WO2018109931A1 - Gas-insulation switch device - Google Patents

Gas-insulation switch device Download PDF

Info

Publication number
WO2018109931A1
WO2018109931A1 PCT/JP2016/087587 JP2016087587W WO2018109931A1 WO 2018109931 A1 WO2018109931 A1 WO 2018109931A1 JP 2016087587 W JP2016087587 W JP 2016087587W WO 2018109931 A1 WO2018109931 A1 WO 2018109931A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
fixed
gas
movable contact
movable
Prior art date
Application number
PCT/JP2016/087587
Other languages
French (fr)
Japanese (ja)
Inventor
和長 金谷
網田 芳明
永田 寿一
晃輔 色見
尚隆 飯尾
正将 安藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP16923924.1A priority Critical patent/EP3561840B1/en
Priority to PCT/JP2016/087587 priority patent/WO2018109931A1/en
Priority to CN201680091563.3A priority patent/CN110088866B/en
Priority to JP2018556149A priority patent/JP6823082B2/en
Publication of WO2018109931A1 publication Critical patent/WO2018109931A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/904Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism characterised by the transmission between operating mechanism and piston or movable contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas

Definitions

  • Embodiments of the present invention relate to a gas insulated switchgear with improved insulation characteristics.
  • High voltage switchgears that are responsible for interrupting fault currents in the power system are required to reliably shut off from small to large currents.
  • the following two interruption duties must be satisfied.
  • One is responsible for interrupting short circuit line fault (SLF) current
  • the other is responsible for interrupting breaker terminal short circuit fault (BTF) current.
  • SLF current is a current in which a triangular waveform voltage having a low absolute value but a steep change rate appears at the early rise of the transient recovery voltage generated immediately after the current zero point.
  • the BTF current is a current to which a voltage having a high absolute value is applied at the end although the initial rise of the transient recovery voltage is gentle.
  • a multi-point cut-off type switching device in which a plurality of contact portions specialized for each interrupting duty are provided so as to fulfill the above two interrupting duties separately.
  • the multi-point cutting method it is possible to achieve a plurality of types of interruption duties by electrically connecting different types of contact portions in series.
  • a contact part specialized in the interruption duty for example, a vacuum interruption part or a gas contact part is known.
  • the vacuum interrupter is a contact that excels in interrupting characteristics with abrupt voltage changes, and interrupts accident currents.
  • the gas contact portion is a contact portion having high insulation performance, and performs insulation after interruption.
  • each contact portion shares a different interrupting duty, so that the weight of the movable portion per each contact portion can be reduced. Therefore, the burden on the operating mechanism can be reduced, and the shut-off time can be shortened efficiently. Therefore, it can be said that the multi-point opening / closing device is also suitable for applications requiring extremely short interruption time.
  • a vacuum interrupting part that interrupts accident current and a gas contact part that insulates after interrupting are provided as contact parts that share the interrupting duty, the following problems occur: is there. That is, when the vacuum interrupter extinguishes the fault current, an arc is generated in the vacuum interrupter until the fault current is extinguished, but not only that, but also an arc is generated in the gas contact part.
  • the insulating gas in the gas contact portion becomes a high-temperature hot gas by the generation of an arc.
  • This hot gas stays in the gas contact portion for a long time after the arc disappears.
  • the insulation performance of the gas contact portion may be reduced.
  • the amount of hot gas that remains is large, re-ignition may occur at the gas contact portion, and the interruption itself may end unsuccessfully.
  • the present embodiment has been proposed to solve the above-mentioned problems, and it effectively removes the staying hot gas to improve the insulation performance, and achieves the shut-off duty required for a high-voltage switchgear.
  • An object is to provide a gas insulated switchgear that can be easily achieved.
  • an embodiment of the present invention includes a pressure vessel in which an insulating gas is sealed, a fixed contact base and a movable contact base that are disposed opposite to each other in the pressure vessel, and the fixed contact.
  • a movable contact that is movably disposed facing the contact, a movable shield that is fixed to the movable contact base so as to surround the movable contact, and a piston that is connected to the movable contact and fixed.
  • a gas-insulated switchgear comprising: an operating rod; and an operating mechanism for reciprocating the operating rod to bring the movable contact into and out of contact with the fixed arc contact and the fixed energizing contact.
  • the piston of the operating rod is used as a partition, a compression chamber is formed on the movable contact base side, and a suction chamber is formed on the movable contact side.
  • the operating rod is provided with a hollow portion and a communication hole that communicates the hollow portion and the compression chamber.
  • the movable contact is provided with a vent hole penetrating from the end surface of the movable contact to the hollow portion of the operating rod.
  • the compression chamber compresses the insulating gas in the chamber by the movement of the piston accompanying the movement of the operation rod during the opening operation, and through the communication hole, the hollow portion, and the vent hole, The insulating gas is sprayed on an arc generated between the fixed arc contact and the movable contact.
  • a gap is provided between the outer peripheral portion of the movable contact and the inner peripheral portion of the movable shield.
  • the high-temperature insulating gas heated by the arc by reducing the pressure in the chamber by expanding the space in the chamber due to the movement of the piston accompanying the movement of the operating rod during the opening operation. Is sucked into the room through the gap.
  • a plurality of contact portions capable of sharing the interrupting duty are electrically connected in series, and are applied to the gas contact portions that are contact portions. is there.
  • FIG. 1 is a cross-sectional view showing a closed state according to the first embodiment
  • FIG. 2 is a cross-sectional view showing an open state according to the first embodiment.
  • the gas insulated switchgear 1 is provided with a pressure vessel 2 in which an insulating gas is sealed.
  • a fixed contact portion 10 and a movable contact portion 20 are disposed inside the pressure vessel 2 so as to face each other.
  • the movable contact portion 20 has a movable shaft 3 extending toward the outside of the pressure vessel 2, and an operation mechanism 5 is connected to the movable shaft 3.
  • the operation mechanism 5 is attached to the pressure vessel 2.
  • the operating mechanism 5 is a mechanism that linearly reciprocates the movable contact portion 20 via the movable shaft 3 and separates the movable contact portion 20 from the fixed contact portion 10.
  • an end portion where the fixed contact portion 10 and the movable contact portion 20 are relatively close to each other is referred to as a distal end portion of each contact portion 10 and 20, and the opposite side is referred to as a proximal end portion. 1 and 2
  • the right side of FIG. 1 is the base end side, and the opposite side is the tip end side.
  • the right side in FIG. 1 is the distal end side, and the opposite side is the proximal end side.
  • tip part is an end surface, it will also call a front end surface.
  • a fixed arc contact 11 In the fixed contact portion 10, a fixed arc contact 11, a fixed energization contact 12, a fixed contact base 13, and a fixed shield 14 are arranged concentrically. A spring 16 is disposed inside the fixed shield 14.
  • the fixed contact base 13 is fixed to the pressure vessel 2.
  • a rod-shaped fixed arc contact 11 is attached to the central portion of the fixed contact base 13.
  • a cylindrical portion 13a that is thinner than the outer diameter of the base 13 protrudes from the distal end surface of the fixed contact base 13, and the fixed energizing contact 12 is disposed so as to surround the cylindrical portion 13a. .
  • a plurality of fixed energizing contacts 12 are arranged in the circumferential direction, and the tip is bent inward.
  • the fixed energizing contact 12 is urged inward by the spring 16 and at the same time abuts against the outer peripheral portion of the cylindrical portion 13a of the fixed contact base 13 so that the inward movement by the spring 16 is restricted.
  • the fixed shield 14 is fixed to the outer peripheral surface of the fixed contact base 13 so as to surround the fixed energization contact 12.
  • the distal end portion of the fixed shield 14 is bent inward so as to cover the distal end portion of the fixed energizing contact 12.
  • a circular opening 14 a is formed at the tip of the fixed shield 14.
  • An arc-resistant metal 15 having arc resistance is fixed to the tip of the fixed arc contact 11.
  • the arc-resistant metal 15 has a spindle shape that bulges outward.
  • the fixed arc contact 11 is provided with a slit 17 whose front end is cracked in the longitudinal direction.
  • a plurality of slits 17 are provided so as to be parallel to each other. Due to the presence of these slits 17, the fixed arc contact 11 has a spring property in which the tip portion is deformed in the radial direction.
  • a movable contact 21 In the movable contact portion 20, a movable contact 21, a movable contact base 22, a movable shield 23, and an operation rod 25 are arranged concentrically.
  • the operating rod 25 is connected to the movable contact 21 at the distal end and the movable shaft 3 to the proximal end.
  • the operation rod 25 is a member that moves the movable contact 21 away from the fixed arc contact 11 and the fixed energization contact 12 when the movable shaft 3 reciprocates by the operation mechanism 5.
  • a disk-like piston 25a is fixed to the operation rod 25.
  • the operating rod 25 is provided with a hollow portion 25b extending in the longitudinal direction at the center portion. Further, the operation rod 25 is provided with a communication hole 25 c that is orthogonal to the hollow portion 25 b and extends from the hollow portion 25 b to the outer peripheral portion of the operation rod 25.
  • the communication hole 25c is a hole that communicates the hollow portion 25b with a compression chamber 30 described later.
  • the movable contact 21 is attached to the tip of the operation rod 25 and is movably disposed facing the longitudinal direction of the fixed energizing contact 12.
  • the outer diameter of the movable contact 21 is smaller than the inner diameter of the opening 14 a of the fixed shield 14 so that the movable contact 21 can be inserted into the opening 14 a of the fixed shield 14.
  • the movable contact 21 is provided such that the outer peripheral portion is in contact with the inner peripheral portion of the fixed energizing contact 12.
  • An arc resistant metal 24 having arc resistance is fixed to the tip of the movable contact 21.
  • the arc-resistant metal 24 is provided in a ring shape so that the arc-resistant metal 15 of the fixed arc contactor 11 contacts and separates from the inner peripheral portion. That is, in the movable contact portion 20, the operation rod 25 and the movable contact 21 are members that are movable during the opening operation and the closing operation. On the other hand, even in the movable contact portion 20, the movable contact base 22 is a member fixed to the pressure vessel 2, and the movable shield 23 is a member fixed to the movable contact base 22.
  • a plurality of vent holes 21 a extending in the longitudinal direction of the movable contact 21 are provided on the base end side when viewed from the portion where the arc-resistant metal 15 is inserted.
  • the ventilation hole 21 a is a hole that penetrates from the end surface of the movable contact 21 to the hollow portion 25 b of the operation rod 25.
  • the opening on the tip end side of the vent hole 21 a is disposed so as to face the tip end portion of the arc-resistant metal 15 of the fixed arc contactor 11.
  • the movable contact base 22 is fixed to the pressure vessel 2.
  • the movable contact base 22 is a hollow cylindrical member, and the inside communicates with the internal space 22 a of the pressure vessel 2.
  • a thick flange portion 22 d is formed at the tip of the movable contact base 22.
  • a corner portion of the end face of the flange portion 22d of the movable contact base 22 that faces the communication hole 25c of the operation rod 25 at the end of the opening operation is defined as a gas flow rate restriction portion 22e.
  • the gas flow restricting portion 22e is provided at a predetermined interval so as to cover at least a part of the communication hole 25c at the end of the opening operation.
  • a holding hole 22c is opened at the center of the flange portion 22d of the movable contact base 22.
  • An operation rod 25 is inserted into the holding hole 22c.
  • a gap 33 is formed between the inner peripheral portion of the holding hole 22 c of the movable contact base 22 and the outer peripheral portion of the operating rod 25. This gap 33 is an interval when the gas flow rate limiting portion 22e of the movable contactor base 22 covers the communication hole 25c.
  • the current collecting contact 26 and the sliding packing 27 are disposed in the gap 33 so as to contact the inner peripheral portion of the movable contact base 22 and the outer peripheral portion of the operating rod 25.
  • the current collecting contact 26 is attached to the proximal end portion
  • the sliding packing 27 is attached to the distal end portion. Since the sliding packing 27 is installed in the gap 33, the insulating gas compressed in the compression chamber 30 does not flow from the gap 33 toward the internal space 22 a side of the movable contact base 22.
  • the sliding packing 27 is configured to close a part of the communication hole 25c of the operating rod 25 at the end of the opening operation.
  • the movable shield 23 is fixed to the outer peripheral portion of the flange portion 22d of the movable contact base 22, and a circular opening 23a is formed on the distal end surface so as to surround the outer peripheral portion of the movable contact 21.
  • the outer diameter dimension of the movable contact 21 is formed smaller than the inner diameter dimension of the opening 23a. Therefore, a gap 31 a is provided between the outer peripheral portion of the movable contact 21 and the inner peripheral portion of the opening 23 a of the movable shield 23.
  • two spaces are formed by using the piston 25a of the operation rod 25 as a partition wall.
  • One is a compression chamber 30 formed on the movable contact base 22 side, and the other is a suction chamber 31 formed on the movable contact 21 side.
  • the inner diameter of the compression chamber 30 is set larger than the inner diameter of the suction chamber 31.
  • a gap 34 is formed between the inner peripheral portion of the movable shield 23 and the outer peripheral portion of the piston 25a.
  • a sliding packing 28 is disposed in the gap 34 so as to contact the inner peripheral portion of the movable shield 23 and the outer peripheral portion of the piston 25a.
  • the compression chamber 30 is a space surrounded by the piston 25 a of the operation rod 25, the outer periphery of the operation rod 25, the flange 22 d of the movable contact base 22, and the inner periphery of the movable shield 23.
  • the compression chamber 30 compresses the insulating gas in the chamber by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation.
  • the compression chamber 30 is interposed between the arc-resistant metal 15 on the fixed arc contactor 11 side and the arc-resistant metal 24 on the movable contactor 21 side via the communication hole 25c, the hollow portion 25b, and the plurality of vent holes 21a.
  • a compressed insulating gas is blown against the generated arc 40 (shown in FIG. 2). Since the insulating gas in the compression chamber 30 is at a lower temperature than the hot gas, the insulating gas in the compression chamber 30 is referred to as a low temperature gas.
  • the suction chamber 31 is a space surrounded by the piston 25 a of the operation rod 25, the outer periphery of the operation rod 25, the outer periphery of the movable contact 21, and the inner periphery of the movable shield 23.
  • the suction chamber 31 expands the indoor space by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation, thereby reducing the pressure in the chamber, and a high-temperature insulating gas heated by the arc 40 (hereinafter, This is a portion that sucks in the room through the gap 31a.
  • the fixed energizing contact 12 is pressed against the outer peripheral portion of the movable contact 21 by the elastic force of the spring 16.
  • the fixed arc contact 11 is deformed so as to be contracted in the radial direction by the plurality of slits 17, so that the arc-resistant metal 15 fixed to the tip of the fixed arc contact 11 is urged in the outer circumferential direction. And pressed against the inner periphery of the movable contact 21.
