WO2018110087A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2018110087A1
WO2018110087A1 PCT/JP2017/038186 JP2017038186W WO2018110087A1 WO 2018110087 A1 WO2018110087 A1 WO 2018110087A1 JP 2017038186 W JP2017038186 W JP 2017038186W WO 2018110087 A1 WO2018110087 A1 WO 2018110087A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
cooling water
channel
heat exchanger
Prior art date
Application number
PCT/JP2017/038186
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 栄三
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018110087A1 publication Critical patent/WO2018110087A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • This disclosure relates to a heat exchanger.
  • a refrigeration cycle for automobiles is provided with a heat exchanger for exchanging heat between refrigerant and cooling water.
  • a heat exchanger that exchanges heat between two types of fluids
  • first flow path a flow path through which one fluid flows
  • first flow path a flow path through which the other fluid flows
  • second flow path is formed as a layered space, and these are alternately stacked.
  • Patent Document 1 discloses a first flow path (first layered space) into which transmission oil is introduced and a second flow path (second layered space) into which cooling water is introduced. ) And the heat exchanger of the structure laminated
  • a supply flow path for supplying a fluid to each first flow path is formed so as to penetrate a plurality of plate-like members (cup plates) that partition the first flow path and the second flow path.
  • the transmission oil is distributed to the first flow paths while flowing along the supply flow paths.
  • the refrigerant circulating in the refrigeration cycle is often in a gas-liquid mixture state when flowing into the heat exchanger.
  • the ratio of the gas-phase refrigerant and the liquid-phase refrigerant flowing into the first flow path is substantially uniform for all the first flow paths. .
  • liquid phase refrigerant has a large inertial force, and its flow direction is difficult to change
  • gas phase refrigerant has a small inertial force and tends to easily change its flow direction. For this reason, in a heat exchanger having a configuration in which the refrigerant flowing through the supply channel flows into the first channel after greatly changing the flow direction, the gas phase refrigerant and It is further difficult to allow the liquid-phase refrigerant to flow evenly.
  • This disclosure is intended to provide a heat exchanger capable of evenly flowing a gas-liquid mixed fluid into each of a plurality of stacked flow paths.
  • a heat exchanger is a heat exchanger that performs heat exchange between a first fluid and a second fluid, and includes a first flow path through which the first fluid flows and a second flow through which the second fluid flows.
  • a plurality of plate-like members that partition between the first flow path and the second flow path are provided so that the roads are alternately stacked.
  • a supply channel for supplying the first fluid to each first channel is formed so as to penetrate a plurality of plate-like members along the direction in which the first channel and the second channel are stacked. Has been.
  • the direction in which the first fluid flows in the supply flow path is the forward direction and the direction opposite to the forward direction is the reverse direction
  • a portion of the first flow path in the vicinity of the supply flow path is the first flow path.
  • it is formed so as to expand in both the forward direction and the reverse direction.
  • the heat exchanger having such a configuration, a portion in the vicinity of the supply flow path in the first flow path through which the first fluid flows is enlarged, thereby forming a relatively large space. A part of the first fluid flowing through the supply channel flows into the space when the pressure is released when the first fluid passes through the plate-like member. As a result, a relatively large vortex of the first fluid is generated in the space, and the gas phase refrigerant and the liquid phase refrigerant are mixed by the vortex. The refrigerant sufficiently mixed by the vortex flows into each first flow path.
  • the 1st fluid of gas-liquid mixing can be made to flow in equally with respect to each of the several laminated
  • a heat exchanger that can uniformly flow a gas-liquid mixed fluid into each of a plurality of stacked flow paths.
  • FIG. 1 is a side view of the heat exchanger according to the present embodiment.
  • FIG. 2 is a diagram illustrating the heat exchanger according to the present embodiment as viewed from above.
  • FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining a specific configuration of the container.
  • FIG. 5 is a diagram schematically showing a path through which a refrigerant flows and a path through which cooling water flows in the heat exchanger of FIG. 1.
  • FIG. 6 is a diagram showing inner fins arranged inside the heat exchanger.
  • FIG. 7 is a perspective view showing the configuration of the inner fin shown in FIG. FIG.
  • FIG. 8 is a diagram schematically illustrating the flow of the refrigerant flowing from the supply flow path into the refrigerant flow path.
  • FIG. 9 is a diagram schematically showing the flow of the refrigerant flowing from the supply channel into the refrigerant channel in the heat exchanger according to the comparative example.
  • FIG. 10 is a diagram schematically illustrating the flow of the refrigerant flowing from the supply channel into the refrigerant channel in the heat exchanger according to another comparative example.
  • the configuration of the heat exchanger 10 according to the present embodiment will be described.
  • the heat exchanger 10 shown in FIG. 1 is configured as a heat exchanger for performing heat exchange between a refrigerant and cooling water (for example, LLC).
  • a heat exchanger 10 is used as, for example, a water-cooled condenser or an evaporator of an automobile refrigeration cycle.
  • the refrigerant corresponds to the “first fluid” in the present embodiment.
  • the cooling water corresponds to the “second fluid” in the present embodiment.
  • the heat exchanger 10 includes a container 15. As shown in FIG. 3, the container 15 has a cup 151 and an inner plate 152 that are plate-like members, and these are brazed to each other in a state of being alternately stacked. . A space is formed between the cup 151 and the inner plate 152 adjacent to each other, and the space is a coolant channel 100 that is a channel through which a coolant flows, or a cooling water channel that is a channel through which coolant flows. 200.
  • the coolant channel 100 and the cooling water channel 200 are both formed as flat (layered) thin spaces, and are alternately arranged along the stacking direction of the containers 15 (vertical direction in FIGS. 1 and 3). Is formed.
  • the refrigerant channel 100 corresponds to the “first channel” in the present embodiment.
  • the cooling water channel 200 corresponds to the “second channel” in the present embodiment.
  • the cup 151 and the inner plate 152 partition the refrigerant channel 100 and the cooling water channel 200 so that the refrigerant channel 100 and the cooling water channel 200 are alternately stacked. All correspond to the “plate member” in the present embodiment.
  • inner fins 300 are arranged inside the container 15, that is, in each of the coolant channel 100 and the cooling water channel 200.
  • the inner fin 300 is provided in order to increase the contact area with the refrigerant or the cooling water, thereby improving the heat exchange efficiency of the heat exchanger 10.
  • the specific shape and arrangement of the inner fin 300 will be described later.
  • the shape of the heat exchanger 10 (that is, the shape of the container 15) in a top view is generally rectangular.
  • a refrigerant inflow portion 101 and a cooling water outflow portion 202 are provided at positions near one end in the longitudinal direction (left side in FIG. 2).
  • the refrigerant inflow portion 101 is a portion serving as an inlet for refrigerant supplied from the outside.
  • the cooling water outflow portion 202 is a portion that becomes an outlet of the cooling water that has passed through the heat exchanger 10.
  • the refrigerant inflow portion 101 and the cooling water outflow portion 202 are provided so as to be aligned along the short direction of the heat exchanger 10 in a top view.
  • a refrigerant outflow portion 102 is provided at a position on the lower surface of the heat exchanger 10 and immediately below the refrigerant inflow portion 101.
  • the refrigerant outflow portion 102 is a portion that becomes an outlet of the refrigerant that has passed through the heat exchanger 10.
  • a cooling water inflow portion 201 is provided at a position on the lower surface of the heat exchanger 10 and immediately below the cooling water outflow portion 202.
  • the cooling water inflow portion 201 is a portion serving as an inlet for cooling water supplied from the outside.
  • the refrigerant outflow portion 102 and the cooling water inflow portion 201 are also provided so as to be aligned along the short direction of the heat exchanger 10 in a top view.
  • the direction from the refrigerant outflow portion 102 toward the refrigerant inflow portion 101 is referred to as an upward direction, and the opposite direction is referred to as a downward direction.
  • the vertical relationship between the refrigerant inflow portion 101 and the refrigerant outflow portion 102 when the heat exchanger 10 is actually used may be different from that shown in FIG.
  • a circular opening OP ⁇ b> 1 is formed at a position directly below the refrigerant inflow portion 101 in the cup 151.
  • a circular opening OP ⁇ b> 2 is formed at a position directly below the refrigerant inflow portion 101 in the inner plate 152.
  • the cup 151 and the inner plate 152 in which the cooling water flow path 200 is formed are brazed in a state where the edge of the opening OP1 and the edge of the opening OP2 overlap each other. For this reason, the refrigerant flowing in from the refrigerant inflow portion 101 is distributed to the respective refrigerant flow paths 100 while flowing downward through the opening OP1 and the like. Since the edge of the opening OP1 and the edge of the opening OP2 are brazed so as to be watertight, the refrigerant does not flow into the cooling water flow path 200.
  • supply channel SP Such a supply flow path SP is a flow formed so as to penetrate a plurality of plate-like members (cup 151 and inner plate 152) along the direction in which the refrigerant flow path 100 and the cooling water flow path 200 are laminated. Road.
  • an opening (not shown) is formed at a position opposite to the opening OP ⁇ b> 1 on the diagonal line (a position denoted by reference numeral P ⁇ b> 1 in FIG. 2).
  • the shape of the opening is the same as the shape of the opening OP1.
  • an opening (not shown) is also formed in the inner plate 152 at a position opposite to the opening OP2 on the diagonal line.
  • the shape of the opening is the same as the shape of the opening OP2.
  • the cup 151 and the inner plate 152 in which the cooling water flow path 200 is formed are brazed in a state where the edges of the respective openings are overlapped with each other.
  • the refrigerant supplied from the refrigerant inflow portion 101 passes through the respective refrigerant flow paths 100, and then merges again at a position denoted by reference symbol P1, and flows downward through the opening.
  • the flow path through which the cooling water supplied from the cooling water inflow portion 201 flows is also formed in the same manner as described above. Specifically, a circular opening is formed in the cup 151 at a position directly above the cooling water inflow portion 201. Similarly, a circular opening is also formed in the inner plate 152 at a position directly above the cooling water inflow portion 201.
  • the cup 151 and the inner plate 152 in which the refrigerant flow path 100 is formed are brazed in a state where the edges of the openings are overlapped with each other. For this reason, the cooling water flowing in from the cooling water inflow portion 201 is distributed to the respective cooling water flow paths 200 while flowing upward through the openings. Since the edges of the openings are brazed so as to be watertight, the cooling water does not flow into the coolant channel 100.
  • an opening is also formed at a position on the opposite side of the opening directly above the cooling water inflow portion 201 (a position denoted by reference numeral P2 in FIG. 2).
  • an opening is formed at a position on the inner plate 152 opposite to the opening directly above the cooling water inflow portion 201 on the diagonal line.
  • the cup 151 and the inner plate 152 in which the coolant channel 100 is formed are brazed in a state where the edges of the respective openings are overlapped with each other.
  • the refrigerant supplied from the cooling water inflow portion 201 passes through the respective cooling water flow paths 200, and then merges again at a position denoted by reference symbol P2, and flows upward through the opening.
  • FIG. 4 Illustration of the inner fins 300 disposed in each of the refrigerant channel 100 and the cooling water channel 200 is omitted.
  • FIG. 4 for convenience of explanation, the diameter of the supply flow path SP is drawn so as to be smaller than the actual diameter shown in FIG. 3.
  • the direction in which the refrigerant flows in the supply flow path SP is indicated by an arrow A01.
  • the direction in which the refrigerant flowing into the refrigerant channel 100 from the supply channel SP flows is indicated by an arrow A02.
  • Each cup 151 has the same shape, and each inner plate 152 has the same shape. Therefore, in the following, the shape of the cup 151 marked with the symbol “ ⁇ ” and the shape of the inner plate 152 marked with the symbol “ ⁇ ” will be described.
  • the cup 151 and the inner plate 152 partition the refrigerant flow path 100 shown in the center in the vertical direction in FIG.
  • the cup 151 has a heat exchange part 151a, an inlet part 151b, and a connection part 151c.
  • the heat exchanging portion 151a occupies most of the cup 151, and is a portion where heat is exchanged between the refrigerant and the cooling water.
  • the entire heat exchanging portion 151a has a flat plate shape and is perpendicular to the direction in which the supply flow path SP extends (the vertical direction in FIG. 4).
  • the inlet portion 151b is a portion of the cup 151 in the vicinity of the supply flow path SP. That is, it is a part of the cup 151 that surrounds the periphery of the supply flow path SP in a top view.
  • the inlet portion 151b has a flat plate shape as a whole like the heat exchange portion 151a, and is perpendicular to the direction in which the supply flow path SP extends.
  • the direction in which the refrigerant flows in the supply flow path SP (that is, the direction indicated by the arrow A01) is hereinafter also referred to as “forward direction”.
  • the direction opposite to the forward direction is also referred to as “reverse direction” below.
  • the position where the inlet portion 151b is disposed is on the forward direction side relative to the position where the heat exchange portion 151a is disposed.
  • the distance between the heat exchanging portion 151a and the inlet portion 151b along the forward direction (the distance between the surfaces defining the refrigerant flow path 100) is shown as “D11” in FIG.
  • the connecting portion 151c is a portion formed so as to connect the heat exchanging portion 151a and the inlet portion 151b.
  • the connecting portion 151c is inclined with respect to the heat exchanging portion 151a and the inlet portion 151b.
  • the connection portion 151c is inclined with respect to the heat exchanging portion 151a and the like so that the width of the refrigerant passage 100 (the vertical dimension in FIG. 4) decreases as the distance from the supply passage SP increases. .
  • the inner plate 152 has the heat exchange part 152a, the inlet part 152b, and the connection part 152c similarly to said cup 151.
  • FIG. The heat exchanging portion 152a occupies most of the inner plate 152, and the heat exchanging portion 152a, which is a portion where heat is exchanged between the refrigerant and the cooling water, has a flat plate shape as a whole. It is perpendicular to the direction in which the supply channel SP extends (the vertical direction in FIG. 4).
  • the heat exchanging part 152a is opposed to the heat exchanging part 151a with the refrigerant channel 100 interposed therebetween.
  • the inlet portion 152b is a portion of the inner plate 152 in the vicinity of the supply flow path SP. That is, it is a portion of the inner plate 152 surrounding the supply channel SP in a circular shape when viewed from above.
  • the inlet portion 152b has a flat plate shape as in the heat exchanging portion 152a, and is perpendicular to the direction in which the supply flow path SP extends.
  • the inlet portion 152b is opposed to the inlet portion 151b with the refrigerant channel 100 interposed therebetween.
  • the inlet portion 152b is in contact with the inlet portion 151b of the cup 151 on the opposite side of the cup 151 with the symbol “ ⁇ ” (the cup 151 on the upper side in FIG. 4), and the inlet portion 151b Are joined (brazed). That is, in this embodiment, a pair of adjacent plate-like members (cup 151 and inner plate 152) are joined in a state where the respective inlet portions 151b and 152b are in contact with each other.
  • the position where the inlet part 152b is disposed is on the opposite side of the position where the heat exchange part 152a is disposed.
  • the distance between the heat exchange part 152a and the inlet part 152b along the reverse direction is shown as “D12” in FIG.
  • connection part 152c is a part formed so as to connect the heat exchange part 152a and the inlet part 152b.
  • the connection part 152c is inclined with respect to the heat exchange part 152a and the inlet part 152b.
  • the connection part 152c is inclined with respect to the heat exchange part 152a and the like so that the width of the refrigerant flow path 100 (the vertical dimension in FIG. 4) decreases as the distance from the supply flow path SP increases. .
  • the connecting portion 152c is opposed to the connecting portion 151c with the refrigerant channel 100 interposed therebetween.
