform the backward turning operation. It is possible to provide a flapping apparatus with excellent flight capability.
 本実施の形態においては、弾性付勢機構を構成する第1付勢部および第2付勢部として、いずれもコンタクトプローブを用いた場合を例示して説明を行なったが、必ずしもこれらをコンタクトプローブにて構成する必要はなく、他の部材にてこれを構成することも可能である。たとえば、第1付勢部および第2付勢部としてスプリングのみを利用することとしてもよく、また板バネやゴム部材等を利用することとしてもよい。 In the present embodiment, the first urging portion and the second urging portion constituting the elastic urging mechanism have been described by exemplifying the case where contact probes are used, but these are not necessarily the contact probes. It is not necessary to constitute in this, and it is also possible to constitute this with other members. For example, only a spring may be used as the first urging unit and the second urging unit, or a leaf spring, a rubber member, or the like may be used.
 また、本実施の形態においては、弾性付勢機構を構成する第1付勢部および第2付勢部をそれぞれスライダの前端部および後端部から突出するようにスライダに組付けた場合を例示して説明を行なったが、その組付位置はこれに限定されるものではなく、他の部位にこれを組付けることとしてもよい。 In the present embodiment, the case where the first urging portion and the second urging portion constituting the elastic urging mechanism are assembled to the slider so as to protrude from the front end portion and the rear end portion of the slider, respectively, is exemplified. However, the assembly position is not limited to this, and it may be assembled to another part.
 さらには、本実施の形態においては、弾性付勢機構を構成する第1付勢部および第2付勢部をスライダに組付けた場合を例示して説明を行なったが、これを躯体を構成する支持フレームあるいは躯体を構成する部材のうちの支持フレーム以外の部材に組付けることとしてもよい。 Furthermore, in the present embodiment, the case where the first urging portion and the second urging portion constituting the elastic urging mechanism are assembled to the slider has been described as an example. It is good also as assembling | attaching to members other than a support frame among the members which comprise a support frame or a housing to perform.
 <羽ばたき装置1Aの飛行態様>
 図17は、羽ばたき装置1Aの主たる飛行態様を示した表であり、図18ないし図27は、それぞれ羽ばたき装置1Aの図17に示す飛行態様1,3,5,8,11,14,17,20,23,26における右側羽体40Rおよび左側羽体40Lの挙動を示す平面図である。また、図28は、羽ばたき装置1Aの従たる飛行態様を示した表であり、図29ないし図31は、それぞれ羽ばたき装置1Aの図28に示す飛行態様28,29,32における右側羽体40Rおよび左側羽体40Lの挙動を示す平面図である。以下、前述した図6と、これら図17ないし図32とを参照して、本実施の形態における羽ばたき装置1Aの飛行態様について詳細に説明する。
<Flight mode of flapping apparatus 1A>
FIG. 17 is a table showing the main flight modes of the flapping apparatus 1A, and FIGS. 18 to 27 show the flight modes 1, 3, 5, 8, 11, 14, 17, respectively shown in FIG. 17 of the flapping apparatus 1A. 20 is a plan view showing the behavior of the right wing 40R and the left wing 40L at 20, 23 and 26. FIG. FIG. 28 is a table showing the flight mode followed by the flapping apparatus 1A, and FIGS. 29 to 31 respectively show the right wing 40R and the right wing 40R in the flight modes 28, 29, and 32 shown in FIG. 28 of the flapping apparatus 1A. It is a top view which shows the behavior of the left side wing 40L. Hereinafter, with reference to FIG. 6 described above and FIGS. 17 to 32, the flight mode of the flapping apparatus 1A in the present embodiment will be described in detail.
 上述したように、羽ばたき装置1Aにおいては、右側第2運動変換部30C1に右側ローラ37Rを具備させ、当該右側ローラ37Rに右前側弾性ベルト36R1および右後側弾性ベルト36R2を掛け回すとともに、左側第2運動変換部30C2に左側ローラ37Lを具備させ、当該左側ローラ37Lに左前側弾性ベルト36L1および左後側弾性ベルト36L2を掛け回すこととしている。さらに、上述したように、羽ばたき装置1Aにおいては、右側ローラ37Rの位置および軸ぶれの大きさを調節する右側ローラ制御機構50Aおよび左側ローラ37Lの位置および軸ぶれの大きさを調節する左側ローラ制御機構50Bからなる羽ばたき制御機構50を設けるとともに、当該羽ばたき制御機構50の動作を制御する飛行態様制御部80を設置している。 As described above, in the flapping apparatus 1A, the right second motion conversion unit 30C1 is provided with the right roller 37R, and the right front elastic belt 36R1 and the right rear elastic belt 36R2 are wound around the right roller 37R and the left first The two-motion converting unit 30C2 is provided with a left roller 37L, and the left front elastic belt 36L1 and the left rear elastic belt 36L2 are wound around the left roller 37L. Further, as described above, in the flapping apparatus 1A, the right roller control mechanism 50A for adjusting the position of the right roller 37R and the size of the shaft shake, and the left roller control for adjusting the position of the left roller 37L and the size of the shaft shake. A flapping control mechanism 50 including the mechanism 50B is provided, and a flight mode control unit 80 for controlling the operation of the flapping control mechanism 50 is provided.
 これにより、羽ばたき装置1Aは、飛行態様制御部80の制御動作に基づき、各種の飛行態様にて飛行することが可能であり、以下においては、その飛行態様の代表的なものについて、これを順に説明する。なお、以下に示す飛行態様は、上記構成に基づいて実現可能な飛行態様のあくまでも一部であり、飛行態様制御部80の制御動作を種々変更することでさらに様々な飛行態様を実現することができる。 Accordingly, the flapping apparatus 1A can fly in various flight modes based on the control operation of the flight mode control unit 80. In the following, the typical flight modes will be described in order. explain. The flight modes shown below are only a part of the flight modes that can be realized based on the above configuration, and various flight modes can be realized by variously changing the control operation of the flight mode control unit 80. it can.
 図17および図28に示すように、各種の飛行態様を実現するために、本実施の形態における羽ばたき装置1Aにおいては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの位置および軸ぶれの大きさならびに羽ばたきの周波数をそれぞれ可変に調節している。なお、右側ローラ37Rおよび左側ローラ37Lの軸ぶれの大きさは、後述するように右側ローラシャフト17Rおよび左側ローラシャフト17Lの固定の有無および固定の程度によって決定される。 As shown in FIG. 17 and FIG. 28, in order to realize various flight modes, in the flapping apparatus 1A in the present embodiment, the positions of the right roller 37R and the left roller 37L, the size of the shaft shake, and the flapping. Each frequency is variably adjusted. Note that the magnitude of the shaft runout of the right roller 37R and the left roller 37L is determined by whether or not the right roller shaft 17R and the left roller shaft 17L are fixed and the degree of fixing, as will be described later.
 右側ローラ37Rの位置は、X軸方向における「前方位置」、「中央位置」、「後方位置」の3つの位置に調節可能に構成されている。ここで、「中央位置」は、右側ローラ37Rの中心軸が、右側回転体38Rの第2回転軸102Rおよび左側回転体38Lの第2回転軸102Lを含む平面上に配置された状態における位置であり、「前方位置」および「後方位置」は、それぞれ中央位置よりも右側ローラ37RがX1方向およびX2方向に所定距離だけ移動した状態における位置である。 The position of the right roller 37R is configured to be adjustable to three positions of “front position”, “center position”, and “rear position” in the X-axis direction. Here, the “center position” is a position in a state where the central axis of the right roller 37R is arranged on a plane including the second rotation shaft 102R of the right rotation body 38R and the second rotation shaft 102L of the left rotation body 38L. The “front position” and the “rear position” are positions in a state where the right roller 37R has moved a predetermined distance in the X1 direction and the X2 direction from the center position, respectively.
 右側ローラ37Rの位置を上述した「前方位置」、「中央位置」、「後方位置」に可変に調節することにより、右側羽体40Rの揺動中心は、それぞれ「後方位置」、「中央位置」、「前方位置」に変更されることになる。これは、右側ローラ37Rの位置が変更されることでスライダ35と右側回転体38Rとの間に架設された右前側弾性ベルト36R1および右後側弾性ベルト36R2の掛け回し状態が変化することに起因する。 By variably adjusting the position of the right roller 37R to the above-mentioned “front position”, “center position”, and “rear position”, the swing center of the right wing 40R is “rear position” and “center position”, respectively. , It will be changed to “front position”. This is because the state of the right front elastic belt 36R1 and the right rear elastic belt 36R2 installed between the slider 35 and the right rotating body 38R is changed by changing the position of the right roller 37R. To do.
 ここで、右側ローラ37Rの位置が「中央位置」にある場合には、たとえば図6を参照して、右側羽体40Rの揺動中心CRは、右側回転体38Rの第2回転軸102Rおよび左側回転体38Lの第2回転軸102Lを含む平面上に配置されることになり、この位置が、右側羽体40Rの揺動中心の「中央位置」に該当する。 Here, when the position of the right roller 37R is in the “center position”, for example, referring to FIG. 6, the swing center CR of the right wing body 40R is the second rotation shaft 102R of the right rotator 38R and the left side. The rotating body 38L is disposed on a plane including the second rotating shaft 102L, and this position corresponds to the “center position” of the swing center of the right wing body 40R.
 一方、右側ローラ37Rの位置が「前方位置」にある場合には、たとえば図20を参照して、右側羽体40Rの揺動中心CRは、右側回転体38Rの第2回転軸102Rを回転中心として時計回りに所定角度(図中に示す角度β0)だけ回転した位置に配置されることになり、この位置が、右側羽体40Rの揺動中心の「後方位置」に該当する。 On the other hand, when the position of the right roller 37R is in the “front position”, for example, referring to FIG. 20, the swing center CR of the right wing 40R is centered on the second rotation shaft 102R of the right rotator 38R. As a position rotated clockwise by a predetermined angle (angle β0 shown in the figure), and this position corresponds to the “rear position” of the swing center of the right wing 40R.
 また、右側ローラ37Rの位置が「後方位置」にある場合には、たとえば図21を参照して、右側羽体40Rの揺動中心CRは、右側回転体38Rの第2回転軸102Rを回転中心として反時計回りに所定角度(図中に示す角度β0)だけ回転した位置に配置されることになり、この位置が、右側羽体40Rの揺動中心の「前方位置」に該当する。 When the position of the right roller 37R is in the “rear position”, for example, referring to FIG. 21, the swing center CR of the right wing body 40R is centered on the second rotation shaft 102R of the right rotator 38R. As a position rotated by a predetermined angle (angle β0 shown in the drawing), and this position corresponds to the “front position” of the swing center of the right wing 40R.
 左側ローラ37Lの位置は、X軸方向における「前方位置」、「中央位置」、「後方位置」の3つの位置に調節可能に構成されている。ここで、「中央位置」は、左側ローラ37Lの中心軸が、右側回転体38Rの第2回転軸102Rおよび左側回転体38Lの第2回転軸102Lを含む平面上に配置された状態における位置であり、「前方位置」および「後方位置」は、それぞれ中央位置よりも左側ローラ37LがX1方向およびX2方向に所定距離だけ移動した状態における位置である。 The position of the left roller 37L is configured to be adjustable to three positions of “front position”, “center position”, and “rear position” in the X-axis direction. Here, the “center position” is a position in a state where the central axis of the left roller 37L is arranged on a plane including the second rotation shaft 102R of the right rotation body 38R and the second rotation shaft 102L of the left rotation body 38L. The “front position” and the “rear position” are positions in a state where the left roller 37L has moved by a predetermined distance in the X1 direction and the X2 direction from the center position, respectively.
 左側ローラ37Lの位置を上述した「前方位置」、「中央位置」、「後方位置」に可変に調節することにより、左側羽体40Lの揺動中心は、それぞれ「後方位置」、「中央位置」、「前方位置」に変更されることになる。これは、左側ローラ37Lの位置が変更されることでスライダ35と左側回転体38Lとの間に架設された左前側弾性ベルト36L1および左後側弾性ベルト36L2の掛け回し状態が変化することに起因する。 By variably adjusting the position of the left roller 37L to the above-mentioned “front position”, “center position”, and “rear position”, the swing center of the left wing 40L is “rear position” and “center position”, respectively. , It will be changed to “front position”. This is because the state of the left front elastic belt 36L1 and the left rear elastic belt 36L2 installed between the slider 35 and the left rotating body 38L changes by changing the position of the left roller 37L. To do.
 ここで、左側ローラ37Lの位置が「中央位置」にある場合には、たとえば図6を参照して、左側羽体40Lの揺動中心CLは、右側回転体38Rの第2回転軸102Rおよび左側回転体38Lの第2回転軸102Lを含む平面上に配置されることになり、この位置が、左側羽体40Lの揺動中心の「中央位置」に該当する。 Here, when the position of the left roller 37L is in the “center position”, for example, referring to FIG. 6, the swing center CL of the left wing body 40L is the second rotation shaft 102R of the right rotator 38R and the left side. The rotating body 38L is disposed on a plane including the second rotating shaft 102L, and this position corresponds to the “center position” of the swing center of the left wing body 40L.
 一方、左側ローラ37Lの位置が「前方位置」にある場合には、たとえば図20を参照して、左側羽体40Lの揺動中心CLは、左側回転体38Lの第2回転軸102Lを回転中心として反時計回りに所定角度(図中に示す角度β0)だけ回転した位置に配置されることになり、この位置が、左側羽体40Lの揺動中心の「後方位置」に該当する。 On the other hand, when the position of the left roller 37L is in the “front position”, for example, referring to FIG. 20, the swing center CL of the left wing body 40L is centered on the second rotation shaft 102L of the left rotator 38L. As a position rotated by a predetermined angle (angle β0 shown in the drawing), and this position corresponds to the “rear position” of the swing center of the left wing 40L.
 また、左側ローラ37Lの位置が「後方位置」にある場合には、たとえば図21を参照して、左側羽体40Lの揺動中心CLは、左側回転体38Lの第2回転軸102Lを回転中心として時計回りに所定角度(図中に示す角度β0)だけ回転した位置に配置されることになり、この位置が、左側羽体40Lの揺動中心の「前方位置」に該当する。 When the position of the left roller 37L is in the “rear position”, for example, referring to FIG. 21, the swing center CL of the left wing body 40L is centered on the second rotation shaft 102L of the left rotator 38L. As a position rotated clockwise by a predetermined angle (angle β0 shown in the figure), and this position corresponds to the “front position” of the swing center of the left wing 40L.
 右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数は、主回転電動機20の出力を調節することで「高」、「中」、「低」の3つの状態に調節可能に構成されている。これは、主回転電動機20の出力を相対的に高くした場合に、ディスク32cの回転速度が増加して右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が高周波化する一方、主回転電動機20の出力を相対的に低くした場合に、ディスク32cの回転速度が減少して右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が低周波化することによる。 The flapping frequency of the right wing 40R and the left wing 40L can be adjusted to three states of “high”, “medium”, and “low” by adjusting the output of the main rotating motor 20. This is because when the output of the main rotary motor 20 is relatively high, the rotational speed of the disk 32c increases and the flapping frequency of the right wing 40R and the left wing 40L increases, while the main rotary motor 20 increases. This is because the rotational speed of the disk 32c decreases and the flapping frequency of the right wing 40R and the left wing 40L decreases.
