WO2018110284A1 - Light deflection device and lidar apparatus - Google Patents

Light deflection device and lidar apparatus Download PDF

Info

Publication number
WO2018110284A1
WO2018110284A1 PCT/JP2017/042955 JP2017042955W WO2018110284A1 WO 2018110284 A1 WO2018110284 A1 WO 2018110284A1 JP 2017042955 W JP2017042955 W JP 2017042955W WO 2018110284 A1 WO2018110284 A1 WO 2018110284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
periodic structure
waveguide
deflection device
radiation
Prior art date
Application number
PCT/JP2017/042955
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 俊彦
萌江 竹内
梧朗 竹内
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2018556548A priority Critical patent/JP6931237B2/en
Publication of WO2018110284A1 publication Critical patent/WO2018110284A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Definitions

  • the present invention relates to an optical deflection device that controls the traveling direction of light, and a rider apparatus that includes the optical deflection device.
  • Laser radar or lidar equipment LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • Laser radar or lidar equipment that uses laser measurement to acquire the distance to surrounding objects as a two-dimensional image It is used for making maps, and its basic technology can be applied to laser printers and laser displays.
  • a light beam is applied to an object, reflected light that is reflected back from the object is detected, distance information is obtained from the time difference or frequency difference, and the light beam is scanned two-dimensionally. To obtain wide-angle three-dimensional information.
  • An optical deflection device is essential for optical beam scanning.
  • mechanical mechanisms such as rotating the entire device, mechanical mirrors such as polygonal mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have been used.
  • MEMS technology micromachine technology
  • phased array type or a diffraction grating type that realizes optical deflection by changing the wavelength of light or the refractive index of the device has been proposed.
  • the phased array type optical deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and a high-quality sharp light beam cannot be formed.
  • the diffraction grating type optical deflection device can easily form a sharp beam, there is a problem that the optical deflection angle is small.
  • the scanned light beam requires controllability of intensity distribution (amplitude distribution) in addition to the sharpness described above.
  • Patent Documents 1 to 5 have been proposed as optical deflection devices having controllability of the beam intensity of a radiation beam.
  • Patent Document 1 discloses a configuration in which the height, width, or depth of an element constituting a grating is monotonously changed in the waveguide direction of guided light
  • Patent Document 2 describes a grating thickness with respect to the light propagation direction. Is disclosed as a Gaussian distribution
  • Patent Document 3 discloses a structure in which the grating height of the diffraction grating is gradually increased substantially linearly.
  • Patent Document 4 describes the depth of the grating or the thickness of the gap layer.
  • Patent Document 5 A configuration for changing the width of the groove formed in the surface layer of the grating with respect to the longitudinal direction of the waveguide is shown in Patent Document 5.
  • JP 62-296102 A JP-A-4-195003 JP-A-6-94939 Japanese Patent Laid-Open No. 7-169088 JP2015-161829 Japanese Patent Application No. 2016-10844 (Fig. 10)
  • the above-described conventionally known optical deflection device has a configuration in which two components, a waveguide portion and a light emission mechanism such as a grating, are combined, and is configured from a single component in terms of manufacturability, size, cost, and the like. There is a need for an optical deflection device.
  • the above-described prior art uses a grating (diffraction grating) as an optical deflection device, and adjusts the intensity distribution (amplitude distribution) according to the shape such as the height, width, or depth of the grating. Since the surface shape of these gratings requires fine processing, there are problems such as processing accuracy and variation in shape. Therefore, there is a demand for an optical deflection device that can control intensity distribution (amplitude distribution) with a configuration that can be easily formed.
  • An object of the optical deflection device and the rider apparatus of the present invention is to solve the above-described problems and to be configured by a single component. It is another object of the present invention to make it possible to adjust the intensity distribution (amplitude distribution) with a configuration that can be easily formed.
  • the inventors of the present invention have proposed a technique for increasing the light deflection angle by coupling the slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 6).
  • Slow light is generated in a photonic nanostructure such as a photonic crystal waveguide and has a low group velocity.
  • Slow light has a characteristic that the propagation constant is greatly changed by a slight change in wavelength or refractive index of the waveguide.
  • a diffractive mechanism is installed in or near the slow light waveguide, the slow light waveguide is coupled to the diffractive mechanism to form a leaky waveguide, and emits light into free space. At this time, a large change in the propagation constant is reflected in the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
  • the optical deflection device is based on a device having a double periodic structure in which circular holes of two different diameters are repeated along a waveguide in the plane of a photonic crystal.
  • Slow light propagating light is non-radiated in a periodic structure in which one kind of diameter hole is repeated along the waveguide in the plane of the photonic crystal, but a double period in which two kinds of holes having different diameters are repeated.
  • the slow light propagating light is converted into radiation conditions and emitted into space. Since the double periodic structure has a structure in which two types of circular holes having different diameters are repeatedly provided in the surface of the photonic crystal, it can be configured by one component (Patent Document 6).
  • Such a double periodic structure includes a periodic structure in which a large-diameter circular hole is repeated and a periodic structure in which a small-diameter circular hole is repeated.
  • the diameter of the reference circular hole is 2r, and the difference width of the diameter is 2 ⁇ r.
  • the diameter of the large-diameter circular hole is 2 (r + ⁇ r), and the diameter of the small-diameter circular hole is 2 (r ⁇ r).
  • the large diameter and the small diameter indicate a large or small relationship with respect to the diameter of the reference circular hole or in the comparison of the diameters of each other.
  • the inventors have found that when ⁇ r is changed in such a configuration, the emissivity changes greatly, but other properties such as a radiation angle and a propagation constant in the propagation direction do not change so much.
  • optical deflection device configuration The form of the optical deflection device of the present invention is as follows: (A) As a waveguide, a photonic waveguide made of a photonic crystal is used instead of a conventional glass material or a bulk material of a semiconductor material. (B) As a diffraction mechanism, a photonic crystal configuration is used instead of the conventionally proposed grating. (C) As a diffraction mechanism by a photonic crystal, a structure of a plurality of circular holes formed in the plane of the photonic crystal is provided, and a plurality of circular holes whose diameters change along the waveguide in the plane of the photonic crystal. It has a periodic structure.
  • the plurality of circular holes provided in the optical deflection device of the present invention not only form a waveguide in the plane of the photonic crystal, but also radiate by a periodic structure in which the diameters of the plurality of circular holes change along the waveguide.
  • the beam intensity distribution (amplitude distribution) is adjusted.
  • the optical deflection device of the present invention since the circular hole in the surface of the photonic crystal can be easily adjusted in diameter and position by the semiconductor film forming technique, the optical deflection device has an intensity distribution (amplitude distribution). ) Can be obtained with an easy configuration.
  • the periodic structure of a plurality of circular holes in which the waveguide of the optical deflection device according to the present invention also has a photonic crystal formed in the plane has a double structure in which the diameters of the circular holes increase or decrease in a complementary manner along the waveguide. It is a periodic structure.
  • the double periodic structure includes a first periodic structure in which the diameter of the circular hole increases and a second periodic structure in which the diameter of the circular hole decreases.
  • the diameter of the reference circular hole is 2r
  • the increase / decrease width of the diameter to be complementarily increased / decreased is 2 ⁇ r 1 , 2 ⁇ r 2
  • the diameter 2r 1 of the circular hole provided in the first periodic structure is 2 (r + ⁇ r 1 ).
  • the diameter 2r 2 of the circular hole provided in the second periodic structure is 2 (r ⁇ r 2 ).
  • the diameter 2r 1 of circular hole first periodic structure comprises a respective diameters of 2r 2 of the second periodic structure comprises a circular hole, said the diameter 2r of the reference circular hole (d), (e)
  • the diameter of the circular hole can be a double periodic structure that increases or decreases complementarily along the waveguide.
  • the reference circular hole can be arbitrarily set from a plurality of circular holes provided in the periodic structure.
  • the increase / decrease widths ⁇ r 1 and ⁇ r 2 of the diameter can be set in a plurality of setting forms.
  • the increase / decrease width ⁇ r 1 and the increase / decrease width ⁇ r 2 are the same increase / decrease width ⁇ r. According to this setting mode, the diameter 2r 1 of the circular hole of the first periodic structure increases by 2 (r + ⁇ r), and the diameter 2r 2 of the circular hole of the second periodic structure decreases by 2 (r ⁇ r). .
  • the amount of increase in the area of the circular hole provided in the first periodic structure is equal to the amount of decrease in the area of the circular hole provided in the second periodic structure.
  • the form which makes the area of the increasing / decreasing circular hole the same amount can be configured by the following relationship between the increase / decrease width ⁇ r 1 and the increase / decrease width ⁇ r 2 .
  • the relationship between the increase / decrease width ⁇ r 1 and the increase / decrease width ⁇ r 2 can be expressed in the following two modes.
  • the light radiation distribution with respect to the propagation direction of the radiation emitted from the waveguide out of plane depends on the intensity of the propagation light in the waveguide of the optical deflection device and the radiation coefficient of the optical deflection device.
  • the radiation coefficient can be set according to the increase / decrease state of the diameter of the circular hole of the periodic structure constituting the diffraction mechanism, and further, the light radiation distribution can be set.
  • the propagation light intensity distribution P with respect to the propagation direction of the propagation light in the waveguide the radiation coefficient B with respect to the propagation direction of the radiation emitted from the waveguide out of plane, the light intensity emitted from the waveguide
  • the light radiation distribution X is expressed by the product (B ⁇ P) of the propagation light intensity distribution P and the radiation coefficient B.
  • the light radiation distribution X can be set by the radiation coefficient B of the light deflection device. Therefore, the desired light radiation distribution X can be obtained by optimally setting the radiation coefficient B.
  • the increase / decrease width ⁇ r of the circular hole that gives the optimum radiation coefficient B is determined. Therefore, a desired light radiation distribution X can be obtained by setting ⁇ r optimally.
  • the light radiation distribution X can be an arbitrary distribution shape.
  • the radiation beam distribution Y with respect to the variation ⁇ of the radiation angle ⁇ of the radiation light is also a Gaussian distribution, and unnecessary side lobes can be removed.
  • the radiation coefficient B is optimized to reduce the side lobes and tails and form a higher quality light beam.
  • the spatial resolution of a lidar apparatus (LiDAR) using an optical deflection device can be increased.
  • a design that minimizes the total loss when the light is restored according to the loss of the slow light waveguide can be realized.
  • the optical deflecting device has a feature in that the radiation coefficient can be optimized by using a photonic crystal, and the optimization of the radiation coefficient is based on a conventionally used grating (diffraction grating). Such a diffraction mechanism is difficult.
  • the amount of radiation of the grating varies depending on the depth (height) of the grating. Therefore, in order to change the amount of radiation in the plane, it is necessary to change the depth (height) of the grating depending on the location. In this way, processing to adjust the depth (height) of the grating according to the location is not possible. It requires a complicated process and it is difficult to obtain high processing accuracy.
  • the radiation angle also has a distribution.
  • the beam formed by the emitted light also has an excessive spread. That is, when a grating is used as a diffraction mechanism, the radiation coefficient cannot be optimized while keeping the radiation angle uniform.
  • optimization of the radiation coefficient and fixation of the radiation angle can be achieved at the same time by simply changing the in-plane design such as adjusting the diameter of the circular hole.
  • the optimization of the radiation coefficient can be realized by an easy process of increasing or decreasing the diameter of the in-plane circular hole along the optical transport path, and has the advantage that high performance can be realized. Yes.
  • the lidar apparatus of the present invention includes the optical deflection device of the present invention, a laser light source that emits a plurality of laser beams having different wavelengths, and a light detection unit that individually detects the laser beams.
  • the optical deflection device arrives from the outside, which emits a plurality of wavelengths of laser light emitted from a laser light source in parallel in the direction of each deflection angle determined by the wavelength of each laser light and the refractive index of the beam deflector.
  • an injector that selectively and simultaneously enters laser beams having an incident angle equal to the deflection angle is configured by the same element.
  • the light detector individually detects laser light of each wavelength incident at an incident angle having the same deflection angle as that of the laser light emitted from the emitter at the injector. By making the deflection angle of the emitter coincide with the deflection angle of the injector, the reflected light emitted from the emitter and reflected by the object is detected.
  • the rider apparatus of the present invention can make the light radiation distribution of the laser light irradiated to the irradiation object a desired distribution shape by using the light deflection device of the present invention.
  • the optical deflection device and the rider apparatus of the present invention can realize parallel operation with a simple configuration, and can avoid an increase in size or complexity of the system.
  • FIG. 5 is a diagram for explaining the relationship among a propagation light intensity distribution P (y), a radiation coefficient B (y), a light radiation distribution X (y), and a radiation light beam distribution Y ( ⁇ ) in an optical deflection device. It is a figure which shows propagation light intensity distribution P (y), radiation coefficient B (y), light radiation distribution X (y), and radiation light beam distribution Y ((DELTA) (theta)). It is a figure which shows the example of the optical deflection
  • FIG. 1 is a diagram for explaining the formation of a radiated light beam by a leaky waveguide and a periodic structure for generating slow light.
  • FIG. 1A shows an outline in which light is emitted from a leaky waveguide
  • FIG. 1B shows an example in which a grating (circuit grating) is used as a diffraction mechanism.
  • incident light incident on the leaky waveguide 10 is radiated as a radiation beam from the leaky waveguide 10 at a deflection angle ⁇ .
  • the deflection angle ⁇ of the radiation beam changes depending on the wavelength ⁇ of the incident light and the refractive index n of the leakage waveguide.
  • FIG. 1B shows a configuration example in which a light guide device having a slow light structure and a light emission mechanism are separate mechanisms in an optical deflection device using a leaky waveguide.
  • the waveguide unit 11 of the optical deflection device 1 is a slow light waveguide configured by arranging a second refractive index medium with a period a between an upper clad 11b and a lower clad 11c of the first refractive index medium. 11a.
  • the slow light waveguide 11a forms a periodic structure (periodic structure of the waveguide) by periodically arranging the second refractive index medium with a period a with respect to the cladding having the refractive index of the first refractive index medium.
  • As the first refractive index medium a medium having a higher refractive index than that of the second refractive index medium can be selected.
  • the slow light waveguide 11a propagates incident light incident from one end in a slow light mode with a low group velocity.
  • the emission part 12 of the optical deflection device 1 includes a light emission mechanism 12a such as a surface diffraction grating at a position adjacent to the upper clad 11b.
  • the light emitting mechanism 12a has, for example, an uneven shape with a period ⁇ .
  • the concavo-convex shape having the period ⁇ constitutes a periodic structure having a period ⁇ (periodic structure of the light emitting mechanism) between the refractive index n of the refractive index medium and the refractive index n out of the external medium such as air.
  • the propagation constant ⁇ greatly changes due to a slight change in the propagation state such as the wavelength ⁇ of light and the refractive index n of the waveguide.
  • Such light propagates while having an electromagnetic field spread (a oozing component) around it.
  • the emitting portion 12 having a periodic structure periodic structure of a light emitting mechanism
  • the emitting portion 12 having a periodic structure having a small step formed by a material having a small refractive index, shallow etching, or the like is disposed at a distance slightly touching the oozing component
  • the slow light is combined with this to be scattered and diffracted and gradually emitted upward and obliquely. Radiation occurs in a wide range along the traveling direction of the waveguide and is in phase. Therefore, when the optical deflection device is viewed from the lateral direction along the propagation direction, the outgoing beam becomes a high-quality sharp light beam.
  • the propagation constant ⁇ of the waveguide section 11 is changed, and the coupling condition with the periodic structure of the light emitting mechanism of the emitting section 12 is changed. change. As a result, the outgoing angle ⁇ of the outgoing beam changes.
  • the same circular holes are two-dimensionally arranged in a semiconductor slab of the same thickness (such as Si) in a two-dimensional periodic manner, for example, in a single row of the array. It is the structure which removed the circular hole.
  • a photonic band gap is generated in the vicinity of the Bragg wavelength, the group refractive index ng is increased, and slow light is generated.
  • a surface diffraction grating having a periodic structure is provided on the surface of the two-dimensional photonic crystal waveguide 11d. Form the light emission mechanism.
  • the optical deflection device described above comprises a waveguide and a light emission mechanism as separate components, whereas the optical deflection device of the present invention has a waveguide and a light emission mechanism due to the periodic structure of the circular holes. This is a configuration with one mechanism.
  • the outline of the radiation coefficient, light radiation distribution, and radiation beam distribution of the optical deflection device in the periodic structure of the circular holes will be described.
  • the slow light gradually leaks to form a radiation light beam.
  • the radiation coefficient is constant. Therefore, the stronger the slow light, the greater the radiation intensity.
  • Slow light initially has a strong intensity, and the intensity of the slow light becomes exponentially weak as it propagates over a long distance due to the influence of radiation and the loss of the waveguide itself. For this reason, the radiated light beam has a biased intensity distribution that is strong on the near side of the same wavefront and weakens in the depth direction. When such a radiation light beam reaches a distant object, the near-field intensity distribution becomes a distribution obtained by Fourier transform.
  • the Fourier transform of the exponential function distribution is a sinc function
  • the distribution has many side lobes that attenuate while oscillating from the intensity peak. This degrades the quality of the synchrotron radiation beam and thus reduces the spatial resolution of the lidar device (LiDAR).
  • the intensity distribution of the above-described radiation light beam will be described.
  • the unnecessary loss coefficient of the waveguide is A [cm ⁇ 1 ]
  • the light emission coefficient by the light emission mechanism is B [cm ⁇ 1 ]
  • the wave number k ⁇ is stored at the boundary between the device surface and free space to form a radiation beam, and the following equation (5) is established with respect to the radiation angle ⁇ .
  • the emitted light beam distribution Y ( ⁇ ) in the distance is expressed by the following equation (6).
  • y ′ is a projection component of y with respect to the direction along the wavefront of the radiation light beam.
  • FIG. 2 shows the characteristics calculated using the above equations (2), (3), and (6).
  • a dB and B dB in FIG. 2A are values obtained by converting the loss factor A of the waveguide and the light emission coefficient B of the light emission mechanism into dB / cm, respectively.
  • both the loss coefficient A and the radiation coefficient B are constant values with respect to the traveling direction of light.
  • the propagation light intensity distribution P (y) shown in FIG. 2B is an exponentially decaying function, and the light emission distribution X (y) shown in FIG. 2C also reflects the propagation light intensity distribution P (y). And decay exponentially.
  • the synchrotron radiation beam distribution Y ( ⁇ ) shown in FIG. 2D is a single peak beam, but the full width at half maximum of ⁇ is about 0.04 [deg] °, and side lobes and tailing appear.
  • FIG. 2 shows an example in which the radiation coefficient B dB [dB / cm] is 20 dB / cm, 50 dB / cm, and 80 dB / cm.
  • the optical deflecting device of the present invention comprises a diffraction mechanism that combines a waveguide and a light emitting mechanism with a single mechanism, and combines a plurality of circular hole arrays with a propagating light of a slow light by forming a double periodic structure.
  • the emission coefficient B is gradually changed with respect to the light traveling direction.
  • this double periodic structure does not change the radiation angle of the radiated light, it is possible to obtain a high quality radiated light beam by adjusting the radiant coefficient B as compared with the case where the radiant coefficient B is constant.
  • the optical deflection device of the present invention uses a photonic crystal waveguide as a slow light waveguide, and the waveguide and the light emission mechanism are configured by one mechanism.
  • the photonic crystal waveguide forms a waveguide by reflecting and propagating light by sandwiching the left and right sides of the waveguide with photonic crystals arranged in a circular hole.
  • the optical deflection device is based on the provision of a double periodic structure in which two types of circular holes having different diameters are repeated along the waveguide forming the waveguide in the plane of the photonic crystal.
  • FIG. 3 is a diagram for explaining the basic principle of the optical deflection device according to the present invention (Patent Document 6).
  • the optical deflecting device 1 has circular holes 3a and 3b of a low refractive index medium such as SiO 2 arranged two-dimensionally in a slab made of a high refractive index medium such as a semiconductor such as Si in a triangular lattice arrangement, for example.
  • the circular holes in the arrangement of the parts are removed, and the part from which the circular holes are removed constitutes a waveguide part made of a two-dimensional photonic crystal and constitutes an emission part that emits a radiated light beam.
  • Optical deflection device 1 comprises two different diameters 2r 1 and 2r 2 of the circular hole 3a with respect to the light propagation direction, the double periodic structure 4 repeating 3b.
  • the double periodic structure 4 the slow light propagation light which is non-radiated in the periodic structure in which circular holes of the same diameter are arranged is converted into radiation conditions and is emitted into space.
  • the double periodic structure included in the optical deflection device includes a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated.
  • the diameter of the reference circle hole and 2r when the 2 ⁇ r differences width of diameter, the diameter 2r 1 circular hole having a large diameter is 2 (r + ⁇ r), the diameter 2r 2 of the small-diameter circular holes 2 (r- ⁇ r). Further, when the distance between the centers of the adjacent large-diameter circular holes 3a and small-diameter circular holes 3b is a, the interval ⁇ between the circular holes of each periodic structure is 2a.
  • a device using a third-row shifted silica clad Si-LSPCW or a device using a second-row shifted LSPCW can be used.
  • the second-row shift type LSPCW having a large ng an increase in the light deflection angle ⁇ is expected.
  • FIG. 4A to 4D show a photonic band, a group refractive index ng spectrum, a radiation angle ⁇ with respect to a wavelength ⁇ , and a radiation coefficient B dB with respect to the wavelength ⁇ in the optical deflection device of the present invention.
  • the photonic band representing the light propagation characteristic is the diameter of the circular hole even when the diameter r of the circular hole is changed by 2 ⁇ r. Does not change in the same way as when 2 is uniform at 2r. Also, the group refractive index ng does not change with respect to the diameter change ⁇ r as shown in FIG. 4B, and low-dispersion slow light with ng of about 20 is generated in a wide wavelength band. rapidly n g is increased toward the wavelength corresponding to the end, it shows that the slow light effect is further increased.
  • the light propagation characteristic indicates that the propagation constant ⁇ does not change with respect to the light propagation direction, and the angle ⁇ of the emitted light does not change as shown in FIG.
  • the light emission coefficient B dB can be changed by changing the diameter 2r of the circular hole by ⁇ r.
  • FIG. 4D shows an example in which ⁇ r is 5 nm, 10 nm, 15 nm, and 20 nm, and shows that the emission coefficient B dB increases as ⁇ r increases.
  • the radiation coefficient B represents the rate at which propagating light leaks out of the plane from the optical transport path, and the intensity of the radiation beam emitted out of the plane increases as ⁇ r increases.
  • the intensity of the emitted light beam emitted out of the plane can be controlled, and the light beam distribution can be adjusted to form a high quality light beam distribution. Can do.
  • the radiation angle ⁇ reflects the photonic band and therefore has little ⁇ r dependency.
  • the present inventors have found that when ⁇ r is changed, the emissivity changes greatly, but other properties such as the radiation angle and the propagation constant in the propagation direction do not change so much, and this is the purpose of the present application. It has been found that the present invention can be applied to adjust the beam distribution of radiation emitted out of the plane to form a high-quality light beam distribution.
  • the form of the optical deflection device of the present invention is a structure of a plurality of circular holes formed in the plane of the photonic crystal as a diffraction mechanism by the photonic crystal, and the diameter changes along the waveguide in the plane of the photonic crystal.
  • a periodic structure of a plurality of circular holes is provided.
  • the plurality of circular holes provided in the optical deflection device of the present invention constitute a waveguide of the carrier light and a light emission mechanism that radiates the radiation light beam out of the plane in the plane of the photonic crystal.
  • the intensity distribution (amplitude distribution) of the radiation beam is adjusted by a periodic structure whose diameter changes along the waveguide.
  • FIG. 5A shows a schematic configuration of the form of the optical deflection device
  • FIG. 5B shows a first periodic structure and a second periodic structure provided in the form of the optical deflection device.
  • the optical deflection device 1 includes periodic structures 4 of a plurality of circular holes 3a and 3b whose diameters change in the light propagation direction on both sides of the waveguide 5.
  • the periodic structure 4 having a plurality of circular holes is a double periodic structure in which the diameters of the circular holes 3 a and 3 b increase or decrease in a complementary manner along the waveguide 5.
  • the double periodic structure 4 includes a first periodic structure 4a and a second periodic structure 4b in which the diameter of the circular hole is increased or decreased.
  • the increase and decrease in the diameter of the circular holes of the first periodic structure 4a and the second periodic structure 4b are complementary to each other, and when the diameter of the circular hole increases in one periodic structure, it increases in the other periodic structure.
  • the diameter of the hole adjacent to the hole to be reduced is reduced.
  • the increase / decrease of the diameter of the circular hole is along the direction of the waveguide 5, but whether the direction in which the propagation light travels in the waveguide 5 or the direction opposite to the direction in which the propagation light travels is used as a reference. Therefore, here, the direction in which the propagation light travels will be referred to as a reference direction, the reference direction as an increasing direction, and the direction opposite to the reference as a decreasing direction.
  • a plurality of circular holes 3a increases or decreases the diameter 2r 1 to the direction of the propagation light in the waveguide 5.
  • a plurality of circular holes 3b decreases or increases the diameter 2r 2 with respect to the direction of the propagation light in the waveguide 5.
  • FIG. 6 is a diagram for explaining an increase or decrease in the diameter of the circular holes of the first periodic structure and the second periodic structure.
  • the increase / decrease width of the diameter to be increased / decreased complementarily is ⁇ r 1 , ⁇ r 2
  • the direction from the bottom to the top of the drawing is the reference direction
  • circular hole 3a diameter 2r 1 of the periodic structure is 4a of increased 2Derutaaru 1 minute, turn 2 (r + ⁇ r 1), 2 (r + 2 ⁇ r 1) becomes ....
  • the diameter 2r 2 of circular holes 3b constituting the second periodic structure 4b is reduced 2Derutaaru 2 minutes, turn 2 (r- ⁇ r 2), 2 (r-2 ⁇ r 2), a ....
  • the diameters 2r 1 and 2r 2 of the circular hole 3a included in the first periodic structure 4a and the circular hole 3b included in the second periodic structure 4b are set to 2 ⁇ r 1 , By increasing or decreasing by 2 ⁇ r 2 , the diameters 2r 1 and 2r 2 of the circular holes 3a and 3b have a double periodic structure that increases and decreases complementarily along the waveguide.
  • the reference circular hole can be arbitrarily set from a plurality of circular holes provided in the periodic structure.
  • the diameter of the circular hole 3a included in the first periodic structure 4a is 2 (r + ⁇ r), 2 (r + 2 ⁇ r), and the second periodic structure
  • the diameter of the circular hole 3b included in 4b is 2 (r ⁇ r) and 2 (r ⁇ 2 ⁇ r).
  • the optical deflection device of the present invention has a circular hole when changing ⁇ r 1 and ⁇ r 2 . It has been found that it is preferable to have a configuration in which the increase in area and the decrease in the area of the circular hole are equal.
  • FIG. 6B shows a configuration in which the increase and decrease of each area of the circular holes of the first periodic structure and the circular holes of the second periodic structure of the optical deflection device are equal to each other.
  • the increase / decrease amount of the areas of ⁇ S 1 and ⁇ S 2 is made the same amount.
  • FIG. 7A shows the relationship among the propagation light intensity distribution P (y), the radiation coefficient B (y), the light radiation distribution X (y), and the radiation light beam distribution Y ( ⁇ ) in the optical deflection device.
  • 7 (b) shows the relationship between the radiation coefficient B (y) and the increase / decrease ⁇ r of the diameter of the circular hole.
  • y is the distance from the incident end of the incident light in the waveguide of the optical deflection device.
  • the light deflection device of the present invention can set the radiation coefficient according to the increase / decrease state of the diameter of the circular hole of the periodic structure constituting the diffraction mechanism, and can further set the light radiation distribution.
  • the propagation light intensity distribution P (y) with respect to the propagation direction of the propagation light in the waveguide the radiation coefficient B (y) with respect to the propagation direction of the radiation emitted from the waveguide out of plane, the waveguide
  • the light radiation distribution X (y) with respect to the propagation direction of the light intensity emitted from the light depends on the propagation light intensity distribution P (y) and the radiation coefficient B (y)
  • the light The radiation distribution X (y) is expressed by the following formula (10) by the product of the propagation light intensity distribution P (y) and the radiation coefficient B (y).
  • X (y) B (y) ⁇ P (y) (10)
  • the radiation coefficient B (y) of the optical deflection device is expressed by the following equation (11) obtained by dividing the light radiation distribution X (y) by the propagation light intensity distribution P (y).
  • B (y) X (y) / P (y) (11)
  • the light radiation distribution X (y) can be set by the radiation coefficient B (y) of the light deflection device. Therefore, a desired light radiation distribution X (y) can be obtained by setting the radiation coefficient B (y).
  • the increase / decrease width ⁇ r of the circular hole of the optical deflection device for realizing the desired light emission distribution X (y) can be obtained based on the relationship between the emission coefficient B (y) and the increase / decrease width ⁇ r of the diameter. .
  • the relationship between the radiation coefficient B (y) and the increase / decrease width ⁇ r of the diameter can be obtained from the radiation coefficient-diameter change characteristic.
  • the increase / decrease width ⁇ r of the diameter is based on the relationship between the radiation coefficient B and the increase / decrease width ⁇ r. , Obtained as a value corresponding to the radiation coefficient B.
  • the light radiation distribution X (y) can be an arbitrary distribution shape.
  • the light radiation distribution X (y) is a Gaussian distribution
  • the side lobe of the radiation light beam distribution Y ( ⁇ ) with respect to the variation ⁇ of the radiation angle ⁇ of the radiation light can be removed.
  • the light radiation distribution X (y) attenuates exponentially, and the side lobe of the radiation light beam distribution Y ( ⁇ ). Is a sinc function.
  • the radiation light beam distribution Y ( ⁇ ) a Gaussian function.
  • the light radiation distribution X (y) itself needs to be a Gaussian function.
  • the propagation light intensity distribution P (y) is attenuated by the loss factor A and the radiation coefficient B of the waveguide.
  • a is a coefficient giving the spread of the Gaussian function
  • D is a constant representing the radiation amount at the peak of the Gaussian function.
  • FIG. 8 shows the calculation results using the above equations (12) and (14), FIG. 8 (a) shows the propagation light intensity distribution P (y), and FIG. 8 (b) shows the radiation coefficient B (y). 8 (c) shows the light radiation distribution X (y), and FIG. 8 (d) shows the radiation light beam distribution Y ( ⁇ ).
  • the radiated light distribution X (y) is a Gaussian function whose change is infinitely small.
  • a large constant f corresponds to a large coefficient a and becomes a Gaussian function having a large change.
  • FIG. 9 shows an example of an optical deflection device when the radiated light beam is a Gaussian beam.
  • 9A shows a plan view of the optical deflection device 1
  • FIGS. 9B and 9C show perspective views of the optical deflection device 1
  • FIG. 9C schematically shows the distribution shape of the radiation light beam. Is shown.
  • the radiation coefficient B (y) for making the radiation light beam a Gaussian beam is obtained by the equation (14), and the diameter of the circular hole forming the distribution shape of the obtained radiation coefficient B (y) is further obtained.
  • a correspondence relationship between the radiation coefficient B (y) and the increase / decrease width ⁇ r of the diameter of the circular hole formed in the plane of the optical deflection device 1 is obtained in advance, and based on this correspondence relationship.
  • the increase / decrease width ⁇ r of the diameter corresponding to the radiation coefficient B is obtained according to the position of the optical deflection device 1 in the light propagation direction.
  • the diameters of the rows of the circular holes 3 included in the periodic structure 4 of the optical deflection device 1 are increased or decreased with respect to the vicinity of the center in the light propagation light direction.
  • the lidar apparatus of the present invention includes the optical deflection device of the present invention, a laser light source that emits a plurality of laser beams having different wavelengths, and a light detection unit that individually detects the laser beams.
  • the optical deflection device includes a laser that emits a plurality of wavelengths of laser light emitted from a laser light source in parallel in the direction of each deflection angle determined by the wavelength of each laser beam and the refractive index of the waveguide, and a plurality of laser beams that reach from the outside.
  • the injectors that selectively and simultaneously enter the laser beams whose incident angles are the deflection angles are configured by the same element.
  • the light detector individually detects laser light of each wavelength incident at an incident angle having the same deflection angle as that of the laser light emitted from the emitter at the injector.
  • FIG. 10A shows a first embodiment of the rider device.
  • the lidar apparatus 100A according to the first embodiment includes an emitter composed of a laser light source 102, a waveguide 104, and an optical deflection device 101, an optical deflection device 101, a waveguide 104, and a photodetector 103 (photodiode). It is the structure which is equipped with the comprised injector separately, and is juxtaposed.
  • the emitter emits the light from the laser light source 102 to the outside from the optical deflection device 101, and the injector enters the reflected light reflected by the object, passes through a filter (not shown), and then passes through the branch path. Then, it guides to the light detection unit 103 and detects it.
  • the angle of the light beam that can be received by the injector should be slightly different from the radiation angle of the emitter even if the injector is placed beside the emitter. By setting, it is possible to receive the reflected light without directly entering the light emitted from the emitter.
  • FIG. 10B shows a second form of the rider device.
  • the rider device 100B according to the second embodiment has a configuration in which the waveguide 104 is branched and a light detection unit 103 (photodiode) is disposed at one end of the branch path.
  • the light deflection device 101 passes incident reflected light through a filter (not shown), and then guides it to the light detection unit 103 via a branch path to detect it.
  • FIG. 10C shows a third form.
  • the lidar apparatus 100C according to the third embodiment has an optical switch 105 inserted into the waveguide 104, switches to the photodetection unit 103 (photodiode) side after the laser light from the laser light source 102 passes, and is reflected and returned. Light is guided to the light detection unit 103 (photodiode) with high efficiency.
  • FIG. 10 (d) shows a fourth embodiment.
  • a photodiode having a pn junction formed in a Si waveguide causes subband gap absorption via crystal defects, and can detect light in a long wavelength band that cannot be detected originally.
  • the lidar apparatus 100D of the fourth embodiment inserts a photodiode having a pn junction as the light detection unit 103 in the middle of the waveguide 104, and changes the reverse bias after the laser light from the laser light source 102 passes. Then, the reflected light pulse is detected.
  • FIG. 10 (e) shows a fifth embodiment.
  • the rider apparatus 100E of the fifth embodiment includes a pulse light source / light detection unit 106 that serves as both a laser light source and a light detection unit.
  • the pulse light source / light detection unit 106 can also operate as a photodiode by applying a reverse bias to a semiconductor laser serving as a pulse light source. According to this configuration, after emitting the laser light, the pulse light source / light detection unit 106 operates as a photodiode by applying a reverse bias, and detects the reflected laser light.
  • the light from the laser light source can be a light pulse or continuous light.
  • the rider apparatus can measure distance by the TOF method when using light pulses, and can measure distance by the FMCW method when using continuous light.
  • the rider device of each form even if light of the same wavelength arrives from different directions, the incident angle is different, so the light does not follow the reverse order, so it is not coupled to the original waveguide and is detected by light. It does not enter the part (photodiode).
  • an optical filter of a wavelength filter may be inserted into the waveguide 104.
  • the optical filter is a filter that allows the wavelength of the laser light from the laser light source to pass.
  • the optical filter be a variable wavelength filter that can change the passing wavelength in synchronization with the wavelength change.
  • noise component There are various wavelengths of light in the environment, and light having a wavelength different from the wavelength of the laser light source may arrive at the optical deflection device 1 as a noise component. If the incident angle of light of different wavelengths and the exit angle of the light beam are the same, noise components having different wavelengths cannot be coupled to the waveguide, but arrived at the optical deflection device 1 from different directions. Some noise components can be coupled back into the waveguide.
  • the optical filter can remove noise components coupled to the waveguide in this way. The removal of the noise component contributes to the improvement of the SN ratio when detecting the reflection signal of the rider device.
  • the technology related to optical deflection devices and lidar devices is based on visible light from projectors, laser displays, retinal displays, 2D / 3D printers, POS and card reading, etc., by forming devices with visible light materials. Application is envisaged.
  • the optical deflection device and the lidar device (laser radar) of the present invention are a laser radar (LiDAR) installed in automobiles, drones, robots, industrial equipment, 3D scanners that can be easily installed in personal computers and smartphones, and monitor the surrounding environment. It can be used for systems. If a similar optical deflection device is used, optical exchange, a space matrix optical switch for a data center, and the like are possible.
  • LiDAR laser radar