  • the fault current is interrupted by another switch (not shown) connected in series to the gas insulated switch 1. Therefore, the arc 40 generated between the fixed arc contact 11 and the movable contact 21 disappears. However, even when the arc 40 disappears, the hot gas from the arc 40 still remains between the fixed arc contact 11 and the movable contact 21. Therefore, the insulation performance is reduced with respect to the transient recovery voltage after interruption.
  • the following operation is performed in order to suppress a decrease in insulation performance. That is, during the opening operation, the piston 25a that is driven to the right side with the movement of the operation rod 25 compresses the low-temperature gas in the compression chamber 30. The low temperature gas compressed in the compression chamber 30 is blown between the fixed arc contact 11 and the movable contact 21 through the communication hole 25c, the hollow portion 25b, and the plurality of vent holes 21a in order.
  • the internal space of the suction chamber 31 is expanded, and the pressure of the insulating gas in the chamber is lower than the surroundings.
  • the internal space of the suction chamber 31 and the space where the arc 40 is generated communicate with each other by a gap 31 a provided between the outer peripheral portion of the movable contact 21 and the inner peripheral portion of the opening 23 a of the movable shield 23. Therefore, the hot gas existing around the arc-resistant metal 24 and the movable contact 21 can be taken into the suction chamber 31 through the gap 31a.
  • the gas flow rate limiting portion 22e provided on the end surface of the flange portion 22d of the movable contact base 22 covers at least a part of the communication hole 25c of the operating rod 25, and the sliding packing 27 is connected to the communication hole.
  • a part of 25c is closed (the state shown in FIG. 2).
  • the opening operation ends when the state shown in FIG. 1 is changed to the state shown in FIG.
  • the movable contact 21 is completely accommodated in the movable shield 23.
  • the operation mechanism 5 is started by a closing command sent from the outside, and when the movable shaft 3 is driven to the left in FIG. 2, the operation rod 25 and the movable contact 21 are moved to the left.
  • the movable contact 21 is driven and closed with the fixed arc contact 11, and then closed with the fixed energization contact 12.
  • the insulating gas in the chamber is compressed by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation, and the communication hole 25c, the hollow portion 25b, and the plurality The low temperature gas is sprayed to the arc 40 through the vent hole 21a.
  • the plurality of vent holes 21a face the portion where the arc-resistant metal 15 of the fixed arc contact 11 is inserted.
  • the vent hole 21a can spray the low-temperature gas from the compression chamber 30 intensively and in large quantities against the hot gas generated by the arc 40. Therefore, the hot gas generated by the arc 40 can be efficiently cooled, and the staying hot gas is diffused in all directions from the space where the arc 40 is generated, and blown off between the fixed arc contact 11 and the movable contact 21. be able to.
  • the low temperature gas in the compression chamber 30 is compressed by the start of movement of the piston 25a, the low temperature gas can be blown toward the generation space of the arc 40 from the initial stage of the opening operation. Is possible. Therefore, the hot gas can be diffused quickly, which can contribute to the improvement of the insulation performance.
  • the hot gas from the arc 40 can be sucked by the suction chamber 31. Therefore, the hot gas can be efficiently removed from between the fixed arc contact 11 and the movable contact 21.
  • the gap 31 a serving as a hot gas inflow path to the suction chamber 31 is located on the outer peripheral portion of the movable contact 21.
  • the hot gas diffused along the outer peripheral portion of the movable contact 21 due to the spray of the low temperature gas can smoothly flow toward the gap 31a.
  • the suction chamber 31 since the pressure in the suction chamber 31 is reduced by the start of movement of the piston 25a, the suction chamber 31 can quickly suck in the hot gas through the gap 31a from the initial stage of the opening operation. .
  • the gas insulated switchgear 1 in order to remove the hot gas from between the fixed arc contact 11 and the movable contact 21, the fixed arc contact 11 and the movable contact 21. There is no worry of re-igniting. Therefore, it is possible to obtain good insulation performance with respect to the transient recovery voltage after interruption. Therefore, the gas-insulated switchgear 1 can easily achieve the shut-off duty required for a high-voltage switchgear, thereby reducing the burden on the operation mechanism 5 and contributing to shortening the shut-off time. it can.
  • the gas flow rate restricting portion 22e of the flange portion 22d of the movable contactor base 22 covers at least a part of the communication hole 25c of the operating rod 25.
  • the cross-sectional area of the communication hole 25c communicating with the chamber 30 decreases. Therefore, immediately before the end of the opening operation, the flow rate of the low temperature gas flowing from the compression chamber 30 toward the vent hole 21a can be reduced, and the pressure in the compression chamber 30 increases.
  • the puffer reaction force acting in the direction opposite to the driving direction during the opening operation increases in the piston 25a, and the operation rod 25 and the movable contactor are just before the end of the opening operation. 21 can be braked.
  • the impact force generated at the end of the opening operation can be relaxed, and the operation reliability can be improved.
  • the sliding packing 27 closes only a part of the communication hole 25c of the operating rod 25 at the end of the opening operation. That is, the communication hole 25 c is not completely sealed by the sliding packing 27. Therefore, as described in the previous stage, the amount of low temperature gas flowing out from the compression chamber 30 is reduced immediately before the end of the opening operation, but this is not reduced to zero, and the low temperature gas is compressed through the communication hole 25c. It pulls out from the chamber 30 to the vent hole 21a side.
  • the spring 16 presses the fixed energizing contact 12 against the outer peripheral portion of the movable contact 21. Therefore, the electrical resistance is reduced, and heat generation due to energization can be suppressed.
  • the fixed arc contact 11 is deformed so as to be contracted in the radial direction by the plurality of slits 17, thereby giving an elastic force in the outer peripheral direction, and pressing the fixed arc contact 11 against the inner peripheral portion of the movable contact 21. . Therefore, like the fixed energizing contact 12 side, there is an advantage that the electrical resistance is reduced and heat generation due to energization can be suppressed.
  • FIG. 3 is a cross-sectional view showing a closed state of the second embodiment
  • FIG. 4 is a cross-sectional view showing an open state of the second embodiment.
  • symbol is attached
  • the flange portion 22d of the movable contact base 22 has a plurality of first intake holes 22b.
  • the first intake hole 22b is a hole for communicating the internal space 22a and the compression chamber 30 in the movable contact base 22 and sucking the insulating gas in the internal space 22a into the compression chamber 30 during a closing operation. .
  • a ring plate-like valve 32 is disposed inside the compression chamber 30.
  • the valve 32 is fitted in a groove 32a formed in the inner peripheral portion of the movable shield 23, and the moving range is limited by contacting the end of the groove 32a.
  • the groove 32a is a positioning portion of the valve 32 at the end of the closing operation.
  • the valve 32 has a structure in which when the pressure in the compression chamber 30 becomes higher than the pressure in the internal space 22a, the first intake hole 22b is closed by the pressure difference.
  • the piston 25a is driven to the right side in FIG. 3 so that the pressure in the compression chamber 30 becomes higher than the pressure in the internal space 22a, and the valve 32 closes the first intake hole 22b (state in FIG. 4). ). Therefore, the insulating gas does not flow into the compression chamber 30 from the internal space 22a through the first intake hole 22b.
  • the low-temperature gas in the compression chamber 30 can be efficiently compressed by driving the piston 25a, and the compression chamber 30 in the compression arcade 30 is brought to the fixed arc contact 11 side through the communication hole 25c, the hollow portion 25b, and the vent hole 21a.
  • Cold gas can be blown out strongly.
  • the internal space of the suction chamber 31 is expanded and the pressure of the insulating gas is reduced from the surroundings, so that the insulating gas around the arc-resistant metal 24 is removed from the gap. The air is taken into the suction chamber 31 from 31a.
  • the piston 25a is driven to the left in FIG. 4 so that the pressure in the compression chamber 30 becomes lower than the pressure in the internal space 22a, and the valve 32 opens the first intake hole 22b. Therefore, the insulating gas in the internal space 22a flows into the compression chamber 30 through the first intake hole 22b, and the pressure drop due to the expansion of the internal space of the compression chamber 30 can be suppressed. Accordingly, the piston 25a does not become difficult to move in the closing operation direction (left direction in FIG. 4) as the pressure in the compression chamber 30 decreases. At the end of the closing operation, the valve 32 comes into contact with the end of the groove 32a, so that the valve 32 is positioned.
  • the valve 32 opens the first intake hole 22b, so that the insulating gas flows from the internal space 22a of the movable contactor base 22 into the compression chamber 30 through the first intake hole 22b. Flows in. Therefore, the pressure in the compression chamber 30 does not decrease, and the suppression force to the closing operation generated with respect to the piston 25a decreases.
  • the internal space 22a of the movable contact base 22 is employed as a space for supplying the insulating gas into the compression chamber 30, so that the insulating gas flows into the compression chamber 30.
  • the flow rate of the insulating gas can be easily adjusted by changing the size of the first intake hole 22b.
  • the closing operation can be performed with the minimum energy, and the interruption time can be further shortened by further reducing the burden on the operation mechanism 5.
  • FIG. 5 is a cross-sectional view showing the closed state of the third embodiment
  • FIG. 6 is a cross-sectional view showing the open state of the third embodiment.
  • symbol is attached
  • the piston 25a has a plurality of second intake holes 25d.
  • the second intake hole 25d communicates the compression chamber 30 and the suction chamber 31, and is a hole for sucking an insulating gas into the compression chamber 30 during the closing operation, like the first intake hole 22b.
  • a ring plate-like valve 32 is disposed inside the compression chamber 30.
  • the movement range of the valve 32 is limited by a retaining ring 32 b fixed to the outer peripheral portion of the operation rod 25.
  • the retaining ring 32b is a positioning part of the valve 32 at the end of the closing operation.
  • the valve 32 has a structure that closes the second intake hole 25d by a pressure difference when the pressure in the compression chamber 30 becomes higher than the pressure in the suction chamber 31.
  • the piston 25a is driven to the right in FIG. 5 so that the pressure in the compression chamber 30 becomes higher than the pressure in the suction chamber 31, and the valve 32 closes the second intake hole 25d. Therefore, the insulating gas does not flow into the compression chamber 30 from the suction chamber 31 through the second intake hole 25d, and the insulating gas can be efficiently compressed in the compression chamber 30.
  • the low temperature gas in the compression chamber 30 can be strongly ejected from the compression chamber 30 to the fixed arc contactor 11 side through the communication hole 25c, the hollow portion 25b, and the vent hole 21a.
  • the inner space of the suction chamber 31 is expanded and the pressure of the insulating gas is decreased from the surroundings, so that the insulating properties around the arc-resistant metal 24 are increased.
  • the gas is taken into the suction chamber 31 from the gap 31a.
  • the piston 25a is driven to the left in FIG. 6 so that the pressure in the compression chamber 30 becomes lower than the pressure in the suction chamber 31, and the valve 32 opens the second intake hole 25d. Therefore, the insulating gas in the suction chamber 31 flows into the compression chamber 30 through the second intake hole 25d, the insulating gas in the suction chamber 31 is reduced, and the insulating gas in the compression chamber 30 is increased.
  • the pressure in the compression chamber 30 and the suction chamber 31 can be made uniform, and the pressure drop in the compression chamber 30 and the pressure increase in the suction chamber 31 can be suppressed at the same time.
  • the piston 25a does not become difficult to move in the closing operation direction (left direction in FIG. 6).
  • the valve 32 comes into contact with the retaining ring 32b so that the valve 32 is positioned.
  • FIG. 7 is a cross-sectional view showing the closed state of the fourth embodiment
  • FIG. 8 is a cross-sectional view showing the open state of the fourth embodiment.
  • symbol is attached
  • the vent hole 21 b is formed so as to increase the flow path cross-sectional area of the insulating gas from the portion connected to the hollow portion 25 b of the operation rod 25 toward the end face of the movable contact 21. That is, the vent hole 21b has a channel cross-sectional area that expands from the communicating portion with the hollow portion 25b toward the low temperature gas ejection portion.
  • the number of vent holes 21b is one.
  • the fourth embodiment described above has the following unique actions and effects in addition to the actions and effects similar to those of the first embodiment. That is, also in the fourth embodiment, the low-temperature gas compressed in the compression chamber 30 during the opening operation is ejected from the vent hole 21a through the communication hole 25c and the hollow portion 25b.
  • the vent hole 21b has a channel cross-sectional area that increases from the communicating portion with the hollow portion 25b to the ejection portion to the fixed arc contactor 11. For this reason, the flow velocity of the low-temperature gas passing through the vent hole 21b is increased when it is ejected with respect to the hot gas. Therefore, it becomes possible to cool and blow off hot gas more efficiently. As a result, better insulation performance can be obtained with respect to the transient recovery voltage after interruption.
  • the shape and size of the gap 31 a formed along the outer peripheral portion of the movable contact 21, the shape and size of the movable contact 21, the number, shape, size, and operation of the air holes 21 a formed in the movable contact 21 The number, shape, dimensions, and the like of the hollow portion 25b and the communication hole 25c formed in the rod 25 can be selected as appropriate, and by easily adjusting the outflow amount of the low temperature gas that is ejected toward the generation space of the arc 40, It is possible to efficiently diffuse and cool the hot gas by the arc 40.
  • the size of the area of the end surface of the movable contact base 22 and the sliding packing 27 that covers the communication hole 25c at the end of the opening operation is within a range in which the operation rod 25 and the movable contact 21 can be braked. It can be changed as appropriate.
  • Hollow portion 25c ... Communication hole 25d ... Second intake hole 26 ... Current collecting contacts 27, 28 ... Sliding Packing 30 ... Compression chamber 31 ... Suction chambers 31a, 33, 34 ... Gap 32 ... Valve 32a ... Groove 32b ... Retaining ring 40 ... Arc

Landscapes

  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

Provided is a gas-insulation switch device wherein insulation performance is improved by efficiently eliminating residual hot gas, and capable of readily achieving the shut-off requirements demanded of a high-voltage switch. In this invention, formed inside a mobile shield 23 are a compression chamber 30 on a mobile contactor base 22 side and an aspiration chamber 31 on a mobile contactor 21 side with a piston 25a of an operating rod 25 serving as a partitioning wall. The compression chamber 30 blows dielectric gas through a communicating hole 25c, a hollow section 25b, and an aeration hole 21a, toward an arc 40 generated between a fixed arc contactor 11 and a mobile contactor 21 by the compression of the dielectric gas within the compression chamber due to the movement of the piston 25a when opening the poles. The aspiration chamber 31 draws in a high-temperature gas caused by the arc 40 from a gap 31a between the mobile contactor 21 and a mobile shield 23 by a reduction in pressure within the chamber due to the expansion of the space therein due to movement of the piston 25a.