 右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数を上述した「高」、「中」、「低」の3つの状態に可変に調節することにより、右側羽体40Rの揺動範囲に相当する揺動角度は、「大」、「中」、「小」に変更されることになる。これは、主回転電動機20の回転速度が増減することに伴い、スライダ35が移動する際に当該スライダ35に発生することとなる慣性力が増減することに主として起因する。 By variably adjusting the flapping frequency of the right wing 40R and the left wing 40L to the above three states of “high”, “medium”, and “low”, it corresponds to the swing range of the right wing 40R. The swing angle is changed to “large”, “medium”, and “small”. This is mainly due to an increase or decrease in the inertial force that is generated in the slider 35 when the slider 35 moves as the rotation speed of the main rotary motor 20 increases or decreases.
 ここで、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」である場合には、たとえば図6を参照して、右側羽体40Rおよび左側羽体40Lの揺動範囲に相当する揺動角度は、それぞれ所定の大きさである角度α0となり、この状態が、右側羽体40Rおよび左側羽体40Lの揺動角度の「中」に該当する。 Here, when the flapping frequency of the right wing 40R and the left wing 40L is “medium”, for example, referring to FIG. 6, it corresponds to the swing range of the right wing 40R and the left wing 40L. The swing angle is an angle α0 each having a predetermined size, and this state corresponds to “medium” of the swing angles of the right wing 40R and the left wing 40L.
 一方、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である場合には、たとえば図18を参照して、右側羽体40Rおよび左側羽体40Lの揺動範囲に相当する揺動角度は、それぞれ上述した角度α0よりも大きい所定の大きさである角度α1となり、この状態が、右側羽体40Rおよび左側羽体40Lの揺動角度の「大」に該当する。 On the other hand, when the flapping frequency of the right wing 40R and the left wing 40L is “high”, for example, referring to FIG. 18, the swing corresponding to the swing range of the right wing 40R and the left wing 40L. The moving angle is an angle α1, which has a predetermined size larger than the angle α0 described above, and this state corresponds to “large” of the swing angle of the right wing 40R and the left wing 40L.
 また、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である場合には、たとえば図19を参照して、右側羽体40Rおよび左側羽体40Lの揺動範囲に相当する揺動角度は、それぞれ上述した角度α0よりも小さい所定の大きさである角度α2となり、この状態が、右側羽体40Rおよび左側羽体40Lの揺動角度の「小」に該当する。 Further, when the flapping frequency of the right wing 40R and the left wing 40L is “low”, for example, referring to FIG. 19, the swing corresponding to the swing range of the right wing 40R and the left wing 40L. The moving angle is an angle α2 having a predetermined size smaller than the angle α0 described above, and this state corresponds to “small” of the swing angle of the right wing 40R and the left wing 40L.
 右側ローラ37Rの軸ぶれの大きさは、右側ローラ37Rを回転可能に支持する右側ローラシャフト17Rに対するガイド部材58aによる固定の有無および固定の程度(すなわち、右側ローラシャフト17Rがどのような拘束状態にあるか)により、3つの状態に調節可能に構成されている。すなわち、右側ローラシャフト17Rをガイド部材58aによって強固に固定することで実質的に右側ローラ37Rに軸ぶれが生じないようにした状態が、右側ローラシャフト17Rの固定が「有」の状態であり、右側ローラシャフト17Rをガイド部材58aによって軽度に固定することで右側ローラ37Rに相当程度の軸ぶれが生じるようにした状態が、右側ローラシャフト17Rの固定が「有(軽固定)」の状態であり、右側ローラシャフト17Rをガイド部材58aによって何ら固定しないことで右側ローラ37Rに極度に軸ぶれが生じるようにした状態が、右側ローラシャフト17Rの固定が「無」の状態である。 The amount of shaft runout of the right roller 37R is determined by whether or not the guide member 58a is fixed to the right roller shaft 17R that rotatably supports the right roller 37R, and the degree of fixing (that is, in what restraint state the right roller shaft 17R is in) It is configured to be adjustable in three states. That is, the state in which the right side roller shaft 17R is firmly fixed by the guide member 58a so that the right side roller 37R is not substantially shaken is the state in which the right side roller shaft 17R is fixed. A state in which the right roller shaft 17R is lightly fixed by the guide member 58a so that a considerable degree of shaft runout occurs in the right roller 37R is a state in which the right roller shaft 17R is fixed to “present (lightly fixed)”. The state in which the right roller shaft 17R is not fixed by the guide member 58a so that the right roller shaft 37R is extremely shaken is the state in which the right roller shaft 17R is fixed.
 右側ローラシャフト17Rの固定の有無および固定の程度を上述した「有」、「有(軽固定)」、「無」の3つの状態に可変に調節することにより、右側羽体40Rの揺動範囲に相当する揺動角度は、上述した「大」、「中」、「小」に加えて、「大幅に小」、「極小」に変更されることになる。これは、右側ローラ37Rの軸ぶれの大きさが変化することに伴い、スライダ35と右側回転体38Rとの間に架設された右前側弾性ベルト36R1および右後側弾性ベルト36R2による動力の伝達割合が変化することに起因する。 By swinging the right roller shaft 17R in the three states of “presence”, “presence (lightly fixed)”, and “non-existence”, the swing range of the right wing 40R is fixed. In addition to the above-mentioned “large”, “medium”, and “small”, the swing angle corresponding to is changed to “significantly small” and “minimal”. This is because the transmission rate of the power by the right front elastic belt 36R1 and the right rear elastic belt 36R2 installed between the slider 35 and the right rotating body 38R as the size of the shaft shake of the right roller 37R changes. Due to the change.
 ここで、右側ローラシャフト17Rの固定が「有」の場合には、たとえば図6、図18および図19を参照して、右側羽体40Rの揺動範囲に相当する揺動角度は、それぞれ上述した角度α0,α1,α2のいずれかとなり、右側羽体40Rの揺動角度は、上述した「大」、「中」、「小」のいずれかとなる。 Here, when the right roller shaft 17R is fixed to “present”, for example, referring to FIG. 6, FIG. 18, and FIG. 19, the swing angle corresponding to the swing range of the right wing 40R is described above. And the swing angle of the right wing 40R is one of the above-mentioned “large”, “medium”, and “small”.
 一方、右側ローラシャフト17Rの固定が「有(軽固定)」の場合には、右側ローラ37Rに相当程度の大きさの軸ぶれが生じることになり、右前側弾性ベルト36R1および右後側弾性ベルト36R2による動力の伝達割合が相当程度に減少する。そのため、この場合には、たとえば図29を参照して、右側羽体40Rの揺動範囲に相当する揺動角度は、角度α2よりも相当程度に小さい角度α3となり、右側羽体40Rの揺動角度は、上述した「大幅に小」となる。 On the other hand, when the right roller shaft 17R is fixed to “present (lightly fixed)”, the right roller 37R has a considerable amount of shaft runout, and the right front elastic belt 36R1 and the right rear elastic belt. The transmission ratio of power by 36R2 is considerably reduced. Therefore, in this case, for example, referring to FIG. 29, the swing angle corresponding to the swing range of right wing 40R is an angle α3 considerably smaller than angle α2, and swing of right wing 40R is performed. The angle is “substantially small” as described above.
 また、右側ローラシャフト17Rの固定が「無」の場合には、右側ローラ37Rに極度の軸ぶれが生じることになり、右前側弾性ベルト36R1および右後側弾性ベルト36R2による動力の伝達割合が極端に減少する。そのため、この場合には、たとえば図30を参照して、右側羽体40Rの揺動範囲に相当する揺動角度は、角度α3よりもさらに小さい角度α4となり、右側羽体40Rの揺動角度は、上述した「極小」となる。 Further, when the right roller shaft 17R is fixed to “None”, the right roller 37R is extremely shaken, and the power transmission rate by the right front elastic belt 36R1 and the right rear elastic belt 36R2 is extremely high. To decrease. Therefore, in this case, for example, referring to FIG. 30, the swing angle corresponding to the swing range of right wing 40R is an angle α4 smaller than angle α3, and the swing angle of right wing 40R is The “minimum” described above.
 左側ローラ37Lの軸ぶれの大きさは、左側ローラ37Lを回転可能に支持する左側ローラシャフト17Lに対するガイド部材58bによる固定の有無および固定の程度(すなわち、左側ローラシャフト17Lがどのような拘束状態にあるか)により、3つの状態に調節可能に構成されている。すなわち、左側ローラシャフト17Lをガイド部材58bによって強固に固定することで実質的に左側ローラ37Lに軸ぶれが生じないようにした状態が、左側ローラシャフト17Lの固定が「有」の状態であり、左側ローラシャフト17Lをガイド部材58bによって軽度に固定することで左側ローラ37Lに相当程度の軸ぶれが生じるようにした状態が、左側ローラシャフト17Lの固定が「有(軽固定)」の状態であり、左側ローラシャフト17Lをガイド部材58bによって何ら固定しないことで左側ローラ37Lに極度に軸ぶれが生じるようにした状態が、左側ローラシャフト17Lの固定が「無」の状態である。 The size of the shaft runout of the left roller 37L is determined by whether or not the guide roller 58b is fixed to the left roller shaft 17L that rotatably supports the left roller 37L and the degree of fixing (that is, in what constraint state the left roller shaft 17L is It is configured to be adjustable in three states. That is, the state where the left roller shaft 17L is firmly fixed by the guide member 58b so that the left roller 37L is not substantially shaken is the state where the left roller shaft 17L is fixed. The state in which the left roller shaft 17L is slightly fixed by the guide member 58b so that a considerable degree of shaft runout occurs in the left roller 37L is the state in which the left roller shaft 17L is fixed as “present (lightly fixed)”. The state where the left roller shaft 17L is not fixed by the guide member 58b so that the left roller 37L is extremely shaken is the state where the left roller shaft 17L is fixed.
 左側ローラシャフト17Lの固定の有無および固定の程度を上述した「有」、「有(軽固定)」、「無」の3つの状態に可変に調節することにより、左側羽体40Lの揺動範囲に相当する揺動角度は、上述した「大」、「中」、「小」に加えて、「大幅に小」、「極小」に変更されることになる。これは、左側ローラ37Lの軸ぶれの大きさが変化することに伴い、スライダ35と左側回転体38Lとの間に架設された左前側弾性ベルト36L1および左後側弾性ベルト36L2による動力の伝達割合が変化することに起因する。 The swinging range of the left wing 40L can be adjusted by variably adjusting the presence / absence and degree of fixation of the left roller shaft 17L to the above-mentioned three states of “present”, “present (lightly fixed)”, and “none”. In addition to the above-mentioned “large”, “medium”, and “small”, the swing angle corresponding to is changed to “significantly small” and “minimal”. This is because the transmission rate of the power by the left front elastic belt 36L1 and the left rear elastic belt 36L2 provided between the slider 35 and the left rotating body 38L is changed with the change of the shaft shake of the left roller 37L. Due to the change.
 ここで、左側ローラシャフト17Lの固定が「有」の場合には、たとえば図6、図18および図19を参照して、左側羽体40Lの揺動範囲に相当する揺動角度は、それぞれ上述した角度α0,α1,α2のいずれかとなり、左側羽体40Lの揺動角度は、上述した「大」、「中」、「小」のいずれかとなる。 Here, when the left roller shaft 17L is fixed to “present”, for example, referring to FIG. 6, FIG. 18, and FIG. 19, the swing angle corresponding to the swing range of the left wing 40L is described above. One of the angles α0, α1, and α2 is set, and the swing angle of the left wing 40L is one of the above-described “large”, “medium”, and “small”.
 一方、左側ローラシャフト17Lの固定が「有(軽固定)」の場合には、左側ローラ37Lに相当程度の大きさの軸ぶれが生じることになり、左前側弾性ベルト36L1および左後側弾性ベルト36L2による動力の伝達割合が相当程度に減少する。そのため、この場合には、右側羽体40Rの揺動範囲に相当する揺動角度は、角度α2よりも相当程度に小さい角度α3(図29における右側羽体40Rの揺動角度と同等)となり、左側羽体40Lの揺動角度は、上述した「大幅に小」となる。 On the other hand, when the left roller shaft 17L is fixed to “present (lightly fixed)”, the left roller 37L will have a considerable amount of shaft runout, and the left front elastic belt 36L1 and the left rear elastic belt The transmission ratio of power by 36L2 is considerably reduced. Therefore, in this case, the swing angle corresponding to the swing range of the right wing 40R is an angle α3 (equivalent to the swing angle of the right wing 40R in FIG. 29) that is considerably smaller than the angle α2. The swing angle of the left wing 40L is “significantly small” as described above.
 また、左側ローラシャフト17Lの固定が「無」の場合には、左側ローラ37Lに極度の軸ぶれが生じることになり、左前側弾性ベルト36L1および左後側弾性ベルト36L2による動力の伝達割合が極端に減少する。そのため、この場合には、左側羽体40Lの揺動範囲に相当する揺動角度は、角度α3よりもさらに小さい角度α4(図30における右側羽体40Rの揺動角度と同等)となり、左側羽体40Lの揺動角度は、上述した「極小」となる。 Further, when the left roller shaft 17L is fixed to “None”, the left roller 37L is extremely shaken, and the power transmission ratio of the left front elastic belt 36L1 and the left rear elastic belt 36L2 is extremely high. To decrease. Therefore, in this case, the swing angle corresponding to the swing range of the left wing 40L is an angle α4 that is smaller than the angle α3 (equivalent to the swing angle of the right wing 40R in FIG. 30). The swing angle of the body 40L is the “minimum” described above.
 <飛行態様1ないし3>
 図17を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様1ないし3においては、羽ばたき装置1Aは、垂直上昇、ホバリング、垂直下降のいずれかの飛行態様をとる。
<Flight modes 1 to 3>
Referring to FIG. 17, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight modes 1 to 3 in which “present” is set, the flapping apparatus 1A takes one of the flight modes of vertical ascending, hovering, and vertical descending.
 まず、飛行態様1ないし3の代表例として、飛行態様2を取り上げると、図17および図6に示すように、当該飛行態様2においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking flight mode 2 as a representative example of flight modes 1 to 3, as shown in FIGS. 17 and 6, in flight mode 2, the position of the swing center CR of the right wing 40R is “center”. The left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様2においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)推力が発生するが、これらが互いに打ち消し合うことにより、羽ばたき装置1Aには、XY平面内のいずれの方向に向けても推力が働かなくなる。 Therefore, in this flight mode 2, the right wing 40R swings to generate a thrust toward the left (that is, in the Y2 direction), and the left wing 40L swings to the right. Thrust is generated toward (i.e., in the Y1 direction), but these cancel each other, so that the thrust does not work on the flapping apparatus 1A in any direction in the XY plane.
 また、当該飛行態様2においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 2, the lift generated on the right wing 40R and the left wing 40L is adjusted upward by adjusting the flapping frequency of the right wing 40R and the left wing 40L. The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様2においては、羽ばたき装置1Aが、いずれの方向にも移動することなく空中において静止することになり、ホバリングすることになる。 Therefore, in the flight mode 2, the flapping apparatus 1A is stationary in the air without moving in any direction and hovering.
 一方、図17および図18を参照して、飛行態様1においては、上述した飛行態様2と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17 and FIG. 18, in flight mode 1, the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 2 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様1においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 1, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is generated by the flapping apparatus. It becomes larger than the gravity applied to 1A.
 したがって、当該飛行態様2においては、羽ばたき装置1Aが、上方に向けて(すなわちZ1方向に向けて)移動することになり、垂直上昇することになる。 Therefore, in the flight mode 2, the flapping apparatus 1A moves upward (that is, in the Z1 direction) and rises vertically.