Abstract

A light deflection device and a LIDAR apparatus, configured from one constituent element, adjustment of the intensity distribution (amplitude distribution) being possible due to the simple formation of the configuration. The light deflection device is provided with a double periodic structure in which two types of circular holes having different diameters are repeated along a waveguide within the plane of a photonic crystal. Due to the double periodic structure in which the two types of circular holes having different diameters are repeated, slow-light propagation light is converted into a radiation condition and radiated into a space. The double periodic structure has a configuration in which the diameter of the circular holes is increased and decreased in alternating fashion so as to complement each other along the waveguide, and due to this configuration, the intensity distribution (amplitude distribution) of the radiation beam is adjusted. The amount of increase in area of the circular holes provided to one of the periodic structures of the double periodic structure is made equal to the amount of decrease in area of the circular holes provided to the other periodic structure, and changes in the photonic band are suppressed.

Description

光偏向デバイス、及びライダー装置Optical deflection device and rider apparatus
 本発明は、光の進行方向を制御する光偏向デバイス、および光偏向デバイスを備えたライダー装置に関する。 The present invention relates to an optical deflection device that controls the traveling direction of light, and a rider apparatus that includes the optical deflection device.
 周囲の物体までの距離を2次元画像として取得するレーザ計測を用いたレーザレーダーもしくはライダー装置(LiDAR(Light Detection and Ranging, Laser Imaging Detection and Ranging))の技術分野は、車の自動運転や3次元地図作製等に利用されており、その基盤技術はレーザプリンタやレーザディスプレイ等にも適用可能である。 Laser radar or lidar equipment (LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)) that uses laser measurement to acquire the distance to surrounding objects as a two-dimensional image It is used for making maps, and its basic technology can be applied to laser printers and laser displays.
 この技術分野では、光ビームを物体に当て、物体で反射して戻ってくる反射光を検出し、その時間差や周波数差から距離の情報を取得すると共に、光ビームを2次元的に走査することによって広角の3次元情報を取得する。 In this technical field, a light beam is applied to an object, reflected light that is reflected back from the object is detected, distance information is obtained from the time difference or frequency difference, and the light beam is scanned two-dimensionally. To obtain wide-angle three-dimensional information.
 光ビーム走査には光偏向デバイスが必須である。従来は、機器全体の回転、多角形ミラー(ポリゴンミラー)、ガルバノミラーといった機械式ミラー、マイクロマシーン技術(MEMS技術)による小型集積ミラーなど、いずれも機械式の機構が用いられているが、大型、高価、振動する移動体での不安定性などが問題であり、近年、非機械式の光偏向デバイスの研究が盛んとなっている。 An optical deflection device is essential for optical beam scanning. Conventionally, mechanical mechanisms such as rotating the entire device, mechanical mirrors such as polygonal mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have been used. However, the instability of a moving body that is expensive and vibrates is a problem. In recent years, research on non-mechanical optical deflection devices has been actively conducted.
 非機械式の光偏向デバイスとして、光の波長やデバイスの屈折率を変えることで光偏向を実現するフェーズドアレイ型や回折格子型が提案されている。しかしながら、フェーズドアレイ型の光偏向デバイスはアレイ状に並べられた多数の光放射器の位相調整が非常に難しく、高品質な鋭い光ビームを形成することができないという課題がある。回折格子型の光偏向デバイスは鋭いビームの形成が容易であるが、光偏向角が小さいという課題がある。 As a non-mechanical optical deflection device, a phased array type or a diffraction grating type that realizes optical deflection by changing the wavelength of light or the refractive index of the device has been proposed. However, the phased array type optical deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and a high-quality sharp light beam cannot be formed. Although the diffraction grating type optical deflection device can easily form a sharp beam, there is a problem that the optical deflection angle is small.
 また、走査される光ビームでは、前記した先鋭性の他、強度分布(振幅分布)の制御性が求められる。 In addition, the scanned light beam requires controllability of intensity distribution (amplitude distribution) in addition to the sharpness described above.
 放射ビームのビーム強度の制御性を有する光偏向デバイスとして、例えば特許文献1~5が提案されている。 For example, Patent Documents 1 to 5 have been proposed as optical deflection devices having controllability of the beam intensity of a radiation beam.
 特許文献1にはグレーティングを構成する素子の高さ、幅、又は深さを導波光の導波方向に単調変化させる構成が示され、特許文献2には光の伝搬方向に対してグレーティング厚さをガウス分布とする構成が示され、特許文献3には回折格子の格子高さを略線形に漸次増大させる構成が示され、特許文献4にはグレーティングの深さ又はギャップ層の厚さを場所によって変える構成が示され、特許文献5にはグレーティングの表層に形成した溝の幅を導波路の長手方向に対して変調させる構成が示されている。 Patent Document 1 discloses a configuration in which the height, width, or depth of an element constituting a grating is monotonously changed in the waveguide direction of guided light, and Patent Document 2 describes a grating thickness with respect to the light propagation direction. Is disclosed as a Gaussian distribution, and Patent Document 3 discloses a structure in which the grating height of the diffraction grating is gradually increased substantially linearly. Patent Document 4 describes the depth of the grating or the thickness of the gap layer. A configuration for changing the width of the groove formed in the surface layer of the grating with respect to the longitudinal direction of the waveguide is shown in Patent Document 5.
特開昭62-296102JP 62-296102 A 特開平4-195003JP-A-4-195003 特開平6-94939JP-A-6-94939 特開平7-169088Japanese Patent Laid-Open No. 7-169088 特開2015-161829JP2015-161829 特願2016-10844 (図10)Japanese Patent Application No. 2016-10844 (Fig. 10)
 前記した従来知られる光偏向デバイスは、導波路部とグレーティング等の光放射機構との2つの構成要素を組み合わせた構成であり、製作性、サイズ、コスト等の点から一つの構成要素で構成される光偏向デバイスが求められている。 The above-described conventionally known optical deflection device has a configuration in which two components, a waveguide portion and a light emission mechanism such as a grating, are combined, and is configured from a single component in terms of manufacturability, size, cost, and the like. There is a need for an optical deflection device.
 また、前記した先行技術は、光偏向デバイスとしてグレーティング(回折格子)を用い、格子の高さ、幅、又は深さ等の形状によって強度分布(振幅分布)を調整するものである。これらのグレーティングの表面形状は微細加工を要するため、加工精度や形状のばらつきといった課題を有している。そのため、形成が容易な構成によって強度分布(振幅分布)の制御性が得られる光偏向デバイスが求められている。 Further, the above-described prior art uses a grating (diffraction grating) as an optical deflection device, and adjusts the intensity distribution (amplitude distribution) according to the shape such as the height, width, or depth of the grating. Since the surface shape of these gratings requires fine processing, there are problems such as processing accuracy and variation in shape. Therefore, there is a demand for an optical deflection device that can control intensity distribution (amplitude distribution) with a configuration that can be easily formed.
 本発明の光偏向デバイス及びライダー装置は、上記の課題を解決して、一つの構成要素で構成することを目的とする。また、形成が容易な構成によって強度分布(振幅分布)の調整を可能とすることを目的とする。 An object of the optical deflection device and the rider apparatus of the present invention is to solve the above-described problems and to be configured by a single component. It is another object of the present invention to make it possible to adjust the intensity distribution (amplitude distribution) with a configuration that can be easily formed.
 本発明の発明者は、スローライト導波路を回折格子等の回折機構に結合させることによって光偏向角を増大させる技術を提案している(特許文献6)。スローライトはフォトニック結晶導波路のようなフォトニックナノ構造の中で発生し、低群速度を持つ。スローライトの光は、波長や導波路の屈折率のわずかな変化により、伝搬定数を大きく変化させるという特徴を持つ。このスローライト導波路の内部、もしくは直近に回折機構を設置すると、スローライト導波路が回折機構に結合して漏れ導波路となり、自由空間に光を放射する。このとき伝搬定数の大きな変化は放射光の偏向角に反映し、結果として大きな偏向角が実現される。 The inventors of the present invention have proposed a technique for increasing the light deflection angle by coupling the slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 6). Slow light is generated in a photonic nanostructure such as a photonic crystal waveguide and has a low group velocity. Slow light has a characteristic that the propagation constant is greatly changed by a slight change in wavelength or refractive index of the waveguide. When a diffractive mechanism is installed in or near the slow light waveguide, the slow light waveguide is coupled to the diffractive mechanism to form a leaky waveguide, and emits light into free space. At this time, a large change in the propagation constant is reflected in the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
 本発明に係る光偏向デバイスは、フォトニック結晶の面内に、導波路に沿って2種類の異なる直径の円孔を繰り返す二重周期構造を備えるものをベースとする。 The optical deflection device according to the present invention is based on a device having a double periodic structure in which circular holes of two different diameters are repeated along a waveguide in the plane of a photonic crystal.
 フォトニック結晶の面内に導波路に沿って1種類の直径の円孔を繰り返してなる周期構造ではスローライト伝搬光は非放射であるが、2種類の異なる直径の円孔を繰り返す二重周期構造とすることによって、スローライト伝搬光は放射条件に変換され、空間に放射される。二重周期構造は、フォトニック結晶の面内に2種類の異なる直径の円孔を繰り返して備える構成であるため、一つの構成要素で構成することができる(特許文献6)。 Slow light propagating light is non-radiated in a periodic structure in which one kind of diameter hole is repeated along the waveguide in the plane of the photonic crystal, but a double period in which two kinds of holes having different diameters are repeated. By adopting a structure, the slow light propagating light is converted into radiation conditions and emitted into space. Since the double periodic structure has a structure in which two types of circular holes having different diameters are repeatedly provided in the surface of the photonic crystal, it can be configured by one component (Patent Document 6).
 このような二重周期構造は、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とを備え、基準の円孔の直径を2rとし、直径の相違幅を2Δrとしたとき、大径の円孔の直径は2(r+Δr)であり、小径の円孔の直径は2(r-Δr)である。なお、ここで、大径及び小径は、基準の円孔の直径に対して、あるいは互いの直径の比較において、大小の関係を示すものである。本発明者らは、このような構成においてΔrを変化させると、放射率は大きく変化するが、放射角度や伝搬方向への伝搬定数等の他の性質はあまり変化しないことを見出した。 Such a double periodic structure includes a periodic structure in which a large-diameter circular hole is repeated and a periodic structure in which a small-diameter circular hole is repeated. The diameter of the reference circular hole is 2r, and the difference width of the diameter is 2Δr. The diameter of the large-diameter circular hole is 2 (r + Δr), and the diameter of the small-diameter circular hole is 2 (r−Δr). Here, the large diameter and the small diameter indicate a large or small relationship with respect to the diameter of the reference circular hole or in the comparison of the diameters of each other. The inventors have found that when Δr is changed in such a configuration, the emissivity changes greatly, but other properties such as a radiation angle and a propagation constant in the propagation direction do not change so much.
(光偏向デバイスの形態)
 本発明の光偏向デバイスの形態は、
 (a)導波路として、従来のガラス材や半導体素材のバルク材に代えてフォトニック結晶によるフォトニック導波路を用いる。
 (b)回折機構として、従来提案されているグレーティングに代えてフォトニック結晶の構成を用いる。
 (c)フォトニック結晶による回折機構として、フォトニック結晶の面内に形成した複数の円孔の構造を備え、フォトニック結晶の面内に導波路に沿って径が変化する複数の円孔の周期構造を備える。
(Optical deflection device configuration)
The form of the optical deflection device of the present invention is as follows:
(A) As a waveguide, a photonic waveguide made of a photonic crystal is used instead of a conventional glass material or a bulk material of a semiconductor material.
(B) As a diffraction mechanism, a photonic crystal configuration is used instead of the conventionally proposed grating.
(C) As a diffraction mechanism by a photonic crystal, a structure of a plurality of circular holes formed in the plane of the photonic crystal is provided, and a plurality of circular holes whose diameters change along the waveguide in the plane of the photonic crystal. It has a periodic structure.
 本発明の光偏向デバイスが備える複数の円孔は、単にフォトニック結晶の面内に導波路を形成するだけでなく、複数の円孔の径が導波路に沿って変化する周期構造によって、放射ビームの強度分布(振幅分布)を調整する構成とする。 The plurality of circular holes provided in the optical deflection device of the present invention not only form a waveguide in the plane of the photonic crystal, but also radiate by a periodic structure in which the diameters of the plurality of circular holes change along the waveguide. The beam intensity distribution (amplitude distribution) is adjusted.
 本発明の光偏向デバイスによれば、フォトニック結晶の面内の円孔は、半導体成膜技術によって円孔の径、及び位置の調整が容易であるため、光偏向デバイスは強度分布(振幅分布)の制御性を容易な構成で得ることができる。 According to the optical deflection device of the present invention, since the circular hole in the surface of the photonic crystal can be easily adjusted in diameter and position by the semiconductor film forming technique, the optical deflection device has an intensity distribution (amplitude distribution). ) Can be obtained with an easy configuration.
 (円孔の二重周期構造)
 本発明に係る光偏向デバイスの導波路が備える、フォトニック結晶も面内に形成された複数の円孔の周期構造は、円孔の径が導波路に沿って互いに相補的に増減する二重周期構造である。
(Double-period structure of circular holes)
The periodic structure of a plurality of circular holes in which the waveguide of the optical deflection device according to the present invention also has a photonic crystal formed in the plane has a double structure in which the diameters of the circular holes increase or decrease in a complementary manner along the waveguide. It is a periodic structure.
 二重周期構造は、円孔の径が増加する第1の周期構造と円孔の径が減少する第2の周期構造とを備える。基準の円孔の直径を2r、相補的に増減する径の増減幅を2Δr、2Δrとしたとき、
(d)第1の周期構造が備える円孔の直径2rは2(r+Δr)である。
(e)第2の周期構造が備える円孔の直径2rは2(r-Δr)である。
 第1の周期構造が備える円孔の直径2rと第2の周期構造が備える円孔の直径2rの各直径を、基準の円孔の直径2rに対して上記(d)、(e)の関係とすることによって、円孔の直径は導波路に沿って互いに相補的に増減する二重周期構造とすることができる。ここで、基準の円孔は、周期構造が備える複数の円孔から任意に設定することができる。
The double periodic structure includes a first periodic structure in which the diameter of the circular hole increases and a second periodic structure in which the diameter of the circular hole decreases. When the diameter of the reference circular hole is 2r, and the increase / decrease width of the diameter to be complementarily increased / decreased is 2Δr 1 , 2Δr 2 ,
(D) The diameter 2r 1 of the circular hole provided in the first periodic structure is 2 (r + Δr 1 ).
(E) The diameter 2r 2 of the circular hole provided in the second periodic structure is 2 (r−Δr 2 ).
The diameter 2r 1 of circular hole first periodic structure comprises a respective diameters of 2r 2 of the second periodic structure comprises a circular hole, said the diameter 2r of the reference circular hole (d), (e) With this relationship, the diameter of the circular hole can be a double periodic structure that increases or decreases complementarily along the waveguide. Here, the reference circular hole can be arbitrarily set from a plurality of circular holes provided in the periodic structure.
(径の増減幅Δr、Δr
 径の増減幅Δr及びΔrは複数の設定形態とすることができる。
(Increase / decrease width of diameter Δr 1 , Δr 2 )
The increase / decrease widths Δr 1 and Δr 2 of the diameter can be set in a plurality of setting forms.
 [第1の設定形態]
 第1の設定形態は、増減幅Δr及び増減幅Δrは同一の増減幅Δrとする。この設定形態によれば、第1の周期構造の円孔の直径2rは2(r+Δr)で増加し、第2の周期構造の円孔の直径2rは2(r-Δr)で減少する。
[First setting form]
In the first setting mode, the increase / decrease width Δr 1 and the increase / decrease width Δr 2 are the same increase / decrease width Δr. According to this setting mode, the diameter 2r 1 of the circular hole of the first periodic structure increases by 2 (r + Δr), and the diameter 2r 2 of the circular hole of the second periodic structure decreases by 2 (r−Δr). .
 [第2の設定形態]
 第2の設定形態は、第1の周期構造が備える円孔の面積増加分と第2の周期構造が備える円孔の面積減少分を同量とする。
[Second setting form]
In the second setting mode, the amount of increase in the area of the circular hole provided in the first periodic structure is equal to the amount of decrease in the area of the circular hole provided in the second periodic structure.
 増減する円孔の面積を同量とする形態は、増減幅Δrと増減幅Δrとは以下の関係によって構成することができる。
 増減幅Δrと増減幅Δrとの関係は以下の二つの態様で表すことができる。
The form which makes the area of the increasing / decreasing circular hole the same amount can be configured by the following relationship between the increase / decrease width Δr 1 and the increase / decrease width Δr 2 .
The relationship between the increase / decrease width Δr 1 and the increase / decrease width Δr 2 can be expressed in the following two modes.
 増減面積を同量とする第1の態様:
 増減幅Δr及び増減幅Δrは、基準径rに対して、
 (r+Δr-r=r-(r-Δr
の関係を備える。
1st aspect which makes the increase / decrease area the same amount:
The increase / decrease width Δr 1 and the increase / decrease width Δr 2 are relative to the reference diameter r.
(R + Δr 1 ) 2 −r 2 = r 2 − (r−Δr 2 ) 2
With the relationship.
 増減面積を同量とする第2の態様:
 増減幅Δrと増減幅Δrの比率k(=Δr/Δr)は、基準径rに対して、
 k+(2r/Δr)・k=(2r/Δr)-1
 又は
 (1+2r/Δr)k-(2r/Δr)・k=-1
 の関係を備える。
Second aspect with the same amount of increase / decrease area:
The ratio k (= Δr 1 / Δr 2 ) between the increase / decrease width Δr 1 and the increase / decrease width Δr 2 is determined with respect to the reference diameter r.
k 2 + (2r / Δr 2 ) · k = (2r / Δr 2 ) −1
Or (1 + 2r / Δr 1 ) k 2 − (2r / Δr 1 ) · k = −1
With the relationship.
 (光偏向デバイスの放射係数及び光放射分布)
 導波路から面外に放射される放射光の伝搬方向に対する光放射分布は、光偏向デバイスの導波路の伝搬光の強度と光偏向デバイスの放射係数とに依存する。本発明の光偏向デバイスは、回折機構を構成する周期構造の円孔の径の増減状態によって放射係数を設定することができ、さらに、光放射分布を設定することができる。
(Radiation coefficient and light radiation distribution of light deflection device)
The light radiation distribution with respect to the propagation direction of the radiation emitted from the waveguide out of plane depends on the intensity of the propagation light in the waveguide of the optical deflection device and the radiation coefficient of the optical deflection device. In the optical deflection device of the present invention, the radiation coefficient can be set according to the increase / decrease state of the diameter of the circular hole of the periodic structure constituting the diffraction mechanism, and further, the light radiation distribution can be set.
 本発明の光偏向デバイスにおいて、導波路の伝搬光の伝搬方向に対する伝搬光強度分布P、導波路から面外に放射される放射光の伝搬方向に対する放射係数B、導波路から放射される光強度の伝搬方向に対する光放射分布Xとすると、光放射分布Xは伝搬光強度分布Pと放射係数Bとの積(B×P)で表される。 In the optical deflection device of the present invention, the propagation light intensity distribution P with respect to the propagation direction of the propagation light in the waveguide, the radiation coefficient B with respect to the propagation direction of the radiation emitted from the waveguide out of plane, the light intensity emitted from the waveguide The light radiation distribution X is expressed by the product (B × P) of the propagation light intensity distribution P and the radiation coefficient B.
 この関係から、光偏向デバイスの放射係数Bは、光放射分布Xを伝搬光強度分布Pで除したB=X/Pで表される。光偏向デバイスにおいて、光伝搬方向に沿った伝搬光強度分布は導波路の特性で定まるため、光放射分布Xは光偏向デバイスの放射係数Bにより設定することができる。したがって、放射係数Bを最適に設定することによって所望の光放射分布Xを得ることができる。 From this relationship, the radiation coefficient B of the light deflection device is represented by B = X / P obtained by dividing the light radiation distribution X by the propagation light intensity distribution P. In the optical deflection device, since the propagation light intensity distribution along the light propagation direction is determined by the characteristics of the waveguide, the light radiation distribution X can be set by the radiation coefficient B of the light deflection device. Therefore, the desired light radiation distribution X can be obtained by optimally setting the radiation coefficient B.
 ここで、放射係数Bと導波路に沿って変化する径の増減幅Δrとの関係を用いることによって、最適な放射係数Bを与える円孔の増減幅Δrが定まる。したがって、Δrを最適に設定することによって所望の光放射分布Xを得ることができる。 Here, by using the relationship between the radiation coefficient B and the increase / decrease width Δr of the diameter that changes along the waveguide, the increase / decrease width Δr of the circular hole that gives the optimum radiation coefficient B is determined. Therefore, a desired light radiation distribution X can be obtained by setting Δr optimally.
 光放射分布Xは任意の分布形状とすることができる。例えば、光放射分布Xをガウス分布とした場合には、放射光の放射角θの変動Δθに対する放射光ビーム分布Yもガウス分布となり、不要なサイドローブを除くことができる。 The light radiation distribution X can be an arbitrary distribution shape. For example, when the light radiation distribution X is a Gaussian distribution, the radiation beam distribution Y with respect to the variation Δθ of the radiation angle θ of the radiation light is also a Gaussian distribution, and unnecessary side lobes can be removed.
 本発明において、光放射分布Xに対応して設定される放射係数の形態によれば、放射係数Bを最適化することで、サイドローブや裾引きを小さくし、より高品質の光ビームを形成することができ、光偏向デバイスを用いたライダー装置(LiDAR)等の空間分解能が高まる。また、放射係数の調整によって、スローライト導波路の損失に応じて、光が住復したときの合計損失を最小化するような設計も可能になる。 In the present invention, according to the form of the radiation coefficient set corresponding to the light radiation distribution X, the radiation coefficient B is optimized to reduce the side lobes and tails and form a higher quality light beam. The spatial resolution of a lidar apparatus (LiDAR) using an optical deflection device can be increased. Further, by adjusting the radiation coefficient, a design that minimizes the total loss when the light is restored according to the loss of the slow light waveguide can be realized.
 本発明の光偏向デバイスはフォトニック結晶を用いて放射係数の最適化を可能とする構成の点に一つの特徴があり、この放射係数の最適化は、従来使用されるグレーテイング(回折格子)のような回折機構では困難である。グレーティングは一般に格子の深さ(高さ)によって放射量が変化する。したがって、面内で放射量を変えるためには、場所によって格子の深さ(高さ)を変える必要があるが、このように格子の深さ(高さ)を場所に応じて調整する加工は複雑な工程を必要とし、かつ高い加工精度を得ることは難しい。また、グレーティングの格子の深さ(高さ)を変えると、光の回折条件が変わるため、場所によって深さに分布を与えると、放射角度も分布を持つようになる。そのため、放射光が形成するビームにも余計な広がりが生じてしまう。つまり、回折機構としてグレーティングを用いた場合には、放射角度を揃えたままで放射係数を最適化することはできない。 The optical deflecting device according to the present invention has a feature in that the radiation coefficient can be optimized by using a photonic crystal, and the optimization of the radiation coefficient is based on a conventionally used grating (diffraction grating). Such a diffraction mechanism is difficult. In general, the amount of radiation of the grating varies depending on the depth (height) of the grating. Therefore, in order to change the amount of radiation in the plane, it is necessary to change the depth (height) of the grating depending on the location. In this way, processing to adjust the depth (height) of the grating according to the location is not possible. It requires a complicated process and it is difficult to obtain high processing accuracy. Further, since the diffraction condition of light changes when the grating grating depth (height) is changed, when the distribution is given to the depth depending on the location, the radiation angle also has a distribution. As a result, the beam formed by the emitted light also has an excessive spread. That is, when a grating is used as a diffraction mechanism, the radiation coefficient cannot be optimized while keeping the radiation angle uniform.
 これに対して、本発明の光偏向デバイスの形態によれば、円孔の径を調整するといった面内の設計を変えるだけで放射係数の最適化と放射角度の固定を同時に達成することができる。また、放射係数の最適化は、面内の円孔の径を光搬送路に沿って増減するという容易な加工で実現することができ、また、高性能が実現できるという優位性を有している。 On the other hand, according to the configuration of the optical deflection device of the present invention, optimization of the radiation coefficient and fixation of the radiation angle can be achieved at the same time by simply changing the in-plane design such as adjusting the diameter of the circular hole. . In addition, the optimization of the radiation coefficient can be realized by an easy process of increasing or decreasing the diameter of the in-plane circular hole along the optical transport path, and has the advantage that high performance can be realized. Yes.
(ライダー装置)
 本発明のライダー装置は、本発明の光偏向デバイスと、波長が異なる複数のレーザ光を発するレーザ光源と、レーザ光を個別に検出する光検出部とを備える。光偏向デバイスは、レーザ光源が発する複数波長のレーザ光を、各レーザ光の波長及びビーム偏向器の屈折率で定まる各偏向角の方向に同時に並列して出射する出射器、及び外部から到達する複数波長のレーザ光の内、入射角が前記偏向角であるレーザ光を選択的に同時に並列して入射する入射器を同一素子で構成する。光検出器は、入射器において、出射器で出射されたレーザ光と同一の偏向角の入射角で入射した各波長のレーザ光を個別に検出する。出射器の偏向角と入射器の偏向角とを一致させることによって、出射器から出射され、物体に当たって反射した反射光を検出する。本発明のライダー装置は、本発明の光偏向デバイスを用いることによって、照射対象物に照射されるレーザ光の光放射分布を所望に分布形状とすることができる。
(Rider equipment)
The lidar apparatus of the present invention includes the optical deflection device of the present invention, a laser light source that emits a plurality of laser beams having different wavelengths, and a light detection unit that individually detects the laser beams. The optical deflection device arrives from the outside, which emits a plurality of wavelengths of laser light emitted from a laser light source in parallel in the direction of each deflection angle determined by the wavelength of each laser light and the refractive index of the beam deflector. Of the laser beams having a plurality of wavelengths, an injector that selectively and simultaneously enters laser beams having an incident angle equal to the deflection angle is configured by the same element. The light detector individually detects laser light of each wavelength incident at an incident angle having the same deflection angle as that of the laser light emitted from the emitter at the injector. By making the deflection angle of the emitter coincide with the deflection angle of the injector, the reflected light emitted from the emitter and reflected by the object is detected. The rider apparatus of the present invention can make the light radiation distribution of the laser light irradiated to the irradiation object a desired distribution shape by using the light deflection device of the present invention.
 以上説明したように、本発明の光偏向デバイス及びライダー装置は、並列動作を簡易な構成で実現し、システムの大型化ないし複雑化を回避することができる。 As described above, the optical deflection device and the rider apparatus of the present invention can realize parallel operation with a simple configuration, and can avoid an increase in size or complexity of the system.
漏れ導波路による放射光ビームの形成、及びスローライトを発生させる周期構造を説明するための図である。It is a figure for demonstrating the formation of the radiation light beam by a leaky waveguide, and the periodic structure which generates a slow light. 損失分、伝搬光強度分布、光放射分布、放射光ビームの分布の特性を示す図である。It is a figure which shows the characteristic of distribution of loss, propagation light intensity distribution, light radiation distribution, and a radiation beam. 本発明の光偏向デバイスの構成を説明するための図である。It is a figure for demonstrating the structure of the optical deflection | deviation device of this invention. フォトニックバンド、群屈折率nスペクトル、波長λに対する放射角θ、及び波長λに対する放射係数BdBを示す図である。It is a figure which shows a photonic band, group refractive index ng spectrum, radiation angle (theta) with respect to wavelength (lambda), and radiation coefficient BdB with respect to wavelength (lambda). 本発明の光偏向デバイスの構成を説明するための図である。It is a figure for demonstrating the structure of the optical deflection | deviation device of this invention. 第1の周期構造と第2の周期構造の円孔の直径の増減を説明するための図である。It is a figure for demonstrating increase / decrease in the diameter of the circular hole of a 1st periodic structure and a 2nd periodic structure. 光偏向デバイスにおいて、伝搬光強度分布P(y)、放射係数B(y)、光放射分布X(y)、放射光ビーム分布Y(Δθ)の関係を説明するための図である。FIG. 5 is a diagram for explaining the relationship among a propagation light intensity distribution P (y), a radiation coefficient B (y), a light radiation distribution X (y), and a radiation light beam distribution Y (Δθ) in an optical deflection device. 伝搬光強度分布P(y)、放射係数B(y)、光放射分布X(y)、放射光ビーム分布Y(Δθ)を示す図である。It is a figure which shows propagation light intensity distribution P (y), radiation coefficient B (y), light radiation distribution X (y), and radiation light beam distribution Y ((DELTA) (theta)). 放射光ビームをガウシアンビームとする場合の光偏向デバイスの例を示す図である。It is a figure which shows the example of the optical deflection | deviation device in case a radiated light beam is used as a Gaussian beam. ライダー装置の構成の形態を説明するための図である。It is a figure for demonstrating the form of a structure of a rider apparatus.
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
 スローライト構造を用いた光偏向デバイスにおいて、図1を用いて漏れ導波路を用いた光放射機構を説明し、図2~図9を用いて本発明の光偏向デバイスの構成を説明し、図10を用いて本発明のライダー装置の構成を説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the light deflection device using the slow light structure, the light emission mechanism using the leakage waveguide will be described with reference to FIG. 1, the configuration of the light deflection device of the present invention will be described with reference to FIGS. 10 is used to explain the configuration of the rider apparatus of the present invention.
 (漏れ導波路による放射光ビーム)
 図1は漏れ導波路による放射光ビームの形成、及びスローライトを発生させる周期構造を説明するための図である。図1(a)は漏れ導波路から光を放射させる概要を示し、図1(b)は回折機構としてグレーティング(回路格子)を用いた例を示している。
(Radiated light beam by leaky waveguide)
FIG. 1 is a diagram for explaining the formation of a radiated light beam by a leaky waveguide and a periodic structure for generating slow light. FIG. 1A shows an outline in which light is emitted from a leaky waveguide, and FIG. 1B shows an example in which a grating (circuit grating) is used as a diffraction mechanism.
 図1(a)において、漏れ導波路10に入射した入射光は漏れ導波路10から偏向角θで放射ビームとして放射される。このとき、放射ビームの偏向角θは、入射光の波長λや漏れ導波路の屈折率nに依存して変化する。 In FIG. 1A, incident light incident on the leaky waveguide 10 is radiated as a radiation beam from the leaky waveguide 10 at a deflection angle θ. At this time, the deflection angle θ of the radiation beam changes depending on the wavelength λ of the incident light and the refractive index n of the leakage waveguide.
 図1(b)は、漏れ導波路による光偏向デバイスにおいて、スローライト構造の導波路と光放射機構とを個別の機構とする構成例を示している。 FIG. 1B shows a configuration example in which a light guide device having a slow light structure and a light emission mechanism are separate mechanisms in an optical deflection device using a leaky waveguide.
 光偏向デバイス1の導波部11は、第1の屈折率媒質の上部クラッド11bと下部クラッド11cとの間に、第2の屈折率媒質を周期aで配置して構成されるスローライト導波路11aを備える。スローライト導波路11aは、第1の屈折率媒質の屈折率のクラッドに対して第2の屈折率媒質を周期aで周期配置して周期構造(導波路の周期構造)を形成している。第1の屈折率媒質は第2の屈折率媒質よりも高屈折率の媒質を選択することができる。屈折率が大きな材料を深くエッチングするなどによって形成した刻みが大きな周期構造に対して、この周期構造を伝搬する方向から光を入射させると、群速度が小さい光(スローライト)が発生する。スローライト導波路11aは、一端から入射した入射光を低群速度のスローライトモードで伝搬する。 The waveguide unit 11 of the optical deflection device 1 is a slow light waveguide configured by arranging a second refractive index medium with a period a between an upper clad 11b and a lower clad 11c of the first refractive index medium. 11a. The slow light waveguide 11a forms a periodic structure (periodic structure of the waveguide) by periodically arranging the second refractive index medium with a period a with respect to the cladding having the refractive index of the first refractive index medium. As the first refractive index medium, a medium having a higher refractive index than that of the second refractive index medium can be selected. When light is incident on a periodic structure formed by deep etching of a material having a large refractive index into the periodic structure, light having a small group velocity (slow light) is generated. The slow light waveguide 11a propagates incident light incident from one end in a slow light mode with a low group velocity.
 光偏向デバイス1の出射部12は、上部クラッド11bに隣接した位置に表面回折格子等の光放射機構12aを備える。光放射機構12aは、例えば周期Λの凹凸形状を備える。周期Λの凹凸形状は、屈折率媒質の屈折率nと空気等の外部媒質の屈折率noutとの間で周期Λの周期構造(光放射機構の周期構造)を構成する。 The emission part 12 of the optical deflection device 1 includes a light emission mechanism 12a such as a surface diffraction grating at a position adjacent to the upper clad 11b. The light emitting mechanism 12a has, for example, an uneven shape with a period Λ. The concavo-convex shape having the period Λ constitutes a periodic structure having a period Λ (periodic structure of the light emitting mechanism) between the refractive index n of the refractive index medium and the refractive index n out of the external medium such as air.
 導波路の周期構造を備えるスローライト導波路11aのスローライトは、光の波長λや導波路の屈折率nなどの伝搬状況のわずかな変化によって伝搬定数βが大きく変化する。このような光は、周囲に電磁界の拡がり(浸み出し成分)を持ちながら伝搬する。この浸み出し成分にわずかに触れるような距離に、屈折率が小さな材料や浅いエッチングなどによって形成される刻みが小さな周期構造(光放射機構の周期構造)を備えた出射部12を配置すると、スローライトはこれに結合して散乱・回折が行われ、上方や斜め方向に徐々に放射される。放射は、導波路進行方向に沿って広い範囲で起こり、かつ位相が揃っている。そのため、光偏向デバイスを伝搬方向に沿った横方向から見たとき、出射ビームは高品質な鋭い光ビームとなる。 In the slow light of the slow light waveguide 11a having the periodic structure of the waveguide, the propagation constant β greatly changes due to a slight change in the propagation state such as the wavelength λ of light and the refractive index n of the waveguide. Such light propagates while having an electromagnetic field spread (a oozing component) around it. When the emitting portion 12 having a periodic structure (periodic structure of a light emitting mechanism) having a small step formed by a material having a small refractive index, shallow etching, or the like is disposed at a distance slightly touching the oozing component, The slow light is combined with this to be scattered and diffracted and gradually emitted upward and obliquely. Radiation occurs in a wide range along the traveling direction of the waveguide and is in phase. Therefore, when the optical deflection device is viewed from the lateral direction along the propagation direction, the outgoing beam becomes a high-quality sharp light beam.
 光の波長λや、導波路の周期構造を構成する屈折率媒質の屈折率nを変えると導波部11の伝搬定数βが変わり、出射部12の光放射機構の周期構造との結合条件が変わる。その結果として、出射ビームの出射角度θが変わる。 When the light wavelength λ or the refractive index n of the refractive index medium constituting the periodic structure of the waveguide is changed, the propagation constant β of the waveguide section 11 is changed, and the coupling condition with the periodic structure of the light emitting mechanism of the emitting section 12 is changed. change. As a result, the outgoing angle θ of the outgoing beam changes.
 (フォトニック結晶によるスローライト構造)
 スローライト導波路において2次元のフォトニック結晶で構成する例について、図1(c)を用いて説明する。
(Slow light structure with photonic crystal)
An example of a two-dimensional photonic crystal in the slow light waveguide will be described with reference to FIG.
 図1(c)の2次元フォトニック結晶導波路11dは、同様の厚さの半導体(Siなど)スラブに同様の円孔を2次元周期的に例えば三角格子配列で配列し、配列の一列の円孔を取り除いた構成である。この2次元フォトニック結晶導波路11dの構造において、ブラッグ波長付近ではフォトニックバンドギャップが生じ、群屈折率nが大きくなってスローライトが生じる。 In the two-dimensional photonic crystal waveguide 11d of FIG. 1C, the same circular holes are two-dimensionally arranged in a semiconductor slab of the same thickness (such as Si) in a two-dimensional periodic manner, for example, in a single row of the array. It is the structure which removed the circular hole. In the structure of the two-dimensional photonic crystal waveguide 11d, a photonic band gap is generated in the vicinity of the Bragg wavelength, the group refractive index ng is increased, and slow light is generated.
 漏れ導波路による光偏向デバイスにおいて、スローライト構造の導波路と光放射機構とを個別の機構とする構成では、2次元のフォトニック結晶導波路11dの表面に、周期構造を備える表面回折格子を形成して光放射機構を構成する。2次元フォトニック結晶導波路と表面回折格子の間のクラッドの厚さを調整することによって、両者の結合の度合いを変え、適切な速度の光放射を得る。 In an optical deflection device using a leaky waveguide, in a configuration in which a slow light structure waveguide and a light emission mechanism are separate mechanisms, a surface diffraction grating having a periodic structure is provided on the surface of the two-dimensional photonic crystal waveguide 11d. Form the light emission mechanism. By adjusting the thickness of the clad between the two-dimensional photonic crystal waveguide and the surface diffraction grating, the degree of coupling between the two is changed, and light emission at an appropriate speed is obtained.
 (光偏向デバイスの放射係数、光放射分布、放射光ビーム分布)
 前記した光偏向デバイスは、導波路と光放射機構とを個別の構成要素で構成するのに対して、本発明の光偏向デバイスは、円孔の周期構造によって、導波路と光放射機構とを一つの機構とする構成である。以下、この円孔の周期構造において、光偏向デバイスの放射係数、光放射分布、放射光ビーム分布の概要について説明する。
(Radiation coefficient of light deflection device, light radiation distribution, radiation beam distribution)
The optical deflection device described above comprises a waveguide and a light emission mechanism as separate components, whereas the optical deflection device of the present invention has a waveguide and a light emission mechanism due to the periodic structure of the circular holes. This is a configuration with one mechanism. Hereinafter, the outline of the radiation coefficient, light radiation distribution, and radiation beam distribution of the optical deflection device in the periodic structure of the circular holes will be described.
 前記したスローライト構造の導波路では、スローライトが徐々に漏れ出して放射光ビームを形成する。このとき、光が伝搬する方向に対して導波路の構造が一様であれば、放射係数が一定なので、スローライトの強度が強いほど、放射強度が大きくなる。スローライトは最初に強度が強く、長い距離を伝搬するほど放射や導波路自体の損失の影響を受けて指数関数的に強度が弱くなる。そのため、放射光ビームは同じ波面の中でも手前側で強く、奥行き方向に向かって弱くなるという偏った強度分布になる。このような放射光ビームが遠方の物体に到達すると、近場の強度分布がフーリエ変換された分布になる。指数関数分布のフーリエ変換はsinc関数であるため、強度ピークから振動しながら減衰するサイドローブが多い分布になる。これは放射光ビームの品質を低下させるため、ライダー装置(LiDAR)の空間分解能を低下させることになる。 In the waveguide having the slow light structure described above, the slow light gradually leaks to form a radiation light beam. At this time, if the structure of the waveguide is uniform with respect to the direction in which light propagates, the radiation coefficient is constant. Therefore, the stronger the slow light, the greater the radiation intensity. Slow light initially has a strong intensity, and the intensity of the slow light becomes exponentially weak as it propagates over a long distance due to the influence of radiation and the loss of the waveguide itself. For this reason, the radiated light beam has a biased intensity distribution that is strong on the near side of the same wavefront and weakens in the depth direction. When such a radiation light beam reaches a distant object, the near-field intensity distribution becomes a distribution obtained by Fourier transform. Since the Fourier transform of the exponential function distribution is a sinc function, the distribution has many side lobes that attenuate while oscillating from the intensity peak. This degrades the quality of the synchrotron radiation beam and thus reduces the spatial resolution of the lidar device (LiDAR).
 上記した放射光ビームの強度分布について説明する。導波路の不要な損失係数をA[cm-1]、光放射機構による光の放射係数をB[cm-1]、光の進行距離yに対する導波路における伝搬光強度分布をP(y)とすると、以下の微分方程式が成り立つ。
 dP(y)/dy=-(A+B)P(y)   ・・・(1)
The intensity distribution of the above-described radiation light beam will be described. The unnecessary loss coefficient of the waveguide is A [cm −1 ], the light emission coefficient by the light emission mechanism is B [cm −1 ], and the propagation light intensity distribution in the waveguide with respect to the light travel distance y is P (y). Then, the following differential equation holds.
dP (y) / dy =-(A + B) P (y) (1)
 この式(1)を解くと、伝搬光強度分布P(y)及び光放射分布X(y)は、それぞれ以下の式(2),(3)で表される。
 P(y)=Pe-(A+B)y    ・・・(2)
 X(y)=B・P(y)     ・・・(3)
When this equation (1) is solved, the propagation light intensity distribution P (y) and the light emission distribution X (y) are expressed by the following equations (2) and (3), respectively.
P (y) = P 0 e- (A + B) y (2)
X (y) = B · P (y) (3)
 ここで、導波路の伝搬定数をβとすると、周期Λをもつ光回折機構に変換された面内の波数kは以下の式(4)で表される。
 k=β-(2π/Λ)N   ・・・(4)
ここで、Nは自然数である。ΛもNが大きな値を取る高次回折では複数本の放射ビームが生じる。そこで、通常はN=1の1次回折を用いる。
Here, assuming that the propagation constant of the waveguide is β, the in-plane wavenumber k∥ converted into the optical diffraction mechanism having the period Λ is expressed by the following equation (4).
k = β− (2π / Λ) N (4)
Here, N is a natural number. In high-order diffraction where Λ also has a large value N, a plurality of radiation beams are generated. Therefore, normally, first-order diffraction with N = 1 is used.
 デバイス表面と自由空間の境界で波数kが保存されて放射ビームが形成され、放射角θに対して以下の式(5)が成り立つ。
 k=β-(2π/Λ)=ksinθ  ・・・(5)
The wave number k∥ is stored at the boundary between the device surface and free space to form a radiation beam, and the following equation (5) is established with respect to the radiation angle θ.
k∥ = β− (2π / Λ) = k 0 sinθ (5)
 θ方向に放射される放射光ビームのθからのずれ量をΔθとすると、遠方で放射光ビーム分布Y(Δθ)は、以下の式(6)となる。
Figure JPOXMLDOC01-appb-I000001
上記式(6)において、y'は放射光ビームの波面に沿った向きに対するyの射影成分である。
If the amount of deviation of the emitted light beam emitted in the θ direction from θ is Δθ, the emitted light beam distribution Y (Δθ) in the distance is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-I000001
In the above formula (6), y ′ is a projection component of y with respect to the direction along the wavefront of the radiation light beam.
 上記した式(2),(3),(6)を用いて計算した特性を図2に示す。図2(a)のAdBとBdBは、それぞれ導波路の損失係数Aと、光放射機構による光の放射係数BをdB/cmに変換した値である。なお、ここでは、損失係数A及び放射係数Bはいずれも光の進行方向に対して一定値としている。 FIG. 2 shows the characteristics calculated using the above equations (2), (3), and (6). A dB and B dB in FIG. 2A are values obtained by converting the loss factor A of the waveguide and the light emission coefficient B of the light emission mechanism into dB / cm, respectively. Here, both the loss coefficient A and the radiation coefficient B are constant values with respect to the traveling direction of light.
 図2(b)に示す伝搬光強度分布P(y)は指数関数的に減衰する関数となり、図2(c)に示す光放射分布X(y)も伝搬光強度分布P(y)を反映して指数関数的に減衰する。 The propagation light intensity distribution P (y) shown in FIG. 2B is an exponentially decaying function, and the light emission distribution X (y) shown in FIG. 2C also reflects the propagation light intensity distribution P (y). And decay exponentially.
 図2(d)に示す放射光ビーム分布Y(Δθ)は単峰ビームになるが、Δθの半値全幅は約0.04[deg]°であり、サイドローブや裾引きが現れる。
 なお、図2では、放射係数BdB[dB/cm]が20dB/cm、50dB/cm、及び80dB/cmの例を示している。
The synchrotron radiation beam distribution Y (Δθ) shown in FIG. 2D is a single peak beam, but the full width at half maximum of Δθ is about 0.04 [deg] °, and side lobes and tailing appear.
FIG. 2 shows an example in which the radiation coefficient B dB [dB / cm] is 20 dB / cm, 50 dB / cm, and 80 dB / cm.
 (光偏向デバイスの二重周期構造)
 本発明の光偏向デバイスは、導波路と光放射機構とを一つの機構で構成とすると共に、複数の円孔配列を二重周期構造とすることによって、スローライトの伝搬光と結合させる回折機構の放射係数Bを光の進行方向に対して徐々に変化させる構造とする。
(Double periodic structure of optical deflection device)
The optical deflecting device of the present invention comprises a diffraction mechanism that combines a waveguide and a light emitting mechanism with a single mechanism, and combines a plurality of circular hole arrays with a propagating light of a slow light by forming a double periodic structure. The emission coefficient B is gradually changed with respect to the light traveling direction.
 この二重周期構造は放射光の放射角について変化させないため、放射係数Bを調整することによって、放射係数Bが一定の場合と比較して高い品質の放射光ビームを得ることが可能となる。 Since this double periodic structure does not change the radiation angle of the radiated light, it is possible to obtain a high quality radiated light beam by adjusting the radiant coefficient B as compared with the case where the radiant coefficient B is constant.
 本発明の光偏向デバイスは、スローライト導波路としてフォトニック結晶導波路を用いて、導波路と光放射機構とを一つの機構で構成する。フォトニック結晶導波路は、導波路の左右を円孔配列したフォトニック結晶で挟むことにより光を反射させて伝搬させ、導波路を構成する。 The optical deflection device of the present invention uses a photonic crystal waveguide as a slow light waveguide, and the waveguide and the light emission mechanism are configured by one mechanism. The photonic crystal waveguide forms a waveguide by reflecting and propagating light by sandwiching the left and right sides of the waveguide with photonic crystals arranged in a circular hole.
 本発明に係る光偏向デバイスは、フォトニック結晶の面内に、導波路を形成する導波路に沿って2種類の異なる直径の円孔を繰り返す二重周期構造を備えることをベースとする。 The optical deflection device according to the present invention is based on the provision of a double periodic structure in which two types of circular holes having different diameters are repeated along the waveguide forming the waveguide in the plane of the photonic crystal.
 図3は本発明に係る光偏向デバイスの基本原理を説明するための図である(特許文献6)。
 光偏向デバイス1は、Si等の半導体などの高屈折率媒質からなるスラブに、SiO等の低屈折率媒質の円孔3a,3bを2次元周期的に例えば三角格子配列で配列し、一部の配列の円孔を取り除いた構成であり、円孔を取り除いた部分は2次元フォトニック結晶による導波部を構成すると共に、放射光ビームを放射する出射部を構成する。
FIG. 3 is a diagram for explaining the basic principle of the optical deflection device according to the present invention (Patent Document 6).
The optical deflecting device 1 has circular holes 3a and 3b of a low refractive index medium such as SiO 2 arranged two-dimensionally in a slab made of a high refractive index medium such as a semiconductor such as Si in a triangular lattice arrangement, for example. The circular holes in the arrangement of the parts are removed, and the part from which the circular holes are removed constitutes a waveguide part made of a two-dimensional photonic crystal and constitutes an emission part that emits a radiated light beam.
 光偏向デバイス1は、光伝搬方向に対して2種類の異なる直径2rと2rの円孔3a,3bを繰り返す二重周期構造4を備える。この二重周期構造4によって、同径の円孔を配列してなる周期構造では非放射となるスローライト伝搬光が放射条件に変換され、空間に放射される。 Optical deflection device 1 comprises two different diameters 2r 1 and 2r 2 of the circular hole 3a with respect to the light propagation direction, the double periodic structure 4 repeating 3b. By this double periodic structure 4, the slow light propagation light which is non-radiated in the periodic structure in which circular holes of the same diameter are arranged is converted into radiation conditions and is emitted into space.
 本発明に係る光偏向デバイスが備える二重周期構造は、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とを備える。基準の円孔の直径を2rとし、直径の相違幅を2Δrとしたとき、大径の円孔の直径2rは2(r+Δr)であり、小径の円孔の直径2rは2(r-Δr)である。また、隣接する大径の円孔3aと小径の円孔3bとの中心間間隔をaとしたとき、各周期構造の円孔の間隔Λは2aである。 The double periodic structure included in the optical deflection device according to the present invention includes a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated. The diameter of the reference circle hole and 2r, when the 2Δr differences width of diameter, the diameter 2r 1 circular hole having a large diameter is 2 (r + Δr), the diameter 2r 2 of the small-diameter circular holes 2 (r- Δr). Further, when the distance between the centers of the adjacent large-diameter circular holes 3a and small-diameter circular holes 3b is a, the interval Λ between the circular holes of each periodic structure is 2a.
 光偏向デバイス1のサイズ例は、例えば、a=400nm、2r=210nmとし、また隣接する円孔3aと円孔3bとの間隔sは84nmである。なお、このサイズは1例であって、この数値に限られるものではない。 An example of the size of the optical deflection device 1 is, for example, a = 400 nm, 2r = 210 nm, and the interval s 3 between the adjacent circular holes 3a and 3b is 84 nm. Note that this size is an example and is not limited to this value.
 また、図3に示す光偏向デバイスの構成例において、3列目シフト型シリカクラッドSi LSPCWを用いたデバイスや、2列目シフト型LSPCWを用いたデバイスの構成とすることができる。ngが大きな2列目シフト型LSPCWによれば、光偏向角Δθの増大が期待される。 Further, in the configuration example of the optical deflection device shown in FIG. 3, a device using a third-row shifted silica clad Si-LSPCW or a device using a second-row shifted LSPCW can be used. According to the second-row shift type LSPCW having a large ng, an increase in the light deflection angle Δθ is expected.
 図4(a)~(d)は、本発明の光偏向デバイスにおいて、フォトニックバンド、群屈折率nスペクトル、波長λに対する放射角θ、及び波長λに対す放射係数BdBを示している。なお、図4(c)の放射角θは、面垂直方向(図3のz方向)をθ=0°としている。 4A to 4D show a photonic band, a group refractive index ng spectrum, a radiation angle θ with respect to a wavelength λ, and a radiation coefficient B dB with respect to the wavelength λ in the optical deflection device of the present invention. . Note that the radiation angle θ in FIG. 4C is θ = 0 ° in the direction perpendicular to the plane (z direction in FIG. 3).
 図4(a)において、二重周期構造を備える本発明の光偏向デバイスにおいて、光伝搬特性を表すフォトニックバンドは、円孔の直径rが2Δr分だけ変化した場合においても、円孔の直径が2rで一様である場合と同様に変化しない。また、群屈折率nにおいても、図4(b)に示すように径変化Δrに対して変化せず、nがほぼ20の低分散のスローライトが広い波長帯域で生じ、フォトニックバンド端に相当する波長に向かって急激にnが大きくなり、スローライト効果がさらに大きくなることを示している。光伝搬特性の特性は、光の伝搬方向に対して伝搬定数βが変わらず、図4(c)に示す様に、放射される光の角度θが変わらないことを示している。 In FIG. 4A, in the optical deflecting device of the present invention having a double periodic structure, the photonic band representing the light propagation characteristic is the diameter of the circular hole even when the diameter r of the circular hole is changed by 2Δr. Does not change in the same way as when 2 is uniform at 2r. Also, the group refractive index ng does not change with respect to the diameter change Δr as shown in FIG. 4B, and low-dispersion slow light with ng of about 20 is generated in a wide wavelength band. rapidly n g is increased toward the wavelength corresponding to the end, it shows that the slow light effect is further increased. The light propagation characteristic indicates that the propagation constant β does not change with respect to the light propagation direction, and the angle θ of the emitted light does not change as shown in FIG.
 一方、図4(d)において、光の放射係数BdBは、円孔の直径2rをΔr変化させることによって変えることができる。図4(d)では、Δrが5nm,10nm,15nm,20nmである例を示し、Δrが増加すると放射係数BdBが増加することを示している。放射係数Bは、光搬送路から伝搬光が面外に漏れ出す率を表し、Δrが大きい程、面外に放射される放射光ビームの強度が増す。また、光搬送路に沿ってΔrを調整することによって、面外に放射される放射光ビームが強度を制御することができ、光ビーム分布を調整して高品質の光ビーム分布を形成することができる。 On the other hand, in FIG. 4D, the light emission coefficient B dB can be changed by changing the diameter 2r of the circular hole by Δr. FIG. 4D shows an example in which Δr is 5 nm, 10 nm, 15 nm, and 20 nm, and shows that the emission coefficient B dB increases as Δr increases. The radiation coefficient B represents the rate at which propagating light leaks out of the plane from the optical transport path, and the intensity of the radiation beam emitted out of the plane increases as Δr increases. Also, by adjusting Δr along the light transport path, the intensity of the emitted light beam emitted out of the plane can be controlled, and the light beam distribution can be adjusted to form a high quality light beam distribution. Can do.
 図4(c)に示す波長λに対する放射角θにおいて、放射角θはフォトニックバンドを反映するためΔr依存性は小さい。図4(c)には示していないが、スローライト効果とシリカクラッド/空気境界面での屈折により、波長変化Δr=27nmに対して30°近い光偏向角Δθが得られる。 In the radiation angle θ with respect to the wavelength λ shown in FIG. 4C, the radiation angle θ reflects the photonic band and therefore has little Δr dependency. Although not shown in FIG. 4C, a light deflection angle Δθ close to 30 ° with respect to the wavelength change Δr = 27 nm is obtained by the slow light effect and refraction at the silica clad / air interface.
 図4(d)に示す波長λに対する放射係数BdBにおいて、nが大きな2列目シフト型LSPCWを使えば、さらにBdBの増大が期待される。一方、BdBはΔrが大きいほど増加する。したがって、Δrの制御により光放射量の制御が可能であり、拡がりが小さな光放射ビームの形成が可能である。 In the radiation coefficient B dB for wavelength λ shown in FIG. 4 (d), Using n g large second column shift type LSPCW, further B dB increase is expected. On the other hand, B dB increases as Δr increases. Therefore, the amount of light radiation can be controlled by controlling Δr, and a light radiation beam with a small spread can be formed.
 このように、本発明者らはΔrを変化させると、放射率は大きく変化するが、放射角度や伝搬方向への伝搬定数等の他の性質はあまり変化しないことを見出し、本願の目的である面外に放射される放射光のビーム分布を調整して高品質の光ビーム分布を形成するために適用可能であることを見出した。 Thus, the present inventors have found that when Δr is changed, the emissivity changes greatly, but other properties such as the radiation angle and the propagation constant in the propagation direction do not change so much, and this is the purpose of the present application. It has been found that the present invention can be applied to adjust the beam distribution of radiation emitted out of the plane to form a high-quality light beam distribution.
(光偏向デバイスの形態)
 本発明の光偏向デバイスの形態は、フォトニック結晶による回折機構としてフォトニック結晶の面内に形成した複数の円孔の構造において、フォトニック結晶の面内に導波路に沿って径が変化する複数の円孔の周期構造を備える。本発明の光偏向デバイスが備える複数の円孔は、フォトニック結晶の面内において搬送光の導波路と、放射光ビームを面外に放射する光放射機構とを構成し、複数の円孔の径が導波路に沿って変化する周期構造によって、放射ビームの強度分布(振幅分布)を調整する。
(Optical deflection device configuration)
The form of the optical deflection device of the present invention is a structure of a plurality of circular holes formed in the plane of the photonic crystal as a diffraction mechanism by the photonic crystal, and the diameter changes along the waveguide in the plane of the photonic crystal. A periodic structure of a plurality of circular holes is provided. The plurality of circular holes provided in the optical deflection device of the present invention constitute a waveguide of the carrier light and a light emission mechanism that radiates the radiation light beam out of the plane in the plane of the photonic crystal. The intensity distribution (amplitude distribution) of the radiation beam is adjusted by a periodic structure whose diameter changes along the waveguide.
 図5(a)は光偏向デバイスの形態の概略構成を示し、図5(b)は光偏向デバイスの形態が備える第1の周期構造及び第2の周期構造を示している。 FIG. 5A shows a schematic configuration of the form of the optical deflection device, and FIG. 5B shows a first periodic structure and a second periodic structure provided in the form of the optical deflection device.
 図5(a),(b)において、光偏向デバイス1は導波路5を挟む両側に、光の伝搬方向に対して直径が変化する複数の円孔3a,3bの周期構造4を備える。複数の円孔の周期構造4は、円孔3a,3bの直径が導波路5に沿って互いに相補的に増減する二重周期構造である。 5 (a) and 5 (b), the optical deflection device 1 includes periodic structures 4 of a plurality of circular holes 3a and 3b whose diameters change in the light propagation direction on both sides of the waveguide 5. The periodic structure 4 having a plurality of circular holes is a double periodic structure in which the diameters of the circular holes 3 a and 3 b increase or decrease in a complementary manner along the waveguide 5.
 図5(b)において、二重周期構造4は、円孔の直径が増減する第1の周期構造4a及び第2の周期構造4bを備える。第1の周期構造4aと第2の周期構造4bの円孔の直径の増減は互いに相補的であり、一方の周期構造において円孔の直径が増加する場合には、他方の周期構造において、増加する円孔と隣接する円孔の直径は減少する。なお、円孔の直径の増減は導波路5の方向に沿ったものであるが、導波路5において伝搬光が進行する方向、あるいは伝搬光が進行する方向と逆方向の何れを基準とするかによって、増減の方向が変わる相対的なものであるため、ここでは、仮に伝搬光が進行する方向を基準の方向とし、基準方向を増加方向とし、基準と逆方向を減少方向として説明する。 5B, the double periodic structure 4 includes a first periodic structure 4a and a second periodic structure 4b in which the diameter of the circular hole is increased or decreased. The increase and decrease in the diameter of the circular holes of the first periodic structure 4a and the second periodic structure 4b are complementary to each other, and when the diameter of the circular hole increases in one periodic structure, it increases in the other periodic structure. The diameter of the hole adjacent to the hole to be reduced is reduced. The increase / decrease of the diameter of the circular hole is along the direction of the waveguide 5, but whether the direction in which the propagation light travels in the waveguide 5 or the direction opposite to the direction in which the propagation light travels is used as a reference. Therefore, here, the direction in which the propagation light travels will be referred to as a reference direction, the reference direction as an increasing direction, and the direction opposite to the reference as a decreasing direction.
 第1の周期構造4aにおいて、複数の円孔3aは直径2rを導波路5の伝搬光の方向に対して増加又は減少する。一方、第2の周期構造4bにおいて、複数の円孔3bは直径2rを導波路5の伝搬光の方向に対して減少又は増加する。 In the first periodic structure 4a, a plurality of circular holes 3a increases or decreases the diameter 2r 1 to the direction of the propagation light in the waveguide 5. On the other hand, in the second periodic structure 4b, a plurality of circular holes 3b decreases or increases the diameter 2r 2 with respect to the direction of the propagation light in the waveguide 5.
 図6は第1の周期構造と第2の周期構造の円孔の直径の増減を説明するための図である。図6(a)において、基準の円孔の径をr、相補的に増減する径の増減幅をΔr、Δrとし、図面の下方から上方に向かう方向を基準方向としたとき、第1の周期構造4aを構成する円孔3aの直径2rは2Δr分増加し、順に2(r+Δr)、2(r+2Δr)・・・となる。一方、第2の周期構造4bを構成する円孔3bの直径2rは2Δr分減少し、順に2(r-Δr)、2(r-2Δr)、・・・となる。 FIG. 6 is a diagram for explaining an increase or decrease in the diameter of the circular holes of the first periodic structure and the second periodic structure. In FIG. 6A, when the diameter of the reference circular hole is r, the increase / decrease width of the diameter to be increased / decreased complementarily is Δr 1 , Δr 2, and the direction from the bottom to the top of the drawing is the reference direction, circular hole 3a diameter 2r 1 of the periodic structure is 4a of increased 2Derutaaru 1 minute, turn 2 (r + Δr 1), 2 (r + 2Δr 1) becomes .... On the other hand, the diameter 2r 2 of circular holes 3b constituting the second periodic structure 4b is reduced 2Derutaaru 2 minutes, turn 2 (r-Δr 2), 2 (r-2Δr 2), a ....
 第1の周期構造4aが備える円孔3aと、第2の周期構造4bが備える円孔3bの各直径2r,2rを、基準の円孔の直径2rに対して、上記した2Δr,2Δr分だけ増減させることによって、円孔3a,3bの直径2r,2rは導波路に沿って互いに相補的に増減する二重周期構造となる。基準の円孔は、周期構造が備える複数の円孔から任意に設定することができる。なお、増減分のΔr及びΔrを共通のΔrとした場合には、第1の周期構造4aが備える円孔3aの直径は2(r+Δr)、2(r+2Δr)となり、第2の周期構造4bが備える円孔3bの直径は2(r-Δr)、2(r-2Δr)となる。 The diameters 2r 1 and 2r 2 of the circular hole 3a included in the first periodic structure 4a and the circular hole 3b included in the second periodic structure 4b are set to 2Δr 1 , By increasing or decreasing by 2Δr 2 , the diameters 2r 1 and 2r 2 of the circular holes 3a and 3b have a double periodic structure that increases and decreases complementarily along the waveguide. The reference circular hole can be arbitrarily set from a plurality of circular holes provided in the periodic structure. In addition, when Δr 1 and Δr 2 for the increase / decrease are common Δr, the diameter of the circular hole 3a included in the first periodic structure 4a is 2 (r + Δr), 2 (r + 2Δr), and the second periodic structure The diameter of the circular hole 3b included in 4b is 2 (r−Δr) and 2 (r−2Δr).
 上記した説明では、第1の周期構造4aの円孔の直径2rを増加させ、第2の周期構造4bの円孔の直径2rを減少させる例について説明したが、第1の周期構造4aの円孔の直径2rを減少させ、第2の周期構造4bの直径2rを増加させてもよい。 In the description given above, increasing the diameter 2r 1 of the circular hole of the first periodic structure 4a, an example has been described for reducing the diameter 2r 2 of the circular hole of the second periodic structure 4b, a first periodic structure 4a reducing the diameter 2r 1 of the circular hole, it may increase the diameter 2r 2 of the second periodic structure 4b.
 上記した構成において、ΔrとΔrの増減によって光の放射量を増減させることができるが、ΔrとΔrの増減によってはフォトニックバンドにずれが生じ、光搬送路に位置によって伝搬定数βや放射角θも同時に変化する場合がある。その結果、放射光ビームが一本にまとまらず、様々な方向に拡散してしまう低品質な放射光ビームとなる。 In the above configuration, it is possible to increase or decrease the amount of radiation of light by increasing or decreasing the [Delta] r 1 and [Delta] r 2, deviation occurs in the photonic band by increasing or decreasing the [Delta] r 1 and [Delta] r 2, propagation constant by the position in the optical transport path β and radiation angle θ may also change at the same time. As a result, the radiated light beam is not integrated into one, but becomes a low-quality radiated light beam that diffuses in various directions.
 ここで、上記したΔrとΔrの増減による、伝搬定数βや放射角θの変動を抑制する構成として、本発明の光偏向デバイスは、ΔrとΔrを変える際に、円孔の面積の増加分と円孔の面積の減少分とが等しくなる構成を備えると良いことが判明した。 Here, as a configuration for suppressing fluctuations in the propagation constant β and the radiation angle θ due to the increase / decrease in Δr 1 and Δr 2 described above, the optical deflection device of the present invention has a circular hole when changing Δr 1 and Δr 2 . It has been found that it is preferable to have a configuration in which the increase in area and the decrease in the area of the circular hole are equal.
 この円孔の面積の増加分と円孔の面積の減少分とが同量となる関係は、増減幅Δr及び増減幅Δrとの関係において、基準の径rに対して以下の式(7)で表すことができる。
 (r+Δr-r=r-(r-Δr    ・・・(7)
The relationship in which the increase in the area of the circular hole and the decrease in the area of the circular hole have the same amount is as follows in relation to the increase / decrease width Δr 1 and the increase / decrease width Δr 2 with respect to the reference diameter r: 7).
(R + Δr 1 ) 2 −r 2 = r 2 − (r−Δr 2 ) 2 (7)
 図6(b)は光偏向デバイスの第1の周期構造の円孔と第2の周期構造の円孔の各面積の増減を互いに同量とする構成を示している。 FIG. 6B shows a configuration in which the increase and decrease of each area of the circular holes of the first periodic structure and the circular holes of the second periodic structure of the optical deflection device are equal to each other.
 第1の周期構造の円孔3aの面積は、直径が2rから2(r+Δr)に増加することによってΔS(=(r+Δr-r)だけ増加する。一方、第2の周期構造の円孔3bの面積は、直径が2rから2(r-Δr)に減少することによってΔS(=r-(r-Δr)だけ減少する。 The area of the circular hole 3a of the first periodic structure increases by ΔS 1 (= (r + Δr 1 ) 2 −r 2 ) as the diameter increases from 2r to 2 (r + Δr 1 ). On the other hand, the area of the circular hole 3b of the second periodic structure decreases by ΔS 2 (= r 2 − (r−Δr 2 ) 2 ) as the diameter decreases from 2r to 2 (r−Δr 2 ).
 増加幅Δrと減少幅Δrを調整することによって、ΔSとΔSの面積の増減分を同量とする。光偏向デバイスの第1の周期構造の円孔と第2の周期構造の円孔の各面積の増減を互いに同量とする構成によって、前記したように、Δr=Δr=Δrとした構成と比較しても、さらにフォトニックバンドの変化を抑制することができ、高品質な光ビームを形成することができ、本願の目的である面外に放射される放射光のビーム分布を調整して高品質の光ビーム分布を形成するために好適であることを見出した。 By adjusting the increase width Δr 1 and the decrease width Δr 2 , the increase / decrease amount of the areas of ΔS 1 and ΔS 2 is made the same amount. As described above, a configuration in which Δr 1 = Δr 2 = Δr is achieved by using the same amount of increase / decrease in the areas of the first periodic structure circular hole and the second periodic structure circular hole of the optical deflection device. Compared with, it is possible to further suppress the change of the photonic band, to form a high-quality light beam, and to adjust the beam distribution of the emitted light that is emitted out of plane, which is the purpose of this application. It has been found that it is suitable for forming a high-quality light beam distribution.
 円孔の面積の増加分と円孔の面積の減少分が同量となる関係は、増減幅Δrと増減幅Δrの比率k(=Δr/Δr)を用いて表すこともできる。この場合には、増減幅Δrと増減幅Δrの比率k(=Δr/Δr)は、基準の径rに対して、以下の式(8)又は式(9)で表すことができる。
 k+(2r/Δr)・k=(2r/Δr)-1   ・・・(8)
 (1+2r/Δr)k-(2r/Δr)・k=-1 ・・・(9)
The relationship in which the increase in the area of the circular hole and the decrease in the area of the circular hole have the same amount can also be expressed using the ratio k (= Δr 1 / Δr 2 ) of the increase / decrease width Δr 1 and the increase / decrease width Δr 2. . In this case, the ratio k (= Δr 1 / Δr 2 ) between the increase / decrease width Δr 1 and the increase / decrease width Δr 2 can be expressed by the following formula (8) or formula (9) with respect to the reference diameter r. it can.
k 2 + (2r / Δr 2 ) · k = (2r / Δr 2 ) −1 (8)
(1 + 2r / Δr 1 ) k 2 − (2r / Δr 1 ) · k = −1 (9)
 (光偏向デバイスの放射係数及び光放射分布)
 図7(a)は、光偏向デバイスにおいて、伝搬光強度分布P(y)、放射係数B(y)、光放射分布X(y)、放射光ビーム分布Y(Δθ)の関係を示し、図7(b)は放射係数B(y)と円孔の径の増減Δrとの関係を示している。なお、yは光偏向デバイスの導波路において、入射光の入射端からの距離である。
(Radiation coefficient and light radiation distribution of light deflection device)
FIG. 7A shows the relationship among the propagation light intensity distribution P (y), the radiation coefficient B (y), the light radiation distribution X (y), and the radiation light beam distribution Y (Δθ) in the optical deflection device. 7 (b) shows the relationship between the radiation coefficient B (y) and the increase / decrease Δr of the diameter of the circular hole. Here, y is the distance from the incident end of the incident light in the waveguide of the optical deflection device.
 本発明の光偏向デバイスは、回折機構を構成する周期構造の円孔の径の増減状態によって放射係数を設定することができ、さらに、光放射分布を設定することができる。 The light deflection device of the present invention can set the radiation coefficient according to the increase / decrease state of the diameter of the circular hole of the periodic structure constituting the diffraction mechanism, and can further set the light radiation distribution.
 本発明の光偏向デバイスにおいて、導波路の伝搬光の伝搬方向に対する伝搬光強度分布P(y)、導波路から面外に放射される放射光の伝搬方向に対する放射係数B(y)、導波路から放射される光強度の伝搬方向に対する光放射分布X(y)とすると、光放射分布X(y)は、伝搬光強度分布P(y)と放射係数B(y)とに依存し、光放射分布X(y)は伝搬光強度分布P(y)と放射係数B(y)との積により以下の式(10)で表される。
 X(y)=B(y)・P(y)  ・・・(10)
In the optical deflection device of the present invention, the propagation light intensity distribution P (y) with respect to the propagation direction of the propagation light in the waveguide, the radiation coefficient B (y) with respect to the propagation direction of the radiation emitted from the waveguide out of plane, the waveguide If the light radiation distribution X (y) with respect to the propagation direction of the light intensity emitted from the light, the light radiation distribution X (y) depends on the propagation light intensity distribution P (y) and the radiation coefficient B (y), and the light The radiation distribution X (y) is expressed by the following formula (10) by the product of the propagation light intensity distribution P (y) and the radiation coefficient B (y).
X (y) = B (y) · P (y) (10)
 この関係から、光偏向デバイスの放射係数B(y)は、光放射分布X(y)を伝搬光強度分布P(y)で除した以下の式(11)で表される。
 B(y)=X(y)/P(y)  ・・・(11)
From this relationship, the radiation coefficient B (y) of the optical deflection device is expressed by the following equation (11) obtained by dividing the light radiation distribution X (y) by the propagation light intensity distribution P (y).
B (y) = X (y) / P (y) (11)
 光偏向デバイスにおいて、光伝搬方向に沿った伝搬光強度分布は導波路の特性で定まるため、光放射分布X(y)は光偏向デバイスの放射係数B(y)により設定することができる。したがって、放射係数B(y)を設定することによって所望の光放射分布X(y)を得ることができる。 In the optical deflection device, since the propagation light intensity distribution along the light propagation direction is determined by the characteristics of the waveguide, the light radiation distribution X (y) can be set by the radiation coefficient B (y) of the light deflection device. Therefore, a desired light radiation distribution X (y) can be obtained by setting the radiation coefficient B (y).
 さらに、所望の光放射分布X(y)を実現するための光偏向デバイスの円孔の増減幅Δrは、放射係数B(y)と径の増減幅Δrとの関係に基づいて求めることができる。 Furthermore, the increase / decrease width Δr of the circular hole of the optical deflection device for realizing the desired light emission distribution X (y) can be obtained based on the relationship between the emission coefficient B (y) and the increase / decrease width Δr of the diameter. .
 放射係数B(y)と径の増減幅Δrとの関係は、放射係数-径変化特性から得ることができ、径の増減幅Δrは、この放射係数Bと増減幅Δrとの関係に基づいて、放射係数Bに対応する値として得られる。 The relationship between the radiation coefficient B (y) and the increase / decrease width Δr of the diameter can be obtained from the radiation coefficient-diameter change characteristic. The increase / decrease width Δr of the diameter is based on the relationship between the radiation coefficient B and the increase / decrease width Δr. , Obtained as a value corresponding to the radiation coefficient B.
 光放射分布X(y)は任意の分布形状とすることができる。例えば、光放射分布X(y)をガウス分布とした場合には、放射光の放射角θの変動Δθに対する放射光ビーム分布Y(Δθ)のサイドローブを除くことができる。 The light radiation distribution X (y) can be an arbitrary distribution shape. For example, when the light radiation distribution X (y) is a Gaussian distribution, the side lobe of the radiation light beam distribution Y (Δθ) with respect to the variation Δθ of the radiation angle θ of the radiation light can be removed.
 図2で示したように、光搬送路方向に沿って放射係数Bが一定な場合は、光放射分布X(y)が指数関数的に減衰し、放射光ビーム分布Y(Δθ)のサイドローブはsinc関数となる。光ビームのサイドローブを抑制するためには、放射光ビーム分布Y(Δθ)をガウス関数にすることが考えられる。この場合、光放射分布X(y) 自体もガウス関数にする必要がある。伝搬光強度分布P(y)は導波路の損失係数Aや放射係数Bによって減衰する。損失係数A及び放射係数Bによる減衰も考慮に入れて、光放射分布X(y)を、長さLの導波路の中央でピークをもつガウス関数にするためには、yに沿って変化する放射係数B(y)が以下を満たす必要がある。
 X(y)=B(y)・P(y)=Dexp(-a・(y-L/2)
                    ・・・(12)
As shown in FIG. 2, when the radiation coefficient B is constant along the direction of the light transport path, the light radiation distribution X (y) attenuates exponentially, and the side lobe of the radiation light beam distribution Y (Δθ). Is a sinc function. In order to suppress the side lobe of the light beam, it is conceivable to make the radiation light beam distribution Y (Δθ) a Gaussian function. In this case, the light radiation distribution X (y) itself needs to be a Gaussian function. The propagation light intensity distribution P (y) is attenuated by the loss factor A and the radiation coefficient B of the waveguide. In order to make the light radiation distribution X (y) into a Gaussian function having a peak at the center of the length L waveguide, taking into account the attenuation due to the loss coefficient A and the radiation coefficient B, change along y. The radiation coefficient B (y) needs to satisfy the following.
X (y) = B (y) · P (y) = Dexp (−a · (y−L / 2) 2 )
(12)
 ここで、aはガウス関数の広がりを与える係数、Dはガウス関数のピークでの放射量を表す定数である。式(12)に基づいて伝搬に関する微分方程式は以下の式(13)で表される。
 dP(y)/dy=-AP(y)-Dexp(-a・(y-L/2)
                    ・・・(13)
Here, a is a coefficient giving the spread of the Gaussian function, and D is a constant representing the radiation amount at the peak of the Gaussian function. Based on the equation (12), the differential equation regarding propagation is expressed by the following equation (13).
dP (y) / dy = −AP (y) −Dexp (−a · (y−L / 2) 2 )
... (13)
 式(13)を解くと、放射係数B(y)は以下の式(14)で表される。
Figure JPOXMLDOC01-appb-I000002
When the equation (13) is solved, the radiation coefficient B (y) is expressed by the following equation (14).
Figure JPOXMLDOC01-appb-I000002
 図8は、上記した式(12),(14)を用いた演算結果を示し、図8(a)は伝搬光強度分布P(y)を示し、図8(b)は放射係数B(y)を示し、図8(c)は光放射分布X(y)を示し、図8(d)は放射光ビーム分布Y(Δθ)を示している。 FIG. 8 shows the calculation results using the above equations (12) and (14), FIG. 8 (a) shows the propagation light intensity distribution P (y), and FIG. 8 (b) shows the radiation coefficient B (y). 8 (c) shows the light radiation distribution X (y), and FIG. 8 (d) shows the radiation light beam distribution Y (Δθ).
 ここでηは定数Dに依存した定数であり、y=Lの位置において放射されずに残る光の量を表している。またfはf=a・(L/2)で与えられる定数である。例えば、f=0はa=0に対応し、放射光分布X(y)は変化が無限に少ないガウス関数となる。一方、大きな定数fは大きな係数aに対応し、変化が大きなガウス関数となる。 Here, η is a constant depending on the constant D, and represents the amount of light remaining without being emitted at the position of y = L. F is a constant given by f = a · (L / 2) 2 . For example, f = 0 corresponds to a = 0, and the radiated light distribution X (y) is a Gaussian function whose change is infinitely small. On the other hand, a large constant f corresponds to a large coefficient a and becomes a Gaussian function having a large change.
 図8は、(f=2,η=0.9),(f=1,η=0.95),(f=1,η=0.9),(f=0,η=0.95),及び(f=0,η=0.9)の各値において、導波路の損失係数Aが0dB/cm,10dB/cm,及び30dB/cmであるときの各場合について示している。 FIG. 8 shows (f = 2, η = 0.9), (f = 1, η = 0.95), (f = 1, η = 0.9), (f = 0, η = 0.95). ) And (f = 0, η = 0.9), the case where the loss factor A of the waveguide is 0 dB / cm, 10 dB / cm, and 30 dB / cm is shown.
 図8において、f=2、η=0.9とした場合に得られる放射光ビーム分布Y(Δθ)は、サイドローブや裾引きがほとんどないガウシアンビームが形成されることを示している。 In FIG. 8, the radiation beam distribution Y (Δθ) obtained when f = 2 and η = 0.9 indicates that a Gaussian beam having almost no side lobe or tailing is formed.
(光偏向デバイスの構成例)
 図9は放射光ビームをガウシアンビームとする場合の光偏向デバイスの例を示している。図9(a)は光偏向デバイス1の平面図を示し、図9(b),(c)は光偏向デバイス1の斜視図を示し、図9(c)は放射光ビームの分布形状を模式的に示している。
(Configuration example of optical deflection device)
FIG. 9 shows an example of an optical deflection device when the radiated light beam is a Gaussian beam. 9A shows a plan view of the optical deflection device 1, FIGS. 9B and 9C show perspective views of the optical deflection device 1, and FIG. 9C schematically shows the distribution shape of the radiation light beam. Is shown.
 放射光ビームをガウシアンビームとするための放射係数B(y)を式(14)により求め、さらに、求めた放射係数B(y)の分布形状を形成する円孔の径を求める。円孔の径を求めるには、放射係数B(y)と光偏向デバイス1の面内に形成する円孔の径の増減幅Δrとの対応関係を予め求めておき、この対応関係に基づいて、放射係数Bに対応する径の増減幅Δrを光偏向デバイス1の光伝搬方向の位置に応じて求める。図9に示す構成例では、光偏向デバイス1の周期構造4が備える円孔3の列の各径を光伝搬光方向の中央付近に対して増減させる構成としている。 The radiation coefficient B (y) for making the radiation light beam a Gaussian beam is obtained by the equation (14), and the diameter of the circular hole forming the distribution shape of the obtained radiation coefficient B (y) is further obtained. In order to obtain the diameter of the circular hole, a correspondence relationship between the radiation coefficient B (y) and the increase / decrease width Δr of the diameter of the circular hole formed in the plane of the optical deflection device 1 is obtained in advance, and based on this correspondence relationship. The increase / decrease width Δr of the diameter corresponding to the radiation coefficient B is obtained according to the position of the optical deflection device 1 in the light propagation direction. In the configuration example shown in FIG. 9, the diameters of the rows of the circular holes 3 included in the periodic structure 4 of the optical deflection device 1 are increased or decreased with respect to the vicinity of the center in the light propagation light direction.
(ライダー装置の形態)
 本発明のライダー装置は、本発明の光偏向デバイスと、波長が異なる複数のレーザ光を発するレーザ光源と、レーザ光を個別に検出する光検出部とを備える。光偏向デバイスは、レーザ光源が発する複数波長のレーザ光を、各レーザ光の波長及び導波路の屈折率で定まる各偏向角の方向に同時に並列して出射する出射器、及び外部から到達する複数波長のレーザ光の内、入射角が前記偏向角であるレーザ光を選択的に同時に並列して入射する入射器を同一素子で構成する。光検出器は、入射器において、出射器で出射されたレーザ光と同一の偏向角の入射角で入射した各波長のレーザ光を個別に検出する。出射器の偏向角と入射器の偏向角とを一致させることによって、出射器から出射され、物体に当たって反射した反射光を検出することができる。
(Rider configuration)
The lidar apparatus of the present invention includes the optical deflection device of the present invention, a laser light source that emits a plurality of laser beams having different wavelengths, and a light detection unit that individually detects the laser beams. The optical deflection device includes a laser that emits a plurality of wavelengths of laser light emitted from a laser light source in parallel in the direction of each deflection angle determined by the wavelength of each laser beam and the refractive index of the waveguide, and a plurality of laser beams that reach from the outside. Among the laser beams having the wavelengths, the injectors that selectively and simultaneously enter the laser beams whose incident angles are the deflection angles are configured by the same element. The light detector individually detects laser light of each wavelength incident at an incident angle having the same deflection angle as that of the laser light emitted from the emitter at the injector. By making the deflection angle of the emitter coincide with the deflection angle of the injector, it is possible to detect the reflected light that is emitted from the emitter and reflected by the object.
 ライダー装置の構成の各形態について、図10を用いて説明する。ライダー装置の第1形態は、入射器と出射器とを個別に構成する形態である。図10(a)はライダー装置の第1の形態を示している。第1の形態のライダー装置100Aは、レーザ光源102、導波路104、及び光偏向デバイス101で構成される出射器と、光偏向デバイス101、導波路104、及び光検出器103(フォトダイオード)で構成される入射器とを個別に備え、並置する構成である。出射器はレーザ光源102の光を光偏向デバイス101から外部に向けた出射し、入射器は物体に当たって反射した反射光を入射し、フィルタ(図示していない)を通過させ後、分岐路を介して光検出部103に導いて検出する。 Each form of the configuration of the rider device will be described with reference to FIG. The 1st form of a rider apparatus is a form which comprises an injector and an emitter separately. FIG. 10A shows a first embodiment of the rider device. The lidar apparatus 100A according to the first embodiment includes an emitter composed of a laser light source 102, a waveguide 104, and an optical deflection device 101, an optical deflection device 101, a waveguide 104, and a photodetector 103 (photodiode). It is the structure which is equipped with the comprised injector separately, and is juxtaposed. The emitter emits the light from the laser light source 102 to the outside from the optical deflection device 101, and the injector enters the reflected light reflected by the object, passes through a filter (not shown), and then passes through the branch path. Then, it guides to the light detection unit 103 and detects it.
 物体からの反射光は大きく広がって拡散するため、出射器の横に入射器を配置した構成であっても、入射器が受けられる光ビームの角度を出射器の放射角度とわずかに違うように設定することによって、出射器から出射した光を直接に入射することなく反射光を受けることができる。 Since the reflected light from the object spreads and diffuses greatly, the angle of the light beam that can be received by the injector should be slightly different from the radiation angle of the emitter even if the injector is placed beside the emitter. By setting, it is possible to receive the reflected light without directly entering the light emitted from the emitter.
 図10(b)はライダー装置の第2の形態を示している。第2の形態のライダー装置100Bは、導波路104を分岐し、分岐路の一端に光検出部103(フォトダイオード)を配置する構成である。光偏向デバイス101は入射した反射光をフィルタ(図示していない)に通過させ後、分岐路を介して光検出部103に導いて検出する。 FIG. 10B shows a second form of the rider device. The rider device 100B according to the second embodiment has a configuration in which the waveguide 104 is branched and a light detection unit 103 (photodiode) is disposed at one end of the branch path. The light deflection device 101 passes incident reflected light through a filter (not shown), and then guides it to the light detection unit 103 via a branch path to detect it.
 図10(c)は第3の形態を示している。第3の形態のライダー装置100Cは、導波路104に光スイッチ105を挿入し、レーザ光源102のレーザ光が通過した後に光検出部103(フォトダイオード)側に切り換え、反射して戻ってきたレーザ光を光検出部103(フォトダイオード)に高効率で導く。 FIG. 10C shows a third form. The lidar apparatus 100C according to the third embodiment has an optical switch 105 inserted into the waveguide 104, switches to the photodetection unit 103 (photodiode) side after the laser light from the laser light source 102 passes, and is reflected and returned. Light is guided to the light detection unit 103 (photodiode) with high efficiency.
 図10(d)は第4の形態を示している。Si導波路にp-n接合を形成したフォトダイオードは、強い逆バイアスを掛けると、結晶欠陥を介したサブバンドギャップ吸収を起こして、本来は検出できない長波長帯の光が検出できるようになる。第4の形態のライダー装置100Dは、光検出部103としてしたp-n接合を形成したフォトダイオードを導波路104の途中に挿入し、レーザ光源102のレーザ光が通過した後に逆バイアスに変更して、反射された光パルスを検出する。 FIG. 10 (d) shows a fourth embodiment. When a strong reverse bias is applied, a photodiode having a pn junction formed in a Si waveguide causes subband gap absorption via crystal defects, and can detect light in a long wavelength band that cannot be detected originally. . The lidar apparatus 100D of the fourth embodiment inserts a photodiode having a pn junction as the light detection unit 103 in the middle of the waveguide 104, and changes the reverse bias after the laser light from the laser light source 102 passes. Then, the reflected light pulse is detected.
 図10(e)は第5の形態を示している。第5の形態のライダー装置100Eは、レーザ光源と光検出部とを兼ねるパルス光源・光検出部106を備える。パルス光源・光検出部106は、パルス光源となる半導体レーザに逆バイアスを掛けてフォトダイオードとしても動作させることができる。この構成によれば、パルス光源・光検出部106はレーザ光を発した後に、逆バイアスを掛けてフォトダイオードとしても動作させ、反射して戻ってきたレーザ光を検出する。 FIG. 10 (e) shows a fifth embodiment. The rider apparatus 100E of the fifth embodiment includes a pulse light source / light detection unit 106 that serves as both a laser light source and a light detection unit. The pulse light source / light detection unit 106 can also operate as a photodiode by applying a reverse bias to a semiconductor laser serving as a pulse light source. According to this configuration, after emitting the laser light, the pulse light source / light detection unit 106 operates as a photodiode by applying a reverse bias, and detects the reflected laser light.
 反射光を用いるライダー装置の各形態において、レーザ光源からの光は、光パルスあるいは連続光とすることができる。ライダー装置は、光パルスを用いた場合にはTOF方式によって距離測定を行い、連続光を用いた場合にはFMCW方式によって距離測定を行うことができる。 In each form of lidar device using reflected light, the light from the laser light source can be a light pulse or continuous light. The rider apparatus can measure distance by the TOF method when using light pulses, and can measure distance by the FMCW method when using continuous light.
 各形態のライダー装置の装置構成によれば、仮に同じ波長の光が別の方向から到来したとしても入射角が異なるため、光は逆順をたどらないので元の導波路に結合せず、光検出部(フォトダイオード)に入射することはない。 According to the configuration of the rider device of each form, even if light of the same wavelength arrives from different directions, the incident angle is different, so the light does not follow the reverse order, so it is not coupled to the original waveguide and is detected by light. It does not enter the part (photodiode).
 図10に示す各形態例において、導波路104に波長フィルタの光フィルタを挿入してもよい。光フィルタはレーザ光源のレーザ光の波長を通過させるフィルタであり、レーザ光源の波長を変えたときは、波長変更と同期して通過波長も変えられる可変波長フィルタとするのがより好ましい。 In each embodiment shown in FIG. 10, an optical filter of a wavelength filter may be inserted into the waveguide 104. The optical filter is a filter that allows the wavelength of the laser light from the laser light source to pass. When the wavelength of the laser light source is changed, it is more preferable that the optical filter be a variable wavelength filter that can change the passing wavelength in synchronization with the wavelength change.
 環境中には様々な波長の光があり、レーザ光源の波長とは異なる波長の光がノイズ成分として光偏向デバイス1に到来することがある。仮に、異なる波長の光の入射角と、光ビームの出射角とが同じであるときには、波長が異なるノイズ成分は導波路に結合することができないが、別の方向から光偏向デバイス1に到来したノイズ成分の中には、導波路に結合して戻ることができるものがある。光フィルタは、このように導波路に結合するノイズ成分を除去することができる。このノイズ成分の除去は、ライダー装置の反射信号を検出する際のSN比の向上に寄与する。 There are various wavelengths of light in the environment, and light having a wavelength different from the wavelength of the laser light source may arrive at the optical deflection device 1 as a noise component. If the incident angle of light of different wavelengths and the exit angle of the light beam are the same, noise components having different wavelengths cannot be coupled to the waveguide, but arrived at the optical deflection device 1 from different directions. Some noise components can be coupled back into the waveguide. The optical filter can remove noise components coupled to the waveguide in this way. The removal of the noise component contributes to the improvement of the SN ratio when detecting the reflection signal of the rider device.
 光偏向デバイス及びライダー装置に関わる技術は近赤外光を用いる構成の他、可視光材料によるデバイス形成によって、プロジェクタやレーザディスプレイ、網膜ディスプレイ、2D/3Dプリンタ、POSやカード読み取り等の可視光による適用が想定される。 In addition to the configuration using near infrared light, the technology related to optical deflection devices and lidar devices is based on visible light from projectors, laser displays, retinal displays, 2D / 3D printers, POS and card reading, etc., by forming devices with visible light materials. Application is envisaged.
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。 The present invention is not limited to the above embodiments. Various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
 本発明の光偏向デバイス及びライダー装置(レーザレーダー)は、自動車、ドローン、ロボット、産業機器に搭載されるレーザレーダー(LiDAR)、パソコンやスマホに搭載して周囲環境を手軽に取り込む3Dスキャナ、監視システムなどに利用できる。また同様の光偏向デバイスを用いれば、光交換やデータセンター用の空間マトリックス光スイッチなどが可能である。 The optical deflection device and the lidar device (laser radar) of the present invention are a laser radar (LiDAR) installed in automobiles, drones, robots, industrial equipment, 3D scanners that can be easily installed in personal computers and smartphones, and monitor the surrounding environment. It can be used for systems. If a similar optical deflection device is used, optical exchange, a space matrix optical switch for a data center, and the like are possible.
 1  光偏向デバイス
 2r,2r,2r  直径
 3,3a,3b  円孔
 4  二重周期構造
 4a  周期構造
 4b  周期構造
 5  導波路
 10  漏れ導波路
 11  導波部
 11a  スローライト導波路
 11b  上部クラッド
 11c  下部クラッド
 11d  2次元フォトニック結晶導波路
 12  出射部
 12a  光放射機構
 100A~100E  ライダー装置
 101  光偏向デバイス
 102  レーザ光源
 103  光検出部
 104  導波路
 105  光スイッチ
 106  パルス光源・光検出部
 A  導波路の損失係数
 B  放射係数
 D  定数
 f  定数
 k  波数
 P  伝搬光強度分布
 r  基準径
 X  光放射分布
 Y  放射光ビーム分布
1 optical deflection device 2r, 2r 1, 2r 2 diameter 3, 3a, 3b circular hole 4 double periodic structure 4a periodic structure 4b periodic structure 5 waveguide 10 leakage waveguide 11 waveguide 11a slow light waveguide 11b upper cladding 11c Lower clad 11d Two-dimensional photonic crystal waveguide 12 Emitter 12a Light emission mechanism 100A to 100E Rider device 101 Optical deflection device 102 Laser light source 103 Photodetector 104 Waveguide 105 Optical switch 106 Pulse light source / photodetector A A Waveguide Loss factor B Radiation coefficient D Constant f Constant k Wave number P Propagation intensity distribution r Reference diameter X Light radiation distribution Y Radiation beam distribution

Claims (9)

  1.  フォトニック結晶の面内に形成された2種類の異なる直径の円孔の周期構造からなる導波路を備えた光偏向デバイスであって、
     前記周期構造は、前記円孔の直径が前記導波路に沿って互いに相補的に増減する二重周期構造であることを特徴とする光偏向デバイス。
    An optical deflection device comprising a waveguide having a periodic structure of two types of circular holes of different diameters formed in the plane of a photonic crystal,
    The optical deflection device according to claim 1, wherein the periodic structure is a double periodic structure in which the diameters of the circular holes increase and decrease in a complementary manner along the waveguide.
  2.  前記二重周期構造は、前記直径が増加する第1の周期構造と前記直径が減少する第2の周期構造とを備え、
     基準の円孔の直径を2r、相補的に増減する直径の増減幅を2Δr、2Δrとしたとき、
     第1の周期構造が備える円孔の直径2rは2(r+Δr)であり、
     第2の周期構造が備える円孔の直径2rは2(r-Δr)であることを特徴とする請求項1に記載の光偏向デバイス。
    The double periodic structure includes a first periodic structure in which the diameter increases and a second periodic structure in which the diameter decreases,
    When the diameter of the reference circular hole is 2r, and the increase / decrease width of the diameter to be increased / decreased complementarily is 2Δr 1 , 2Δr 2 ,
    The diameter 2r 1 of the circular hole provided in the first periodic structure is 2 (r + Δr 1 ),
    2. The optical deflection device according to claim 1, wherein the diameter 2r 2 of the circular hole provided in the second periodic structure is 2 (r−Δr 2 ).
  3.  前記増減幅Δr及び増減幅Δrは、同一の増減幅Δrであることを特徴とする請求項2に記載の光偏向デバイス。 The optical deflection device according to claim 2, wherein the increase / decrease width Δr 1 and the increase / decrease width Δr 2 are the same increase / decrease width Δr.
  4.  前記第1の周期構造が備える円孔の面積増加分と前記第2の周期構造が備える円孔の面積減少分は同量であることを特徴とする請求項2に記載の光偏向デバイス。 3. The optical deflection device according to claim 2, wherein the area increase of the circular hole provided in the first periodic structure and the area decrease of the circular hole provided in the second periodic structure are the same amount.
  5.  増減幅Δr及び増減幅Δrは、基準の径rに対して、
     (r+Δr-r=r-(r-Δr
     の関係を備えること特徴とする、請求項2に記載の光偏向デバイス。
    The increase / decrease width Δr 1 and the increase / decrease width Δr 2 are relative to the reference diameter r.
    (R + Δr 1 ) 2 −r 2 = r 2 − (r−Δr 2 ) 2
    The optical deflection device according to claim 2, comprising the relationship:
  6.  増減幅Δrと増減幅Δrの比率k(=Δr/Δr)は、基準の径rに対して、
     k+(2r/Δr)・k=(2r/Δr)-1
     又は
     (1+2r/Δr)k-(2r/Δr)・k=-1
     の関係を備えること特徴とする、請求項2に記載の光偏向デバイス。
    The ratio k (= Δr 1 / Δr 2 ) of the increase / decrease width Δr 1 and the increase / decrease width Δr 2 is determined with respect to the reference diameter r.
    k 2 + (2r / Δr 2 ) · k = (2r / Δr 2 ) −1
    Or (1 + 2r / Δr 1 ) k 2 − (2r / Δr 1 ) · k = −1
    The optical deflection device according to claim 2, comprising the relationship:
  7.  前記導波路の伝搬光の伝搬方向に対する伝搬光強度分布P、
     前記導波路から面外に放射される放射光の伝搬方向に対する放射係数B、
    及び
     前記導波路から放射される光強度の伝搬方向に対する光放射分布Xは、
     B=X/P
    の関係を備え、
     前記導波路に沿って変化する径の増減幅Δrは、前記放射係数Bと増減幅Δrとの関係において前記放射係数Bに対応する値であることを特徴とする、請求項1から6の何れか一つに記載の光偏向デバイス。
    Propagation light intensity distribution P with respect to the propagation direction of propagation light in the waveguide,
    A radiation coefficient B with respect to the propagation direction of radiation emitted out of plane from the waveguide;
    And the light radiation distribution X with respect to the propagation direction of the light intensity radiated from the waveguide is:
    B = X / P
    With a relationship
    The increase / decrease width Δr of the diameter changing along the waveguide is a value corresponding to the radiation coefficient B in the relationship between the radiation coefficient B and the increase / decrease width Δr. An optical deflection device according to any one of the above.
  8.  前記光放射分布Xはガウス分布であることを特徴とする、請求項7に記載の光偏向デバイス。 The light deflection device according to claim 7, wherein the light radiation distribution X is a Gaussian distribution.
  9.  請求項1から8の何れか一つに記載の光偏向デバイスと、
     波長が異なる複数のレーザ光を発するレーザ光源と、
     レーザ光を個別に検出する光検出部とを備え、
     前記光偏向デバイスは、
     前記レーザ光源が発する複数波長のレーザ光を、当該各レーザ光の波長及び導波路の屈折率で定まる各偏向角の方向に同時に並列して出射する出射器、
     及び
     外部から到達する複数波長のレーザ光の内、入射角が前記偏向角であるレーザ光を選択的に同時に並列して入射する入射器を同一素子または別素子で構成し、
     前記光検出器は、
     前記入射器において、前記出射器で出射されたレーザ光と同一の偏向角の入射角で入射した各波長のレーザ光を個別に検出することを特徴とするライダー装置。
    An optical deflection device according to any one of claims 1 to 8,
    A laser light source that emits a plurality of laser beams having different wavelengths;
    A light detection unit that individually detects the laser light,
    The optical deflection device is
    An emitter that emits a plurality of wavelengths of laser light emitted from the laser light source in parallel in the direction of each deflection angle determined by the wavelength of each laser light and the refractive index of the waveguide;
    And, among the laser beams of a plurality of wavelengths that reach from the outside, an injector that selectively and simultaneously enters laser beams having an incident angle that is the deflection angle is configured by the same element or different elements,
    The photodetector is
    The lidar apparatus characterized in that, in the incident device, laser beams having respective wavelengths incident at an incident angle having the same deflection angle as the laser beam emitted from the emitter are individually detected.
PCT/JP2017/042955 2016-12-14 2017-11-30 Light deflection device and lidar apparatus WO2018110284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556548A JP6931237B2 (en) 2016-12-14 2017-11-30 Light deflection device and rider device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242581 2016-12-14
JP2016-242581 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110284A1 true WO2018110284A1 (en) 2018-06-21

Family

ID=62558342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042955 WO2018110284A1 (en) 2016-12-14 2017-11-30 Light deflection device and lidar apparatus

Country Status (2)

Country Link
JP (1) JP6931237B2 (en)
WO (1) WO2018110284A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514069A (en) * 2018-09-17 2021-06-03 ウェイモ エルエルシー Transmitter device with bridge structure
JP2022504680A (en) * 2018-10-12 2022-01-13 シルク テクノロジーズ インコーポレイティッド Optical switching in lidar systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352370A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2006251063A (en) * 2005-03-08 2006-09-21 Japan Aviation Electronics Industry Ltd Optical connector, optical coupling method and optical element
JP2009047434A (en) * 2007-08-13 2009-03-05 Ihi Corp Electromagnetic wave distance measuring instrument
US20140219602A1 (en) * 2011-06-13 2014-08-07 Board Of Regents, The University Of Texas System Broadband, Group Index Independent, and Ultra-Low Loss Coupling into Slow Light Slotted Photonic Crystal Waveguides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832513B1 (en) * 2001-11-21 2004-04-09 Centre Nat Rech Scient PHOTON CRYSTAL STRUCTURE FOR FASHION CONVERSION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352370A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2006251063A (en) * 2005-03-08 2006-09-21 Japan Aviation Electronics Industry Ltd Optical connector, optical coupling method and optical element
JP2009047434A (en) * 2007-08-13 2009-03-05 Ihi Corp Electromagnetic wave distance measuring instrument
US20140219602A1 (en) * 2011-06-13 2014-08-07 Board Of Regents, The University Of Texas System Broadband, Group Index Independent, and Ultra-Low Loss Coupling into Slow Light Slotted Photonic Crystal Waveguides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514069A (en) * 2018-09-17 2021-06-03 ウェイモ エルエルシー Transmitter device with bridge structure
JP7072654B2 (en) 2018-09-17 2022-05-20 ウェイモ エルエルシー Transmitter device with bridge structure
JP2022504680A (en) * 2018-10-12 2022-01-13 シルク テクノロジーズ インコーポレイティッド Optical switching in lidar systems

Also Published As

Publication number Publication date
JP6931237B2 (en) 2021-09-01
JPWO2018110284A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6879561B2 (en) Light deflection device and rider device
US11448729B2 (en) Optical deflection device and LIDAR apparatus
KR20130143666A (en) Sub-wavelength grating-based optical elements
WO2018221310A1 (en) Optical receiver array and lidar device
US11953726B2 (en) Optical device
WO2018110284A1 (en) Light deflection device and lidar apparatus
CN112219161A (en) Optical device and optical detection system
JP6942333B2 (en) Light deflection device and rider device
US20210231861A1 (en) Distributed light projection device
CN114280790A (en) Diffraction light waveguide device and near-to-eye display equipment
JP2023508155A (en) Optoelectronic transmitter with phased array antenna with integrated controller
US20230350216A1 (en) Optical device
JP6883828B2 (en) Light deflection device
WO2020226031A1 (en) Optical device and optical detection system
CN113039462B (en) Prism lens, light deflection device and LiDAR device
JP7134443B2 (en) optical deflection device
JP6945816B2 (en) Light deflection device
WO2022113427A1 (en) Optical device and optical detection system
KR102223750B1 (en) Array Antenna Capable of Varying the Phase of Light
JP7486105B2 (en) Optical Devices and Optical Detection Systems
US20220317481A1 (en) Optical device and photodetection system
JP2021508084A (en) Optical Waveguide and Diffraction Waveguide Display
WO2023229520A1 (en) Optical phased array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881639

Country of ref document: EP

Kind code of ref document: A1