Description

ガス絶縁開閉装置Gas insulated switchgear
 本発明の実施形態は、絶縁特性を向上させたガス絶縁開閉装置に関する。 Embodiments of the present invention relate to a gas insulated switchgear with improved insulation characteristics.
 電力系統の事故電流の遮断責務を持つ高電圧用の開閉装置には、小電流から大電流までを確実に遮断することが要求される。特に大電流の遮断に関しては、以下の二つの遮断責務を満足しなければならない。一つは、近距離線路故障(SLF)電流を遮断する責務であり、もう一つは、遮断器端子短絡故障(BTF)電流を遮断する責務である。SLF電流とは、電流零点直後に生じる過渡回復電圧の立ち上がり初期において、その絶対値は低いが急峻な変化率を持つ三角波形の電圧が現れる電流である。BTF電流とは、過渡回復電圧の初期の立ち上がりは緩やかであるが、終期には絶対値の高い電圧が印可される電流である。 開 閉 High voltage switchgears that are responsible for interrupting fault currents in the power system are required to reliably shut off from small to large currents. In particular, regarding the interruption of a large current, the following two interruption duties must be satisfied. One is responsible for interrupting short circuit line fault (SLF) current, and the other is responsible for interrupting breaker terminal short circuit fault (BTF) current. The SLF current is a current in which a triangular waveform voltage having a low absolute value but a steep change rate appears at the early rise of the transient recovery voltage generated immediately after the current zero point. The BTF current is a current to which a voltage having a high absolute value is applied at the end although the initial rise of the transient recovery voltage is gentle.
 従来、上記二つの遮断責務を単一の接点部で達成する方式の開閉装置が広く採用されていた。しかし、二つの遮断責務を単一の接点部で達成させるとなると、接点部の可動部重量が重くなり、可動部を駆動させる操作機構への負担が大きくなる。したがって、単一の接点部で達成する方式は、極めて短い遮断時間が要求される用途には不向きとなる場合がある。 Conventionally, a switchgear of a system that achieves the above two interrupting duties with a single contact point has been widely adopted. However, if the two interrupting duties are achieved by a single contact portion, the weight of the movable portion of the contact portion increases, and the burden on the operating mechanism that drives the movable portion increases. Therefore, the method achieved with a single contact portion may be unsuitable for applications requiring extremely short interruption times.
 遮断時間の短縮化が望まれる近年、接点部の可動部重量を軽くして、操作機構への負担を減らすことが要請されている。そこで、上記二つの遮断責務をそれぞれ別に果たすように各遮断責務に特化した接点部を複数設けた多点切り方式の開閉装置が提案されている。多点切り方式では、異なるタイプの接点部を電気的に直列に接続することで、複数種類の遮断責務を達成することが可能となる。遮断責務に特化した接点部としては、例えば真空遮断部やガス接点部などが知られている。 In recent years, when it is desired to shorten the interruption time, it is required to reduce the load on the operation mechanism by reducing the weight of the movable part of the contact part. In view of this, a multi-point cut-off type switching device has been proposed in which a plurality of contact portions specialized for each interrupting duty are provided so as to fulfill the above two interrupting duties separately. In the multi-point cutting method, it is possible to achieve a plurality of types of interruption duties by electrically connecting different types of contact portions in series. As a contact part specialized in the interruption duty, for example, a vacuum interruption part or a gas contact part is known.
 真空遮断部は急峻な電圧変化を伴う遮断特性に優れた接点部であり、事故電流の遮断を行う。ガス接点部は絶縁性能が高い接点部であり、遮断後の絶縁を行う。これら2つの接点部を有する多点切り方式の開閉装置では、各接点部が異なる遮断責務を分担するので、各接点部あたりの可動部重量を軽量化することができる。そのため、操作機構への負担を低減することができ、遮断時間を効率よく短縮化することが可能である。したがって、多点切り方式の開閉装置は、極めて短い遮断時間が要求される用途にも好適であると言える。 The vacuum interrupter is a contact that excels in interrupting characteristics with abrupt voltage changes, and interrupts accident currents. The gas contact portion is a contact portion having high insulation performance, and performs insulation after interruption. In the multi-point switching type switchgear having these two contact portions, each contact portion shares a different interrupting duty, so that the weight of the movable portion per each contact portion can be reduced. Therefore, the burden on the operating mechanism can be reduced, and the shut-off time can be shortened efficiently. Therefore, it can be said that the multi-point opening / closing device is also suitable for applications requiring extremely short interruption time.
特開2015-43656号公報Japanese Patent Laid-Open No. 2015-43656 WO2015/185095A1WO2015 / 185095A1 特開昭55-053824号公報JP-A-55-053824 特開平8-321233号公報JP-A-8-32233 特開2002-075148号公報Japanese Patent Laid-Open No. 2002-075148 特開2008-112633号公報JP 2008-112633 A 実開昭61-14444号公報Japanese Utility Model Publication No. 61-14444 特開2014-72032号公報JP 2014-72032 A 特開2015-79635号公報JP2015-79635A 特開2015-185381号公報Japanese Patent Laying-Open No. 2015-18581 特開2015-185467号公報Japanese Patent Application Laid-Open No. 2015-185467 USP5,258,590USP 5,258,590 USP5,258,590USP 5,258,590
 多点切り方式の開閉装置において、遮断責務を分担する接点部として、事故電流の遮断を行う真空遮断部と、遮断後の絶縁を行うガス接点部とを設けた場合、次のような課題がある。すなわち、真空遮断部が事故電流を消弧するとき、事故電流が消弧されるまでの間は、真空遮断部にアークが発生するが、それだけではなく、ガス接点部にもアークが発生する。 In a multi-point switchgear switchgear, if a vacuum interrupting part that interrupts accident current and a gas contact part that insulates after interrupting are provided as contact parts that share the interrupting duty, the following problems occur: is there. That is, when the vacuum interrupter extinguishes the fault current, an arc is generated in the vacuum interrupter until the fault current is extinguished, but not only that, but also an arc is generated in the gas contact part.
 したがって、ガス接点部内の絶縁性ガスがアークの発生によって高温の熱ガスとなる。この熱ガスは、アークが消えた後も、ガス接点部の内部に長時間滞留することとなる。その結果、ガス接点部の絶縁性能が低下するおそれがある。特に、滞留する熱ガスの量が多いと、ガス接点部において再点弧が生じる可能性があり、遮断自体が不成功に終わることになりかねない。 Therefore, the insulating gas in the gas contact portion becomes a high-temperature hot gas by the generation of an arc. This hot gas stays in the gas contact portion for a long time after the arc disappears. As a result, the insulation performance of the gas contact portion may be reduced. In particular, if the amount of hot gas that remains is large, re-ignition may occur at the gas contact portion, and the interruption itself may end unsuccessfully.
 本実施形態は、上記の課題を解決するために提案されたものであり、滞留する熱ガスを効率よく除去して絶縁性能の向上を図り、高電圧用の開閉装置に要求される遮断責務を容易に達成可能なガス絶縁開閉装置を提供することを目的とする。 The present embodiment has been proposed to solve the above-mentioned problems, and it effectively removes the staying hot gas to improve the insulation performance, and achieves the shut-off duty required for a high-voltage switchgear. An object is to provide a gas insulated switchgear that can be easily achieved.
 上記の目的を達成するため、本発明の実施形態は、絶縁性ガスを密封した圧力容器と、前記圧力容器に互いに対向して配置された固定接触子ベース及び可動接触子ベースと、前記固定接触子ベースに固定された固定アーク接触子と、前記固定アーク接触子を囲むように前記固定接触子ベースに固定された固定シールドと、前記固定シールドに配置された固定通電接触子と、前記固定通電接触子に対向して可動自在に配置された可動接触子と、前記可動接触子を囲むように前記可動接触子ベースに固定された可動シールドと、前記可動接触子に連結されピストンが固定された操作ロッドと、前記操作ロッドを往復動させて前記可動接触子を前記固定アーク接触子及び前記固定通電接触子に対し離接させる操作機構と、を備えたガス絶縁開閉装置において、次の構成要素(1)~(6)を備える。 In order to achieve the above object, an embodiment of the present invention includes a pressure vessel in which an insulating gas is sealed, a fixed contact base and a movable contact base that are disposed opposite to each other in the pressure vessel, and the fixed contact. A fixed arc contact fixed to the child base, a fixed shield fixed to the fixed contact base so as to surround the fixed arc contact, a fixed energizing contact disposed on the fixed shield, and the fixed energization A movable contact that is movably disposed facing the contact, a movable shield that is fixed to the movable contact base so as to surround the movable contact, and a piston that is connected to the movable contact and fixed. A gas-insulated switchgear comprising: an operating rod; and an operating mechanism for reciprocating the operating rod to bring the movable contact into and out of contact with the fixed arc contact and the fixed energizing contact. In includes the following components (1) to (6).
(1)前記可動シールドの内部には、前記操作ロッドの前記ピストンを隔壁として、前記可動接触子ベース側には圧縮室を、前記可動接触子側には吸込み室を、それぞれ形成する。
(2)前記操作ロッドには、中空部と、当該中空部と前記圧縮室とを連通する連通孔とを設ける。
(3)前記可動接触子には前記可動接触子の端面から前記操作ロッドの前記中空部まで貫通した通気孔を設ける。
(4)前記圧縮室は、開極動作時の前記操作ロッドの移動に伴う前記ピストンの移動により室内の前記絶縁性ガスを圧縮し、前記連通孔、前記中空部及び前記通気孔を介して、前記固定アーク接触子と前記可動接触子との間に発生したアークに前記絶縁性ガスを吹付ける。
(5)前記可動接触子の外周部と前記可動シールドの内周部との間には隙間を設ける。
(6)前記吸込み室は、開極動作時の前記操作ロッドの移動に伴う前記ピストンの移動により室内の空間を広がることで室内の圧力を低下させ前記アークによって熱せられた高温の前記絶縁性ガスを前記隙間から室内に吸い込む。
(1) Inside the movable shield, the piston of the operating rod is used as a partition, a compression chamber is formed on the movable contact base side, and a suction chamber is formed on the movable contact side.
(2) The operating rod is provided with a hollow portion and a communication hole that communicates the hollow portion and the compression chamber.
(3) The movable contact is provided with a vent hole penetrating from the end surface of the movable contact to the hollow portion of the operating rod.
(4) The compression chamber compresses the insulating gas in the chamber by the movement of the piston accompanying the movement of the operation rod during the opening operation, and through the communication hole, the hollow portion, and the vent hole, The insulating gas is sprayed on an arc generated between the fixed arc contact and the movable contact.
(5) A gap is provided between the outer peripheral portion of the movable contact and the inner peripheral portion of the movable shield.
(6) The high-temperature insulating gas heated by the arc by reducing the pressure in the chamber by expanding the space in the chamber due to the movement of the piston accompanying the movement of the operating rod during the opening operation. Is sucked into the room through the gap.
第1の実施形態に係るガス絶縁開閉装置の閉路状態を示す断面図。Sectional drawing which shows the closed circuit state of the gas insulated switchgear which concerns on 1st Embodiment. 第1の実施形態に係るガス絶縁開閉装置の開路状態を示す断面図。Sectional drawing which shows the open circuit state of the gas insulated switchgear which concerns on 1st Embodiment. 第2の実施形態に係るガス絶縁開閉装置の閉路状態を示す断面図。Sectional drawing which shows the closed circuit state of the gas insulated switchgear concerning 2nd Embodiment. 第2の実施形態に係るガス絶縁開閉装置の開路状態を示す断面図。Sectional drawing which shows the open circuit state of the gas insulated switchgear which concerns on 2nd Embodiment. 第3の実施形態に係るガス絶縁開閉装置の閉路状態を示す断面図。Sectional drawing which shows the closed circuit state of the gas insulated switchgear which concerns on 3rd Embodiment. 第3の実施形態に係るガス絶縁開閉装置の開路状態を示す断面図。Sectional drawing which shows the open circuit state of the gas insulated switchgear which concerns on 3rd Embodiment. 第4の実施形態に係るガス絶縁開閉装置の閉路状態を示す断面図。Sectional drawing which shows the closed circuit state of the gas insulated switchgear which concerns on 4th Embodiment. 第4の実施形態に係るガス絶縁開閉装置の開路状態を示す断面図。Sectional drawing which shows the open circuit state of the gas insulated switchgear which concerns on 4th Embodiment.
 以下、本発明に係るガス絶縁開閉装置の実施形態について、図面を参照して説明する。下記の実施形態に係るガス絶縁開閉装置はいずれも、遮断責務を分担可能な複数の接点部が電気的に直列に接続されたものであり、接点部であるガス接点部に適用されるものである。 Hereinafter, embodiments of the gas insulated switchgear according to the present invention will be described with reference to the drawings. In any of the gas insulated switchgears according to the following embodiments, a plurality of contact portions capable of sharing the interrupting duty are electrically connected in series, and are applied to the gas contact portions that are contact portions. is there.
[第1の実施形態]
(構成)
 図1及び図2を用いて第1の実施形態の構成ついて説明する。図1は第1の実施形態の閉路状態を示す断面図、図2は第1の実施形態の開路状態を示す断面図である。図1及び図2に示すように、ガス絶縁開閉装置1には、絶縁性ガスを密封した圧力容器2が設けられている。圧力容器2の内部には固定接触子部10及び可動接触子部20が対向して配置されている。
[First Embodiment]
(Constitution)
The configuration of the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing a closed state according to the first embodiment, and FIG. 2 is a cross-sectional view showing an open state according to the first embodiment. As shown in FIGS. 1 and 2, the gas insulated switchgear 1 is provided with a pressure vessel 2 in which an insulating gas is sealed. A fixed contact portion 10 and a movable contact portion 20 are disposed inside the pressure vessel 2 so as to face each other.
 可動接触子部20には、圧力容器2の外部に向かって可動軸3が延出されており、可動軸3には操作機構5が接続されている。操作機構5は圧力容器2に取り付けられている。操作機構5は、可動軸3を介して可動接触子部20を直線的に往復動させ、固定接触子部10に対して可動接触子部20を離接させる機構である。 The movable contact portion 20 has a movable shaft 3 extending toward the outside of the pressure vessel 2, and an operation mechanism 5 is connected to the movable shaft 3. The operation mechanism 5 is attached to the pressure vessel 2. The operating mechanism 5 is a mechanism that linearly reciprocates the movable contact portion 20 via the movable shaft 3 and separates the movable contact portion 20 from the fixed contact portion 10.
 以下の説明では、固定接触子部10及び可動接触子部20が相対的に近づく端部を各接触部10、20の先端部とし、その反対側を基端部とする。図1及び図2において、可動接触子部20では、図1の右側が基端部側であり、反対側が先端部側である。一方、固定接触子部10では、図1の右側が先端部側であり、反対側が基端側である。なお、先端部が端面である場合、先端面とも呼ぶこととする。 In the following description, an end portion where the fixed contact portion 10 and the movable contact portion 20 are relatively close to each other is referred to as a distal end portion of each contact portion 10 and 20, and the opposite side is referred to as a proximal end portion. 1 and 2, in the movable contact portion 20, the right side of FIG. 1 is the base end side, and the opposite side is the tip end side. On the other hand, in the fixed contact portion 10, the right side in FIG. 1 is the distal end side, and the opposite side is the proximal end side. In addition, when a front-end | tip part is an end surface, it will also call a front end surface.
(固定接触子部)
 固定接触子部10には、固定アーク接触子11と、固定通電接触子12と、固定接触子ベース13と、固定シールド14とが同心円状に配置されている。固定シールド14の内側には、バネ16が配置されている。
(Fixed contact part)
In the fixed contact portion 10, a fixed arc contact 11, a fixed energization contact 12, a fixed contact base 13, and a fixed shield 14 are arranged concentrically. A spring 16 is disposed inside the fixed shield 14.
 固定接触子ベース13は、圧力容器2に固定されている。固定接触子ベース13の中心部分には棒状の固定アーク接触子11が取り付けられている。固定接触子ベース13の先端面には当該ベース13の外径寸法よりも細い円筒部13aが突出して形成されており、この円筒部13aを囲うようにして固定通電接触子12が配置されている。 The fixed contact base 13 is fixed to the pressure vessel 2. A rod-shaped fixed arc contact 11 is attached to the central portion of the fixed contact base 13. A cylindrical portion 13a that is thinner than the outer diameter of the base 13 protrudes from the distal end surface of the fixed contact base 13, and the fixed energizing contact 12 is disposed so as to surround the cylindrical portion 13a. .
 固定通電接触子12は、周方向に複数配置されており、先端部が内側に向かって屈曲されている。固定通電接触子12は、バネ16によって内側方向に付勢されると同時に、固定接触子ベース13の円筒部13aの外周部に当接することでバネ16による内側への移動が制限されている。 A plurality of fixed energizing contacts 12 are arranged in the circumferential direction, and the tip is bent inward. The fixed energizing contact 12 is urged inward by the spring 16 and at the same time abuts against the outer peripheral portion of the cylindrical portion 13a of the fixed contact base 13 so that the inward movement by the spring 16 is restricted.
 固定シールド14は、固定通電接触子12を囲うようにして固定接触子ベース13の外周面に固定されている。固定シールド14の先端部は、固定通電接触子12の先端部を覆うように内側に向かって屈曲されている。固定シールド14の先端部には円形の開口部14aが形成されている。 The fixed shield 14 is fixed to the outer peripheral surface of the fixed contact base 13 so as to surround the fixed energization contact 12. The distal end portion of the fixed shield 14 is bent inward so as to cover the distal end portion of the fixed energizing contact 12. A circular opening 14 a is formed at the tip of the fixed shield 14.
 固定アーク接触子11の先端部には耐弧性を有する耐弧金属15が固着されている。耐弧金属15は外方に膨らんだ紡錘形状となっている。固定アーク接触子11には長手方向に先端部側が割れているスリット17が設けられている。スリット17は、互いに平行となるように複数設けられている。これらスリット17があることで、固定アーク接触子11は先端部が径方向に変形するばね性を持っている。 An arc-resistant metal 15 having arc resistance is fixed to the tip of the fixed arc contact 11. The arc-resistant metal 15 has a spindle shape that bulges outward. The fixed arc contact 11 is provided with a slit 17 whose front end is cracked in the longitudinal direction. A plurality of slits 17 are provided so as to be parallel to each other. Due to the presence of these slits 17, the fixed arc contact 11 has a spring property in which the tip portion is deformed in the radial direction.
(可動接触子部)
 可動接触子部20には、可動接触子21と、可動接触子ベース22と、可動シールド23と、操作ロッド25とが同心円状に配置されている。このうち、操作ロッド25は、先端部に可動接触子21が、基端部に可動軸3が、それぞれに連結されている。操作ロッド25は、操作機構5により可動軸3が往復動作を行うことにより、固定アーク接触子11及び固定通電接触子12に対して可動接触子21を離接させる部材である。
(Movable contact part)
In the movable contact portion 20, a movable contact 21, a movable contact base 22, a movable shield 23, and an operation rod 25 are arranged concentrically. Among these, the operating rod 25 is connected to the movable contact 21 at the distal end and the movable shaft 3 to the proximal end. The operation rod 25 is a member that moves the movable contact 21 away from the fixed arc contact 11 and the fixed energization contact 12 when the movable shaft 3 reciprocates by the operation mechanism 5.
 操作ロッド25には、ディスク状のピストン25aが固定されている。また操作ロッド25には、中心部分に長手方向に延びる中空部25bが設けられている。さらに操作ロッド25には、中空部25bと直交して中空部25bから操作ロッド25の外周部に至る連通孔25cが設けられている。連通孔25cは中空部25bと後述する圧縮室30とを連通する孔である。 A disk-like piston 25a is fixed to the operation rod 25. The operating rod 25 is provided with a hollow portion 25b extending in the longitudinal direction at the center portion. Further, the operation rod 25 is provided with a communication hole 25 c that is orthogonal to the hollow portion 25 b and extends from the hollow portion 25 b to the outer peripheral portion of the operation rod 25. The communication hole 25c is a hole that communicates the hollow portion 25b with a compression chamber 30 described later.
 可動接触子21は、操作ロッド25の先端部に取り付けられており、固定通電接触子12の長手方向に対向して可動自在に配置されている。可動接触子21が固定シールド14の開口部14aに対して挿入可能となるように、可動接触子21の外径寸法は、固定シールド14の開口部14aの内径寸法よりも小さく形成されている。可動接触子21が固定シールド14の開口部14aに挿入された時、可動接触子21は、外周部が固定通電接触子12の内周部に接するように設けられている。 The movable contact 21 is attached to the tip of the operation rod 25 and is movably disposed facing the longitudinal direction of the fixed energizing contact 12. The outer diameter of the movable contact 21 is smaller than the inner diameter of the opening 14 a of the fixed shield 14 so that the movable contact 21 can be inserted into the opening 14 a of the fixed shield 14. When the movable contact 21 is inserted into the opening 14 a of the fixed shield 14, the movable contact 21 is provided such that the outer peripheral portion is in contact with the inner peripheral portion of the fixed energizing contact 12.
 可動接触子21の先端部には、耐弧性を有する耐弧金属24が固着されている。耐弧金属24は、内周部に固定アーク接触子11の耐弧金属15が接離するようにリング状に設けられている。つまり、可動接触子部20において、前記操作ロッド25と可動接触子21とが、開極動作時及び閉極動作時に可動する部材である。一方、可動接触子部20であっても、可動接触子ベース22は圧力容器2に固定される部材であり、可動シールド23は可動接触子ベース22に固定される部材である。 An arc resistant metal 24 having arc resistance is fixed to the tip of the movable contact 21. The arc-resistant metal 24 is provided in a ring shape so that the arc-resistant metal 15 of the fixed arc contactor 11 contacts and separates from the inner peripheral portion. That is, in the movable contact portion 20, the operation rod 25 and the movable contact 21 are members that are movable during the opening operation and the closing operation. On the other hand, even in the movable contact portion 20, the movable contact base 22 is a member fixed to the pressure vessel 2, and the movable shield 23 is a member fixed to the movable contact base 22.
 可動接触子21において、耐弧金属15が挿入する部分から見て基端部側には、可動接触子21の長手方向に伸びる通気孔21aが複数設けられている。通気孔21aは可動接触子21の端面から操作ロッド25の中空部25bまで貫通する孔である。通気孔21aの先端部側の開口部は、固定アーク接触子11の耐弧金属15の先端部と向かい合うように配置されている。 In the movable contact 21, a plurality of vent holes 21 a extending in the longitudinal direction of the movable contact 21 are provided on the base end side when viewed from the portion where the arc-resistant metal 15 is inserted. The ventilation hole 21 a is a hole that penetrates from the end surface of the movable contact 21 to the hollow portion 25 b of the operation rod 25. The opening on the tip end side of the vent hole 21 a is disposed so as to face the tip end portion of the arc-resistant metal 15 of the fixed arc contactor 11.
 可動接触子ベース22は、圧力容器2に固定されている。可動接触子ベース22は、中空の円筒状部材であり、内部は圧力容器2の内部空間22aと連通している。可動接触子ベース22の先端部には、厚みがあるフランジ部22dが形成されている。可動接触子ベース22のフランジ部22dの端面において、開極動作時の終了時点で操作ロッド25の連通孔25cと向かい合う角部分を、ガス流量制限部22eとする。ガス流量制限部22eは、所定の間隔を持って、開極動作時の終了時に連通孔25cの少なくとも一部を覆うように設けられている。 The movable contact base 22 is fixed to the pressure vessel 2. The movable contact base 22 is a hollow cylindrical member, and the inside communicates with the internal space 22 a of the pressure vessel 2. A thick flange portion 22 d is formed at the tip of the movable contact base 22. A corner portion of the end face of the flange portion 22d of the movable contact base 22 that faces the communication hole 25c of the operation rod 25 at the end of the opening operation is defined as a gas flow rate restriction portion 22e. The gas flow restricting portion 22e is provided at a predetermined interval so as to cover at least a part of the communication hole 25c at the end of the opening operation.
 可動接触子ベース22のフランジ部22dの中央には保持穴22cが開口されている。保持穴22cには操作ロッド25が挿入されている。可動接触子ベース22の保持穴22cの内周部と操作ロッド25の外周部との間には、隙間33が形成されている。この隙間33が、可動接触子ベース22のガス流量制限部22eが連通孔25cを覆う時の間隔となる。 A holding hole 22c is opened at the center of the flange portion 22d of the movable contact base 22. An operation rod 25 is inserted into the holding hole 22c. A gap 33 is formed between the inner peripheral portion of the holding hole 22 c of the movable contact base 22 and the outer peripheral portion of the operating rod 25. This gap 33 is an interval when the gas flow rate limiting portion 22e of the movable contactor base 22 covers the communication hole 25c.
 隙間33には可動接触子ベース22の内周部及び操作ロッド25の外周部に接するようにして、集電接触子26及び摺動パッキン27が配置されている。可動接触子ベース22のフランジ部22dにおいて集電接触子26は基端部寄りに、摺動パッキン27は先端部寄りに、それぞれ取り付けられている。摺動パッキン27が隙間33に設置されたため、隙間33から可動接触子ベース22の内部空間22a側に向かって、圧縮室30にて圧縮された絶縁性ガスが流れることはない。また、摺動パッキン27は、開極動作時の終了時に操作ロッド25の連通孔25cの一部を塞ぐように構成されている。 The current collecting contact 26 and the sliding packing 27 are disposed in the gap 33 so as to contact the inner peripheral portion of the movable contact base 22 and the outer peripheral portion of the operating rod 25. In the flange portion 22d of the movable contact base 22, the current collecting contact 26 is attached to the proximal end portion, and the sliding packing 27 is attached to the distal end portion. Since the sliding packing 27 is installed in the gap 33, the insulating gas compressed in the compression chamber 30 does not flow from the gap 33 toward the internal space 22 a side of the movable contact base 22. The sliding packing 27 is configured to close a part of the communication hole 25c of the operating rod 25 at the end of the opening operation.
 可動シールド23は、可動接触子ベース22のフランジ部22dの外周部に固定されており、先端面には可動接触子21の外周部を囲むようにして円形の開口部23aが形成されている。可動接触子21の外径寸法は、開口部23aの内径寸法よりも小さく形成されている。そのため、可動接触子21の外周部と可動シールド23の開口部23aの内周部との間には、隙間31aが設けられる。 The movable shield 23 is fixed to the outer peripheral portion of the flange portion 22d of the movable contact base 22, and a circular opening 23a is formed on the distal end surface so as to surround the outer peripheral portion of the movable contact 21. The outer diameter dimension of the movable contact 21 is formed smaller than the inner diameter dimension of the opening 23a. Therefore, a gap 31 a is provided between the outer peripheral portion of the movable contact 21 and the inner peripheral portion of the opening 23 a of the movable shield 23.
 可動シールド23の内部空間には、操作ロッド25のピストン25aを隔壁として、2つの空間が形成される。1つが可動接触子ベース22側に形成される圧縮室30であり、もう1つが可動接触子21側に形成される吸込み室31である。圧縮室30の内径の方が吸込み室31の内径よりも大きく設定されている。可動シールド23の内周部とピストン25aの外周部との間には隙間34が形成されている。隙間34には可動シールド23の内周部及びピストン25aの外周部に接するように摺動パッキン28が配置されている。 In the inner space of the movable shield 23, two spaces are formed by using the piston 25a of the operation rod 25 as a partition wall. One is a compression chamber 30 formed on the movable contact base 22 side, and the other is a suction chamber 31 formed on the movable contact 21 side. The inner diameter of the compression chamber 30 is set larger than the inner diameter of the suction chamber 31. A gap 34 is formed between the inner peripheral portion of the movable shield 23 and the outer peripheral portion of the piston 25a. A sliding packing 28 is disposed in the gap 34 so as to contact the inner peripheral portion of the movable shield 23 and the outer peripheral portion of the piston 25a.
 圧縮室30は、操作ロッド25のピストン25aと、操作ロッド25の外周部と、可動接触子ベース22のフランジ部22dと、可動シールド23の内周部によって囲まれた空間である。圧縮室30は、開極動作時の操作ロッド25の移動に伴うピストン25aの移動により室内の絶縁性ガスを圧縮するようになっている。また、圧縮室30は、連通孔25c、中空部25b及び複数の通気孔21aを介して、固定アーク接触子11側の耐弧金属15と可動接触子21側の耐弧金属24との間に発生したアーク40(図2に図示)に対し、圧縮した絶縁性ガスを吹付ける。なお、圧縮室30内の絶縁性ガスは、熱ガスに比べて、低温であるため、圧縮室30内の絶縁性ガスを低温ガスと呼ぶこととする。 The compression chamber 30 is a space surrounded by the piston 25 a of the operation rod 25, the outer periphery of the operation rod 25, the flange 22 d of the movable contact base 22, and the inner periphery of the movable shield 23. The compression chamber 30 compresses the insulating gas in the chamber by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation. The compression chamber 30 is interposed between the arc-resistant metal 15 on the fixed arc contactor 11 side and the arc-resistant metal 24 on the movable contactor 21 side via the communication hole 25c, the hollow portion 25b, and the plurality of vent holes 21a. A compressed insulating gas is blown against the generated arc 40 (shown in FIG. 2). Since the insulating gas in the compression chamber 30 is at a lower temperature than the hot gas, the insulating gas in the compression chamber 30 is referred to as a low temperature gas.
 吸込み室31は、操作ロッド25のピストン25aと、操作ロッド25の外周部と、可動接触子21の外周部と、可動シールド23の内周部によって囲まれた空間である。吸込み室31は、開極動作時の操作ロッド25の移動に伴うピストン25aの移動により室内の空間を広がることで室内の圧力を低下させ、アーク40によって熱せられた高温の絶縁性ガス(以下、熱ガスと呼ぶ)を、隙間31aから室内に吸い込む部分である。 The suction chamber 31 is a space surrounded by the piston 25 a of the operation rod 25, the outer periphery of the operation rod 25, the outer periphery of the movable contact 21, and the inner periphery of the movable shield 23. The suction chamber 31 expands the indoor space by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation, thereby reducing the pressure in the chamber, and a high-temperature insulating gas heated by the arc 40 (hereinafter, This is a portion that sucks in the room through the gap 31a.
(開極動作)
 以上の構成を有する第1の実施形態の開極動作について、図1に示す閉路状態から図2に示す開路状態に至るまでを説明する。まず、図1に示す閉路状態において、可動接触子21は固定アーク接触子11及び固定通電接触子12と接しており、通電状態となっている。
(Opening operation)
The opening operation of the first embodiment having the above configuration will be described from the closed state shown in FIG. 1 to the open state shown in FIG. First, in the closed state shown in FIG. 1, the movable contact 21 is in contact with the fixed arc contact 11 and the fixed energization contact 12 and is in an energized state.
 閉路状態では、固定通電接触子12は、バネ16の弾性力によって可動接触子21の外周部に押し付けられている。また、閉路状態では、固定アーク接触子11は、複数のスリット17によって半径方向に縮むように変形するため、固定アーク接触子11の先端部に固着された耐弧金属15は外周方向に付勢されて可動接触子21の内周部に押し付けられている。 In the closed state, the fixed energizing contact 12 is pressed against the outer peripheral portion of the movable contact 21 by the elastic force of the spring 16. In the closed state, the fixed arc contact 11 is deformed so as to be contracted in the radial direction by the plurality of slits 17, so that the arc-resistant metal 15 fixed to the tip of the fixed arc contact 11 is urged in the outer circumferential direction. And pressed against the inner periphery of the movable contact 21.
 以上のような閉路状態を初期状態として、外部から送られた開極指令によって操作機構5が始動し、可動軸3が図1の右側に駆動すると、操作ロッド25及び可動接触子21も右側に駆動する。したがって、可動接触子21は、まず固定通電接触子12から開離する。このとき、固定アーク接触子11は可動接触子21に接しているため、可動接触子21と固定通電接触子12との間にはアーク40は発生しない。 With the closed state as described above as an initial state, when the operation mechanism 5 is started by an opening command sent from the outside and the movable shaft 3 is driven to the right side of FIG. 1, the operation rod 25 and the movable contactor 21 are also moved to the right side. To drive. Therefore, the movable contact 21 is first separated from the fixed energized contact 12. At this time, since the fixed arc contact 11 is in contact with the movable contact 21, no arc 40 is generated between the movable contact 21 and the fixed energized contact 12.
 その後、開極動作が進み、可動接触子21が固定アーク接触子11から開離すると、可動接触子21側の耐弧金属24と、固定アーク接触子11側の耐弧金属15との間には、アーク40(図2に示す)が発生する。アーク40は非常に高温であるため、その周囲の絶縁性ガスは高温の熱ガスとなり、固定アーク接触子11と可動接触子21の間に滞留する。 Thereafter, when the opening operation proceeds and the movable contact 21 is separated from the fixed arc contact 11, the gap between the arc resistant metal 24 on the movable contact 21 side and the arc resistant metal 15 on the fixed arc contact 11 side is reached. Generates an arc 40 (shown in FIG. 2). Since the arc 40 is very hot, the surrounding insulating gas becomes a hot gas and stays between the fixed arc contact 11 and the movable contact 21.
 開極動作がさらに進むと、ガス絶縁開閉装置1に直列に接続された他の開閉装置(不図示)によって事故電流が遮断される。そのため、固定アーク接触子11と可動接触子21間に発生していたアーク40は消滅する。しかし、アーク40が消滅しても、固定アーク接触子11と可動接触子21の間には、アーク40による熱ガスが依然として滞留したままである。したがって、遮断後の過渡回復電圧に対して絶縁性能が低下した状態となっている。 When the opening operation further proceeds, the fault current is interrupted by another switch (not shown) connected in series to the gas insulated switch 1. Therefore, the arc 40 generated between the fixed arc contact 11 and the movable contact 21 disappears. However, even when the arc 40 disappears, the hot gas from the arc 40 still remains between the fixed arc contact 11 and the movable contact 21. Therefore, the insulation performance is reduced with respect to the transient recovery voltage after interruption.
 そこで第1の実施形態では、絶縁性能の低下を抑えるべく、次のような動作を行う。すなわち、開極動作に際して、操作ロッド25の移動に伴い右側に駆動するピストン25aが、圧縮室30室内の低温ガスを圧縮する。圧縮室30室内で圧縮された低温ガスは、連通孔25cと中空部25bと複数の通気孔21aを順次通って、固定アーク接触子11と可動接触子21との間に吹き付けられる。 Therefore, in the first embodiment, the following operation is performed in order to suppress a decrease in insulation performance. That is, during the opening operation, the piston 25a that is driven to the right side with the movement of the operation rod 25 compresses the low-temperature gas in the compression chamber 30. The low temperature gas compressed in the compression chamber 30 is blown between the fixed arc contact 11 and the movable contact 21 through the communication hole 25c, the hollow portion 25b, and the plurality of vent holes 21a in order.