 また、図17および図19を参照して、飛行態様3においては、上述した飛行態様2と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIGS. 17 and 19, in flight mode 3, when compared with flight mode 2 described above, the flapping frequency of right wing 40R and left wing 40L is “low”. Accordingly, the swing angle of the right wing 40R becomes “small” with an angle α2, and the swing angle of the left wing 40L becomes “small” with an angle α2.
 当該飛行態様3においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 3, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is generated by the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様3においては、羽ばたき装置1Aが、下方に向けて(すなわちZ2方向に向けて)移動することになり、垂直下降することになる。 Therefore, in the flight mode 3, the flapping device 1A moves downward (that is, in the Z2 direction) and vertically descends.
 <飛行態様4ないし6>
 図17を参照して、右側ローラ37Rの位置を「前方位置」とし、左側ローラ37Lの位置を「前方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様4ないし6においては、羽ばたき装置1Aは、上昇前進、水平前進、下降前進のいずれかの飛行態様をとる。
<Flight modes 4 to 6>
Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 4 to 6 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending forward, horizontal forward, and descending forward.
 まず、飛行態様4ないし6の代表例として、飛行態様5を取り上げると、図17および図20に示すように、当該飛行態様5においては、右側羽体40Rの揺動中心CRの位置が「後方位置」にあり、左側羽体40Lの揺動中心CLの位置が「後方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking flight mode 5 as a representative example of flight modes 4 to 6, as shown in FIGS. 17 and 20, in the flight mode 5, the position of the swing center CR of the right wing 40R is “rearward”. The left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様5においては、右側羽体40Rが揺動することによって左前方に向けて(すなわちX1方向かつY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右前方に向けて(すなわちX1方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、前方に向けて(すなわち図20中に示す矢印DR101方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 5, the right wing 40R swings to generate a thrust toward the left front (that is, in the X1 direction and the Y2 direction), and the left wing 40L swings. Generates a thrust toward the right front (that is, in the X1 direction and the Y1 direction). As a result, the flapping device 1A is directed forward (that is, in the direction of the arrow DR101 shown in FIG. 20). Thrust will work.
 また、当該飛行態様5においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 5, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様5においては、羽ばたき装置1Aが、前方に向けて(すなわちX1方向に向けて)移動することになり、水平前進することになる。 Therefore, in the flight mode 5, the flapping apparatus 1A moves forward (that is, in the X1 direction), and moves horizontally.
 一方、図17を参照して、飛行態様4においては、上述した飛行態様5と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 4 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 5 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様4においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 4, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes larger than the gravity applied to 1A.
 したがって、当該飛行態様4においては、羽ばたき装置1Aが、前方かつ上方に向けて(すなわちX1方向かつZ1方向に向けて)移動することになり、上昇前進することになる。 Therefore, in the flight mode 4, the flapping apparatus 1A moves forward and upward (that is, in the X1 direction and the Z1 direction), and moves upward.
 また、図17を参照して、飛行態様6においては、上述した飛行態様5と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 6 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 5 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様6においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 6, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is generated by the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様6においては、羽ばたき装置1Aが、前方かつ下方に向けて(すなわちX1方向かつZ2方向に向けて)移動することになり、下降前進することになる。 Therefore, in the flight mode 6, the flapping device 1A moves forward and downward (that is, in the X1 direction and the Z2 direction), and moves downward.
 <飛行態様7ないし9>
 図17を参照して、右側ローラ37Rの位置を「後方位置」とし、左側ローラ37Lの位置を「後方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様7ないし9においては、羽ばたき装置1Aは、上昇後退、水平後退、下降後退のいずれかの飛行態様をとる。
<Flight modes 7 to 9>
Referring to FIG. 17, the position of right roller 37R is “rear position”, the position of left roller 37L is “rear position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight modes 7 to 9 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending / retreating, horizontal retreating, and descending / retreating.
 まず、飛行態様7ないし9の代表例として、飛行態様8を取り上げると、図17および図21に示すように、当該飛行態様8においては、右側羽体40Rの揺動中心CRの位置が「前方位置」にあり、左側羽体40Lの揺動中心CLの位置が「前方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking flight mode 8 as a representative example of flight modes 7 to 9, as shown in FIGS. 17 and 21, in the flight mode 8, the position of the swing center CR of the right wing 40R is “front”. The position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様8においては、右側羽体40Rが揺動することによって左後方に向けて(すなわちX2方向かつY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右後方に向けて(すなわちX2方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、後方に向けて(すなわち図21中に示す矢印DR102方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 8, when the right wing 40R swings, thrust is generated toward the left rear (that is, in the X2 direction and the Y2 direction), and the left wing 40L swings. Generates a thrust toward the right rear (that is, in the X2 direction and the Y1 direction), and as a result, the flapping device 1A is directed rearward (that is, in the direction of the arrow DR102 shown in FIG. 21). Thrust will work.
 また、当該飛行態様8においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 8, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様8においては、羽ばたき装置1Aが、後方に向けて(すなわちX2方向に向けて)移動することになり、水平後退することになる。 Therefore, in the flight mode 8, the flapping device 1A moves backward (that is, in the X2 direction), and retreats horizontally.
 一方、図17を参照して、飛行態様7においては、上述した飛行態様8と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 7 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 8 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様7においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 7, the lift generated upward in the right wing 40 </ b> R and the left wing 40 </ b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 </ b> R and the left wing 40 </ b> L. It becomes larger than the gravity applied to 1A.
 したがって、当該飛行態様7においては、羽ばたき装置1Aが、後方かつ上方に向けて(すなわちX2方向かつZ1方向に向けて)移動することになり、上昇後退することになる。 Therefore, in the flight mode 7, the flapping device 1A moves backward and upward (that is, in the X2 direction and the Z1 direction), and moves up and backwards.
 また、図17を参照して、飛行態様9においては、上述した飛行態様8と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 9 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 8 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様9においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 9, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is generated by the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様9においては、羽ばたき装置1Aが、後方かつ下方に向けて(すなわちX2方向かつZ2方向に向けて)移動することになり、下降後退することになる。 Therefore, in the flight mode 9, the flapping device 1A moves backward and downward (that is, in the X2 direction and the Z2 direction), and moves downward.
 <飛行態様10ないし12>
 図17を参照して、右側ローラ37Rの位置を「前方位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様10ないし12においては、羽ばたき装置1Aは、上昇右斜め前進、水平右斜め前進、下降右斜め前進のいずれかの飛行態様をとる。
<Flight modes 10 to 12>
Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “center position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 10 to 12 that are “present”, the flapping apparatus 1A takes one of the flight modes of ascending right diagonal advance, horizontal right diagonal advance, and descending right diagonal advance.
 まず、飛行態様10ないし12の代表例として、飛行態様11を取り上げると、図17および図22に示すように、当該飛行態様11においては、右側羽体40Rの揺動中心CRの位置が「後方位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking the flight mode 11 as a representative example of the flight mode 10 to 12, as shown in FIGS. 17 and 22, in the flight mode 11, the position of the swing center CR of the right wing 40R is “rearward”. The left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様11においては、右側羽体40Rが揺動することによって左前方に向けて(すなわちX1方向かつY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、右前方に向けて(すなわち図22中に示す矢印DR103方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 11, when the right wing 40R swings, thrust is generated toward the left front (that is, in the X1 direction and the Y2 direction), and the left wing 40L swings. Generates a thrust toward the right (that is, in the Y1 direction). As a result, the flapping device 1A has a thrust toward the right front (that is, toward the arrow DR103 shown in FIG. 22). Will work.
 また、当該飛行態様11においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 11, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift force generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様11においては、羽ばたき装置1Aが、右前方に向けて(すなわちX1方向かつY1方向に向けて)移動することになり、水平右斜め前進することになる。 Therefore, in the flight mode 11, the flapping device 1A moves toward the right front (that is, toward the X1 direction and the Y1 direction), and moves forward diagonally to the right.
 一方、図17を参照して、飛行態様10においては、上述した飛行態様11と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 10 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 11 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様10においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 10, the lift generated on the right wing 40 </ b> R and the left wing 40 </ b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 </ b> R and the left wing 40 </ b> L. It becomes larger than the gravity applied to 1A.
 したがって、当該飛行態様10においては、羽ばたき装置1Aが、右前方かつ上方に向けて(すなわちX1方向かつY1方向かつZ1方向に向けて)移動することになり、上昇右斜め前進することになる。 Therefore, in the flight mode 10, the flapping device 1A moves to the right front and upward (that is, in the X1 direction, the Y1 direction, and the Z1 direction), and moves up diagonally to the right.
 また、図17を参照して、飛行態様12においては、上述した飛行態様11と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 12 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 11 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様12においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 12, the lift generated on the right wing 40 </ b> R and the left wing 40 </ b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 </ b> R and the left wing 40 </ b> L. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様12においては、羽ばたき装置1Aが、右前方かつ下方に向けて(すなわちX1方向かつY1方向かつZ2方向に向けて)移動することになり、下降右斜め前進することになる。 Therefore, in the flight mode 12, the flapping apparatus 1A moves forward right and downward (that is, in the X1, Y1, and Z2 directions), and moves downward diagonally to the right.
 <飛行態様13ないし15>
 図17を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「前方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様13ないし15においては、羽ばたき装置1Aは、上昇左斜め前進、水平左斜め前進、下降左斜め前進のいずれかの飛行態様をとる。
<Flight modes 13 to 15>
Referring to FIG. 17, the position of the right roller 37R is “center position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 13 to 15 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending left diagonal advance, horizontal left diagonal advance, and descending left diagonal advance.
 まず、飛行態様13ないし15の代表例として、飛行態様14を取り上げると、図17および図23に示すように、当該飛行態様14においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「後方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking the flight mode 14 as a representative example of the flight mode 13 to 15, as shown in FIGS. 17 and 23, in the flight mode 14, the position of the swing center CR of the right wing 40R is “center”. The left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様14においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右前方に向けて(すなわちX1方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、左前方に向けて(すなわち図23中に示す矢印DR104方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 14, a thrust is generated toward the left (that is, in the Y2 direction) when the right wing 40R swings, and a right front is generated when the left wing 40L swings. As a result, a thrust is generated in the flapping device 1A toward the left front (that is, in the direction of the arrow DR104 shown in FIG. 23). Will work.
 また、当該飛行態様14においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 14, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様14においては、羽ばたき装置1Aが、左前方に向けて(すなわちX1方向かつY2方向に向けて)移動することになり、水平左斜め前進することになる。 Therefore, in the flight mode 14, the flapping device 1A moves toward the left front (that is, toward the X1 direction and the Y2 direction), and moves forward diagonally to the left.
 一方、図17を参照して、飛行態様13においては、上述した飛行態様14と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 13 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 14 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様13においては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 13, by adjusting the flapping frequency of each of the right roller 37R and the left roller 37L, the lift generated upward on the right flute 40R and the left flute 40L is applied to the flapping apparatus 1A. It becomes larger than the added gravity.
 したがって、当該飛行態様13においては、羽ばたき装置1Aが、左前方かつ上方に向けて(すなわちX1方向かつY2方向かつZ1方向に向けて)移動することになり、上昇左斜め前進することになる。 Therefore, in the flight mode 13, the flapping device 1A moves left frontward and upward (that is, in the X1 direction, the Y2 direction, and the Z1 direction), and moves up diagonally to the left.
 また、図17を参照して、飛行態様15においては、上述した飛行態様14と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 15 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 14 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様15においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 15, by adjusting the flapping frequency of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様15においては、羽ばたき装置1Aが、左前方かつ下方に向けて(すなわちX1方向かつY2方向かつZ2方向に向けて)移動することになり、下降左斜め前進することになる。 Therefore, in the flight mode 15, the flapping device 1A moves left forward and downward (that is, in the X1 direction, the Y2 direction, and the Z2 direction), and moves downward diagonally to the left.
 <飛行態様16ないし18>
 図17を参照して、右側ローラ37Rの位置を「後方位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様16ないし18においては、羽ばたき装置1Aは、上昇右斜め後退、水平右斜め後退、下降右斜め後退のいずれかの飛行態様をとる。
<Flight modes 16 to 18>
Referring to FIG. 17, the position of the right roller 37R is “rear position”, the position of the left roller 37L is “center position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 16 to 18 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending right diagonal retreat, horizontal right diagonal retreat, and descending right diagonal retreat.
 まず、飛行態様16ないし18の代表例として、飛行態様17を取り上げると、図17および図24に示すように、当該飛行態様17においては、右側羽体40Rの揺動中心CRの位置が「前方位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, as a representative example of the flight modes 16 to 18, when the flight mode 17 is taken up, as shown in FIGS. 17 and 24, in the flight mode 17, the position of the swing center CR of the right wing body 40R is “front”. The left wing body 40L is at the center position, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様17においては、右側羽体40Rが揺動することによって右後方に向けて(すなわちX2方向かつY1方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、右後方に向けて(すなわち図24中に示す矢印DR105方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 17, the right wing 40R swings to generate a thrust toward the right rear (that is, in the X2 direction and the Y1 direction), and the left wing 40L swings. Generates a thrust toward the right (that is, in the Y1 direction). As a result, the flapping device 1A has a thrust toward the right rear (that is, toward the arrow DR105 shown in FIG. 24). Will work.
 また、当該飛行態様17においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 17, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様17においては、羽ばたき装置1Aが、右後方に向けて(すなわちX2方向かつY1方向に向けて)移動することになり、水平右斜め後退することになる。 Therefore, in the flight mode 17, the flapping apparatus 1A moves toward the right rear (that is, in the X2 direction and the Y1 direction), and moves backward in the horizontal right direction.
 一方、図17を参照して、飛行態様16においては、上述した飛行態様17と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 16 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 17 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様16においては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 16, by adjusting the flapping frequency of each of the right roller 37R and the left roller 37L, the lift generated upward on the right flute 40R and the left flute 40L is applied to the flapping apparatus 1A. It becomes larger than the added gravity.
 したがって、当該飛行態様16においては、羽ばたき装置1Aが、右後方かつ上方に向けて(すなわちX2方向かつY1方向かつZ1方向に向けて)移動することになり、上昇右斜め後退することになる。 Therefore, in the flight mode 16, the flapping device 1 </ b> A moves to the right rear and upward (that is, in the X2 direction, the Y1 direction, and the Z1 direction), and ascends to the right.
 また、図17を参照して、飛行態様18においては、上述した飛行態様17と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 18 differs only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 17 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様18においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 18, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様18においては、羽ばたき装置1Aが、右後方かつ下方に向けて(すなわちX2方向かつY1方向かつZ2方向に向けて)移動することになり、下降右斜め後退することになる。 Therefore, in the flight mode 18, the flapping device 1A moves rearward rightward and downward (ie, in the X2, Y1, and Z2 directions), and descends diagonally to the right.
 <飛行態様19ないし21>
 図17を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「後方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様19ないし21においては、羽ばたき装置1Aは、上昇左斜め後退、水平左斜め後退、下降左斜め後退のいずれかの飛行態様をとる。
<Flight modes 19 to 21>
Referring to FIG. 17, the position of right roller 37R is “center position”, the position of left roller 37L is “rear position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight modes 19 to 21 that are “present”, the flapping apparatus 1A takes any one of the flight modes of ascending left diagonal receding, horizontal left diagonal receding, and descending left diagonal receding.
