WO2018110066A1 - Windshield glass, head-up display system, and laminated film - Google Patents

Windshield glass, head-up display system, and laminated film Download PDF

Info

Publication number
WO2018110066A1
WO2018110066A1 PCT/JP2017/037322 JP2017037322W WO2018110066A1 WO 2018110066 A1 WO2018110066 A1 WO 2018110066A1 JP 2017037322 W JP2017037322 W JP 2017037322W WO 2018110066 A1 WO2018110066 A1 WO 2018110066A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
cholesteric liquid
windshield glass
light
Prior art date
Application number
PCT/JP2017/037322
Other languages
French (fr)
Japanese (ja)
Inventor
昭裕 安西
渉 馬島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018110066A1 publication Critical patent/WO2018110066A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a windshield glass.
  • the present invention also relates to a head-up display system using a windshield glass and a laminated film that can be used for the windshield glass.
  • a half mirror film is provided on the intermediate layer of windshield glass, which has a structure in which two glass plates are bonded via an intermediate layer, thereby simultaneously displaying images projected in the head-up display system and the scenery in front. It is possible to obtain a projection image display member that can be made to operate.
  • Patent Document 1 discloses that an intermediate layer is formed by sandwiching a half mirror film including a cholesteric liquid crystal layer between two resin films such as a polyvinyl butyral film.
  • the present invention has been made to solve the above problems, and in a windshield glass having a structure in which a half mirror film is provided in an intermediate layer of a laminated glass, distortion that is visually confirmed in the half mirror film portion is reduced.
  • An object is to provide a windshield glass.
  • the inventor has intensively studied under the above problems, and the orange peel is less likely to occur when the half mirror film is integrated with a highly rigid base material at the time of pressure bonding or heating at the time of laminated glass production.
  • the present invention was completed.
  • a windshield glass including a first glass plate, a first resin film, a half mirror film, a second resin film, and a second glass plate in this order, Further including a substrate,
  • the half mirror film includes a circularly polarized light reflection layer,
  • the circularly polarized light reflection layer includes a cholesteric liquid crystal layer,
  • the half mirror film is adjacent to the base material,
  • the circularly polarized light reflecting layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in a visible light region,
  • the windshield glass according to any one of [1] to [10], wherein the central wavelengths of selective reflection of each of the three or more cholesteric liquid crystal layers are different from each other.
  • the circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers, One of the four or more cholesteric liquid crystal layers is a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm,
  • the cholesteric liquid crystal layer closest to the ⁇ / 2 retardation layer among the four or more cholesteric liquid crystal layers is a cholesteric liquid crystal layer having a selective reflection center wavelength of 350 nm or more and less than 490 nm. Windshield glass.
  • any one or more selected from the group consisting of the first resin film and the second resin film includes polyvinyl butyral.
  • a head-up display system including the windshield glass and the projector according to any one of [6] to [9], A head-up display system in which the circularly polarized light reflecting layer, the retardation layer, and the projector are arranged in this order.
  • a laminated film comprising a substrate and a half mirror film, The half mirror film is bonded to the substrate with an adhesive layer on a part of the main surface of the substrate, The half mirror film includes a circularly polarized light reflection layer, The circularly polarized light reflection layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region, A laminated film in which the substrate is a polyethylene terephthalate film, the elastic modulus of the substrate is 3 GPa to 10 GPa, and the thickness of the substrate is 150 ⁇ m to 500 ⁇ m.
  • the windshield glass having a laminated glass structure including a half mirror film in the intermediate layer it is possible to provide a windshield glass that is visually confirmed and is not distorted due to the half mirror film.
  • This windshield glass can be used in a head-up display system.
  • the laminated film suitable for preparation of said windshield glass is provided.
  • an angle for example, an angle such as “90 °”
  • a relationship thereof for example, “parallel”, “horizontal”, “vertical”, etc.
  • “selective” for circularly polarized light means that the amount of light of either the right circularly polarized component or the left circularly polarized component of light is greater than that of the other circularly polarized component.
  • the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. More preferably, it is substantially 1.0. Table In / (I R + I L)
  • sense for circularly polarized light means right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
  • the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, it reflects right circularly polarized light and transmits left circularly polarized light.
  • the sense When the sense is left, it reflects left circularly polarized light and transmits right circularly polarized light.
  • light means visible light and natural light (unpolarized light) unless otherwise specified.
  • Visible light is light having a wavelength that can be seen by the human eye among electromagnetic waves, and usually indicates light having a wavelength range of 380 nm to 780 nm.
  • the measurement of the light intensity required in connection with the calculation of the light transmittance may be performed by using, for example, a normal visible spectrum meter and measuring the reference as air.
  • the term “reflected light” or “transmitted light” is used to mean scattered light and diffracted light.
  • the polarization state of each wavelength of light can be measured using a spectral radiance meter or a spectrometer equipped with a circularly polarizing plate.
  • the intensity of light measured through the right circularly polarizing plate corresponds to I R
  • the intensity of light measured through the left circularly polarizing plate corresponds to I L.
  • the measurement can be performed.
  • the ratio can be measured by attaching a right circular polarized light transmission plate, measuring the right circular polarized light amount, attaching a left circular polarized light transmission plate, and measuring the left circular polarized light amount.
  • p-polarized light means polarized light that vibrates in a direction parallel to the light incident surface.
  • the incident surface means a surface that is perpendicular to a reflecting surface (such as a windshield glass surface) and includes incident light rays and reflected light rays.
  • the vibration plane of the electric field vector is parallel to the incident plane.
  • s-polarized light means polarized light that vibrates in a direction perpendicular to the light incident surface.
  • the front phase difference is a value measured using an AxoScan manufactured by Axometrics. The measurement wavelength is 550 nm.
  • the front phase difference may be a value measured by making light having a wavelength in the visible light wavelength region incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the birefringence ( ⁇ n) of a liquid crystal compound is the same as that described in “Liquid Crystal / Fundamentals (Mitsoji Okano, Keisuke Kobayashi)” p. It is a value measured according to the method described in 214. Specifically, ⁇ n at 60 ° C. can be obtained by injecting a liquid crystal compound into a wedge-shaped cell, irradiating it with light having a wavelength of 550 nm, and measuring the refraction angle of transmitted light.
  • projection image means an image based on the projection of light from a projector to be used, not a surrounding landscape such as the front.
  • the projected image is observed as a virtual image that appears above the projected image display portion of the windshield glass as viewed from the observer.
  • screen image means an image displayed on a drawing device of a projector or an image drawn on an intermediate image screen or the like by the drawing device.
  • an image is a real image. Both the image and the projected image may be a single color image, a multicolor image of two or more colors, or a full color image.
  • the windshield glass means a window glass for vehicles such as cars, trains, airplanes, ships, play equipment and the like.
  • the windshield glass is preferably a windshield in the direction of travel of the vehicle.
  • the windshield glass is preferably a vehicle windshield.
  • the windshield glass may be flat.
  • the windshield glass may be formed for incorporation into an applied vehicle, and may have a curved surface, for example.
  • a direction that is upward (vertically upward) and a surface that is an observer side can be specified during normal use.
  • the windshield glass or the projected image display part when it is vertically above, it means the direction that is vertically above when it can be specified as described above.
  • the windshield glass of the present invention has a laminated glass structure in which two glass plates are bonded via an intermediate layer, and includes a first glass plate, a first resin film, a half mirror film, and a second glass plate. A resin film and a second glass plate are included in this order.
  • the windshield glass of the present invention further includes a specific base material, and the half mirror film is adjacent to the base material.
  • the glass plate on the outside is referred to as the first glass plate
  • the glass plate on the indoor side is referred to as the second glass plate.
  • the glass plate located farther from the observer (driver) side is called the first glass plate
  • the glass plate located closer is called the second glass plate.
  • the term “glass plate” means both the first glass plate and the second glass plate.
  • the glass plate a glass plate generally used for windshield glass can be used.
  • the thickness of the glass plate is not particularly limited, but is preferably about 0.5 mm to 5 mm, more preferably 1 mm to 3 mm, and further preferably 1.6 mm to 2.3 mm.
  • the thicknesses of the first glass plate and the second glass plate may be the same or different from each other.
  • the first glass plate may be 1.9 mm to 2.5 mm
  • the second glass plate may be 1.6 mm to 1.9 mm.
  • the glass plate may be subjected to surface treatment for imparting water repellency, hydrophilicity, or antifogging property to the surface thereof.
  • the glass plate is preferably cut into the shape of windshield glass. Moreover, it is preferable to have a curved surface.
  • the curved surface can be provided by placing the cut glass plate on a jig having the same curvature as the windshield glass to be manufactured and heating (for example, 600 to 700 ° C.).
  • the resin film on the outside is referred to as a first resin film
  • the resin film on the indoor side is referred to as a second resin film.
  • the resin film located farther from the observer (driver) side is called the first resin film
  • the resin film located closer is called the second resin film.
  • the first resin film and the second resin film may be the same or different in material, thickness, and the like. The materials are preferably the same, and more preferably the materials and thickness are the same.
  • the term “resin film” means both the first resin film and the second resin film.
  • the resin film may have the same shape and area as the first glass plate. For example, in the laminated glass manufacturing process, after the resin film unwound from the roll form is sandwiched between the first glass plate and the second glass plate, it may be trimmed into the shape of the first glass plate. .
  • a well-known resin film can be used as a sheet
  • the resin film contains a resin as a main component.
  • the main component refers to a component that occupies a ratio of 50% by mass or more of the resin film.
  • the resin is preferably a synthetic resin.
  • a thermoplastic resin can be used as the resin.
  • the thermoplastic resin include thermoplastic resins conventionally used for interlayer applications in laminated glass, such as polyvinyl acetal, polyvinyl chloride, saturated polyester, polyurethane, ethylene-vinyl acetate copolymer, ethylene. -Ethyl acrylate copolymer and the like.
  • polyvinyl acetal is preferable from the viewpoints of transparency, strength, light resistance, and the like.
  • Polyvinyl acetal is a general term for resins obtained by acetalizing polyvinyl alcohol with an aldehyde in the presence of an acid.
  • polyvinyl formal acetalized with formalin formaldehyde 37% aqueous solution
  • butanol butyl alcohol
  • PVB acetalized polyvinyl butyral
  • polyvinyl butyral or ethylene-vinyl acetate copolymer is preferable, and polyvinyl butyral is more preferable.
  • polyvinyl butyral can be obtained by acetalizing polyvinyl alcohol with butyraldehyde.
  • the preferable lower limit of the degree of acetalization of the polyvinyl butyral is 40%, the preferable upper limit is 85%, the more preferable lower limit is 60%, and the more preferable upper limit is 75%.
  • Polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate, and polyvinyl alcohol having a saponification degree of 80 to 99.8 mol% is generally used. Moreover, the preferable minimum of the polymerization degree of the said polyvinyl alcohol is 200, and a preferable upper limit is 3000. When the polymerization degree of polyvinyl alcohol is 200 or more, the penetration resistance of the obtained laminated glass is difficult to decrease, and when it is 3000 or less, the moldability of the resin film is good, and the rigidity of the resin film does not increase too much. Good workability. A more preferred lower limit is 500, and a more preferred upper limit is 2000.
  • the resin is also preferably plasticized by the addition of a plasticizer.
  • a plasticizer phosphate ester, carboxylic acid ester, sugar ester, polycondensation ester, or the like is used.
  • the addition amount of the plasticizer is preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the resin.
  • the thermoplastic resin can be sufficiently plasticized.
  • strength of a resin layer can fully be maintained by the addition amount of a plasticizer being 80 mass parts or less.
  • the resin film or the composition for forming the resin film is an infrared shielding fine particle, an adhesion adjusting agent, a coupling agent, a surfactant, an antioxidant, a heat stabilizer, a light stabilizer,
  • an ultraviolet absorber such as an ultraviolet absorber, a fluorescent agent, a dehydrating agent, an antifoaming agent, an antistatic agent, and a flame retardant may be included.
  • the thickness of the resin film is, for example, preferably 0.1 mm to 1.5 mm, and more preferably 0.2 mm to 1.0 mm.
  • the windshield glass of the present invention includes a half mirror film in the intermediate layer of the laminated glass.
  • a projected image display portion capable of simultaneously displaying an image projected in a head-up display system and a front landscape can be formed on the windshield glass.
  • the projected image display part is a part capable of displaying a projected image with reflected light, and may be any part capable of displaying the projected image projected from a projector or the like so as to be visible.
  • the windshield glass of the present invention is used in a head-up display system, an image projected from a projector can be displayed on a half mirror film portion so as to be visible, and a half mirror is displayed from the same surface side on which the image is displayed.
  • the half mirror film has a function as an optical path combiner that displays external light and video light in a superimposed manner.
  • the half mirror film may be provided on the entire surface of the windshield glass, or may be provided in part with respect to the entire area of the windshield glass, but is preferably provided in part.
  • the upper limit is 90% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, etc. with respect to the total area of the windshield glass.
  • the lower limit may be 1% or more, 3% or more, 5% or more, 7% or more, 10% or more.
  • the half mirror film may be provided in any position of the windshield glass, but when used as a head-up display system, the position is easily visible from an observer (for example, a driver). Are preferably provided so that a virtual image is shown.
  • the position where the half mirror film is provided may be determined from the relationship between the position of the driver's seat of the applied vehicle and the position where the projector is installed. Specifically, it is preferably disposed at an angle that the driver looks down, and is preferably disposed at a position below the center of the windshield glass.
  • the half mirror film may have a flat shape that does not have a curved surface, but may have a curved surface, and has a concave or convex shape as a whole.
  • the image may be displayed enlarged or reduced.
  • the thickness of the half mirror film is preferably 2.5 ⁇ m to 35 ⁇ m, more preferably 3.0 ⁇ m to 30 ⁇ m, and even more preferably 3.5 ⁇ m to 25 ⁇ m.
  • the half mirror film only needs to have a function as a half mirror for at least projection light. However, for example, it does not need to function as a half mirror for light in the entire visible light range. Moreover, the half mirror film should just have said function with respect to the light of at least one part incident angle.
  • the half mirror film has visible light transmittance in order to enable observation of information or scenery on the opposite surface side.
  • the half mirror film may have a light transmittance of 40% or more, preferably 50% or more, more preferably 60% or more, and further preferably 70% or more in the visible light wavelength region.
  • the light transmittance is the light transmittance determined by the method described in JIS-K7105.
  • Half mirror film includes a circularly polarized reflective layer.
  • the half mirror film may further include a retardation layer.
  • the circularly polarized light reflecting layer and the retardation layer may be prepared separately and adhered to each other to form a half mirror film, or the retardation layer on the circularly polarized light reflecting layer (cholesteric liquid crystal layer).
  • a half mirror film may be formed by forming a circularly polarized light reflecting layer (cholesteric liquid crystal layer) on the retardation layer.
  • the half mirror film may include layers such as a second retardation layer, an alignment layer, a support, and an adhesive layer described later in addition to the circularly polarized light reflection layer and the retardation layer.
  • the half mirror film used for producing the windshield glass of the present invention may be a film shape, a sheet shape, or a plate shape.
  • the half mirror film may be formed as a thin film in a roll shape or the like, and thereafter used for producing the windshield glass of the present invention.
  • the circularly polarized light reflecting layer is a layer that reflects light.
  • the circularly polarized light reflection layer includes a cholesteric liquid crystal layer.
  • the circularly polarized light reflecting layer may include other layers such as an alignment layer.
  • the thickness of the circularly polarized light reflection layer is preferably 2.0 ⁇ m to 30 ⁇ m, more preferably 2.5 ⁇ m to 25 ⁇ m, and even more preferably 3.0 ⁇ m to 20 ⁇ m.
  • a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal layer is sometimes simply referred to as a liquid crystal layer.
  • the cholesteric liquid crystal layer may be a layer that maintains the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase.
  • a cholesteric liquid crystal layer typically has a polymerizable liquid crystal compound in an aligned state of a cholesteric liquid crystal phase, and is then polymerized and cured by ultraviolet irradiation, heating, etc. to form a layer having no fluidity, and at the same time, Any layer may be used as long as the orientation is not changed by an external field or an external force.
  • the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the cholesteric liquid crystal phase exhibits circularly polarized light selective reflection that selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light and transmits the circularly polarized light of the other sense.
  • the circularly polarized light selective reflection is sometimes simply referred to as selective reflection.
  • Many films formed from a composition containing a polymerizable liquid crystal compound have been known as a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selectively is fixed. You can refer to the technology.
  • the central wavelength ⁇ of selective reflection of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the selective reflection center wavelength and the half-value width of the cholesteric liquid crystal layer can be obtained as follows.
  • the transmission spectrum of the cholesteric liquid crystal layer (measured from the normal direction of the cholesteric liquid crystal layer) is measured using a spectrophotometer, a drop in transmittance is observed in the selective reflection band.
  • the wavelength value on the short wavelength side is ⁇ l (nm)
  • the wavelength value on the long wavelength side Is ⁇ h (nm)
  • the center wavelength ⁇ and the half-value width ⁇ of selective reflection can be expressed by the following equations.
  • the selective reflection center wavelength obtained as described above substantially matches the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • Examples of the spectrophotometer include UV3150 manufactured by Shimadzu Corporation and V-670 manufactured by JASCO.
  • the center wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure.
  • the cholesteric liquid crystal layer exhibiting selective reflection in the visible light region preferably has a center wavelength of selective reflection in the visible light region.
  • the center wavelength ⁇ is adjusted to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to red light, green light, and blue light. be able to.
  • a windshield glass is used so that light is incident obliquely with respect to a circularly polarized reflective layer in order to reduce double images caused by reflection of projection light on the front or back surface of the glass. It is preferable.
  • ⁇ d n 2 ⁇ P ⁇ cos ⁇ 2
  • n ⁇ P may be adjusted by inserting this angle and the center wavelength of the desired selective reflection into the above equation.
  • the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
  • the method of measuring spiral sense and pitch use the methods described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editing Committee, page 196. be able to.
  • the circularly polarized light reflecting layer preferably includes three or more cholesteric liquid crystal layers.
  • the circularly polarized light reflection layer preferably includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region. Further, it is preferable that the central wavelengths of selective reflection of the three or more cholesteric liquid crystal layers are different from each other.
  • the circularly polarized light reflection layer preferably has an apparent selective reflection center wavelength with respect to red light, green light, and blue light.
  • the apparent center wavelength of selective reflection means the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum of the cholesteric liquid crystal layer measured from the observation direction in practical use.
  • the circularly polarized light reflection layer may include a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light. preferable.
  • the circularly polarized light reflecting layer has, for example, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 490 nm to 600 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 600 nm to 680 nm, and a central wavelength of selective reflection at 680 nm to 850 nm. It is preferable to include a cholesteric liquid crystal layer.
  • Displaying a clear projected image with high light utilization efficiency by adjusting the center wavelength of selective reflection of the cholesteric liquid crystal layer to be used according to the emission wavelength range of the light source used for projection and the usage of the circularly polarized reflective layer Can do.
  • a clear color projection image can be displayed with high light utilization efficiency.
  • usage of the circularly polarized light reflecting layer include the incident angle of the projected light on the circularly polarized light reflecting layer, the direction in which the projected image is observed, and the like.
  • the circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers, and the central wavelengths of selective reflection of the four or more cholesteric liquid crystal layers are different from each other.
  • each cholesteric liquid crystal layer a cholesteric liquid crystal layer whose spiral sense is either right or left is used.
  • the sense of reflected circularly polarized light in the cholesteric liquid crystal layer coincides with the sense of a spiral.
  • the spiral senses of the cholesteric liquid crystal layers having different selective reflection center wavelengths may all be the same or may include different ones, but are preferably the same.
  • a plurality of cholesteric liquid crystal layers having the same pitch P and the same spiral sense may be stacked. By laminating cholesteric liquid crystal layers having the same pitch P and the same spiral sense, the circularly polarized light selectivity can be increased at a specific wavelength.
  • the half width ⁇ of selective reflection can be 15 nm to 200 nm, 15 nm to 150 nm, 20 nm to 100 nm, or the like.
  • the circularly polarized light reflection layer preferably includes at least one cholesteric liquid crystal layer having a selective reflection half width ⁇ of 50 nm or less.
  • a cholesteric liquid crystal layer having a selective reflection half-value width ⁇ of 50 nm or less may be referred to as a narrow-band selective reflection layer.
  • the circularly polarized light reflecting layer includes two narrow band selective reflecting layers.
  • the cholesteric liquid crystal layer having the apparent center wavelength of selective reflection for green light and blue light is preferably a narrow-band selective reflection layer.
  • the cholesteric liquid crystal layer having the apparent center wavelength of selective reflection with respect to green light and blue light is a narrow-band selective reflection layer, a projection image that provides a clear projection image without impairing the transparency of the windshield glass. It is possible to form an image display part.
  • the thickness of the cholesteric liquid crystal layer is preferably 0.3 ⁇ m to 10 ⁇ m, more preferably 0.4 ⁇ m to 8.0 ⁇ m, and even more preferably 0.5 ⁇ m to 6.0 ⁇ m.
  • a separately prepared cholesteric liquid crystal layer may be laminated using an adhesive or the like, and the polymerizable liquid crystal is directly applied to the surface of the previous cholesteric liquid crystal layer formed by the method described later.
  • a liquid crystal composition containing a compound or the like may be applied and the alignment and fixing steps may be repeated, but the latter is preferred.
  • the orientation direction of the liquid crystal molecules on the air interface side of the previously formed cholesteric liquid crystal layer and the cholesteric liquid crystal layer formed thereon This is because the orientation directions of the lower liquid crystal molecules coincide with each other, and the polarization property of the laminate of cholesteric liquid crystal layers is improved. Moreover, interference unevenness that may be caused by unevenness in the thickness of the adhesive layer is not observed.
  • Short wavelength cholesteric liquid crystal layer When the circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers, one of these cholesteric liquid crystal layers is a cholesteric liquid crystal layer (hereinafter referred to as “short wavelength cholesteric liquid crystal layer) having a central wavelength of selective reflection at 350 nm or more and less than 490 nm. It is also preferable to include a “liquid crystal layer”.
  • the configuration including the circularly polarized light reflection layer and the ⁇ / 2 retardation layer is provided on the windshield glass as the projected image display portion, the present inventors have observed the projected image display portion in the windshield glass under the external light. It was discovered that the color (especially yellow) was confirmed.
  • the above-mentioned color is felt in the projected image display part even when the windshield glass is observed under the external light.
  • the projection image display part can be made inconspicuous from the outside.
  • the optical design is made on the assumption that light is incident obliquely with respect to the circularly polarized reflective layer in order to reduce the double image using the Brewster angle.
  • a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm it is possible to reduce glare that can be felt through polarized sunglasses when observing external light through a projected image display part.
  • s-polarized light based on reflected light from the ground or water surface that is not visually recognized through polarized sunglasses can be converted into a light component that is visually recognized by changing the polarization state at the projected image display site, and this light component is 350 nm. This is considered to be reduced by using a cholesteric liquid crystal layer having a central wavelength of selective reflection below 490 nm.
  • the cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm preferably has a central wavelength of selective reflection at 370 nm to 485 nm, more preferably has a central wavelength of selective reflection at 390 nm to 480 nm. More preferably, it has a central wavelength of selective reflection at 470 nm.
  • the short wavelength cholesteric liquid crystal layer may have an apparent selective reflection center wavelength of 280 nm or more and less than 420 nm, preferably 300 nm or more and less than 410 nm, preferably 320 nm or more and less than 400 nm when used in a head-up display system. Is more preferably 340 nm or more and less than 395 nm.
  • the short-wavelength cholesteric liquid crystal layer in the circularly polarized light reflection layer is the most retardation layer (first retardation described later) among four or more cholesteric liquid crystal layers. Preferably it is on the layer) side. This is because the double image is further reduced.
  • the cholesteric liquid crystal layer is preferably arranged in order from the one having the shortest central wavelength of selective reflection as viewed from the phase difference layer (first phase difference layer described later) side.
  • a retardation layer, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm to less than 490 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 490 to 600 nm, and a cholesteric liquid crystal having a central wavelength of selective reflection at 600 to 680 nm It is preferable that a cholesteric liquid crystal layer having a central wavelength of selective reflection at 680 nm to 850 nm is disposed in this order.
  • cholesteric liquid crystal layer a manufacturing material and a manufacturing method of the cholesteric liquid crystal layer
  • the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, apply the above liquid crystal composition mixed with a surfactant or a polymerization initiator and dissolved in a solvent to the support, alignment layer, cholesteric liquid crystal layer as a lower layer, etc.
  • a cholesteric liquid crystal layer can be formed by being fixed by curing the liquid crystal composition.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups contained in the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3 in one molecule. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials, 5, 107 (1993), US Pat. No.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and is preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
  • a narrow band is obtained by forming a cholesteric liquid crystal phase using a low ⁇ n polymerizable liquid crystal compound and fixing it to a film.
  • a selective reflection layer can be obtained.
  • the low ⁇ n polymerizable liquid crystal compound include compounds described in International Publications WO2015 / 115390, WO2015 / 147243, WO2016 / 035873, JP2015-163596, and JP2016-53149A.
  • the description of WO2016 / 047648 can also be referred to for the liquid crystal composition providing a selective reflection layer having a small half width.
  • the liquid crystal compound is also preferably a polymerizable compound represented by the following formula (I) described in WO2016 / 047648.
  • A represents a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent
  • L is a single bond, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC ( ⁇ O) —, —C ( ⁇ O) O (CH 2 ) 2 —, —C ( ⁇ O) O Selected from the group consisting of —, —OC ( ⁇ O) —, —OC ( ⁇ O) O—, —CH ⁇ CH—C ( ⁇ O) O—, and —OC ( ⁇ O) —CH ⁇ CH—.
  • a linking group m represents an integer of 3 to 12
  • Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • * represents a bonding position.
  • the phenylene group is preferably a 1,4-phenylene group.
  • the phenylene group and trans-1,4-cyclohexylene group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group.
  • alkyl group a 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group.
  • alkyl group is the same for the alkoxy group containing an alkyl group.
  • specific examples of the alkylene group referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom in each of the above examples of the alkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 5 or more, more preferably 10 or less, still more preferably 8 or less, and still more preferably 6 or less.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the substituents that the phenylene group and the trans-1,4-cyclohexylene group may have are particularly an alkyl group, an alkoxy group, and a group consisting of —C ( ⁇ O) —X 3 —Sp 3 —Q 3 Substituents selected from are preferred.
  • X 3 represents a single bond, —O—, —S—, or —N (Sp 4 -Q 4 ) —, or represents a nitrogen atom that forms a ring structure with Q 3 and Sp 3. Show.
  • Sp 3 and Sp 4 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • a linking group selected from the group consisting of substituted groups is shown.
  • Q 3 and Q 4 are each independently a hydrogen atom, a cycloalkyl group, or a cycloalkyl group, wherein one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or a group substituted with —C ( ⁇ O) O—, or a group represented by Formulas Q-1 to Q-5 Any polymerizable group selected from the group consisting of:
  • —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O).
  • group substituted with — or —C ( ⁇ O) O— include a tetrahydrofuranyl group, a pyrrolidinyl group, an imidazolidinyl group, a pyrazolidinyl group, a piperidyl group, a piperazinyl group, and a morpholinyl group.
  • the substitution position is not particularly limited. Of these, tetrahydrofuranyl group is preferable, and 2-tetrahydrofuranyl group is particularly preferable.
  • L represents a single bond, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC ( ⁇ O) —, —C ( ⁇ O) O (CH 2 ) 2 —, — C ( ⁇ O) O—, —OC ( ⁇ O) —, —OC ( ⁇ O) O—, —CH ⁇ CH—C ( ⁇ O) O—, —OC ( ⁇ O) —CH ⁇ CH—,
  • a linking group selected from the group consisting of: L is preferably —C ( ⁇ O) O— or —OC ( ⁇ O) —.
  • the m-1 Ls may be the same as or different from each other.
  • Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • a linking group selected from the group consisting of substituted groups is shown.
  • Sp 1 and Sp 2 each independently has 1 carbon atom to which a linking group selected from the group consisting of —O—, —OC ( ⁇ O) —, and —C ( ⁇ O) O— is bonded to both ends.
  • Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of groups represented by the above formulas Q-1 to Q-5, provided that Q 1 and Q 2 Either one represents a polymerizable group.
  • a polymerizable group an acryloyl group (formula Q-1) or a methacryloyl group (formula Q-2) is preferable.
  • m represents an integer of 3 to 12, preferably an integer of 3 to 9, more preferably an integer of 3 to 7, and further preferably an integer of 3 to 5.
  • the polymerizable compound represented by the formula (I) has at least one phenylene group which may have a substituent as A and a trans-1,4-cyclohexylene group which may have a substituent. It is preferable to include at least one.
  • the polymerizable compound represented by the formula (I) preferably contains 1 to 4 trans-1,4-cyclohexylene groups which may have a substituent as A, and preferably 1 to 3 Is more preferable, and it is more preferable that 2 or 3 is included.
  • A preferably contains at least one phenylene group which may have a substituent, more preferably 1 to 4, more preferably 1 to 1. It is more preferable to include three, and it is particularly preferable to include two or three.
  • polymerizable compound represented by the formula (I) include, in addition to the compounds described in paragraphs 0051 to 0058 of WO2016 / 047648, JP2013-112163A, JP2010-70543A, Examples thereof include compounds described in Japanese Patent No. 4725516, International Publication Nos. WO2015 / 115390, WO2015 / 147243, WO2016 / 035873, JP2015-163596A, and JP2016-53149A.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different.
  • limiting in particular as a chiral agent A well-known compound can be used.
  • Examples of chiral agents include liquid crystal device handbook (Chapter 3, Section 4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142th Committee, 1989), JP-A 2003-287623, Examples thereof include compounds described in JP-A No. 2002-302487, JP-A No. 2002-80478, JP-A No. 2002-80851, JP-A No. 2010-181852 or JP-A No. 2014-034581.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • an isosorbide derivative As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used.
  • an isosorbide derivative a commercial product such as LC-756 manufactured by BASF may be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), ⁇ -hydrocarbons.
  • a substituted aromatic acyloin compound (described in US Pat. No.
  • acyl phosphine oxide compound As the polymerization initiator, it is also preferable to use an acyl phosphine oxide compound or an oxime compound.
  • acylphosphine oxide compound for example, IRGACURE 810 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used.
  • Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used. Only one type of polymerization initiator may be used, or two or more types may be used in combination.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1% by mass to 20% by mass, and preferably 0.5% by mass to 5% by mass with respect to the content of the polymerizable liquid crystal compound. It is more preferable.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. By making the content of the crosslinking agent 3% by mass or more, the effect of improving the crosslinking density can be obtained, and by making the content of the crosslinking agent 20% by mass or less, the stability of the cholesteric liquid crystal layer is lowered. Can be prevented.
  • an alignment control agent that contributes to stably or rapidly forming a cholesteric liquid crystal layer having a planar alignment may be added.
  • the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
  • 1 type may be used independently and 2 or more types may be used together.
  • the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass with respect to the total mass of the polymerizable liquid crystal compound. 0.02% by mass to 1% by mass is particularly preferable.
  • the liquid crystal composition may contain at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film and making the thickness uniform, and a polymerizable monomer.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. are added to the liquid crystal composition as necessary, as long as optical performance is not deteriorated. can do.
  • a cholesteric liquid crystal layer is prepared by preparing a liquid crystal composition in which a polymerizable liquid crystal compound and a polymerization initiator, a chiral agent added as necessary, a surfactant, and the like are dissolved in a solvent, a support, an alignment layer, or first.
  • a cholesteric liquid crystal layer in which the cholesteric regularity is fixed by coating the cholesteric liquid crystal layer on the coated cholesteric liquid crystal layer and drying to obtain a coating film, and irradiating the coating film with actinic rays to polymerize the cholesteric liquid crystalline composition Can be formed.
  • the laminated film which consists of a some cholesteric liquid crystal layer can be formed by repeating the said manufacturing process of a cholesteric liquid crystal layer.
  • solvent there is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the method for applying the liquid crystal composition to the support, the alignment layer, the underlying cholesteric liquid crystal layer, etc. is not particularly limited and can be appropriately selected according to the purpose.
  • a wire bar coating method, a curtain coating method examples include extrusion coating, direct gravure coating, reverse gravure coating, die coating, spin coating, dip coating, spray coating, and slide coating. It can also be carried out by transferring a liquid crystal composition separately coated on a support.
  • the liquid crystal molecules are aligned by heating the applied liquid crystal composition.
  • the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower.
  • the liquid crystal composition can be cured by further polymerizing the aligned liquid crystal compound.
  • the polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 nm to 430 nm.
  • the polymerization reaction rate is preferably as high as possible from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can be determined by measuring the consumption ratio of the polymerizable functional group using an IR absorption spectrum.
  • the half mirror film or the circularly polarized light reflection layer may include other layers such as a support and an alignment layer. All other layers are preferably transparent in the visible light region. In this specification, being transparent in the visible light region means that the transmittance of visible light is 70% or more. Moreover, it is preferable that all other layers have low birefringence. In the present specification, low birefringence means that the front phase difference is 10 nm or less in the wavelength region where the projected image display portion of the windshield glass of the present invention shows reflection, and the front phase difference is It is preferable that it is 5 nm or less. Further, it is preferable that the other layers have a small difference in refractive index from the average refractive index (in-plane average refractive index) of the cholesteric liquid crystal layer.
  • the support can be a substrate when forming a cholesteric liquid crystal layer or a retardation layer described later.
  • the support is not particularly limited.
  • the support used for forming the cholesteric liquid crystal layer or retardation layer is a temporary support that is peeled off after the formation of the cholesteric liquid crystal layer, and may not be included in the finished half mirror film or windshield glass. Good.
  • Examples of the support include plastic films such as polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • glass may be used as the temporary support.
  • the thickness of the support may be about 5.0 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m, and more preferably 15 ⁇ m to 100 ⁇ m.
  • the half mirror film may include an alignment layer as a lower layer to which the liquid crystal composition is applied when forming the cholesteric liquid crystal layer or the retardation layer.
  • the alignment layer has a rubbing treatment of organic compounds such as polymers (resins such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide), oblique deposition of inorganic compounds, and microgrooves. It can be provided by means such as formation of a layer or accumulation of an organic compound (for example, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) using the Langmuir-Blodgett method (LB film).
  • LB film Langmuir-Blodgett method
  • an alignment layer that generates an alignment function by application of an electric field, application of a magnetic field, or light irradiation may be used.
  • the alignment layer made of a polymer is preferably subjected to a rubbing treatment and then a liquid crystal composition is applied to the rubbing treatment surface.
  • the rubbing treatment can be performed by rubbing the surface of the polymer layer with paper or cloth in a certain direction. You may apply
  • the alignment layer may not be peeled off together with the temporary support to form a half mirror film.
  • the thickness of the alignment layer is preferably 0.01 ⁇ m to 5.0 ⁇ m, and more preferably 0.05 ⁇ m to 2.0 ⁇ m.
  • the windshield glass of the present invention includes a substrate.
  • the base material is adjacent to the half mirror film in the windshield glass including the first glass plate, the first resin film, the half mirror film, the second resin film, and the second glass plate in this order.
  • Adjacent to the half mirror film means that the first glass plate, the first resin film, the substrate, the half mirror film, the second resin film, and the second glass plate are in this order, or
  • the base material is included in the windshield glass so that the first glass plate, the first resin film, the half mirror film, the base material, the second resin film, and the second glass plate are in this order.
  • the half mirror film may be in direct contact with the base material or bonded to the base material via an adhesive layer.
  • the base material may be adjacent to the half mirror film on the entire main surface, or may be adjacent to the half mirror film on a part of the main surface.
  • the substrate may have substantially the same shape and area as the glass plate, or may have a smaller area than the glass plate.
  • the substrate has substantially the same shape and area as the glass plate, and the half mirror film may be adjacent to the substrate at a part of the main surface of the substrate.
  • the base material has an elastic modulus of 3 GPa to 10 GPa and a thickness of 150 ⁇ m to 500 ⁇ m.
  • the elastic modulus of the substrate is preferably 3.5 GPa to 9 GPa, more preferably 4 GPa to 8 GPa.
  • the thickness of the substrate is preferably 160 ⁇ m to 400 ⁇ m, and more preferably 170 ⁇ m to 300 ⁇ m.
  • the base material preferably has an elastic modulus of 5 GPa to 8 GPa and a thickness of 170 ⁇ m to 300 ⁇ m.
  • the elastic modulus is determined by pulling the sample at a speed of 10 mm / min using a tensile tester in accordance with the measurement method of JIS K7127, and obtaining the strength and elongation when the sample is cut, thereby deforming the sample. Measured from the maximum elasticity immediately before (primary expression of the tangent of the maximum slope of the SS curve).
  • the substrate examples include plastic films such as polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • PET polyethylene terephthalate
  • a polyethylene terephthalate film is preferable from the viewpoint of cost.
  • the polyethylene terephthalate film a film having a low haze, a high transmittance, and a film that is difficult to hydrolyze is preferable.
  • the thickness of the polyethylene terephthalate film is more preferably 170 ⁇ m to 300 ⁇ m.
  • a retardation layer (a first retardation layer or a second retardation layer) described later may also serve as a base material.
  • the base material and the half mirror film are integrated before the process of manufacturing the laminated glass described later and are a laminated film including the base material and the half mirror film.
  • the orange peel-like unevenness in the half mirror film in the windshield glass is obtained by integrating the base material having the elastic modulus and thickness and the half mirror film before the process including the heating and pressurizing processes. Can be prevented.
  • the aspects of the base material and the half mirror film in the laminated film are the same as those described in the above-described windshield glass.
  • Integrating may be performed by directly forming a half mirror film on the substrate, or may be performed by bonding both, but it is preferable to bond both. Bonding may be performed by an adhesive layer described later.
  • the thickness of the adhesive layer is preferably 10 ⁇ m or less. This is because, by setting the thickness of the adhesive layer to 10 ⁇ m or less, orange-peel-shaped unevenness derived from the adhesive layer is unlikely to occur.
  • an ultraviolet curing type as an adhesive for adhering the base material and the half mirror film.
  • an ultraviolet curable adhesive has a sufficient adhesive strength with a thickness of 10 ⁇ m or less, and therefore, an ultraviolet curable adhesive is used to provide an adhesive layer of 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less. be able to.
  • OCA tape highly transparent adhesive transfer tape
  • a commercially available product generally has a thickness exceeding 10 ⁇ m, and therefore, a tape having a thickness of 10 ⁇ m or less may be selected and used.
  • the support may be peeled off simultaneously with the adhesion to the substrate, immediately after, or immediately before.
  • the half mirror film is preferably bonded to a part of the main surface of the base material via an adhesive layer.
  • the area may be 90% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, etc. with respect to the total area of the substrate. It may be 1% or more, 3% or more, 5% or more, 7% or more, 10% or more.
  • the base material has substantially the same shape and area as the windshield glass to be manufactured.
  • the windshield glass of the present invention may include a retardation layer between the circularly polarized light reflecting layer and the second resin film.
  • a clear projected image can be displayed by using a retardation layer in which the front retardation is appropriately adjusted in combination with the circularly polarized light reflecting layer.
  • the retardation layer may be included as a layer constituting the half mirror film, or may be included as a base material.
  • retardation layers particularly preferred examples of retardation layers contained in windshield glass as a substrate include stretched polycarbonate films, stretched norbornene polymer films, and inorganic having birefringence such as strontium carbonate.
  • examples thereof include a transparent film containing particles and oriented, a thin film obtained by obliquely depositing an inorganic dielectric on a support, and a film obtained by orienting and fixing a liquid crystal compound uniaxially.
  • a preferable example of the retardation layer included as a layer constituting the half mirror film is a film in which a polymerizable liquid crystal compound is uniaxially aligned and fixed.
  • a liquid crystal composition containing a polymerizable liquid crystal compound is applied to the surface of the support or the alignment layer, and the polymerizable liquid crystal compound in the liquid crystal composition is formed in a nematic alignment in a liquid crystal state and then fixed by curing. Can be formed.
  • the retardation layer can be formed in the same manner as the formation of the cholesteric liquid crystal layer except that no chiral agent is added to the liquid crystal composition.
  • the heating temperature is preferably 50 ° C. to 120 ° C. and more preferably 60 ° C. to 100 ° C. in the nematic alignment after the application of the liquid crystal composition.
  • a retardation layer is formed by applying a composition containing a polymer liquid crystal compound on the surface of a support or an alignment layer to form a nematic alignment in a liquid crystal state. Further, it may be a layer obtained by fixing the orientation by cooling.
  • the thickness of the retardation layer included as a layer constituting the half mirror film is not particularly limited, but is preferably 0.2 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 5.0 ⁇ m, and 1.0 ⁇ m to 2. 0 ⁇ m is more preferable.
  • the retardation layer is particularly preferably a ⁇ / 2 retardation layer.
  • the projected image display part produced by combining the ⁇ / 2 retardation layer and the circularly polarized reflective layer is compared with, for example, the projected image display part using a combination of the ⁇ / 4 retardation layer and the circularly polarized reflective layer.
  • the front phase difference of the ⁇ / 2 retardation layer may be a length that is 1 ⁇ 2 of the visible light wavelength region, or “center wavelength ⁇ n ⁇ 1 ⁇ 2 of the center wavelength (n is an integer)”.
  • the reflection wavelength of the circularly polarized light reflection layer for example, any cholesteric liquid crystal
  • the length of 1 ⁇ 2 of the center wavelength of the light emission wavelength of the light source may be used.
  • the phase difference may be in the range of 190 nm to 390 nm, and the phase difference is preferably in the range of 200 nm to 350 nm.
  • the slow axis direction of the ⁇ / 2 retardation layer can be determined according to the incident direction of incident light for projected image display and the spiral sense of the cholesteric liquid crystal layer when used as a head-up display system.
  • the incident light is in the lower (vertically lower) direction of the projected image display portion and may be referred to as “ ⁇ / 2 phase difference layer side” (in this specification, “from the observer side”) with respect to the circularly polarized light reflection layer )
  • the slow axis of the ⁇ / 2 retardation layer is in the range of + 40 ° to + 65 ° or ⁇ 40 ° to ⁇ 65 ° with respect to the vertical upward direction of the projected image display portion.
  • the slow axis direction is preferably set as follows according to the spiral sense of the cholesteric liquid crystal layer in the circularly polarized light reflecting layer.
  • the sense is on the right (preferably, when the senses of all cholesteric liquid crystal layers are on the right)
  • the slow axis of the ⁇ / 2 retardation layer is viewed from the observer side with respect to the vertical upward direction of the projected image display region.
  • it is preferably in the range of 40 ° to 65 °, preferably 45 ° to 60 °.
  • the slow axis of the ⁇ / 2 retardation layer is viewed from the observer side with respect to the vertical upward direction of the projected image display area.
  • it is preferably in the range of 40 ° to 65 °, preferably 45 ° to 60 ° counterclockwise.
  • the windshield glass of the present invention may include a second retardation layer in addition to the retardation layer.
  • the retardation layer included between the circularly polarized light reflection layer and the second resin film may be referred to as a first retardation layer.
  • the second retardation layer may be provided so that the first retardation layer (preferably ⁇ / 2 retardation layer), the circularly polarized light reflection layer, and the second retardation layer are in this order.
  • the first retardation layer, the circularly polarized light reflection layer, and the second retardation layer may be provided in this order from the viewer side.
  • the second retardation layer may be included as a part of the half mirror film or may be included as a base material.
  • double images can be further prevented.
  • the effect is more remarkable when a low ⁇ n polymerizable liquid crystal compound is used for forming a cholesteric liquid crystal layer in the circularly polarized light reflection layer.
  • the reason that the double image can be further prevented by using the second retardation layer is that light having a wavelength not in the selective reflection band of the cholesteric liquid crystal layer included in the circularly polarized light reflection layer is polarized and converted by the cholesteric liquid crystal layer. It is presumed that the double image generated based on the reflection on the back surface of the windshield glass can be prevented.
  • the retardation of the second retardation layer may be appropriately adjusted in the range of 160 nm to 460 nm, preferably in the range of 240 nm to 420 nm at the wavelength of 550 nm.
  • the material, thickness, and the like of the second retardation layer can be selected in the same range as the first retardation layer.
  • the slow axis direction of the second retardation layer is determined according to the incident direction of incident light for projecting image display and the spiral sense of the cholesteric liquid crystal layer.
  • the second phase difference layer having a phase difference in the range of 160 nm to 400 nm at a wavelength of 550 nm is + 10 ° to + 35 ° or ⁇ 10 ° to ⁇ 35 ° with respect to the vertical direction of the projected image display portion. It is preferable to be in the range.
  • the slow axis of the second retardation layer having a phase difference in the range of 200 nm to 400 nm at the wavelength of 550 nm is + 100 ° to + 140 ° or ⁇ 100 ° to ⁇ 140 ° with respect to the vertical upward direction of the projected image display portion. It is preferable to be in the range.
  • the adhesive layer is not only between the base material and the half mirror film as described above, but also, for example, between the cholesteric liquid crystal layer, between the circularly polarized reflective layer and the first retardation layer, and between the circularly polarized reflective layer and the second retardation. It may be provided between layers. Further, it may be provided between the half mirror film and the resin film, between the base material and the resin film, or the like.
  • the adhesive layer is preferably transparent in the visible light region.
  • the adhesive layer preferably has low birefringence, and preferably has a small difference in refractive index from the average refractive index (in-plane average refractive index) of the cholesteric liquid crystal layer.
  • Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do.
  • the photo-curing type particularly the ultraviolet curing type
  • the material is acrylate, urethane acrylate, epoxy acrylate, etc. It is preferable to do.
  • the thickness of the adhesive layer in the above example is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1.0 ⁇ m to 5.0 ⁇ m. In order to reduce color unevenness and the like of the projected image display part, it is preferable to provide the uniform thickness.
  • the adhesive layer may be formed using a highly transparent adhesive transfer tape (OCA tape).
  • OCA tape a highly transparent adhesive transfer tape
  • a commercially available product for an image display device particularly a commercially available product for the surface of the image display unit of the image display device can be used.
  • Examples of commercially available products include PANAC Corporation pressure-sensitive adhesive sheets (PD-S1 and the like), MHI Series MHM series pressure-sensitive adhesive sheets, and the like.
  • the thickness of the OCA tape may be 1.0 ⁇ m to 50 ⁇ m, and preferably 2.0 ⁇ m to 30 ⁇ m. As described above, when used as an adhesive layer between the substrate and the half mirror film, the thickness of the OCA tape is preferably 10 ⁇ m or less.
  • the windshield glass can be manufactured using a known laminated glass manufacturing method. For example, in a laminate obtained by sandwiching two resin films in a state where a laminate film (hereinafter sometimes referred to as a laminate film) including a base material and a half mirror film is sandwiched between two glass plates On the other hand, it can be manufactured by performing pre-bonding and main-bonding. Alternatively, an intermediate film sheet having a structure in which a laminated film is sandwiched between two resin films is prepared in advance, and pre-compression and main pressure bonding are performed on a laminate obtained by sandwiching the intermediate film between two glass plates. It can be manufactured by doing.
  • a laminate film including a base material and a half mirror film
  • the heating and pressurization at the time of forming the intermediate film having a structure in which the above laminated film is sandwiched between two resin films are, for example, a temperature of 40 ° C. or higher and 140 ° C. or lower, preferably a temperature of 60 ° C. or higher and 120 ° C. or lower, a pressure of 0.05 MPa It may be performed at 0.8 MPa or less and preferably at 0.1 MPa or more and 0.5 MPa or less.
  • Pre-crimping is a process performed for deaeration between layers in the production of laminated glass.
  • the pre-compression is performed, for example, by putting the laminated body in a rubber bag connected to an exhaust system.
  • the pressure at this time is preferably 100 kPa or less, more preferably 1 to 36 kPa.
  • the pre-bonding can be performed by holding at a temperature of 70 ° C. to 130 ° C. for 10 minutes to 90 minutes.
  • Preliminary pressure bonding can be achieved by setting the holding temperature to 70 ° C. or higher.
  • the holding temperature is preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. This is for performing deaeration more reliably.
  • the holding temperature is preferably 120 ° C. or lower, and more preferably 110 ° C. or lower.
  • the holding time is 10 minutes or more, the preliminary pressure bonding can be sufficiently performed.
  • the holding time is 90 minutes or less, the productivity is good and the thermal shrinkage of the half mirror film or the base material can be prevented from proceeding excessively, thereby suppressing the occurrence of cracks in the half mirror film or the base material. be able to.
  • the holding time is preferably 20 minutes or longer and 60 minutes or shorter from the viewpoint of more effectively and efficiently performing preliminary pressure bonding.
  • the main pressure bonding is performed in order to sufficiently bond the respective layers with the resin film.
  • a pre-pressure bonded body obtained by the pre-pressure bonding is put in an autoclave, the temperature is 110 ° C. or higher and 150 ° C. or lower, and the pressure is 0.98 MPa. This can be performed at a pressure of 1.47 MPa or less. More preferably, the temperature is 130 ° C. to 140 ° C. and the pressure is 1.1 MPa to 1.4 MPa. And it is preferable that it is 15 minutes or more and 90 minutes or less, and, as for the time (holding time) hold
  • ⁇ Layer on the viewing side with respect to the circularly polarized reflective layer> In general, in a projection image display member, based on an image based on reflected light from a layer that reflects projection light, and reflection light from a front surface or a back side as viewed from the light incident side of the projection image display member. Double images (or multiple images) are caused by overlapping images.
  • the light transmitted through the cholesteric liquid crystal layer in the circularly polarized light reflection layer is circularly polarized light having a sense opposite to that of the circularly polarized light reflected by the cholesteric liquid crystal layer, and reflected light from the back side surface.
  • the circularly polarized light that is usually reflected by the cholesteric liquid crystal layer is mostly, so that it is difficult to produce a noticeable double image.
  • the projection light most of the projection light can be reflected by the circularly polarized light reflection layer.
  • the reflected light from the front surface can cause a noticeable double image.
  • the distance from the center of gravity of the cholesteric liquid crystal layer to the front surface when viewed from the light incident side of the windshield glass is a certain value or more, a double image can be prominent.
  • the total thickness of the layers on the second glass plate side from the circularly polarized reflective layer that is, the outermost surface on the second glass plate side of the circularly polarized reflective layer From the circularly polarizing reflective layer, the distance to the outermost surface of the windshield glass on the second glass plate side is 0.5 mm or more, a double image can be prominent, and 1 mm or more can be more prominent, It may become more prominent at 1.5 mm or more, and may be particularly noticeable at 2.0 mm or more.
  • the layer on the viewer side from the circularly polarized light reflecting layer include a first retardation layer, a second resin film, and a second glass plate.
  • the windshield glass of the present invention has a remarkable double effect even when the total thickness of the layers closer to the viewing side than the circularly polarized reflective layer is as described above in the projected image display using p-polarized light as described later.
  • the projected image can be viewed without an image.
  • the windshield glass of the present invention can be used as a component of a head-up display system.
  • the head-up display system includes a projector.
  • the substrate, the half mirror film, and the projector are preferably arranged in this order.
  • the windshield glass includes a retardation layer
  • the head-up display system preferably includes a circularly polarized light reflection layer, a retardation layer, and a projector arranged in this order.
  • the “projector” is “an apparatus that projects light or an image”, and includes an “apparatus that projects a drawn image”.
  • the projector only needs to be arranged so as to be incident on the projected image display portion in the windshield glass at the oblique incident angle as described above.
  • the projector preferably includes a drawing device and reflects and displays an image (real image) drawn on a small intermediate image screen as a virtual image by a combiner.
  • the drawing device itself may be a device that displays an image, or may be a device that emits light capable of drawing an image.
  • the light from the light source may be adjusted by a drawing method such as an optical modulator, laser luminance modulation means, or light deflection means for drawing.
  • the drawing device means a device that includes a light source and further includes a light modulator, a laser luminance modulation unit, a light deflection unit for drawing, or the like according to a drawing method.
  • the light source is not particularly limited, and LEDs (including light emitting diodes and organic light emitting diodes (OLED)), discharge tubes, laser light sources, and the like can be used. Of these, LEDs and discharge tubes are preferred. This is because it is suitable for a light source of a drawing device that emits linearly polarized light. Of these, LEDs are particularly preferred. This is because LEDs are suitable for combination with a combiner using a cholesteric liquid crystal layer exhibiting selective reflection in a specific wavelength region, as will be described later, because the emission wavelength is not continuous in the visible light region.
  • LEDs including light emitting diodes and organic light emitting diodes (OLED)
  • LEDs and discharge tubes are preferred. This is because it is suitable for a light source of a drawing device that emits linearly polarized light. Of these, LEDs are particularly preferred. This is because LEDs are suitable for combination with a combiner using a cholesteric liquid crystal layer exhibiting selective reflection in a specific wavelength region, as will be described later
  • the drawing method can be selected according to the light source to be used and the application, and is not particularly limited.
  • Examples of the drawing method include a fluorescent display tube, a liquid crystal display (LCD) method using liquid crystal and a liquid crystal on silicon (LCOS) method, a DLP (digital light processing) method, and a scanning method using a laser.
  • Etc. The drawing method may be a method using a fluorescent display tube integrated with a light source.
  • the DLP system is a display system using DMD (Digital Micromirror Device), and is drawn by arranging micromirrors for the number of pixels, and light is emitted from a projection lens.
  • the scanning method is a method in which a light beam is scanned on a screen and an image is contrasted using an afterimage of an eye. For example, the descriptions in JP-A-7-270711 and JP-A-2013-228664 can be referred to.
  • laser light of each color for example, red light, green light, and blue light
  • the luminance modulation of laser light of each color may be performed directly as a change in intensity of the light source, or may be performed by an external modulator.
  • the light deflection means include a galvanometer mirror, a combination of a galvanometer mirror and a polygon mirror, or MEMS (microelectromechanical system).
  • MEMS is preferable.
  • the scanning method include a random scan method and a raster scan method, but it is preferable to use a raster scan method.
  • the laser beam can be driven by a resonance frequency in the horizontal direction and a sawtooth wave in the vertical direction, for example. Since the scanning system does not require a projection lens, the apparatus can be easily downsized.
  • the light emitted from the drawing device may be linearly polarized light or natural light (non-polarized light).
  • the light emitted from the drawing device included in the head-up display system of the present invention is preferably linearly polarized light.
  • the emitted light is essentially linearly polarized light.
  • the output light is a linearly polarized light drawing device and the output light contains light of a plurality of wavelengths (colors)
  • the polarization directions (transmission axis directions) of the plurality of light polarizations are the same or orthogonal to each other It is preferable.
  • the drawing device may use an intermediate image screen.
  • an “intermediate image screen” is a screen on which an image is drawn. That is, when the light emitted from the drawing device is not yet visible as an image, the drawing device forms a visible image on the intermediate image screen by this light.
  • the image drawn on the intermediate image screen may be projected onto the combiner by light transmitted through the intermediate image screen, or may be projected onto the combiner after reflecting off the intermediate image screen.
  • the intermediate image screen examples include a scattering film, a microlens array, and a screen for rear projection.
  • a plastic material is used as the intermediate image screen, if the intermediate image screen has birefringence, the polarization plane and light intensity of polarized light incident on the intermediate image screen are disturbed, and color unevenness is likely to occur in the combiner.
  • the use of a retardation film having a predetermined phase difference can reduce the problem of color unevenness.
  • the intermediate image screen preferably has a function of spreading and transmitting incident light. This is because such a function makes it possible to display an enlarged projected image.
  • a screen composed of a microlens array can be cited.
  • the microarray lens used in the head-up display is described in, for example, Japanese Patent Application Laid-Open No. 2012-226303, Japanese Patent Application Laid-Open No. 2010-145745, and Japanese Patent Application Publication No. 2007-523369.
  • the projector may include a reflecting mirror that adjusts the optical path of the projection light formed by the drawing device.
  • JP-A-2-141720, JP-A-10-96874, JP-A-2003-98470, US Pat. No. 5,013,134 are disclosed. Reference can be made to JP-T-2006-512622.
  • the windshield glass of the present invention is particularly useful for a head-up display system using a laser, LED, OLED or the like whose emission wavelength is not continuous in the visible light region in combination with a projector using a light source. This is because the central wavelength of selective reflection of the cholesteric liquid crystal layer can be adjusted according to each emission wavelength. Moreover, it can also be used for the projection of a display in which display light such as an LCD (Liquid Crystal Display) is polarized.
  • LCD Liquid Crystal Display
  • Incident light is preferably incident at an oblique incident angle of 45 ° to 70 ° with respect to the normal of the projected image display portion.
  • the projection light p-polarized light
  • the reflected light from the glass surface approaches zero. is there. (See, for example, JP-T-2006-512622).
  • the Brewster angle at the interface between glass having a refractive index of about 1.51 and air having a refractive index of about 1 is about 56 °, and p-polarized light is incident within the above-mentioned angle range, so that incident light for displaying a projected image is displayed.
  • the circularly polarized reflective layer has less reflected light from the surface of the ⁇ / 2 retardation layer, and can display an image with less influence of a double image.
  • the angle is preferably 50 ° to 65 °.
  • the projected image is observed on the incident light plane side at an angle of 45 ° to 70 °, preferably 50 ° to 65 ° on the side opposite to the incident light with respect to the normal line of the ⁇ / 2 retardation layer. Any configuration can be used.
  • the incident light is incident on the circularly polarizing reflection layer from the first retardation layer side, and passes through the first retardation layer and then the circularly polarizing reflecting layer. It is sufficient to make it incident. That is, the first retardation layer may be disposed on the incident side of the projection light with respect to the circularly polarized light reflection layer. Further, the incident light may be incident from any direction such as up / down / left / right of the windshield glass, and may be determined according to the direction of the observer. For example, the incident light may be incident at an oblique incident angle as described above from the downward direction during use.
  • the slow axis of the first retardation layer (for example, ⁇ / 2 retardation layer) in the windshield glass is 40 ° to 65 ° with respect to the vibration direction of the incident p-polarized light (incident light incident surface).
  • An angle is preferable, and an angle of 45 ° to 60 ° is more preferable.
  • the projection light in the projection image display on the head-up display is p-polarized light that vibrates in a direction parallel to the incident surface.
  • the output light of the projector is not linearly polarized light, it may be p-polarized by using a linearly polarizing film arranged on the output light side of the projector, and it is made p-polarized in the optical path from the projector to the windshield glass. Also good.
  • the polarization direction is adjusted in a wavelength-selective manner, and p-polarized light is used in all color wavelength ranges. It is preferable to make it enter.
  • ⁇ Preparation of ⁇ / 2 retardation layer> The surface of Toyobo Co., Ltd. Cosmo Shine A-4100 (PET, thickness 75 ⁇ m) that has not been subjected to an easy adhesion treatment is rubbed, and the coating film 1 shown in Table 1 has a dry film thickness of 1.8 ⁇ m after drying. It applied at room temperature using a wire bar.
  • MEK methyl ethyl ketone
  • the coating layer was dried at room temperature for 30 seconds, then heated at 85 ° C. for 2 minutes, and then at 60 ° C.
  • the coating liquid UV shown in Table 2 was applied at room temperature using a wire bar so that the dry film thickness after drying was 3 ⁇ m.
  • an 8: 2 mixed liquid of methyl acetate and cyclohexanone is used as the solvent, and the solid content concentration becomes 25% by mass.
  • the amount of solvent was adjusted.
  • the coating layer was dried at room temperature for 30 seconds, then heated at 85 ° C. for 2 minutes, and then at 60 ° C. with a fusion D bulb (90 mW / cm lamp) at an output of 60% for 6 to 12 seconds with UV irradiation. Then, a liquid crystal layer was prepared to obtain a reflective layer UV with a PET base.
  • An OCA tape (MHM-UVC15 manufactured by Niei Kaiko Co., Ltd.) was bonded to an acrylic plate (thickness 0.2 mm, 40 mm square).
  • the release film of the OCA tape was peeled off, and a ⁇ / 2 retardation layer with a PET base was bonded onto the OCA tape on the surface on the ⁇ / 2 retardation layer side.
  • the PET was peeled off to produce a ⁇ / 2 retardation layer with an acrylic plate.
  • the retardation of the ⁇ / 2 retardation layer with an acrylic plate was measured using an AxoScan manufactured by Axometrics, and was used as the retardation of the ⁇ / 2 retardation layer. The results are shown in Table 3.
  • ⁇ Preparation of half mirror film HM-1> The reflection layer UV, the reflection layer B, the reflection layer G, and the reflection layer R layer are laminated in the order shown in Table 4 on the surface of the ⁇ / 2 retardation layer side of the ⁇ / 2 retardation layer with a PET base prepared in the same manner as described above.
  • the half mirror film HM-1 was produced.
  • Each layer is formed by applying a coating solution for forming each layer on the ⁇ / 2 retardation layer or the reflective layer in the same manner as described above so that the thickness of the layer after drying becomes the thickness shown in Table 3. In the same manner as described above, drying and UV irradiation were performed.
  • Example 1 For Cosmo Shine A-4300 (PET, thickness 250 ⁇ m) manufactured by Toyobo Co., Ltd., the elastic modulus was measured according to the measurement method of JIS K 7127. A sample piece was cut out with a length of 10 mm in the longitudinal direction (MD) and a length of 150 mm in the width direction (TD) perpendicular to the MD, and a strograph R2 manufactured by Toyo Seiki Seisakusho was used for the sample piece. A tensile test was conducted. The tensile test was performed in the width direction of the sample piece with a distance between chucks of 100 mm and a tensile speed of 10 mm / min. As a result of the measurement, the elastic modulus was 4 GPa.
  • An adhesive layer (UVX-5457 manufactured by Toagosei Co., Ltd.) was applied to the PET film at room temperature using a wire bar so as to have a thickness of 5 ⁇ m.
  • the half mirror film produced above was bonded using a roller so that the reflective layer was on the PET film side.
  • the PET that was the support for the retardation layer was peeled off.
  • the slow axis direction of the retardation layer of the half mirror film HM-1 was referenced to the short side direction of the glass as viewed from the peeling surface. Were arranged so as to be in the direction of 60 ° in the clockwise direction. Thereafter, UV irradiation was performed at 60 ° C.
  • this laminated film was cut into a length of 40 cm and a width of 25 cm.
  • the wind peel glass orange peel was evaluated indoors.
  • the windshield glass was placed on a desk so that the base material of the laminated film was below the half mirror film, and the reflected image was visually evaluated by projecting a fluorescent lamp on the half mirror part.
  • the evaluation criteria were as follows. A: There is no distortion in the reflected image of the fluorescent lamp. B: There is almost no distortion in the reflected image of the fluorescent lamp. When the viewpoint is shifted to the side, the reflected image fluctuates slightly. (Acceptable level) C: The reflected image of the fluorescent lamp is blurred due to the fine wrinkles of the half mirror. (Acceptable level) D: The reflected image of the fluorescent lamp appears distorted due to the large wrinkles of the half mirror.
  • Windshield glass 2 Glass plate 3 PVB film (resin film) 4 Half mirror film 5 Base material 6 Adhesive layer 7 Circularly polarized reflective layer 11 Reflective layer UV (cholesteric liquid crystal layer) 12 Reflective layer B (cholesteric liquid crystal layer) 13 Reflective layer G (Cholesteric liquid crystal layer) 14 Reflective layer R (cholesteric liquid crystal layer) 15 ⁇ / 2 retardation layer (retardation layer) 21 Laminated film