 また、開極動作に際して、ピストン25aが右側に駆動することで、吸込み室31の内部空間が広がり、室内の絶縁性ガスの圧力は周囲よりも低下する。このとき、吸込み室31の内部空間とアーク40の発生空間とは、可動接触子21の外周部と可動シールド23の開口部23aの内周部との間に設けた隙間31aによって連通する。そのため、耐弧金属24及び可動接触子21の周囲に存在する熱ガスを、隙間31aを介して、吸込み室31の内部に取り込むことができる。 In the opening operation, when the piston 25a is driven to the right side, the internal space of the suction chamber 31 is expanded, and the pressure of the insulating gas in the chamber is lower than the surroundings. At this time, the internal space of the suction chamber 31 and the space where the arc 40 is generated communicate with each other by a gap 31 a provided between the outer peripheral portion of the movable contact 21 and the inner peripheral portion of the opening 23 a of the movable shield 23. Therefore, the hot gas existing around the arc-resistant metal 24 and the movable contact 21 can be taken into the suction chamber 31 through the gap 31a.
 開極動作の終了時には、可動接触子ベース22のフランジ部22dの端面に設けたガス流量制限部22eが、操作ロッド25の連通孔25cの少なくとも一部を覆い、且つ摺動パッキン27が連通孔25cの一部を塞いだ状態となる(図2の状態)。開極動作は図1の状態から図2の状態になると終了する。開極動作の終了時には、可動接触子21は可動シールド23の内部に完全に収容される。 At the end of the opening operation, the gas flow rate limiting portion 22e provided on the end surface of the flange portion 22d of the movable contact base 22 covers at least a part of the communication hole 25c of the operating rod 25, and the sliding packing 27 is connected to the communication hole. A part of 25c is closed (the state shown in FIG. 2). The opening operation ends when the state shown in FIG. 1 is changed to the state shown in FIG. At the end of the opening operation, the movable contact 21 is completely accommodated in the movable shield 23.
(閉極動作)
 次にガス絶縁開閉装置1の図2に示す開路状態から図1に示す閉路状態に至る閉極動作について説明する。まず、図2に示す開路状態において、可動接触子21は固定アーク接触子11及び固定通電接触子12と離れ、非通電状態となっている。
(Closed operation)
Next, the closing operation of the gas insulated switchgear 1 from the open state shown in FIG. 2 to the closed state shown in FIG. 1 will be described. First, in the open circuit state shown in FIG. 2, the movable contact 21 is separated from the fixed arc contact 11 and the fixed energization contact 12 and is in a non-energized state.
 以上のような開路状態を初期状態として、外部から送られた閉極指令によって操作機構5が始動し、可動軸3が図2の左側に駆動すると、操作ロッド25及び可動接触子21が左側に駆動して、可動接触子21は固定アーク接触子11と閉接した後、固定通電接触子12と閉接する。 With the open circuit state as described above as an initial state, the operation mechanism 5 is started by a closing command sent from the outside, and when the movable shaft 3 is driven to the left in FIG. 2, the operation rod 25 and the movable contact 21 are moved to the left. The movable contact 21 is driven and closed with the fixed arc contact 11, and then closed with the fixed energization contact 12.
 閉極動作が進むとピストン25aが図2の左側に駆動するため、圧縮室30の内部空間が広がり、絶縁性ガスの圧力は周囲より低下する。したがって、連通孔25cと中空部25bと通気孔21aを介して、固定アーク接触子11の周囲の絶縁性ガスを圧縮室30の内部に取り込む。 When the closing operation proceeds, the piston 25a is driven to the left in FIG. 2, so that the internal space of the compression chamber 30 is expanded and the pressure of the insulating gas is reduced from the surroundings. Therefore, the insulating gas around the fixed arc contact 11 is taken into the compression chamber 30 through the communication hole 25c, the hollow portion 25b, and the vent hole 21a.
 また、ピストン25aが図2の左側に駆動することで、吸込み室31内部の絶縁性ガスを圧縮し、隙間31aを介して可動接触子21の耐弧金属24側に絶縁性ガスを噴き出す。閉極動作は図2の状態から図1の状態になると終了し、可動接触子21は固定アーク接触子11及び固定通電接触子12と閉接して通電状態となる。 Further, when the piston 25a is driven to the left in FIG. 2, the insulating gas inside the suction chamber 31 is compressed, and the insulating gas is ejected to the arc-resistant metal 24 side of the movable contactor 21 through the gap 31a. The closing operation is finished when the state shown in FIG. 2 is changed to the state shown in FIG. 1, and the movable contact 21 is brought into a closed state with the fixed arc contact 11 and the fixed energization contact 12.
(作用と効果)
(1)第1の実施形態では、圧縮室30では、開極動作時の操作ロッド25の移動に伴うピストン25aの移動によって室内の絶縁性ガスを圧縮し、連通孔25c、中空部25b及び複数の通気孔21aを介してアーク40に低温ガスを吹付ける。このとき、複数の通気孔21aが、固定アーク接触子11の耐弧金属15が挿入する部分に向かい合っている。
(Action and effect)
(1) In the first embodiment, in the compression chamber 30, the insulating gas in the chamber is compressed by the movement of the piston 25a accompanying the movement of the operation rod 25 during the opening operation, and the communication hole 25c, the hollow portion 25b, and the plurality The low temperature gas is sprayed to the arc 40 through the vent hole 21a. At this time, the plurality of vent holes 21a face the portion where the arc-resistant metal 15 of the fixed arc contact 11 is inserted.
 そのため、通気孔21aは、アーク40による熱ガスに対して、圧縮室30からの低温ガスを、集中的に且つ大量に、吹付けることができる。したがって、アーク40による熱ガスを効率よく冷却することができ、アーク40が発生した空間から、滞留した熱ガスを四方に拡散させ、固定アーク接触子11と可動接触子21との間から吹き払うことができる。 Therefore, the vent hole 21a can spray the low-temperature gas from the compression chamber 30 intensively and in large quantities against the hot gas generated by the arc 40. Therefore, the hot gas generated by the arc 40 can be efficiently cooled, and the staying hot gas is diffused in all directions from the space where the arc 40 is generated, and blown off between the fixed arc contact 11 and the movable contact 21. be able to.
 しかも、第1の実施形態では、ピストン25aの移動開始により圧縮室30内の絶縁性ガスを圧縮するので、開極動作の初期段階から、アーク40の発生空間に向かって低温ガスを吹き付けることが可能である。したがって、熱ガスを迅速に拡散させることができ、絶縁性能の向上に寄与することができる。 In addition, in the first embodiment, since the insulating gas in the compression chamber 30 is compressed by the start of movement of the piston 25a, the low temperature gas can be blown toward the generation space of the arc 40 from the initial stage of the opening operation. Is possible. Therefore, the hot gas can be diffused quickly, which can contribute to the improvement of the insulation performance.
 以上のような熱ガスの拡散と同時に、第1の実施形態では、吸込み室31によりアーク40による熱ガスを吸い込むことができる。そのため、固定アーク接触子11と可動接触子21の間から熱ガスを効率よく除去することができる。このとき、吸込み室31への熱ガスの流入路となる隙間31aは、可動接触子21の外周部に位置する。 Simultaneously with the diffusion of the hot gas as described above, in the first embodiment, the hot gas from the arc 40 can be sucked by the suction chamber 31. Therefore, the hot gas can be efficiently removed from between the fixed arc contact 11 and the movable contact 21. At this time, the gap 31 a serving as a hot gas inflow path to the suction chamber 31 is located on the outer peripheral portion of the movable contact 21.
 したがって、低温ガスの吹付けにより可動接触子21の外周部に沿って拡散した熱ガスが、隙間31aに向かってスムーズに流れ込むことができる。しかも、第1の実施形態では、ピストン25aの移動開始により吸込み室31内の圧力が低下するので、吸込み室31は、開極動作の初期段階から、隙間31aを通して熱ガスを素早く吸込むことができる。 Therefore, the hot gas diffused along the outer peripheral portion of the movable contact 21 due to the spray of the low temperature gas can smoothly flow toward the gap 31a. Moreover, in the first embodiment, since the pressure in the suction chamber 31 is reduced by the start of movement of the piston 25a, the suction chamber 31 can quickly suck in the hot gas through the gap 31a from the initial stage of the opening operation. .
 上述したように、第1の実施形態に係るガス絶縁開閉装置1においては、固定アーク接触子11と可動接触子21の間から熱ガスを除去するため、固定アーク接触子11と可動接触子21が再点弧する心配が無い。そのため、遮断後の過渡回復電圧に対し良好な絶縁性能を得ることができる。したがって、ガス絶縁開閉装置1では高電圧用の開閉装置に要求される遮断責務を容易に達成することが可能であり、操作機構5の負担を軽減させて遮断時間の短縮化に寄与することができる。 As described above, in the gas insulated switchgear 1 according to the first embodiment, in order to remove the hot gas from between the fixed arc contact 11 and the movable contact 21, the fixed arc contact 11 and the movable contact 21. There is no worry of re-igniting. Therefore, it is possible to obtain good insulation performance with respect to the transient recovery voltage after interruption. Therefore, the gas-insulated switchgear 1 can easily achieve the shut-off duty required for a high-voltage switchgear, thereby reducing the burden on the operation mechanism 5 and contributing to shortening the shut-off time. it can.
(2)第1の実施形態では、開極動作の終了時に、可動接触子ベース22のフランジ部22dのガス流量制限部22eが、操作ロッド25の連通孔25cの少なくとも一部を覆うので、圧縮室30に連通する連通孔25cの断面積は減少する。そのため、開極動作の終了直前には、圧縮室30から通気孔21aに向かって流れる低温ガスの流量を減らすことができ、圧縮室30内の圧力は上昇する。 (2) In the first embodiment, at the end of the opening operation, the gas flow rate restricting portion 22e of the flange portion 22d of the movable contactor base 22 covers at least a part of the communication hole 25c of the operating rod 25. The cross-sectional area of the communication hole 25c communicating with the chamber 30 decreases. Therefore, immediately before the end of the opening operation, the flow rate of the low temperature gas flowing from the compression chamber 30 toward the vent hole 21a can be reduced, and the pressure in the compression chamber 30 increases.
 その結果、ピストン25aには開極動作時の駆動方向とは反対方向つまり図2の左方向に働くパッファ反力が増加することになり、開極動作の終了間際では操作ロッド25及び可動接触子21を制動することができる。これにより、開極動作終了時に発生する衝撃力を緩和することができ、動作信頼性を高めることができる。 As a result, the puffer reaction force acting in the direction opposite to the driving direction during the opening operation, that is, the left direction in FIG. 2, increases in the piston 25a, and the operation rod 25 and the movable contactor are just before the end of the opening operation. 21 can be braked. Thereby, the impact force generated at the end of the opening operation can be relaxed, and the operation reliability can be improved.
(3)第1の実施形態においては、開極動作時の終了時に、摺動パッキン27は操作ロッド25の連通孔25cの一部だけを塞いでいる。つまり、連通孔25cが摺動パッキン27によって完全には封じられていない。したがって、前段にて述べたように、開極動作の終了直前には圧縮室30からの低温ガスの流出量を減らすものの、これをゼロとするわけではなく、連通孔25cを通して低温ガスを、圧縮室30から通気孔21a側へと抜いている。 (3) In the first embodiment, the sliding packing 27 closes only a part of the communication hole 25c of the operating rod 25 at the end of the opening operation. That is, the communication hole 25 c is not completely sealed by the sliding packing 27. Therefore, as described in the previous stage, the amount of low temperature gas flowing out from the compression chamber 30 is reduced immediately before the end of the opening operation, but this is not reduced to zero, and the low temperature gas is compressed through the communication hole 25c. It pulls out from the chamber 30 to the vent hole 21a side.
 その結果、開極動作の終了直前には、低温ガスの流出量の低減により圧縮室30内の圧力が上昇したとしても、圧縮室30が過剰に圧力上昇することがない。このため、開極動作終了時において、パッファ反力によりピストン25aが図2の左側に逆行することを防ぐことが可能となる。 As a result, immediately before the end of the opening operation, even if the pressure in the compression chamber 30 increases due to the reduction of the outflow amount of the low temperature gas, the compression chamber 30 does not excessively increase in pressure. For this reason, it is possible to prevent the piston 25a from going backward to the left in FIG. 2 due to the puffer reaction force at the end of the opening operation.
(4)第1の実施形態では閉極動作の終了直前において、圧縮室30の内部空間が広がり、絶縁性ガスの圧力が周囲より低下する。その一方で、吸込み室31では圧力が周囲より上昇してピストン25aには閉極動作時の駆動方向とは反対方向つまり図1の右方向にパッファ反力が働く。そのため、閉極動作の終了間際に、操作ロッド25及び可動接触子21を確実に制動することができ、閉極動作終了時に発生する衝撃力を緩和することが可能である。 (4) In the first embodiment, immediately before the end of the closing operation, the internal space of the compression chamber 30 expands, and the pressure of the insulating gas decreases from the surroundings. On the other hand, in the suction chamber 31, the pressure rises from the surroundings, and a puffer reaction force acts on the piston 25a in the direction opposite to the driving direction during the closing operation, that is, in the right direction in FIG. Therefore, the operating rod 25 and the movable contact 21 can be reliably braked just before the closing operation is completed, and the impact force generated at the end of the closing operation can be reduced.
(5)第1の実施形態では、バネ16が固定通電接触子12を可動接触子21の外周部に押し付けている。そのため、電気的な抵抗が小さくなり、通電による発熱を抑えることができる。また、固定アーク接触子11は複数のスリット17によって半径方向に縮むように変形することで外周方向への弾性力が与えられ、固定アーク接触子11を可動接触子21の内周部に押し付けている。したがって、固定通電接触子12側と同様に、電気的な抵抗が小さくなり、通電による発熱を抑えることができるといったメリットがある。 (5) In the first embodiment, the spring 16 presses the fixed energizing contact 12 against the outer peripheral portion of the movable contact 21. Therefore, the electrical resistance is reduced, and heat generation due to energization can be suppressed. Further, the fixed arc contact 11 is deformed so as to be contracted in the radial direction by the plurality of slits 17, thereby giving an elastic force in the outer peripheral direction, and pressing the fixed arc contact 11 against the inner peripheral portion of the movable contact 21. . Therefore, like the fixed energizing contact 12 side, there is an advantage that the electrical resistance is reduced and heat generation due to energization can be suppressed.
[第2の実施形態]
(構成)
 図3及び図4を用いて第2の実施形態の構成について説明する。図3は第2の実施形態の閉路状態を示す断面図、図4は第2の実施形態の開路状態を示す断面図である。なお、第1の実施形態の形態と同一または類似の部分には共通の符号を付し、重複する説明は省略する。
[Second Embodiment]
(Constitution)
The configuration of the second embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a cross-sectional view showing a closed state of the second embodiment, and FIG. 4 is a cross-sectional view showing an open state of the second embodiment. In addition, the same code | symbol is attached | subjected to the part which is the same or similar to the form of 1st Embodiment, and the overlapping description is abbreviate | omitted.
 第2の実施形態では、可動接触子ベース22のフランジ部22dには、複数の第1の吸気孔22bが形成されている。第1の吸気孔22bは、可動接触子ベース22における内部空間22aと圧縮室30とを連通させ、閉極動作時に内部空間22a内の絶縁性ガスを圧縮室30内へ吸い込むための孔である。 In the second embodiment, the flange portion 22d of the movable contact base 22 has a plurality of first intake holes 22b. The first intake hole 22b is a hole for communicating the internal space 22a and the compression chamber 30 in the movable contact base 22 and sucking the insulating gas in the internal space 22a into the compression chamber 30 during a closing operation. .
 圧縮室30の内部にはリング板状のバルブ32が配置されている。バルブ32は、可動シールド23の内周部に形成した溝32aにはめ込まれており、溝32aの端部に当接することで、移動範囲が制限される。溝32aは、閉極動作時の終了時におけるバルブ32の位置決め部である。バルブ32は、圧縮室30の圧力が内部空間22aの圧力より高くなると、圧力差によって第1の吸気孔22bを塞ぐ構造となっている。 A ring plate-like valve 32 is disposed inside the compression chamber 30. The valve 32 is fitted in a groove 32a formed in the inner peripheral portion of the movable shield 23, and the moving range is limited by contacting the end of the groove 32a. The groove 32a is a positioning portion of the valve 32 at the end of the closing operation. The valve 32 has a structure in which when the pressure in the compression chamber 30 becomes higher than the pressure in the internal space 22a, the first intake hole 22b is closed by the pressure difference.
(開極動作)
 以上の構成を有する第2の実施形態の開極動作について、図3に示す閉路状態から図4に示す開路状態に至るまでを説明する。ただし、第1の実施形態における開極動作と同様の点については説明を省略する。
(Opening operation)
The opening operation of the second embodiment having the above configuration will be described from the closed state shown in FIG. 3 to the open state shown in FIG. However, the description of the same points as the opening operation in the first embodiment will be omitted.
 開極動作時は、ピストン25aが図3の右側に駆動することで圧縮室30の圧力が内部空間22aの圧力よりも高くなり、バルブ32が第1の吸気孔22bを塞ぐ(図4の状態)。そのため、第1の吸気孔22bを通って内部空間22aから圧縮室30内に絶縁性ガスが流入することがない。 During the opening operation, the piston 25a is driven to the right side in FIG. 3 so that the pressure in the compression chamber 30 becomes higher than the pressure in the internal space 22a, and the valve 32 closes the first intake hole 22b (state in FIG. 4). ). Therefore, the insulating gas does not flow into the compression chamber 30 from the internal space 22a through the first intake hole 22b.
 したがって、ピストン25aの駆動により圧縮室30内の低温ガスを効率よく圧縮することができ、連通孔25cと中空部25bと通気孔21aを介して、固定アーク接触子11側に圧縮室30内の低温ガスを強く噴き出すことができる。更に第2の実施形態においても第1の実施形態と同様、吸込み室31の内部空間が広がり絶縁性ガスの圧力が周囲より低下することで、耐弧金属24の周囲の絶縁性ガスを、隙間31aから吸込み室31の内部に取り込む。 Accordingly, the low-temperature gas in the compression chamber 30 can be efficiently compressed by driving the piston 25a, and the compression chamber 30 in the compression arcade 30 is brought to the fixed arc contact 11 side through the communication hole 25c, the hollow portion 25b, and the vent hole 21a. Cold gas can be blown out strongly. Further, in the second embodiment, as in the first embodiment, the internal space of the suction chamber 31 is expanded and the pressure of the insulating gas is reduced from the surroundings, so that the insulating gas around the arc-resistant metal 24 is removed from the gap. The air is taken into the suction chamber 31 from 31a.
(閉極動作)
 第2の実施形態の閉極動作について、図4に示す開路状態から図3に示す閉路状態に至るまでを説明する。ただし、第1の実施形態における閉極動作と同様の点については説明を省略する。
(Closed operation)
The closing operation of the second embodiment will be described from the open state shown in FIG. 4 to the closed state shown in FIG. However, the description of the same points as the closing operation in the first embodiment will be omitted.
 閉極動作時はピストン25aが図4の左側に駆動することで圧縮室30の圧力が内部空間22aの圧力よりも低くなり、バルブ32が第1の吸気孔22bを開放する。そのため、内部空間22aの絶縁性ガスは第1の吸気孔22bを介して圧縮室30内に流れ込み、圧縮室30の内部空間が広がることによる圧力低下を抑えることができる。したがって、圧縮室30の圧力低下に伴って、ピストン25aが閉極動作方向(図4の左方向)へ動きにくくなるということがない。閉極動作時の終了時にはバルブ32が溝32aの端部に当接することで、バルブ32の位置決めがなされる。 During the closing operation, the piston 25a is driven to the left in FIG. 4 so that the pressure in the compression chamber 30 becomes lower than the pressure in the internal space 22a, and the valve 32 opens the first intake hole 22b. Therefore, the insulating gas in the internal space 22a flows into the compression chamber 30 through the first intake hole 22b, and the pressure drop due to the expansion of the internal space of the compression chamber 30 can be suppressed. Accordingly, the piston 25a does not become difficult to move in the closing operation direction (left direction in FIG. 4) as the pressure in the compression chamber 30 decreases. At the end of the closing operation, the valve 32 comes into contact with the end of the groove 32a, so that the valve 32 is positioned.
(作用と効果)
 第2の実施形態では、前記第1の実施形態と同様な作用及び効果を得ることができ、更に次のような独自の作用及び効果がある。すなわち、閉極動作時には、バルブ32が第1の吸気孔22bを開放することで、可動接触子ベース22の内部空間22aから第1の吸気孔22bを介して圧縮室30内に絶縁性ガスが流れ込む。そのため、圧縮室30の圧力が低下することがなく、ピストン25aに対して発生する閉路動作への抑制力が減少する。
(Action and effect)
In the second embodiment, the same operations and effects as those of the first embodiment can be obtained, and further, there are the following unique operations and effects. In other words, during the closing operation, the valve 32 opens the first intake hole 22b, so that the insulating gas flows from the internal space 22a of the movable contactor base 22 into the compression chamber 30 through the first intake hole 22b. Flows in. Therefore, the pressure in the compression chamber 30 does not decrease, and the suppression force to the closing operation generated with respect to the piston 25a decreases.
 しかも、第2の実施形態では、圧縮室30内へ絶縁性ガスを供給する空間として、可動接触子ベース22の内部空間22aを採用しているので、圧縮室30内への絶縁性ガスの流入量を確保し易い。また、第1の吸気孔22bの大きさを変えるなどして絶縁性ガスの流量調整も容易である。その結果、最小のエネルギーで閉路動作を実施することが可能となり、操作機構5への負担軽減をより進めて遮断時間のさらなる短縮化が可能である。 Moreover, in the second embodiment, the internal space 22a of the movable contact base 22 is employed as a space for supplying the insulating gas into the compression chamber 30, so that the insulating gas flows into the compression chamber 30. Easy to secure the amount. Further, the flow rate of the insulating gas can be easily adjusted by changing the size of the first intake hole 22b. As a result, the closing operation can be performed with the minimum energy, and the interruption time can be further shortened by further reducing the burden on the operation mechanism 5.
[第3の実施形態]
(構成)
 図5及び図6を用いて第3の実施形態の構成について説明する。図5は第3の実施形態の閉路状態を示す断面図、図6は第3の実施形態の開路状態を示す断面図である。なお、第1の実施形態の形態と同一または類似の部分には共通の符号を付し、重複する説明は省略する。
[Third Embodiment]
(Constitution)
The configuration of the third embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional view showing the closed state of the third embodiment, and FIG. 6 is a cross-sectional view showing the open state of the third embodiment. In addition, the same code | symbol is attached | subjected to the part which is the same or similar to the form of 1st Embodiment, and the overlapping description is abbreviate | omitted.
 第3の実施形態では、ピストン25aには複数の第2の吸気孔25dが形成されている。第2の吸気孔25dは、圧縮室30と吸込み室31を連通させ、前記第1の吸気孔22bと同じく、閉極動作時に圧縮室30内へ絶縁性ガスを吸い込むための孔である。 In the third embodiment, the piston 25a has a plurality of second intake holes 25d. The second intake hole 25d communicates the compression chamber 30 and the suction chamber 31, and is a hole for sucking an insulating gas into the compression chamber 30 during the closing operation, like the first intake hole 22b.
 圧縮室30の内部にはリング板状のバルブ32が配置されている。バルブ32は、操作ロッド25の外周部に固定した止め輪32bによって移動範囲が制限されている。止め輪32bは、閉極動作時の終了時におけるバルブ32の位置決め部である。さらに、バルブ32は、圧縮室30の圧力が吸込み室31の圧力より高くなると圧力差により第2の吸気孔25dを塞ぐ構造となっている。 A ring plate-like valve 32 is disposed inside the compression chamber 30. The movement range of the valve 32 is limited by a retaining ring 32 b fixed to the outer peripheral portion of the operation rod 25. The retaining ring 32b is a positioning part of the valve 32 at the end of the closing operation. Further, the valve 32 has a structure that closes the second intake hole 25d by a pressure difference when the pressure in the compression chamber 30 becomes higher than the pressure in the suction chamber 31.
(開極動作)
 以上の構成を有する第3の実施形態の開極動作について、図5に示す閉路状態から図6に示す開路状態に至るまでを説明する。ただし、第1の実施形態における開極動作と同様の点については説明を省略する。
(Opening operation)
The opening operation of the third embodiment having the above configuration will be described from the closed state shown in FIG. 5 to the open state shown in FIG. However, the description of the same points as the opening operation in the first embodiment will be omitted.
 開極動作時はピストン25aが図5の右側に駆動することで圧縮室30の圧力が吸込み室31の圧力よりも高くなり、バルブ32が第2の吸気孔25dを塞ぐ。そのため、第2の吸気孔25dを通って吸込み室31から圧縮室30内に絶縁性ガスが流入することがなく、圧縮室30では絶縁性ガスを効率よく圧縮することができる。 During the opening operation, the piston 25a is driven to the right in FIG. 5 so that the pressure in the compression chamber 30 becomes higher than the pressure in the suction chamber 31, and the valve 32 closes the second intake hole 25d. Therefore, the insulating gas does not flow into the compression chamber 30 from the suction chamber 31 through the second intake hole 25d, and the insulating gas can be efficiently compressed in the compression chamber 30.
 したがって、連通孔25cと中空部25bと通気孔21aを介して、圧縮室30から、固定アーク接触子11側に圧縮室30内の低温ガスを強く噴き出すことができる。更に第3の実施形態においても、第1及び第2の実施形態と同様、吸込み室31の内部空間が広がり絶縁性ガスの圧力が周囲より低下することで、耐弧金属24の周囲の絶縁性ガスを、隙間31aから吸込み室31の内部に取り込む。 Therefore, the low temperature gas in the compression chamber 30 can be strongly ejected from the compression chamber 30 to the fixed arc contactor 11 side through the communication hole 25c, the hollow portion 25b, and the vent hole 21a. Further, in the third embodiment, as in the first and second embodiments, the inner space of the suction chamber 31 is expanded and the pressure of the insulating gas is decreased from the surroundings, so that the insulating properties around the arc-resistant metal 24 are increased. The gas is taken into the suction chamber 31 from the gap 31a.
(閉極動作)
 第3の実施形態の閉極動作について、図6に示す開路状態から図5に示す閉路状態に至るまでを説明する。ただし、第1の実施形態における閉極動作と同様の点については説明を省略する。
(Closed operation)
The closing operation of the third embodiment will be described from the open state shown in FIG. 6 to the closed state shown in FIG. However, the description of the same points as the closing operation in the first embodiment will be omitted.
 閉極動作時はピストン25aが図6の左側に駆動することで圧縮室30の圧力が吸込み室31の圧力よりも低くなり、バルブ32が第2の吸気孔25dを開放する。そのため、吸込み室31の絶縁性ガスは第2の吸気孔25dを介して圧縮室30に流れ込み、吸込み室31内の絶縁性ガスが減り、圧縮室30内の絶縁性ガスが増える。 During the closing operation, the piston 25a is driven to the left in FIG. 6 so that the pressure in the compression chamber 30 becomes lower than the pressure in the suction chamber 31, and the valve 32 opens the second intake hole 25d. Therefore, the insulating gas in the suction chamber 31 flows into the compression chamber 30 through the second intake hole 25d, the insulating gas in the suction chamber 31 is reduced, and the insulating gas in the compression chamber 30 is increased.
 したがって、圧縮室30と吸込み室31の圧力を均一化することができ、圧縮室30の圧力低下と、吸込み室31の圧力上昇とを同時に抑えることが可能である。これにより、ピストン25aが閉極動作方向(図6の左方向)へ動きにくくなるということがない。閉極動作時の終了時にはバルブ32が止め輪32bに当接することで、バルブ32の位置決めがなされる。 Therefore, the pressure in the compression chamber 30 and the suction chamber 31 can be made uniform, and the pressure drop in the compression chamber 30 and the pressure increase in the suction chamber 31 can be suppressed at the same time. Thereby, the piston 25a does not become difficult to move in the closing operation direction (left direction in FIG. 6). At the end of the closing operation, the valve 32 comes into contact with the retaining ring 32b so that the valve 32 is positioned.
(作用と効果)
 第3の実施形態では、前記第1の実施形態及び第2の実施形態と同様な作用と効果を得ることができ、更には閉極動作時に、圧縮室30の圧力低下だけではなく、吸込み室31の圧力上昇に関してもこれを抑制することができる。そのため、閉極動作時において、ピストン25aに発生する閉路動作の抑制力を確実に減少させることができ、一層小さいエネルギーで閉路動作を実施することが可能となる。したがって、操作機構5への負担軽減をさらに進めて、遮断時間の短縮化を効率よく行うことができる。
(Action and effect)
In the third embodiment, the same operation and effect as those of the first and second embodiments can be obtained. Furthermore, not only the pressure in the compression chamber 30 is reduced but also the suction chamber during the closing operation. This can also be suppressed with respect to the pressure increase of 31. For this reason, during the closing operation, the suppression force of the closing operation generated in the piston 25a can be surely reduced, and the closing operation can be performed with even smaller energy. Therefore, it is possible to further reduce the burden on the operation mechanism 5 and efficiently shorten the shut-off time.
[第4の実施形態]
(構成)
 図7及び図8を用いて第4の実施形態の構成について説明する。図7は第4の実施形態の閉路状態を示す断面図、図8は第4の実施形態の開路状態を示す断面図である。なお、第1の実施形態の形態と同一または類似の部分には共通の符号を付し、重複する説明は省略する。
[Fourth Embodiment]
(Constitution)
The configuration of the fourth embodiment will be described with reference to FIGS. FIG. 7 is a cross-sectional view showing the closed state of the fourth embodiment, and FIG. 8 is a cross-sectional view showing the open state of the fourth embodiment. In addition, the same code | symbol is attached | subjected to the part which is the same or similar to the form of 1st Embodiment, and the overlapping description is abbreviate | omitted.
 第4の実施形態は、図1と図2に示す可動接触子21の通気孔21aに関する変形例である。通気孔21bは、操作ロッド25の中空部25bと接続される部分から可動接触子21の端面に向かって絶縁性ガスの流路断面積を拡大するように形成されている。つまり、通気孔21bは、中空部25bとの連通部分から低温ガスの噴き出し部分へ向けて流路断面積が拡大するようになっている。第4の実施形態では通気孔21bの数を一つとする。 4th Embodiment is a modification regarding the vent 21a of the movable contactor 21 shown to FIG. 1 and FIG. The vent hole 21 b is formed so as to increase the flow path cross-sectional area of the insulating gas from the portion connected to the hollow portion 25 b of the operation rod 25 toward the end face of the movable contact 21. That is, the vent hole 21b has a channel cross-sectional area that expands from the communicating portion with the hollow portion 25b toward the low temperature gas ejection portion. In the fourth embodiment, the number of vent holes 21b is one.
(作用と効果)
 以上の第4の実施形態では、前記第1の実施形態と同様な作用と効果に加えて、次のような独自の作用と効果がある。すなわち、第4の実施形態でも、開路動作時に圧縮室30で圧縮された低温ガスは、連通孔25cと中空部25bを介して通気孔21aから噴出する。
(Action and effect)
The fourth embodiment described above has the following unique actions and effects in addition to the actions and effects similar to those of the first embodiment. That is, also in the fourth embodiment, the low-temperature gas compressed in the compression chamber 30 during the opening operation is ejected from the vent hole 21a through the communication hole 25c and the hollow portion 25b.
 このとき、通気孔21bは、中空部25bとの連通部から固定アーク接触子11への噴き出し部へかけて流路断面積が大きくなっている。そのため、通気孔21bを通過する低温ガスは、熱ガスに対して噴出する際の流速が上昇する。したがって、熱ガスをより効率的に冷却し、吹き散らすことが可能となる。その結果、遮断後の過渡回復電圧に対してさらに良好な絶縁性能を得ることができる。 At this time, the vent hole 21b has a channel cross-sectional area that increases from the communicating portion with the hollow portion 25b to the ejection portion to the fixed arc contactor 11. For this reason, the flow velocity of the low-temperature gas passing through the vent hole 21b is increased when it is ejected with respect to the hot gas. Therefore, it becomes possible to cool and blow off hot gas more efficiently. As a result, better insulation performance can be obtained with respect to the transient recovery voltage after interruption.
[他の実施形態]
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other Embodiments]
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 例えば、可動接触子21の外周部に沿って形成される隙間31aの形状や寸法、可動接触子21の形状や寸法、可動接触子21に形成される通気孔21aの数や形状や寸法、操作ロッド25に形成される中空部25bや連通孔25cの数や形状や寸法などは、適宜選択可能であり、アーク40の発生空間に向けて噴き出す低温ガスの流出量を簡単に調整することで、アーク40による熱ガスの拡散及び冷却を効率良く実施することが可能である。また、可動接触子ベース22の端面や摺動パッキン27において、開極動作時の終了時に連通孔25cを覆う面積の大きさなども、操作ロッド25や可動接触子21の制動を実現させる範囲で適宜変更可能である。 For example, the shape and size of the gap 31 a formed along the outer peripheral portion of the movable contact 21, the shape and size of the movable contact 21, the number, shape, size, and operation of the air holes 21 a formed in the movable contact 21 The number, shape, dimensions, and the like of the hollow portion 25b and the communication hole 25c formed in the rod 25 can be selected as appropriate, and by easily adjusting the outflow amount of the low temperature gas that is ejected toward the generation space of the arc 40, It is possible to efficiently diffuse and cool the hot gas by the arc 40. Further, the size of the area of the end surface of the movable contact base 22 and the sliding packing 27 that covers the communication hole 25c at the end of the opening operation is within a range in which the operation rod 25 and the movable contact 21 can be braked. It can be changed as appropriate.
1…ガス絶縁開閉装置
2…圧力容器
3…可動軸
5…操作機構
10…固定接触子部
11…固定アーク接触子
12…固定通電接触子
13…固定部
13a…円筒部
14…固定シールド
14a、23a…開口部
15、24…耐弧金属
17…スリット
20…可動接触子部
21…可動接触子
21a、21b…通気孔
22…可動接触子ベース
22a…内部空間
22b…第1の吸気孔
22c…保持穴
22d…フランジ部
22e…ガス流量制限部
23…可動シールド
25…操作ロッド
25a…ピストン
25b…中空部
25c…連通孔
25d…第2の吸気孔
26…集電接触子
27、28…摺動パッキン
30…圧縮室
31…吸込み室
31a、33、34…隙間
32…バルブ
32a…溝
32b…止め輪
40…アーク
DESCRIPTION OF SYMBOLS 1 ... Gas insulation switchgear 2 ... Pressure vessel 3 ... Movable shaft 5 ... Operation mechanism 10 ... Fixed contact part 11 ... Fixed arc contact 12 ... Fixed electricity supply contact 13 ... Fixed part 13a ... Cylindrical part 14 ... Fixed shield 14a, 23a ... Openings 15, 24 ... Arc resistant metal 17 ... Slit 20 ... Movable contact part 21 ... Movable contactors 21a, 21b ... Vent hole 22 ... Movable contactor base 22a ... Internal space 22b ... First intake hole 22c ... Holding hole 22d ... Flange 22e ... Gas flow restriction 23 ... Movable shield 25 ... Operating rod 25a ... Piston 25b ... Hollow portion 25c ... Communication hole 25d ... Second intake hole 26 ... Current collecting contacts 27, 28 ... Sliding Packing 30 ... Compression chamber 31 ... Suction chambers 31a, 33, 34 ... Gap 32 ... Valve 32a ... Groove 32b ... Retaining ring 40 ... Arc

Claims (10)

  1.  絶縁性ガスを密封した圧力容器と、
     前記圧力容器に互いに対向して配置された固定接触子ベース及び可動接触子ベースと、
     前記固定接触子ベースに固定された固定アーク接触子と、
     前記固定アーク接触子を囲むように前記固定接触子ベースに固定された固定シールドと、
     前記固定シールドに配置された固定通電接触子と、
     前記固定通電接触子に対向して可動自在に配置された可動接触子と、
     前記可動接触子を囲むように前記可動接触子ベースに固定された可動シールドと、
     前記可動接触子に連結されピストンが固定された操作ロッドと、
     前記操作ロッドを往復動させて前記可動接触子を前記固定アーク接触子及び前記固定通電接触子に対し離接させる操作機構と、を備えたガス絶縁開閉装置において、
     前記可動シールドの内部には、前記操作ロッドの前記ピストンを隔壁として、前記可動接触子ベース側には圧縮室を、前記可動接触子側には吸込み室を、それぞれ形成し、
     前記操作ロッドには、中空部と、当該中空部と前記圧縮室とを連通する連通孔とを設け、
     前記可動接触子には前記可動接触子の端面から前記操作ロッドの前記中空部まで貫通した通気孔を設け、
     前記圧縮室は、開極動作時の前記操作ロッドの移動に伴う前記ピストンの移動により室内の前記絶縁性ガスを圧縮し、前記連通孔、前記中空部及び前記通気孔を介して、前記固定アーク接触子と前記可動接触子との間に発生したアークに前記絶縁性ガスを吹付け、
     前記可動接触子の外周部と前記可動シールドの内周部との間には隙間を設け、
     前記吸込み室は、開極動作時の前記操作ロッドの移動に伴う前記ピストンの移動により室内の空間を広がることで室内の圧力を低下させ前記アークによって熱せられた高温の前記絶縁性ガスを前記隙間から室内に吸い込むことを特徴とするガス絶縁開閉装置。
    A pressure vessel sealed with an insulating gas;
    A stationary contact base and a movable contact base disposed opposite to each other in the pressure vessel;
    A fixed arc contact fixed to the fixed contact base;
    A fixed shield fixed to the fixed contact base so as to surround the fixed arc contact;
    A fixed energizing contact disposed on the fixed shield;
    A movable contact that is movably disposed facing the fixed energized contact;
    A movable shield fixed to the movable contact base so as to surround the movable contact;
    An operating rod connected to the movable contact and fixed with a piston;
    In a gas insulated switchgear comprising: an operating mechanism for reciprocating the operating rod to separate the movable contact from the fixed arc contact and the fixed energized contact;
    Inside the movable shield, the piston of the operation rod is used as a partition, a compression chamber is formed on the movable contact base side, and a suction chamber is formed on the movable contact side, respectively.
    The operating rod is provided with a hollow portion and a communication hole that communicates the hollow portion and the compression chamber.
    The movable contact is provided with a vent hole penetrating from the end surface of the movable contact to the hollow portion of the operation rod,
    The compression chamber compresses the insulating gas in the chamber by the movement of the piston accompanying the movement of the operation rod during the opening operation, and the fixed arc is passed through the communication hole, the hollow portion, and the vent hole. Spraying the insulating gas on an arc generated between the contact and the movable contact;
    A gap is provided between the outer peripheral part of the movable contact and the inner peripheral part of the movable shield,
    The suction chamber expands the indoor space by the movement of the piston accompanying the movement of the operating rod during the opening operation, thereby reducing the pressure inside the chamber and causing the high-temperature insulating gas heated by the arc to pass through the gap. A gas insulated switchgear characterized by being sucked into a room from the inside.
  2.  前記圧縮室と向かい合う前記可動接触子ベースの端面には、閉極動作時に前記絶縁性ガスを前記圧縮室内へ吸い込むための第1の吸気孔を形成し、
     前記第1の吸気孔には、開極動作時に当該吸気孔を塞ぎ、閉極動作時に当該吸気孔を開放するバルブを取り付けたことを特徴とする請求項1に記載のガス絶縁開閉装置。
    Formed on the end face of the movable contactor base facing the compression chamber is a first intake hole for sucking the insulating gas into the compression chamber during a closing operation,
    2. The gas insulated switchgear according to claim 1, wherein the first intake hole is provided with a valve that closes the intake hole during the opening operation and opens the intake hole during the closing operation.
  3.  前記ピストンには、前記吸込み室と前記圧縮室とを連通し、閉極動作時に前記吸込み室内の前記絶縁性ガスを前記圧縮室内へ吸い込むための第2の吸気孔を形成し、
     前記第2の吸気孔には、開極動作時に当該吸気孔を塞ぎ、閉極動作時に当該吸気孔を開放するバルブを取り付けたことを特徴とする請求項1又は2に記載のガス絶縁開閉装置。
    The piston communicates with the suction chamber and the compression chamber, and forms a second intake hole for sucking the insulating gas in the suction chamber into the compression chamber during a closing operation,
    The gas-insulated switchgear according to claim 1 or 2, wherein a valve that closes the intake hole during an opening operation and opens the intake hole during a closing operation is attached to the second intake hole. .
  4.  前記バルブは前記圧縮室内に配置したことを特徴とする請求項2又は3に記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 2 or 3, wherein the valve is disposed in the compression chamber.
  5.  閉極動作時の終了時における前記バルブの位置決めを行うバルブ位置決め部を設けたことを特徴とする請求項2~4のいずれかに記載のガス絶縁開閉装置。 5. The gas insulated switchgear according to any one of claims 2 to 4, further comprising a valve positioning portion for positioning the valve at the end of the closing operation.
  6.  前記通気孔は、前記操作ロッドの前記中空部と接続される部分から前記可動接触子の端面に向かって前記絶縁性ガスの流路断面積を拡大するように形成したことを特徴とする請求項1~5のいずれかに記載のガス絶縁開閉装置。 The said air hole is formed so that the flow-path cross-sectional area of the said insulating gas may be expanded toward the end surface of the said movable contact from the part connected with the said hollow part of the said operating rod. 6. A gas insulated switchgear according to any one of 1 to 5.
  7.  前記通気孔を複数配置したことを特徴とする請求項1~6のいずれかに記載のガス絶縁開閉装置。 The gas insulated switchgear according to any one of claims 1 to 6, wherein a plurality of the vent holes are arranged.
  8.  前記固定アーク接触子及び前記固定通電接触子の少なくとも一方を、前記可動接触子側に付勢したことを特徴とする請求項1~7のいずれかに記載のガス絶縁開閉装置。 The gas insulated switchgear according to any one of claims 1 to 7, wherein at least one of the fixed arc contact and the fixed energization contact is biased toward the movable contact.
  9.  前記可動接触子ベースの端面には、開極動作時の終了時に前記連通孔の少なくとも一部を覆うガス流量制限部を設けたことを特徴とする請求項1~7のいずれかに記載のガス絶縁開閉装置。 The gas according to any one of claims 1 to 7, wherein a gas flow rate restricting portion is provided on an end face of the movable contact base to cover at least a part of the communication hole at the end of the opening operation. Insulated switchgear.
  10.  前記可動接触子ベースの内周部及び前記操作ロッドの外周部に接するようにして摺動パッキンを配置し、
     前記摺動パッキンは開極動作時の終了時に前記操作ロッドの前記連通孔の一部を塞ぐように構成したことを特徴とする請求項1~9のいずれかに記載のガス絶縁開閉装置。
    A sliding packing is arranged so as to be in contact with the inner peripheral part of the movable contact base and the outer peripheral part of the operation rod,
    The gas-insulated switchgear according to any one of claims 1 to 9, wherein the sliding packing is configured to close a part of the communication hole of the operation rod at the end of the opening operation.
PCT/JP2016/087587 2016-12-16 2016-12-16 Gas-insulation switch device WO2018109931A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16923924.1A EP3561840B1 (en) 2016-12-16 Gas-insulation switch device
PCT/JP2016/087587 WO2018109931A1 (en) 2016-12-16 2016-12-16 Gas-insulation switch device
CN201680091563.3A CN110088866B (en) 2016-12-16 2016-12-16 Gas-insulated switchgear
JP2018556149A JP6823082B2 (en) 2016-12-16 2016-12-16 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087587 WO2018109931A1 (en) 2016-12-16 2016-12-16 Gas-insulation switch device

Publications (1)

Publication Number Publication Date
WO2018109931A1 true WO2018109931A1 (en) 2018-06-21

Family

ID=62558270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087587 WO2018109931A1 (en) 2016-12-16 2016-12-16 Gas-insulation switch device

Country Status (3)

Country Link
JP (1) JP6823082B2 (en)
CN (1) CN110088866B (en)
WO (1) WO2018109931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138366A1 (en) * 2019-12-31 2021-07-08 Southern States Llc High voltage electric power switch with carbon arcing electrodes and carbon dioxide dielectric gas

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553824A (en) 1978-10-17 1980-04-19 Mitsubishi Electric Corp Gas switch
JPS58100326A (en) * 1981-12-10 1983-06-15 株式会社東芝 Buffer type gas breaker
JPS6114444A (en) 1984-06-30 1986-01-22 Nec Home Electronics Ltd Air-fuel ratio control system
JPH0214741U (en) * 1988-07-15 1990-01-30
JPH0277830U (en) * 1988-12-02 1990-06-14
JPH03116638U (en) * 1990-03-14 1991-12-03
JPH0553094U (en) * 1991-12-24 1993-07-13 株式会社東芝 Gas insulated ground switch
US5258590A (en) 1991-08-02 1993-11-02 Gec Alsthom Sa Medium- or high-tension circuit breaker having abutting arcing contacts
JPH08321233A (en) 1995-05-13 1996-12-03 Abb Res Ltd Circuit breaker
JP2002075148A (en) 2000-08-31 2002-03-15 Hitachi Ltd Puffer type gas-blast circuit breaker
JP2008112633A (en) 2006-10-30 2008-05-15 Mitsubishi Electric Corp Gas-blast circuit breaker
WO2012093507A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Switching apparatus
JP2014072032A (en) 2012-09-28 2014-04-21 Toshiba Corp Gas-blast circuit breaker
JP2015043656A (en) 2013-08-26 2015-03-05 株式会社東芝 Circuit breaker
JP2015079635A (en) 2013-10-16 2015-04-23 株式会社東芝 Gas circuit breaker
JP2015185467A (en) 2014-03-25 2015-10-22 株式会社東芝 gas circuit breaker
JP2015185381A (en) 2014-03-24 2015-10-22 株式会社東芝 gas circuit breaker
WO2015185095A1 (en) 2014-06-02 2015-12-10 Abb Technology Ag High voltage puffer breaker and a circuit breaker unit comprising such a puffer breaker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2384425T3 (en) * 2009-07-21 2012-07-04 Abb Technology Ag High voltage switch
JP5516568B2 (en) * 2011-12-28 2014-06-11 株式会社日立製作所 Puffer type gas circuit breaker
TW201442051A (en) * 2013-03-08 2014-11-01 Hitachi Ltd Gas blast circuit breaker
KR101632978B1 (en) * 2014-06-26 2016-06-24 현대중공업 주식회사 Gas insulated circuit breaker
CN105023800B (en) * 2015-07-08 2018-01-26 平高集团有限公司 Double acting arc-chutes, breaker and Cubicle Gas-Insulated Switchgear

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553824A (en) 1978-10-17 1980-04-19 Mitsubishi Electric Corp Gas switch
JPS58100326A (en) * 1981-12-10 1983-06-15 株式会社東芝 Buffer type gas breaker
JPS6114444A (en) 1984-06-30 1986-01-22 Nec Home Electronics Ltd Air-fuel ratio control system
JPH0214741U (en) * 1988-07-15 1990-01-30
JPH0277830U (en) * 1988-12-02 1990-06-14
JPH03116638U (en) * 1990-03-14 1991-12-03
US5258590A (en) 1991-08-02 1993-11-02 Gec Alsthom Sa Medium- or high-tension circuit breaker having abutting arcing contacts
JPH0553094U (en) * 1991-12-24 1993-07-13 株式会社東芝 Gas insulated ground switch
JPH08321233A (en) 1995-05-13 1996-12-03 Abb Res Ltd Circuit breaker
JP2002075148A (en) 2000-08-31 2002-03-15 Hitachi Ltd Puffer type gas-blast circuit breaker
JP2008112633A (en) 2006-10-30 2008-05-15 Mitsubishi Electric Corp Gas-blast circuit breaker
WO2012093507A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Switching apparatus
JP2014072032A (en) 2012-09-28 2014-04-21 Toshiba Corp Gas-blast circuit breaker
JP2015043656A (en) 2013-08-26 2015-03-05 株式会社東芝 Circuit breaker
JP2015079635A (en) 2013-10-16 2015-04-23 株式会社東芝 Gas circuit breaker
JP2015185381A (en) 2014-03-24 2015-10-22 株式会社東芝 gas circuit breaker
JP2015185467A (en) 2014-03-25 2015-10-22 株式会社東芝 gas circuit breaker
WO2015185095A1 (en) 2014-06-02 2015-12-10 Abb Technology Ag High voltage puffer breaker and a circuit breaker unit comprising such a puffer breaker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561840A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138366A1 (en) * 2019-12-31 2021-07-08 Southern States Llc High voltage electric power switch with carbon arcing electrodes and carbon dioxide dielectric gas

Also Published As

Publication number Publication date
JPWO2018109931A1 (en) 2019-10-24
EP3561840A1 (en) 2019-10-30
EP3561840A4 (en) 2020-08-19
CN110088866B (en) 2021-11-19
CN110088866A (en) 2019-08-02
JP6823082B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP5516568B2 (en) Puffer type gas circuit breaker
JP2009048789A (en) Grounding switch
JP2019517721A (en) Gas-insulated low-voltage or medium-voltage load disconnect switch
CN104143467A (en) Pneumatic arc extinguishing device and high-voltage circuit breaker with arc extinguishing device
WO2018109931A1 (en) Gas-insulation switch device
JP4879366B1 (en) Gas circuit breaker
CN110706966B (en) Arc contact and circuit breaker
JP2015041504A (en) Gas circuit breaker
JP2018098128A (en) Gas insulated switchgear
JP2016201170A (en) Gas Circuit Breaker
EP3561840B1 (en) Gas-insulation switch device
JP2016219317A (en) Gas Circuit Breaker
JP2010061858A (en) Gas-blast circuit breaker
WO2018225255A1 (en) Gas circuit breaker
KR102466213B1 (en) Gas insulated circuit breaker
JP6746787B2 (en) Gas circuit breaker
JP6048226B2 (en) Gas insulated switch
JP2014002868A (en) Gas-blast circuit breaker
JP2015159030A (en) gas circuit breaker
JP2013054989A (en) Gas circuit breaker
JP2023115499A (en) gas circuit breaker
JP2018006111A (en) Gas circuit breaker
JPH07249355A (en) Gas-blast breaker
JP2014186796A (en) Gas circuit breaker
JP6084506B2 (en) Sliding member for gas circuit breaker and gas circuit breaker using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016923924

Country of ref document: EP

Effective date: 20190716