 まず、飛行態様19ないし21の代表例として、飛行態様20を取り上げると、図17および図25に示すように、当該飛行態様20においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「前方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking the flight mode 20 as a representative example of the flight modes 19 to 21, as shown in FIGS. 17 and 25, in the flight mode 20, the position of the swing center CR of the right wing 40R is “center”. The position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様20においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右後方に向けて(すなわちX2方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、左後方に向けて(すなわち図25中に示す矢印DR106方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 20, thrust is generated in the left direction (that is, in the Y2 direction) by swinging the right wing 40R, and the right rearward is performed by swinging the left wing 40L. As a result, a thrust is generated in the flapping device 1A toward the left rear (that is, in the direction of the arrow DR106 shown in FIG. 25). Will work.
 また、当該飛行態様20においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 20, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, lift generated upward on the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様20においては、羽ばたき装置1Aが、左後方に向けて(すなわちX2方向かつY2方向に向けて)移動することになり、水平左斜め後退することになる。 Therefore, in the flight mode 20, the flapping device 1A moves toward the left rear (that is, in the X2 direction and the Y2 direction), and moves backward in the horizontal left direction.
 一方、図17を参照して、飛行態様19においては、上述した飛行態様20と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 19 differs only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 20 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様19においては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 19, by adjusting the flapping frequency of each of the right roller 37R and the left roller 37L, the lift generated upward on the right flute 40R and the left flute 40L is applied to the flapping apparatus 1A. It becomes larger than the added gravity.
 したがって、当該飛行態様19においては、羽ばたき装置1Aが、左後方かつ上方に向けて(すなわちX2方向かつY2方向かつZ1方向に向けて)移動することになり、上昇左斜め後退することになる。 Therefore, in the flight mode 19, the flapping device 1A moves left rearward and upward (that is, in the X2, Y2, and Z1 directions), and ascends to the left diagonally.
 また、図17を参照して、飛行態様21においては、上述した飛行態様20と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 21 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 20 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様21においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 21, by adjusting the flapping frequency of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様21においては、羽ばたき装置1Aが、左後方かつ下方に向けて(すなわちX2方向かつY2方向かつZ2方向に向けて)移動することになり、下降左斜め後退することになる。 Therefore, in the flight mode 21, the flapping device 1A moves left rearward and downward (that is, in the X2, Y2, and Z2 directions), and descends diagonally to the left.
 <飛行態様22ないし24>
 図17を参照して、右側ローラ37Rの位置を「前方位置」とし、左側ローラ37Lの位置を「後方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様22ないし24においては、羽ばたき装置1Aは、上昇右回転、水平右回転、下降右回転のいずれかの飛行態様をとる。
<Flight modes 22 to 24>
Referring to FIG. 17, the position of the right roller 37R is “front position”, the position of the left roller 37L is “rear position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 22 to 24 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending right rotation, horizontal right rotation, and descending right rotation.
 まず、飛行態様22ないし24の代表例として、飛行態様23を取り上げると、図17および図26に示すように、当該飛行態様23においては、右側羽体40Rの揺動中心CRの位置が「後方位置」にあり、左側羽体40Lの揺動中心CLの位置が「前方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking the flight mode 23 as a representative example of the flight modes 22 to 24, as shown in FIGS. 17 and 26, in the flight mode 23, the position of the swing center CR of the right wing 40R is “rearward”. The position of the swing center CL of the left wing 40L is “front position”, and the flapping frequency of the right wing 40R and the left wing 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様23においては、右側羽体40Rが揺動することによって左前方に向けて(すなわちX1方向かつY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右後方に向けて(すなわちX2方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、時計回りの回転方向に向けて(すなわち図26中に示す矢印DR107方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 23, the right wing 40R swings to generate a thrust toward the left front (that is, in the X1 direction and the Y2 direction), and the left wing 40L swings. As a result, thrust is generated toward the right rear (that is, in the X2 direction and the Y1 direction), and as a result, the flapping apparatus 1A has a clockwise rotation direction (that is, in the direction of the arrow DR107 shown in FIG. 26). The thrust) will work.
 また、当該飛行態様23においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 23, the lift generated on the right wing 40R and the left wing 40L upward by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様23においては、羽ばたき装置1Aが、その場で時計回りに回転することになり、水平右回転することになる。 Therefore, in the flight mode 23, the flapping apparatus 1A rotates clockwise on the spot, and rotates horizontally right.
 一方、図17を参照して、飛行態様22においては、上述した飛行態様23と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 22 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 23 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様22においては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 22, by adjusting the flapping frequency of each of the right roller 37R and the left roller 37L, the lift generated upward on the right flute 40R and the left flute 40L is applied to the flapping apparatus 1A. It becomes larger than the added gravity.
 したがって、当該飛行態様22においては、羽ばたき装置1Aが、時計回りに回転しつつ上方に向けて(すなわちZ1方向に向けて)移動することになり、上昇右回転することになる。 Therefore, in the flight mode 22, the flapping device 1 </ b> A moves upward while rotating clockwise (that is, in the Z <b> 1 direction), and rotates to the right.
 また、図17を参照して、飛行態様24においては、上述した飛行態様23と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 24 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 23 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様24においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 24, the lift generated upward in the right wing 40 </ b> R and the left wing 40 </ b> L is adjusted by adjusting the flapping frequency of each of the right wing 40 </ b> R and the left wing 40 </ b> L. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様24においては、羽ばたき装置1Aが、時計回りに回転しつつ下方に向けて(すなわちZ2方向に向けて)移動することになり、下降右回転することになる。 Therefore, in the flight mode 24, the flapping apparatus 1A moves downward (that is, in the Z2 direction) while rotating clockwise, and rotates downward to the right.
 <飛行態様25ないし27>
 図17を参照して、右側ローラ37Rの位置を「後方位置」とし、左側ローラ37Lの位置を「前方位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様25ないし27においては、羽ばたき装置1Aは、上昇左回転、水平左回転、下降左回転のいずれかの飛行態様をとる。
<Flight modes 25 to 27>
Referring to FIG. 17, the position of the right roller 37R is “rear position”, the position of the left roller 37L is “front position”, the right roller shaft 17R is fixed “present”, and the left roller shaft 17L is fixed. In the flight modes 25 to 27 with “present”, the flapping apparatus 1A takes one of the flight modes of ascending left rotation, horizontal left rotation, and descending left rotation.
 まず、飛行態様25ないし27の代表例として、飛行態様26を取り上げると、図17および図27に示すように、当該飛行態様26においては、右側羽体40Rの揺動中心CRの位置が「前方位置」にあり、左側羽体40Lの揺動中心CLの位置が「後方位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるために、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 First, taking the flight mode 26 as a representative example of the flight modes 25 to 27, as shown in FIGS. 17 and 27, in the flight mode 26, the position of the swing center CR of the right wing 40R is “front”. The left wing body 40L is at the “rear position”, and the flapping frequency of the right wing body 40R and the left wing body 40L is “medium”. The rocking angle of 40R is “medium” at an angle α0, and the rocking angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様26においては、右側羽体40Rが揺動することによって左後方に向けて(すなわちX2方向かつY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右前方に向けて(すなわちX1方向かつY1方向に向けて)推力が発生し、結果として、羽ばたき装置1Aには、反時計回りの回転方向に向けて(すなわち図27中に示す矢印DR108方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 26, the right wing 40R swings to generate a thrust toward the left rear (that is, in the X2 direction and the Y2 direction), and the left wing 40L swings. As a result, thrust is generated toward the right front (that is, in the X1 direction and the Y1 direction). ) Will work.
 また、当該飛行態様26においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力と、羽ばたき装置1Aに加わる重力とが、互いに釣り合うように構成されている。 Further, in the flight mode 26, the lift generated on the right wing 40R and the left wing 40L upward by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L; The gravity applied to the flapping apparatus 1A is configured to balance each other.
 したがって、当該飛行態様26においては、羽ばたき装置1Aが、その場で反時計回りに回転することになり、水平左回転することになる。 Therefore, in the flight mode 26, the flapping device 1A rotates counterclockwise on the spot, and rotates horizontally to the left.
 一方、図17を参照して、飛行態様25においては、上述した飛行態様26と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「高」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α1である「大」となるとともに、左側羽体40Lの揺動角度が角度α1である「大」となる。 On the other hand, referring to FIG. 17, flight mode 25 is different only in that the flapping frequency of right wing 40R and left wing 40L is “high” as compared to flight mode 26 described above. Accordingly, the swing angle of the right wing 40R becomes “large” at an angle α1, and the swing angle of the left wing 40L becomes “large” at an angle α1.
 当該飛行態様25においては、右側ローラ37Rおよび左側ローラ37Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも大きくなる。 In the flight mode 25, by adjusting the flapping frequency of each of the right roller 37R and the left roller 37L, lift force generated upward on the right flute 40R and the left flute 40L is applied to the flapping apparatus 1A. It becomes larger than the added gravity.
 したがって、当該飛行態様25においては、羽ばたき装置1Aが、反時計回りに回転しつつ上方に向けて(すなわちZ1方向に向けて)移動することになり、上昇左回転することになる。 Therefore, in the flight mode 25, the flapping apparatus 1A moves upward (that is, in the Z1 direction) while rotating counterclockwise, and rotates counterclockwise.
 また、図17を参照して、飛行態様27においては、上述した飛行態様26と比較した場合に、右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「低」である点においてのみ相違しており、これに伴い、右側羽体40Rの揺動角度が角度α2である「小」となるとともに、左側羽体40Lの揺動角度が角度α2である「小」となる。 Referring to FIG. 17, flight mode 27 is different only in that the flapping frequency of right wing 40R and left wing 40L is “low” as compared to flight mode 26 described above. Accordingly, the swing angle of the right wing 40R becomes “small” at an angle α2, and the swing angle of the left wing 40L becomes “small” at an angle α2.
 当該飛行態様27においては、右側羽体40Rおよび左側羽体40Lのそれぞれの羽ばたきの周波数が調節されることにより、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 In the flight mode 27, by adjusting the flapping frequency of each of the right wing 40R and the left wing 40L, the lift generated upward on the right wing 40R and the left wing 40L is applied to the flapping apparatus. It becomes smaller than the gravity applied to 1A.
 したがって、当該飛行態様27においては、羽ばたき装置1Aが、反時計回りに回転しつつ下方に向けて(すなわちZ2方向に向けて)移動することになり、下降左回転することになる。 Therefore, in the flight mode 27, the flapping device 1A moves downward (that is, in the Z2 direction) while rotating counterclockwise, and rotates downward to the left.
 <飛行態様28>
 図28を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有(軽固定)」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様28においては、羽ばたき装置1Aは、右に傾きながら右下方に向けて移動する飛行態様をとる。
<Flight mode 28>
Referring to FIG. 28, the position of the right roller 37R is “center position”, the position of the left roller 37L is “center position”, and the right roller shaft 17R is fixed “present (lightly fixed)”. In the flight mode 28 in which the fixing of 17L is “present”, the flapping apparatus 1A takes a flight mode of moving toward the lower right while tilting to the right.
 図28および図29に示すように、当該飛行態様28においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるものの、右側ローラシャフト17Rの固定が上述したように「有(軽固定)」であるため、右側羽体40Rの揺動角度が角度α3である「大幅に小」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 As shown in FIGS. 28 and 29, in the flight mode 28, the position of the swing center CR of the right wing 40R is in the “center position”, and the position of the swing center CL of the left wing 40L is “center”. Although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the fixing of the right roller shaft 17R is “present (lightly fixed)” as described above. The swing angle of the wing 40R is “significantly small”, which is an angle α3, and the swing angle of the left wing 40L is “medium”, which is an angle α0.
 そのため、この飛行態様28においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)発生する推力が、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)発生する推力よりも小さくなり、結果として、羽ばたき装置1Aには、右方に向けて(すなわちY1方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 28, the thrust generated toward the left when the right wing 40R swings (that is, in the Y2 direction) is shifted to the right when the left wing 40L swings. As a result, thrust toward the right side (that is, in the Y1 direction) acts on the flapping apparatus 1A.
 また、当該飛行態様28においては、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 Further, in the flight mode 28, the lift generated upward on the right wing 40R and the left wing 40L is smaller than the gravity applied to the flapping apparatus 1A.
 したがって、当該飛行態様28においては、羽ばたき装置1Aが、右に傾きながら右下方に向けて(すなわちY1方向かつZ2方向に向けて)移動することになる。 Therefore, in the flight mode 28, the flapping device 1A moves toward the lower right (ie, in the Y1 direction and the Z2 direction) while tilting to the right.
 <飛行態様29>
 図28を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「無」とし、左側ローラシャフト17Lの固定を「有」とした飛行態様28においては、羽ばたき装置1Aは、右に傾きながら垂直下降する飛行態様をとる。
<Flight mode 29>
Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “none”, and left roller shaft 17L is fixed. In the flight mode 28 with “present”, the flapping apparatus 1 </ b> A takes a flight mode in which it vertically descends while tilting to the right.
 図28および図30に示すように、当該飛行態様29においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるものの、右側ローラシャフト17Rの固定が上述したように「無」であるため、右側羽体40Rの揺動角度が角度α4である「極小」となるとともに、左側羽体40Lの揺動角度が角度α0である「中」となる。 As shown in FIGS. 28 and 30, in the flight mode 29, the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is “center”. Although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the fixing of the right roller shaft 17R is “none” as described above. The swing angle is “minimum” at an angle α4, and the swing angle of the left wing 40L is “medium” at an angle α0.
 そのため、この飛行態様29においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)発生する推力が、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)発生する推力よりも極端に小さくなり、結果として、羽ばたき装置1Aには、右方に向けて(すなわちY1方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 29, the thrust generated toward the left when the right wing 40R swings (that is, in the Y2 direction) is shifted to the right when the left wing 40L swings. As a result, thrust toward the right side (that is, in the Y1 direction) acts on the flapping device 1A.
 一方、当該飛行態様29においては、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも極端に小さくなる。その結果、羽ばたき装置1Aには、実質的には十分な浮上力は生じなくなる。 On the other hand, in the flight mode 29, the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A. As a result, the flapping apparatus 1A does not substantially have a sufficient levitation force.
 したがって、当該飛行態様29においては、羽ばたき装置1Aに対して上述した右方に向けて働く推力よりも重力がより支配的に作用することになり、結果として、羽ばたき装置1Aが、右に傾きながら垂直下降する(すなわちZ2方向に向けて移動する)ことになる。 Therefore, in the flight mode 29, gravity acts more dominantly on the flapping device 1A than the thrust acting toward the right as described above, and as a result, the flapping device 1A is tilted to the right. It descends vertically (that is, moves in the Z2 direction).
 <飛行態様30>
 図28を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「有(軽固定)」とした飛行態様30においては、羽ばたき装置1Aは、左に傾きながら左下方に向けて移動する飛行態様をとる。
<Flight mode 30>
Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight mode 30 that is “present (lightly fixed)”, the flapping apparatus 1 </ b> A takes a flight mode that moves toward the lower left while tilting to the left.
 図28に示すように、当該飛行態様30においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるものの、左側ローラシャフト17Lの固定が上述したように「有(軽固定)」であるため、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α3である「大幅に小」となる。 As shown in FIG. 28, in the flight mode 30, the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is at the “center position”. Further, although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the fixing of the left roller shaft 17L is “present (lightly fixed)” as described above, and therefore the right wing 40R. The swing angle of the left wing 40L is “medium”, and the swing angle of the left wing 40L is “significantly small”.
 そのため、この飛行態様30においては、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)発生する推力が、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)発生する推力よりも小さくなり、結果として、羽ばたき装置1Aには、左方に向けて(すなわちY2方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 30, the thrust generated toward the right when the left wing 40L swings (that is, toward the Y1 direction) is moved to the left when the right wing 40R swings. As a result, thrust toward the left side (that is, in the Y2 direction) acts on the flapping apparatus 1A.