Abstract

The windshield glass according to the present invention comprises, in order, a first glass board, a first resin film, a half mirror film, a second resin film, and a second glass board, and further comprises a substrate, wherein the half mirror film includes a circular polarized light reflection layer, the circular polarized light reflection layer includes a cholesteric liquid crystal layer, the half mirror film is adjacent to the substrate, the substrate has an elastic modulus of 3-10 GPa and a thickness of 150-500μm. The windshield glass has a reduced strain that can be visually observed in a half mirror film portion. The windshield glass can be used in a head-up display system.

Description

ウインドシールドガラス、ヘッドアップディスプレイシステム、および積層フィルムWindshield glass, head-up display system, and laminated film
 本発明は、ウインドシールドガラスに関する。また、本発明はウインドシールドガラスを利用したヘッドアップディスプレイシステム、および上記ウインドシールドガラスに使用できる積層フィルムに関する。 The present invention relates to a windshield glass. The present invention also relates to a head-up display system using a windshield glass and a laminated film that can be used for the windshield glass.
 2枚のガラス板が中間層を介して接着している構造を有するウインドシールドガラスの中間層にハーフミラーフィルムを設けることにより、ヘッドアップディスプレイシステムにおいて投映される映像と前方の風景とを同時に表示させることのできる投映像表示用部材を得ることができる。特許文献1においては、コレステリック液晶層を含むハーフミラーフィルムをポリビニルブチラール膜などの樹脂膜2枚に挟んで中間層を形成することが開示されている。 A half mirror film is provided on the intermediate layer of windshield glass, which has a structure in which two glass plates are bonded via an intermediate layer, thereby simultaneously displaying images projected in the head-up display system and the scenery in front. It is possible to obtain a projection image display member that can be made to operate. Patent Document 1 discloses that an intermediate layer is formed by sandwiching a half mirror film including a cholesteric liquid crystal layer between two resin films such as a polyvinyl butyral film.
WO2016/052367WO2016 / 052367
 しかし、特許文献1に記載のようにコレステリック液晶層を含むハーフミラーフィルムを合わせガラスの中間層に設けると、ハーフミラーフィルム部分に、歪みが視覚的に確認され、ウインドシールドガラスとしての美観において改善の余地があった。これは、合わせガラス作製時の圧着や加熱の際に、樹脂膜とハーフミラーフィルムとの収縮率の違いによりオレンジピール(Orange peel)状の凸凹が発生していることを原因とするものと推測された。 However, when a half mirror film including a cholesteric liquid crystal layer is provided in the intermediate layer of the laminated glass as described in Patent Document 1, distortion is visually confirmed in the half mirror film portion, and the aesthetics as a windshield glass is improved. There was room for. This is presumed to be caused by orange-peel irregularities due to the difference in shrinkage between the resin film and the half mirror film during pressure bonding and heating during laminated glass production. It was done.
 本発明は、上記問題の解決のためになされたものであり、合わせガラスの中間層にハーフミラーフィルムを設けた構成のウインドシールドガラスにおいて、ハーフミラーフィルム部分で視覚的に確認される歪みを低減したウインドシールドガラスを提供することを課題とする。 The present invention has been made to solve the above problems, and in a windshield glass having a structure in which a half mirror film is provided in an intermediate layer of a laminated glass, distortion that is visually confirmed in the half mirror film portion is reduced. An object is to provide a windshield glass.
 本発明者は、上記課題の下、鋭意検討し、ハーフミラーフィルムが、合わせガラス作製時の圧着や加熱の際、剛性が高い基材と一体化している場合に、上記オレンジピールが生じにくいことを見出し、本発明を完成させた。 The inventor has intensively studied under the above problems, and the orange peel is less likely to occur when the half mirror film is integrated with a highly rigid base material at the time of pressure bonding or heating at the time of laminated glass production. The present invention was completed.
 すなわち、本発明は下記の[1]~[18]を提供するものである。
[1]第一のガラス板、第一の樹脂膜、ハーフミラーフィルム、第二の樹脂膜、および第二のガラス板をこの順に含むウインドシールドガラスであって、
更に基材を含み、
上記ハーフミラーフィルムが円偏光反射層を含み、
上記円偏光反射層がコレステリック液晶層を含み、
上記ハーフミラーフィルムが上記基材と隣接しており、
上記基材の弾性率が3GPa~10GPaであり、かつ上記基材の厚みが150μm~500μmである、ウインドシールドガラス。
[2]上記基材の弾性率が4GPa~8GPaであり、かつ上記基材の厚みが170μm~300μmである[1]に記載のウインドシールドガラス。
[3]上記ハーフミラーフィルムが接着層により上記基材と接着している[1]または[2]に記載のウインドシールドガラス。
[4]上記接着層の厚みが0.5μm~10μmである[3]に記載のウインドシールドガラス。
That is, the present invention provides the following [1] to [18].
[1] A windshield glass including a first glass plate, a first resin film, a half mirror film, a second resin film, and a second glass plate in this order,
Further including a substrate,
The half mirror film includes a circularly polarized light reflection layer,
The circularly polarized light reflection layer includes a cholesteric liquid crystal layer,
The half mirror film is adjacent to the base material,
A windshield glass in which the base material has an elastic modulus of 3 GPa to 10 GPa and the base material has a thickness of 150 μm to 500 μm.
[2] The windshield glass according to [1], wherein the base material has an elastic modulus of 4 GPa to 8 GPa and the base material has a thickness of 170 μm to 300 μm.
[3] The windshield glass according to [1] or [2], wherein the half mirror film is bonded to the base material by an adhesive layer.
[4] The windshield glass according to [3], wherein the adhesive layer has a thickness of 0.5 μm to 10 μm.
[5]上記ハーフミラーフィルムが上記基材の主表面の一部で上記基材と隣接している[1]~[4]のいずれか一項に記載のウインドシールドガラス。
[6]位相差層を含む[1]~[5]のいずれかに記載のウインドシールドガラス。
[7]上記位相差層がλ/2位相差層である[6]に記載のウインドシールドガラス。
[8]上記ハーフミラーフィルムが上記位相差層を含む[6]または[7]に記載のウインドシールドガラス。
[9]上記基材が上記位相差層である[6]または[7]に記載のウインドシールドガラス。
[10]上記基材がポリエチレンテレフタレートフィルムである[1]~[8]のいずれかに記載のウインドシールドガラス。
[5] The windshield glass according to any one of [1] to [4], wherein the half mirror film is adjacent to the base material at a part of a main surface of the base material.
[6] The windshield glass according to any one of [1] to [5], including a retardation layer.
[7] The windshield glass according to [6], wherein the retardation layer is a λ / 2 retardation layer.
[8] The windshield glass according to [6] or [7], wherein the half mirror film includes the retardation layer.
[9] The windshield glass according to [6] or [7], wherein the substrate is the retardation layer.
[10] The windshield glass according to any one of [1] to [8], wherein the substrate is a polyethylene terephthalate film.
[11]上記円偏光反射層が可視光領域に選択反射の中心波長を有するコレステリック液晶層を3層以上含み、
上記3層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっている[1]~[10]のいずれかに記載のウインドシールドガラス。
[12]λ/2位相差層を含み、
上記円偏光反射層がコレステリック液晶層を4層以上含み、
上記4層以上のコレステリック液晶層のうちの一層が350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層であり、
上記4層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっている[11]に記載のウインドシールドガラス。
[13]上記4層以上のコレステリック液晶層のうち、上記λ/2位相差層に最も近いコレステリック液晶層が350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層である[12]に記載のウインドシールドガラス。
[11] The circularly polarized light reflecting layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in a visible light region,
The windshield glass according to any one of [1] to [10], wherein the central wavelengths of selective reflection of each of the three or more cholesteric liquid crystal layers are different from each other.
[12] including a λ / 2 retardation layer,
The circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers,
One of the four or more cholesteric liquid crystal layers is a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm,
The windshield glass according to [11], wherein the central wavelengths of selective reflection of each of the four or more cholesteric liquid crystal layers are different from each other.
[13] The cholesteric liquid crystal layer closest to the λ / 2 retardation layer among the four or more cholesteric liquid crystal layers is a cholesteric liquid crystal layer having a selective reflection center wavelength of 350 nm or more and less than 490 nm. Windshield glass.
[14]上記第一の樹脂膜および上記第二の樹脂膜からなる群より選択されるいずれか1つ以上がポリビニルブチラールを含む[1]~[13]のいずれかに記載のウインドシールドガラス。
[15][1]~[14]のいずれかに記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステム。
[16][1]~[8]のいずれかに記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステムであって、
上記基材、上記ハーフミラーフィルム、および上記プロジェクターがこの順で配置されているヘッドアップディスプレイシステム。
[17][6]~[9]のいずれかに記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステムであって、
上記円偏光反射層、上記位相差層、および上記プロジェクターがこの順で配置されているヘッドアップディスプレイシステム。
[18]基材とハーフミラーフィルムとを含む積層フィルムであって、
上記ハーフミラーフィルムが上記基材の主表面の一部で接着層により上記基材と接着しており、
上記ハーフミラーフィルムが円偏光反射層を含み、
上記円偏光反射層が可視光領域に選択反射の中心波長を有するコレステリック液晶層を3層以上含み、
上記基材がポリエチレンテレフタレートフィルムであって、上記基材の弾性率が3GPa~10GPaであり、かつ上記基材の厚みが150μm~500μmである積層フィルム。
[14] The windshield glass according to any one of [1] to [13], wherein any one or more selected from the group consisting of the first resin film and the second resin film includes polyvinyl butyral.
[15] A head-up display system including the windshield glass according to any one of [1] to [14] and a projector.
[16] A head-up display system including the windshield glass and projector according to any one of [1] to [8],
A head-up display system in which the base material, the half mirror film, and the projector are arranged in this order.
[17] A head-up display system including the windshield glass and the projector according to any one of [6] to [9],
A head-up display system in which the circularly polarized light reflecting layer, the retardation layer, and the projector are arranged in this order.
[18] A laminated film comprising a substrate and a half mirror film,
The half mirror film is bonded to the substrate with an adhesive layer on a part of the main surface of the substrate,
The half mirror film includes a circularly polarized light reflection layer,
The circularly polarized light reflection layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region,
A laminated film in which the substrate is a polyethylene terephthalate film, the elastic modulus of the substrate is 3 GPa to 10 GPa, and the thickness of the substrate is 150 μm to 500 μm.
 本発明により、中間層にハーフミラーフィルムを含む合わせガラスの構成を有するウインドシールドガラスにおいて、ハーフミラーフィルムに由来する視覚的に確認される歪みのないウインドシールドガラスを提供することができる。このウインドシールドガラスはヘッドアップディスプレイシステムに用いることができる。また、上記のウインドシールドガラスの作製に適した積層フィルムが提供される。 According to the present invention, in the windshield glass having a laminated glass structure including a half mirror film in the intermediate layer, it is possible to provide a windshield glass that is visually confirmed and is not distorted due to the half mirror film. This windshield glass can be used in a head-up display system. Moreover, the laminated film suitable for preparation of said windshield glass is provided.
実施例で作製したウインドシールドガラスの層構成を模式的に示す図である。It is a figure which shows typically the layer structure of the windshield glass produced in the Example.
 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、角度(例えば「90°」等の角度)、およびその関係(例えば、「平行」、「水平」、「鉛直」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
Hereinafter, the present invention will be described in detail.
In the present specification, “to” is used in the sense of including the numerical values described before and after it as lower and upper limits.
In this specification, an angle (for example, an angle such as “90 °”) and a relationship thereof (for example, “parallel”, “horizontal”, “vertical”, etc.) are allowable errors in the technical field to which the present invention belongs. The range of For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
 本明細書において、フィルム状または層状のものの面積および形状について言及する場合、特に断らない限り、その主表面(おもて面または裏面)の面積および形状をそれぞれ意味する。 In this specification, when referring to the area and shape of a film-like or layered thing, unless otherwise specified, it means the area and the shape of the main surface (front surface or back surface), respectively.
 本明細書において、円偏光につき「選択的」というときは、光の右円偏光成分または左円偏光成分のいずれかの光量が、他方の円偏光成分よりも多いことを意味する。具体的には「選択的」というとき、光の円偏光度は、0.3以上であることが好ましく、0.6以上がより好ましく、0.8以上がさらに好ましい。実質的に1.0であることがさらに好ましい。ここで、円偏光度とは、光の右円偏光成分の強度をIR、左円偏光成分の強度をILとしたとき、|IR-IL|/(IR+IL)で表される値である。 In this specification, “selective” for circularly polarized light means that the amount of light of either the right circularly polarized component or the left circularly polarized component of light is greater than that of the other circularly polarized component. Specifically, when referred to as “selective”, the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. More preferably, it is substantially 1.0. Table In / (I R + I L) | Here, the degree of circular polarization, the intensity of the right circularly polarized light component of the light I R, when the strength of the left-handed circularly polarized light component and I L, | I R -I L Is the value to be
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。 In this specification, “sense” for circularly polarized light means right circularly polarized light or left circularly polarized light. The sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。 In this specification, the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal. When the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, it reflects right circularly polarized light and transmits left circularly polarized light. When the sense is left, it reflects left circularly polarized light and transmits right circularly polarized light.
 本明細書において、「光」という場合、特に断らない限り、可視光かつ自然光(非偏光)の光を意味する。可視光線は電磁波のうち、ヒトの目で見える波長の光であり、通常、380nm~780nmの波長域の光を示す。
 本明細書において、光透過率の算出に関連して必要である光強度の測定は、例えば通常の可視スペクトルメータを用いて、リファレンスを空気として、測定したものであればよい。
 本明細書において、単に「反射光」または「透過光」というときは、散乱光および回折光を含む意味で用いられる。
In this specification, “light” means visible light and natural light (unpolarized light) unless otherwise specified. Visible light is light having a wavelength that can be seen by the human eye among electromagnetic waves, and usually indicates light having a wavelength range of 380 nm to 780 nm.
In this specification, the measurement of the light intensity required in connection with the calculation of the light transmittance may be performed by using, for example, a normal visible spectrum meter and measuring the reference as air.
In the present specification, the term “reflected light” or “transmitted light” is used to mean scattered light and diffracted light.
 なお、光の各波長の偏光状態は、円偏光板を装着した分光放射輝度計またはスペクトルメータを用いて測定することができる。この場合、右円偏光板を通して測定した光の強度がIR、左円偏光板を通して測定した光の強度がILに相当する。また、照度計やスペクトルメータに円偏光板を取り付けても測定することができる。右円偏光透過板をつけ、右円偏光量を測定、左円偏光透過板をつけ、左円偏光量を測定することにより、比率を測定できる。 In addition, the polarization state of each wavelength of light can be measured using a spectral radiance meter or a spectrometer equipped with a circularly polarizing plate. In this case, the intensity of light measured through the right circularly polarizing plate corresponds to I R , and the intensity of light measured through the left circularly polarizing plate corresponds to I L. Moreover, even if a circularly polarizing plate is attached to an illuminometer or a spectrum meter, the measurement can be performed. The ratio can be measured by attaching a right circular polarized light transmission plate, measuring the right circular polarized light amount, attaching a left circular polarized light transmission plate, and measuring the left circular polarized light amount.
 本明細書において、p偏光は光の入射面に平行な方向に振動する偏光を意味する。入射面は反射面(ウインドシールドガラス表面など)に垂直で入射光線と反射光線とを含む面を意味する。p偏光は電場ベクトルの振動面が入射面に平行である。本明細書において、s偏光は光の入射面に垂直な方向に振動する偏光を意味する。
 本明細書において、正面位相差は、Axometrics社製のAxoScanを用いて測定した値である。測定波長は550nmとする。正面位相差はKOBRA 21ADHまたはWR(王子計測機器(株)製)において可視光波長域内の波長の光をフィルム法線方向に入射させて測定した値を用いることもできる。測定波長の選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。
In this specification, p-polarized light means polarized light that vibrates in a direction parallel to the light incident surface. The incident surface means a surface that is perpendicular to a reflecting surface (such as a windshield glass surface) and includes incident light rays and reflected light rays. In p-polarized light, the vibration plane of the electric field vector is parallel to the incident plane. In this specification, s-polarized light means polarized light that vibrates in a direction perpendicular to the light incident surface.
In this specification, the front phase difference is a value measured using an AxoScan manufactured by Axometrics. The measurement wavelength is 550 nm. The front phase difference may be a value measured by making light having a wavelength in the visible light wavelength region incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). When selecting the measurement wavelength, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
 本明細書において、液晶化合物の複屈折(Δn)は、「液晶・基礎編(岡野光治、小林駿介編)」のp.214に記載の方法に従って測定した値である。具体的には、液晶化合物を楔型セルに注入し、これに波長550nmの光を照射し、透過光の屈折角を測定することにより60℃におけるΔnを求めることができる。 In this specification, the birefringence (Δn) of a liquid crystal compound is the same as that described in “Liquid Crystal / Fundamentals (Mitsoji Okano, Keisuke Kobayashi)” p. It is a value measured according to the method described in 214. Specifically, Δn at 60 ° C. can be obtained by injecting a liquid crystal compound into a wedge-shaped cell, irradiating it with light having a wavelength of 550 nm, and measuring the refraction angle of transmitted light.
 本明細書において、「投映像(projection image)」は、前方などの周囲の風景ではない、使用するプロジェクターからの光の投射に基づく映像を意味する。投映像は、観察者から見てウインドシールドガラスの投映像表示部位の先に浮かび上がって見える虚像として観測される。
 本明細書において、「画像(screen image)」はプロジェクターの描画デバイスに表示される像または、描画デバイスにより中間像スクリーン等に描画される像を意味する。虚像に対して、画像は実像である。
 画像および投映像は、いずれも単色の像であっても、2色以上の多色の像であっても、フルカラーの像であってもよい。
In this specification, “projection image” means an image based on the projection of light from a projector to be used, not a surrounding landscape such as the front. The projected image is observed as a virtual image that appears above the projected image display portion of the windshield glass as viewed from the observer.
In this specification, “screen image” means an image displayed on a drawing device of a projector or an image drawn on an intermediate image screen or the like by the drawing device. In contrast to a virtual image, an image is a real image.
Both the image and the projected image may be a single color image, a multicolor image of two or more colors, or a full color image.
<<ウインドシールドガラス>>
 本明細書において、ウインドシールドガラスは、車、電車などの車両、飛行機、船、遊具などの乗り物一般の窓ガラスを意味する。ウインドシールドガラスは乗り物の進行方向にあるフロントガラスであることが好ましい。ウインドシールドガラスは車両のフロントガラスであることが好ましい。
<< Windshield Glass >>
In this specification, the windshield glass means a window glass for vehicles such as cars, trains, airplanes, ships, play equipment and the like. The windshield glass is preferably a windshield in the direction of travel of the vehicle. The windshield glass is preferably a vehicle windshield.
 ウインドシールドガラスは、平面状であればよい。ウインドシールドガラスは、適用される乗り物への組み込み用に成形されていてもよく、例えば、曲面を有していてもよい。適用される乗り物用に成形されたウインドシールドガラスにおいては、通常使用時に上(鉛直上)となる方向や観察者側となる面が特定できる。なお、本明細書において、ウインドシールドガラスまたは投映像表示部位について鉛直上というときは、上記のように特定できる使用時に鉛直上となる方向を意味する。 The windshield glass may be flat. The windshield glass may be formed for incorporation into an applied vehicle, and may have a curved surface, for example. In a windshield glass formed for a vehicle to be applied, a direction that is upward (vertically upward) and a surface that is an observer side can be specified during normal use. In the present specification, when the windshield glass or the projected image display part is vertically above, it means the direction that is vertically above when it can be specified as described above.
 本発明のウインドシールドガラスは、2枚のガラス板が中間層を介して接着している合わせガラスの構成を有し、第一のガラス板、第一の樹脂膜、ハーフミラーフィルム、第二の樹脂膜、および第二のガラス板をこの順に含む。本発明のウインドシールドガラスは、さらに特定の基材を含み、ハーフミラーフィルムは基材と隣接している。 The windshield glass of the present invention has a laminated glass structure in which two glass plates are bonded via an intermediate layer, and includes a first glass plate, a first resin film, a half mirror film, and a second glass plate. A resin film and a second glass plate are included in this order. The windshield glass of the present invention further includes a specific base material, and the half mirror film is adjacent to the base material.
<ガラス板>
 本明細書においては、ウインドシールドガラスにおいて、外側となるガラス板を第一のガラス板といい、室内側にあるガラス板を第二のガラス板という。言い換えると、観察者(運転者)側からより遠い位置にあるガラス板を第一のガラス板といい、より近い位置にあるガラス板を第二のガラス板という。
 本明細書において単にガラス板というときは、第一のガラス板および第二のガラス板のいずれをも示す意味である。
<Glass plate>
In the present specification, in the windshield glass, the glass plate on the outside is referred to as the first glass plate, and the glass plate on the indoor side is referred to as the second glass plate. In other words, the glass plate located farther from the observer (driver) side is called the first glass plate, and the glass plate located closer is called the second glass plate.
In the present specification, the term “glass plate” means both the first glass plate and the second glass plate.
 ガラス板としては、ウインドシールドガラスに一般的に用いられるガラス板を利用することができる。ガラス板の厚みについては特に制限はないが、0.5mm~5mm程度が好ましく、1mm~3mmがより好ましく、1.6mm~2.3mmがさらに好ましい。第一のガラス板および第二のガラス板の厚みは互いに同一でも異なっていてもよい。例えば、第一のガラス板を1.9mm~2.5mmとし、第二のガラス板を1.6mm~1.9mmとしてもよい。 As the glass plate, a glass plate generally used for windshield glass can be used. The thickness of the glass plate is not particularly limited, but is preferably about 0.5 mm to 5 mm, more preferably 1 mm to 3 mm, and further preferably 1.6 mm to 2.3 mm. The thicknesses of the first glass plate and the second glass plate may be the same or different from each other. For example, the first glass plate may be 1.9 mm to 2.5 mm, and the second glass plate may be 1.6 mm to 1.9 mm.
 ガラス板には、その表面に撥水性、親水性、または防曇性等を付与するための表面加工が施されていてもよい。
 ガラス板はウインドシールドガラスの形状に切断されていることが好ましい。また、曲面を有していることが好ましい。曲面は、切断したガラス板を、製造しようとするウインドシールドガラスと同じ曲率が付けられた治具の上に載せ、加熱(例えば、600~700℃)することにより設けることができる。
The glass plate may be subjected to surface treatment for imparting water repellency, hydrophilicity, or antifogging property to the surface thereof.
The glass plate is preferably cut into the shape of windshield glass. Moreover, it is preferable to have a curved surface. The curved surface can be provided by placing the cut glass plate on a jig having the same curvature as the windshield glass to be manufactured and heating (for example, 600 to 700 ° C.).
<樹脂膜>
 本明細書においては、ウインドシールドガラスにおいて、外側となる樹脂膜を第一の樹脂膜といい、室内側にある樹脂膜を第二の樹脂膜という。言い換えると、観察者(運転者)側からより遠い位置にある樹脂膜を第一の樹脂膜といい、より近い位置にある樹脂膜を第二の樹脂膜という。第一の樹脂膜および第二の樹脂膜は、材料、厚みなどにおいて、同一でも異なっていてもよい。材料は同一であることが好ましく、材料および厚みが同一であることがより好ましい。
<Resin film>
In this specification, in the windshield glass, the resin film on the outside is referred to as a first resin film, and the resin film on the indoor side is referred to as a second resin film. In other words, the resin film located farther from the observer (driver) side is called the first resin film, and the resin film located closer is called the second resin film. The first resin film and the second resin film may be the same or different in material, thickness, and the like. The materials are preferably the same, and more preferably the materials and thickness are the same.
 本明細書において単に樹脂膜というときは、第一の樹脂膜および第二の樹脂膜のいずれをも示す意味である。
 樹脂膜は第一のガラス板と同一の形状および面積を有していてもよい。例えば合わせガラスの製造工程において、ロール形態から巻き出された樹脂膜が第一のガラス板および第二のガラス板に挟まれた後、トリミングされて第一のガラス板の形状となってもよい。
In the present specification, the term “resin film” means both the first resin film and the second resin film.
The resin film may have the same shape and area as the first glass plate. For example, in the laminated glass manufacturing process, after the resin film unwound from the roll form is sandwiched between the first glass plate and the second glass plate, it may be trimmed into the shape of the first glass plate. .
 樹脂膜としては、合わせガラスの中間層に用いられるシートとして公知の樹脂膜を用いることができる。樹脂膜は樹脂を主成分として含む。主成分であるとは、樹脂膜の50質量%以上の割合を占める成分のことをいう。
 樹脂は、合成樹脂であることが好ましい。例えば、樹脂は、熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、従来から合わせガラスの中間層への用途に用いられている熱可塑性樹脂が挙げられ、例えばポリビニルアセタール、ポリ塩化ビニル、飽和ポリエステル、ポリウレタン、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体等が挙げられる。これらのうち、透明性、強度、耐光性等の観点から、ポリビニルアセタールが好ましい。
As a resin film, a well-known resin film can be used as a sheet | seat used for the intermediate | middle layer of a laminated glass. The resin film contains a resin as a main component. The main component refers to a component that occupies a ratio of 50% by mass or more of the resin film.
The resin is preferably a synthetic resin. For example, a thermoplastic resin can be used as the resin. Examples of the thermoplastic resin include thermoplastic resins conventionally used for interlayer applications in laminated glass, such as polyvinyl acetal, polyvinyl chloride, saturated polyester, polyurethane, ethylene-vinyl acetate copolymer, ethylene. -Ethyl acrylate copolymer and the like. Among these, polyvinyl acetal is preferable from the viewpoints of transparency, strength, light resistance, and the like.
 ポリビニルアセタールは、ポリビニルアルコールを酸の存在下、アルデヒドでアセタール化した樹脂の総称であり、例えばアルデヒドとしてホルマリン(ホルムアルデヒド37%水溶液)を用いてアセタール化したポリビニルホルマール、アルデヒドとしてブタノール(ブチルアルコール)でアセタール化したポリビニルブチラール(以下、「PVB」ということがある)等が挙げられる。 Polyvinyl acetal is a general term for resins obtained by acetalizing polyvinyl alcohol with an aldehyde in the presence of an acid. For example, polyvinyl formal acetalized with formalin (formaldehyde 37% aqueous solution) as an aldehyde, butanol (butyl alcohol) as an aldehyde. Examples include acetalized polyvinyl butyral (hereinafter sometimes referred to as “PVB”).
 上記の樹脂のうち、ポリビニルブチラールまたはエチレン-酢酸ビニル共重合体であることが好ましく、ポリビニルブチラールがより好ましい。上述のようにポリビニルブチラールは、ポリビニルアルコールをブチルアルデヒドによりアセタール化して得ることができる。上記ポリビニルブチラールのアセタール化度の好ましい下限は40%、好ましい上限は85%であり、より好ましい下限は60%、より好ましい上限は75%である。 Of the above resins, polyvinyl butyral or ethylene-vinyl acetate copolymer is preferable, and polyvinyl butyral is more preferable. As described above, polyvinyl butyral can be obtained by acetalizing polyvinyl alcohol with butyraldehyde. The preferable lower limit of the degree of acetalization of the polyvinyl butyral is 40%, the preferable upper limit is 85%, the more preferable lower limit is 60%, and the more preferable upper limit is 75%.
 ポリビニルアルコールは、通常、ポリ酢酸ビニルを鹸化することにより得られ、鹸化度80~99.8モル%のポリビニルアルコールが一般的に用いられる。
 また、上記ポリビニルアルコールの重合度の好ましい下限は200、好ましい上限は3000である。ポリビニルアルコールの重合度が200以上であると、得られる合わせガラスの耐貫通性が低下しにくく、3000以下であると、樹脂膜の成形性がよく、しかも樹脂膜の剛性が大きくなり過ぎず、加工性が良好である。より好ましい下限は500、より好ましい上限は2000である。
Polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate, and polyvinyl alcohol having a saponification degree of 80 to 99.8 mol% is generally used.
Moreover, the preferable minimum of the polymerization degree of the said polyvinyl alcohol is 200, and a preferable upper limit is 3000. When the polymerization degree of polyvinyl alcohol is 200 or more, the penetration resistance of the obtained laminated glass is difficult to decrease, and when it is 3000 or less, the moldability of the resin film is good, and the rigidity of the resin film does not increase too much. Good workability. A more preferred lower limit is 500, and a more preferred upper limit is 2000.
 樹脂は、可塑剤の添加により可塑化されていることも好ましい。例えば、可塑剤としては、リン酸エステル、カルボン酸エステル、糖エステル、または重縮合エステル等が用いられる。
 可塑剤の添加量は、樹脂100質量部に対し、10質量部以上80質量部以下とすることが好ましい。10質量部以上の可塑剤の添加により、熱可塑性樹脂の可塑化を十分に行うことができる。また、可塑剤の添加量を80質量部以下とすることにより、樹脂層の強度を十分に保つことができる。
The resin is also preferably plasticized by the addition of a plasticizer. For example, as the plasticizer, phosphate ester, carboxylic acid ester, sugar ester, polycondensation ester, or the like is used.
The addition amount of the plasticizer is preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the resin. By adding 10 parts by mass or more of a plasticizer, the thermoplastic resin can be sufficiently plasticized. Moreover, the intensity | strength of a resin layer can fully be maintained by the addition amount of a plasticizer being 80 mass parts or less.
 樹脂膜または樹脂膜形成のための組成物は、上記可塑剤のほか、赤外線遮蔽性微粒子、接着性調整剤、カップリング剤、界面活性剤、酸化防止剤、熱安定剤、光安定化剤、紫外線吸収剤、蛍光剤、脱水剤、消泡剤、帯電防止剤、難燃剤等の各種添加剤の1種もしくは2種以上を含んでいてもよい。 In addition to the plasticizer, the resin film or the composition for forming the resin film is an infrared shielding fine particle, an adhesion adjusting agent, a coupling agent, a surfactant, an antioxidant, a heat stabilizer, a light stabilizer, One type or two or more types of various additives such as an ultraviolet absorber, a fluorescent agent, a dehydrating agent, an antifoaming agent, an antistatic agent, and a flame retardant may be included.
 樹脂膜の厚みは、例えば0.1mm~1.5mmが好ましく、0.2mm~1.0mmがより好ましい。 The thickness of the resin film is, for example, preferably 0.1 mm to 1.5 mm, and more preferably 0.2 mm to 1.0 mm.
<ハーフミラーフィルム>
 本発明のウインドシールドガラスは合わせガラスの中間層にハーフミラーフィルムを含む。
 ハーフミラーフィルムを合わせガラスの中間層に設けることにより、例えばヘッドアップディスプレイシステムにおいて投映される映像と前方の風景とを同時に表示させることのできる投映像表示部位をウインドシールドガラスに形成することができる。
<Half mirror film>
The windshield glass of the present invention includes a half mirror film in the intermediate layer of the laminated glass.
By providing the half mirror film in the intermediate layer of the laminated glass, for example, a projected image display portion capable of simultaneously displaying an image projected in a head-up display system and a front landscape can be formed on the windshield glass. .
 本明細書において、投映像表示部位とは、反射光で投映像を表示することができる部位であり、プロジェクター等から投映された投映像を視認可能に表示することができる部位であればよい。
 本発明のウインドシールドガラスをヘッドアップディスプレイシステムにおいて用いる場合、ハーフミラーフィルムの部位においてプロジェクターから投映された画像を視認可能に表示することができるとともに、画像が表示されている同じ面側からハーフミラーフィルムを観察したときに、反対の面側にある情報または風景を同時に観察することができる。すなわち、ハーフミラーフィルムは、外界光と映像光を重ねあわせて表示する光路コンバイナとしての機能を有する。
In this specification, the projected image display part is a part capable of displaying a projected image with reflected light, and may be any part capable of displaying the projected image projected from a projector or the like so as to be visible.
When the windshield glass of the present invention is used in a head-up display system, an image projected from a projector can be displayed on a half mirror film portion so as to be visible, and a half mirror is displayed from the same surface side on which the image is displayed. When observing the film, information or scenery on the opposite side can be observed simultaneously. That is, the half mirror film has a function as an optical path combiner that displays external light and video light in a superimposed manner.
 ハーフミラーフィルムはウインドシールドガラスの全面に設けられていてもよく、またはウインドシールドガラスの全面積に対し一部に設けられていてもよいが、一部に設けられていることが好ましい。一部である場合、その面積は、ウインドシールドガラスの全面積に対し、上限は90%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下などとすることができ、下限は1%以上、3%以上、5%以上、7%以上、10%以上とすることができる。また、一部である場合、ハーフミラーフィルムはウインドシールドガラスのいずれの位置に設けられていてもよいが、ヘッドアップディスプレイシステムとしての使用時に、観察者(例えば、運転者)から視認しやすい位置に虚像が示されるように設けられていることが好ましい。例えば、適用される乗り物の運転席の位置とプロジェクターを設置する位置との関係からハーフミラーフィルムを設ける位置を決定すればよい。具体的には、運転者が見下ろす角度に配置されることが好ましく、ウインドシールドガラスの中心よりも下の位置に配置されることが好ましい。 The half mirror film may be provided on the entire surface of the windshield glass, or may be provided in part with respect to the entire area of the windshield glass, but is preferably provided in part. When it is a part, the upper limit is 90% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, etc. with respect to the total area of the windshield glass. The lower limit may be 1% or more, 3% or more, 5% or more, 7% or more, 10% or more. Moreover, when it is a part, the half mirror film may be provided in any position of the windshield glass, but when used as a head-up display system, the position is easily visible from an observer (for example, a driver). Are preferably provided so that a virtual image is shown. For example, the position where the half mirror film is provided may be determined from the relationship between the position of the driver's seat of the applied vehicle and the position where the projector is installed. Specifically, it is preferably disposed at an angle that the driver looks down, and is preferably disposed at a position below the center of the windshield glass.
 本発明のウインドシールドガラスにおいて、ハーフミラーフィルムは、曲面を有していない平面状であってもよいが、曲面を有していてもよく、全体として凹型または凸型の形状を有し、投映像を拡大または縮小して表示するようになっていてもよい。
 ハーフミラーフィルムの厚みは、2.5μm~35μmであることが好ましく、3.0μm~30μmであることがより好ましく、3.5μm~25μmであることがさらに好ましい。
In the windshield glass of the present invention, the half mirror film may have a flat shape that does not have a curved surface, but may have a curved surface, and has a concave or convex shape as a whole. The image may be displayed enlarged or reduced.
The thickness of the half mirror film is preferably 2.5 μm to 35 μm, more preferably 3.0 μm to 30 μm, and even more preferably 3.5 μm to 25 μm.
 ハーフミラーフィルムは、少なくとも投映光に対して、ハーフミラーとしての機能を有しているものであればよい。しかし、例えば可視光域全域の光に対してハーフミラーとして機能していることを必要とするものではない。また、ハーフミラーフィルムは、少なくとも一部の入射角の光に対して上記の機能を有していればよい。 The half mirror film only needs to have a function as a half mirror for at least projection light. However, for example, it does not need to function as a half mirror for light in the entire visible light range. Moreover, the half mirror film should just have said function with respect to the light of at least one part incident angle.
 ハーフミラーフィルムは反対の面側にある情報または風景の観察を可能とするために、可視光透過性を有することが好ましい。ハーフミラーフィルムは、可視光の波長域において、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上の光透過率を有していればよい。光透過率は、JIS-K7105に記載された方法で求めた光線透過率とする。 It is preferable that the half mirror film has visible light transmittance in order to enable observation of information or scenery on the opposite surface side. The half mirror film may have a light transmittance of 40% or more, preferably 50% or more, more preferably 60% or more, and further preferably 70% or more in the visible light wavelength region. The light transmittance is the light transmittance determined by the method described in JIS-K7105.
 ハーフミラーフィルムは円偏光反射層を含む。ハーフミラーフィルムはさらに位相差層を含んでいてもよい。この場合、円偏光反射層および位相差層は、それぞれ別々に作製され、互いに接着されてハーフミラーフィルムとなっていてもよく、または、円偏光反射層(コレステリック液晶層)の上に位相差層を形成することにより、もしくは位相差層の上に円偏光反射層(コレステリック液晶層)を形成することにより、ハーフミラーフィルムとなっていてもよい。 Half mirror film includes a circularly polarized reflective layer. The half mirror film may further include a retardation layer. In this case, the circularly polarized light reflecting layer and the retardation layer may be prepared separately and adhered to each other to form a half mirror film, or the retardation layer on the circularly polarized light reflecting layer (cholesteric liquid crystal layer). A half mirror film may be formed by forming a circularly polarized light reflecting layer (cholesteric liquid crystal layer) on the retardation layer.
ハーフミラーフィルムは、円偏光反射層および位相差層の他に後述の第2の位相差層、配向層、支持体、接着層などの層を含んでいてもよい。
 本発明のウインドシールドガラスの作製に用いられるハーフミラーフィルムは、フィルム状、シート状、または板状などであればよい。ハーフミラーフィルムは、薄膜のフィルムとしてロール状等になって形成され、その後、本発明のウインドシールドガラスの作製に用いられてもよい。
The half mirror film may include layers such as a second retardation layer, an alignment layer, a support, and an adhesive layer described later in addition to the circularly polarized light reflection layer and the retardation layer.
The half mirror film used for producing the windshield glass of the present invention may be a film shape, a sheet shape, or a plate shape. The half mirror film may be formed as a thin film in a roll shape or the like, and thereafter used for producing the windshield glass of the present invention.
[円偏光反射層]
 円偏光反射層は光を反射する層である。円偏光反射層はコレステリック液晶層を含む。円偏光反射層は、配向層などの他の層を含んでいてもよい。
 円偏光反射層の厚みは、2.0μm~30μmであることが好ましく、2.5μm~25μmであることがより好ましく、3.0μm~20μmであることがさらに好ましい。
[Circularly polarized reflective layer]
The circularly polarized light reflecting layer is a layer that reflects light. The circularly polarized light reflection layer includes a cholesteric liquid crystal layer. The circularly polarized light reflecting layer may include other layers such as an alignment layer.
The thickness of the circularly polarized light reflection layer is preferably 2.0 μm to 30 μm, more preferably 2.5 μm to 25 μm, and even more preferably 3.0 μm to 20 μm.
(コレステリック液晶層)
 本明細書において、コレステリック液晶層は、コレステリック液晶相を固定した層を意味する。コレステリック液晶層を単に液晶層ということもある。
 コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよい。コレステリック液晶層は、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることがない状態に変化した層であればよい。なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
(Cholesteric liquid crystal layer)
In this specification, a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed. The cholesteric liquid crystal layer is sometimes simply referred to as a liquid crystal layer.
The cholesteric liquid crystal layer may be a layer that maintains the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase. A cholesteric liquid crystal layer typically has a polymerizable liquid crystal compound in an aligned state of a cholesteric liquid crystal phase, and is then polymerized and cured by ultraviolet irradiation, heating, etc. to form a layer having no fluidity, and at the same time, Any layer may be used as long as the orientation is not changed by an external field or an external force. In the cholesteric liquid crystal layer, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 コレステリック液晶相は、右円偏光または左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに他方のセンスの円偏光を透過する円偏光選択反射を示すことが知られている。本明細書において、円偏光選択反射を単に選択反射ということもある。
 円偏光選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており、コレステリック液晶層については、それらの従来技術を参照することができる。
It is known that the cholesteric liquid crystal phase exhibits circularly polarized light selective reflection that selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light and transmits the circularly polarized light of the other sense. In this specification, the circularly polarized light selective reflection is sometimes simply referred to as selective reflection.
Many films formed from a composition containing a polymerizable liquid crystal compound have been known as a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selectively is fixed. You can refer to the technology.
 コレステリック液晶層の選択反射の中心波長λは、コレステリック相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。なお、本明細書において、コレステリック液晶層が有する選択反射の中心波長λは、コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。 The central wavelength λ of selective reflection of the cholesteric liquid crystal layer depends on the pitch P (= helical period) of the helical structure in the cholesteric phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal layer and λ = n × P. In this specification, the central wavelength λ of selective reflection of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
 コレステリック液晶層の選択反射中心波長と半値幅は下記のように求めることができる。
 分光光度計を用いてコレステリック液晶層の透過スペクトル(コレステリック液晶層の法線方向から測定したもの)を測定すると、選択反射帯域に透過率の低下ピークがみられる。このピークの極小透過率と低下前の透過率との中間(平均)の透過率となる2つの波長のうち、短波長側の波長の値をλl(nm)、長波長側の波長の値をλh(nm)とすると、選択反射の中心波長λと半値幅Δλは下記式で表すことができる。
λ=(λl+λh)/2
Δλ=(λh-λl
 上記のように求められる選択反射中心波長はコレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長と略一致する。なお、分光光度計としては、例えば、島津製作所製UV3150、およびJASCO社製V-670が挙げられる。
The selective reflection center wavelength and the half-value width of the cholesteric liquid crystal layer can be obtained as follows.
When the transmission spectrum of the cholesteric liquid crystal layer (measured from the normal direction of the cholesteric liquid crystal layer) is measured using a spectrophotometer, a drop in transmittance is observed in the selective reflection band. Of the two wavelengths that have an intermediate (average) transmittance between the minimum transmittance of this peak and the transmittance before the decrease, the wavelength value on the short wavelength side is λ l (nm), and the wavelength value on the long wavelength side Is λ h (nm), the center wavelength λ and the half-value width Δλ of selective reflection can be expressed by the following equations.
λ = (λ l + λ h ) / 2
Δλ = (λ h −λ l )
The selective reflection center wavelength obtained as described above substantially matches the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer. Examples of the spectrophotometer include UV3150 manufactured by Shimadzu Corporation and V-670 manufactured by JASCO.
 上記のλ=n×Pの関係から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調整できる。可視光領域で選択反射を示すコレステリック液晶層は可視光領域で選択反射の中心波長を有することが好ましい。n値とP値を調節して、例えば、赤色光、緑色光、青色光、に対して右円偏光または左円偏光のいずれか一方を選択的に反射させるために、中心波長λを調節することができる。 As can be seen from the above relationship of λ = n × P, the center wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure. The cholesteric liquid crystal layer exhibiting selective reflection in the visible light region preferably has a center wavelength of selective reflection in the visible light region. By adjusting the n value and the P value, for example, the center wavelength λ is adjusted to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to red light, green light, and blue light. be able to.
 ヘッドアップディスプレイシステムにおいては、投映光がガラスの表面または裏面で反射することで生じる二重像の低減のため、円偏光反射層に対して斜めに光が入射するようにウインドシールドガラスが用いられることが好ましい。このように、コレステリック液晶層に対して斜めに光が入射する場合は、選択反射の中心波長は短波長側にシフトする。そのため、投映像表示のために必要とされる選択反射の波長に対して、上記のλ=n×Pの式に従って計算されるλが長波長側となるようにn×Pを調整することが好ましい。屈折率n2のコレステリック液晶層中でコレステリック液晶層の法線方向(コレステリック液晶層の螺旋軸方向)に対して光線がθ2の角度で通過するときの選択反射の中心波長をλdとするとき、λdは以下の式で表される。
λd=n2×P×cosθ2
In a head-up display system, a windshield glass is used so that light is incident obliquely with respect to a circularly polarized reflective layer in order to reduce double images caused by reflection of projection light on the front or back surface of the glass. It is preferable. Thus, when light is incident on the cholesteric liquid crystal layer at an angle, the center wavelength of selective reflection is shifted to the short wavelength side. Therefore, it is possible to adjust n × P so that λ calculated according to the above formula of λ = n × P is on the long wavelength side with respect to the wavelength of selective reflection required for the projected image display. preferable. In the cholesteric liquid crystal layer having a refractive index n 2 , the center wavelength of selective reflection when a light beam passes at an angle of θ 2 with respect to the normal direction of the cholesteric liquid crystal layer (helical axis direction of the cholesteric liquid crystal layer) is λ d . Λ d is expressed by the following equation.
λ d = n 2 × P × cos θ 2
 例えば、屈折率1の空気中で投映像表示部位の法線に対し45°~70°の角度でλ/2位相差層側から入射した光は、通常屈折率1.45~1.80程度のλ/2位相差層を投映像表示部位の法線に対し23°~40°の角度で透過し、屈折率1.61程度のコレステリック液晶層に入射する。コレステリック液晶層において光は26°~36°の角度で透過するためこの角度と求める選択反射の中心波長を上記の式に挿入してn×Pを調整すればよい。
 コレステリック液晶相のピッチは重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
For example, light incident from the λ / 2 phase difference layer side at an angle of 45 ° to 70 ° with respect to the normal of the projected image display portion in air having a refractive index of 1 is normally about 1.45 to 1.80. Is transmitted through the λ / 2 retardation layer at an angle of 23 ° to 40 ° with respect to the normal line of the projected image display portion, and enters the cholesteric liquid crystal layer having a refractive index of about 1.61. Since light passes through the cholesteric liquid crystal layer at an angle of 26 ° to 36 °, n × P may be adjusted by inserting this angle and the center wavelength of the desired selective reflection into the above equation.
Since the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these. For the method of measuring spiral sense and pitch, use the methods described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editing Committee, page 196. be able to.
 円偏光反射層は、3層以上のコレステリック液晶層を含むことが好ましい。円偏光反射層は、可視光領域に選択反射の中心波長を有するコレステリック液晶層を3層以上含むことが好ましい。また、3層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっていることが好ましい。円偏光反射層は、赤色光、緑色光、および青色光に対してそれぞれ見かけ上の選択反射の中心波長を有することが好ましい。見かけ上の選択反射の中心波長とは、実用の際の観察方向から測定したコレステリック液晶層の円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。赤色光、緑色光、および青色光に対してそれぞれ見かけ上の選択反射の中心波長を有することによりフルカラーの投映像の表示が可能となる。具体的には、円偏光反射層は、赤色光を選択的に反射するコレステリック液晶層、緑色光を選択的に反射するコレステリック液晶層、青色光を選択的に反射するコレステリック液晶層を含むことが好ましい。円偏光反射層は、例えば、490nm~600nmに選択反射の中心波長を有するコレステリック液晶層、600nm~680nmに選択反射の中心波長を有するコレステリック液晶層、および680nm~850nmに選択反射の中心波長を有するコレステリック液晶層を含むことが好ましい。 The circularly polarized light reflecting layer preferably includes three or more cholesteric liquid crystal layers. The circularly polarized light reflection layer preferably includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region. Further, it is preferable that the central wavelengths of selective reflection of the three or more cholesteric liquid crystal layers are different from each other. The circularly polarized light reflection layer preferably has an apparent selective reflection center wavelength with respect to red light, green light, and blue light. The apparent center wavelength of selective reflection means the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum of the cholesteric liquid crystal layer measured from the observation direction in practical use. By having an apparent central wavelength of selective reflection for red light, green light, and blue light, it is possible to display a full-color projected image. Specifically, the circularly polarized light reflection layer may include a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light. preferable. The circularly polarized light reflecting layer has, for example, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 490 nm to 600 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 600 nm to 680 nm, and a central wavelength of selective reflection at 680 nm to 850 nm. It is preferable to include a cholesteric liquid crystal layer.
 使用するコレステリック液晶層の選択反射の中心波長を、投映に用いられる光源の発光波長域、および円偏光反射層の使用態様に応じて調整することにより光利用効率良く鮮明な投映像を表示することができる。特に各コレステリック液晶層の選択反射の中心波長をそれぞれ投映に用いられる光源の発光波長域などに応じてそれぞれ調整することにより、光利用効率良く鮮明なカラー投映像を表示することができる。円偏光反射層の使用態様としては、特に円偏光反射層への投映光の入射角、投映像を観察する方向などが挙げられる。 Displaying a clear projected image with high light utilization efficiency by adjusting the center wavelength of selective reflection of the cholesteric liquid crystal layer to be used according to the emission wavelength range of the light source used for projection and the usage of the circularly polarized reflective layer Can do. In particular, by adjusting the central wavelength of selective reflection of each cholesteric liquid crystal layer in accordance with the emission wavelength range of the light source used for projection, a clear color projection image can be displayed with high light utilization efficiency. Examples of usage of the circularly polarized light reflecting layer include the incident angle of the projected light on the circularly polarized light reflecting layer, the direction in which the projected image is observed, and the like.
 本発明のウインドシールドガラスにおいて、円偏光反射層は、4層以上のコレステリック液晶層を含み、かつこの4層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっていることが好ましい。 In the windshield glass of the present invention, it is preferable that the circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers, and the central wavelengths of selective reflection of the four or more cholesteric liquid crystal layers are different from each other.
 各コレステリック液晶層としては、螺旋のセンスが右または左のいずれかであるコレステリック液晶層が用いられる。コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。選択反射の中心波長が異なるコレステリック液晶層の螺旋のセンスは全て同じであっても、異なるものが含まれていてもよいが、同じであることが好ましい。 As each cholesteric liquid crystal layer, a cholesteric liquid crystal layer whose spiral sense is either right or left is used. The sense of reflected circularly polarized light in the cholesteric liquid crystal layer coincides with the sense of a spiral. The spiral senses of the cholesteric liquid crystal layers having different selective reflection center wavelengths may all be the same or may include different ones, but are preferably the same.
 選択反射を示す選択反射帯の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類や混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 選択反射の中心波長が同一の1種のコレステリック液晶層の形成のために、ピッチPが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層してもよい。ピッチPが同じで、同じ螺旋のセンスのコレステリック液晶層を積層することによって、特定の波長で円偏光選択性を高くすることができる。
The full width at half maximum Δλ (nm) of the selective reflection band showing selective reflection depends on the relationship of Δλ = Δn × P, where Δλ depends on the birefringence Δn of the liquid crystal compound and the pitch P. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by adjusting the type and mixing ratio of the polymerizable liquid crystal compound or by controlling the temperature at the time of alignment fixation.
In order to form one type of cholesteric liquid crystal layer having the same selective reflection center wavelength, a plurality of cholesteric liquid crystal layers having the same pitch P and the same spiral sense may be stacked. By laminating cholesteric liquid crystal layers having the same pitch P and the same spiral sense, the circularly polarized light selectivity can be increased at a specific wavelength.
 選択反射の半値幅Δλは、15nm~200nm、15nm~150nm、または20nm~100nm等とすることができる。円偏光反射層は、選択反射の半値幅Δλが50nm以下であるコレステリック液晶層を少なくとも1つ含むことが好ましい。本明細書において、選択反射の半値幅Δλが50nm以下であるコレステリック液晶層を狭帯域選択反射層ということがある。円偏光反射層は、狭帯域選択反射層を2つ含むことがより好ましい。特に、緑色光および青色光に対してそれぞれ見かけ上の選択反射の中心波長を有するコレステリック液晶層が狭帯域選択反射層であることが好ましい。緑色光および青色光に対してそれぞれ見かけ上の選択反射の中心波長を有するコレステリック液晶層が狭帯域選択反射層であることにより、ウインドシールドガラスの透明性を損なわずに鮮明な投映像を与える投映像表示部位を形成することが可能である。 The half width Δλ of selective reflection can be 15 nm to 200 nm, 15 nm to 150 nm, 20 nm to 100 nm, or the like. The circularly polarized light reflection layer preferably includes at least one cholesteric liquid crystal layer having a selective reflection half width Δλ of 50 nm or less. In the present specification, a cholesteric liquid crystal layer having a selective reflection half-value width Δλ of 50 nm or less may be referred to as a narrow-band selective reflection layer. More preferably, the circularly polarized light reflecting layer includes two narrow band selective reflecting layers. In particular, the cholesteric liquid crystal layer having the apparent center wavelength of selective reflection for green light and blue light is preferably a narrow-band selective reflection layer. Since the cholesteric liquid crystal layer having the apparent center wavelength of selective reflection with respect to green light and blue light is a narrow-band selective reflection layer, a projection image that provides a clear projection image without impairing the transparency of the windshield glass. It is possible to form an image display part.
 コレステリック液晶層の厚みは、0.3μm~10μmであることが好ましく、0.4μm~8.0μmであることがより好ましく、0.5μm~6.0μmであることがさらに好ましい。 The thickness of the cholesteric liquid crystal layer is preferably 0.3 μm to 10 μm, more preferably 0.4 μm to 8.0 μm, and even more preferably 0.5 μm to 6.0 μm.
 複数のコレステリック液晶層の積層の際は、別に作製したコレステリック液晶層を接着剤等を用いて積層してもよく、後述の方法で形成された先のコレステリック液晶層の表面に直接、重合性液晶化合物等を含む液晶組成物を塗布し、配向および固定の工程を繰り返してもよいが、後者が好ましい。先に形成されたコレステリック液晶層の表面に直接次のコレステリック液晶層を形成することにより、先に形成したコレステリック液晶層の空気界面側の液晶分子の配向方位と、その上に形成するコレステリック液晶層の下側の液晶分子の配向方位が一致し、コレステリック液晶層の積層体の偏光特性が良好となるからである。また、接着層の厚みムラに由来して生じ得る干渉ムラが観測されないからである。 When laminating a plurality of cholesteric liquid crystal layers, a separately prepared cholesteric liquid crystal layer may be laminated using an adhesive or the like, and the polymerizable liquid crystal is directly applied to the surface of the previous cholesteric liquid crystal layer formed by the method described later. A liquid crystal composition containing a compound or the like may be applied and the alignment and fixing steps may be repeated, but the latter is preferred. By forming the next cholesteric liquid crystal layer directly on the surface of the previously formed cholesteric liquid crystal layer, the orientation direction of the liquid crystal molecules on the air interface side of the previously formed cholesteric liquid crystal layer and the cholesteric liquid crystal layer formed thereon This is because the orientation directions of the lower liquid crystal molecules coincide with each other, and the polarization property of the laminate of cholesteric liquid crystal layers is improved. Moreover, interference unevenness that may be caused by unevenness in the thickness of the adhesive layer is not observed.
(短波長コレステリック液晶層)
 円偏光反射層が4層以上のコレステリック液晶層を含む場合、これらのコレステリック液晶層のうちの1つとして、350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層(以下、「短波長コレステリック液晶層」ということがある。)を含むことも好ましい。本発明者らは、円偏光反射層およびλ/2位相差層を含む構成を投映像表示部位としてウインドシールドガラスに設ける場合、ウインドシールドガラス中の投映像表示部位を外光下で観察したときに色味(特に黄色味)が確認されることを発見した。350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層を含む円偏光反射層を利用することによって、ウインドシールドガラスを外光下で観察したときにおいても投映像表示部位に上記色味が感じられにくくなり、投映像表示部位を外部から目立たなくすることができる。ヘッドアップディスプレイシステムにおいては、ブリュースター角を利用して二重像を低減するために円偏光反射層に対して斜めに光が入射することを前提として光学設計がなされることが好ましく、上述のように赤色光、緑色光、および青色光に対してそれぞれ見かけ上の選択反射の中心波長を有する円偏光反射層を設計しようとすると、円偏光反射層の法線方向からの光に対しての反射光において相対的に青色光成分が少なくなり黄色味が生じ得る。350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層を用いることにより、上記反射光の青色光成分が増加し、黄色味が解消したと考えられる。
(Short wavelength cholesteric liquid crystal layer)
When the circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers, one of these cholesteric liquid crystal layers is a cholesteric liquid crystal layer (hereinafter referred to as “short wavelength cholesteric liquid crystal layer) having a central wavelength of selective reflection at 350 nm or more and less than 490 nm. It is also preferable to include a “liquid crystal layer”. In the case where the configuration including the circularly polarized light reflection layer and the λ / 2 retardation layer is provided on the windshield glass as the projected image display portion, the present inventors have observed the projected image display portion in the windshield glass under the external light. It was discovered that the color (especially yellow) was confirmed. By using a circularly polarized reflective layer including a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm, the above-mentioned color is felt in the projected image display part even when the windshield glass is observed under the external light. The projection image display part can be made inconspicuous from the outside. In the head-up display system, it is preferable that the optical design is made on the assumption that light is incident obliquely with respect to the circularly polarized reflective layer in order to reduce the double image using the Brewster angle. Thus, when trying to design a circularly polarized light reflection layer having a central wavelength of apparent selective reflection for red light, green light, and blue light, respectively, the light from the normal direction of the circularly polarized light reflection layer The blue light component is relatively reduced in the reflected light, and a yellowish color can be generated. By using a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm, it is considered that the blue light component of the reflected light is increased and the yellow color is eliminated.
 350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層を用いることにより、投映像表示部位を通して外光を観測する際に偏光サングラスを介しても感じられるギラツキをも低減することができる。通常、偏光サングラスを介すると視認されない地面や水面からの反射光に基づくs偏光は、投映像表示部位で偏光状態が変化することにより視認される光成分に変換し得るが、この光成分が350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層を用いることにより減少すると考えられる。 By using a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm, it is possible to reduce glare that can be felt through polarized sunglasses when observing external light through a projected image display part. Normally, s-polarized light based on reflected light from the ground or water surface that is not visually recognized through polarized sunglasses can be converted into a light component that is visually recognized by changing the polarization state at the projected image display site, and this light component is 350 nm. This is considered to be reduced by using a cholesteric liquid crystal layer having a central wavelength of selective reflection below 490 nm.
 350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層は、370nm~485nmに選択反射の中心波長を有することが好ましく、390nm~480nmに選択反射の中心波長を有することがより好ましく、400nm~470nmに選択反射の中心波長を有することがさらに好ましい。
 短波長コレステリック液晶層は、ヘッドアップディスプレイシステムにおいての使用時に見かけ上の選択反射の中心波長が280nm以上420nm未満であればよく、300nm以上410nm未満であることが好ましく、320nm以上400nm未満であることがより好ましく、340nm以上395nm未満であることがさらに好ましい。
The cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm preferably has a central wavelength of selective reflection at 370 nm to 485 nm, more preferably has a central wavelength of selective reflection at 390 nm to 480 nm. More preferably, it has a central wavelength of selective reflection at 470 nm.
The short wavelength cholesteric liquid crystal layer may have an apparent selective reflection center wavelength of 280 nm or more and less than 420 nm, preferably 300 nm or more and less than 410 nm, preferably 320 nm or more and less than 400 nm when used in a head-up display system. Is more preferably 340 nm or more and less than 395 nm.
 本発明のウインドシールドガラスが、位相差層を含む場合、円偏光反射層において、短波長コレステリック液晶層は、4層以上のコレステリック液晶層の中で最も位相差層(後述の第1の位相差層)側にあることが好ましい。これにより二重像がより軽減されるためである。
 また、円偏光反射層において、コレステリック液晶層は、位相差層(後述の第1の位相差層)側からみて、選択反射の中心波長が短いものから順に配置されていることが好ましい。例えば、位相差層、350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層、490nm~600nmに選択反射の中心波長を有するコレステリック液晶層、600nm~680nmに選択反射の中心波長を有するコレステリック液晶層、および680nm~850nmに選択反射の中心波長を有するコレステリック液晶層がこの順に配置されていることが好ましい。
When the windshield glass of the present invention includes a retardation layer, the short-wavelength cholesteric liquid crystal layer in the circularly polarized light reflection layer is the most retardation layer (first retardation described later) among four or more cholesteric liquid crystal layers. Preferably it is on the layer) side. This is because the double image is further reduced.
In the circularly polarized light reflection layer, the cholesteric liquid crystal layer is preferably arranged in order from the one having the shortest central wavelength of selective reflection as viewed from the phase difference layer (first phase difference layer described later) side. For example, a retardation layer, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm to less than 490 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 490 to 600 nm, and a cholesteric liquid crystal having a central wavelength of selective reflection at 600 to 680 nm It is preferable that a cholesteric liquid crystal layer having a central wavelength of selective reflection at 680 nm to 850 nm is disposed in this order.
(コレステリック液晶層の作製方法)
 以下、コレステリック液晶層の作製材料および作製方法について説明する。
 上記コレステリック液晶層の形成に用いる材料としては、重合性液晶化合物とキラル剤(光学活性化合物)とを含む液晶組成物などが挙げられる。必要に応じてさらに界面活性剤や重合開始剤などと混合して溶剤などに溶解した上記液晶組成物を、支持体、配向層、下層となるコレステリック液晶層などに塗布し、コレステリック配向熟成後、液晶組成物の硬化により固定化してコレステリック液晶層を形成することができる。
(Method for producing cholesteric liquid crystal layer)
Hereinafter, a manufacturing material and a manufacturing method of the cholesteric liquid crystal layer will be described.
Examples of the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, apply the above liquid crystal composition mixed with a surfactant or a polymerization initiator and dissolved in a solvent to the support, alignment layer, cholesteric liquid crystal layer as a lower layer, etc. A cholesteric liquid crystal layer can be formed by being fixed by curing the liquid crystal composition.
(重合性液晶化合物)
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であることが好ましい。
 コレステリック液晶層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、一分子中に好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開WO95/22586、国際公開WO95/24455、WO97/00600、WO98/23580、WO98/52905、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特開平11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。 The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups contained in the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3 in one molecule. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials, 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO95 / 22586, International Publications WO95 / 24455, WO97 / 00600, WO98 / 23580, WO98 / 52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081. And the compounds described in JP-A No. 2001-328973 and the like. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。 The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and is preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
(低Δn重合性液晶化合物)
 上記の選択反射を示す選択反射帯の半値幅Δλの式からもわかるように、低Δn重合性液晶化合物を利用してコレステリック液晶相を形成し、これを固定したフィルムとすることにより、狭帯域選択反射層を得ることができる。低Δn重合性液晶化合物の例としては、国際公開WO2015/115390、WO2015/147243、WO2016/035873、特開2015-163596号公報、特開2016-53149号公報に記載の化合物が挙げられる。半値幅の小さい選択反射層を与える液晶組成物については、WO2016/047648の記載も参照できる。
(Low Δn polymerizable liquid crystal compound)
As can be seen from the above formula for the half-value width Δλ of the selective reflection band exhibiting selective reflection, a narrow band is obtained by forming a cholesteric liquid crystal phase using a low Δn polymerizable liquid crystal compound and fixing it to a film. A selective reflection layer can be obtained. Examples of the low Δn polymerizable liquid crystal compound include compounds described in International Publications WO2015 / 115390, WO2015 / 147243, WO2016 / 035873, JP2015-163596, and JP2016-53149A. The description of WO2016 / 047648 can also be referred to for the liquid crystal composition providing a selective reflection layer having a small half width.
 液晶化合物は、WO2016/047648に記載の以下の式(I)で表される重合性化合物であることも好ましい。 The liquid crystal compound is also preferably a polymerizable compound represented by the following formula (I) described in WO2016 / 047648.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式中、
Aは、置換基を有していてもよいフェニレン基または置換基を有していてもよいトランス-1,4-シクロヘキシレン基を示し、
Lは単結合、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
mは3~12の整数を示し、
Sp1およびSp2はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
1およびQ2はそれぞれ独立に、水素原子または以下の式Q-1~式Q-5で表される基からなる群から選択される重合性基を示し、ただしQ1およびQ2のいずれか一方は重合性基を示す。式Q-1~式Q-5中、*は結合位置を表す。
Where
A represents a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent,
L is a single bond, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC (═O) —, —C (═O) O (CH 2 ) 2 —, —C (═O) O Selected from the group consisting of —, —OC (═O) —, —OC (═O) O—, —CH═CH—C (═O) O—, and —OC (═O) —CH═CH—. A linking group
m represents an integer of 3 to 12,
Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—. A linking group selected from the group consisting of substituted groups;
Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of groups represented by the following formulas Q-1 to Q-5, provided that any one of Q 1 and Q 2 One of them represents a polymerizable group. In formulas Q-1 to Q-5, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(I)中の、フェニレン基は1,4-フェニレン基であることが好ましい。
 フェニレン基およびトランス-1,4-シクロヘキシレン基について「置換基を有していてもよい」というときの置換基は、特に限定されず、例えば、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アミド基、アミノ基、およびハロゲン原子ならびに、上記の置換基を2つ以上組み合わせて構成される基からなる群から選択される置換基が挙げられる。また、置換基の例としては、後述の-C(=O)-X3-Sp3-Q3で表される置換基が挙げられる。フェニレン基およびトランス-1,4-シクロヘキシレン基は、置換基を1~4個有していてもよい。2個以上の置換基を有するとき、2個以上の置換基は互いに同一であっても異なっていてもよい。
In the formula (I), the phenylene group is preferably a 1,4-phenylene group.
The substituent when “optionally substituted” for the phenylene group and the trans-1,4-cyclohexylene group is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkoxy group, and an alkyl ether. And a substituent selected from the group consisting of a group composed of a group, an amide group, an amino group, a halogen atom, and two or more of the above substituents. Examples of the substituent include a substituent represented by -C (= O) -X 3 -Sp 3 -Q 3 described later. The phenylene group and trans-1,4-cyclohexylene group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
 本明細書において、アルキル基は直鎖状または分岐鎖状のいずれでもよい。アルキル基の炭素数は1~30が好ましく、1~10がより好ましく、1~6が特に好ましい。アルキル基の例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状または分岐鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、またはドデシル基を挙げることができる。アルキル基に関する上記説明はアルキル基を含むアルコキシ基においても同様である。また、本明細書において、アルキレン基というときのアルキレン基の具体例としては、上記のアルキル基の例それぞれにおいて、任意の水素原子を1つ除いて得られる2価の基などが挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が挙げられる。 In the present specification, the alkyl group may be linear or branched. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group. And a 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group. The above description regarding the alkyl group is the same for the alkoxy group containing an alkyl group. In the present specification, specific examples of the alkylene group referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom in each of the above examples of the alkyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 本明細書において、シクロアルキル基の炭素数は、3~20が好ましく、5以上がより好ましく、また、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。シクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を挙げることができる。 In the present specification, the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 5 or more, more preferably 10 or less, still more preferably 8 or less, and still more preferably 6 or less. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
 フェニレン基およびトランス-1,4-シクロヘキシレン基が有していてもよい置換基としては特に、アルキル基、およびアルコキシ基、-C(=O)-X3-Sp3-Q3からなる群から選択される置換基が好ましい。ここで、X3は単結合、-O-、-S-、もしくは-N(Sp4-Q4)-を示すか、または、Q3およびSp3と共に環構造を形成している窒素原子を示す。Sp3、Sp4はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。 The substituents that the phenylene group and the trans-1,4-cyclohexylene group may have are particularly an alkyl group, an alkoxy group, and a group consisting of —C (═O) —X 3 —Sp 3 —Q 3 Substituents selected from are preferred. Here, X 3 represents a single bond, —O—, —S—, or —N (Sp 4 -Q 4 ) —, or represents a nitrogen atom that forms a ring structure with Q 3 and Sp 3. Show. Sp 3 and Sp 4 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—. A linking group selected from the group consisting of substituted groups is shown.
 Q3およびQ4はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または式Q-1~式Q-5で表される基からなる群から選択されるいずれかの重合性基を示す。 Q 3 and Q 4 are each independently a hydrogen atom, a cycloalkyl group, or a cycloalkyl group, wherein one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or a group substituted with —C (═O) O—, or a group represented by Formulas Q-1 to Q-5 Any polymerizable group selected from the group consisting of:
 シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基として、具体的には、テトラヒドロフラニル基、ピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジル基、ピペラジニル基、モルホルニル基、などが挙げられる。置換位置は特に限定されない。これらのうち、テトラヒドロフラニル基が好ましく、特に2-テトラヒドロフラニル基が好ましい。 In the cycloalkyl group, one or more of —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O). Specific examples of the group substituted with — or —C (═O) O— include a tetrahydrofuranyl group, a pyrrolidinyl group, an imidazolidinyl group, a pyrazolidinyl group, a piperidyl group, a piperazinyl group, and a morpholinyl group. The substitution position is not particularly limited. Of these, tetrahydrofuranyl group is preferable, and 2-tetrahydrofuranyl group is particularly preferable.
 式(I)において、Lは単結合、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、-OC(=O)-CH=CH-、からなる群から選択される連結基を示す。Lは-C(=O)O-または-OC(=O)-であることが好ましい。m-1個のLは互いに同一でも異なっていてもよい。 In the formula (I), L represents a single bond, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC (═O) —, —C (═O) O (CH 2 ) 2 —, — C (═O) O—, —OC (═O) —, —OC (═O) O—, —CH═CH—C (═O) O—, —OC (═O) —CH═CH—, A linking group selected from the group consisting of: L is preferably —C (═O) O— or —OC (═O) —. The m-1 Ls may be the same as or different from each other.
 Sp1、Sp2はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。Sp1およびSp2はそれぞれ独立に、両末端にそれぞれ-O-、-OC(=O)-、および-C(=O)O-からなる群から選択される連結基が結合した炭素数1から10の直鎖のアルキレン基、-OC(=O)-、-C(=O)O-、-O-、および炭素数1から10の直鎖のアルキレン基からなる群から選択される基を1または2以上組み合わせて構成される連結基であることが好ましく、両方の末端に-O-がそれぞれ結合した炭素数1から10の直鎖のアルキレン基であることが好ましい。 Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—. A linking group selected from the group consisting of substituted groups is shown. Sp 1 and Sp 2 each independently has 1 carbon atom to which a linking group selected from the group consisting of —O—, —OC (═O) —, and —C (═O) O— is bonded to both ends. A group selected from the group consisting of 1 to 10 linear alkylene groups, —OC (═O) —, —C (═O) O—, —O—, and linear alkylene groups having 1 to 10 carbon atoms. Is preferably a linking group composed of one or more of them, and is preferably a linear alkylene group having 1 to 10 carbon atoms having —O— bonded to both ends.
 Q1およびQ2はそれぞれ独立に、水素原子、もしくは上記の式Q-1~式Q-5で表される基からなる群から選択される重合性基を示し、ただしQ1およびQ2のいずれか一方は重合性基を示す。
 重合性基としては、アクリロイル基(式Q-1)またはメタクリロイル基(式Q-2)が好ましい。
Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of groups represented by the above formulas Q-1 to Q-5, provided that Q 1 and Q 2 Either one represents a polymerizable group.
As the polymerizable group, an acryloyl group (formula Q-1) or a methacryloyl group (formula Q-2) is preferable.
 式(I)中、mは3~12の整数を示し、3~9の整数であることが好ましく、3~7の整数であることがより好ましく、3~5の整数であることがさらに好ましい。 In the formula (I), m represents an integer of 3 to 12, preferably an integer of 3 to 9, more preferably an integer of 3 to 7, and further preferably an integer of 3 to 5. .
 式(I)で表される重合性化合物は、Aとして置換基を有していてもよいフェニレン基を少なくとも1つおよび置換基を有していてもよいトランス-1,4-シクロヘキシレン基を少なくとも1つ含むことが好ましい。式(I)で表される重合性化合物は、Aとして、置換基を有していてもよいトランス-1,4-シクロヘキシレン基を1~4個含むことが好ましく、1~3個含むことがより好ましく、2又は3個含むことがさらに好ましい。また、式(I)で表される重合性化合物は、Aとして、置換基を有していてもよいフェニレン基を1個以上含むことが好ましく、1~4個含むことがより好ましく、1~3個含むことがさらに好ましく、2個又は3個含むことが特に好ましい。 The polymerizable compound represented by the formula (I) has at least one phenylene group which may have a substituent as A and a trans-1,4-cyclohexylene group which may have a substituent. It is preferable to include at least one. The polymerizable compound represented by the formula (I) preferably contains 1 to 4 trans-1,4-cyclohexylene groups which may have a substituent as A, and preferably 1 to 3 Is more preferable, and it is more preferable that 2 or 3 is included. In the polymerizable compound represented by the formula (I), A preferably contains at least one phenylene group which may have a substituent, more preferably 1 to 4, more preferably 1 to 1. It is more preferable to include three, and it is particularly preferable to include two or three.
 式(I)において、Aで表されるトランス-1,4-シクロヘキシレン基の数をmで割った数をmcとしたとき、0.1<mc<0.9であることが好ましく、0.3<mc<0.8であることがより好ましく、0.5<mc<0.7であることがさらに好ましい。液晶組成物が0.5<mc<0.7である式(I)で表される重合性化合物とともに、0.1<mc<0.3である式(I)で表される重合性化合物を含むことも好ましい。 In the formula (I), when mc is a number obtained by dividing the number of trans-1,4-cyclohexylene groups represented by A by m, 0.1 <mc <0.9 is preferably satisfied. More preferably, 3 <mc <0.8, and even more preferably 0.5 <mc <0.7. Polymeric compound represented by formula (I) where 0.1 <mc <0.3, together with polymerizable compound represented by formula (I) where the liquid crystal composition is 0.5 <mc <0.7 It is also preferable to contain.
 式(I)で表される重合性化合物の例として具体的には、WO2016/047648の段落0051~0058に記載の化合物のほか、特開2013-112631号公報、特開2010-70543号公報、特許4725516号、国際公開WO2015/115390、WO2015/147243、WO2016/035873、特開2015-163596号公報、および特開2016-53149号公報に記載の化合物などを挙げることができる。 Specific examples of the polymerizable compound represented by the formula (I) include, in addition to the compounds described in paragraphs 0051 to 0058 of WO2016 / 047648, JP2013-112163A, JP2010-70543A, Examples thereof include compounds described in Japanese Patent No. 4725516, International Publication Nos. WO2015 / 115390, WO2015 / 147243, WO2016 / 035873, JP2015-163596A, and JP2016-53149A.
(キラル剤:光学活性化合物)
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物を用いることができる。キラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、特開2003-287623号、特開2002-302487号、特開2002-80478号、特開2002-80851号、特開2010-181852号または特開2014-034581号の各公報に記載の化合物が挙げられる。
(Chiral agent: optically active compound)
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different.
There is no restriction | limiting in particular as a chiral agent, A well-known compound can be used. Examples of chiral agents include liquid crystal device handbook (Chapter 3, Section 4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142th Committee, 1989), JP-A 2003-287623, Examples thereof include compounds described in JP-A No. 2002-302487, JP-A No. 2002-80478, JP-A No. 2002-80851, JP-A No. 2010-181852 or JP-A No. 2014-034581.
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
The chiral agent may be a liquid crystal compound.
 キラル剤としては、イソソルビド誘導体、イソマンニド誘導体、またはビナフチル誘導体を好ましく用いることができる。イソソルビド誘導体としては、BASF社製のLC-756等の市販品を用いてもよい。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used. As the isosorbide derivative, a commercial product such as LC-756 manufactured by BASF may be used.
The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
(重合開始剤)
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報、特開2001-233842号公報、特開2000-80068号公報、特開2006-342166号公報、特開2013-114249号公報、特開2014-137466号公報、特許4223071号公報、特開2010-262028号公報、特表2014-500852号公報記載)、オキシム化合物(特開2000-66385号公報、日本特許第4454067号明細書記載)、およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。例えば、特開2012-208494号公報の段落0500~0547の記載も参酌できる。
(Polymerization initiator)
The liquid crystal composition preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), α-hydrocarbons. A substituted aromatic acyloin compound (described in US Pat. No. 2,722,512), a polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a triarylimidazole dimer and p-aminophenylketone Combination (described in U.S. Pat. No. 3,549,367), acridine and phenazine compound (JP-A-60-105667, U.S. Pat. No. 4,239,850), acylphosphine oxide compound (JP-B 63-40799), Japanese Patent Publication No. 5-29234, JP 10 JP-A-95788, JP-A-10-29997, JP-A-2001-233842, JP-A-2000-80068, JP-A-2006-342166, JP-A-2013-114249, JP-A-2014-137466. , JP4223071, JP2010-262028, JP2014-500852), oxime compounds (JP2000-66385, Japanese Patent No. 4454667), and Oxazi Examples thereof include azole compounds (described in US Pat. No. 4,221,970). For example, the description in paragraphs 0500 to 0547 of JP2012-208494A can be considered.
 重合開始剤としては、アシルフォスフィンオキシド化合物またはオキシム化合物を用いることも好ましい。
 アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン(株)製のIRGACURE810(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。
 重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1質量%~20質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。
As the polymerization initiator, it is also preferable to use an acyl phosphine oxide compound or an oxime compound.
As the acylphosphine oxide compound, for example, IRGACURE 810 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used. Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
Only one type of polymerization initiator may be used, or two or more types may be used in combination.
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1% by mass to 20% by mass, and preferably 0.5% by mass to 5% by mass with respect to the content of the polymerizable liquid crystal compound. It is more preferable.
(架橋剤)
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量を3質量%以上とすることにより、架橋密度向上の効果を得ることができ、架橋剤の含有量を20質量%以下とすることにより、コレステリック液晶層の安定性の低下を防止できる。
(Crosslinking agent)
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. By making the content of the crosslinking agent 3% by mass or more, the effect of improving the crosslinking density can be obtained, and by making the content of the crosslinking agent 20% by mass or less, the stability of the cholesteric liquid crystal layer is lowered. Can be prevented.
(配向制御剤)
 液晶組成物中には、安定的にまたは迅速にプレーナー配向のコレステリック液晶層とするために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などが挙げられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
(Orientation control agent)
In the liquid crystal composition, an alignment control agent that contributes to stably or rapidly forming a cholesteric liquid crystal layer having a planar alignment may be added. Examples of the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
In addition, as an orientation control agent, 1 type may be used independently and 2 or more types may be used together.
 液晶組成物中における、配向制御剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5質量%がより好ましく、0.02質量%~1質量%が特に好ましい。 The addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass with respect to the total mass of the polymerizable liquid crystal compound. 0.02% by mass to 1% by mass is particularly preferable.
(その他の添加剤)
 その他、液晶組成物は、塗膜の表面張力を調整し厚みを均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学性能を低下させない範囲で添加することができる。
(Other additives)
In addition, the liquid crystal composition may contain at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film and making the thickness uniform, and a polymerizable monomer. In addition, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. are added to the liquid crystal composition as necessary, as long as optical performance is not deteriorated. can do.
 コレステリック液晶層は、重合性液晶化合物および重合開始剤、更に必要に応じて添加されるキラル剤、界面活性剤等を溶媒に溶解させた液晶組成物を、支持体、配向層、または先に作製されたコレステリック液晶層等の上に塗布し、乾燥させて塗膜を得、この塗膜に活性光線を照射してコレステリック液晶性組成物を重合し、コレステリック規則性が固定化されたコレステリック液晶層を形成することができる。なお、複数のコレステリック液晶層からなる積層膜は、コレステリック液晶層の上記製造工程を繰り返し行うことにより形成することができる。 A cholesteric liquid crystal layer is prepared by preparing a liquid crystal composition in which a polymerizable liquid crystal compound and a polymerization initiator, a chiral agent added as necessary, a surfactant, and the like are dissolved in a solvent, a support, an alignment layer, or first. A cholesteric liquid crystal layer in which the cholesteric regularity is fixed by coating the cholesteric liquid crystal layer on the coated cholesteric liquid crystal layer and drying to obtain a coating film, and irradiating the coating film with actinic rays to polymerize the cholesteric liquid crystalline composition Can be formed. In addition, the laminated film which consists of a some cholesteric liquid crystal layer can be formed by repeating the said manufacturing process of a cholesteric liquid crystal layer.
(溶媒)
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
(solvent)
There is no restriction | limiting in particular as a solvent used for preparation of a liquid-crystal composition, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
(塗布、配向、重合)
 支持体、配向層、下層となるコレステリック液晶層などへの液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、スライドコーティング法などが挙げられる。また、別途支持体上に塗設した液晶組成物を転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物が、フィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している光学薄膜が得られる。
(Coating, orientation, polymerization)
The method for applying the liquid crystal composition to the support, the alignment layer, the underlying cholesteric liquid crystal layer, etc. is not particularly limited and can be appropriately selected according to the purpose. For example, a wire bar coating method, a curtain coating method, Examples include extrusion coating, direct gravure coating, reverse gravure coating, die coating, spin coating, dip coating, spray coating, and slide coating. It can also be carried out by transferring a liquid crystal composition separately coated on a support. The liquid crystal molecules are aligned by heating the applied liquid crystal composition. The heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower. By this alignment treatment, an optical thin film in which the polymerizable liquid crystal compound is twisted and aligned so as to have a helical axis in a direction substantially perpendicular to the film surface is obtained.
 配向させた液晶化合物をさらに重合させることにより、液晶組成物を硬化することができる。重合は、熱重合、光照射を利用する光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100mJ/cm2~1,500mJ/cm2がより好ましい。
光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350nm~430nmが好ましい。重合反応率は安定性の観点から、高いほうが好ましく70%以上が好ましく、80%以上がより好ましい。重合反応率は、重合性の官能基の消費割合をIR吸収スペクトルを用いて測定することにより、決定することができる。
The liquid crystal composition can be cured by further polymerizing the aligned liquid crystal compound. The polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20mJ / cm 2 ~ 50J / cm 2, 100mJ / cm 2 ~ 1,500mJ / cm 2 is more preferable.
In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or in a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 350 nm to 430 nm. The polymerization reaction rate is preferably as high as possible from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more. The polymerization reaction rate can be determined by measuring the consumption ratio of the polymerizable functional group using an IR absorption spectrum.
[支持体、配向層等]
 ハーフミラーフィルムまたは円偏光反射層は、支持体、配向層などの他の層を含んでいてもよい。他の層はいずれも可視光領域で透明であることが好ましい。本明細書において可視光領域で透明であるとは、可視光の透過率が70%以上であることをいう。また、他の層はいずれも低複屈折性であることが好ましい。本明細書において低複屈折性であるとは、本発明のウインドシールドガラスの投映像表示部位が反射を示す波長域において、正面位相差が10nm以下であることを意味し、上記正面位相差は5nm以下であることが好ましい。さらに、他の層はいずれもコレステリック液晶層の平均屈折率(面内平均屈折率)との屈折率の差が小さいことが好ましい。
[Support, orientation layer, etc.]
The half mirror film or the circularly polarized light reflection layer may include other layers such as a support and an alignment layer. All other layers are preferably transparent in the visible light region. In this specification, being transparent in the visible light region means that the transmittance of visible light is 70% or more. Moreover, it is preferable that all other layers have low birefringence. In the present specification, low birefringence means that the front phase difference is 10 nm or less in the wavelength region where the projected image display portion of the windshield glass of the present invention shows reflection, and the front phase difference is It is preferable that it is 5 nm or less. Further, it is preferable that the other layers have a small difference in refractive index from the average refractive index (in-plane average refractive index) of the cholesteric liquid crystal layer.
 支持体は、コレステリック液晶層または後述の位相差層の形成の際に基板となることができる。支持体は特に限定されない。コレステリック液晶層または位相差層の形成のために用いられる支持体は、コレステリック液晶層形成後に剥離される仮支持体であって、完成したハーフミラーフィルムまたはウインドシールドガラスにおいては含まれていなくてもよい。支持体としてはポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどのプラスチックフィルムが挙げられる。仮支持体としては、上記のプラスチックフィルムのほか、ガラスを用いてもよい。
 支持体の厚みとしては、5.0μm~1000μm程度であればよく、10μm~250μmが好ましく、15μm~100μmがより好ましい。
The support can be a substrate when forming a cholesteric liquid crystal layer or a retardation layer described later. The support is not particularly limited. The support used for forming the cholesteric liquid crystal layer or retardation layer is a temporary support that is peeled off after the formation of the cholesteric liquid crystal layer, and may not be included in the finished half mirror film or windshield glass. Good. Examples of the support include plastic films such as polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone. In addition to the plastic film, glass may be used as the temporary support.
The thickness of the support may be about 5.0 μm to 1000 μm, preferably 10 μm to 250 μm, and more preferably 15 μm to 100 μm.
 ハーフミラーフィルムは、コレステリック液晶層または位相差層の形成の際に液晶組成物が塗布される下層として、配向層を含んでいてもよい。
 配向層は、ポリマーなどの有機化合物(ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、またはラングミュア・ブロジェット法(LB膜)を用いた有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。更に、電場の付与、磁場の付与または光照射により、配向機能が生じる配向層を用いてもよい。
 特にポリマーからなる配向層はラビング処理を行ったうえで、ラビング処理面に液晶組成物を塗布することが好ましい。ラビング処理は、ポリマー層の表面を、紙、布で一定方向に、擦ることにより実施することができる。
 配向層を設けずに支持体表面、または支持体をラビング処理した表面に、液晶組成物を塗布してもよい。
 仮支持体を用いて液晶層を形成する場合は、配向層は仮支持体とともに剥離されてハーフミラーフィルムを構成する層とはならなくてもよい。
 配向層の厚みは、0.01μm~5.0μmであることが好ましく、0.05μm~2.0μmであることがさらに好ましい。
The half mirror film may include an alignment layer as a lower layer to which the liquid crystal composition is applied when forming the cholesteric liquid crystal layer or the retardation layer.
The alignment layer has a rubbing treatment of organic compounds such as polymers (resins such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide), oblique deposition of inorganic compounds, and microgrooves. It can be provided by means such as formation of a layer or accumulation of an organic compound (for example, ω-tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) using the Langmuir-Blodgett method (LB film). Further, an alignment layer that generates an alignment function by application of an electric field, application of a magnetic field, or light irradiation may be used.
In particular, the alignment layer made of a polymer is preferably subjected to a rubbing treatment and then a liquid crystal composition is applied to the rubbing treatment surface. The rubbing treatment can be performed by rubbing the surface of the polymer layer with paper or cloth in a certain direction.
You may apply | coat a liquid-crystal composition to the surface of a support body which does not provide an alignment layer, or the surface which carried out the rubbing process of the support body.
In the case of forming a liquid crystal layer using a temporary support, the alignment layer may not be peeled off together with the temporary support to form a half mirror film.
The thickness of the alignment layer is preferably 0.01 μm to 5.0 μm, and more preferably 0.05 μm to 2.0 μm.
<基材>
 本発明のウインドシールドガラスは基材を含む。基材は、第一のガラス板、第一の樹脂膜、ハーフミラーフィルム、第二の樹脂膜、および第二のガラス板をこの順に含むウインドシールドガラスにおいて、ハーフミラーフィルムと隣接している。ハーフミラーフィルムと隣接しているとは、第一のガラス板、第一の樹脂膜、基材、ハーフミラーフィルム、第二の樹脂膜、および第二のガラス板がこの順であるか、または第一のガラス板、第一の樹脂膜、ハーフミラーフィルム、基材、第二の樹脂膜、および第二のガラス板がこの順であるように、基材がウインドシールドガラスに含まれていることを意味する。ハーフミラーフィルムは、例えば、基材と直接接しているか、または接着層を介して基材と接着されていればよい。基材は主表面の全面でハーフミラーフィルムと隣接していてもよく、主表面の一部でハーフミラーフィルムと隣接していてもよい。また、基材は、ガラス板と略同一の形状および面積を有するものであってもよく、ガラス板より面積が小さいものであってもよい。好ましくは、基材がガラス板と略同一の形状および面積を有し、かつハーフミラーフィルムが基材の主表面の一部で基材と隣接していればよい。基材をガラス板と略同一の形状および面積とすることによって、後述のように基材およびハーフミラーフィルムを含む積層フィルムを樹脂膜に挟む際の段差が小さくなり、合わせガラス作製時に気泡が抜けにくいなどの問題が生じにくい。ハーフミラーフィルムは基材の主表面の一部で基材と接着層を介して接着していることが好ましい。
<Base material>
The windshield glass of the present invention includes a substrate. The base material is adjacent to the half mirror film in the windshield glass including the first glass plate, the first resin film, the half mirror film, the second resin film, and the second glass plate in this order. Adjacent to the half mirror film means that the first glass plate, the first resin film, the substrate, the half mirror film, the second resin film, and the second glass plate are in this order, or The base material is included in the windshield glass so that the first glass plate, the first resin film, the half mirror film, the base material, the second resin film, and the second glass plate are in this order. Means that. For example, the half mirror film may be in direct contact with the base material or bonded to the base material via an adhesive layer. The base material may be adjacent to the half mirror film on the entire main surface, or may be adjacent to the half mirror film on a part of the main surface. Further, the substrate may have substantially the same shape and area as the glass plate, or may have a smaller area than the glass plate. Preferably, the substrate has substantially the same shape and area as the glass plate, and the half mirror film may be adjacent to the substrate at a part of the main surface of the substrate. By making the base material approximately the same shape and area as the glass plate, the level difference when sandwiching the laminated film including the base material and the half mirror film between the resin films is reduced as will be described later, and air bubbles are lost when making laminated glass. Problems such as difficulty are unlikely to occur. The half mirror film is preferably bonded to a part of the main surface of the base material via an adhesive layer.
 基材は、弾性率が3GPa~10GPaであり、かつ厚みが150μm~500μmである。このような弾性率および厚みの基材を用いることによって、上記のオレンジピールの問題を低減することができる。基材の弾性率は3.5GPa~9GPaであることが好ましく、4GPa~8GPaであることがより好ましい。基材の厚みは160μm~400μmであることが好ましく、170μm~300μmであることがより好ましい。
 基材は、弾性率が5GPa~8GPaであり、かつ厚みが170μm~300μmであることがより好ましい。
The base material has an elastic modulus of 3 GPa to 10 GPa and a thickness of 150 μm to 500 μm. By using a base material having such an elastic modulus and thickness, the above-mentioned orange peel problem can be reduced. The elastic modulus of the substrate is preferably 3.5 GPa to 9 GPa, more preferably 4 GPa to 8 GPa. The thickness of the substrate is preferably 160 μm to 400 μm, and more preferably 170 μm to 300 μm.
The base material preferably has an elastic modulus of 5 GPa to 8 GPa and a thickness of 170 μm to 300 μm.
 本明細書において、弾性率は、JIS K 7127の測定方法に沿って、引張試験機を用いて速度10mm/minで試料を引張り、試料が切断した時の強度、伸びを求めて試料が変形する直前での最大弾性(S-Sカーブの最大傾斜の接線の1次式)から測定したものとする。 In this specification, the elastic modulus is determined by pulling the sample at a speed of 10 mm / min using a tensile tester in accordance with the measurement method of JIS K7127, and obtaining the strength and elongation when the sample is cut, thereby deforming the sample. Measured from the maximum elasticity immediately before (primary expression of the tangent of the maximum slope of the SS curve).
 基材の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどのプラスチックフィルムが挙げられる。これらのうち、コストの観点からポリエチレンテレフタレートフィルムが好ましい。ポリエチレンテレフタレートフィルムとしてはヘイズが少なく、透過率の高いもの、加水分解しにくいものが好ましい。また、ポリエチレンテレフタレートフィルムの厚みは170μm~300μmであることがより好ましい。
 後述の位相差層(第1の位相差層または第2の位相差層)が基材を兼ねていてもよい。
Examples of the substrate include plastic films such as polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone. Among these, a polyethylene terephthalate film is preferable from the viewpoint of cost. As the polyethylene terephthalate film, a film having a low haze, a high transmittance, and a film that is difficult to hydrolyze is preferable. The thickness of the polyethylene terephthalate film is more preferably 170 μm to 300 μm.
A retardation layer (a first retardation layer or a second retardation layer) described later may also serve as a base material.
<基材とハーフミラーフィルムとを含む積層フィルム>
 基材およびハーフミラーフィルムは、後述の合わせガラスの製造の工程の前に一体化されて基材とハーフミラーフィルムとを含む積層フィルムとなっていることが好ましい。加熱および加圧処理を含む工程の前に上記の弾性率および厚みを有する基材とハーフミラーフィルムとが一体化されていることにより、ウインドシールドガラス中のハーフミラーフィルムでのオレンジピール状の凸凹の発生を防止することができる。積層フィルムにおける基材及びハーフミラーフィルムの態様は、上述のウインドシールドガラスにおいて述べたものと同様である。
<Laminated film including base material and half mirror film>
It is preferable that the base material and the half mirror film are integrated before the process of manufacturing the laminated glass described later and are a laminated film including the base material and the half mirror film. The orange peel-like unevenness in the half mirror film in the windshield glass is obtained by integrating the base material having the elastic modulus and thickness and the half mirror film before the process including the heating and pressurizing processes. Can be prevented. The aspects of the base material and the half mirror film in the laminated film are the same as those described in the above-described windshield glass.
 一体化は、基材上に直接ハーフミラーフィルムを形成することにより行ってもよく、両者を接着することにより行ってもよいが、両者を接着することが好ましい。接着は後述の接着層により行えばよい。このとき、接着層の厚みは10μm以下であることが好ましい。接着層の厚みを10μm以下とすることにより、接着層に由来するオレンジピール(Orange peel)状の凸凹が生じにくいからである。後述する接着層のうち、基材およびハーフミラーフィルムを接着するための接着剤としては紫外線硬化タイプを用いることが好ましい。紫外線硬化タイプの接着剤は一般に、10μm以下の厚みで十分な接着力を有するため、紫外線硬化タイプの接着剤を用いて、10μm以下、好ましくは5μm以下、より好ましくは3μm以下の接着層を設けることができる。後述の高透明性接着剤転写テープ(OCAテープ)として市販品としては、一般的に厚みが10μmを超えるものが多いため、10μm以下の厚みのものを選択して用いればよい。 Integrating may be performed by directly forming a half mirror film on the substrate, or may be performed by bonding both, but it is preferable to bond both. Bonding may be performed by an adhesive layer described later. At this time, the thickness of the adhesive layer is preferably 10 μm or less. This is because, by setting the thickness of the adhesive layer to 10 μm or less, orange-peel-shaped unevenness derived from the adhesive layer is unlikely to occur. Among the adhesive layers to be described later, it is preferable to use an ultraviolet curing type as an adhesive for adhering the base material and the half mirror film. In general, an ultraviolet curable adhesive has a sufficient adhesive strength with a thickness of 10 μm or less, and therefore, an ultraviolet curable adhesive is used to provide an adhesive layer of 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less. be able to. As a highly transparent adhesive transfer tape (OCA tape) described later, a commercially available product generally has a thickness exceeding 10 μm, and therefore, a tape having a thickness of 10 μm or less may be selected and used.
 支持体を含むハーフミラーフィルムにおいては、基材への接着と同時に、又はその直後、もしくはその直前に、支持体を剥離してもよい。
 積層フィルムにおいて、ハーフミラーフィルムは基材の主表面の一部で基材と接着層を介して接着していることが好ましい。一部である場合、その面積は、基材の全面積に対し、90%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下などであってよく、1%以上、3%以上、5%以上、7%以上、10%以上であればよい。このとき、基材は、製造しようとするウインドシールドガラスと略同一の形状および面積であることが好ましい。
In the half mirror film including the support, the support may be peeled off simultaneously with the adhesion to the substrate, immediately after, or immediately before.
In the laminated film, the half mirror film is preferably bonded to a part of the main surface of the base material via an adhesive layer. When it is a part, the area may be 90% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, etc. with respect to the total area of the substrate. It may be 1% or more, 3% or more, 5% or more, 7% or more, 10% or more. At this time, it is preferable that the base material has substantially the same shape and area as the windshield glass to be manufactured.
<位相差層>
 本発明のウインドシールドガラスは円偏光反射層と第二の樹脂膜との間に位相差層を含んでいてもよい。正面位相差を適宜調節した位相差層を上記円偏光反射層と組み合わせて用いることにより、鮮明な投映像を表示することができる。
 位相差層は、本発明のウインドシールドガラスにおいて、ハーフミラーフィルムを構成する層として含まれていてもよく、基材として含まれていてもよい。
<Phase difference layer>
The windshield glass of the present invention may include a retardation layer between the circularly polarized light reflecting layer and the second resin film. A clear projected image can be displayed by using a retardation layer in which the front retardation is appropriately adjusted in combination with the circularly polarized light reflecting layer.
In the windshield glass of the present invention, the retardation layer may be included as a layer constituting the half mirror film, or may be included as a base material.
 位相差層としては、特に制限はなく、目的に応じて適宜選択することができる。
 位相差層の例として、特に基材としてウインドシールドガラスに含まれる位相差層の好ましい例としては、延伸されたポリカーボネートフィルム、延伸されたノルボルネン系ポリマーフィルム、炭酸ストロンチウムのような複屈折を有する無機粒子を含有して配向させた透明フィルム、支持体上に無機誘電体を斜め蒸着した薄膜、液晶化合物を一軸配向させて配向固定したフィルムなどが挙げられる。
There is no restriction | limiting in particular as a phase difference layer, According to the objective, it can select suitably.
Examples of retardation layers, particularly preferred examples of retardation layers contained in windshield glass as a substrate include stretched polycarbonate films, stretched norbornene polymer films, and inorganic having birefringence such as strontium carbonate. Examples thereof include a transparent film containing particles and oriented, a thin film obtained by obliquely depositing an inorganic dielectric on a support, and a film obtained by orienting and fixing a liquid crystal compound uniaxially.
 位相差層の例として、特にハーフミラーフィルムを構成する層として含まれている位相差層の好ましい例としては、重合性液晶化合物を一軸配向させて配向固定したフィルムが挙げられる。例えば、位相差層は、支持体または配向層表面に重合性液晶化合物を含む液晶組成物を塗布し、そこで液晶組成物中の重合性液晶化合物を液晶状態においてネマチック配向に形成後、硬化によって固定化して、形成することができる。この場合の位相差層の形成は液晶組成物中にキラル剤を添加しない以外は、上記のコレステリック液晶層の形成と同様に行うことができる。ただし、液晶組成物の塗布後のネマチック配向の際、加熱温度は50℃~120℃が好ましく、60℃~100℃がより好ましい。 As an example of the retardation layer, a preferable example of the retardation layer included as a layer constituting the half mirror film is a film in which a polymerizable liquid crystal compound is uniaxially aligned and fixed. For example, for the retardation layer, a liquid crystal composition containing a polymerizable liquid crystal compound is applied to the surface of the support or the alignment layer, and the polymerizable liquid crystal compound in the liquid crystal composition is formed in a nematic alignment in a liquid crystal state and then fixed by curing. Can be formed. In this case, the retardation layer can be formed in the same manner as the formation of the cholesteric liquid crystal layer except that no chiral agent is added to the liquid crystal composition. However, the heating temperature is preferably 50 ° C. to 120 ° C. and more preferably 60 ° C. to 100 ° C. in the nematic alignment after the application of the liquid crystal composition.
 位相差層、特にハーフミラーフィルムの一部として含まれている位相差層は、高分子液晶化合物を含む組成物を、支持体または配向層の表面に塗布して液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して得られる層であってもよい。 A retardation layer, particularly a retardation layer included as a part of a half mirror film, is formed by applying a composition containing a polymer liquid crystal compound on the surface of a support or an alignment layer to form a nematic alignment in a liquid crystal state. Further, it may be a layer obtained by fixing the orientation by cooling.
 ハーフミラーフィルムを構成する層として含まれている位相差層の厚みは、特に限定はされないが、0.2μm~10μmが好ましく、0.5μm~5.0μmがより好ましく、1.0μm~2.0μmがさらに好ましい。 The thickness of the retardation layer included as a layer constituting the half mirror film is not particularly limited, but is preferably 0.2 μm to 10 μm, more preferably 0.5 μm to 5.0 μm, and 1.0 μm to 2. 0 μm is more preferable.
 位相差層は、特にλ/2位相差層であることが好ましい。λ/2位相差層と上記円偏光反射層とを組み合わせて作製した投映像表示部位は、例えば、λ/4位相差層と上記円偏光反射層とを組み合わせて用いた投映像表示部位と比較して、より高い輝度を与えることができ、また二重像も防止できる。 The retardation layer is particularly preferably a λ / 2 retardation layer. The projected image display part produced by combining the λ / 2 retardation layer and the circularly polarized reflective layer is compared with, for example, the projected image display part using a combination of the λ / 4 retardation layer and the circularly polarized reflective layer. Thus, higher luminance can be given and double images can be prevented.
 λ/2位相差層の正面位相差は、可視光波長域の1/2の長さ、または「中心波長×n±中心波長の1/2(nは整数)」であればよい。特に円偏光反射層(例えばいずれかのコレステリック液晶)の反射波長、または光源の発光波長の中心波長の1/2の長さなどであればよい。例えば、190nm~390nmの範囲の位相差であればよく、200nm~350nmの範囲の位相差であることが好ましい。 The front phase difference of the λ / 2 retardation layer may be a length that is ½ of the visible light wavelength region, or “center wavelength × n ± ½ of the center wavelength (n is an integer)”. In particular, the reflection wavelength of the circularly polarized light reflection layer (for example, any cholesteric liquid crystal) or the length of ½ of the center wavelength of the light emission wavelength of the light source may be used. For example, the phase difference may be in the range of 190 nm to 390 nm, and the phase difference is preferably in the range of 200 nm to 350 nm.
 λ/2位相差層の遅相軸方向は、ヘッドアップディスプレイシステムとしての使用時の、投映像表示のための入射光の入射方向、およびコレステリック液晶層の螺旋のセンスに応じて決定することが好ましい。例えば、入射光が投映像表示部位の下(鉛直下)方向であって、円偏光反射層に対してλ/2位相差層側から(本明細書において「観察者側から」ということがある)入射する場合は、投映像表示部位の鉛直上方向に対し、λ/2位相差層の遅相軸が+40°~+65°、または-40°~-65°の範囲にあることが好ましい。また円偏光反射層におけるコレステリック液晶層の螺旋のセンスに応じて、以下のように遅相軸方向が設定されることが好ましい。上記センスが右の場合(好ましくは、全てのコレステリック液晶層のセンスが右の場合)、投映像表示部位の鉛直上方向に対し、λ/2位相差層の遅相軸が観察者側から見て時計回りに40°~65°、好ましくは45°~60°の範囲にあることが好ましい。上記センスが左の場合(好ましくは、全てのコレステリック液晶層のセンスが左の場合)、投映像表示部位の鉛直上方向に対し、λ/2位相差層の遅相軸が観察者側から見て反時計回りに40°~65°、好ましくは45°~60°の範囲にあることが好ましい。 The slow axis direction of the λ / 2 retardation layer can be determined according to the incident direction of incident light for projected image display and the spiral sense of the cholesteric liquid crystal layer when used as a head-up display system. preferable. For example, the incident light is in the lower (vertically lower) direction of the projected image display portion and may be referred to as “λ / 2 phase difference layer side” (in this specification, “from the observer side”) with respect to the circularly polarized light reflection layer ) When incident, it is preferable that the slow axis of the λ / 2 retardation layer is in the range of + 40 ° to + 65 ° or −40 ° to −65 ° with respect to the vertical upward direction of the projected image display portion. Further, the slow axis direction is preferably set as follows according to the spiral sense of the cholesteric liquid crystal layer in the circularly polarized light reflecting layer. When the sense is on the right (preferably, when the senses of all cholesteric liquid crystal layers are on the right), the slow axis of the λ / 2 retardation layer is viewed from the observer side with respect to the vertical upward direction of the projected image display region. In the clockwise direction, it is preferably in the range of 40 ° to 65 °, preferably 45 ° to 60 °. When the sense is on the left (preferably, the sense of all cholesteric liquid crystal layers is on the left), the slow axis of the λ / 2 retardation layer is viewed from the observer side with respect to the vertical upward direction of the projected image display area. Thus, it is preferably in the range of 40 ° to 65 °, preferably 45 ° to 60 ° counterclockwise.
<第2の位相差層>
 本発明のウインドシールドガラスは、上記位相差層に加えて第2の位相差層を含んでいてもよい。以下、区別のために、円偏光反射層と第二の樹脂膜との間に含まれる位相差層を第1の位相差層ということがある。第2の位相差層は、第1の位相差層(好ましくはλ/2位相差層)、円偏光反射層、および第2の位相差層がこの順になるように設ければよい。特に、観察者側から第1の位相差層、円偏光反射層、および第2の位相差層がこの順になるように設ければよい。第2の位相差層は、ハーフミラーフィルムの一部として含まれていてもよく、基材として含まれていてもよい。
<Second retardation layer>
The windshield glass of the present invention may include a second retardation layer in addition to the retardation layer. Hereinafter, for the purpose of distinction, the retardation layer included between the circularly polarized light reflection layer and the second resin film may be referred to as a first retardation layer. The second retardation layer may be provided so that the first retardation layer (preferably λ / 2 retardation layer), the circularly polarized light reflection layer, and the second retardation layer are in this order. In particular, the first retardation layer, the circularly polarized light reflection layer, and the second retardation layer may be provided in this order from the viewer side. The second retardation layer may be included as a part of the half mirror film or may be included as a base material.
 第2の位相差層を含むことによって、二重像をさらに防止することができる。特に、p偏光を入射させて投映像を形成する場合の二重像をさらに防止することができる。その効果は、円偏光反射層におけるコレステリック液晶層の形成に低Δn重合性液晶化合物を用いた場合により顕著である。
 第2の位相差層の利用により二重像をさらに防止することができる理由は、円偏光反射層に含まれるコレステリック液晶層の選択反射帯域にない波長の光がコレステリック液晶層で偏光変換してウインドシールドガラスの裏面で反射されることに基づいて生じる二重像を防止できるためと推定される。
By including the second retardation layer, double images can be further prevented. In particular, it is possible to further prevent double images when a projected image is formed by entering p-polarized light. The effect is more remarkable when a low Δn polymerizable liquid crystal compound is used for forming a cholesteric liquid crystal layer in the circularly polarized light reflection layer.
The reason that the double image can be further prevented by using the second retardation layer is that light having a wavelength not in the selective reflection band of the cholesteric liquid crystal layer included in the circularly polarized light reflection layer is polarized and converted by the cholesteric liquid crystal layer. It is presumed that the double image generated based on the reflection on the back surface of the windshield glass can be prevented.
 第2の位相差層の位相差は、波長550nmにおいて160nm~460nmの範囲、好ましくは240nm~420nmの範囲で適宜調整すればよい。
 第2の位相差層の材料および厚み等は、第1の位相差層と同様の範囲で選択することができる。
The retardation of the second retardation layer may be appropriately adjusted in the range of 160 nm to 460 nm, preferably in the range of 240 nm to 420 nm at the wavelength of 550 nm.
The material, thickness, and the like of the second retardation layer can be selected in the same range as the first retardation layer.
 第2の位相差層の遅相軸方向は、投映像表示のための入射光の入射方向、およびコレステリック液晶層の螺旋のセンスに応じて決定することが好ましい。例えば、波長550nmにおいて160nm~400nmの範囲の位相差の第2の位相差層を投映像表示部位の鉛直上方向に対し、遅相軸が+10°~+35°、または-10°~-35°の範囲となるようにすることが好ましい。または、波長550nmにおいて200nm~400nmの範囲の位相差の第2の位相差層を投映像表示部位の鉛直上方向に対し、遅相軸が+100°~+140°、または-100°~-140°の範囲となるようにすることが好ましい。 It is preferable that the slow axis direction of the second retardation layer is determined according to the incident direction of incident light for projecting image display and the spiral sense of the cholesteric liquid crystal layer. For example, the second phase difference layer having a phase difference in the range of 160 nm to 400 nm at a wavelength of 550 nm is + 10 ° to + 35 ° or −10 ° to −35 ° with respect to the vertical direction of the projected image display portion. It is preferable to be in the range. Alternatively, the slow axis of the second retardation layer having a phase difference in the range of 200 nm to 400 nm at the wavelength of 550 nm is + 100 ° to + 140 ° or −100 ° to −140 ° with respect to the vertical upward direction of the projected image display portion. It is preferable to be in the range.
<接着層>
 接着層は、上述のような基材とハーフミラーフィルムとの間のほか、例えばコレステリック液晶層間、円偏光反射層と第1の位相差層との間、円偏光反射層と第2の位相差層との間等に設けられていてもよい。また、ハーフミラーフィルムと樹脂膜との間、基材と樹脂膜との間等に設けられていてもよい。
 接着層は可視光領域で透明であることが好ましい。また、接着層は低複屈折性であることが好ましく、また、コレステリック液晶層の平均屈折率(面内平均屈折率)との屈折率の差が小さいことが好ましい。
<Adhesive layer>
The adhesive layer is not only between the base material and the half mirror film as described above, but also, for example, between the cholesteric liquid crystal layer, between the circularly polarized reflective layer and the first retardation layer, and between the circularly polarized reflective layer and the second retardation. It may be provided between layers. Further, it may be provided between the half mirror film and the resin film, between the base material and the resin film, or the like.
The adhesive layer is preferably transparent in the visible light region. The adhesive layer preferably has low birefringence, and preferably has a small difference in refractive index from the average refractive index (in-plane average refractive index) of the cholesteric liquid crystal layer.
 接着層は接着剤から形成されるものを用いることができる。
 接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがあり、それぞれ素材としてアクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。作業性、生産性の観点から、硬化方式として光硬化タイプ、特に紫外線硬化タイプが好ましく、光学的な透明性、耐熱性の観点から、素材はアクリレート系、ウレタンアクリレート系、エポキシアクリレート系などを使用することが好ましい。
As the adhesive layer, one formed from an adhesive can be used.
Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do. From the viewpoint of workability and productivity, the photo-curing type, particularly the ultraviolet curing type, is preferable as the curing method, and from the viewpoint of optical transparency and heat resistance, the material is acrylate, urethane acrylate, epoxy acrylate, etc. It is preferable to do.
 上記の例の接着層の厚みは、0.5μm~10μmであることが好ましく、1.0μm~5.0μmであることがより好ましい。投映像表示部位の色ムラ等を軽減するため均一な厚みで設けられることが好ましい。 The thickness of the adhesive layer in the above example is preferably 0.5 μm to 10 μm, and more preferably 1.0 μm to 5.0 μm. In order to reduce color unevenness and the like of the projected image display part, it is preferable to provide the uniform thickness.
 接着層は、高透明性接着剤転写テープ(OCAテープ)を用いて形成されたものであってもよい。高透明性接着剤転写テープとしては、画像表示装置用の市販品、特に画像表示装置の画像表示部表面用の市販品を用いることができる。市販品の例としては、パナック株式会社製の粘着シート(PD-S1など)、日栄化工株式会社のMHMシリーズの粘着シートなどが挙げられる。
 OCAテープの厚みは1.0μm~50μmであればよく、2.0μm~30μmであることが好ましい。上述のように、基材とハーフミラーフィルムとの間の接着層として用いられる場合には、OCAテープの厚みは10μm以下であることが好ましい。
The adhesive layer may be formed using a highly transparent adhesive transfer tape (OCA tape). As the highly transparent adhesive transfer tape, a commercially available product for an image display device, particularly a commercially available product for the surface of the image display unit of the image display device can be used. Examples of commercially available products include PANAC Corporation pressure-sensitive adhesive sheets (PD-S1 and the like), MHI Series MHM series pressure-sensitive adhesive sheets, and the like.
The thickness of the OCA tape may be 1.0 μm to 50 μm, and preferably 2.0 μm to 30 μm. As described above, when used as an adhesive layer between the substrate and the half mirror film, the thickness of the OCA tape is preferably 10 μm or less.
<合わせガラス(ウインドシールドガラスの製造方法)>
 ウインドシールドガラスは、公知の合わせガラス作製方法を用いて製造することができる。
 例えば、基材とハーフミラーフィルムとを含む積層フィルム(以下、積層フィルムということがある)をその間に挟んだ状態の2枚の樹脂膜をさらに2枚のガラス板に挟んで得られる積層体に対し、予備圧着および本圧着を行うことにより製造することができる。または、積層フィルムを2枚の樹脂膜で挟んだ構成の中間膜シートを予め作製し、この中間膜シートをさらに2枚のガラス板に挟んで得られる積層体に対し、予備圧着および本圧着を行うことにより製造することができる。
<Laminated glass (manufacturing method of windshield glass)>
The windshield glass can be manufactured using a known laminated glass manufacturing method.
For example, in a laminate obtained by sandwiching two resin films in a state where a laminate film (hereinafter sometimes referred to as a laminate film) including a base material and a half mirror film is sandwiched between two glass plates On the other hand, it can be manufactured by performing pre-bonding and main-bonding. Alternatively, an intermediate film sheet having a structure in which a laminated film is sandwiched between two resin films is prepared in advance, and pre-compression and main pressure bonding are performed on a laminate obtained by sandwiching the intermediate film between two glass plates. It can be manufactured by doing.
 上記の積層フィルムを2枚の樹脂膜で挟んだ構成の中間膜シート形成の際の加熱および加圧は例えば温度40℃以上140℃以下、好ましくは温度60℃以上120℃以下、圧力0.05MPa以上0.8MPa以下、好ましくは0.1MPa以上0.5MPa以下で行えばよい。 The heating and pressurization at the time of forming the intermediate film having a structure in which the above laminated film is sandwiched between two resin films are, for example, a temperature of 40 ° C. or higher and 140 ° C. or lower, preferably a temperature of 60 ° C. or higher and 120 ° C. or lower, a pressure of 0.05 MPa It may be performed at 0.8 MPa or less and preferably at 0.1 MPa or more and 0.5 MPa or less.
 予備圧着は、合わせガラスの製造において各層の間の脱気のために行われる工程である。予備圧着は例えば積層体を排気系に接続したゴム袋に入れて行われる。このときの圧力は100kPa以下とすることが好ましく、1~36kPaであることがより好ましい。予備圧着は温度70℃~130℃において10分以上90分以下保持することにより行うことができる。 Pre-crimping is a process performed for deaeration between layers in the production of laminated glass. The pre-compression is performed, for example, by putting the laminated body in a rubber bag connected to an exhaust system. The pressure at this time is preferably 100 kPa or less, more preferably 1 to 36 kPa. The pre-bonding can be performed by holding at a temperature of 70 ° C. to 130 ° C. for 10 minutes to 90 minutes.
 保持温度を70℃以上とすることにより予備圧着を十分にすることができる。また、保持温度を130℃以下とすることによりハーフミラーフィルムまたは基材の熱収縮が過度に進行することを抑えられることから、ハーフミラーフィルムまたは基材のクラックの発生を抑えることができる。保持温度は80℃以上とすることが好ましく、90℃以上とすることがより好ましい。より確実に脱気を行うためである。また、保持温度は120℃以下であることが好ましく、110℃以下であることがより好ましい。 Preliminary pressure bonding can be achieved by setting the holding temperature to 70 ° C. or higher. In addition, since the heat shrinkage of the half mirror film or the substrate is prevented from excessively proceeding by setting the holding temperature to 130 ° C. or less, the occurrence of cracks in the half mirror film or the substrate can be suppressed. The holding temperature is preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. This is for performing deaeration more reliably. Further, the holding temperature is preferably 120 ° C. or lower, and more preferably 110 ° C. or lower.
 保持時間が10分以上であると、予備圧着を十分に行うことができる。一方、保持時間が90分以下であると、生産性がよく、ハーフミラーフィルムまたは基材の熱収縮が過度に進行することを抑えられることから、ハーフミラーフィルムまたは基材のクラックの発生を抑えることができる。保持時間は、より効果的かつ効率的に予備圧着を行う観点から、20分以上60分以下とすることが好ましい。 If the holding time is 10 minutes or more, the preliminary pressure bonding can be sufficiently performed. On the other hand, when the holding time is 90 minutes or less, the productivity is good and the thermal shrinkage of the half mirror film or the base material can be prevented from proceeding excessively, thereby suppressing the occurrence of cracks in the half mirror film or the base material. be able to. The holding time is preferably 20 minutes or longer and 60 minutes or shorter from the viewpoint of more effectively and efficiently performing preliminary pressure bonding.
 本圧着は、各層間を樹脂膜により十分に接着するために行うものであり、例えば予備圧着により得られた予備圧着体をオートクレーブに入れ、温度を110℃以上150℃以下、圧力を0.98MPa以上1.47MPa以下として行うことができる。より好ましくは、温度を130℃以上140℃以下、圧力を1.1MPa以上1.4MPa以下として行うことである。そして、上記温度、圧力に保持する時間(保持時間)は、15分以上90分以下であることが好ましく、30分以上75分以下であることがより好ましい。 The main pressure bonding is performed in order to sufficiently bond the respective layers with the resin film. For example, a pre-pressure bonded body obtained by the pre-pressure bonding is put in an autoclave, the temperature is 110 ° C. or higher and 150 ° C. or lower, and the pressure is 0.98 MPa. This can be performed at a pressure of 1.47 MPa or less. More preferably, the temperature is 130 ° C. to 140 ° C. and the pressure is 1.1 MPa to 1.4 MPa. And it is preferable that it is 15 minutes or more and 90 minutes or less, and, as for the time (holding time) hold | maintained at the said temperature and pressure, it is more preferable that they are 30 minutes or more and 75 minutes or less.
 保持温度、保持圧力、または保持時間を上記の条件として本圧着を行うことにより、ハーフミラーフィルムにクラックが発生することを抑えることができ、また生産性等も優れる。 By performing the main pressure bonding under the above conditions of holding temperature, holding pressure, or holding time, the occurrence of cracks in the half mirror film can be suppressed, and productivity and the like are also excellent.
<円偏光反射層に対して視認側にある層>
 一般的に、投映像表示用部材において、投映光を反射する層からの反射光に基づく像と、投映像表示用部材の光入射側から見て手前の面または裏側面からの反射光に基づく像が重なることによって二重像(または多重像)の問題が生じる。本発明のウインドシールドガラスにおいては、円偏光反射層中のコレステリック液晶層を透過する光は上記コレステリック液晶層を反射する円偏光と逆のセンスの円偏光となっており、裏側面からの反射光は、円偏光反射層より裏側面側にある層が低複屈折性である場合は、通常上記コレステリック液晶層に反射される円偏光が大部分となるため顕著な二重像を生じさせにくい。特に投映光として偏光を利用することにより投映光の大部分が円偏光反射層で反射されるように構成できる。一方で、手前の面からの反射光は顕著な二重像を生じさせ得る。特にコレステリック液晶層の重心からウインドシールドガラスの光入射側から見て手前の面までの距離が一定値以上であると二重像が顕著になり得る。具体的には、本発明のウインドシールドガラスの構造において、円偏光反射層より第二のガラス板側にある層の厚みの総計、すなわち、円偏光反射層の第二のガラス板側の最外面から、円偏光反射層に対して第二のガラス板側のウインドシールドガラスの最外面までの距離、が0.5mm以上となると二重像が顕著になり得、1mm以上でより顕著となり得、1.5mm以上でより顕著となり得、2.0mm以上で特に顕著になり得る。円偏光反射層より視認側にある層としては、第1の位相差層、第二の樹脂膜、第二のガラス板が挙げられる。
 しかし、本発明のウインドシールドガラスは後述のようにp偏光を利用した投映像表示において、円偏光反射層より視認側にある層の厚みの総計が上記のようである場合でも、顕著な二重像なしに投映像を視認することができる。
<Layer on the viewing side with respect to the circularly polarized reflective layer>
In general, in a projection image display member, based on an image based on reflected light from a layer that reflects projection light, and reflection light from a front surface or a back side as viewed from the light incident side of the projection image display member. Double images (or multiple images) are caused by overlapping images. In the windshield glass of the present invention, the light transmitted through the cholesteric liquid crystal layer in the circularly polarized light reflection layer is circularly polarized light having a sense opposite to that of the circularly polarized light reflected by the cholesteric liquid crystal layer, and reflected light from the back side surface. If the layer on the back side of the circularly polarized light reflecting layer has low birefringence, the circularly polarized light that is usually reflected by the cholesteric liquid crystal layer is mostly, so that it is difficult to produce a noticeable double image. In particular, by using polarized light as the projection light, most of the projection light can be reflected by the circularly polarized light reflection layer. On the other hand, the reflected light from the front surface can cause a noticeable double image. In particular, if the distance from the center of gravity of the cholesteric liquid crystal layer to the front surface when viewed from the light incident side of the windshield glass is a certain value or more, a double image can be prominent. Specifically, in the structure of the windshield glass of the present invention, the total thickness of the layers on the second glass plate side from the circularly polarized reflective layer, that is, the outermost surface on the second glass plate side of the circularly polarized reflective layer From the circularly polarizing reflective layer, the distance to the outermost surface of the windshield glass on the second glass plate side is 0.5 mm or more, a double image can be prominent, and 1 mm or more can be more prominent, It may become more prominent at 1.5 mm or more, and may be particularly noticeable at 2.0 mm or more. Examples of the layer on the viewer side from the circularly polarized light reflecting layer include a first retardation layer, a second resin film, and a second glass plate.
However, the windshield glass of the present invention has a remarkable double effect even when the total thickness of the layers closer to the viewing side than the circularly polarized reflective layer is as described above in the projected image display using p-polarized light as described later. The projected image can be viewed without an image.
<<ヘッドアップディスプレイシステム>>
 本発明のウインドシールドガラスはヘッドアップディスプレイシステムの構成部材として用いることができる。ヘッドアップディスプレイシステムはプロジェクターを含む。ヘッドアップディスプレイシステムは、基材、ハーフミラーフィルム、およびプロジェクターがこの順で配置されていることが好ましい。また、ウインドシールドガラスが位相差層を含む場合、ヘッドアップディスプレイシステムは、円偏光反射層、位相差層、およびプロジェクターがこの順で配置されていることが好ましい。
<< Head-up display system >>
The windshield glass of the present invention can be used as a component of a head-up display system. The head-up display system includes a projector. In the head-up display system, the substrate, the half mirror film, and the projector are preferably arranged in this order. When the windshield glass includes a retardation layer, the head-up display system preferably includes a circularly polarized light reflection layer, a retardation layer, and a projector arranged in this order.
<プロジェクター>
 本明細書において、「プロジェクター」は「光または画像を投映する装置」であり、「描画した画像を投射する装置」を含む。本発明のヘッドアップディスプレイシステムにおいて、プロジェクターは、ウインドシールドガラス中の投映像表示部位に、上記のような斜め入射角度で入射できるように配置されていればよい。
 ヘッドアップディスプレイシステムにおいて、プロジェクターは、描画デバイスを含み、小型の中間像スクリーンに描画された画像(実像)をコンバイナにより虚像として反射表示するものが好ましい。
<Projector>
In this specification, the “projector” is “an apparatus that projects light or an image”, and includes an “apparatus that projects a drawn image”. In the head-up display system of the present invention, the projector only needs to be arranged so as to be incident on the projected image display portion in the windshield glass at the oblique incident angle as described above.
In the head-up display system, the projector preferably includes a drawing device and reflects and displays an image (real image) drawn on a small intermediate image screen as a virtual image by a combiner.
[描画デバイス]
 描画デバイスはそれ自体が画像を表示するデバイスであってもよく、画像を描画できる光を発するデバイスであってもよい。描画デバイスでは、光源からの光が、光変調器、レーザー輝度変調手段、または描画のための光偏向手段などの描画方式で調整されていればよい。本明細書において、描画デバイスは光源を含み、さらに、描画方式に応じて光変調器、レーザー輝度変調手段、または描画のための光偏向手段などを含むデバイスを意味する。
[Drawing device]
The drawing device itself may be a device that displays an image, or may be a device that emits light capable of drawing an image. In the drawing device, the light from the light source may be adjusted by a drawing method such as an optical modulator, laser luminance modulation means, or light deflection means for drawing. In this specification, the drawing device means a device that includes a light source and further includes a light modulator, a laser luminance modulation unit, a light deflection unit for drawing, or the like according to a drawing method.
(光源)
 光源は特に限定されず、LED(発光ダイオード、有機発光ダイオード(OLED)を含む)、放電管、およびレーザー光源などを用いることができる。これらのうち、LEDおよび放電管が好ましい。直線偏光を出射する描画デバイスの光源に適しているからである。これらのうち、特にLEDが好ましい。LEDは発光波長が可視光領域において連続的でないため、後述するように特定波長域で選択反射を示すコレステリック液晶層が用いられているコンバイナとの組み合わせに適しているためである。
(light source)
The light source is not particularly limited, and LEDs (including light emitting diodes and organic light emitting diodes (OLED)), discharge tubes, laser light sources, and the like can be used. Of these, LEDs and discharge tubes are preferred. This is because it is suitable for a light source of a drawing device that emits linearly polarized light. Of these, LEDs are particularly preferred. This is because LEDs are suitable for combination with a combiner using a cholesteric liquid crystal layer exhibiting selective reflection in a specific wavelength region, as will be described later, because the emission wavelength is not continuous in the visible light region.
(描画方式)
 描画方式としては、使用する光源や用途に応じて選択することができ、特に限定されない。
 描画方式の例としては、蛍光表示管、液晶を利用するLCD(Liquid Crystal Display)方式およびLCOS(Liquid Crystal on Silicon)方式、DLP(登録商標)(Digital Light Processing)方式、レーザーを利用する走査方式などが挙げられる。描画方式は光源と一体となった蛍光表示管を用いた方式であってもよい。
(Drawing method)
The drawing method can be selected according to the light source to be used and the application, and is not particularly limited.
Examples of the drawing method include a fluorescent display tube, a liquid crystal display (LCD) method using liquid crystal and a liquid crystal on silicon (LCOS) method, a DLP (digital light processing) method, and a scanning method using a laser. Etc. The drawing method may be a method using a fluorescent display tube integrated with a light source.
 LCD方式およびLCOS方式では、各色の光が光変調器で変調、合波され、投射レンズから光が出射する。
 DLP方式は、DMD(Digital Micromirror Device)を用いた表示システムであり、画素数分のマイクロミラーを配置して描画され投射レンズから光が出射する。
 走査方式は光線をスクリーン上で走査させ、目の残像を利用して造影する方式であり、例えば、特開平7-270711号公報、特開2013-228674号公報の記載が参照できる。レーザーを利用する走査方式では、輝度変調された各色(例えば、赤色光、緑色光、青色光)のレーザー光が合波光学系または集光レンズなどで1本の光線に束ねられ、光線が光偏向手段により走査されて後述する中間像スクリーンに描画されていればよい。
 走査方式において、各色(例えば赤色光、緑色光、青色光)のレーザー光の輝度変調は光源の強度変化として直接行ってもよく、外部変調器により行ってもよい。光偏向手段としては、ガルバノミラー、ガルバノミラーとポリゴンミラーの組み合わせ、またはMEMS(微小電子機械システム)が挙げられ、このうちMEMSが好ましい。走査方法としては、ランダムスキャン方式、およびラスタースキャン方式等が挙げられるが、ラスタースキャン方式を用いることが好ましい。ラスタースキャン方式において、レーザー光は、例えば、水平方向は共振周波数で、垂直方向はのこぎり波で駆動されることができる。走査方式は投射レンズが不要であるため、装置の小型化が容易である。
In the LCD method and the LCOS method, light of each color is modulated and combined by an optical modulator, and light is emitted from a projection lens.
The DLP system is a display system using DMD (Digital Micromirror Device), and is drawn by arranging micromirrors for the number of pixels, and light is emitted from a projection lens.
The scanning method is a method in which a light beam is scanned on a screen and an image is contrasted using an afterimage of an eye. For example, the descriptions in JP-A-7-270711 and JP-A-2013-228664 can be referred to. In the scanning method using laser, laser light of each color (for example, red light, green light, and blue light) whose luminance is modulated is bundled into one light beam by a multiplexing optical system or a condenser lens, and the light beam is light. It only needs to be scanned by the deflecting means and drawn on an intermediate image screen described later.
In the scanning method, the luminance modulation of laser light of each color (for example, red light, green light, and blue light) may be performed directly as a change in intensity of the light source, or may be performed by an external modulator. Examples of the light deflection means include a galvanometer mirror, a combination of a galvanometer mirror and a polygon mirror, or MEMS (microelectromechanical system). Among these, MEMS is preferable. Examples of the scanning method include a random scan method and a raster scan method, but it is preferable to use a raster scan method. In the raster scan method, the laser beam can be driven by a resonance frequency in the horizontal direction and a sawtooth wave in the vertical direction, for example. Since the scanning system does not require a projection lens, the apparatus can be easily downsized.
 描画デバイスからの出射光は、直線偏光であっても自然光(非偏光)であってもよい。本発明のヘッドアップディスプレイシステムに含まれる描画デバイスからの出射光は、直線偏光であることが好ましい。描画方式がLCDまたはLCOSである描画デバイスおよびレーザー光源を用いた描画デバイスは、本質的には出射光が直線偏光となる。出射光が直線偏光である描画デバイスであって出射光が複数の波長(色)の光を含むものである場合は、複数の光の偏光の偏光方向(透過軸方向)は同一であるかまたは互いに直交していることが好ましい。市販の描画デバイスは、出射光の赤、緑、青の光の波長域での偏光方向が均一ではないものがあることが知られている(特開2000-221449号公報参照)。具体的には、緑色光の偏光方向が赤色光の偏光方向および青色光の偏光方向と直交している例が知られている。 The light emitted from the drawing device may be linearly polarized light or natural light (non-polarized light). The light emitted from the drawing device included in the head-up display system of the present invention is preferably linearly polarized light. In a drawing device whose drawing method is LCD or LCOS and a drawing device using a laser light source, the emitted light is essentially linearly polarized light. When the output light is a linearly polarized light drawing device and the output light contains light of a plurality of wavelengths (colors), the polarization directions (transmission axis directions) of the plurality of light polarizations are the same or orthogonal to each other It is preferable. It is known that there are commercially available drawing devices whose polarization directions are not uniform in the wavelength range of red, green and blue light of the emitted light (see Japanese Patent Application Laid-Open No. 2000-212449). Specifically, an example in which the polarization direction of green light is orthogonal to the polarization direction of red light and the polarization direction of blue light is known.
(中間像スクリーン)
 上記のように、描画デバイスは中間像スクリーンを使用するものであってもよい。本明細書において、「中間像スクリーン」は、画像が描画されるスクリーンである。すなわち、描画デバイスを出射した光がまだ画像として視認できるものではない場合などにおいて、この光によって描画デバイスは中間像スクリーンに視認可能な画像を形成する。中間像スクリーンにおいて描画された画像は中間像スクリーンを透過する光によりコンバイナに投映されていてもよく、中間像スクリーンを反射してコンバイナに投映されていてもよい。
(Intermediate image screen)
As described above, the drawing device may use an intermediate image screen. In this specification, an “intermediate image screen” is a screen on which an image is drawn. That is, when the light emitted from the drawing device is not yet visible as an image, the drawing device forms a visible image on the intermediate image screen by this light. The image drawn on the intermediate image screen may be projected onto the combiner by light transmitted through the intermediate image screen, or may be projected onto the combiner after reflecting off the intermediate image screen.
 中間像スクリーンの例としては、散乱膜、マイクロレンズアレイ、リアプロジェクション用のスクリーンなどが挙げられる。中間像スクリーンとしてプラスチック材料を用いる場合などにおいて、中間像スクリーンが複屈折性を有すると、中間像スクリーンに入射した偏光の偏光面や光強度が乱され、コンバイナにおいて、色ムラ等が生じやすくなるが、所定の位相差を有する位相差膜を用いることにより、この色ムラの問題が低減できる。
 中間像スクリーンとしては、入射光線を広げて透過させる機能を有するものが好ましい。このような機能により投映像拡大表示が可能となるからである。このような中間像スクリーンとしては、例えばマイクロレンズアレイで構成されるスクリーンが挙げられる。ヘッドアップディスプレイで用いられるマイクロアレイレンズについては、例えば、特開2012-226303号公報、特開2010-145745号公報、および特表2007-523369号公報に記載がある。
 プロジェクターは描画デバイスで形成された投映光の光路を調整する反射鏡などを含んでいてもよい。
Examples of the intermediate image screen include a scattering film, a microlens array, and a screen for rear projection. When a plastic material is used as the intermediate image screen, if the intermediate image screen has birefringence, the polarization plane and light intensity of polarized light incident on the intermediate image screen are disturbed, and color unevenness is likely to occur in the combiner. However, the use of a retardation film having a predetermined phase difference can reduce the problem of color unevenness.
The intermediate image screen preferably has a function of spreading and transmitting incident light. This is because such a function makes it possible to display an enlarged projected image. As such an intermediate image screen, for example, a screen composed of a microlens array can be cited. The microarray lens used in the head-up display is described in, for example, Japanese Patent Application Laid-Open No. 2012-226303, Japanese Patent Application Laid-Open No. 2010-145745, and Japanese Patent Application Publication No. 2007-523369.
The projector may include a reflecting mirror that adjusts the optical path of the projection light formed by the drawing device.
 ウインドシールドガラスを投映像表示用部材として用いたヘッドアップディスプレイシステムについては、特開平2-141720号公報、特開平10-96874号公報、特開2003-98470号公報、米国特許第5013134号明細書、特表2006-512622号公報などを参照することができる。 With regard to a head-up display system using a windshield glass as a projection image display member, JP-A-2-141720, JP-A-10-96874, JP-A-2003-98470, US Pat. No. 5,013,134 are disclosed. Reference can be made to JP-T-2006-512622.
 本発明のウインドシールドガラスは、特に、発光波長が可視光領域において連続的でないレーザーやLED、OLEDなどを光源に用いたプロジェクターと組み合わせて用いるヘッドアップディスプレイシステムに有用である。各発光波長に合わせて、コレステリック液晶層の選択反射の中心波長を調整できるからである。また、LCD(液晶表示装置)などの表示光が偏光しているディスプレイの投映に用いることもできる。 The windshield glass of the present invention is particularly useful for a head-up display system using a laser, LED, OLED or the like whose emission wavelength is not continuous in the visible light region in combination with a projector using a light source. This is because the central wavelength of selective reflection of the cholesteric liquid crystal layer can be adjusted according to each emission wavelength. Moreover, it can also be used for the projection of a display in which display light such as an LCD (Liquid Crystal Display) is polarized.
[投映光(入射光)]
 入射光は、投映像表示部位の法線に対し45°~70°の斜め入射角度で入射させることが好ましい。投映光がガラスの表面または裏面で反射することで生じる二重像の低減方法としてガラス面に投映光(p偏光)をブリュースター角で入射させ、ガラス表面からの反射光をゼロに近づけるためである。(例えば特表2006-512622号公報参照)。屈折率1.51程度のガラスと屈折率1の空気との界面のブリュースター角は約56°であり、上記の角度の範囲でp偏光を入射させることにより、投映像表示のための入射光の円偏光反射層に対してλ/2位相差層表面からの反射光が少なく、二重像の影響が小さい画像表示が可能である。上記角度は50°~65°であることも好ましい。このとき、投映像の観察を入射光平面側において、λ/2位相差層の法線に対し、入射光とは反対側で45°~70°、好ましくは50°~65°の角度で行うことができる構成であればよい。
[Projection light (incident light)]
Incident light is preferably incident at an oblique incident angle of 45 ° to 70 ° with respect to the normal of the projected image display portion. As a method of reducing the double image that occurs when the projection light is reflected on the front or back surface of the glass, the projection light (p-polarized light) is incident on the glass surface at a Brewster angle, and the reflected light from the glass surface approaches zero. is there. (See, for example, JP-T-2006-512622). The Brewster angle at the interface between glass having a refractive index of about 1.51 and air having a refractive index of about 1 is about 56 °, and p-polarized light is incident within the above-mentioned angle range, so that incident light for displaying a projected image is displayed. The circularly polarized reflective layer has less reflected light from the surface of the λ / 2 retardation layer, and can display an image with less influence of a double image. The angle is preferably 50 ° to 65 °. At this time, the projected image is observed on the incident light plane side at an angle of 45 ° to 70 °, preferably 50 ° to 65 ° on the side opposite to the incident light with respect to the normal line of the λ / 2 retardation layer. Any configuration can be used.
 ハーフミラーフィルムが第1の位相差層を含む場合、入射光は、円偏光反射層に対して第1の位相差層側から入射させ、第1の位相差層を経由して円偏光反射層に入射させればよい。すなわち、円偏光反射層に対して第1の位相差層を投映光の入射側に配置すればよい。また、入射光は、ウインドシールドガラスの上下左右等、いずれの方向から入射してもよく、観察者の方向と対応させて、決定すればよい。例えば使用時の下方向から上記のような斜め入射角度で入射していればよい。
 また、ウインドシールドガラス中の第1の位相差層(例えばλ/2位相差層)の遅相軸は、入射p偏光の振動方向(入射光の入射面)に対し、40°~65°の角度をなしていることが好ましく、45°~60°の角度をなしていることがより好ましい。
When the half mirror film includes the first retardation layer, the incident light is incident on the circularly polarizing reflection layer from the first retardation layer side, and passes through the first retardation layer and then the circularly polarizing reflecting layer. It is sufficient to make it incident. That is, the first retardation layer may be disposed on the incident side of the projection light with respect to the circularly polarized light reflection layer. Further, the incident light may be incident from any direction such as up / down / left / right of the windshield glass, and may be determined according to the direction of the observer. For example, the incident light may be incident at an oblique incident angle as described above from the downward direction during use.
The slow axis of the first retardation layer (for example, λ / 2 retardation layer) in the windshield glass is 40 ° to 65 ° with respect to the vibration direction of the incident p-polarized light (incident light incident surface). An angle is preferable, and an angle of 45 ° to 60 ° is more preferable.
 上述のように、ヘッドアップディスプレイにおける投映像表示の際の投映光は入射面に平行な方向に振動するp偏光であることが好ましい。プロジェクターの出射光が直線偏光ではない場合は、直線偏光フィルムをプロジェクターの出射光側に配して用いることによりp偏光としていてもよく、プロジェクターからウインドシールドガラスまでの光路でp偏光とされていてもよい。上述のように、出射光の赤、緑、青の光の波長域での偏光方向が均一ではないプロジェクターについては、波長選択的に偏光方向を調節し、全ての色の波長域でp偏光として入射させることが好ましい。 As described above, it is preferable that the projection light in the projection image display on the head-up display is p-polarized light that vibrates in a direction parallel to the incident surface. If the output light of the projector is not linearly polarized light, it may be p-polarized by using a linearly polarizing film arranged on the output light side of the projector, and it is made p-polarized in the optical path from the projector to the windshield glass. Also good. As described above, for projectors whose polarization directions in the red, green, and blue light wavelength ranges are not uniform, the polarization direction is adjusted in a wavelength-selective manner, and p-polarized light is used in all color wavelength ranges. It is preferable to make it enter.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
<λ/2位相差層の作製>
 東洋紡株式会社製コスモシャインA-4100(PET、厚み75μm)の易接着処理していない面上にラビング処理を施し、表1に示す塗布液1を乾燥後の乾膜の厚みが1.8μmになるようにワイヤーバーを用いて室温にて塗布した。なお、表1に示す塗布液1では、溶媒はMEK(メチルエチルケトン)を用い、固形分濃度が39質量%になるように溶媒量を調整した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後60℃でフュージョン製Dバルブ(90mW/cmのランプ)にて出力60%で6~12秒間UV照射し、液晶層を作製し、PETベース付きλ/2位相差層を得た。
<Preparation of λ / 2 retardation layer>
The surface of Toyobo Co., Ltd. Cosmo Shine A-4100 (PET, thickness 75 μm) that has not been subjected to an easy adhesion treatment is rubbed, and the coating film 1 shown in Table 1 has a dry film thickness of 1.8 μm after drying. It applied at room temperature using a wire bar. In the coating solution 1 shown in Table 1, MEK (methyl ethyl ketone) was used as the solvent, and the amount of the solvent was adjusted so that the solid content concentration was 39% by mass. The coating layer was dried at room temperature for 30 seconds, then heated at 85 ° C. for 2 minutes, and then at 60 ° C. with a fusion D bulb (90 mW / cm lamp) at an output of 60% for 6 to 12 seconds with UV irradiation. Then, a liquid crystal layer was prepared, and a λ / 2 retardation layer with a PET base was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
<反射層UV(短波長コレステリック液晶層)の作製>
 λ/2位相差層上に、表2に示す塗布液UVを乾燥後の乾膜の厚みが3μmになるようにワイヤーバーを用いて室温にて塗布した。なお、表2に示す塗布液UV、塗布液B、塗布液G、および塗布液Rでは、溶媒は酢酸メチルとシクロヘキサノンとの8:2の混合液を用い、固形分濃度が25質量%になるように溶媒量を調整した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後60℃でフュージョン製Dバルブ(90mW/cmのランプ)にて出力60%で6~12秒間UV照射し、液晶層を作製し、PETベース付き反射層UVを得た。
<Preparation of reflective layer UV (short wavelength cholesteric liquid crystal layer)>
On the λ / 2 phase difference layer, the coating liquid UV shown in Table 2 was applied at room temperature using a wire bar so that the dry film thickness after drying was 3 μm. In addition, in the coating liquid UV, the coating liquid B, the coating liquid G, and the coating liquid R shown in Table 2, an 8: 2 mixed liquid of methyl acetate and cyclohexanone is used as the solvent, and the solid content concentration becomes 25% by mass. Thus, the amount of solvent was adjusted. The coating layer was dried at room temperature for 30 seconds, then heated at 85 ° C. for 2 minutes, and then at 60 ° C. with a fusion D bulb (90 mW / cm lamp) at an output of 60% for 6 to 12 seconds with UV irradiation. Then, a liquid crystal layer was prepared to obtain a reflective layer UV with a PET base.
<反射層B、反射層G、反射層Rの作製>
 塗布液UVの代わりに表2に示す塗布液B、塗布液G、および塗布液Rをそれぞれ用い、東洋紡株式会社製コスモシャインA-4100(PET、厚み75μm)上に乾燥後の層の厚みが表3に示した厚みになるようにワイヤーバーを用いて室温にて塗布した以外は、反射層UVの作製と同様の手順で、反射層B、反射層G、および反射層Rをそれぞれ作製した。
<Preparation of Reflective Layer B, Reflective Layer G, and Reflective Layer R>
The coating liquid B, the coating liquid G, and the coating liquid R shown in Table 2 were used in place of the coating liquid UV, respectively, and the thickness of the layer after drying on Cosmo Shine A-4100 (PET, thickness 75 μm) manufactured by Toyobo Co., Ltd. A reflective layer B, a reflective layer G, and a reflective layer R were produced in the same procedure as the production of the reflective layer UV, except that the thickness shown in Table 3 was applied using a wire bar at room temperature. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 得られた積層体の反射層面に対して法線方向からの入射光(垂直入射)および法線方向から60度傾斜した入射光に対しての選択反射中心波長、ならびに反射光の円偏光のセンスを確認した。中心波長の測定は、JASCO社製の分光光度計V-670を用いて、また反射光の円偏光のセンスは、分光光度計の受光側に選択反射する円偏光のセンスが既知の円偏光板を設置して反射光強度を測定することで決定した。
 また、λ/2位相差層の波長550nmの光に対しての位相差を以下の手順で測定した。アクリル板(厚み0.2mm、40mm角)にOCAテープ(日栄化工株式会社製 MHM-UVC15)を貼合した。OCAテープの離型フィルムを剥がし、OCAテープ上にPETベースつきλ/2位相差層をλ/2位相差層側の面で貼合した。PETを剥がして、アクリル板付きλ/2位相差層を作製した。アクリル板付きλ/2位相差層の位相差をAxometrics社製のAxoScanを用いて測定し、λ/2位相差層の位相差とした。
 結果を表3に示す。
Selective reflection center wavelength for incident light (normal incidence) from the normal direction and incident light inclined by 60 degrees from the normal direction with respect to the reflection layer surface of the obtained laminate, and sense of circular polarization of the reflected light It was confirmed. The center wavelength is measured using a spectrophotometer V-670 manufactured by JASCO, and the circularly polarized light sense of the circularly polarized light that is selectively reflected to the light receiving side of the spectrophotometer is known as the circularly polarized light sense of the reflected light. Was determined by measuring the reflected light intensity.
Moreover, the phase difference with respect to the light of wavelength 550nm of a (lambda) / 2 phase difference layer was measured in the following procedures. An OCA tape (MHM-UVC15 manufactured by Niei Kaiko Co., Ltd.) was bonded to an acrylic plate (thickness 0.2 mm, 40 mm square). The release film of the OCA tape was peeled off, and a λ / 2 retardation layer with a PET base was bonded onto the OCA tape on the surface on the λ / 2 retardation layer side. The PET was peeled off to produce a λ / 2 retardation layer with an acrylic plate. The retardation of the λ / 2 retardation layer with an acrylic plate was measured using an AxoScan manufactured by Axometrics, and was used as the retardation of the λ / 2 retardation layer.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <ハーフミラーフィルムHM-1の作製>
 上記と同様に作製したPETベース付きλ/2位相差層のλ/2位相差層側の面に反射層UV、反射層B、反射層G、および反射層R層を表4に示す積層順番になるように形成し、ハーフミラーフィルムHM-1を作製した。各層の形成は、λ/2位相差層または反射層の上に、各層形成用の塗布液を乾燥後の層の厚みが表3に示した厚みになるように上記と同様に塗布し、その後、上記と同様に乾燥、UV照射することにより行った。
<Preparation of half mirror film HM-1>
The reflection layer UV, the reflection layer B, the reflection layer G, and the reflection layer R layer are laminated in the order shown in Table 4 on the surface of the λ / 2 retardation layer side of the λ / 2 retardation layer with a PET base prepared in the same manner as described above. The half mirror film HM-1 was produced. Each layer is formed by applying a coating solution for forming each layer on the λ / 2 retardation layer or the reflective layer in the same manner as described above so that the thickness of the layer after drying becomes the thickness shown in Table 3. In the same manner as described above, drying and UV irradiation were performed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例1の積層フィルムの作製>
 東洋紡株式会社製コスモシャインA-4300(PET、厚み250μm)について、JIS K 7127の測定方法に沿っての弾性率の測定を行った。長手方向(MD)の長さ10mm、MDに直交する幅方向(TD)の長さ150mmの大きさで試料片を切り出し、試料片に対し、(株)東洋精機製作所製のストログラフR2を用いて引張試験を行った。引張試験は、チャック間距離を100mmとし、引張速度を10mm/minとして試料片の幅方向で行なった。測定の結果、弾性率は4GPaであった。
<Preparation of laminated film of Example 1>
For Cosmo Shine A-4300 (PET, thickness 250 μm) manufactured by Toyobo Co., Ltd., the elastic modulus was measured according to the measurement method of JIS K 7127. A sample piece was cut out with a length of 10 mm in the longitudinal direction (MD) and a length of 150 mm in the width direction (TD) perpendicular to the MD, and a strograph R2 manufactured by Toyo Seiki Seisakusho was used for the sample piece. A tensile test was conducted. The tensile test was performed in the width direction of the sample piece with a distance between chucks of 100 mm and a tensile speed of 10 mm / min. As a result of the measurement, the elastic modulus was 4 GPa.
 上記PETフィルムに接着層(東亞合成社製UVX-5457)を5μmの厚さになるようにワイヤーバーを用いて室温にて塗布した。次に、上記で作製したハーフミラーフィルムをローラを用いて反射層が上記PETフィルム側になるように接着した。位相差層の支持体となっていたPETを剥離して、この際、ハーフミラーフィルムHM-1の位相差層の遅相軸方向が、この剥離面から見て、ガラスの短辺方向を基準に時計回り方向に60°の方向になるように配置した。その後60℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、基材とハーフミラーフィルムとを含む積層フィルムを得た。さらにこの積層フィルムを縦40cm横25cmにカッティングした。 An adhesive layer (UVX-5457 manufactured by Toagosei Co., Ltd.) was applied to the PET film at room temperature using a wire bar so as to have a thickness of 5 μm. Next, the half mirror film produced above was bonded using a roller so that the reflective layer was on the PET film side. The PET that was the support for the retardation layer was peeled off. At this time, the slow axis direction of the retardation layer of the half mirror film HM-1 was referenced to the short side direction of the glass as viewed from the peeling surface. Were arranged so as to be in the direction of 60 ° in the clockwise direction. Thereafter, UV irradiation was performed at 60 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds to obtain a laminated film including a base material and a half mirror film. Further, this laminated film was cut into a length of 40 cm and a width of 25 cm.
<実施例1のウインドシールドガラスの作製>
 縦40cm横25cm厚さ2mmのガラス板を2枚およびガラス板と同じ形状にカッティングした積水化学社製の厚さ0.38mmのPVB(ポリビニルブチラール)フィルムを2枚用意した。ガラス板、PVBフィルム、実施例1の積層フィルム、PVBフィルム、ガラス板をこの順に形状が重なるように積層した。
 次にこの積層体を90℃、0.1気圧下で一時間保持した後に、115℃、13気圧で20分間加熱して気泡を除去し、実施例1のウインドシールドガラスを得た。得られたウインドシールドガラスの層構成を図1に示す。
<Production of Windshield Glass of Example 1>
Two glass plates having a thickness of 0.38 mm made by Sekisui Chemical Co., Ltd. prepared by cutting two glass plates having a length of 40 cm and a width of 25 cm and a thickness of 2 mm and the same shape as the glass plates were prepared. A glass plate, a PVB film, a laminated film of Example 1, a PVB film, and a glass plate were laminated so that the shapes overlap in this order.
Next, this laminate was held at 90 ° C. and 0.1 atm for 1 hour, and then heated at 115 ° C. and 13 atm for 20 minutes to remove bubbles, whereby the windshield glass of Example 1 was obtained. The layer structure of the obtained windshield glass is shown in FIG.
<実施例2~5、比較例1のウインドシールドガラスの作製>
 接着層や基材を表5に示すように変えるか、基材やハーフミラーフィルムの形成領域を変える以外は実施例1のウインドシールドガラスと同様にして実施例2~5、比較例1のウインドシールドガラスの作製を行った。
 なお、表5において、基材の面積、およびハーフミラーフィルムの面積の項目において、「全面」は、実施例1と同様に縦40cm横25cmのガラス板と同じ形状に切り出したもの、「一部」は、縦20cm横10cmの形状に切り出し、ガラス板の中心に設置したものを意味する。
<Preparation of Windshield Glass of Examples 2 to 5 and Comparative Example 1>
The windows of Examples 2 to 5 and Comparative Example 1 were the same as the windshield glass of Example 1 except that the adhesive layer and the substrate were changed as shown in Table 5 or the formation region of the substrate and the half mirror film was changed. A shield glass was produced.
In Table 5, in the items of the area of the base material and the area of the half mirror film, “entire surface” is the same as that of Example 1, cut into the same shape as a 40 cm long and 25 cm wide glass plate, “partial” "" Cuts out into a shape of 20 cm in length and 10 cm in width and means installed at the center of the glass plate.
<オレンジピールの評価>
 ウインドシールドガラスのオレンジピールの評価は室内で行った。ウインドシールドガラスを、積層フィルムの基材がハーフミラーフィルムよりも下になるように机上に置き、ハーフミラー部に蛍光灯を映して反射像を目視で評価した。評価基準は以下のようにした。
A:蛍光灯の反射像に歪みがない。
B:蛍光灯の反射像にほぼ歪みがない。視点を横にずらすと、わずかに反射像が揺らぐ。(許容レベル)
C:ハーフミラーの細かいシワの影響で、蛍光灯の反射像がぼんやり見える。(許容レベル)
D:ハーフミラーの大きなシワの影響で、蛍光灯の反射像が歪んで見える。
<Evaluation of orange peel>
The wind peel glass orange peel was evaluated indoors. The windshield glass was placed on a desk so that the base material of the laminated film was below the half mirror film, and the reflected image was visually evaluated by projecting a fluorescent lamp on the half mirror part. The evaluation criteria were as follows.
A: There is no distortion in the reflected image of the fluorescent lamp.
B: There is almost no distortion in the reflected image of the fluorescent lamp. When the viewpoint is shifted to the side, the reflected image fluctuates slightly. (Acceptable level)
C: The reflected image of the fluorescent lamp is blurred due to the fine wrinkles of the half mirror. (Acceptable level)
D: The reflected image of the fluorescent lamp appears distorted due to the large wrinkles of the half mirror.
<圧着時の気泡の評価>
 ウインドシールドガラスの気泡の評価は、目視で行った。ハーフミラー端部に気泡が残留し、白濁しているか否かを評価した。
 評価結果を表5に示す。
<Evaluation of bubbles during crimping>
The evaluation of the bubbles in the windshield glass was performed visually. It was evaluated whether or not air bubbles remained at the end of the half mirror and were clouded.
The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
1 ウインドシールドガラス
2 ガラス板
3 PVBフィルム(樹脂膜)
4 ハーフミラーフィルム
5 基材
6 接着層
7 円偏光反射層
11 反射層UV(コレステリック液晶層)
12 反射層B(コレステリック液晶層)
13 反射層G(コレステリック液晶層)
14 反射層R(コレステリック液晶層)
15 λ/2位相差層(位相差層)
21 積層フィルム
1 Windshield glass 2 Glass plate 3 PVB film (resin film)
4 Half mirror film 5 Base material 6 Adhesive layer 7 Circularly polarized reflective layer 11 Reflective layer UV (cholesteric liquid crystal layer)
12 Reflective layer B (cholesteric liquid crystal layer)
13 Reflective layer G (Cholesteric liquid crystal layer)
14 Reflective layer R (cholesteric liquid crystal layer)
15 λ / 2 retardation layer (retardation layer)
21 Laminated film

Claims (18)

  1. 第一のガラス板、第一の樹脂膜、ハーフミラーフィルム、第二の樹脂膜、および第二のガラス板をこの順に含むウインドシールドガラスであって、
    更に基材を含み、
    前記ハーフミラーフィルムが円偏光反射層を含み、
    前記円偏光反射層がコレステリック液晶層を含み、
    前記ハーフミラーフィルムが前記基材と隣接しており、
    前記基材の弾性率が3GPa~10GPaであり、かつ前記基材の厚みが150μm~500μmである、ウインドシールドガラス。
    A windshield glass including a first glass plate, a first resin film, a half mirror film, a second resin film, and a second glass plate in this order,
    Further including a substrate,
    The half mirror film includes a circularly polarized light reflection layer,
    The circularly polarized light reflection layer includes a cholesteric liquid crystal layer;
    The half mirror film is adjacent to the substrate;
    A windshield glass in which the elastic modulus of the base material is 3 GPa to 10 GPa and the thickness of the base material is 150 μm to 500 μm.
  2. 前記基材の弾性率が4GPa~8GPaであり、かつ前記基材の厚みが170μm~300μmである請求項1に記載のウインドシールドガラス。 The windshield glass according to claim 1, wherein the elastic modulus of the base material is 4 GPa to 8 GPa, and the thickness of the base material is 170 μm to 300 μm.
  3. 前記ハーフミラーフィルムが接着層により前記基材と接着している請求項1または2に記載のウインドシールドガラス。 The windshield glass according to claim 1 or 2, wherein the half mirror film is bonded to the substrate by an adhesive layer.
  4. 前記接着層の厚みが0.5μm~10μmである請求項3に記載のウインドシールドガラス。 The windshield glass according to claim 3, wherein the adhesive layer has a thickness of 0.5 袖 m to 10 袖 m.
  5. 前記ハーフミラーフィルムが前記基材の主表面の一部で前記基材と隣接している請求項1~4のいずれか一項に記載のウインドシールドガラス。 The windshield glass according to any one of claims 1 to 4, wherein the half mirror film is adjacent to the base material at a part of a main surface of the base material.
  6. 位相差層を含む請求項1~5のいずれか一項に記載のウインドシールドガラス。 The windshield glass according to any one of claims 1 to 5, comprising a retardation layer.
  7. 前記位相差層がλ/2位相差層である請求項6に記載のウインドシールドガラス。 The windshield glass according to claim 6, wherein the retardation layer is a λ / 2 retardation layer.
  8. 前記ハーフミラーフィルムが前記位相差層を含む請求項6または7に記載のウインドシールドガラス。 The windshield glass according to claim 6 or 7, wherein the half mirror film includes the retardation layer.
  9. 前記基材が前記位相差層である請求項6または7に記載のウインドシールドガラス。 The windshield glass according to claim 6 or 7, wherein the substrate is the retardation layer.
  10. 前記基材がポリエチレンテレフタレートフィルムである請求項1~8のいずれか一項に記載のウインドシールドガラス。 The windshield glass according to any one of claims 1 to 8, wherein the substrate is a polyethylene terephthalate film.
  11. 前記円偏光反射層が可視光領域に選択反射の中心波長を有するコレステリック液晶層を3層以上含み、
    前記3層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっている請求項1~10のいずれか一項に記載のウインドシールドガラス。
    The circularly polarized light reflection layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region,
    The windshield glass according to any one of claims 1 to 10, wherein the central wavelengths of selective reflection of each of the three or more cholesteric liquid crystal layers are different from each other.
  12. λ/2位相差層を含み、
    前記円偏光反射層がコレステリック液晶層を4層以上含み、
    前記4層以上のコレステリック液晶層のうちの一層が350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層であり、
    前記4層以上のコレステリック液晶層それぞれの選択反射の中心波長は互いに異なっている請求項11に記載のウインドシールドガラス。
    including a λ / 2 retardation layer,
    The circularly polarized light reflection layer includes four or more cholesteric liquid crystal layers;
    One of the four or more cholesteric liquid crystal layers is a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm,
    The windshield glass according to claim 11, wherein central wavelengths of selective reflection of each of the four or more cholesteric liquid crystal layers are different from each other.
  13. 前記4層以上のコレステリック液晶層のうち、前記λ/2位相差層に最も近いコレステリック液晶層が350nm以上490nm未満に選択反射の中心波長を有するコレステリック液晶層である請求項12に記載のウインドシールドガラス。 13. The windshield according to claim 12, wherein, among the four or more cholesteric liquid crystal layers, the cholesteric liquid crystal layer closest to the λ / 2 retardation layer is a cholesteric liquid crystal layer having a central wavelength of selective reflection at 350 nm or more and less than 490 nm. Glass.
  14. 前記第一の樹脂膜および前記第二の樹脂膜からなる群より選択されるいずれか1つ以上がポリビニルブチラールを含む請求項1~13のいずれか一項に記載のウインドシールドガラス。 The windshield glass according to any one of claims 1 to 13, wherein at least one selected from the group consisting of the first resin film and the second resin film contains polyvinyl butyral.
  15. 請求項1~14のいずれか一項に記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステム。 A head-up display system comprising the windshield glass according to any one of claims 1 to 14 and a projector.
  16. 請求項1~8のいずれか一項に記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステムであって、
    前記基材、前記ハーフミラーフィルム、および前記プロジェクターがこの順で配置されているヘッドアップディスプレイシステム。
    A head-up display system comprising the windshield glass according to any one of claims 1 to 8 and a projector,
    The head-up display system in which the base material, the half mirror film, and the projector are arranged in this order.
  17. 請求項6~9のいずれか一項に記載のウインドシールドガラスおよびプロジェクターを含むヘッドアップディスプレイシステムであって、
    前記円偏光反射層、前記位相差層、および前記プロジェクターがこの順で配置されているヘッドアップディスプレイシステム。
    A head-up display system comprising the windshield glass according to any one of claims 6 to 9 and a projector,
    A head-up display system in which the circularly polarized light reflection layer, the retardation layer, and the projector are arranged in this order.
  18. 基材とハーフミラーフィルムとを含む積層フィルムであって、
    前記ハーフミラーフィルムが前記基材の主表面の一部で接着層により前記基材と接着しており、
    前記ハーフミラーフィルムが円偏光反射層を含み、
    前記円偏光反射層が可視光領域に選択反射の中心波長を有するコレステリック液晶層を3層以上含み、
    前記基材がポリエチレンテレフタレートフィルムであって、
    前記基材の弾性率が3GPa~10GPaであり、かつ前記基材の厚みが150μm~500μmである積層フィルム。
    A laminated film comprising a substrate and a half mirror film,
    The half mirror film is bonded to the substrate by an adhesive layer on a part of the main surface of the substrate,
    The half mirror film includes a circularly polarized light reflection layer,
    The circularly polarized light reflection layer includes three or more cholesteric liquid crystal layers having a central wavelength of selective reflection in the visible light region,
    The substrate is a polyethylene terephthalate film,
    A laminated film in which the elastic modulus of the base material is 3 GPa to 10 GPa and the thickness of the base material is 150 μm to 500 μm.
PCT/JP2017/037322 2016-12-13 2017-10-16 Windshield glass, head-up display system, and laminated film WO2018110066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241613A JP2018097152A (en) 2016-12-13 2016-12-13 Windshield glass, head-up display system and laminate film
JP2016-241613 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018110066A1 true WO2018110066A1 (en) 2018-06-21

Family

ID=62559815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037322 WO2018110066A1 (en) 2016-12-13 2017-10-16 Windshield glass, head-up display system, and laminated film

Country Status (2)

Country Link
JP (1) JP2018097152A (en)
WO (1) WO2018110066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080355A1 (en) * 2018-10-17 2020-04-23 富士フイルム株式会社 Projection image display member, windshield glass, and head-up display system
WO2020122023A1 (en) * 2018-12-10 2020-06-18 富士フイルム株式会社 Projection image displaying member, windshield glass, and head-up display system
WO2020179787A1 (en) * 2019-03-06 2020-09-10 富士フイルム株式会社 Laminated film for displaying projection image, laminated glass for displaying projection image, and image display system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259482B2 (en) * 2019-03-28 2023-04-18 大日本印刷株式会社 Reflective screen and projection system using it
JP7247068B2 (en) * 2019-09-27 2023-03-28 富士フイルム株式会社 Reflective member for projector and projector for head-up display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076052A (en) * 2011-09-12 2013-04-25 Fujifilm Corp Cholesteric liquid crystal mixture, film, selective reflective plate, laminate and laminated glass
WO2016052367A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Projected-image display member and projected-image display system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076052A (en) * 2011-09-12 2013-04-25 Fujifilm Corp Cholesteric liquid crystal mixture, film, selective reflective plate, laminate and laminated glass
WO2016052367A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Projected-image display member and projected-image display system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020080355A1 (en) * 2018-10-17 2021-10-14 富士フイルム株式会社 Projection image display material, windshield glass and head-up display system
US11892627B2 (en) 2018-10-17 2024-02-06 Fujifilm Corporation Projection image display member, windshield glass, and head-up display system
JP7177176B2 (en) 2018-10-17 2022-11-22 富士フイルム株式会社 Projected image display materials, windshield glass and head-up display systems
WO2020080355A1 (en) * 2018-10-17 2020-04-23 富士フイルム株式会社 Projection image display member, windshield glass, and head-up display system
JPWO2020122023A1 (en) * 2018-12-10 2021-11-11 富士フイルム株式会社 Projection image display material, windshield glass and head-up display system
JP7299920B2 (en) 2018-12-10 2023-06-28 富士フイルム株式会社 Projected image display materials, windshield glass and head-up display systems
WO2020122023A1 (en) * 2018-12-10 2020-06-18 富士フイルム株式会社 Projection image displaying member, windshield glass, and head-up display system
US11947109B2 (en) 2018-12-10 2024-04-02 Fujifilm Corporation Projection image-displaying member, windshield glass, and head-up display system
CN113498487A (en) * 2019-03-06 2021-10-12 富士胶片株式会社 Laminated film for projection image display, laminated glass for projection image display, and image display system
JPWO2020179787A1 (en) * 2019-03-06 2020-09-10
EP3936924A4 (en) * 2019-03-06 2022-05-04 FUJIFILM Corporation Laminated film for displaying projection image, laminated glass for displaying projection image, and image display system
JP7133703B2 (en) 2019-03-06 2022-09-08 富士フイルム株式会社 Laminated film for projection image display, Laminated glass for projection image display, and image display system
WO2020179787A1 (en) * 2019-03-06 2020-09-10 富士フイルム株式会社 Laminated film for displaying projection image, laminated glass for displaying projection image, and image display system

Also Published As

Publication number Publication date
JP2018097152A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US10649325B2 (en) Member for displaying projected image and projected image display system
WO2016133187A1 (en) Windshield glass and head-up display system
JP6513784B2 (en) Combiner and head-up display system
WO2018084076A1 (en) Windshield glass, head-up display system, and half-mirror film
JP6768567B2 (en) Windshield glass, heads-up display system, and half mirror film
WO2018110066A1 (en) Windshield glass, head-up display system, and laminated film
US11947109B2 (en) Projection image-displaying member, windshield glass, and head-up display system
JP6602727B2 (en) Head-up display system
US11314087B2 (en) Projection image-displaying member, windshield glass, and head-up display system
JP7453292B2 (en) Half mirror film for displaying projected images, laminated glass for displaying projected images, and image display systems
JP2022180358A (en) Member for projection video display, windshield glass, and head-up display system
US20200333598A1 (en) Method for producing screen image-displaying laminated glass, screen image-displaying laminated glass, and image display system
JP2018200459A (en) Member for real image display and display system
JP2019012211A (en) Half-mirror for projected image display, windshield glass and head-up display system
JP7260449B2 (en) Projected image display materials, windshield glass and head-up display systems
WO2021200655A1 (en) Reflective film, windshield glass, and head-up display system
WO2022123946A1 (en) Reflection film, windshield glass, and head-up display system
JP6676015B2 (en) Manufacturing method of laminated glass
JP2018199317A (en) Laminate film, manufacturing method of glass laminate interlayer sheet, and manufacturing method of glass laminate
WO2021246402A1 (en) Reflective film, laminated glass production method, and laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881558

Country of ref document: EP

Kind code of ref document: A1