  • the connection part 151c and the connection part 152c are inclined with respect to the heat exchange part 151a and the like.
  • the pair of connecting portions 151c and 152c that are adjacent to each other across the coolant channel 100 are formed so as to be closer to each other as the distance from the supply channel SP increases.
  • the width (D2) of the refrigerant flow path 100 in the part sandwiched between the inlet part 151b and the inlet part 152b is the width of the refrigerant flow path 100 in the part sandwiched between the heat exchange part 151a and the heat exchange part 152a. It is larger than (D1).
  • D2 D1 + D11 + D12 is established.
  • the amount of expansion in the forward direction (that is, D11) and the amount of expansion in the reverse direction (that is, D12) in the portion near the supply channel SP in the refrigerant channel 100 are
  • the above portion of the coolant channel 100 is formed so as to be equal to each other.
  • the effect of the cup 151 and the inner plate 152 being formed in the above shape will be described later.
  • each cup 151 and the inner plate 152 are formed so that it may become the same as the above also about the shape of the cooling water flow path 200. That is, in this embodiment, the shape of each cooling water flow path 200 is substantially the same as the shape of the refrigerant flow path 100 as described above. Instead of such an aspect, an aspect in which the shape of the coolant channel 100 and the shape of the cooling water channel 200 are different from each other may be employed.
  • the path through which the refrigerant flows through the heat exchanger 10 is indicated by a solid arrow A11 or the like. Further, a path through which the cooling water flows through the heat exchanger 10 is indicated by a dashed-dotted arrow A21 or the like.
  • the upper part and the lower part of the heat exchanger 10 are configured such that the directions in which the refrigerant flows are different from each other.
  • the upper portion of the heat exchanger 10, that is, the portion where the refrigerant inflow portion 101 and the cooling water outflow portion 202 are provided is also referred to as “first heat exchange portion 11”.
  • the lower part of the heat exchanger 10 that is, the part provided with the refrigerant outflow part 102 and the cooling water inflow part 201 is also referred to as “second heat exchange part 12”.
  • the range AR1 of the first heat exchange unit 11 and the range AR2 of the second heat exchange unit 12 are indicated by arrows, respectively.
  • a flow path (supply flow path SP) extending downward from the refrigerant inflow section 101 and upward from the refrigerant outflow section 102 And the flow path that extends. That is, the container 15 arranged at the position functions as a partition plate.
  • a flow path (flow path formed by a circular opening) that connects between the first heat exchange section 11 and the second heat exchange section 12 is formed. Yes.
  • the refrigerant supplied from the refrigerant inflow portion 101 to the first heat exchanging portion 11 flows downward through the supply passage SP such as the opening OP1 formed in the cup 151 (arrow A11).
  • coolant is distributed to each refrigerant flow path 100, and flows through the refrigerant flow path 100 toward the opposite side on the diagonal of the container 15 (arrow A12).
  • the refrigerants flowing through the respective refrigerant flow paths 100 merge again, and flow through the flow path formed by the circular opening from the first heat exchange unit 11 toward the second heat exchange unit 12 (arrow A13).
  • the refrigerant is again distributed from the supply flow path SP to the respective refrigerant flow paths 100 in the second heat exchange section 12, and flows through the refrigerant flow path 100 toward the opposite side on the diagonal line of the container 15 (arrow A14). Thereafter, the refrigerants flowing through the respective refrigerant flow paths 100 merge again, and flow through the flow path formed by the circular opening toward the refrigerant outflow portion 102 (arrow A15). Eventually, the refrigerant is discharged from the refrigerant outflow portion 102 to the outside.
  • the path through which the cooling water flows through the heat exchanger 10 will be described with reference to FIG.
  • the cooling water supplied from the cooling water inflow portion 201 to the second heat exchange portion 12 flows upward through an opening formed in the cup 151 and the like (arrow A21).
  • the cooling water is distributed to the respective cooling water flow paths 200 and flows through the cooling water flow paths 200 toward the opposite side on the diagonal line of the container 15 (arrow A22).
  • the cooling water that has flowed through the respective cooling water flow paths 200 merges again, and flows through the flow path formed by the circular opening from the second heat exchange unit 12 toward the first heat exchange unit 11 (arrow A23).
  • the cooling water is again distributed to the respective cooling water flow paths 200 in the first heat exchange unit 11, and flows through the cooling water flow paths 200 toward the opposite side on the diagonal line of the container 15 (arrow A24). Thereafter, the refrigerant that has flowed through the respective cooling water flow paths 200 merges again, and flows through the flow path formed by the circular opening toward the cooling water outflow portion 202 (arrow A25). Finally, the cooling water is discharged from the cooling water outflow portion 202 to the outside.
  • the refrigerant flow path 100 and the cooling water flow path 200 are arranged so as to alternately overlap.
  • heat exchange is performed between the refrigerant
  • coolant arrow A12
  • coolant arrow A12
  • cooling water arrow A24
  • cool water arrow A24
  • heat exchange is performed between the refrigerant
  • FIG. 6A shows the entire inner fin 300 disposed in the refrigerant flow path 100 of the first heat exchange unit 11 in a top view.
  • FIG. 6B shows the entire inner fin 300 disposed in the cooling water flow path 200 of the first heat exchange unit 11 in a top view.
  • the shapes of the inner fins 300 in a top view are symmetrical to each other in the vertical direction of FIG.
  • the inner fin 300 is formed by bending a single metal plate.
  • the outer shape of the inner fin 300 in the top view is substantially equal to the shape of the internal space of the container 15 in the top view.
  • the inner fin 300 is disposed so as to occupy substantially the entire coolant channel 100.
  • an opening is formed at a position directly below the refrigerant inflow portion 101 (a position denoted by reference numeral 111 in FIG. 6A).
  • the opening is a part that receives the refrigerant from the refrigerant inflow portion 101 and serves as an inlet of the refrigerant to the refrigerant flow path 100.
  • a portion where an opening serving as a refrigerant inlet to the refrigerant flow path 100 is formed is referred to as a “refrigerant inlet 111” of the refrigerant flow path 100.
  • the portion where the refrigerant inlet 111 is formed in the first heat exchanging portion 11 corresponds to the portion where the refrigerant flows along the arrow A11 in FIG.
  • an opening is formed at a position immediately below a portion denoted by reference numeral P1 in FIG. 2 (position denoted by reference numeral 112 in FIG. 6A).
  • the opening is a part into which the refrigerant flows through the refrigerant channel 100, that is, a part serving as an outlet of the refrigerant from the refrigerant channel 100.
  • a portion where an opening serving as a refrigerant outlet from the refrigerant channel 100 is formed is referred to as a “refrigerant outlet 112” of the refrigerant channel 100.
  • the portion where the refrigerant outlet 112 is formed in the first heat exchange unit 11 corresponds to a portion where the refrigerant flows along the arrow A13 in FIG.
  • the refrigerant inlet 111 that is the refrigerant inlet to the refrigerant flow path 100 and the refrigerant outlet 112 that is the refrigerant outlet from the refrigerant flow path 100 are in the longitudinal direction of the container 15 (FIG. 6). In (A), they are arranged separately on one side and the other side in the left-right direction).
  • the flow of the refrigerant from the refrigerant inlet 111 toward the refrigerant outlet 112 is indicated by an arrow.
  • what is indicated by an arrow is a rough flow of the refrigerant, and the actual flow of the refrigerant is not such a linear flow.
  • an opening is also formed in the inner fin 300 arranged in the cooling water flow path 200. These are formed so that the coolant flows through the cooling water flow path 200 along the stacking direction of the containers 15. In this portion, for example, as shown in FIG. 3, the opening edge of the cup 151 and the opening edge of the inner plate 152 are welded. For this reason, the refrigerant passing through the refrigerant inlet 111 or the like does not flow into the cooling water flow path 200.
  • the inner fin 300 is arranged so as to occupy substantially the entire cooling water channel 200.
  • an opening is formed at a position (position denoted by reference numeral 211 in FIG. 6B) that is directly below the portion denoted by reference numeral P2 in FIG.
  • the opening is a part that receives the cooling water from the second heat exchange unit 12 and is a part that serves as an inlet of the cooling water to the cooling water flow path 200.
  • a portion where an opening serving as an inlet of the cooling water to the cooling water channel 200 is formed is referred to as a “cooling water inlet 211” of the cooling water channel 200.
  • a portion where the cooling water inlet 211 is formed in the first heat exchange unit 11 corresponds to a portion where the cooling water flows along the arrow A ⁇ b> 23 in FIG. 5.
  • an opening is formed at a position directly below the cooling water outflow portion 202 (a position denoted by reference numeral 212 in FIG. 6B).
  • the opening is a part into which cooling water flows through the cooling water channel 200, that is, a part serving as an outlet for cooling water from the cooling water channel 200.
  • a portion where an opening serving as an outlet for cooling water from the cooling water flow path 200 is formed is referred to as a “cooling water outlet 212” of the cooling water flow path 200.
  • the part where the cooling water outlet 212 is formed in the first heat exchange unit 11 corresponds to the part where the cooling water flows along the arrow A25 in FIG.
  • the cooling water inlet 211 that is the inlet of the cooling water to the cooling water passage 200 and the cooling water outlet 212 that is the outlet of the cooling water from the cooling water passage 200 are the longitudinal length of the container 15. They are arranged separately on one side and the other side in the direction (left-right direction in FIG. 6B).
  • the flow of cooling water from the cooling water inlet 211 toward the cooling water outlet 212 is indicated by arrows.
  • an arrow indicates a rough flow of the cooling water, and the actual flow of the cooling water is not such a linear flow.
  • openings are also formed in the inner fins 300 arranged in the refrigerant flow path 100. These are formed so that the cooling water flows through the coolant channel 100 along the stacking direction of the containers 15. In this portion, for example, as shown in FIG. 3, the opening edge of the cup 151 and the opening edge of the inner plate 152 are welded. For this reason, the cooling water passing through the cooling water inlet 211 or the like does not flow into the refrigerant flow path 100.
  • the arrangement of the inner fins 300 in the second heat exchange unit 12 and the flow of refrigerant and cooling water flowing through the second heat exchange unit 12 are the same as those in the first heat exchange unit 11 described above. . Therefore, the specific description is abbreviate
  • the refrigerant inlet 111 and the cooling water outlet 212 are arranged on one side (left side in FIG. 6) in the longitudinal direction of the container 15, and the cooling water inlet 211, the refrigerant outlet 112, However, it is arrange
  • the direction from the refrigerant inlet 111 to the refrigerant outlet 112 is inclined with respect to the longitudinal direction of the container 15, and the direction from the cooling water inlet 211 to the cooling water outlet 212 is also the longitudinal direction of the container 15. It is inclined with respect to.
  • the refrigerant flow in the refrigerant flow path 100 and the cooling water flow in the cooling water flow path 200 intersect with each other in an X shape. That is, the flow of the refrigerant and the cooling water in the present embodiment is a so-called “X-shaped counter flow”.
  • the inner fin 300 is formed by bending a single metal plate so that crests 310 and troughs 320 are alternately arranged.
  • the crest 310 is a part that abuts on one of the cup 151 and the inner plate 152 that divides the refrigerant flow path 100 and the like
  • the trough 320 is a part that abuts on the other of the cup 151 and the inner plate 152.
  • the crest portion 310 and the trough portion 320 are parallel to each other, and the normal direction of the main surface thereof coincides with the stacking direction of the container 15 (the vertical direction in FIG. 1).
  • the adjacent mountain portions 310 and valley portions 320 are connected by a side wall portion 330.
  • the side wall part 330 is a wall perpendicular to each of the peak part 310 and the valley part 320.
  • Each side wall part 330 is arrange
  • a plurality of side walls 330 divide a fluid flow path (refrigerant flow path 100 or cooling water flow path 200) into a plurality of sections. As a result, a fluid passage 370 extending linearly is formed between the side wall portions 330 adjacent to each other.
  • the direction in which the fluid passage 370 extends is indicated by an arrow A30.
  • the direction in which the plurality of fluid passages 370 are arranged, that is, the normal direction of the side wall 330 is indicated by an arrow A40.
  • a plate-like louver portion 340 is formed on each side wall portion 330 by cutting and raising a part thereof.
  • the shape of the louver part 340 is a rectangle, and is connected to the peak part 310 or the valley part 320 on one side.
  • a plurality of louver portions 340 are formed, and all of them are parallel to the direction in which the fluid passage 370 extends (arrow A30). Each louver portion 340 protrudes from the side wall portion 330 into the fluid passage 370.
  • an opening 350 as a result of cutting and raising the louver portion 340 is also formed in the side wall portion 330.
  • Adjacent fluid passages 370 communicate with each other through openings 350.
  • the louver portion 340 protrudes from the edge of each opening 350 into the fluid passage 370.
  • a plurality of louver portions 340 and openings 350 are formed in a line along the direction (arrow A30) in which the fluid passage 370 extends.
  • a portion where the louver portion 340 and the opening 350 are formed and a portion where the louver portion 340 and the opening 350 are not formed are along the direction in which the fluid passage 370 extends (arrow A30). It is formed so that it may line up alternately.
  • the inner fin 300 is disposed in a state where the direction in which the fluid passage 370 extends (arrow A ⁇ b> 30) matches the longitudinal direction of the container 15.
  • the refrigerant flowing in from the refrigerant inlet 111 flows substantially along the longitudinal direction of the container 15.
  • a part of the refrigerant flows into the adjacent fluid passage 370 through the opening 350.
  • the refrigerant flow includes a linear flow along the fluid passage 370 and a diffusive flow that passes through the opening 350.
  • the path through which the refrigerant diffuses and flows is secured as described above, so that heat exchange between the refrigerant and the cooling water flowing through the adjacent cooling water flow path 200 is performed efficiently.
  • a part of the refrigerant flowing through the refrigerant flow path 100 collides with the edge of the louver part 340, and the flow is divided. Further, the other part of the refrigerant collides with the edge of the opening 350 and the flow is also divided. Such a flow division causes a so-called leading edge effect, so that heat transfer to the refrigerant through the inner fins 300 is performed efficiently.
  • the refrigerant pressure becomes relatively high due to the occurrence of the refrigerant collision as described above.
  • the refrigerant flows substantially linearly without colliding with the louver portion 340 and the like, so the pressure of the refrigerant becomes relatively low.
  • the pressure of the refrigerant flowing through the fluid passage 370 is high in the portion where the louver portion 340 is formed, and is low in the portion where the louver portion 340 is not formed. In other words, the fluid flowing along the fluid passage 370 flows while repeatedly increasing and decreasing its pressure.
  • ⁇ Diffusion of fluid through the opening 350 is promoted due to such a change in pressure. That is, in the heat exchanger 10 according to the present embodiment, the refrigerant is not actively diffused due to an external force such as a driving force of the pump, but is passively caused by the pressure fluctuation. Diffusion will occur. Thereby, the diffusibility of the refrigerant can be enhanced while suppressing the pressure loss of the refrigerant, and as a result, good heat exchange performance is exhibited.
  • the above-described effects by disposing the inner fin 300 are also exhibited in the cooling water flow in the cooling water channel 200. That is, also in the cooling water flow path 200, the diffusibility of the cooling water is enhanced by the inner fins 300.
  • each refrigerant flow path 100 The flow of the refrigerant distributed from the supply flow path SP to each refrigerant flow path 100 will be described with reference to FIG. In FIG. 8, similarly to FIG. 4, the direction in which the refrigerant flows in the supply flow path SP is indicated by an arrow A01. In addition, the direction in which the refrigerant flowing into the refrigerant channel 100 from the supply channel SP flows is indicated by an arrow A02.
  • the refrigerant flowing through the supply flow path SP is in a gas-liquid mixed state.
  • the gas-phase refrigerant and the liquid-phase refrigerant are not evenly distributed.
  • a large amount of gas-phase refrigerant tends to flow in the central portion of the supply flow path SP.
  • a large amount of liquid-phase refrigerant tends to flow.
  • FIG. 8 a rough boundary between a region where a large amount of gas-phase refrigerant flows and a region where a large amount of liquid-phase refrigerant flows is indicated by a pair of dotted lines DL1.
  • a large amount of gas phase refrigerant flows.
  • a large amount of liquid-phase refrigerant flows.
  • the supply flow path SP has a shape in which the flow path cross-sectional area is narrowed at the inlet portions 151b and 152b. For this reason, the refrigerant flowing along the supply channel SP along the arrow A01 increases its pressure when passing through the vicinity of the inlet portions 151b and 152b (the position of the point P11 in FIG. 8).
  • the portion of the refrigerant flow channel 100 near the supply flow channel SP expands in both the forward direction and the reverse direction compared to the other portions of the refrigerant flow channel 100. It is formed to do. For this reason, the pressure of the refrigerant flowing along the supply channel SP along the arrow A01 is released immediately after passing through the vicinity of the inlet portions 151b and 152b. The pressure of the refrigerant flowing through the supply flow path SP is lowest when passing through a position (position of a point P12 in FIG. 8) that coincides with the center of the refrigerant flow path 100 along the forward direction.
  • the refrigerant whose pressure has been released has a velocity component in the direction of diffusing in the left-right direction in FIG.
  • such a refrigerant flow is indicated by an arrow A102.
  • a part of the refrigerant flowing along the arrow A102 collides with the inlet portion 151b, thereby generating a turbulent refrigerant flow.
  • a relatively large vortex is generated in a wide space formed between the inlet portion 151b and the inlet portion 152b arranged on the upstream side (the upper side in FIG. 8).
  • the flow of the refrigerant that forms such a vortex is indicated by an arrow A101.
  • the refrigerant flowing inside the dotted line DL1 and the refrigerant flowing outside the dotted line DL are mixed by the vortex indicated by the arrow A101. That is, the gas phase refrigerant and the liquid phase refrigerant are sufficiently mixed at the inlet portion of each refrigerant flow path 100. As a result, the gas-liquid mixing ratio of the refrigerant flowing into the respective refrigerant flow paths 100 is substantially uniform for all the refrigerant flow paths 100.
  • the pressure loss of the refrigerant passing through the heat exchanger 10 is reduced because each refrigerant channel 100 is enlarged in the vicinity of the supply channel SP.
  • the pressure loss of the refrigerant is reduced by 22% compared to a heat exchanger in which the refrigerant channel 100 is not enlarged in the vicinity of the supply channel SP. Has been confirmed.
  • the cup 151 and the like are formed so that the enlargement amount (D12) is equal to each other.
  • the gas-liquid mixing ratio of the refrigerant flowing into each refrigerant flow path 100 may be made more uniform. it can.
  • connection portions 151c and 152c adjacent to each other across the coolant channel 100 are formed so as to be closer to each other as the distance from the supply channel SP increases.
  • the depth of the space formed to expand at the inlet portion of the refrigerant flow path 100 is deep.
  • a larger refrigerant vortex is likely to be formed along the inlet portions 151b and 152b and the connecting portions 151c and 152c.
  • the inlet portions 151b and 152b and the heat exchange portions 151a and 152a in this embodiment are all formed so as to be perpendicular to the direction in which the supply flow path SP extends. In other words, all of them are formed so as to be parallel to each other.
  • the shapes of the respective refrigerant flow paths 100 can be made the same, and the heat exchange in the heat exchanger 10 can be performed uniformly throughout.
  • FIG. 9 shows the flow of the refrigerant in the heat exchanger 10 according to the comparative example.
  • the shape of the cup 151 is substantially the same as that of the above-described embodiment, while the shape of the inner plate 152 is entirely flat and is different from the above-described embodiment only in this respect. That is, in this comparative example, a portion of the refrigerant flow channel 100 near the supply flow channel SP is formed so as to expand only in the forward direction as compared with other portions of the refrigerant flow channel 100.
  • the gas phase refrigerant and the liquid phase refrigerant are not sufficiently mixed at the inlet portion of the refrigerant flow path 100.
  • a larger amount of liquid-phase refrigerant may flow into some of the refrigerant flow paths 100, while a larger amount of gas-phase refrigerant may flow into other refrigerant flow paths 100.
  • the width of the refrigerant flow path 100 is substantially uniform as a whole, and the refrigerant flow path 100 is not enlarged even in the vicinity of the supply flow path SP in the refrigerant flow path 100.
  • the refrigerant vortex is hardly formed at the inlet portion of the refrigerant flow path 100.
  • the gas-phase refrigerant and the liquid-phase refrigerant flow through the supply flow path SP while being unevenly distributed, and are supplied to the respective refrigerant flow paths 100 without being mixed. For this reason, as in the comparative example of FIG. 9, a larger amount of liquid-phase refrigerant flows into some of the refrigerant flow paths 100, while a larger amount of gas-phase refrigerant flows into other refrigerant flow paths 100. It can happen.
  • a relatively large vortex is formed at the inlet portion of the refrigerant flow path 100, so that the gas-liquid mixing ratio of the refrigerant flowing into the refrigerant flow path 100 is set to
  • the road 100 can be generally uniform.
  • the large vortex is formed because the portion near the supply flow path SP in the refrigerant flow path 100 is formed so as to expand in both the forward direction and the reverse direction (not one). Is attributed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This heat exchanger (10) is provided with a plurality of plate-shaped members (151, 152) which form partitions between first flow paths (100) through which a first fluid flows, and second flow paths (200) through which a second fluid flows, such that the first flow paths and the second flow paths are alternately stacked. In the heat exchanger (10), a supply flow path (SP) for supplying the first fluid to each of the first flow paths is formed so as to pass through the plurality of plate-shaped members along the direction in which the first flow paths and the second flow paths are stacked. In the heat exchanger (10), portions of the first flow paths in the vicinity of the supply flow path are formed so as to be enlarged in both a forward direction and a reverse direction in comparison to other portions of the first flow paths, when the forward direction is defined as the direction in which the first fluid flows in the supply flow path, and the reverse direction is defined as the opposite direction to the forward direction.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月12日に出願された日本国特許出願2016-240054号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on the Japanese Patent Application No. 2016-240054 filed on December 12, 2016, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は熱交換器に関する。 This disclosure relates to a heat exchanger.
 例えば自動車用の冷凍サイクルには、冷媒と冷却水との間で熱交換を行う熱交換器が設けられる。このような、2種類の流体間で熱交換を行う熱交換器では、一方の流体が流れる流路(以下では「第1流路」とも称する)と、他方の流体が流れる流路(以下では「第2流路」とも称する)とが、それぞれ層状の空間として形成されており、これらが交互に積層された構成となっているのが一般的である。 For example, a refrigeration cycle for automobiles is provided with a heat exchanger for exchanging heat between refrigerant and cooling water. In such a heat exchanger that exchanges heat between two types of fluids, a flow path through which one fluid flows (hereinafter also referred to as “first flow path”) and a flow path through which the other fluid flows (hereinafter, referred to as “first flow path”). In general, the “second flow path” is formed as a layered space, and these are alternately stacked.
 このような熱交換器の一例として、下記特許文献1には、トランスミッションオイルが導入される第1流路(第1層状空間)と、冷却水が導入される第2流路(第2層状空間)とが、交互に積層された構成の熱交換器が記載されている。当該熱交換器では、それぞれの第1流路に流体を供給するための供給流路が、第1流路及び第2流路を区画する複数の板状部材(カッププレート)を貫くように形成されている。トランスミッションオイルは、供給流路に沿って流れながら、それぞれの第1流路に分配されていく。 As an example of such a heat exchanger, the following Patent Document 1 discloses a first flow path (first layered space) into which transmission oil is introduced and a second flow path (second layered space) into which cooling water is introduced. ) And the heat exchanger of the structure laminated | stacked alternately is described. In the heat exchanger, a supply flow path for supplying a fluid to each first flow path is formed so as to penetrate a plurality of plate-like members (cup plates) that partition the first flow path and the second flow path. Has been. The transmission oil is distributed to the first flow paths while flowing along the supply flow paths.
特開2012-107783号公報JP 2012-107783 A
 自動車用の冷凍サイクルに用いられる熱交換器において、上記特許文献1に記載されている構成を採用した場合には、第1流路を冷媒が流れ、第2流路を冷却水が流れることとなる。冷媒は、板状部材を貫くように形成された供給流路に沿って流れながら、層状に形成されたそれぞれの第1流路に分配されていく。冷媒が供給流路から第1流路に流入する際には、冷媒はその流れ方向を大きく(約90度)変化させる。 In the heat exchanger used for the refrigeration cycle for automobiles, when the configuration described in Patent Document 1 is adopted, the coolant flows through the first flow path and the cooling water flows through the second flow path. Become. The refrigerant is distributed to the respective first flow paths formed in layers while flowing along the supply flow path formed so as to penetrate the plate-like member. When the refrigerant flows into the first flow path from the supply flow path, the refrigerant changes its flow direction largely (about 90 degrees).
 ところで、冷凍サイクルを循環する冷媒は、熱交換器に流入する際において気液混合の状態となっていることが多い。熱交換器における熱交換が効率よく行われるためには、第1流路に流入する気相冷媒と液相冷媒との比率が、全ての第1流路について概ね均一となっていることが好ましい。 Incidentally, the refrigerant circulating in the refrigeration cycle is often in a gas-liquid mixture state when flowing into the heat exchanger. In order to efficiently perform heat exchange in the heat exchanger, it is preferable that the ratio of the gas-phase refrigerant and the liquid-phase refrigerant flowing into the first flow path is substantially uniform for all the first flow paths. .
 しかしながら、気液混合の状態で流れている冷媒においては、気相の冷媒と液相の冷媒とが均等に分散していることは稀である。従って、一部の第1流路には液相冷媒の方が多く流入する一方、他の第1流路には気相冷媒の方が多く流入してしまうようなことが生じ得る。 However, in the refrigerant flowing in a gas-liquid mixed state, it is rare that the gas-phase refrigerant and the liquid-phase refrigerant are evenly dispersed. Accordingly, it may occur that a larger amount of liquid-phase refrigerant flows into some of the first flow paths while a larger amount of vapor-phase refrigerant flows into the other first flow paths.
 また、液相の冷媒は慣性力が大きく、その流れ方向を変化させにくいのに対し、気相の冷媒は慣性力が小さく、容易にその流れ方向を変化させやすい傾向がある。このため、供給流路を流れる冷媒が、その流れ方向を大きく変化させてから第1流路に流入するような構成の熱交換器においては、それぞれの第1流路に対し、気相冷媒と液相冷媒とを均等に流入させることは更に困難である。 Also, liquid phase refrigerant has a large inertial force, and its flow direction is difficult to change, whereas gas phase refrigerant has a small inertial force and tends to easily change its flow direction. For this reason, in a heat exchanger having a configuration in which the refrigerant flowing through the supply channel flows into the first channel after greatly changing the flow direction, the gas phase refrigerant and It is further difficult to allow the liquid-phase refrigerant to flow evenly.
 本開示は、積層された複数の流路のそれぞれに対し、気液混合の流体を均等に流入させることのできる熱交換器を提供することを目的とする。 This disclosure is intended to provide a heat exchanger capable of evenly flowing a gas-liquid mixed fluid into each of a plurality of stacked flow paths.
 本開示に係る熱交換器は、第1流体と第2流体との間で熱交換を行う熱交換器であって、第1流体が流れる第1流路と、第2流体が流れる第2流路と、が交互に積層された状態となるように、第1流路と第2流路との間を区画する複数の板状部材を備える。それぞれの第1流路に第1流体を供給するための供給流路が、第1流路と第2流路とが積層されている方向に沿って、複数の板状部材を貫くように形成されている。供給流路において第1流体が流れる方向を順方向とし、当該順方向とは反対の方向を逆方向としたときに、第1流路のうち供給流路の近傍の部分が、第1流路の他の部分に比べて、順方向及び逆方向の両方に向かって拡大するように形成されている。 A heat exchanger according to the present disclosure is a heat exchanger that performs heat exchange between a first fluid and a second fluid, and includes a first flow path through which the first fluid flows and a second flow through which the second fluid flows. A plurality of plate-like members that partition between the first flow path and the second flow path are provided so that the roads are alternately stacked. A supply channel for supplying the first fluid to each first channel is formed so as to penetrate a plurality of plate-like members along the direction in which the first channel and the second channel are stacked. Has been. When the direction in which the first fluid flows in the supply flow path is the forward direction and the direction opposite to the forward direction is the reverse direction, a portion of the first flow path in the vicinity of the supply flow path is the first flow path. Compared to the other parts, it is formed so as to expand in both the forward direction and the reverse direction.
 このような構成の熱交換器では、第1流体が流れる第1流路のうち供給流路の近傍の部分が拡大しており、これにより比較的大きな空間が形成されている。供給流路を流れる第1流体は、板状部材を通過した際において圧力が開放されることにより、当該空間にその一部が流入する。その結果、当該空間では比較的大きな第1流体の渦が生じ、その渦によって気相の冷媒と液相の冷媒とが混合された状態となる。それぞれの第1流路には、上記の渦によって十分に混合された冷媒が流入する。このように、上記構成の熱交換器では、積層された複数の第1流路のそれぞれに対し、気液混合の第1流体を均等に流入させることができる。 In the heat exchanger having such a configuration, a portion in the vicinity of the supply flow path in the first flow path through which the first fluid flows is enlarged, thereby forming a relatively large space. A part of the first fluid flowing through the supply channel flows into the space when the pressure is released when the first fluid passes through the plate-like member. As a result, a relatively large vortex of the first fluid is generated in the space, and the gas phase refrigerant and the liquid phase refrigerant are mixed by the vortex. The refrigerant sufficiently mixed by the vortex flows into each first flow path. Thus, in the heat exchanger of the said structure, the 1st fluid of gas-liquid mixing can be made to flow in equally with respect to each of the several laminated | stacked 1st flow path.
 本開示によれば、積層された複数の流路のそれぞれに対し、気液混合の流体を均等に流入させることのできる熱交換器が提供される。 According to the present disclosure, there is provided a heat exchanger that can uniformly flow a gas-liquid mixed fluid into each of a plurality of stacked flow paths.
図1は、本実施形態に係る熱交換器を側面視で描いた図である。FIG. 1 is a side view of the heat exchanger according to the present embodiment. 図2は、本実施形態に係る熱交換器を上面視で描いた図である。FIG. 2 is a diagram illustrating the heat exchanger according to the present embodiment as viewed from above. 図3は、図2におけるIII-III断面を示す断面図である。FIG. 3 is a cross-sectional view showing a III-III cross section in FIG. 図4は、容器の具体的な構成を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining a specific configuration of the container. 図5は、図1の熱交換器において冷媒の流れる経路、及び冷却水の流れる経路を模式的に示す図である。FIG. 5 is a diagram schematically showing a path through which a refrigerant flows and a path through which cooling water flows in the heat exchanger of FIG. 1. 図6は、熱交換器の内部に配置されたインナーフィンを示す図である。FIG. 6 is a diagram showing inner fins arranged inside the heat exchanger. 図7は、図6に示されるインナーフィンの構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of the inner fin shown in FIG. 図8は、供給流路から冷媒流路に流入する冷媒の流れを模式的に示す図である。FIG. 8 is a diagram schematically illustrating the flow of the refrigerant flowing from the supply flow path into the refrigerant flow path. 図9は、比較例に係る熱交換器において、供給流路から冷媒流路に流入する冷媒の流れを模式的に示す図である。FIG. 9 is a diagram schematically showing the flow of the refrigerant flowing from the supply channel into the refrigerant channel in the heat exchanger according to the comparative example. 図10は、他の比較例に係る熱交換器において、供給流路から冷媒流路に流入する冷媒の流れを模式的に示す図である。FIG. 10 is a diagram schematically illustrating the flow of the refrigerant flowing from the supply channel into the refrigerant channel in the heat exchanger according to another comparative example.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 本実施形態に係る熱交換器10の構成について説明する。図1に示される熱交換器10は、冷媒と冷却水(例えばLLC)との間で熱交換を行うための熱交換器として構成されている。このような熱交換器10は、例えば自動車用冷凍サイクルの水冷式凝縮器又は蒸発器として用いられる。冷媒は、本実施形態における「第1流体」に該当する。冷却水は、本実施形態における「第2流体」に該当する。 The configuration of the heat exchanger 10 according to the present embodiment will be described. The heat exchanger 10 shown in FIG. 1 is configured as a heat exchanger for performing heat exchange between a refrigerant and cooling water (for example, LLC). Such a heat exchanger 10 is used as, for example, a water-cooled condenser or an evaporator of an automobile refrigeration cycle. The refrigerant corresponds to the “first fluid” in the present embodiment. The cooling water corresponds to the “second fluid” in the present embodiment.
 熱交換器10は容器15を備えている。図3に示されるように、容器15は、板状の部材であるカップ151とインナープレート152とを有しており、これらが交互に積層された状態で互いにろう付けされた構成となっている。互いに隣り合うカップ151とインナープレート152との間には空間が形成されており、当該空間が、冷媒の流れる流路である冷媒流路100、又は、冷却水の流れる流路である冷却水流路200となっている。冷媒流路100と冷却水流路200とは、いずれも平板状(層状)の薄い空間として形成されており、容器15の積層方向(図1や図3では上下方向)に沿って交互に並ぶように形成されている。 The heat exchanger 10 includes a container 15. As shown in FIG. 3, the container 15 has a cup 151 and an inner plate 152 that are plate-like members, and these are brazed to each other in a state of being alternately stacked. . A space is formed between the cup 151 and the inner plate 152 adjacent to each other, and the space is a coolant channel 100 that is a channel through which a coolant flows, or a cooling water channel that is a channel through which coolant flows. 200. The coolant channel 100 and the cooling water channel 200 are both formed as flat (layered) thin spaces, and are alternately arranged along the stacking direction of the containers 15 (vertical direction in FIGS. 1 and 3). Is formed.
 冷媒流路100は、本実施形態における「第1流路」に該当する。冷却水流路200は、本実施形態における「第2流路」に該当する。また、カップ151及びインナープレート152は、冷媒流路100と冷却水流路200とが交互に積層された状態となるように、冷媒流路100と冷却水流路200との間を区画するものであって、いずれも本実施形態における「板状部材」に該当する。 The refrigerant channel 100 corresponds to the “first channel” in the present embodiment. The cooling water channel 200 corresponds to the “second channel” in the present embodiment. Further, the cup 151 and the inner plate 152 partition the refrigerant channel 100 and the cooling water channel 200 so that the refrigerant channel 100 and the cooling water channel 200 are alternately stacked. All correspond to the “plate member” in the present embodiment.
 図3及び図6に示されるように、容器15の内部、つまり冷媒流路100及び冷却水流路200のそれぞれには、インナーフィン300が配置されている。インナーフィン300は、冷媒や冷却水との接触面積を増加させ、これにより熱交換器10の熱交換効率を向上させるために設けられている。インナーフィン300の具体的な形状や配置については後に説明する。 As shown in FIGS. 3 and 6, inner fins 300 are arranged inside the container 15, that is, in each of the coolant channel 100 and the cooling water channel 200. The inner fin 300 is provided in order to increase the contact area with the refrigerant or the cooling water, thereby improving the heat exchange efficiency of the heat exchanger 10. The specific shape and arrangement of the inner fin 300 will be described later.
 図2に示されるように、上面視における熱交換器10の形状(つまり容器15の形状)は概ね長方形となっている。熱交換器10の上面において、その長手方向の一方側(図2では左側)の端部近傍となる位置には、冷媒流入部101と冷却水流出部202とが設けられている。冷媒流入部101は、外部から供給される冷媒の入口となる部分である。冷却水流出部202は、熱交換器10を通過した冷却水の出口となる部分である。冷媒流入部101と冷却水流出部202とは、上面視における熱交換器10の短手方向に沿って並ぶように設けられている。 As shown in FIG. 2, the shape of the heat exchanger 10 (that is, the shape of the container 15) in a top view is generally rectangular. On the upper surface of the heat exchanger 10, a refrigerant inflow portion 101 and a cooling water outflow portion 202 are provided at positions near one end in the longitudinal direction (left side in FIG. 2). The refrigerant inflow portion 101 is a portion serving as an inlet for refrigerant supplied from the outside. The cooling water outflow portion 202 is a portion that becomes an outlet of the cooling water that has passed through the heat exchanger 10. The refrigerant inflow portion 101 and the cooling water outflow portion 202 are provided so as to be aligned along the short direction of the heat exchanger 10 in a top view.
 図1に示されるように、熱交換器10の下面であり、且つ冷媒流入部101の直下となる位置には、冷媒流出部102が設けられている。冷媒流出部102は、熱交換器10を通過した冷媒の出口となる部分である。また、熱交換器10の下面であり、且つ冷却水流出部202の直下となる位置には、冷却水流入部201が設けられている。冷却水流入部201は、外部から供給される冷却水の入口となる部分である。冷媒流出部102と冷却水流入部201とは、やはり上面視における熱交換器10の短手方向に沿って並ぶように設けられている。 As shown in FIG. 1, a refrigerant outflow portion 102 is provided at a position on the lower surface of the heat exchanger 10 and immediately below the refrigerant inflow portion 101. The refrigerant outflow portion 102 is a portion that becomes an outlet of the refrigerant that has passed through the heat exchanger 10. Further, a cooling water inflow portion 201 is provided at a position on the lower surface of the heat exchanger 10 and immediately below the cooling water outflow portion 202. The cooling water inflow portion 201 is a portion serving as an inlet for cooling water supplied from the outside. The refrigerant outflow portion 102 and the cooling water inflow portion 201 are also provided so as to be aligned along the short direction of the heat exchanger 10 in a top view.
 尚、以下の説明においては、冷媒流出部102から冷媒流入部101に向かう方向のことを上方向とし、その反対方向を下方向として説明する。ただし、実際に熱交換器10が用いられる場合における冷媒流入部101と冷媒流出部102との上下関係は、図1に示されるものとは異なっていてもよい。 In the following description, the direction from the refrigerant outflow portion 102 toward the refrigerant inflow portion 101 is referred to as an upward direction, and the opposite direction is referred to as a downward direction. However, the vertical relationship between the refrigerant inflow portion 101 and the refrigerant outflow portion 102 when the heat exchanger 10 is actually used may be different from that shown in FIG.
 図3に示されるように、カップ151のうち冷媒流入部101の直下となる位置には、円形の開口OP1が形成されている。同様に、インナープレート152のうち冷媒流入部101の直下となる位置には、円形の開口OP2が形成されている。間に冷却水流路200が形成されているカップ151とインナープレート152とは、開口OP1の縁と開口OP2縁とを互いに重ね合わせた状態でろう付けされている。このため、冷媒流入部101から流入した冷媒は、開口OP1等を下方側に向かって流れながら、それぞれの冷媒流路100に分配されていく。尚、開口OP1の縁と開口OP2縁とのろう付けは水密となるように行われているので、冷媒が冷却水流路200に流入してしまうことは無い。 As shown in FIG. 3, a circular opening OP <b> 1 is formed at a position directly below the refrigerant inflow portion 101 in the cup 151. Similarly, a circular opening OP <b> 2 is formed at a position directly below the refrigerant inflow portion 101 in the inner plate 152. The cup 151 and the inner plate 152 in which the cooling water flow path 200 is formed are brazed in a state where the edge of the opening OP1 and the edge of the opening OP2 overlap each other. For this reason, the refrigerant flowing in from the refrigerant inflow portion 101 is distributed to the respective refrigerant flow paths 100 while flowing downward through the opening OP1 and the like. Since the edge of the opening OP1 and the edge of the opening OP2 are brazed so as to be watertight, the refrigerant does not flow into the cooling water flow path 200.
 それぞれの冷媒流路100に冷媒を供給するためのものとして形成された上記流路、つまり、開口OP1等を通って冷媒が流れるように形成された円柱形状の流路のことを、以下では「供給流路SP」とも表記する。このような供給流路SPは、冷媒流路100と冷却水流路200とが積層されている方向に沿って、複数の板状部材(カップ151やインナープレート152)を貫くように形成された流路、ということができる。 The above-described flow paths that are formed to supply the refrigerant to the respective refrigerant flow paths 100, that is, the cylindrical flow paths that are formed so that the refrigerant flows through the openings OP1 and the like are hereinafter referred to as “ Also referred to as “supply channel SP”. Such a supply flow path SP is a flow formed so as to penetrate a plurality of plate-like members (cup 151 and inner plate 152) along the direction in which the refrigerant flow path 100 and the cooling water flow path 200 are laminated. Road.
 カップ151のうち、開口OP1とは対角線上において反対側となる位置(図2において符号P1が付された位置)には、不図示の開口が形成されている。当該開口の形状は、開口OP1の形状と同じである。また、インナープレート152のうち、開口OP2とは対角線上において反対側となる位置にも、不図示の開口が形成されている。当該開口の形状は、開口OP2の形状と同じである。この位置(P1)においても、間に冷却水流路200が形成されているカップ151とインナープレート152とは、それぞれの開口の縁同士を互いに重ね合わせた状態でろう付けされている。冷媒流入部101から供給された冷媒は、それぞれの冷媒流路100を通った後に、符号P1が付された位置において再び合流し、上記の開口を通り下方側に向かって流れる。 In the cup 151, an opening (not shown) is formed at a position opposite to the opening OP <b> 1 on the diagonal line (a position denoted by reference numeral P <b> 1 in FIG. 2). The shape of the opening is the same as the shape of the opening OP1. In addition, an opening (not shown) is also formed in the inner plate 152 at a position opposite to the opening OP2 on the diagonal line. The shape of the opening is the same as the shape of the opening OP2. Also at this position (P1), the cup 151 and the inner plate 152 in which the cooling water flow path 200 is formed are brazed in a state where the edges of the respective openings are overlapped with each other. The refrigerant supplied from the refrigerant inflow portion 101 passes through the respective refrigerant flow paths 100, and then merges again at a position denoted by reference symbol P1, and flows downward through the opening.
 図示は省略するが、冷却水流入部201から供給された冷却水が流れる流路も、上記と同様に形成されている。具体的には、カップ151のうち冷却水流入部201の直上となる位置には、円形の開口が形成されている。同様に、インナープレート152のうち冷却水流入部201の直上となる位置にも、円形の開口が形成されている。間に冷媒流路100が形成されているカップ151とインナープレート152とは、それぞれの上記開口の縁同士を互いに重ね合わせた状態でろう付けされている。このため、冷却水流入部201から流入した冷却水は、上記開口を上方側に向かって流れながら、それぞれの冷却水流路200に分配されていく。尚、開口の縁同士のろう付けは水密となるように行われているので、冷却水が冷媒流路100に流入してしまうことは無い。 Although not shown, the flow path through which the cooling water supplied from the cooling water inflow portion 201 flows is also formed in the same manner as described above. Specifically, a circular opening is formed in the cup 151 at a position directly above the cooling water inflow portion 201. Similarly, a circular opening is also formed in the inner plate 152 at a position directly above the cooling water inflow portion 201. The cup 151 and the inner plate 152 in which the refrigerant flow path 100 is formed are brazed in a state where the edges of the openings are overlapped with each other. For this reason, the cooling water flowing in from the cooling water inflow portion 201 is distributed to the respective cooling water flow paths 200 while flowing upward through the openings. Since the edges of the openings are brazed so as to be watertight, the cooling water does not flow into the coolant channel 100.
 カップ151のうち、冷却水流入部201の直上の開口とは対角線上において反対側となる位置(図2において符号P2が付された位置)にも、不図示の開口が形成されている。また、インナープレート152のうち、冷却水流入部201の直上の開口とは対角線上において反対側となる位置にも、不図示の開口が形成されている。この位置(P2)においても、間に冷媒流路100が形成されているカップ151とインナープレート152とは、それぞれの開口の縁同士を互いに重ね合わせた状態でろう付けされている。冷却水流入部201から供給された冷媒は、それぞれの冷却水流路200を通った後に、符号P2が付された位置において再び合流し、上記の開口を通り上方側に向かって流れる。 In the cup 151, an opening (not shown) is also formed at a position on the opposite side of the opening directly above the cooling water inflow portion 201 (a position denoted by reference numeral P2 in FIG. 2). In addition, an opening (not shown) is formed at a position on the inner plate 152 opposite to the opening directly above the cooling water inflow portion 201 on the diagonal line. Also at this position (P2), the cup 151 and the inner plate 152 in which the coolant channel 100 is formed are brazed in a state where the edges of the respective openings are overlapped with each other. The refrigerant supplied from the cooling water inflow portion 201 passes through the respective cooling water flow paths 200, and then merges again at a position denoted by reference symbol P2, and flows upward through the opening.
 供給流路SPの近傍におけるカップ151やインナープレート152の具体的な形状について、図4を参照しながら説明する。図4では、冷媒流路100及び冷却水流路200のそれぞれに配置されたインナーフィン300の図示が省略されている。また、図4では説明の便宜のため、供給流路SPの直径が、図3に示される実際の直径よりも小さくなるように描かれている。図4では、供給流路SPにおいて冷媒が流れる方向が矢印A01で示されている。また、供給流路SPから冷媒流路100に流入した冷媒の流れる方向が矢印A02で示されている。 Specific shapes of the cup 151 and the inner plate 152 in the vicinity of the supply flow path SP will be described with reference to FIG. In FIG. 4, illustration of the inner fins 300 disposed in each of the refrigerant channel 100 and the cooling water channel 200 is omitted. Further, in FIG. 4, for convenience of explanation, the diameter of the supply flow path SP is drawn so as to be smaller than the actual diameter shown in FIG. 3. In FIG. 4, the direction in which the refrigerant flows in the supply flow path SP is indicated by an arrow A01. In addition, the direction in which the refrigerant flowing into the refrigerant channel 100 from the supply channel SP flows is indicated by an arrow A02.
 それぞれのカップ151の形状は互いに同じであり、それぞれのインナープレート152の形状も互いに同じである。そこで、以下では特に符号「α」が付されているカップ151の形状、及び符号「β」が付されているインナープレート152の形状について説明することとする。これらのカップ151及びインナープレート152は、図4において上下方向の中央に示される冷媒流路100を区画するもの、となっている。 Each cup 151 has the same shape, and each inner plate 152 has the same shape. Therefore, in the following, the shape of the cup 151 marked with the symbol “α” and the shape of the inner plate 152 marked with the symbol “β” will be described. The cup 151 and the inner plate 152 partition the refrigerant flow path 100 shown in the center in the vertical direction in FIG.
 カップ151は、熱交換部151aと、入口部151bと、接続部151cとを有している。熱交換部151aは、カップ151のうち大部分を占めており、冷媒と冷却水との間で熱交換が行われる部分となっている。熱交換部151aはその全体が平坦な板状となっており、供給流路SPが伸びる方向(図4では上下方向)に対して垂直となっている。 The cup 151 has a heat exchange part 151a, an inlet part 151b, and a connection part 151c. The heat exchanging portion 151a occupies most of the cup 151, and is a portion where heat is exchanged between the refrigerant and the cooling water. The entire heat exchanging portion 151a has a flat plate shape and is perpendicular to the direction in which the supply flow path SP extends (the vertical direction in FIG. 4).
 入口部151bは、カップ151のうち供給流路SPの近傍の部分である。つまり、カップ151のうち、上面視において供給流路SPの周囲を円形に囲む部分である。入口部151bは、熱交換部151aと同様にその全体が平坦な板状となっており、供給流路SPが伸びる方向に対して垂直となっている。 The inlet portion 151b is a portion of the cup 151 in the vicinity of the supply flow path SP. That is, it is a part of the cup 151 that surrounds the periphery of the supply flow path SP in a top view. The inlet portion 151b has a flat plate shape as a whole like the heat exchange portion 151a, and is perpendicular to the direction in which the supply flow path SP extends.
 供給流路SPにおいて冷媒が流れる方向(つまり、矢印A01で示される方向)のことを、以下では「順方向」とも称する。また、順方向とは反対の方向のことを、以下では「逆方向」とも称する。入口部151bが配置されている位置は、熱交換部151aが配置されている位置よりも順方向側となっている。順方向に沿った熱交換部151aと入口部151bとの間の距離(冷媒流路100を区画する表面同士の距離)が、図4では「D11」として示されている。 The direction in which the refrigerant flows in the supply flow path SP (that is, the direction indicated by the arrow A01) is hereinafter also referred to as “forward direction”. The direction opposite to the forward direction is also referred to as “reverse direction” below. The position where the inlet portion 151b is disposed is on the forward direction side relative to the position where the heat exchange portion 151a is disposed. The distance between the heat exchanging portion 151a and the inlet portion 151b along the forward direction (the distance between the surfaces defining the refrigerant flow path 100) is shown as “D11” in FIG.
 接続部151cは、熱交換部151aと入口部151bとの間を繋ぐように形成された部分である。接続部151cは、熱交換部151aや入口部151bに対して傾斜している。具体的には、供給流路SPから遠ざかるほど、冷媒流路100の幅(図4における上下方向の寸法)が小さくなるように、接続部151cが熱交換部151a等に対して傾斜している。 The connecting portion 151c is a portion formed so as to connect the heat exchanging portion 151a and the inlet portion 151b. The connecting portion 151c is inclined with respect to the heat exchanging portion 151a and the inlet portion 151b. Specifically, the connection portion 151c is inclined with respect to the heat exchanging portion 151a and the like so that the width of the refrigerant passage 100 (the vertical dimension in FIG. 4) decreases as the distance from the supply passage SP increases. .
 インナープレート152は、上記のカップ151と同様に、熱交換部152aと、入口部152bと、接続部152cとを有している。熱交換部152aは、インナープレート152のうち大部分を占めており、冷媒と冷却水との間で熱交換が行われる部分となっている熱交換部152aはその全体が平坦な板状となっており、供給流路SPが伸びる方向(図4では上下方向)に対して垂直となっている。熱交換部152aは、冷媒流路100を挟んで熱交換部151aと対向している。 The inner plate 152 has the heat exchange part 152a, the inlet part 152b, and the connection part 152c similarly to said cup 151. FIG. The heat exchanging portion 152a occupies most of the inner plate 152, and the heat exchanging portion 152a, which is a portion where heat is exchanged between the refrigerant and the cooling water, has a flat plate shape as a whole. It is perpendicular to the direction in which the supply channel SP extends (the vertical direction in FIG. 4). The heat exchanging part 152a is opposed to the heat exchanging part 151a with the refrigerant channel 100 interposed therebetween.
 入口部152bは、インナープレート152のうち供給流路SPの近傍の部分である。つまり、インナープレート152のうち、上面視において供給流路SPの周囲を円形に囲む部分である。入口部152bは、熱交換部152aと同様にその全体が平坦な板状となっており、供給流路SPが伸びる方向に対して垂直となっている。入口部152bは、冷媒流路100を挟んで入口部151bと対向している。 The inlet portion 152b is a portion of the inner plate 152 in the vicinity of the supply flow path SP. That is, it is a portion of the inner plate 152 surrounding the supply channel SP in a circular shape when viewed from above. The inlet portion 152b has a flat plate shape as in the heat exchanging portion 152a, and is perpendicular to the direction in which the supply flow path SP extends. The inlet portion 152b is opposed to the inlet portion 151b with the refrigerant channel 100 interposed therebetween.
 また、入口部152bは、符号「α」が付されたカップ151とは反対側にあるカップ151(図4では上方側にあるカップ151)の入口部151bと当接しており、当該入口部151bに対して接合(ろう接)されている。つまり本実施形態では、隣り合う一対の板状部材(カップ151とインナープレート152)が、それぞれの入口部151b、152bを互いに当接させた状態で接合されている。 Further, the inlet portion 152b is in contact with the inlet portion 151b of the cup 151 on the opposite side of the cup 151 with the symbol “α” (the cup 151 on the upper side in FIG. 4), and the inlet portion 151b Are joined (brazed). That is, in this embodiment, a pair of adjacent plate-like members (cup 151 and inner plate 152) are joined in a state where the respective inlet portions 151b and 152b are in contact with each other.
 入口部152bが配置されている位置は、熱交換部152aが配置されている位置よりも逆方向側となっている。逆方向に沿った熱交換部152aと入口部152bとの間の距離(冷媒流路100を区画する表面同士の距離)が、図4では「D12」として示されている。 The position where the inlet part 152b is disposed is on the opposite side of the position where the heat exchange part 152a is disposed. The distance between the heat exchange part 152a and the inlet part 152b along the reverse direction (the distance between the surfaces that define the refrigerant flow path 100) is shown as “D12” in FIG.
 接続部152cは、熱交換部152aと入口部152bとの間を繋ぐように形成された部分である。接続部152cは、熱交換部152aや入口部152bに対して傾斜している。具体的には、供給流路SPから遠ざかるほど、冷媒流路100の幅(図4における上下方向の寸法)が小さくなるように、接続部152cが熱交換部152a等に対して傾斜している。 The connection part 152c is a part formed so as to connect the heat exchange part 152a and the inlet part 152b. The connection part 152c is inclined with respect to the heat exchange part 152a and the inlet part 152b. Specifically, the connection part 152c is inclined with respect to the heat exchange part 152a and the like so that the width of the refrigerant flow path 100 (the vertical dimension in FIG. 4) decreases as the distance from the supply flow path SP increases. .
 接続部152cは、冷媒流路100を挟んで接続部151cと対向している。上記のように、接続部151c及び接続部152cは熱交換部151a等に対して傾斜している。その結果、冷媒流路100を挟んで互いに隣り合う一対の接続部151c、152cは、供給流路SPから遠ざかるほど互いに近づくように形成されている。 The connecting portion 152c is opposed to the connecting portion 151c with the refrigerant channel 100 interposed therebetween. As described above, the connection part 151c and the connection part 152c are inclined with respect to the heat exchange part 151a and the like. As a result, the pair of connecting portions 151c and 152c that are adjacent to each other across the coolant channel 100 are formed so as to be closer to each other as the distance from the supply channel SP increases.
 以上のような構成においては、冷媒流路100のうち供給流路SPの近傍の部分が、冷媒流路100の他の部分に比べて、順方向及び逆方向の両方に向かって拡大するように形成されている。その結果、入口部151bと入口部152bとによって挟まれた部分における冷媒流路100の幅(D2)は、熱交換部151aと熱交換部152aとによって挟まれた部分における冷媒流路100の幅(D1)よりも大きくなっている。本実施形態では、D2=D1+D11+D12の関係が成立している。 In the configuration as described above, a portion of the refrigerant flow channel 100 in the vicinity of the supply flow channel SP expands in both the forward direction and the reverse direction as compared with other portions of the refrigerant flow channel 100. Is formed. As a result, the width (D2) of the refrigerant flow path 100 in the part sandwiched between the inlet part 151b and the inlet part 152b is the width of the refrigerant flow path 100 in the part sandwiched between the heat exchange part 151a and the heat exchange part 152a. It is larger than (D1). In this embodiment, the relationship of D2 = D1 + D11 + D12 is established.
 また、本実施形態では、冷媒流路100のうち供給流路SPの近傍の部分における、順方向に向かった拡大量(つまりD11)と、逆方向に向かった拡大量(つまりD12)とが、互いに等しくなるように、冷媒流路100のうち上記部分が形成されている。カップ151とインナープレート152とが以上のような形状に形成されていることの効果については、後に説明する。 In the present embodiment, the amount of expansion in the forward direction (that is, D11) and the amount of expansion in the reverse direction (that is, D12) in the portion near the supply channel SP in the refrigerant channel 100 are The above portion of the coolant channel 100 is formed so as to be equal to each other. The effect of the cup 151 and the inner plate 152 being formed in the above shape will be described later.
 尚、本実施形態では、冷却水流路200の形状についても上記と同様となるように、それぞれのカップ151及びインナープレート152が形成されている。つまり、本実施形態では、それぞれの冷却水流路200の形状が、上記のような冷媒流路100の形状と概ね同一となっている。このような態様に替えて、冷媒流路100の形状と冷却水流路200の形状とが互いに異なるような態様であってもよい。 In addition, in this embodiment, each cup 151 and the inner plate 152 are formed so that it may become the same as the above also about the shape of the cooling water flow path 200. That is, in this embodiment, the shape of each cooling water flow path 200 is substantially the same as the shape of the refrigerant flow path 100 as described above. Instead of such an aspect, an aspect in which the shape of the coolant channel 100 and the shape of the cooling water channel 200 are different from each other may be employed.
 図5には、熱交換器10を冷媒が流れる経路が、実線の矢印A11等で示されている。また、熱交換器10を冷却水が流れる経路が、一点鎖線の矢印A21等で示されている。本実施形態では、熱交換器10のうち上方側の部分と下方側の部分とで、冷媒などの流れる方向が互いに異なるように構成されている。以下では、熱交換器10のうち上方側の部分、すなわち冷媒流入部101や冷却水流出部202が設けられている方の部分を「第1熱交換部11」とも表記する。また、熱交換器10のうち下方側の部分、すなわち冷媒流出部102や冷却水流入部201が設けられている方の部分を「第2熱交換部12」とも表記する。図1では、第1熱交換部11の範囲AR1と、第2熱交換部12の範囲AR2とが、それぞれ矢印で示されている。 In FIG. 5, the path through which the refrigerant flows through the heat exchanger 10 is indicated by a solid arrow A11 or the like. Further, a path through which the cooling water flows through the heat exchanger 10 is indicated by a dashed-dotted arrow A21 or the like. In the present embodiment, the upper part and the lower part of the heat exchanger 10 are configured such that the directions in which the refrigerant flows are different from each other. Hereinafter, the upper portion of the heat exchanger 10, that is, the portion where the refrigerant inflow portion 101 and the cooling water outflow portion 202 are provided is also referred to as “first heat exchange portion 11”. Further, the lower part of the heat exchanger 10, that is, the part provided with the refrigerant outflow part 102 and the cooling water inflow part 201 is also referred to as “second heat exchange part 12”. In FIG. 1, the range AR1 of the first heat exchange unit 11 and the range AR2 of the second heat exchange unit 12 are indicated by arrows, respectively.
 第1熱交換部11と第2熱交換部12との境界となる位置においては、冷媒流入部101から下方に向けて伸びる流路(供給流路SP)と、冷媒流出部102から上方に向けて伸びる流路との間が塞がれている。つまり、当該位置に配置された容器15が仕切り板として機能している。一方、図2の符号P1が付された位置においては、第1熱交換部11と第2熱交換部12との間を繋ぐ流路(円形の開口により形成された流路)が形成されている。 At a position serving as a boundary between the first heat exchange section 11 and the second heat exchange section 12, a flow path (supply flow path SP) extending downward from the refrigerant inflow section 101 and upward from the refrigerant outflow section 102 And the flow path that extends. That is, the container 15 arranged at the position functions as a partition plate. On the other hand, at the position denoted by reference numeral P1 in FIG. 2, a flow path (flow path formed by a circular opening) that connects between the first heat exchange section 11 and the second heat exchange section 12 is formed. Yes.
 同様に、第1熱交換部11と第2熱交換部12との境界となる位置においては、冷却水流入部201から上方に向けて伸びる流路と、冷却水流出部202から下方に向けて伸びる流路との間が塞がれている。一方、図2の符号P2が付された位置においては、第1熱交換部11と第2熱交換部12との間を繋ぐ流路(円形の開口により形成された流路)が形成されている。 Similarly, in the position which becomes a boundary of the 1st heat exchanging part 11 and the 2nd heat exchanging part 12, the flow path extended upwards from cooling water inflow part 201, and downward from cooling water outflow part 202 A space between the extending channel is blocked. On the other hand, at the position denoted by reference numeral P2 in FIG. 2, a flow path (flow path formed by a circular opening) that connects between the first heat exchange section 11 and the second heat exchange section 12 is formed. Yes.
 図5を参照しながら、熱交換器10を冷媒が流れる経路について説明する。冷媒流入部101から第1熱交換部11に供給された冷媒は、カップ151に形成された開口OP1等、具体的には供給流路SPを通り下方側に向かって流れる(矢印A11)。その際、冷媒はそれぞれの冷媒流路100に分配され、容器15の対角線上における反対側に向かって冷媒流路100を流れる(矢印A12)。その後、それぞれの冷媒流路100を流れた冷媒は再び合流し、円形の開口により形成された流路を第1熱交換部11から第2熱交換部12に向かって流れる(矢印A13)。 Referring to FIG. 5, the path through which the refrigerant flows through the heat exchanger 10 will be described. The refrigerant supplied from the refrigerant inflow portion 101 to the first heat exchanging portion 11 flows downward through the supply passage SP such as the opening OP1 formed in the cup 151 (arrow A11). In that case, a refrigerant | coolant is distributed to each refrigerant flow path 100, and flows through the refrigerant flow path 100 toward the opposite side on the diagonal of the container 15 (arrow A12). Thereafter, the refrigerants flowing through the respective refrigerant flow paths 100 merge again, and flow through the flow path formed by the circular opening from the first heat exchange unit 11 toward the second heat exchange unit 12 (arrow A13).
 冷媒は、第2熱交換部12において再び供給流路SPからそれぞれの冷媒流路100に分配され、容器15の対角線上における反対側に向かって冷媒流路100を流れる(矢印A14)。その後、それぞれの冷媒流路100を流れた冷媒は再び合流し、円形の開口により形成された流路を冷媒流出部102に向かって流れる(矢印A15)。最終的には、冷媒は冷媒流出部102から外部へと排出される。 The refrigerant is again distributed from the supply flow path SP to the respective refrigerant flow paths 100 in the second heat exchange section 12, and flows through the refrigerant flow path 100 toward the opposite side on the diagonal line of the container 15 (arrow A14). Thereafter, the refrigerants flowing through the respective refrigerant flow paths 100 merge again, and flow through the flow path formed by the circular opening toward the refrigerant outflow portion 102 (arrow A15). Eventually, the refrigerant is discharged from the refrigerant outflow portion 102 to the outside.
 引き続き図5を参照しながら、熱交換器10を冷却水が流れる経路について説明する。冷却水流入部201から第2熱交換部12に供給された冷却水は、カップ151等に形成された開口を通り上方側に向かって流れる(矢印A21)。その際、冷却水はそれぞれの冷却水流路200に分配され、容器15の対角線上における反対側に向かって冷却水流路200を流れる(矢印A22)。その後、それぞれの冷却水流路200を流れた冷却水は再び合流し、円形の開口により形成された流路を第2熱交換部12から第1熱交換部11に向かって流れる(矢印A23)。 The path through which the cooling water flows through the heat exchanger 10 will be described with reference to FIG. The cooling water supplied from the cooling water inflow portion 201 to the second heat exchange portion 12 flows upward through an opening formed in the cup 151 and the like (arrow A21). At that time, the cooling water is distributed to the respective cooling water flow paths 200 and flows through the cooling water flow paths 200 toward the opposite side on the diagonal line of the container 15 (arrow A22). Thereafter, the cooling water that has flowed through the respective cooling water flow paths 200 merges again, and flows through the flow path formed by the circular opening from the second heat exchange unit 12 toward the first heat exchange unit 11 (arrow A23).
 冷却水は、第1熱交換部11において再びそれぞれの冷却水流路200に分配され、容器15の対角線上における反対側に向かって冷却水流路200を流れる(矢印A24)。その後、それぞれの冷却水流路200を流れた冷媒は再び合流し、円形の開口により形成された流路を冷却水流出部202に向かって流れる(矢印A25)。最終的には、冷却水は冷却水流出部202から外部へと排出される。 The cooling water is again distributed to the respective cooling water flow paths 200 in the first heat exchange unit 11, and flows through the cooling water flow paths 200 toward the opposite side on the diagonal line of the container 15 (arrow A24). Thereafter, the refrigerant that has flowed through the respective cooling water flow paths 200 merges again, and flows through the flow path formed by the circular opening toward the cooling water outflow portion 202 (arrow A25). Finally, the cooling water is discharged from the cooling water outflow portion 202 to the outside.
 既に述べたように、冷媒流路100と冷却水流路200とは交互に重なるように配置されている。このため、第1熱交換部11においては、冷媒流路100を流れる冷媒(矢印A12)と冷却水流路200を流れる冷却水(矢印A24)との間で熱交換が行われる。同様に、第2熱交換部12においても、冷媒流路100を流れる冷媒(矢印A14)と冷却水流路200を流れる冷却水(矢印A22)との間で熱交換が行われる。 As already described, the refrigerant flow path 100 and the cooling water flow path 200 are arranged so as to alternately overlap. For this reason, in the 1st heat exchange part 11, heat exchange is performed between the refrigerant | coolant (arrow A12) which flows through the refrigerant flow path 100, and the cooling water (arrow A24) which flows through the cooling water flow path 200. FIG. Similarly, also in the 2nd heat exchange part 12, heat exchange is performed between the refrigerant | coolant (arrow A14) which flows through the refrigerant flow path 100, and the cooling water (arrow A22) which flows through the cooling water flow path 200. FIG.
 インナーフィン300の構成及び配置について、図6及び図7を参照しながら説明する。図6(A)には、第1熱交換部11の冷媒流路100に配置されたインナーフィン300、の全体が上面視で示されている。また、図6(B)には、第1熱交換部11の冷却水流路200に配置されたインナーフィン300、の全体が上面視で示されている。上面視におけるそれぞれのインナーフィン300の形状は、図6の上下方向において互いに対称な形状となっている。図7に示されるように、インナーフィン300は1枚の金属板に曲げ加工等を施すことによって形成されている。 The configuration and arrangement of the inner fin 300 will be described with reference to FIGS. FIG. 6A shows the entire inner fin 300 disposed in the refrigerant flow path 100 of the first heat exchange unit 11 in a top view. FIG. 6B shows the entire inner fin 300 disposed in the cooling water flow path 200 of the first heat exchange unit 11 in a top view. The shapes of the inner fins 300 in a top view are symmetrical to each other in the vertical direction of FIG. As shown in FIG. 7, the inner fin 300 is formed by bending a single metal plate.
 図6(A)に示されるように、上面視におけるインナーフィン300の外形は、上面視における容器15の内部空間の形状と概ね等しい。インナーフィン300は、冷媒流路100の略全体を占めるように配置されている。 As shown in FIG. 6 (A), the outer shape of the inner fin 300 in the top view is substantially equal to the shape of the internal space of the container 15 in the top view. The inner fin 300 is disposed so as to occupy substantially the entire coolant channel 100.
 インナーフィン300のうち冷媒流入部101の直下となる位置(図6(A)で符号111が付されている位置)には、開口が形成されている。当該開口は、冷媒流入部101からの冷媒を受け入れる部分であって、冷媒流路100への冷媒の入口となる部分である。以下では、冷媒流路100への冷媒の入口となる開口が形成されている部分のことを、当該冷媒流路100の「冷媒入口111」と表記する。第1熱交換部11において冷媒入口111が形成されている部分は、図5の矢印A11に沿って冷媒が流れる部分に該当する。 In the inner fin 300, an opening is formed at a position directly below the refrigerant inflow portion 101 (a position denoted by reference numeral 111 in FIG. 6A). The opening is a part that receives the refrigerant from the refrigerant inflow portion 101 and serves as an inlet of the refrigerant to the refrigerant flow path 100. Hereinafter, a portion where an opening serving as a refrigerant inlet to the refrigerant flow path 100 is formed is referred to as a “refrigerant inlet 111” of the refrigerant flow path 100. The portion where the refrigerant inlet 111 is formed in the first heat exchanging portion 11 corresponds to the portion where the refrigerant flows along the arrow A11 in FIG.
 インナーフィン300のうち、図2で符号P1が付されている部分の直下となる位置(図6(A)で符号112が付されている位置)には、開口が形成されている。当該開口は、冷媒流路100を通った冷媒が流入する部分、すなわち冷媒流路100からの冷媒の出口となる部分である。以下では、冷媒流路100からの冷媒の出口となる開口が形成されている部分のことを、当該冷媒流路100の「冷媒出口112」と表記する。第1熱交換部11において冷媒出口112が形成されている部分は、図5の矢印A13に沿って冷媒が流れる部分に該当する。 In the inner fin 300, an opening is formed at a position immediately below a portion denoted by reference numeral P1 in FIG. 2 (position denoted by reference numeral 112 in FIG. 6A). The opening is a part into which the refrigerant flows through the refrigerant channel 100, that is, a part serving as an outlet of the refrigerant from the refrigerant channel 100. Hereinafter, a portion where an opening serving as a refrigerant outlet from the refrigerant channel 100 is formed is referred to as a “refrigerant outlet 112” of the refrigerant channel 100. The portion where the refrigerant outlet 112 is formed in the first heat exchange unit 11 corresponds to a portion where the refrigerant flows along the arrow A13 in FIG.
 このように、本実施形態では、冷媒流路100への冷媒の入口である冷媒入口111と、冷媒流路100からの冷媒の出口である冷媒出口112とが、容器15の長手方向(図6(A)では左右方向)における一方側と他方側とに分かれて配置されている。図6(A)では、冷媒入口111から冷媒出口112に向かう冷媒の流れが矢印で示されている。ただし、矢印で示されるのは冷媒の大まかな流れであって、実際における冷媒の流れはこのような直線的な流れとはならない。 Thus, in this embodiment, the refrigerant inlet 111 that is the refrigerant inlet to the refrigerant flow path 100 and the refrigerant outlet 112 that is the refrigerant outlet from the refrigerant flow path 100 are in the longitudinal direction of the container 15 (FIG. 6). In (A), they are arranged separately on one side and the other side in the left-right direction). In FIG. 6A, the flow of the refrigerant from the refrigerant inlet 111 toward the refrigerant outlet 112 is indicated by an arrow. However, what is indicated by an arrow is a rough flow of the refrigerant, and the actual flow of the refrigerant is not such a linear flow.
 尚、図6(B)に示されるように、上記のような冷媒入口111及び冷媒出口112の位置では、冷却水流路200に配置されるインナーフィン300にも開口が形成されている。これらは、容器15の積層方向に沿って冷媒が冷却水流路200を貫いて流れるように形成されている。当該部分においては、例えば図3に示されるように、カップ151の開口の縁とインナープレート152の開口の縁とが溶接されている。このため、冷媒入口111等を通過する冷媒が、冷却水流路200に流入することは無い。 Note that, as shown in FIG. 6B, at the positions of the refrigerant inlet 111 and the refrigerant outlet 112 as described above, an opening is also formed in the inner fin 300 arranged in the cooling water flow path 200. These are formed so that the coolant flows through the cooling water flow path 200 along the stacking direction of the containers 15. In this portion, for example, as shown in FIG. 3, the opening edge of the cup 151 and the opening edge of the inner plate 152 are welded. For this reason, the refrigerant passing through the refrigerant inlet 111 or the like does not flow into the cooling water flow path 200.
 図6(B)に示されるように、インナーフィン300は、冷却水流路200においてもその略全体を占めるように配置されている。 As shown in FIG. 6 (B), the inner fin 300 is arranged so as to occupy substantially the entire cooling water channel 200.
 インナーフィン300のうち、図2で符号P2が付されている部分の直下となる位置(図6(B)で符号211が付されている位置)には、開口が形成されている。当該開口は、当該開口は、第2熱交換部12からの冷却水を受け入れる部分であって、冷却水流路200への冷却水の入口となる部分である。以下では、冷却水流路200への冷却水の入口となる開口が形成されている部分のことを、当該冷却水流路200の「冷却水入口211」と表記する。第1熱交換部11において冷却水入口211が形成されている部分は、図5の矢印A23に沿って冷却水が流れる部分に該当する。 In the inner fin 300, an opening is formed at a position (position denoted by reference numeral 211 in FIG. 6B) that is directly below the portion denoted by reference numeral P2 in FIG. The opening is a part that receives the cooling water from the second heat exchange unit 12 and is a part that serves as an inlet of the cooling water to the cooling water flow path 200. Hereinafter, a portion where an opening serving as an inlet of the cooling water to the cooling water channel 200 is formed is referred to as a “cooling water inlet 211” of the cooling water channel 200. A portion where the cooling water inlet 211 is formed in the first heat exchange unit 11 corresponds to a portion where the cooling water flows along the arrow A <b> 23 in FIG. 5.
 インナーフィン300のうち冷却水流出部202の直下となる位置(図6(B)で符号212が付されている位置)には、開口が形成されている。当該開口は、冷却水流路200を通った冷却水が流入する部分、すなわち冷却水流路200からの冷却水の出口となる部分である。以下では、冷却水流路200からの冷却水の出口となる開口が形成されている部分のことを、当該冷却水流路200の「冷却水出口212」と表記する。第1熱交換部11において冷却水出口212が形成されている部分は、図5の矢印A25に沿って冷却水が流れる部分に該当する。 In the inner fin 300, an opening is formed at a position directly below the cooling water outflow portion 202 (a position denoted by reference numeral 212 in FIG. 6B). The opening is a part into which cooling water flows through the cooling water channel 200, that is, a part serving as an outlet for cooling water from the cooling water channel 200. Hereinafter, a portion where an opening serving as an outlet for cooling water from the cooling water flow path 200 is formed is referred to as a “cooling water outlet 212” of the cooling water flow path 200. The part where the cooling water outlet 212 is formed in the first heat exchange unit 11 corresponds to the part where the cooling water flows along the arrow A25 in FIG.
 このように、本実施形態では、冷却水流路200への冷却水の入口である冷却水入口211と、冷却水流路200からの冷却水の出口である冷却水出口212とが、容器15の長手方向(図6(B)では左右方向)における一方側と他方側とに分かれて配置されている。図6(B)では、冷却水入口211から冷却水出口212に向かう冷却水の流れが矢印で示されている。ただし、矢印で示されるのは冷却水の大まかな流れであって、実際における冷却水の流れはこのような直線的な流れとはならない。 Thus, in this embodiment, the cooling water inlet 211 that is the inlet of the cooling water to the cooling water passage 200 and the cooling water outlet 212 that is the outlet of the cooling water from the cooling water passage 200 are the longitudinal length of the container 15. They are arranged separately on one side and the other side in the direction (left-right direction in FIG. 6B). In FIG. 6B, the flow of cooling water from the cooling water inlet 211 toward the cooling water outlet 212 is indicated by arrows. However, an arrow indicates a rough flow of the cooling water, and the actual flow of the cooling water is not such a linear flow.
 尚、図6(A)に示されるように、上記のような冷却水入口211及び冷却水出口212の位置では、冷媒流路100に配置されるインナーフィン300にも開口が形成されている。これらは、容器15の積層方向に沿って冷却水が冷媒流路100を貫いて流れるように形成されている。当該部分においては、例えば図3に示されるように、カップ151の開口の縁とインナープレート152の開口の縁とが溶接されている。このため、冷却水入口211等を通過する冷却水が、冷媒流路100に流入することは無い。 Note that, as shown in FIG. 6A, at the positions of the cooling water inlet 211 and the cooling water outlet 212 as described above, openings are also formed in the inner fins 300 arranged in the refrigerant flow path 100. These are formed so that the cooling water flows through the coolant channel 100 along the stacking direction of the containers 15. In this portion, for example, as shown in FIG. 3, the opening edge of the cup 151 and the opening edge of the inner plate 152 are welded. For this reason, the cooling water passing through the cooling water inlet 211 or the like does not flow into the refrigerant flow path 100.
 第2熱交換部12におけるインナーフィン300の配置、及び、第2熱交換部12を流れる冷媒及び冷却水の流れは、いずれも、以上に説明した第1熱交換部11におけるものと同様である。従って、その具体的な説明を省略する。 The arrangement of the inner fins 300 in the second heat exchange unit 12 and the flow of refrigerant and cooling water flowing through the second heat exchange unit 12 are the same as those in the first heat exchange unit 11 described above. . Therefore, the specific description is abbreviate | omitted.
 以上のように、本実施形態では、冷媒入口111と冷却水出口212とが、容器15の長手方向における一方側(図6では左側)に配置されており、冷却水入口211と冷媒出口112とが、容器15の長手方向における他方側(図6では右側)に配置されている。本実施形態では更に、冷媒入口111から冷媒出口112に向かう方向が、容器15の長手方向に対して傾斜しており、冷却水入口211から冷却水出口212に向かう方向も、容器15の長手方向に対して傾斜している。このような構成により、冷媒流路100における冷媒の流れと、冷却水流路200における冷却水の流れとは、X字状に交差した流れとなる。つまり、本実施形態における冷媒及び冷却水の流れは、所謂「X字対向流」となる。 As described above, in the present embodiment, the refrigerant inlet 111 and the cooling water outlet 212 are arranged on one side (left side in FIG. 6) in the longitudinal direction of the container 15, and the cooling water inlet 211, the refrigerant outlet 112, However, it is arrange | positioned at the other side (right side in FIG. 6) in the longitudinal direction of the container 15. As shown in FIG. In the present embodiment, the direction from the refrigerant inlet 111 to the refrigerant outlet 112 is inclined with respect to the longitudinal direction of the container 15, and the direction from the cooling water inlet 211 to the cooling water outlet 212 is also the longitudinal direction of the container 15. It is inclined with respect to. With such a configuration, the refrigerant flow in the refrigerant flow path 100 and the cooling water flow in the cooling water flow path 200 intersect with each other in an X shape. That is, the flow of the refrigerant and the cooling water in the present embodiment is a so-called “X-shaped counter flow”.
 インナーフィン300の具体的な形状について説明する。図7に示されるように、インナーフィン300は、山部310と谷部320とが交互に並ぶように、一枚の金属板を折り曲げることにより形成されている。山部310は、冷媒流路100等を区画するカップ151及びインナープレート152のうち一方に当接する部分であり、谷部320は、カップ151及びインナープレート152のうち他方に当接する部分である。山部310と谷部320とは互いに平行であり、その主面の法線方向が容器15の積層方向(図1の上下方向)と一致している。 The specific shape of the inner fin 300 will be described. As shown in FIG. 7, the inner fin 300 is formed by bending a single metal plate so that crests 310 and troughs 320 are alternately arranged. The crest 310 is a part that abuts on one of the cup 151 and the inner plate 152 that divides the refrigerant flow path 100 and the like, and the trough 320 is a part that abuts on the other of the cup 151 and the inner plate 152. The crest portion 310 and the trough portion 320 are parallel to each other, and the normal direction of the main surface thereof coincides with the stacking direction of the container 15 (the vertical direction in FIG. 1).
 互いに隣り合う山部310と谷部320との間は、側壁部330によって繋がれている。側壁部330は、山部310及び谷部320のそれぞれに対して垂直な壁となっている。それぞれの側壁部330は互いに平行に配置されている。本実施形態では、複数の側壁部330によって、流体の流路(冷媒流路100又は冷却水流路200)が複数に区画されている。その結果として、互いに隣り合うそれぞれの側壁部330の間には、直線状に伸びる流体通路370が形成されている。 The adjacent mountain portions 310 and valley portions 320 are connected by a side wall portion 330. The side wall part 330 is a wall perpendicular to each of the peak part 310 and the valley part 320. Each side wall part 330 is arrange | positioned mutually parallel. In the present embodiment, a plurality of side walls 330 divide a fluid flow path (refrigerant flow path 100 or cooling water flow path 200) into a plurality of sections. As a result, a fluid passage 370 extending linearly is formed between the side wall portions 330 adjacent to each other.
 図7においては、流体通路370が伸びる方向が矢印A30で示されている。また、複数の流体通路370が並ぶ方向、すなわち側壁部330の法線方向が矢印A40で示されている。 7, the direction in which the fluid passage 370 extends is indicated by an arrow A30. The direction in which the plurality of fluid passages 370 are arranged, that is, the normal direction of the side wall 330 is indicated by an arrow A40.
 それぞれの側壁部330には、一部を切り起こすことにより板状のルーバ部340が形成されている。ルーバ部340の形状は矩形となっており、その一辺において山部310又は谷部320に繋がった状態となっている。ルーバ部340は複数形成されており、その全てが、流体通路370が伸びる方向(矢印A30)に対して平行となっている。それぞれのルーバ部340は、側壁部330から流体通路370内に突出している。 A plate-like louver portion 340 is formed on each side wall portion 330 by cutting and raising a part thereof. The shape of the louver part 340 is a rectangle, and is connected to the peak part 310 or the valley part 320 on one side. A plurality of louver portions 340 are formed, and all of them are parallel to the direction in which the fluid passage 370 extends (arrow A30). Each louver portion 340 protrudes from the side wall portion 330 into the fluid passage 370.
 また、側壁部330には、ルーバ部340を切り起こした結果としての開口350も形成されている。互いに隣り合う流体通路370は、開口350によって互いに連通されている。ルーバ部340は、それぞれの開口350の縁から流体通路370内に向けて突出している。ルーバ部340及び開口350は、流体通路370が伸びる方向(矢印A30)に沿って複数並ぶように形成されている。 Further, an opening 350 as a result of cutting and raising the louver portion 340 is also formed in the side wall portion 330. Adjacent fluid passages 370 communicate with each other through openings 350. The louver portion 340 protrudes from the edge of each opening 350 into the fluid passage 370. A plurality of louver portions 340 and openings 350 are formed in a line along the direction (arrow A30) in which the fluid passage 370 extends.
 図7に示されるように、側壁部330のうち符号331が付されているものにおいては、全てのルーバ部340が山部310に繋がった状態となっている。以下では、このような側壁部330のことを「側壁部331」とも表記する。また、側壁部330のうち符号332が付されているものにおいては、全てのルーバ部340が谷部320に繋がった状態となっている。以下では、このような側壁部330のことを「側壁部332」とも表記する。本実施形態では、側壁部331と側壁部332とが、矢印A40の方向に沿って交互に並ぶように配置されている。 As shown in FIG. 7, all the louver parts 340 are connected to the mountain part 310 in the side wall part 330 to which the reference numeral 331 is attached. Hereinafter, such a side wall portion 330 is also referred to as a “side wall portion 331”. Moreover, in the side wall part 330 to which the code | symbol 332 is attached | subjected, all the louver parts 340 are in the state connected with the trough part 320. FIG. Hereinafter, such a side wall portion 330 is also referred to as a “side wall portion 332”. In the present embodiment, the side wall portions 331 and the side wall portions 332 are arranged so as to be alternately arranged along the direction of the arrow A40.
 それぞれの側壁部330においては、ルーバ部340及び開口350が形成されている部分と、ルーバ部340及び開口350が形成されていない部分とが、流体通路370が伸びる方向(矢印A30)に沿って交互に並ぶように形成されている。 In each of the side wall portions 330, a portion where the louver portion 340 and the opening 350 are formed and a portion where the louver portion 340 and the opening 350 are not formed are along the direction in which the fluid passage 370 extends (arrow A30). It is formed so that it may line up alternately.
 図6を再び参照しながら説明を続ける。冷媒流路100及び冷却水流路200において、インナーフィン300は、流体通路370が伸びる方向(矢印A30)を容器15の長手方向に一致させた状態で配置されている。このため、例えば図5(A)に示される冷媒流路100においては、冷媒入口111から流入した冷媒は、容器15の長手方向に概ね沿って流れることとなる。その際、一部の冷媒は、開口350を通じて隣の流体通路370に流入する。つまり、冷媒の流れには、流体通路370に沿った直線的な流れと、開口350を通過するような拡散的な流れとが存在することとなる。冷媒流路100では、上記のように冷媒が拡散して流れる経路が確保されているので、冷媒と、隣の冷却水流路200を流れる冷却水との熱交換が効率よく行われる。 The explanation will be continued referring to FIG. 6 again. In the coolant channel 100 and the cooling water channel 200, the inner fin 300 is disposed in a state where the direction in which the fluid passage 370 extends (arrow A <b> 30) matches the longitudinal direction of the container 15. For this reason, for example, in the refrigerant flow path 100 shown in FIG. 5A, the refrigerant flowing in from the refrigerant inlet 111 flows substantially along the longitudinal direction of the container 15. At that time, a part of the refrigerant flows into the adjacent fluid passage 370 through the opening 350. That is, the refrigerant flow includes a linear flow along the fluid passage 370 and a diffusive flow that passes through the opening 350. In the refrigerant flow path 100, the path through which the refrigerant diffuses and flows is secured as described above, so that heat exchange between the refrigerant and the cooling water flowing through the adjacent cooling water flow path 200 is performed efficiently.
 冷媒流路100を流れる冷媒の一部はルーバ部340の縁に衝突し、その流れが分断される。また、冷媒の他の一部は、開口350の縁に衝突し、やはりその流れが分断される。このような流れの分断により、所謂前縁効果が生じるので、インナーフィン300を介した冷媒への熱伝達が効率よく行われる。 A part of the refrigerant flowing through the refrigerant flow path 100 collides with the edge of the louver part 340, and the flow is divided. Further, the other part of the refrigerant collides with the edge of the opening 350 and the flow is also divided. Such a flow division causes a so-called leading edge effect, so that heat transfer to the refrigerant through the inner fins 300 is performed efficiently.
 また、インナーフィン300のうちルーバ部340が形成されている部分では、上記のような冷媒の衝突が生じることに起因して、冷媒の圧力が比較的高くなる。一方、インナーフィン300のうちルーバ部340が形成されていない部分では、冷媒はルーバ部340等に衝突することなく概ね直線的に流れるので、冷媒の圧力は比較的低くなる。このため、流体通路370を流れる冷媒の圧力は、ルーバ部340が形成されている部分においては高くなり、ルーバ部340が形成されていない部分においては低くなる。換言すれば、流体通路370に沿って流れる流体は、その圧力の上昇及び低下を繰り返しながら流れることとなる。 Further, in the portion of the inner fin 300 where the louver portion 340 is formed, the refrigerant pressure becomes relatively high due to the occurrence of the refrigerant collision as described above. On the other hand, in the portion of the inner fin 300 where the louver portion 340 is not formed, the refrigerant flows substantially linearly without colliding with the louver portion 340 and the like, so the pressure of the refrigerant becomes relatively low. For this reason, the pressure of the refrigerant flowing through the fluid passage 370 is high in the portion where the louver portion 340 is formed, and is low in the portion where the louver portion 340 is not formed. In other words, the fluid flowing along the fluid passage 370 flows while repeatedly increasing and decreasing its pressure.
 このような圧力の変化に起因して、開口350を通じた流体の拡散が促進される。つまり、本実施形態に係る熱交換器10では、ポンプの駆動力のような外力に起因して能動的に冷媒の拡散が生じるのではなく、上記の圧力変動に起因して受動的に冷媒の拡散が生じることとなる。これにより、冷媒の圧力損失を低く抑えながらも冷媒の拡散性を高めることができており、その結果として良好な熱交換性能が発揮される。 ¡Diffusion of fluid through the opening 350 is promoted due to such a change in pressure. That is, in the heat exchanger 10 according to the present embodiment, the refrigerant is not actively diffused due to an external force such as a driving force of the pump, but is passively caused by the pressure fluctuation. Diffusion will occur. Thereby, the diffusibility of the refrigerant can be enhanced while suppressing the pressure loss of the refrigerant, and as a result, good heat exchange performance is exhibited.
 インナーフィン300を配置することによる以上のような効果は、冷却水流路200における冷却水の流れに対しても同様に奏される。つまり、冷却水流路200においても、インナーフィン300によって冷却水の拡散性が高められている。 The above-described effects by disposing the inner fin 300 are also exhibited in the cooling water flow in the cooling water channel 200. That is, also in the cooling water flow path 200, the diffusibility of the cooling water is enhanced by the inner fins 300.
 供給流路SPからそれぞれの冷媒流路100に分配される冷媒の流れについて、図8を参照しながら説明する。図8では、図4と同様に、供給流路SPにおいて冷媒が流れる方向が矢印A01で示されている。また、供給流路SPから冷媒流路100に流入した冷媒の流れる方向が矢印A02で示されている。 The flow of the refrigerant distributed from the supply flow path SP to each refrigerant flow path 100 will be described with reference to FIG. In FIG. 8, similarly to FIG. 4, the direction in which the refrigerant flows in the supply flow path SP is indicated by an arrow A01. In addition, the direction in which the refrigerant flowing into the refrigerant channel 100 from the supply channel SP flows is indicated by an arrow A02.
 供給流路SPを流れる冷媒は、気液混合の状態となっている。ただし、供給流路SPにおいては、気相の冷媒と液相の冷媒とは均等には分布していない。本発明者らがシミュレーション等によって確認したところによれば、供給流路SPを通常の速度で冷媒が流れているときには、供給流路SPの中央部分においては気相の冷媒が多く流れる傾向があり、その周囲においては液相の冷媒が多く流れる傾向がある。図8では、気相の冷媒が多く流れる領域と、液相の冷媒が多く流れる領域とのおおよその境界が、一対の点線DL1で示されている。それぞれの点線DL1の間の部分では、気相の冷媒が多く流れている。それぞれの点線DL1よりも外側(熱交換部151a側)の領域では、液相の冷媒が多く流れている。 The refrigerant flowing through the supply flow path SP is in a gas-liquid mixed state. However, in the supply flow path SP, the gas-phase refrigerant and the liquid-phase refrigerant are not evenly distributed. According to what the present inventors have confirmed by simulation and the like, when the refrigerant flows through the supply flow path SP at a normal speed, a large amount of gas-phase refrigerant tends to flow in the central portion of the supply flow path SP. In the surroundings, a large amount of liquid-phase refrigerant tends to flow. In FIG. 8, a rough boundary between a region where a large amount of gas-phase refrigerant flows and a region where a large amount of liquid-phase refrigerant flows is indicated by a pair of dotted lines DL1. In the portion between the respective dotted lines DL1, a large amount of gas phase refrigerant flows. In the region outside the respective dotted lines DL1 (on the heat exchanging portion 151a side), a large amount of liquid-phase refrigerant flows.
 供給流路SPは、入口部151b、152bの部分においてその流路断面積が絞られたような形状となっている。このため、供給流路SPを矢印A01に沿って流れる冷媒は、入口部151b、152bの近傍(図8における点P11の位置)を通過する際においてその圧力を上昇させる。 The supply flow path SP has a shape in which the flow path cross-sectional area is narrowed at the inlet portions 151b and 152b. For this reason, the refrigerant flowing along the supply channel SP along the arrow A01 increases its pressure when passing through the vicinity of the inlet portions 151b and 152b (the position of the point P11 in FIG. 8).
 既に述べたように、本実施形態では、冷媒流路100のうち供給流路SPの近傍の部分が、冷媒流路100の他の部分に比べて、順方向及び逆方向の両方に向かって拡大するように形成されている。このため、供給流路SPを矢印A01に沿って流れる冷媒は、入口部151b、152bの近傍を通過した直後においてその圧力が開放される。供給流路SPを流れる冷媒の圧力は、順方向に沿った冷媒流路100の中央と一致する位置(図8における点P12の位置)を通過する際において最も低くなる。 As already described, in the present embodiment, the portion of the refrigerant flow channel 100 near the supply flow channel SP expands in both the forward direction and the reverse direction compared to the other portions of the refrigerant flow channel 100. It is formed to do. For this reason, the pressure of the refrigerant flowing along the supply channel SP along the arrow A01 is released immediately after passing through the vicinity of the inlet portions 151b and 152b. The pressure of the refrigerant flowing through the supply flow path SP is lowest when passing through a position (position of a point P12 in FIG. 8) that coincides with the center of the refrigerant flow path 100 along the forward direction.
 尚、点P12の位置において比較的大きな圧力低下が生じるのは、供給流路SPの直径に比べて、上面視における冷媒流路100の大きさ(具体的には、冷媒流路100の短手方向及び長手方向の寸法)が十分に大きいことにも起因している。 Note that a relatively large pressure drop occurs at the position of the point P12 as compared with the diameter of the supply flow path SP in terms of the size of the refrigerant flow path 100 in the top view (specifically, the short length of the refrigerant flow path 100). This is also due to the sufficiently large dimensions in the direction and the longitudinal direction).
 圧力が開放された冷媒は、図8の左右方向に拡散する方向の速度成分を持つこととなる。図8では、このような冷媒の流れが矢印A102で示されている。矢印A102に沿って流れる冷媒はその一部が入口部151bに衝突し、これにより冷媒の乱流が生じる。その結果として、当該入口部151bと、その上流側(図8では上方側)に配置された入口部152bとの間に形成された広い空間では、比較的大きな渦が生じる。図8では、このような渦を形成する冷媒の流れが矢印A101で示されている。 The refrigerant whose pressure has been released has a velocity component in the direction of diffusing in the left-right direction in FIG. In FIG. 8, such a refrigerant flow is indicated by an arrow A102. A part of the refrigerant flowing along the arrow A102 collides with the inlet portion 151b, thereby generating a turbulent refrigerant flow. As a result, a relatively large vortex is generated in a wide space formed between the inlet portion 151b and the inlet portion 152b arranged on the upstream side (the upper side in FIG. 8). In FIG. 8, the flow of the refrigerant that forms such a vortex is indicated by an arrow A101.
 点線DL1の内側を流れる冷媒と、点線DLの外側を流れる冷媒とは、矢印A101で示される渦によって混合される。つまり、それぞれの冷媒流路100の入口部分では、気相の冷媒と液相の冷媒が十分に混合される。その結果、それぞれの冷媒流路100に流入する冷媒の気液混合比率は、全ての冷媒流路100について概ね均等なものとなる。 The refrigerant flowing inside the dotted line DL1 and the refrigerant flowing outside the dotted line DL are mixed by the vortex indicated by the arrow A101. That is, the gas phase refrigerant and the liquid phase refrigerant are sufficiently mixed at the inlet portion of each refrigerant flow path 100. As a result, the gas-liquid mixing ratio of the refrigerant flowing into the respective refrigerant flow paths 100 is substantially uniform for all the refrigerant flow paths 100.
 また、本実施形態では、それぞれの冷媒流路100が供給流路SPの近傍において拡大していることにより、熱交換器10を通過する冷媒の圧力損失が小さくなっている。本発明者らが行った実験やシミュレーションによれば、冷媒流路100が供給流路SPの近傍において拡大していない構成の熱交換器に比べて、冷媒の圧力損失が22%低減されることが確認されている。 In the present embodiment, the pressure loss of the refrigerant passing through the heat exchanger 10 is reduced because each refrigerant channel 100 is enlarged in the vicinity of the supply channel SP. According to experiments and simulations conducted by the present inventors, the pressure loss of the refrigerant is reduced by 22% compared to a heat exchanger in which the refrigerant channel 100 is not enlarged in the vicinity of the supply channel SP. Has been confirmed.
 図4を参照しながら既に述べたように、本実施形態では、冷媒流路100のうち供給流路SPの近傍の部分における、順方向に向かった拡大量(D11)と、逆方向に向かった拡大量(D12)とが、互いに等しくなるように、カップ151等が形成されている。このような構成においては、各冷媒流路100の入口部分においてより大きな渦が形成されやすくなるので、それぞれの冷媒流路100に流入する冷媒の気液混合比率を更に均等なものとすることができる。 As already described with reference to FIG. 4, in the present embodiment, in the portion near the supply flow path SP in the refrigerant flow path 100, the amount of expansion (D11) directed in the forward direction and the reverse direction. The cup 151 and the like are formed so that the enlargement amount (D12) is equal to each other. In such a configuration, since a larger vortex is likely to be formed at the inlet portion of each refrigerant flow path 100, the gas-liquid mixing ratio of the refrigerant flowing into each refrigerant flow path 100 may be made more uniform. it can.
 本実施形態では、冷媒流路100を挟んで互いに隣り合う一対の接続部151c、152cは、供給流路SPから遠ざかるほど互いに近づくように形成されている。このような構成においては、冷媒流路100の入口部分において拡大するように形成された空間、の懐が深くなっている。その結果、入口部151b、152b、及び接続部151c、152cに沿って更に大きな冷媒の渦が形成されやすくなっている。 In the present embodiment, the pair of connection portions 151c and 152c adjacent to each other across the coolant channel 100 are formed so as to be closer to each other as the distance from the supply channel SP increases. In such a configuration, the depth of the space formed to expand at the inlet portion of the refrigerant flow path 100 is deep. As a result, a larger refrigerant vortex is likely to be formed along the inlet portions 151b and 152b and the connecting portions 151c and 152c.
 本実施形態における入口部151b、152b、及び熱交換部151a、152aは、いずれも、供給流路SPが伸びる方向に対して垂直となるように形成されている。換言すれば、これらの全てが互いに平行となるように形成されている。その結果、それぞれの冷媒流路100の形状を互いに同一とすることができ、熱交換器10における熱交換を全体に均等に行うことが可能となっている。 The inlet portions 151b and 152b and the heat exchange portions 151a and 152a in this embodiment are all formed so as to be perpendicular to the direction in which the supply flow path SP extends. In other words, all of them are formed so as to be parallel to each other. As a result, the shapes of the respective refrigerant flow paths 100 can be made the same, and the heat exchange in the heat exchanger 10 can be performed uniformly throughout.
 図9には、比較例に係る熱交換器10における冷媒の流れが示されている。この比較例では、カップ151の形状については上記実施形態と概ね同一である一方で、インナープレート152の形状は全体が平板状となっており、この点においてのみ上記実施形態と異なっている。つまり、この比較例では、冷媒流路100のうち供給流路SPの近傍の部分が、冷媒流路100の他の部分に比べて、順方向に向かってのみ拡大するように形成されている。 FIG. 9 shows the flow of the refrigerant in the heat exchanger 10 according to the comparative example. In this comparative example, the shape of the cup 151 is substantially the same as that of the above-described embodiment, while the shape of the inner plate 152 is entirely flat and is different from the above-described embodiment only in this respect. That is, in this comparative example, a portion of the refrigerant flow channel 100 near the supply flow channel SP is formed so as to expand only in the forward direction as compared with other portions of the refrigerant flow channel 100.
 このような構成においても、冷媒流路100の入口部分ではある程度広い空間が形成されており、当該空間において冷媒の渦が形成される。しかしながら、上記実施形態に比べると空間の幅が小さいため、形成される冷媒の渦も小さなものとなる。図9では、このような渦を形成する冷媒の流れが矢印A111で示されている。 Even in such a configuration, a somewhat wide space is formed at the inlet portion of the refrigerant flow path 100, and a vortex of the refrigerant is formed in the space. However, since the width of the space is small compared to the above embodiment, the vortex of the formed refrigerant is also small. In FIG. 9, the flow of the refrigerant forming such a vortex is indicated by an arrow A111.
 その結果、冷媒流路100の入口部分では、気相の冷媒と液相の冷媒とが十分には混合されない。その結果、一部の冷媒流路100には液相冷媒の方が多く流入する一方、他の冷媒流路100には気相冷媒の方が多く流入してしまうようなことが生じ得る。 As a result, the gas phase refrigerant and the liquid phase refrigerant are not sufficiently mixed at the inlet portion of the refrigerant flow path 100. As a result, a larger amount of liquid-phase refrigerant may flow into some of the refrigerant flow paths 100, while a larger amount of gas-phase refrigerant may flow into other refrigerant flow paths 100.
 他の比較例について、図10を参照しながら説明する。この比較例では、冷媒流路100の幅は全体において概ね均等となっており、冷媒流路100のうち供給流路SPの近傍の部分でも冷媒流路100は拡大されていない。このような構成においては、冷媒流路100の入口部分において冷媒の渦は殆ど形成されない。気相の冷媒と液相の冷媒とは、それぞれ偏在したまま供給流路SPを流れて、これらが混合されないままそれぞれの冷媒流路100に供給される。このため、図9の比較例と同様に、一部の冷媒流路100には液相冷媒の方が多く流入する一方、他の冷媒流路100には気相冷媒の方が多く流入してしまうようなことが生じ得る。 Another comparative example will be described with reference to FIG. In this comparative example, the width of the refrigerant flow path 100 is substantially uniform as a whole, and the refrigerant flow path 100 is not enlarged even in the vicinity of the supply flow path SP in the refrigerant flow path 100. In such a configuration, the refrigerant vortex is hardly formed at the inlet portion of the refrigerant flow path 100. The gas-phase refrigerant and the liquid-phase refrigerant flow through the supply flow path SP while being unevenly distributed, and are supplied to the respective refrigerant flow paths 100 without being mixed. For this reason, as in the comparative example of FIG. 9, a larger amount of liquid-phase refrigerant flows into some of the refrigerant flow paths 100, while a larger amount of gas-phase refrigerant flows into other refrigerant flow paths 100. It can happen.
 これらの比較例に対し、本実施形態では、冷媒流路100の入口部分において比較的大きな渦が形成されることにより、冷媒流路100に流入する冷媒の気液混合比率を、全ての冷媒流路100について概ね均等なものとすることができる。大きな渦が形成されるのは、冷媒流路100のうち供給流路SPの近傍の部分が、順方向及び逆方向の(片方ではなく)両方に向かって拡大するように形成されていることに起因している。 In contrast to these comparative examples, in the present embodiment, a relatively large vortex is formed at the inlet portion of the refrigerant flow path 100, so that the gas-liquid mixing ratio of the refrigerant flowing into the refrigerant flow path 100 is set to The road 100 can be generally uniform. The large vortex is formed because the portion near the supply flow path SP in the refrigerant flow path 100 is formed so as to expand in both the forward direction and the reverse direction (not one). Is attributed.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (5)

  1.  第1流体と第2流体との間で熱交換を行う熱交換器(10)であって、
     前記第1流体が流れる第1流路(100)と、前記第2流体が流れる第2流路(200)と、が交互に積層された状態となるように、前記第1流路と前記第2流路との間を区画する複数の板状部材(151,152)を備え、
     それぞれの前記第1流路に前記第1流体を供給するための供給流路(SP)が、前記第1流路と前記第2流路とが積層されている方向に沿って、複数の板状部材を貫くように形成されており、
     前記供給流路において前記第1流体が流れる方向を順方向とし、当該順方向とは反対の方向を逆方向としたときに、
     前記第1流路のうち前記供給流路の近傍の部分が、前記第1流路の他の部分に比べて、前記順方向及び前記逆方向の両方に向かって拡大するように形成されている熱交換器。
    A heat exchanger (10) for exchanging heat between a first fluid and a second fluid,
    The first channel and the first channel so that the first channel (100) through which the first fluid flows and the second channel (200) through which the second fluid flows are alternately stacked. A plurality of plate-like members (151 and 152) that partition between the two flow paths are provided,
    A supply channel (SP) for supplying the first fluid to each of the first channels has a plurality of plates along a direction in which the first channel and the second channel are stacked. It is formed so as to penetrate the member,
    When the direction in which the first fluid flows in the supply flow path is the forward direction, and the direction opposite to the forward direction is the reverse direction,
    A portion of the first flow path in the vicinity of the supply flow path is formed so as to expand toward both the forward direction and the reverse direction as compared with other portions of the first flow path. Heat exchanger.
  2.  前記順方向に向かった拡大量と、前記逆方向に向かった拡大量とが互いに等しくなるように、前記第1流路のうち前記供給流路の近傍の部分が形成されている、請求項1に記載の熱交換器。 The portion of the first flow path in the vicinity of the supply flow path is formed such that the expansion amount toward the forward direction and the expansion amount toward the reverse direction are equal to each other. The heat exchanger as described in.
  3.  それぞれの前記板状部材は、
     前記供給流路の近傍の部分である入口部(151b,152b)と、
     前記第1流体と前記第2流体との間で熱交換が行われる部分である熱交換部(151a,152a)と、
     前記入口部と前記熱交換部との間を繋ぐ部分である接続部(151c,152c)と、を有しており、
     隣り合う一対の前記板状部材は、それぞれの前記入口部を互いに当接させた状態で接合されている、請求項1又は2に記載の熱交換器。
    Each of the plate members is
    An inlet portion (151b, 152b) which is a portion in the vicinity of the supply flow path;
    A heat exchange part (151a, 152a) that is a part where heat exchange is performed between the first fluid and the second fluid;
    A connecting portion (151c, 152c) that is a portion connecting the inlet portion and the heat exchanging portion,
    3. The heat exchanger according to claim 1, wherein the pair of adjacent plate-like members are joined in a state where the respective inlet portions are in contact with each other.
  4.  前記入口部及び前記熱交換部は、いずれも、前記供給流路が伸びる方向に対して垂直となるように形成されている、請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein each of the inlet portion and the heat exchange portion is formed to be perpendicular to a direction in which the supply flow path extends.
  5.  前記第1流路を挟んで互いに隣り合う一対の前記接続部は、前記供給流路から遠ざかるほど互いに近づくように形成されている、請求項3又は4に記載の熱交換器。 The heat exchanger according to claim 3 or 4, wherein the pair of connection portions adjacent to each other across the first flow path is formed so as to approach each other as the distance from the supply flow path increases.
PCT/JP2017/038186 2016-12-12 2017-10-23 Heat exchanger WO2018110087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240054A JP2018096584A (en) 2016-12-12 2016-12-12 Heat exchanger
JP2016-240054 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110087A1 true WO2018110087A1 (en) 2018-06-21

Family

ID=62558399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038186 WO2018110087A1 (en) 2016-12-12 2017-10-23 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2018096584A (en)
WO (1) WO2018110087A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174776U (en) * 1984-10-19 1986-05-20
JPH1137676A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger
JP2001116472A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Plate type heat exchanger and method for welding it
US20080210410A1 (en) * 2007-03-03 2008-09-04 Klaus Kalbacher Heat exchanger, in particular oil cooler
WO2014073471A1 (en) * 2012-11-08 2014-05-15 株式会社マーレ フィルターシステムズ Multi-plate oil cooler
US20150101781A1 (en) * 2013-10-14 2015-04-16 Hyundai Motor Company Heat exchanger for vehicle
JP2015152283A (en) * 2014-02-18 2015-08-24 日新製鋼株式会社 Plate type heat exchanger and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174776U (en) * 1984-10-19 1986-05-20
JPH1137676A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger
JP2001116472A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Plate type heat exchanger and method for welding it
US20080210410A1 (en) * 2007-03-03 2008-09-04 Klaus Kalbacher Heat exchanger, in particular oil cooler
WO2014073471A1 (en) * 2012-11-08 2014-05-15 株式会社マーレ フィルターシステムズ Multi-plate oil cooler
US20150101781A1 (en) * 2013-10-14 2015-04-16 Hyundai Motor Company Heat exchanger for vehicle
JP2015152283A (en) * 2014-02-18 2015-08-24 日新製鋼株式会社 Plate type heat exchanger and method of manufacturing the same

Also Published As

Publication number Publication date
JP2018096584A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6567097B2 (en) Plate heat exchanger and heat pump heating / hot water system equipped with the same
WO2018047469A1 (en) Heat exchanger
EP2977704B1 (en) Plate-type heat exchanger and refrigeration cycle device with same
JP6529709B1 (en) Plate type heat exchanger, heat pump device and heat pump type heating and cooling system
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
JP6735918B2 (en) Plate heat exchanger and heat pump hot water supply system
JP2006207948A (en) Air-cooled oil cooler
JP2006207997A (en) Heat exchanger
JP6578964B2 (en) Laminate heat exchanger
JP2010078286A (en) Plate heat exchanger, and air conditioner mounted with the same
CN113039405A (en) Heat exchanger
JP6578980B2 (en) Laminate heat exchanger
JP6160385B2 (en) Laminate heat exchanger
JP2013122368A (en) Vehicle heat exchanger
WO2018110087A1 (en) Heat exchanger
JP2015203508A (en) Plate type heat exchanger
JP5316470B2 (en) Laminate heat exchanger
EP2990749A1 (en) Heat exchanger
WO2017195588A1 (en) Stack type heat exchanger
JP7000777B2 (en) Heat exchanger
JP6281422B2 (en) Laminate heat exchanger
JP6631720B2 (en) Heat exchanger
KR200145266Y1 (en) Heat exchanging device
JP6926777B2 (en) Heat exchanger
WO2020100687A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880826

Country of ref document: EP

Kind code of ref document: A1