 また、当該飛行態様30においては、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも小さくなる。 Further, in the flight mode 30, the lift generated upward on the right wing 40R and the left wing 40L is smaller than the gravity applied to the flapping device 1A.
 したがって、当該飛行態様30においては、羽ばたき装置1Aが、左に傾きながら左下方に向けて(すなわちY2方向かつZ2方向に向けて)移動することになる。 Therefore, in the flight mode 30, the flapping apparatus 1A moves toward the lower left (that is, in the Y2 direction and the Z2 direction) while tilting to the left.
 <飛行態様31>
 図28を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「有」とし、左側ローラシャフト17Lの固定を「無」とした飛行態様31においては、羽ばたき装置1Aは、左に傾きながら垂直下降する飛行態様をとる。
<Flight mode 31>
Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “present”, and left roller shaft 17L is fixed. In the flight mode 31 in which “nothing” is set, the flapping apparatus 1 </ b> A takes a flight mode in which it vertically descends while tilting to the left.
 図28に示すように、当該飛行態様31においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるものの、左側ローラシャフト17Lの固定が上述したように「無」であるため、右側羽体40Rの揺動角度が角度α0である「中」となるとともに、左側羽体40Lの揺動角度が角度α4である「極小」となる。 As shown in FIG. 28, in the flight mode 31, the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is at the “center position”. In addition, although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the left roller shaft 17L is fixed to “none” as described above. Becomes “medium” at an angle α0, and the swing angle of the left wing 40L becomes “minimum” at an angle α4.
 そのため、この飛行態様31においては、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)発生する推力が、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)発生する推力よりも極端に小さくなり、結果として、羽ばたき装置1Aには、左方に向けて(すなわちY2方向に向けて)の推力が働くことになる。 Therefore, in this flight mode 31, the thrust generated toward the right (ie, in the Y1 direction) when the left wing 40L swings is moved to the left when the right wing 40R swings. As a result, thrust toward the left side (that is, in the Y2 direction) acts on the flapping device 1A.
 一方、当該飛行態様31においては、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも極端に小さくなる。その結果、羽ばたき装置1Aには、実質的には十分な浮上力は生じなくなる。 On the other hand, in the flight mode 31, the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A. As a result, the flapping apparatus 1A does not substantially have a sufficient levitation force.
 したがって、当該飛行態様31においては、羽ばたき装置1Aに対して上述した左方に向けて働く推力よりも重力がより支配的に作用することになり、結果として、羽ばたき装置1Aが、左に傾きながら垂直下降する(すなわちZ2方向に向けて移動する)ことになる。 Therefore, in the flight mode 31, gravity acts more dominantly on the flapping apparatus 1A than the thrust acting toward the left as described above, and as a result, the flapping apparatus 1A is tilted to the left. It descends vertically (that is, moves in the Z2 direction).
 <飛行態様32>
 図28を参照して、右側ローラ37Rの位置を「中央位置」とし、左側ローラ37Lの位置を「中央位置」とし、右側ローラシャフト17Rの固定を「無」とし、左側ローラシャフト17Lの固定を「無」とした飛行態様32においては、羽ばたき装置1Aは、条件により滑空する飛行態様をとる。
<Flight mode 32>
Referring to FIG. 28, the position of right roller 37R is “center position”, the position of left roller 37L is “center position”, right roller shaft 17R is fixed “none”, and left roller shaft 17L is fixed. In the flight mode 32 in which “nothing” is set, the flapping apparatus 1A takes a flight mode of gliding depending on conditions.
 図28および図31に示すように、当該飛行態様31においては、右側羽体40Rの揺動中心CRの位置が「中央位置」にあり、左側羽体40Lの揺動中心CLの位置が「中央位置」にあり、さらに右側羽体40Rおよび左側羽体40Lの羽ばたきの周波数が「中」であるものの、右側ローラシャフト17Rおよび左側ローラシャフト17Lの固定が上述したようにいずれも「無」であるため、右側羽体40Rの揺動角度が角度α4である「極小」となるとともに、左側羽体40Lの揺動角度が角度α4である「極小」となる。 As shown in FIGS. 28 and 31, in the flight mode 31, the position of the swing center CR of the right wing 40R is at the “center position”, and the position of the swing center CL of the left wing 40L is “center”. Although the flapping frequency of the right wing 40R and the left wing 40L is “medium”, the fixing of the right roller shaft 17R and the left roller shaft 17L is “none” as described above. Therefore, the swing angle of the right wing 40R becomes “minimum” at an angle α4, and the swing angle of the left wing 40L becomes “minimum” at an angle α4.
 そのため、この飛行態様32においては、右側羽体40Rが揺動することによって左方に向けて(すなわちY2方向に向けて)推力が発生するとともに、左側羽体40Lが揺動することによって右方に向けて(すなわちY1方向に向けて)推力が発生するが、これらが互いに打ち消し合うことにより、羽ばたき装置1Aには、XY平面内のいずれの方向に向けても推力が働かなくなる。 Therefore, in this flight mode 32, the right wing 40R swings to generate a thrust toward the left (that is, in the Y2 direction), and the left wing 40L swings to the right. Thrust is generated toward (i.e., in the Y1 direction), but these cancel each other, so that the thrust does not work on the flapping apparatus 1A in any direction in the XY plane.
 一方、当該飛行態様32においては、右側羽体40Rおよび左側羽体40Lに上方に向けて発生する揚力が、羽ばたき装置1Aに加わる重力よりも極端に小さくなる。その結果、羽ばたき装置1Aには、実質的には十分な浮上力は生じなくなる。 On the other hand, in the flight mode 32, the lift generated upward on the right wing 40R and the left wing 40L is extremely smaller than the gravity applied to the flapping apparatus 1A. As a result, the flapping apparatus 1A does not substantially have a sufficient levitation force.
 したがって、当該飛行態様32においては、羽ばたき装置1Aに対して重力が支配的に作用することになるものの、当該飛行態様32をとる以前の飛行態様の如何により、その条件次第で滑空することになる。 Therefore, in the flight mode 32, gravity acts dominantly on the flapping apparatus 1A, but depending on the flight mode before the flight mode 32 is taken, it will glide depending on the conditions. .
 <羽ばたき装置1Aの飛行態様の小括>
 以上において説明したように、本実施の形態における羽ばたき装置1Aは、右側ローラ37Rおよび左側ローラ37Lのそれぞれの位置および軸ぶれの大きさならびに羽ばたきの周波数をそれぞれ可変に調節することにより、様々な飛行態様を実現できるものである。したがって、当該羽ばたき装置1Aとすることにより、飛行能力に優れた羽ばたき装置とすることができる。
<Summary of Flight Mode of Flapping Device 1A>
As described above, the flapping apparatus 1A according to the present embodiment performs various flight operations by variably adjusting the position, the size of the axial shake, and the flapping frequency of each of the right roller 37R and the left roller 37L. Aspect can be realized. Therefore, by using the flapping apparatus 1A, it is possible to obtain a flapping apparatus having excellent flight capability.
 (変形例)
 以下において説明する本変形例に係る羽ばたき装置1A’(図32参照)は、上述した羽ばたき装置1Aと比較した場合に、弾性付勢機構の構成においてのみ相違している。具体的には、羽ばたき装置1A’は、上述した羽ばたき装置1Aが具備していた第1付勢部としての前側付勢部材60Aおよび第2付勢部としての後側付勢部材60B(図2ないし図4等参照)を有しておらず、これに代えて、支持フレーム13の前枠部を第1付勢部として利用するとともに、支持フレーム13の後枠部を第2付勢部として利用することにより、支持フレーム13によって弾性付勢機構が構成されてなるものである。
(Modification)
The flapping apparatus 1A ′ (see FIG. 32) according to this modification described below is different only in the configuration of the elastic biasing mechanism when compared with the flapping apparatus 1A described above. Specifically, the flapping device 1A ′ includes a front urging member 60A as a first urging member and a rear urging member 60B as a second urging member (FIG. 2) that the fluttering device 1A described above includes. (Refer to FIG. 4 etc.), and instead of this, the front frame portion of the support frame 13 is used as the first biasing portion, and the rear frame portion of the support frame 13 is used as the second biasing portion. By using it, an elastic urging mechanism is constituted by the support frame 13.
 上述したように、支持フレーム13は、矩形枠状の形状を有しており、たとえば樹脂製の部材にてこれが構成されている。そのため、支持フレーム13は、可撓性を有しており、外力が付与された場合に適度に撓み変形することが可能である。そのため、羽ばたき装置1A’においては、この支持フレーム13が有する可撓性を利用することにより、第1枠部としての支持フレーム13の前枠部および第2枠部としての後枠部をそれぞれ第1付勢部および第2付勢部として構成したものである。 As described above, the support frame 13 has a rectangular frame shape, and is formed of, for example, a resin member. Therefore, the support frame 13 has flexibility, and can be appropriately bent and deformed when an external force is applied. Therefore, in the flapping apparatus 1A ′, by utilizing the flexibility of the support frame 13, the front frame portion of the support frame 13 as the first frame portion and the rear frame portion as the second frame portion are respectively used. The first urging unit and the second urging unit are configured.
 図32は、本変形例に係る羽ばたき装置1A’の第1付勢部としての支持フレーム13の前枠部の挙動を示す模式図である。以下、この図32を参照して、第1付勢部としての支持フレーム13の前枠部の挙動について詳細に説明する。なお、図32においては、当該支持フレーム13の前枠部の挙動を(A)ないし(E)の順で時系列にて示している。 FIG. 32 is a schematic diagram showing the behavior of the front frame portion of the support frame 13 as the first urging portion of the flapping apparatus 1A ′ according to the present modification. Hereinafter, the behavior of the front frame portion of the support frame 13 as the first urging portion will be described in detail with reference to FIG. In FIG. 32, the behavior of the front frame portion of the support frame 13 is shown in time series in the order of (A) to (E).
 図32(A)および図32(B)に示すように、スライダ35が支持フレーム13の前枠部に近づく方向(すなわち図中矢印DR51方向)に向けて前方に移動している状態においてには、スライダ35の移動方向と交差するように第1クランクアーム33Aが延在している。ここで、未だスライダ35が支持フレーム13の前枠部に達していない状態においては、スライダ35に付与される外力は、基本的に第1クランクアーム33Aおよび第2クランクアーム33Bによって伝達される主回転電動機20の動力のみである。 As shown in FIGS. 32A and 32B, in a state where the slider 35 is moving forward in the direction approaching the front frame portion of the support frame 13 (that is, in the direction of the arrow DR51 in the figure). The first crank arm 33 </ b> A extends so as to intersect the moving direction of the slider 35. Here, when the slider 35 has not yet reached the front frame portion of the support frame 13, the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. Only the power of the rotary motor 20 is provided.
 図32(C)に示すように、スライダ35が支持フレーム13の前枠部に近づく方向(すなわち図中矢印DR51方向)に向けてさらに前方に移動し、スライダ35が可動範囲内の最前部(すなわち第1位置)近傍に達した状態においては、スライダ35が支持フレーム13の前枠部に当接する。このスライダ35の当接により、支持フレーム13の前枠部には撓み変形が生じることになる。 As shown in FIG. 32C, the slider 35 moves further forward in the direction approaching the front frame portion of the support frame 13 (that is, in the direction of arrow DR51 in the figure), and the slider 35 moves to the foremost portion (in the movable range). That is, the slider 35 contacts the front frame portion of the support frame 13 in the state of reaching the first position). Due to the contact of the slider 35, the front frame portion of the support frame 13 is bent and deformed.
 この支持フレーム13の前枠部の撓み変形により、スライダ35には、その前方に向けての移動に抗するように弾性付勢力が付与されることになる。なお、スライダ35が可動範囲内の最前部(すなわち第1位置)に達した状態においては、支持フレーム13の前枠部が最大限撓み変形した状態になるとともに、スライダ35の移動方向と第1クランクアーム33Aの延在方向とが重なることになる。 Due to the bending deformation of the front frame portion of the support frame 13, an elastic urging force is applied to the slider 35 so as to resist the movement toward the front thereof. In the state where the slider 35 reaches the foremost portion (that is, the first position) within the movable range, the front frame portion of the support frame 13 is maximally bent and deformed, and the moving direction of the slider 35 and the first direction. The extending direction of the crank arm 33A overlaps.
 ここで、スライダ35が支持フレーム13の前枠部に当接することにより、スライダ35には、ブレーキ力が作用することになる。そのため、上述したスライダ35が空走する期間に当該ブレーキ力が作用する期間を適切に時間的に重ね合わせることにより、スライダ35にさらに急激な減速を生じさせることが可能になり、これに伴って右側羽体40Rおよび左側羽体40Lにより大きな慣性力が付与可能になる。 Here, when the slider 35 comes into contact with the front frame portion of the support frame 13, a braking force acts on the slider 35. Therefore, it is possible to cause the slider 35 to decelerate more rapidly by appropriately overlapping the period in which the brake force is applied to the above-described period in which the slider 35 is idling. Large inertia force can be applied by the right wing 40R and the left wing 40L.
 したがって、右側羽体40Rおよび左側羽体40Lのそれぞれの前方切り返し動作がより確実に行なわれることになり、前方切り返し動作が不完全となってしまう状況の発生がさらに確実に回避できることになり、結果として羽ばたき装置1A’の姿勢が安定して運動効率が飛躍的に向上することになる。なお、スライダ35が支持フレーム13の前枠部に当接を開始するタイミングとしては、第1クランクアーム33AとX軸とが成す角度のうちの小さい方の角度が、おおよそ5°程度となったタイミングとすることが好ましい。 Therefore, the front turn-back operation of each of the right wing 40R and the left wing 40L is more reliably performed, and the occurrence of a situation in which the front turn-back operation is incomplete can be more reliably avoided. As a result, the posture of the flapping apparatus 1A ′ is stabilized and the exercise efficiency is dramatically improved. The timing at which the slider 35 starts to contact the front frame portion of the support frame 13 is such that the smaller one of the angles formed by the first crank arm 33A and the X axis is about 5 °. It is preferable to use timing.
 図32(D)に示すように、スライダ35が可動範囲内の最前部(すなわち第1位置)に配置された状態から支持フレーム13の前枠部から遠ざかる方向(すなわち図中矢印DR52方向)に向けて後方に移動を開始した状態においては、スライダ35の移動方向と交差するように第1クランクアーム33Aが再び延在することになる。 As shown in FIG. 32D, the slider 35 is moved away from the front frame portion of the support frame 13 from the state where the slider 35 is disposed at the foremost portion (that is, the first position) within the movable range (that is, in the direction indicated by the arrow DR52). In a state in which movement toward the rear is started, the first crank arm 33 </ b> A extends again so as to intersect the moving direction of the slider 35.
 その際、スライダ35は、依然として空走した状態にあるため、当該状態においては、撓み変形した状態にある支持フレーム13の前枠部の復元力に基づき、スライダ35が後方に向けて弾性付勢されることになる。そのため、スライダ35は、支持フレーム13の前枠部の弾性付勢力に基づいて後方に向けて押し出されることになり、支持フレーム13の前枠部の弾性付勢力がスライダ35の加速力として作用する。 At this time, since the slider 35 is still idle, in this state, the slider 35 is elastically biased rearward based on the restoring force of the front frame portion of the support frame 13 in the deformed state. Will be. Therefore, the slider 35 is pushed backward based on the elastic biasing force of the front frame portion of the support frame 13, and the elastic biasing force of the front frame portion of the support frame 13 acts as an acceleration force of the slider 35. .
 その結果、スライダ35が急激に加速することになり、右側羽体40Rおよび左側羽体40Lのそれぞれの後方羽ばたき動作の開始初期において、右側羽体40Rおよび左側羽体40Lの移動速度を十分に大きくすることができる。したがって、後方羽ばたき動作においてより大きな浮上力が得られることになり、羽ばたき装置1A’の運動効率をさらに向上させることができる。 As a result, the slider 35 is accelerated rapidly, and the moving speed of the right wing 40R and the left wing 40L is sufficiently increased at the beginning of the rear flapping operation of the right wing 40R and the left wing 40L. can do. Therefore, a greater levitation force can be obtained in the backward flapping operation, and the motion efficiency of the flapping device 1A 'can be further improved.
 図32(E)に示すように、スライダ35が支持フレーム13の前枠部から遠ざかる方向(すなわち図中矢印DR52方向)に向けてさらに後方に移動し、スライダ35が支持フレーム13の前枠部から離れた状態においては、スライダ35に対する支持フレーム13の前枠部の弾性付勢が解除され、スライダ35に付与される外力は、基本的に第1クランクアーム33Aおよび第2クランクアーム33Bによって伝達される主回転電動機20の動力のみとなる。 As shown in FIG. 32 (E), the slider 35 moves further rearward in the direction away from the front frame portion of the support frame 13 (that is, the arrow DR52 direction in the figure), and the slider 35 moves to the front frame portion of the support frame 13. In the state away from the elastic force of the front frame portion of the support frame 13 with respect to the slider 35 is released, the external force applied to the slider 35 is basically transmitted by the first crank arm 33A and the second crank arm 33B. It becomes only the motive power of the main rotary motor 20 to be performed.
 ここで、上述したスライダ35が空走する期間に、支持フレーム13の前枠部の弾性付勢力がスライダ35の加速力として作用する期間を適切に時間的に重ね合わせることにより、スライダ35に印加される駆動力を支持フレーム13の前枠部による駆動から第1クランクアーム33Aおよび第2クランクアーム33Bによる駆動にスムーズに切り替えることができる。なお、スライダ35が支持フレーム13の前枠部から離れるタイミングとしては、第1クランクアーム33AとX軸とが成す角度のうちの小さい方の角度が、おおよそ10°程度となったタイミングとすることが好ましい。 Here, during the period in which the slider 35 is idling, the period in which the elastic biasing force of the front frame portion of the support frame 13 acts as the acceleration force of the slider 35 is appropriately superimposed on the slider 35 to be applied to the slider 35. The driving force to be applied can be smoothly switched from driving by the front frame portion of the support frame 13 to driving by the first crank arm 33A and the second crank arm 33B. Note that the timing at which the slider 35 moves away from the front frame portion of the support frame 13 is the timing at which the smaller one of the angles formed by the first crank arm 33A and the X axis is approximately 10 °. Is preferred.
 以上により、支持フレーム13の前枠部を第1付勢部として利用することにより、右側羽体40Rおよび左側羽体40Lが前方切り返し動作を行なう前後の期間において、羽ばたき装置1A’の運動効率を飛躍的に向上させることができ、飛行能力に優れた羽ばたき装置とすることが可能になる。 As described above, by using the front frame portion of the support frame 13 as the first urging portion, the motion efficiency of the flapping device 1A ′ can be increased in the period before and after the right wing 40R and the left wing 40L perform the front turning operation. It can be improved dramatically, and a flapping apparatus with excellent flight capability can be obtained.
 なお、ここではその詳細な説明は省略するが、第2付勢部としての支持フレーム13の後枠部の挙動についても、上述した第1付勢部としての支持フレーム13の前枠部の挙動に準じたものとなる。そのため、支持フレーム13の後枠部を第2付勢部として利用することにより、右側羽体40Rおよび左側羽体40Lが後方切り返し動作を行なう前後の期間において、羽ばたき装置1A’の運動効率を飛躍的に向上させることができ、飛行能力に優れた羽ばたき装置とすることが可能になる。 Although the detailed description is omitted here, the behavior of the rear frame portion of the support frame 13 as the second urging portion is also the behavior of the front frame portion of the support frame 13 as the first urging portion described above. It becomes the thing according to. Therefore, by using the rear frame portion of the support frame 13 as the second urging portion, the motion efficiency of the flapping device 1A ′ jumps in the period before and after the right wing 40R and the left wing 40L perform the backward turning operation. Therefore, it is possible to provide a flapping apparatus with excellent flight capability.
 (実施の形態2)
 図33および図34は、実施の形態2における羽ばたき装置1Bの右側ローラ37Rの位置と右側羽体40Rの挙動との関係を示す平面図である。ここで、図33(A)ないし図33(C)は、右側ローラ37Rの位置をX軸方向に沿って変更した場合の右側羽体40Rの挙動の変化を示しており、図34(A)および図34(B)は、右側ローラ37Rの位置をY軸方向に沿って変更した場合の右側羽体40Rの挙動の変化を示している。以下、この図33および図34を参照して、本実施の形態における羽ばたき装置1Bについて説明する。
(Embodiment 2)
33 and 34 are plan views showing the relationship between the position of the right roller 37R and the behavior of the right wing body 40R of the flapping apparatus 1B in the second embodiment. Here, FIGS. 33 (A) to 33 (C) show changes in the behavior of the right wing 40R when the position of the right roller 37R is changed along the X-axis direction. FIG. 34B shows a change in behavior of the right wing 40R when the position of the right roller 37R is changed along the Y-axis direction. Hereinafter, flapping apparatus 1B according to the present embodiment will be described with reference to FIG. 33 and FIG.
 羽ばたき装置1Bは、上述した実施の形態1における羽ばたき装置1Aと比較した場合に、右側ローラ37Rおよび左側ローラ37Lの可動範囲が相違している。具体的には、上述した実施の形態1における羽ばたき装置1Aにおいては、右側ローラ37Rおよび左側ローラ37Lが、それぞれ右側回転体38Rの第2回転軸102Rおよび左側回転体38Lの第2回転軸102Lを回転中心として回転移動可能に構成されていたが、羽ばたき装置1Bにおいては、右側ローラ37Rおよび左側ローラ37Lが、それぞれX軸方向およびY軸方向に個別に移動可能に構成されており、これによりXY平面上の任意の位置に配置可能とされている。 The flapping device 1B differs in the movable range of the right roller 37R and the left roller 37L when compared with the flapping device 1A in the first embodiment described above. Specifically, in the flapping apparatus 1A in the first embodiment described above, the right roller 37R and the left roller 37L respectively move the second rotating shaft 102R of the right rotating body 38R and the second rotating shaft 102L of the left rotating body 38L. In the flapping apparatus 1B, the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively. It can be placed at any position on the plane.
 図33(A)ないし図33(C)に示すように、右側ローラ37RのY軸方向における位置を保ちつつ当該右側ローラ37Rの位置をX軸方向に沿って変更した場合には、右側羽体40Rの揺動範囲に相当する揺動角度αを概ね維持しつつ、右側羽体40Rの揺動中心CRの位置を種々変更することができる。 When the position of the right roller 37R is changed along the X-axis direction while maintaining the position of the right roller 37R in the Y-axis direction, as shown in FIGS. The position of the swing center CR of the right wing 40R can be variously changed while generally maintaining the swing angle α corresponding to the swing range of 40R.
 具体的には、右側羽体40Rの揺動中心CRは、スライダ35がその可動範囲の中央部に配置された状態における当該右側羽体40Rの位置によって決定される。換言すれば、右側羽体40Rの揺動中心CRは、スライダ35がその可動範囲の中央部に配置された状態において、右側ローラ37Rの中心軸と右側回転体38Rの第2回転軸102Rとを含む平面であってかつZ軸方向に平行な平面上に配置されることになる。 Specifically, the swing center CR of the right wing 40R is determined by the position of the right wing 40R in a state where the slider 35 is disposed at the center of the movable range. In other words, the swing center CR of the right wing 40R is the same as the center axis of the right roller 37R and the second rotation shaft 102R of the right rotator 38R in a state where the slider 35 is disposed at the center of the movable range. It is arranged on a plane that includes the plane and is parallel to the Z-axis direction.
 一方、右側羽体40Rの揺動角度αは、右側ローラ37RのY軸方向における位置が同じであればスライダ35の可動範囲の大きさによって決定される。ここで、スライダ35と右側回転体38Rとが適度な弾性を有する右前側弾性ベルト36R1および右後側弾性ベルト36R2によって接続されていることに伴い、右側ローラ37RのX軸方向に沿った位置が異なる場合であっても、スライダ35の可動範囲が同じであれば、右側羽体40Rの揺動角度αは、実質的に変化することはない。 On the other hand, the swing angle α of the right wing 40R is determined by the size of the movable range of the slider 35 if the position of the right roller 37R in the Y-axis direction is the same. Here, as the slider 35 and the right rotating body 38R are connected by the right front elastic belt 36R1 and the right rear elastic belt 36R2 having appropriate elasticity, the position of the right roller 37R along the X-axis direction is changed. Even if they are different, if the movable range of the slider 35 is the same, the swing angle α of the right wing 40R does not substantially change.
 そのため、図33(A)に示すように、右側ローラ37Rが右側回転体38Rの第2回転軸102Rを含むYZ平面上に配置されている場合には、右側羽体40Rの揺動中心CRは、当該YZ平面上に配置されることになる。 Therefore, as shown in FIG. 33A, when the right roller 37R is disposed on the YZ plane including the second rotation shaft 102R of the right rotating body 38R, the swing center CR of the right blade 40R is , It is arranged on the YZ plane.
 一方、図33(B)に示すように、右側ローラ37Rが右側回転体38Rの第2回転軸102Rを含むYZ平面よりも前方(すなわちX1方向)側に距離D1だけ離れた位置に配置されている場合には、右側羽体40Rの揺動中心CRは、右側回転体38Rの第2回転軸102Rを回転中心として時計回りに上記距離D1に応じた所定角度(図中に示す角度β1)だけ回転した位置に配置されることになる。なお、その場合の右側羽体40Rの揺動角度αは、図33(A)の場合のそれとほぼ同じ大きさとなる。 On the other hand, as shown in FIG. 33 (B), the right roller 37R is disposed at a position separated by a distance D1 on the front side (ie, in the X1 direction) side from the YZ plane including the second rotation shaft 102R of the right rotating body 38R. In this case, the swing center CR of the right wing body 40R is clockwise by a predetermined angle (angle β1 shown in the figure) corresponding to the distance D1 clockwise around the second rotation shaft 102R of the right rotator 38R. It will be placed at the rotated position. Note that the swing angle α of the right wing 40R in that case is substantially the same as that in the case of FIG.
 また、図33(C)に示すように、右側ローラ37Rが右側回転体38Rの第2回転軸102Rを含むYZ平面よりも後方(すなわちX2方向)側に距離D2だけ離れて配置されている場合には、右側羽体40Rの揺動中心CRは、右側回転体38Rの第2回転軸102Rを回転中心として反時計回りに上記距離D2に応じた所定角度(図中に示す角度β2)だけ回転した位置に配置されることになる。なお、その場合の右側羽体40Rの揺動角度αは、図33(A)の場合のそれとほぼ同じ大きさとなる。 In addition, as shown in FIG. 33C, when the right roller 37R is disposed at a distance D2 behind (ie, in the X2 direction) the YZ plane including the second rotating shaft 102R of the right rotating body 38R. First, the swing center CR of the right wing 40R rotates counterclockwise about the second rotation shaft 102R of the right rotator 38R by a predetermined angle (angle β2 shown in the drawing) according to the distance D2. It will be arranged at the position. Note that the swing angle α of the right wing 40R in that case is substantially the same as that in the case of FIG.
 このように、右側ローラ37Rの位置をX軸方向に沿って変更することにより、右側羽体40Rの揺動中心CRの位置を種々変更することが可能になるため、当該右側ローラ37RのX軸方向に沿った位置を調節することにより、各種の羽ばたき態様が実現できることになる。 Thus, by changing the position of the right roller 37R along the X-axis direction, the position of the swing center CR of the right wing 40R can be changed variously. Therefore, the X-axis of the right roller 37R can be changed. Various flapping modes can be realized by adjusting the position along the direction.
 なお、ここではその説明は省略するが、左側ローラ37Lの位置をX軸方向に沿って変更した場合にも、同様に左側羽体40Lの揺動中心CLの位置を種々変更することが可能であり、これにより各種の羽ばたき態様が実現できることになる。 Although explanation thereof is omitted here, even when the position of the left roller 37L is changed along the X-axis direction, the position of the swing center CL of the left wing body 40L can be variously changed similarly. With this, various flapping modes can be realized.
 図34(A)および図34(B)に示すように、右側ローラ37RのX軸方向における位置を保ちつつ当該右側ローラ37Rの位置をY軸方向に沿って変更することにより、右側羽体40Rの揺動中心CRの位置を維持しつつ、右側羽体40Rの揺動範囲に相当する揺動角度αを種々変更することができる。 As shown in FIGS. 34 (A) and 34 (B), by changing the position of the right roller 37R along the Y-axis direction while maintaining the position of the right roller 37R in the X-axis direction, the right wing 40R. The swing angle α corresponding to the swing range of the right wing 40R can be variously changed while maintaining the position of the swing center CR.
 具体的には、上述したように、右側羽体40Rの揺動中心CRは、スライダ35がその可動範囲の中央部に配置された状態における当該右側羽体40Rの位置によって決定される一方、右側羽体40Rの揺動角度αは、スライダ35の可動範囲の大きさが同じであれば右側ローラ37RのY軸方向における位置によって決定される。 Specifically, as described above, the swing center CR of the right wing 40R is determined by the position of the right wing 40R in a state where the slider 35 is disposed at the center of the movable range, The swing angle α of the wing body 40R is determined by the position of the right roller 37R in the Y-axis direction if the size of the movable range of the slider 35 is the same.
 これは、右側ローラ37RのY軸方向における位置が変更されることにより、スライダ35の右側面35Rと右前側弾性ベルト36R1および右後側弾性ベルト36R2とが成す角度(図中に示す角度θ)が変化することになり、これに伴ってスライダ35の可動範囲の大きさに対する右側回転体38Rの回動範囲の大きさの割合が変化することに起因する。 This is because the angle between the right side surface 35R of the slider 35 and the right front elastic belt 36R1 and the right rear elastic belt 36R2 by changing the position of the right roller 37R in the Y-axis direction (angle θ shown in the figure). As a result, the ratio of the size of the rotation range of the right rotating body 38R to the size of the movable range of the slider 35 changes.
 そのため、図34(A)および図34(B)に示すように、右側ローラ37Rの位置がY軸方向に沿って距離D3だけ変化した場合には、当該距離D3に応じた分だけ右側羽体40Rの揺動角度αが変化することになる。なお、その場合に、右側ローラ37RのX軸方向に沿った位置に変更がなければ、右側羽体40Rの揺動中心CRの位置は維持されることになる。 Therefore, as shown in FIGS. 34 (A) and 34 (B), when the position of the right roller 37R changes by a distance D3 along the Y-axis direction, the right wing body corresponds to the distance D3. The swing angle α of 40R changes. In this case, if there is no change in the position along the X-axis direction of the right roller 37R, the position of the swing center CR of the right wing body 40R is maintained.
 このように、右側ローラ37Rの位置をY軸方向に沿って変更することにより、右側羽体40Rの揺動角度αを種々変更することが可能になるため、当該右側ローラ37RのY軸方向に沿った位置を調節することにより、各種の羽ばたき態様が実現できることになる。 In this way, by changing the position of the right roller 37R along the Y-axis direction, the swing angle α of the right wing 40R can be variously changed. Therefore, the right roller 37R can be changed in the Y-axis direction. Various flapping modes can be realized by adjusting the position along the line.
 なお、ここではその説明は省略するが、左側ローラ37Lの位置をY軸方向に沿って変更した場合にも、同様に左側羽体40Lの揺動角度αを種々変更することが可能であり、これにより各種の羽ばたき態様が実現できることになる。 Although the explanation is omitted here, even when the position of the left roller 37L is changed along the Y-axis direction, the swing angle α of the left wing 40L can be changed variously in the same manner. Thereby, various flapping modes can be realized.
 特に、本実施の形態においては、右側ローラ37Rおよび左側ローラ37Lが、それぞれX軸方向およびY軸方向に個別に移動可能に構成されているため、これによりXY平面上の任意の位置に右側ローラ37Rおよび左側ローラ37Lを配置することが可能である。そのため、このように構成することにより、右側羽体40Rおよび左側羽体40Lの揺動中心CR,CLの位置ならびに揺動角度αを様々に変化させることが可能になるため、バリエーションに富んだ飛行態様を実現することが可能になる。 In particular, in the present embodiment, the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively, so that the right roller can be placed at an arbitrary position on the XY plane. 37R and left roller 37L can be arranged. For this reason, by configuring in this way, the positions of the swing centers CR and CL and the swing angle α of the right wing 40R and the left wing 40L can be changed in various ways. An aspect can be realized.
 なお、本実施の形態においては、右側ローラ37Rおよび左側ローラ37LをそれぞれX軸方向における任意の位置においてさらにY軸方向に任意の位置に移動可能に構成しているため、上述した実施の形態1における羽ばたき装置1Aが具備していた軸ぶれ調節機構を設けずとも、右側羽体40Rおよび左側羽体40Lの揺動角度αを様々に変化させることが可能になる。 In the present embodiment, the right roller 37R and the left roller 37L are each configured to be movable to an arbitrary position in the Y-axis direction at an arbitrary position in the X-axis direction. The swing angle α of the right wing 40R and the left wing 40L can be variously changed without providing the shaft shake adjustment mechanism provided in the flapping apparatus 1A.
 また、本実施の形態においては、右側ローラ37Rおよび左側ローラ37Lが、それぞれX軸方向およびY軸方向に個別に移動可能となるように構成した場合を例示したが、必ずしもそのように構成する必要はなく、右側ローラ37Rおよび左側ローラ37Lが、X軸方向およびY軸方向のいずれか一方のみに移動可能となるように構成してもよい。その場合にも、相当程度にバリエーションに富んだ飛行態様を実現することができる。 Further, in the present embodiment, the case where the right roller 37R and the left roller 37L are configured to be individually movable in the X-axis direction and the Y-axis direction, respectively, is illustrated, but it is not always necessary to configure as such. Instead, the right roller 37R and the left roller 37L may be configured to be movable only in either the X-axis direction or the Y-axis direction. Even in such a case, it is possible to realize flight modes that are considerably rich in variations.
 ここで、本実施の形態における羽ばたき装置1Bは、以上において述べた構成を除き、上述した実施の形態1における羽ばたき装置1Aと基本的に同様の構成を有しているため、それら構成を採用することによって得られる効果は、本実施の形態における羽ばたき装置1Bにおいても同様に得ることができる。 Here, flapping apparatus 1B in the present embodiment has basically the same configuration as flapping apparatus 1A in the above-described first embodiment except for the configuration described above, and thus adopts these configurations. The effect obtained by this can also be obtained in the flapping apparatus 1B in the present embodiment.
 (実施の形態3)
 図35は、実施の形態3における羽ばたき装置1Cの要部の概略斜視図であり、図36は、羽ばたき装置1Cにおけるローラ位置調節機構の構成を示す平面図である。以下、これら図35および図36を参照して、本実施の形態における羽ばたき装置1Cについて説明する。
(Embodiment 3)
FIG. 35 is a schematic perspective view of a main part of the flapping apparatus 1C according to the third embodiment, and FIG. 36 is a plan view showing a configuration of a roller position adjusting mechanism in the flapping apparatus 1C. Hereinafter, flapping apparatus 1C according to the present embodiment will be described with reference to FIG. 35 and FIG.
 図35に示すように、羽ばたき装置1Cは、上述した実施の形態1における羽ばたき装置1Aと比較した場合に、被掛合体としての右側ローラ37Rおよび左側ローラ37Lを備えている点において共通の構成を有しているものの、右側ローラ制御機構50Aおよび左側ローラ制御機構50Bからなる羽ばたき制御機構50を備えておらず、これに代えて、右側ローラ位置調節機構70Aおよび左側ローラ位置調節機構70Bからなるローラ位置調節機構70を備えている点において、基本的にその構成が相違している。 As shown in FIG. 35, the flapping device 1C has a common configuration in that it includes a right roller 37R and a left roller 37L as an engaged body when compared with the flapping device 1A in the first embodiment described above. However, the flapping control mechanism 50 including the right roller control mechanism 50A and the left roller control mechanism 50B is not provided. Instead, the roller including the right roller position adjustment mechanism 70A and the left roller position adjustment mechanism 70B is provided. The configuration is basically different in that the position adjusting mechanism 70 is provided.
 そのため、羽ばたき装置1Cにおいては、右側羽体40Rおよび左側羽体40Lの羽ばたき動作が、右側ローラ37Rおよび左側ローラ37Lの位置や軸ぶれの大きさによって可変に制御されることはなく、ローラ位置調節機構70を操作することにより、右側ローラ37Rおよび左側ローラ37Lの位置が調節されることで、躯体に対する右側羽体40Rおよび左側羽体40Lの組付け位置精度を高精度に調整することが可能に構成されている。 Therefore, in the flapping device 1C, the flapping operation of the right wing 40R and the left wing 40L is not variably controlled by the positions of the right roller 37R and the left roller 37L and the size of the shaft shake, and the roller position adjustment is performed. By operating the mechanism 70, the positions of the right roller 37R and the left roller 37L are adjusted, so that the assembly position accuracy of the right blade 40R and the left blade 40L with respect to the housing can be adjusted with high accuracy. It is configured.
 具体的には、図35および図36に示すように、ローラ位置調節機構70は、右側羽体40Rの組付け位置を調整するための右側ローラ位置調節機構70Aと、左側羽体40Lの組付け位置を調整するための左側ローラ位置調節機構70Bとを含んでいる。 Specifically, as shown in FIGS. 35 and 36, the roller position adjusting mechanism 70 includes a right roller position adjusting mechanism 70A for adjusting the assembly position of the right wing 40R and an assembly of the left wing 40L. And a left roller position adjusting mechanism 70B for adjusting the position.
 より詳細には、右側ローラ位置調節機構70Aは、送りねじ71aと、ガイド部材72aとを含んでいる。送りねじ71aは、その一端にねじ頭を有しており、躯体10の上フレーム12の前枠部と後枠部とを橋渡すように当該上フレーム12に回転可能に組付けられている。ガイド部材72aは、送りねじ71aに歯合するナット部を含んでおり、上フレーム12の前枠部と後枠部との間に位置する部分の送りねじ71aに螺合されている。 More specifically, the right roller position adjustment mechanism 70A includes a feed screw 71a and a guide member 72a. The feed screw 71a has a screw head at one end thereof, and is rotatably assembled to the upper frame 12 so as to bridge the front frame portion and the rear frame portion of the upper frame 12 of the housing 10. The guide member 72a includes a nut portion that meshes with the feed screw 71a, and is screwed to a portion of the feed screw 71a located between the front frame portion and the rear frame portion of the upper frame 12.
 ガイド部材72aは、その右側面にZ軸方向に沿って延在する溝部が形成されており、当該溝部には、右側ローラ37Rを回転可能に支持する右側ローラシャフト17Rの上端近傍が挿入されている。これにより、右側ローラシャフト17Rの上端近傍は、ガイド部材72aの上記溝部を規定する一対の壁部により、X軸方向において挟まれた状態とされている。なお、ガイド部材72aは、上フレーム12の一部と右側ローラシャフト17RとによってY軸方向において挟まれていることにより、その回転が制限されている。 The guide member 72a has a groove portion extending in the Z-axis direction on the right side surface thereof, and the vicinity of the upper end of the right roller shaft 17R that rotatably supports the right roller 37R is inserted into the groove portion. Yes. Thereby, the vicinity of the upper end of the right roller shaft 17R is in a state of being sandwiched in the X-axis direction by the pair of wall portions that define the groove portion of the guide member 72a. The rotation of the guide member 72a is restricted by being sandwiched in the Y-axis direction by a part of the upper frame 12 and the right roller shaft 17R.
 一方、左側ローラ位置調節機構70Bは、送りねじ71bと、ガイド部材72bとを含んでいる。送りねじ71bは、その一端にねじ頭を有しており、躯体10の上フレーム12の前枠部と後枠部とを橋渡すように当該上フレーム12に回転可能に組付けられている。ガイド部材72bは、送りねじ71bに歯合するナット部を含んでおり、上フレーム12の前枠部と後枠部との間に位置する部分の送りねじ71bに螺合されている。 On the other hand, the left roller position adjusting mechanism 70B includes a feed screw 71b and a guide member 72b. The feed screw 71b has a screw head at one end thereof, and is rotatably assembled to the upper frame 12 so as to bridge the front frame portion and the rear frame portion of the upper frame 12 of the housing 10. The guide member 72b includes a nut portion that meshes with the feed screw 71b, and is screwed into a portion of the feed screw 71b located between the front frame portion and the rear frame portion of the upper frame 12.
 ガイド部材72bは、その左側面にZ軸方向に沿って延在する溝部が形成されており、当該溝部には、左側ローラ37Lを回転可能に支持する左側ローラシャフト17Lの上端近傍が挿入されている。これにより、左側ローラシャフト17Lの上端近傍は、ガイド部材72bの上記溝部を規定する一対の壁部により、X軸方向において挟まれた状態とされている。なお、ガイド部材72bは、上フレーム12の一部と左側ローラシャフト17LとによってY軸方向において挟まれていることにより、その回転が制限されている。 The guide member 72b is formed with a groove portion extending in the Z-axis direction on the left side surface thereof, and the vicinity of the upper end of the left roller shaft 17L that rotatably supports the left roller 37L is inserted into the groove portion. Yes. Thereby, the vicinity of the upper end of the left roller shaft 17L is sandwiched in the X-axis direction by the pair of wall portions that define the groove portion of the guide member 72b. The guide member 72b is restricted in rotation by being sandwiched in the Y-axis direction by a part of the upper frame 12 and the left roller shaft 17L.
 このように構成することにより、送りねじ71aを工具を用いて回転させることにより、送りねじ71aに対して相対的にガイド部材72aが移動することになり、これに伴って図36中に示す矢印DR41方向(すなわちX軸方向)に向けてガイド部材72aが移動することになる。そのため、右側ローラシャフト17Rの位置が調整できることになり、右側羽体40Rの揺動中心CRの位置を高精度に調整することができる。 With this configuration, the guide member 72a moves relative to the feed screw 71a by rotating the feed screw 71a with a tool, and accompanying this, the arrow shown in FIG. The guide member 72a moves in the DR41 direction (that is, the X-axis direction). Therefore, the position of the right roller shaft 17R can be adjusted, and the position of the swing center CR of the right wing body 40R can be adjusted with high accuracy.
 また同様に、送りねじ71bを工具を用いて回転させることにより、送りねじ71bに対して相対的にガイド部材72bが移動することになり、これに伴って図36中に示す矢印DR42方向(すなわちX軸方向)に向けてガイド部材72bが移動することになる。そのため、左側ローラシャフト17Lの位置が調整できることになり、左側羽体40Lの揺動中心CLの位置を高精度に調整することができる。 Similarly, by rotating the feed screw 71b with a tool, the guide member 72b moves relative to the feed screw 71b, and accordingly, in the direction of the arrow DR42 shown in FIG. The guide member 72b moves in the direction (X-axis direction). Therefore, the position of the left roller shaft 17L can be adjusted, and the position of the swing center CL of the left wing body 40L can be adjusted with high accuracy.
 すなわち、上述した右側ローラ位置調節機構70Aおよび左側ローラ位置調節機構70Bからなるローラ位置調節機構70が、右側ローラ37Rおよび左側ローラ37Lの位置を可変に調節する被掛合体位置調節機構として機能することになる。 That is, the roller position adjusting mechanism 70 including the right roller position adjusting mechanism 70A and the left roller position adjusting mechanism 70B described above functions as an engaged body position adjusting mechanism that variably adjusts the positions of the right roller 37R and the left roller 37L. become.
 したがって、製造時において、当該ローラ位置調節機構70を利用して右側ローラ37Rおよび左側ローラ37Lの位置を各々調節することにより、右側羽体40Rの揺動中心CRおよび左側羽体40Lの揺動中心CLの位置を個別にかつ容易に高精度に調整することができる。また、メンテナンス時において、当該ローラ位置調節機構70を利用して右側ローラ37Rおよび左側ローラ37Lの位置を各々調節することにより、使用に伴う右側羽体40Rの揺動中心CRおよび左側羽体40Lの揺動中心CLの位置ずれを個別にかつ容易に修正することができる。 Therefore, at the time of manufacturing, the positions of the right roller 37R and the left roller 37L are adjusted by using the roller position adjusting mechanism 70, so that the swing center CR of the right blade 40R and the swing center of the left blade 40L are adjusted. The position of CL can be adjusted individually and easily with high accuracy. Further, during maintenance, the positions of the right roller 37R and the left roller 37L are adjusted using the roller position adjusting mechanism 70, so that the swing center CR of the right blade 40R and the left blade 40L can be adjusted. The positional deviation of the swing center CL can be corrected individually and easily.
 なお、本実施の形態における羽ばたき装置1Cは、以上において述べた構成を除き、上述した実施の形態1における羽ばたき装置1Aと基本的に同様の構成を有しているため、それら構成を採用することによって得られる効果は、本実施の形態における羽ばたき装置1Cにおいても同様に得ることができる。 In addition, flapping apparatus 1C in the present embodiment has basically the same configuration as flapping apparatus 1A in the above-described first embodiment except for the configuration described above, and therefore adopts these configurations. The effect obtained by the above can also be obtained in the flapping apparatus 1C in the present embodiment.
 上述した実施の形態1ないし3およびその変形例においては、単一の動力源にて発生した動力が動力伝達機構によって分配されることにより、躯体の右舷に設けられた羽体と躯体の左舷に設けられた羽体とが同時に駆動されるように構成した場合を例示して説明を行なったが、躯体の右舷に設けられた羽体と躯体の左舷に設けられた羽体とが、それぞれ別途独立して設けられた動力源によって駆動されるように構成してもよい。 In the first to third embodiments and the modifications described above, the power generated by a single power source is distributed by the power transmission mechanism, so that the wings provided on the starboard of the chassis and the port on the chassis The case where the provided wings are configured to be driven at the same time has been described as an example, but the wings provided on the starboard side of the case and the wings provided on the port side of the case are separately provided. You may comprise so that it may drive with the power source provided independently.
 また、上述した実施の形態1ないし3およびその変形例においては、躯体の右舷と躯体の左舷とにそれぞれ1つずつ羽体を設けてなる場合を例示して説明を行なったが、躯体の右舷と躯体の左舷とにそれぞれ複数の羽体が設けられるように構成してもよい。 Further, in the above-described first to third embodiments and the modifications thereof, the case where one wing is provided on each of the starboard of the casing and the port of the casing has been described as an example. A plurality of wings may be provided on the left side of the casing.
 さらには、動力源の具体的な構成や動力伝達機構の具体的な構成は、本開示の趣旨を逸脱しない範囲において、適宜その変更が可能であり、また、上述した実施の形態1ないし3およびその変形例において開示した特徴的な構成は、本開示の趣旨を逸脱しない範囲において、相互にその組み合わせが可能である。 Furthermore, the specific configuration of the power source and the specific configuration of the power transmission mechanism can be changed as appropriate without departing from the spirit of the present disclosure, and the above-described first to third embodiments and The characteristic configurations disclosed in the modified examples can be combined with each other without departing from the spirit of the present disclosure.
 このように、今回開示した上記実施の形態およびその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 As described above, the above-described embodiment and modifications thereof disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本出願は、2016年12月15日に出願した日本特許出願である特願2016-242948号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2016-242948, which is a Japanese patent application filed on December 15, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 1A~1C,1A’ 羽ばたき装置、10 躯体、11 下フレーム、12 上フレーム、13 支持フレーム、14 柱状フレーム、15 ステム、16a,16b スライドガイド、17R 右側ローラシャフト、17L 左側ローラシャフト、18R 右側ガイドシャフト、18L 左側ガイドシャフト、19R1 右側上アーム、19R2 右側下アーム、19L1 左側上アーム、19L2 左側下アーム、20 主回転電動機、20a 出力シャフト、20b ギヤ、30 動力伝達機構、30A 回転運動伝達部、30B 第1運動変換部、30C1 右側第2運動変換部、30C2 左側第2運動変換部、31 第1伝達部材、31a 第1接続ロッド、31b,31c ギヤ、32 第2伝達部材、32a 第2接続ロッド、32b ギヤ、32c ディスク、33A 第1クランクアーム、33B 第2クランクアーム、33a1,33a2,33b1,33b2 孔部、34a,34b1,34b2 クランクピン、35 スライダ、35R 右側面、35L 左側面、36R1 右前側弾性ベルト、36R2 右後側弾性ベルト、36L1 左前側弾性ベルト、36L2 左後側弾性ベルト、37R 右側ローラ、37L 左側ローラ、38R 右側回転体、38L 左側回転体、39R 右側マスト、39L 左側マスト、40R 右側羽体、40L 左側羽体、50 羽ばたき制御機構、50A 右側ローラ制御機構、50B 左側ローラ制御機構、51a,51b 第1ステージ、52a,52b 第1副回転電動機、53a,53b 第1送り機構部、54a,54b 連結部材、55a,55b 第2ステージ、56a,56b 第2副回転電動機、57a,57b 第2送り機構部、58a,58b ガイド部材、58a1,58b1 ガイド部、60A 前側付勢部材、60B 後側付勢部材、70 ローラ位置調節機構、70A 右側ローラ位置調節機構、70B 左側ローラ位置調節機構、71a,71b 送りねじ、72a,72b ガイド部材、80 飛行態様制御部、81 第1制御部、82 第2制御部、101 第1回転軸、102R,102L 第2回転軸。 1A to 1C, 1A 'flapping apparatus, 10 housing, 11 lower frame, 12 upper frame, 13 support frame, 14 columnar frame, 15 stem, 16a, 16b slide guide, 17R right roller shaft, 17L left roller shaft, 18R right guide Shaft, 18L left guide shaft, 19R1 right upper arm, 19R2 right lower arm, 19L1 left upper arm, 19L2 left lower arm, 20 main rotating motor, 20a output shaft, 20b gear, 30 power transmission mechanism, 30A rotational motion transmission unit, 30B 1st motion conversion part, 30C1 Right side 2nd motion conversion part, 30C2 Left side 2nd motion conversion part, 31 1st transmission member, 31a 1st connection rod, 31b, 31c gear, 32 2nd transmission member, 32a 2nd connection B 32b gear, 32c disc, 33A first crank arm, 33B second crank arm, 33a1, 33a2, 33b1, 33b2 hole, 34a, 34b1, 34b2 crank pin, 35 slider, 35R right side, 35L left side, 36R1 Right front elastic belt, 36R2, right rear elastic belt, 36L1, left front elastic belt, 36L2, left rear elastic belt, 37R right roller, 37L left roller, 38R right rotating body, 38L left rotating body, 39R right mast, 39L left mast , 40R right wing, 40L left wing, 50 flapping control mechanism, 50A right roller control mechanism, 50B left roller control mechanism, 51a, 51b first stage, 52a, 52b first subrotary motor, 53a, 53b first feed Structure part, 54a, 54b connecting member, 55a, 55b second stage, 56a, 56b second auxiliary rotating motor, 57a, 57b second feed mechanism part, 58a, 58b guide member, 58a1, 58b1 guide part, 60A front side bias Member, 60B rear biasing member, 70 roller position adjusting mechanism, 70A right roller position adjusting mechanism, 70B left roller position adjusting mechanism, 71a, 71b feed screw, 72a, 72b guide member, 80 flight mode control unit, 81 1st Control unit, 82, second control unit, 101, first rotation axis, 102R, 102L, second rotation axis.

Claims (7)

  1.  躯体と、
     前記躯体に組付けられた動力源と、
     前記動力源にて発生した動力を伝達する動力伝達機構と、
     前記動力伝達機構によって駆動される羽体と、を備え、
     前記動力伝達機構は、
     前記躯体によって移動可能に支持され、前記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、
     前記躯体によって回転可能に支持され、前記スライダからの動力の伝達を受けて前記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する回転体と、を含み、
     前記羽体は、その基端が前記回転体に固定されることにより、前記回転体が前記回転方向に往復運動することでその先端が概ね前記第1方向に沿って移動するように揺動し、
     前記躯体が、前記スライダを前記第1方向に沿って案内するように前記第1方向において前記スライダを貫通する互いに平行に配置された複数のスライドガイドを含み、
     前記第1方向および前記第2方向の双方に直交する第3方向における前記スライダの外形寸法が、前記第2方向における前記スライダの外形寸法よりも小さく、
     前記複数のスライドガイドが、前記第2方向に沿って並んで配置されている、羽ばたき装置。
    The body,
    A power source assembled to the housing;
    A power transmission mechanism for transmitting power generated by the power source;
    A wing driven by the power transmission mechanism,
    The power transmission mechanism is
    A slider that is movably supported by the housing and that reciprocates linearly in a first direction in response to transmission of power from the power source;
    A rotating body that is rotatably supported by the housing and that reciprocates in the rotation direction around a rotation axis that receives a transmission of power from the slider and extends in a second direction orthogonal to the first direction. Including
    When the base end of the wing body is fixed to the rotating body, the rotating body reciprocates in the rotating direction, so that the tip of the wing body swings so as to move substantially along the first direction. ,
    The housing includes a plurality of slide guides arranged in parallel with each other and penetrating the slider in the first direction so as to guide the slider along the first direction;
    An outer dimension of the slider in a third direction orthogonal to both the first direction and the second direction is smaller than an outer dimension of the slider in the second direction;
    The flapping apparatus in which the plurality of slide guides are arranged side by side along the second direction.
  2.  前記躯体が、前記複数のスライドガイドを支持する矩形枠状の支持フレームをさらに含み、
     前記支持フレームが、前記第1方向および前記第2方向において前記スライダおよび前記複数のスライドガイドを取り囲んでいる、請求項1に記載の羽ばたき装置。
    The housing further includes a rectangular frame-shaped support frame that supports the plurality of slide guides,
    The flapping apparatus according to claim 1, wherein the support frame surrounds the slider and the plurality of slide guides in the first direction and the second direction.
  3.  前記躯体が、前記第2方向に沿って延在する互いに平行に配置された複数のステムと、前記第2方向における異なる位置に配置され一対のベースフレームと、をさらに含み、
     前記一対のベースフレームの各々が、前記複数のステムによって支持され、
     前記支持フレームが、前記第2方向において前記一対のベースフレームによって挟み込まれた状態で当該一対のベースフレームに固定されている、請求項2に記載の羽ばたき装置。
    The housing further includes a plurality of stems arranged in parallel to each other extending along the second direction, and a pair of base frames arranged at different positions in the second direction,
    Each of the pair of base frames is supported by the plurality of stems,
    The flapping apparatus according to claim 2, wherein the support frame is fixed to the pair of base frames in a state of being sandwiched by the pair of base frames in the second direction.
  4.  前記動力源が、回転運動を出力する出力シャフトを含み、
     前記動力伝達機構は、前記出力シャフトに生じた回転運動を前記スライダの往復直線運動に変換するクランク機構をさらに含み、
     前記支持フレームによって囲まれた空間の一部に前記第3方向において跨ることとなるように、前記クランク機構が、前記第2方向において前記スライダと隣り合うように配設されている、請求項2または3に記載の羽ばたき装置。
    The power source includes an output shaft that outputs rotational motion;
    The power transmission mechanism further includes a crank mechanism that converts a rotary motion generated in the output shaft into a reciprocating linear motion of the slider,
    The crank mechanism is disposed adjacent to the slider in the second direction so as to straddle a part of the space surrounded by the support frame in the third direction. Or the flapping apparatus of 3.
  5.  前記複数のスライドガイドが、前記スライダの前記クランク機構側の端部とは反対側の端部寄りの位置に偏在している、請求項4に記載の羽ばたき装置。 The flapping apparatus according to claim 4, wherein the plurality of slide guides are unevenly distributed at positions near the end of the slider opposite to the end on the crank mechanism side.
  6.  前記動力伝達機構が、前記スライダに一部が固定された弾性ベルトをさらに含み、
     前記スライダに対する前記弾性ベルトの非固定部分が前記回転体に巻回または固定されることにより、前記スライダが往復直線運動することで前記回転体が前記回転方向に往復運動する、請求項1から5のいずれかに記載の羽ばたき装置。
    The power transmission mechanism further includes an elastic belt partially fixed to the slider;
    The non-fixed portion of the elastic belt with respect to the slider is wound or fixed on the rotating body, so that the rotating body reciprocates in the rotation direction when the slider reciprocates linearly. The flapping apparatus according to any one of the above.
  7.  躯体と、
     前記躯体に組付けられた動力源と、
     前記動力源にて発生した動力を伝達する動力伝達機構と、
     前記動力伝達機構によって駆動される第1羽体および第2羽体と、を備え、
     前記動力伝達機構は、
     前記躯体によって移動可能に支持され、前記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、
     前記躯体によって回転可能に支持され、前記スライダからの動力の伝達を受けて前記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する第1回転体および第2回転体と、を含み、
     前記第1回転体および前記第2回転体は、前記第1方向および前記第2方向の双方に直交する第3方向において前記スライダを挟み込むように並んで配置され、
     前記第1羽体は、その先端が前記第1回転体から見て前記第2回転体が位置する側とは反対側に位置するようにその基端が前記第1回転体に固定され、
     前記第2羽体は、その先端が前記第2回転体から見て前記第1回転体が位置する側とは反対側に位置するようにその基端が前記第2回転体に固定され、
     前記第1羽体および前記第2羽体は、前記第1回転体および前記第2回転体がそれぞれ回転方向に往復運動することで各々の先端が同期的に概ね前記第1方向に沿って移動するように揺動し、
     前記躯体が、前記スライダを前記第1方向に沿って案内するように前記第1方向において前記スライダを貫通する互いに平行に配置された複数のスライドガイドを含み、
     前記第3方向における前記スライダの外形寸法が、前記第2方向における前記スライダの外形寸法よりも小さく、
     前記複数のスライドガイドが、前記第2方向に沿って並んで配置されている、羽ばたき装置。
    The body,
    A power source assembled to the housing;
    A power transmission mechanism for transmitting power generated by the power source;
    A first wing and a second wing driven by the power transmission mechanism;
    The power transmission mechanism is
    A slider that is movably supported by the housing and that reciprocates linearly in a first direction in response to transmission of power from the power source;
    A first rotating body that is rotatably supported by the housing and that reciprocates in a rotational direction around a rotational axis that receives a transmission of power from the slider and extends in a second direction orthogonal to the first direction; A second rotating body,
    The first rotating body and the second rotating body are arranged side by side so as to sandwich the slider in a third direction orthogonal to both the first direction and the second direction,
    The base end of the first wing body is fixed to the first rotating body so that the tip of the first wing body is positioned on the side opposite to the side on which the second rotating body is positioned when viewed from the first rotating body.
    The base end of the second wing body is fixed to the second rotating body so that the tip of the second wing body is located on the side opposite to the side where the first rotating body is positioned when viewed from the second rotating body.
    The first wing and the second wing are moved substantially along the first direction synchronously as the first rotator and the second rotator reciprocate in the rotation direction. Rocks like
    The housing includes a plurality of slide guides arranged in parallel with each other and penetrating the slider in the first direction so as to guide the slider along the first direction;
    An outer dimension of the slider in the third direction is smaller than an outer dimension of the slider in the second direction;
    The flapping apparatus in which the plurality of slide guides are arranged side by side along the second direction.
PCT/JP2017/043166 2016-12-15 2017-11-30 Flapping device WO2018110307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242948 2016-12-15
JP2016242948 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110307A1 true WO2018110307A1 (en) 2018-06-21

Family

ID=62558531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043166 WO2018110307A1 (en) 2016-12-15 2017-11-30 Flapping device

Country Status (1)

Country Link
WO (1) WO2018110307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739354B (en) * 2020-03-23 2021-09-11 淡江大學 Rotating wing structure of flapping micro air vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106393A (en) * 2005-09-15 2007-04-26 Sharp Corp Flapping floating movement device
JP2009006762A (en) * 2007-06-26 2009-01-15 Sharp Corp Flapping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106393A (en) * 2005-09-15 2007-04-26 Sharp Corp Flapping floating movement device
JP2009006762A (en) * 2007-06-26 2009-01-15 Sharp Corp Flapping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739354B (en) * 2020-03-23 2021-09-11 淡江大學 Rotating wing structure of flapping micro air vehicle

Similar Documents

Publication Publication Date Title
WO2017149987A1 (en) Flapping device
US20100308158A1 (en) Flapping apparatus with large flapping angles
JP6458162B2 (en) Flapping equipment
WO2018110308A1 (en) Flapping device
CN103661926B (en) Variable-screw-pitch-device and rotor external member and the multi-rotor aerocraft of applying this device
AU2002358901A1 (en) Articulated mechanism comprising a cable reduction gear for use in a robot arm
JP2006193027A (en) Flight vehicle
JPH07290381A (en) Industrial robot
KR20120033850A (en) Driving force measurement installation of flapping-wing system and the method
WO2018110307A1 (en) Flapping device
WO2016043302A1 (en) Rotation drive mechanism in robot
JP5171119B2 (en) Reciprocating mechanism and pick and place device
WO2018110306A1 (en) Flapping device
JP2015174538A (en) Motion conversion mechanism and ornithopter
JP5440279B2 (en) Robot vibration control device
WO2017078018A1 (en) Wing flapping apparatus
KR101954216B1 (en) counter weight device for power saw with a vibration abatement function of counter weight
WO2018110292A1 (en) Flapping device
LU101753B1 (en) Structure and aircraft
JP3783603B2 (en) Levitating body
WO2018110290A1 (en) Wing body and flapping device
GB2444068A (en) An ornithopter mechanism
JP2006142884A (en) Flying body
KR20210037601A (en) Helicopter kit
US20230294308A1 (en) Waist structure of robot, and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP