WO2018109920A1 - Mass spectrometry device - Google Patents

Mass spectrometry device Download PDF

Info

Publication number
WO2018109920A1
WO2018109920A1 PCT/JP2016/087512 JP2016087512W WO2018109920A1 WO 2018109920 A1 WO2018109920 A1 WO 2018109920A1 JP 2016087512 W JP2016087512 W JP 2016087512W WO 2018109920 A1 WO2018109920 A1 WO 2018109920A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
unit
flight
pair
Prior art date
Application number
PCT/JP2016/087512
Other languages
French (fr)
Japanese (ja)
Inventor
良弘 上野
治 古橋
勇介 立石
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/087512 priority Critical patent/WO2018109920A1/en
Publication of WO2018109920A1 publication Critical patent/WO2018109920A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/405Time-of-flight spectrometers characterised by the reflectron, e.g. curved field, electrode shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/406Time-of-flight spectrometers with multiple reflections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4245Electrostatic ion traps

Definitions

  • the present invention relates to a mass spectrometer, and more particularly, to a mass spectrometer equipped with a time-of-flight mass analyzer.
  • TOFMS time-of-flight mass spectrometer
  • OA-TOFMS orthogonal acceleration type TOFMS
  • OA-TOFMS is configured to pulse-accelerate ions in a direction orthogonal to the direction of introduction of an ion beam derived from a sample component
  • various ion sources that ionize components contained in a sample introduced continuously
  • an atmospheric pressure ion source such as an electrospray ion source or an electron ion source
  • a quadrupole mass filter that selects ions having a specific mass-to-charge ratio from ions derived from sample components, and the selected ions are dissociated by collision-induced dissociation or the like.
  • a Q-TOF type mass spectrometer that combines a collision cell and OA-TOFMS is also widely used (see Non-Patent Document 1).
  • reflectron type TOFMS is generally used, and the measurement cycle is about 10 kHz, that is, the time required for one measurement is about 100 ⁇ sec.
  • the maximum mass resolution is about 50,000.
  • a multi-circular TOFMS (hereinafter referred to as “MT-TOFMS”) or a multi-reflection TOFMS (hereinafter referred to as “MR-TOFMS”) is known as one that can obtain a higher mass resolution than the reflectron type TOFMS.
  • the former revolves ions a plurality of times along a circular orbit such as an elliptical shape or an 8-shaped shape, and the latter reciprocates ions a plurality of times along a linear reciprocating orbit (Non-Patent Document 2). reference).
  • any of these TOFMS it is possible to secure a long flight distance and obtain a high mass resolution while suppressing the space of the flight space.
  • the measurement cycle is about 100 Hz and the mass resolution is about 100,000 at the maximum.
  • a Fourier transform type mass spectrometer (hereinafter referred to as “FT-MS”) is known as a mass spectrometer capable of achieving even higher mass resolution.
  • FT-MS Fourier transform type mass spectrometer
  • ions flying over a predetermined flight distance are introduced into an ion detector and detected.
  • ions that continue to circulate (or reciprocate) on the same trajectory are repeatedly detected by the non-destructive ion detector for each lap. Since ions with the same mass-to-charge ratio move at the same frequency (frequency), the detection signal obtained when ions with various mass-to-charge ratios are mixed is a spectrum in which signals of various frequencies are superimposed. Signal. Therefore, in FT-MS, a mass spectrum is obtained by performing a Fourier transform process on such a spectrum signal.
  • FT-MS uses an ICR (ion cyclotron resonance) cell that periodically moves ions by the action of a magnetic field.
  • Orbitrap multiple orbital time-of-flight mass analyzer, multiple reflection flight
  • time-type mass analyzers that periodically move ions using an electric field (see Patent Document 1).
  • the measurement period is as long as about 10 Hz, but the mass resolution is about 500,000, which is about 10 times as high as that of Q-TOFMS.
  • a mass spectrometer capable of obtaining a measurement period and mass resolution in accordance with the purpose of measurement and the like is selected.
  • LC liquid chromatograph
  • GC gas chromatograph
  • Q-TOFMS Q-TOFMS with a short measurement period is often used while sacrificing mass resolution to some extent.
  • MT-TOFMS, MR-TOFMS, FT-MS, etc. are used for measurement in which mass resolution is more important than measurement cycle and measurement throughput.
  • the measurement period and the mass resolution may be adjusted to some extent, but basically, the measurement period and the mass resolution are almost determined by the method, in other words, the configuration of the apparatus. . Therefore, when it is desired to measure various samples for various purposes or when it is necessary to measure them, it is necessary to prepare various types of mass spectrometers as described above.
  • these mass spectrometers are quite expensive, it is very expensive for the user to prepare a plurality of mass spectrometers with different methods. If a plurality of mass spectrometers having different methods are prepared, the management and maintenance of the apparatus is troublesome, and there is a problem in securing the installation location.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the object of the present invention is to perform high-speed measurement with a short measurement cycle although the mass resolution is not so high depending on the purpose of measurement, and conversely, the measurement cycle.
  • a high-resolution measurement that can provide a very high mass resolution but a measurement period and mass resolution that are both high-speed and high-resolution measurements can be switched with a single device. It is providing the mass spectrometer which can be performed.
  • the mass spectrometer of the first aspect of the present invention which has been made to solve the above problems, a) an ion guide for transporting ions derived from sample components; b) an operation of ejecting the ions transported by the ion guide in a first direction different from the traveling direction of the ions, and the transported ions in either the traveling direction of the ions or the first direction.
  • An ion extruding unit that selectively performs an operation of deflecting in a different second direction, c)
  • a flight time including a flight space in which ions ejected from the ion pusher in the first direction fly, and a first detection unit provided at a position where the ions flying in the flight space arrive.
  • Type mass spectrometer d) Ion trap that captures and temporarily holds ions traveling in the second direction from the ion pusher and ejects the held ions toward the flight space of the time-of-flight mass spectrometer And e) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher in the first direction reach the first detector, the flight trajectory A pair of ion reflectors that each form a reflected electric field such that ions reciprocate between the pair of ion optical elements along f) a second detection unit that detects non-contact and non-destructive ions flying between the pair of ion reflection units; g) a first analysis mode in which ions are ejected from the ion pusher in the first direction, fly in the flight space and detected by the first detector, and the second from the ion pusher.
  • ions After ions are advanced in the direction and trapped in the ion trapping part, ions are ejected from the ion trapping part and introduced into the flight space, and the reciprocating motion is performed one or more times by the pair of ion reflecting parts.
  • a control unit In the first and second analysis modes, ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed.
  • the ion trapping unit may be an ion trap that traps ions by the action of a high-frequency electric field.
  • This ion trap may be either a three-dimensional quadrupole ion trap or a linear ion trap.
  • the mass spectrometer of the second aspect of the present invention which has been made to solve the above problems, a) an ion guide for transporting ions derived from sample components; b) an ion extruding unit that ejects ions transported by the ion guide in a direction different from the direction of travel of the ions; c) a time-of-flight mass analyzer including a flight space in which ions ejected from the ion pusher fly, and a first detection unit provided at a position where the ions flying in the flight space reach; d) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher reach the first detection unit, and the pair of ion optical elements along the flight trajectory A pair of ion reflectors that each form a reflected electric field so that ions reciprocate between ion optical elements; e) a second detector that detects non-contact and non-destructive ions flying between the pair of ion
  • a control unit that controls each unit to selectively perform any one of the third analysis mode that is repeatedly detected by the second detection unit while reciprocating a plurality of times by the pair of ion reflection units, g)
  • ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed.
  • the ion guide for example, transports ions derived from the sample component to the subsequent stage while converging ions derived from the sample component by the action of a high-frequency electric field.
  • the ions transported by this ion guide regardless of their type, are derived from various types of molecule-related ions obtained by ionizing compounds in the sample, fragment ions generated during the ionization process, For example, product ions generated by dissociating ions by collision-induced dissociation or the like are included. Ions transported by the ion guide are introduced into the ion extrusion section. The ion path up to this point is common to the first to third analysis modes.
  • ions are ejected from the ion extruding unit in the first direction in which ions are ejected from the ion extruding part, and in the mass spectrometer of the second aspect according to the present invention. It is preferable that any of the directions is substantially perpendicular to the direction of ion introduction into the ion extrusion section.
  • the second direction in which ions travel after being deflected by the ion extruding unit may be a direction almost opposite to the first direction.
  • the ion push-out unit converts the introduced ions into the first direction by the action of the electric field.
  • the ion pusher functions as an orthogonal acceleration unit that sends ions into the flight space of the time-of-flight mass spectrometer. . Ions ejected with a predetermined energy from the ion pusher fly in the flight space, and during that time, each ion reaches a first detector with a position difference according to the mass-to-charge ratio.
  • the signal analyzer obtains the flight time of each ion based on the detection signal from the first detector, and acquires the mass information by converting the flight time into a mass-to-charge ratio.
  • a mass spectrometer configured to select ions having a specific mass-to-charge ratio derived from a sample component with a quadrupole mass filter, dissociate the selected ions, and introduce the ions into an ion extrusion unit through an ion guide.
  • the first analysis mode is a mode for performing analysis corresponding to Q-TOFMS.
  • the ion pusher unit converts the introduced ions into the second direction by the action of the electric field. Spit out. This ion is introduced into the ion trapping part located in the second direction.
  • the ion trapping unit traps and temporarily holds ions by the action of an electric field, and ejects the held ions toward the flight space of the time-of-flight mass analysis unit at a predetermined timing.
  • the ion trapping unit ejects ions in a direction opposite to the direction in which ions are introduced into the ion trapping unit, thereby The ion pusher can be passed through and sent into the flight space.
  • ions ejected from the ion trapping part are introduced into the flight space, and after the ions have passed through the ion reflecting part on the side close to the ion pushing part on the flight trajectory of the pair of ion reflecting parts.
  • Each of the pair of ion reflecting portions forms an electric field that reflects ions.
  • ions reciprocate along the flight path between the pair of ion reflecting portions.
  • the reflected electric field in the ion reflecting portion on the side close to the first detecting portion on the flight trajectory of the pair of ion reflecting portions disappears, the ions pass through the ion reflecting portion and reach the first detecting portion. .
  • the second analysis mode is a mode for performing analysis corresponding to MR-TOFMS.
  • the control unit in the third analysis mode, basically controls each unit in the same manner as in the second analysis mode. Therefore, the ions introduced into the flight space reciprocate between the pair of ion reflecting portions.
  • the second detection unit does not substantially function, whereas in the third analysis mode, the second detection unit generates ions once during at least one round trip of ions. Detect and output detection signal.
  • the signal analysis unit obtains mass information of each ion by performing Fourier transform on the spectrum signal obtained based on the detection signal from the second detection unit.
  • the third analysis mode is a mode for performing analysis corresponding to FT-MS.
  • the control unit further ejects ions from the ion push-out unit in the first direction and introduces them into the flight space, and the pair of ion reflection units Then, after reciprocating once or a plurality of times, each part can be controlled to selectively perform the analysis mode detected by the first detection part.
  • the analysis mode at this time, ions are not directly captured by the ion trapping part, but are ejected directly from the ion pusher toward the flight space. Therefore, although the mass resolution is slightly sacrificed as compared with the second analysis mode, the ion trapping is performed. Since the ion trapping is not performed in the part, the analysis measurement period corresponding to MR-TOFMS can be shortened.
  • each part can be controlled so as to selectively perform the analysis mode in which the second detection part repeatedly detects the reciprocating motion multiple times. Even in the analysis mode at this time, ions are not directly captured by the ion trapping part, but are ejected directly from the ion pusher toward the flight space. Therefore, although the mass resolution is slightly sacrificed compared to the third analysis mode, the ion trapping is performed. Since the ion capture in the part is not performed, the measurement cycle of analysis corresponding to FT-MS can be shortened.
  • the control unit further causes ions to travel from the ion extrusion unit in the second direction and are captured by the ion capture unit, and then from the ion capture unit. It is also possible to adopt a configuration in which each unit is controlled so as to selectively perform an analysis mode in which ions are ejected to fly in the flight space and detected by the first detection unit. In this analysis mode, ions are once trapped in the ion trapping part and ejected from the ion trapping part toward the flight space. Therefore, although the measurement cycle is slightly longer than in the first analysis mode, this corresponds to Q-TOFMS. The mass resolution of the analysis can be improved. By preparing more variations of the analysis mode in this way, the user can select an analysis mode that is closer to the target measurement cycle and mass resolution.
  • the time of flight is calculated using the ion trapping unit as the ion ejection source in the second and third analysis modes, whereas the second aspect according to the present invention.
  • the ion extruding unit serves as an ion ejection source in any of the first to third analysis modes.
  • the mass spectrometer of the first aspect is more advantageous for improving the accuracy of the mass information.
  • the mass spectrometer of the second mode it is not necessary to provide an ion trapping unit, and the ion push-out unit may be configured to eject ions only in one direction.
  • a mass spectrometer is more advantageous.
  • the time-of-flight mass analyzer is a reflectron type time-of-flight having a main ion reflector different from the pair of ion reflectors. It is a type
  • the said pair of ion reflection part is good to set it as the structure arrange
  • the analysis corresponding to Q-TOFMS, the analysis corresponding to MR-TOFMS, and the analysis corresponding to FT-MS can be selectively executed by one apparatus. . That is, depending on the purpose of measurement and the like, it is possible to selectively perform measurement capable of realizing extremely high mass resolution although the measurement period is considerably long, and measurement in a short measurement period although the mass resolution is relatively low. This reduces the economic burden of arranging a plurality of mass spectrometers of different methods, eliminates the complexity of management and maintenance, and reduces the installation space for the apparatus.
  • FIG. 1 is a schematic configuration diagram of the mass spectrometer of the present embodiment.
  • the mass spectrometer of the present embodiment includes an ion source 1, a quadrupole mass filter 2, a collision cell 3 having an ion guide 4 therein, and an ion pusher 5 inside a chamber (not shown) maintained in a vacuum. And an ion trap 6 and a time-of-flight mass analyzer 7 including a flight space 8 and a main ion detector 11.
  • the mass spectrometer of the present embodiment includes a control unit 20, an ion trap power supply unit 22, an extrusion electrode power supply unit 21, an MR reflector power supply unit 24, and an RT unit as functional blocks of a control / processing system.
  • the reflector power supply unit 23, the input unit 25, and the signal analysis unit 30 are provided.
  • the ion source 1 ionizes sample components in the sample gas by, for example, electron ionization (EI).
  • EI electron ionization
  • the ionization method is not limited to the EI method, and any ionization method can be used.
  • the ion source by atmospheric pressure ionization methods such as an electrospray ionization (ESI) method, as the ion source 1, this ion source 1 is put under atmospheric pressure.
  • ESI electrospray ionization
  • the quadrupole mass filter 2 includes four rod electrodes arranged so as to surround the ion optical axis C extending in the X-axis direction, and ions introduced into the space surrounded by the four rod electrodes are mass-charged. According to the ratio, ions having a specific mass-to-charge ratio (or mass-to-charge ratio range) are selectively passed.
  • the collision cell 3 is a box-like body having an ion inlet 3a and an ion outlet 3b, into which a collision gas such as Ar is introduced. Ions entering the collision cell 3 through the ion inlet 3a have appropriate energy and come into contact with the collision gas, and are dissociated by collision-induced dissociation (CID) to generate various product ions.
  • CID collision-induced dissociation
  • the ion extruding unit 5 includes a pair of flat plate-shaped extruding electrodes 5a that are arranged to face each other with the ion optical axis C interposed therebetween and extend in the XY plane.
  • the pair of extrusion electrodes 5a have openings through which ions can pass. Or at least one part of the extrusion electrode 5a may be mesh shape.
  • the extrusion electrode power supply unit 21 applies a pulsed DC voltage to the extrusion electrode 5a, and ions are introduced into the space between the extrusion electrodes 5a from the collision cell 3 side along the ion optical axis C.
  • ions are discharged in a direction substantially orthogonal to the ion optical axis C by the action of an electric field formed thereby.
  • the ions are discharged in one of two directions that are substantially opposite to each other (in the positive direction or the negative direction along the Z axis in FIG. 1). It is.
  • the ion trap 6 is disposed on an extension in one direction from which ions are ejected from the ion extruding unit 5.
  • the inner surface disposed so as to surround the axis extending in the Y-axis direction in FIG. It is a linear ion trap including four rod electrodes that are hyperbolic.
  • the ion trap 6 may be a three-dimensional quadrupole ion trap.
  • an ion entrance / exit port 6b is formed at a position where ions ejected from the ion extruding unit 5 can be received.
  • the ion trap power supply unit 22 applies a high frequency voltage, a direct current voltage, or both to each rod electrode constituting the ion trap 6, and the ions introduced into the ion trap 6 through the ion entrance / exit port 6b are converted into a high frequency electric field. It can be captured by the action of.
  • the time-of-flight mass analysis unit 7 has a reflectron type configuration, so that the ions ejected from the ion pusher 5 or the ions ejected from the ion trap 6 and passed through the ion pusher 5 are turned back.
  • a main reflector 10 that reflects ions by the action of an electric field is disposed at a predetermined position in the flight space 8.
  • the main reflector 10 is composed of a flat back plate and a plurality of ring electrodes, and a reflected electric field is formed by a DC voltage applied to each electrode from the RT reflector power supply unit 23.
  • a main ion detector 11 is arranged at a position where ions reflected by the main reflector 10 arrive, that is, on an extension of the flight trajectory A in the flight space 8.
  • a pair of MR reflectors 9A and 9B are arranged on both sides of the main reflector 10.
  • Each of the MR reflectors 9A and 9B includes a plurality of ring electrodes. Due to the DC voltage applied to each electrode of the MR reflectors 9A and 9B from the MR reflector power supply unit 24, in each of the MR reflectors 9A and 9B, ions arriving from the main reflector 10 side are substantially specular. Reflected electric field is formed (however, the reflection position differs depending on the velocity of ions). Further, a sub-ion detector 12 that detects passing (flying) ions in a non-contact and non-destructive manner is disposed between the pair of MR reflectors 9A and 9B along the flight path A.
  • the detection signals from the main ion detector 11 and the sub ion detector 12 are both input to the signal analysis unit 30 and converted into digital data, respectively, and then a predetermined analysis process is executed to create a mass spectrum. .
  • description of circuit blocks for applying voltages to the quadrupole mass filter 2, the ion guide 4 and the like is omitted, but these are provided. Of course.
  • an operator can perform measurement in one of the following three analysis modes by giving a predetermined instruction using the input unit 25.
  • the measurement operation in each analysis mode will be described in detail.
  • FIG. 2 is a diagram for explaining the operation in the Q-TOF mode in the mass spectrometer of the present embodiment.
  • FIG. 2 (and FIG. 3 and FIG. 4 below) shows only the components necessary for explanation out of the components of the mass spectrometer of the present embodiment shown in FIG.
  • the Q-TOF mode is a mode for carrying out measurement equivalent to that of the Q-TOF type mass spectrometer.
  • the ions derived from the sample components are generated by the ion source 1, and ions having a specific mass-to-charge ratio are selected by the quadrupole mass filter 2 and introduced into the collision cell 3 as precursor ions.
  • the precursor ions are dissociated by contacting the collision gas in the collision cell 3 to generate various product ions.
  • the ion guide 4 has a simple linear ion trap function, temporarily accumulates the generated product ions, and sends them out to the subsequent stage at a predetermined timing.
  • the extrusion electrode power supply unit 21 applies a predetermined DC voltage to the extrusion electrode 5a.
  • the ion is subjected to a force in the positive direction along the Z axis (downward in FIG. 1) by the electric field formed thereby, and is ejected to the flight space 8 with a predetermined energy. Since ions have traveled in the positive direction along the X axis immediately before being ejected, the direction in which the ions are actually ejected is not the Z axis direction, but is slightly inclined from the Z axis direction.
  • the secondary ion detector 12 does not become an obstacle to the flight of ions. Therefore, the ions ejected from the ion pusher 5 travel along the flight path A, are folded back by the reflected electric field in the main reflector 10, and finally reach the main ion detector 11 and are detected.
  • the signal analysis unit 30 obtains the flight time of each ion starting from the time when the ions are ejected by the ion pusher 5, and converts the flight time into a mass-to-charge ratio. Create a mass spectrum.
  • FIG. 3 is a diagram for explaining the operation in the MR-TOF mode in the mass spectrometer of the present embodiment.
  • Precursor ions derived from sample components are dissociated in the collision cell 3, and the behavior of ions until the generated product ions are introduced into the ion extruding unit 5 along the ion optical axis C is the same as in the Q-TOF mode. is there.
  • the extrusion electrode power supply unit 21 applies a predetermined DC voltage to the extrusion electrode 5a at a predetermined timing after the ion group is introduced into the ion extrusion unit 5.
  • the polarity of the voltage applied at this time is opposite to that in the Q-TOF mode. Therefore, ions are discharged by receiving a force in the negative direction (upward in FIG. 1) along the Z axis by the electric field formed thereby. Therefore, the ions generally travel along the trajectory B and enter the inside of the ion trap 6 through the ion entrance / exit 6b. Ions entering the inside of the ion trap 6 are captured by an electric field formed by a high frequency voltage applied to each rod electrode of the ion trap 6 from the ion trap power supply unit 22.
  • the energy given to the ions in the ion pusher 5 is made smaller than that in the Q-TOF mode.
  • the ions trapped in the ion trap 6 are cooled in contact with, for example, a cooling gas supplied into the ion trap 6. Then, the various ions that have been trapped are simultaneously ejected through the ion entrance / exit 6b by the DC high voltage applied to the ion trap 6 from the ion trap power supply unit 22. At this time, an electric field is not formed in the ion extruding unit 5, and ions pass through the ion extruding unit 5 and enter the flight space 8 and travel along the flight trajectory A.
  • first MR reflector After the ion group passes through the MR reflector on the side close to the ion pusher 5 (hereinafter referred to as “first MR reflector”), the ion group is reflected by the main reflector 10 to be the main ion detector.
  • the MR reflector power supply unit 24 uses the electrodes of the first and second MR reflectors 9A and 9B before reaching the MR reflector 9B on the side close to 11 (hereinafter referred to as “second MR reflector”) 9B. A predetermined voltage is applied to each. Thereby, a reflected electric field is formed in each of the first and second MR reflectors 9A and 9B.
  • the ions flying along the flight trajectory A reach the second MR reflector 9B
  • the ions are reflected by the reflected electric field and return to the flight trajectory A.
  • the returned ions reach the first MR reflector 9A
  • they are reflected by the reflected electric field.
  • the ions are confined on the flight path A between the first MR reflector 9A and the second MR reflector 9B and reciprocate. If the reflected electric field disappears when the ions reach the second MR reflector 9B, the ions pass through the second MR reflector 9B and reach the main ion detector 11 to be detected.
  • the signal analysis unit 30 Upon receiving the detection signal from the main ion detector 11, the signal analysis unit 30 obtains the flight time of each ion starting from the time when the ions are ejected by the ion pusher 5, and sets the flight distance based on the assumed number of round trips. A mass spectrum is created by converting the time of flight into a mass-to-charge ratio as one condition.
  • FIG. 4 is a diagram for explaining the operation in the FT-MS mode in the mass spectrometer of the present embodiment.
  • the operation until the analysis target ions ejected from the ion trap 6 are introduced into the flight path A between the MR reflectors 9A and 9B is the same as in the MR-TOFMS mode.
  • the ion behavior itself is the same as in the MR-TOFMS mode, but in this FT-MS mode, the secondary ion detector 12 moves in one direction (for example, the main reflection from the first MR reflector 9A) when the ions repeatedly reciprocate. Ion passing in the direction toward the vessel 10).
  • the secondary ion detector 12 detects the ions almost continuously and outputs a detection signal.
  • the signal analysis unit 30 converts the detection signal from the secondary ion detector 12 into digital data and accumulates it for a predetermined time, and creates a mass spectrum in which the mass information of each ion is reflected by performing a Fourier transform operation on this data. To do.
  • the reflected electric field of the second MR reflector 9B may be canceled in the same manner as in the MR-TOFMS mode, and ions may sequentially reach the main ion detector 11 to be detected.
  • the signal analysis unit 30 can also create a mass spectrum based on the detection signal from the main ion detector 11.
  • any one of the three types of measurement, the Q-TOF mode, the MR-TOF mode, and the FT-MS mode can be selectively performed according to an operator's instruction.
  • Mass resolution is highest in the FT-MS mode, and decreases in the order of the MR-TOF mode and the Q-TOF mode.
  • the measurement cycle is the shortest in the Q-TOF mode, and becomes longer in the order of the MR-TOF mode and the FT-MS mode.
  • the operator can arbitrarily select one of the modes according to the required mass resolution and measurement period. Of course, the mode may be automatically switched.
  • ions are temporarily held in the ion trap 6, and ions are ejected from the ion trap 6 to cause the main ion detector 11.
  • At least one of the modes (modified FT-MS mode) detected by the device 12 may be additionally provided.

Abstract

A time-of-flight mass spectrometry unit (7) and an ion trap (6) are provided on either side of an ion expelling unit (5) that is capable of ejecting ions in a direction substantially perpendicular to a direction in which the ions are introduced. In a flight space (8) of the time-of-flight mass spectrometry unit (7), a pair of MR reflectors (9A, 9B) are provided on either side of a main reflector (10), and a non-destructive sub-ion detector (12) is also provided. When in a Q-TOF mode, ions ejected from the ion expelling unit (5) are caused to fly along a flight path (A) and are detected by a main ion detector (11). When in an MR-TOFMS mode, ions discharged from the ion expelling unit (5) are trapped by the ion trap (6), and ions ejected from the ion trap (6) are introduced into the flight path (A), are caused to go back and forth a plurality of times between the pair of MR reflectors (9A, 9B), and are then detected by the main ion detector (11). When in an FT-MS mode, ions going back and forth between the pair of MR reflectors (9A, 9B) are detected by the sub-ion detector (12), and the resulting detection signal is subjected to Fourier transform to obtain a mass spectrum. This enables measurements with different mass resolutions and measurement periods by using a single device.

Description

質量分析装置Mass spectrometer
 本発明は質量分析装置に関し、さらに詳しくは、飛行時間型質量分析器を備えた質量分析装置に関する。 The present invention relates to a mass spectrometer, and more particularly, to a mass spectrometer equipped with a time-of-flight mass analyzer.
 飛行時間型質量分析装置(以下「TOFMS」と称す)では一般に、試料成分由来のイオンに一定の運動エネルギを付与して一定距離の空間を飛行させ、その飛行に要する時間を計測して該飛行時間からイオンの質量電荷比を算出する。そのため、イオンを加速して飛行を開始させる際に、イオンの位置やイオンが持つ初期エネルギにばらつきがあると、同一質量電荷比を持つイオンの飛行時間にばらつきが生じ質量分解能や質量精度の低下に繋がる。こうした課題を解決する手法の一つとして、イオンビームの入射方向と直交する方向にイオンを加速して飛行空間に送り込む直交加速式TOFMS(以下「OA-TOFMS」と称す)が知られている。 In a time-of-flight mass spectrometer (hereinafter referred to as “TOFMS”), in general, a constant kinetic energy is imparted to ions derived from sample components to fly through a space of a certain distance, and the time required for the flight is measured and the flight is performed. The mass-to-charge ratio of ions is calculated from the time. For this reason, when ions are accelerated and flight is started, if there are variations in the position of ions or the initial energy of ions, variations in the flight time of ions with the same mass-to-charge ratio will result in a decrease in mass resolution and mass accuracy. It leads to. As a technique for solving such a problem, an orthogonal acceleration type TOFMS (hereinafter referred to as “OA-TOFMS”) in which ions are accelerated in a direction orthogonal to the incident direction of an ion beam and sent to a flight space is known.
 OA-TOFMSは、試料成分由来のイオンビームの導入方向と直交する方向にイオンをパルス的に加速する構成であるため、連続的に導入される試料に含まれる成分をイオン化する様々なイオン源、例えばエレクトロスプレイイオン源などの大気圧イオン源や電子イオン源などとの組合せが可能である。また最近では、化合物の構造解析等を行うために、試料成分由来のイオンから特定の質量電荷比を有するイオンを選択する四重極マスフィルタ、及びその選択されたイオンを衝突誘起解離等により解離させるコリジョンセルと、OA-TOFMSとを組み合わせたQ-TOF型質量分析装置も広く利用されている(非特許文献1参照)。現在市販されているQ-TOF型質量分析装置では一般にリフレクトロン型のTOFMSが利用されており、測定周期は10kHz程度、つまり1回の測定の所要時間は100μsec程度である。また、質量分解能は最高で50000程度である。 Since OA-TOFMS is configured to pulse-accelerate ions in a direction orthogonal to the direction of introduction of an ion beam derived from a sample component, various ion sources that ionize components contained in a sample introduced continuously, For example, a combination with an atmospheric pressure ion source such as an electrospray ion source or an electron ion source is possible. Recently, in order to analyze the structure of a compound, a quadrupole mass filter that selects ions having a specific mass-to-charge ratio from ions derived from sample components, and the selected ions are dissociated by collision-induced dissociation or the like. A Q-TOF type mass spectrometer that combines a collision cell and OA-TOFMS is also widely used (see Non-Patent Document 1). In the Q-TOF mass spectrometers currently on the market, reflectron type TOFMS is generally used, and the measurement cycle is about 10 kHz, that is, the time required for one measurement is about 100 μsec. The maximum mass resolution is about 50,000.
 質量分析を利用して生体高分子化合物の構造解析を行う等、測定目的によっては上記質量分解能では不十分なことがある。リフレクトロン型TOFMSよりも高い質量分解能が得られるものとして、多重周回型TOFMS(以下「MT-TOFMS」と称す)又は多重反射型TOFMS(以下「MR-TOFMS」と称す)が知られている。前者は楕円形状、8字形状などの周回軌道に沿ってイオンを複数回周回させるものであり、後者は直線的な往復軌道に沿ってイオンを複数回往復動させるものである(非特許文献2参照)。これらTOFMSではいずれも、飛行空間のスペースを抑えながら、長い飛行距離を確保して高い質量分解能を得ることができる。例えば、実用化されているMR-TOFMSでは、測定周期は100Hz程度で、質量分解能は最大100000程度である。 Depending on the purpose of measurement, such as conducting structural analysis of biopolymer compounds using mass spectrometry, the above mass resolution may be insufficient. A multi-circular TOFMS (hereinafter referred to as “MT-TOFMS”) or a multi-reflection TOFMS (hereinafter referred to as “MR-TOFMS”) is known as one that can obtain a higher mass resolution than the reflectron type TOFMS. The former revolves ions a plurality of times along a circular orbit such as an elliptical shape or an 8-shaped shape, and the latter reciprocates ions a plurality of times along a linear reciprocating orbit (Non-Patent Document 2). reference). In any of these TOFMS, it is possible to secure a long flight distance and obtain a high mass resolution while suppressing the space of the flight space. For example, in MR-TOFMS in practical use, the measurement cycle is about 100 Hz and the mass resolution is about 100,000 at the maximum.
 さらに一層高い質量分解能を達成できる質量分析装置として知られているのがフーリエ変換型質量分析装置(以下「FT-MS」と称す)である。上記OA-TOFMSやMT-TOFMS、MR-TOFMSではいずれも所定の飛行距離を飛行して来たイオンをイオン検出器に導入して検出する。これに対しFT-MSでは、同じ軌道を周回(又は往復)し続けるイオンを非破壊型のイオン検出器でその周回毎に繰り返し検出する。質量電荷比が等しいイオンは同じ周波数(振動数)で以て運動するため、様々な質量電荷比を有するイオンが混在した状態であるときに得られる検出信号は様々な周波数の信号が重畳したスペクトル信号となる。そこで、FT-MSでは、こうしたスペクトル信号に対してフーリエ変換処理を行うことでマススペクトルを得る。 A Fourier transform type mass spectrometer (hereinafter referred to as “FT-MS”) is known as a mass spectrometer capable of achieving even higher mass resolution. In any of the OA-TOFMS, MT-TOFMS, and MR-TOFMS, ions flying over a predetermined flight distance are introduced into an ion detector and detected. In contrast, in FT-MS, ions that continue to circulate (or reciprocate) on the same trajectory are repeatedly detected by the non-destructive ion detector for each lap. Since ions with the same mass-to-charge ratio move at the same frequency (frequency), the detection signal obtained when ions with various mass-to-charge ratios are mixed is a spectrum in which signals of various frequencies are superimposed. Signal. Therefore, in FT-MS, a mass spectrum is obtained by performing a Fourier transform process on such a spectrum signal.
 なお、FT-MSでは、イオンを磁場の作用で周期運動させるICR(イオンサイクロトロン共鳴)セルを用いたものがよく知られているが、オービトラップや多重周回飛行時間型質量分析器、多重反射飛行時間型質量分析器など、電場を利用してイオンを周期運動させるものも知られている(特許文献1参照)。一般的なFT-MSでは、測定周期は10Hz程度とかなり長いが、質量分解能は最大500000程度と、Q-TOFMSの10倍程度の高い質量分解能を実現することができる。 It is well known that FT-MS uses an ICR (ion cyclotron resonance) cell that periodically moves ions by the action of a magnetic field. Orbitrap, multiple orbital time-of-flight mass analyzer, multiple reflection flight There are also known time-type mass analyzers that periodically move ions using an electric field (see Patent Document 1). In a general FT-MS, the measurement period is as long as about 10 Hz, but the mass resolution is about 500,000, which is about 10 times as high as that of Q-TOFMS.
 上述したように質量分析装置では、通常、測定周期と質量分解能とはトレードオフの関係にある。そのため、測定の目的等に応じた測定周期と質量分解能が得られる質量分析装置が選択される。例えば液体クロマトグラフ(LC)やガスクロマトグラフ(GC)で分離された成分を含む試料を質量分析装置で測定する場合には、成分の検出漏れをなくすため或いはクロマトグラムピーク波形の精度を高めるために、短い測定周期で測定を繰り返す必要がある。そのため、そうした場合には、質量分解能を或る程度犠牲にしつつ測定周期が短いQ-TOFMSが使用されることが多い。一方、測定周期や測定のスループットよりも質量分解能が重視される測定では、MT-TOFMS、MR-TOFMS、FT-MSなどが使用される。 As described above, in the mass spectrometer, the measurement cycle and the mass resolution are usually in a trade-off relationship. Therefore, a mass spectrometer capable of obtaining a measurement period and mass resolution in accordance with the purpose of measurement and the like is selected. For example, when measuring a sample containing components separated by liquid chromatograph (LC) or gas chromatograph (GC) with a mass spectrometer, in order to eliminate component detection omission or increase the accuracy of the chromatogram peak waveform It is necessary to repeat the measurement with a short measurement cycle. Therefore, in such a case, Q-TOFMS with a short measurement period is often used while sacrificing mass resolution to some extent. On the other hand, MT-TOFMS, MR-TOFMS, FT-MS, etc. are used for measurement in which mass resolution is more important than measurement cycle and measurement throughput.
特開2007-280655号公報JP 2007-280655 A
 上記従来の質量分析装置では、測定周期と質量分解能とを或る程度調整できる場合もあるが、基本的にはその方式によって、換言すれば装置の構成によって、測定周期と質量分解能とがほぼ決まる。そのため、様々な目的で様々な試料を測定したい或いは測定する必要がある場合には、上述したような様々な方式の質量分析装置を揃えておく必要がある。しかしながら、これら質量分析装置はかなり高価なものであるため、方式の異なる複数の質量分析装置を揃えておくことはユーザにとって経済的な負担がかなり大きい。また、方式の異なる複数の質量分析装置を揃えておくと、装置の管理や保守も面倒であり、設置場所の確保の点でも問題がある。 In the conventional mass spectrometer, the measurement period and the mass resolution may be adjusted to some extent, but basically, the measurement period and the mass resolution are almost determined by the method, in other words, the configuration of the apparatus. . Therefore, when it is desired to measure various samples for various purposes or when it is necessary to measure them, it is necessary to prepare various types of mass spectrometers as described above. However, since these mass spectrometers are quite expensive, it is very expensive for the user to prepare a plurality of mass spectrometers with different methods. If a plurality of mass spectrometers having different methods are prepared, the management and maintenance of the apparatus is troublesome, and there is a problem in securing the installation location.
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、測定の目的等に応じて、質量分解能はそれほど高くないものの測定周期の短い高速測定と、逆に測定周期は長いものの非常に高い質量分解能が得られる高分解能測定と、測定周期、質量分解能がともに高速測定と高分解能測定との間である測定と、を1台の装置で以て切り替えて実現することができる質量分析装置を提供することである。 The present invention has been made in order to solve the above-mentioned problems. The object of the present invention is to perform high-speed measurement with a short measurement cycle although the mass resolution is not so high depending on the purpose of measurement, and conversely, the measurement cycle. A high-resolution measurement that can provide a very high mass resolution but a measurement period and mass resolution that are both high-speed and high-resolution measurements can be switched with a single device. It is providing the mass spectrometer which can be performed.
 上記課題を解決するために成された本発明の第1の態様の質量分析装置は、
 a)試料成分由来のイオンを輸送するイオンガイドと、
 b)該イオンガイドにより輸送されて来るイオンをそのイオンの進行方向とは異なる第1の方向に射出する動作と、前記輸送されて来るイオンを該イオンの進行方向と前記第1の方向のいずれとも異なる第2の方向に偏向させる動作と、を選択的に行うイオン押出部と、
 c)該イオン押出部から前記第1の方向に射出されたイオンが飛行する飛行空間、及び、該飛行空間を飛行したイオンが到達する位置に設けられた第1の検出部、を含む飛行時間型質量分析部と、
 d)前記イオン押出部から前記第2の方向に進行するイオンを捕捉して一時的に保持するとともに、該保持したイオンを前記飛行時間型質量分析部の前記飛行空間に向けて射出するイオン捕捉部と、
 e)前記イオン押出部から前記第1の方向に射出されたイオンが前記第1の検出部に到達するまでの間の飛行軌道に沿って配置された一対のイオン光学素子であり、該飛行軌道に沿ってその一対のイオン光学素子の間でイオンが往復動するようにそれぞれ反射電場を形成する一対のイオン反射部と、
 f)前記一対のイオン反射部の間を飛行するイオンを非接触且つ非破壊で検出する第2の検出部と、
 g)前記イオン押出部から前記第1の方向にイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する第1の分析モードと、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する第2の分析モードと、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する第3の分析モードと、のいずれかを選択的に行うように各部を制御する制御部と、
 h)前記第1及び第2の分析モードにおいては前記第1の検出部で得られた検出信号に基づいてイオンの質量情報を求める一方、前記第3の分析モードにおいては少なくとも前記第2の検出部で得られた検出信号に基づくフーリエ変換演算によりイオンの質量情報を求める信号解析部と、
 を備えることを特徴としている。
The mass spectrometer of the first aspect of the present invention, which has been made to solve the above problems,
a) an ion guide for transporting ions derived from sample components;
b) an operation of ejecting the ions transported by the ion guide in a first direction different from the traveling direction of the ions, and the transported ions in either the traveling direction of the ions or the first direction. An ion extruding unit that selectively performs an operation of deflecting in a different second direction,
c) A flight time including a flight space in which ions ejected from the ion pusher in the first direction fly, and a first detection unit provided at a position where the ions flying in the flight space arrive. Type mass spectrometer,
d) Ion trap that captures and temporarily holds ions traveling in the second direction from the ion pusher and ejects the held ions toward the flight space of the time-of-flight mass spectrometer And
e) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher in the first direction reach the first detector, the flight trajectory A pair of ion reflectors that each form a reflected electric field such that ions reciprocate between the pair of ion optical elements along
f) a second detection unit that detects non-contact and non-destructive ions flying between the pair of ion reflection units;
g) a first analysis mode in which ions are ejected from the ion pusher in the first direction, fly in the flight space and detected by the first detector, and the second from the ion pusher. After ions are advanced in the direction and trapped in the ion trapping part, ions are ejected from the ion trapping part and introduced into the flight space, and the reciprocating motion is performed one or more times by the pair of ion reflecting parts. A second analysis mode to be detected by the first detection unit; and after the ions are advanced from the ion extrusion unit in the second direction and captured by the ion capture unit, the ions are ejected from the ion capture unit and Each part is controlled to selectively perform one of the third analysis mode that is introduced into the flight space and repeatedly detected by the second detection unit while reciprocating a plurality of times by the pair of ion reflection units. A control unit;
h) In the first and second analysis modes, ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed. A signal analysis unit for obtaining ion mass information by Fourier transform operation based on the detection signal obtained by the unit;
It is characterized by having.
 本発明に係る第1の態様の質量分析装置において、前記イオン捕捉部は高周波電場の作用によりイオンを捕捉するイオントラップである構成とすることができる。このイオントラップは3次元四重極型イオントラップ、リニアイオントラップのいずれでもよい。 In the mass spectrometer according to the first aspect of the present invention, the ion trapping unit may be an ion trap that traps ions by the action of a high-frequency electric field. This ion trap may be either a three-dimensional quadrupole ion trap or a linear ion trap.
 また上記課題を解決するために成された本発明の第2の態様の質量分析装置は、
 a)試料成分由来のイオンを輸送するイオンガイドと、
 b)該イオンガイドにより輸送されて来るイオンをそのイオンの進行方向とは異なる方向に射出するイオン押出部と、
 c)該イオン押出部から射出されたイオンが飛行する飛行空間、及び、該飛行空間を飛行したイオンが到達する位置に設けられた第1の検出部、を含む飛行時間型質量分析部と、
 d)前記イオン押出部から射出されたイオンが前記第1の検出部に到達するまでの間の飛行軌道に沿って配置された一対のイオン光学素子であり、該飛行軌道に沿ってその一対のイオン光学素子の間でイオンが往復動するようにそれぞれ反射電場を形成する一対のイオン反射部と、
 e)前記一対のイオン反射部の間を飛行するイオンを非接触且つ非破壊で検出する第2の検出部と、
 f)前記イオン押出部からイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する第1の分析モードと、前記イオン押出部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する第2の分析モードと、前記イオン押出部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する第3の分析モードと、のいずれかを選択的に行うように各部を制御する制御部と、
 g)前記第1及び第2の分析モードにおいては前記第1の検出部で得られた検出信号に基づいてイオンの質量情報を求める一方、前記第3の分析モードにおいては少なくとも前記第2の検出部で得られた検出信号に基づくフーリエ変換演算によりイオンの質量情報を求める信号解析部と、
 を備えることを特徴としている。
The mass spectrometer of the second aspect of the present invention, which has been made to solve the above problems,
a) an ion guide for transporting ions derived from sample components;
b) an ion extruding unit that ejects ions transported by the ion guide in a direction different from the direction of travel of the ions;
c) a time-of-flight mass analyzer including a flight space in which ions ejected from the ion pusher fly, and a first detection unit provided at a position where the ions flying in the flight space reach;
d) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher reach the first detection unit, and the pair of ion optical elements along the flight trajectory A pair of ion reflectors that each form a reflected electric field so that ions reciprocate between ion optical elements;
e) a second detector that detects non-contact and non-destructive ions flying between the pair of ion reflectors;
f) a first analysis mode in which ions are ejected from the ion push-out unit, fly in the flight space and detected by the first detection unit, and ions are ejected from the ion push-out unit and introduced into the flight space A second analysis mode in which the first detection unit detects the reciprocating motion one or more times by the pair of ion reflecting units, and ions are ejected from the ion pusher and introduced into the flight space. And a control unit that controls each unit to selectively perform any one of the third analysis mode that is repeatedly detected by the second detection unit while reciprocating a plurality of times by the pair of ion reflection units,
g) In the first and second analysis modes, ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed. A signal analysis unit for obtaining ion mass information by Fourier transform operation based on the detection signal obtained by the unit;
It is characterized by having.
 本発明に係る第1及び第2の態様の質量分析装置において、イオンガイドは例えば高周波電場の作用により試料成分由来のイオンを収束させつつ後段へと輸送する。このイオンガイドにより輸送されるイオンは試料成分由来であればその種類を問わず、試料中の化合物をイオン化することで得られた各種の分子関連イオン、イオン化の過程で生成されたフラグメントイオン、それらイオンを例えば衝突誘起解離などにより解離することで生成されたプロダクトイオン、などを含む。イオンガイドにより輸送されて来たイオンはイオン押出部に導入される。ここまでのイオンの経路は第1乃至第3の分析モードに共通である。 In the mass spectrometers of the first and second aspects according to the present invention, the ion guide, for example, transports ions derived from the sample component to the subsequent stage while converging ions derived from the sample component by the action of a high-frequency electric field. The ions transported by this ion guide, regardless of their type, are derived from various types of molecule-related ions obtained by ionizing compounds in the sample, fragment ions generated during the ionization process, For example, product ions generated by dissociating ions by collision-induced dissociation or the like are included. Ions transported by the ion guide are introduced into the ion extrusion section. The ion path up to this point is common to the first to third analysis modes.
 本発明に係る第1の態様の質量分析装置においてイオン押出部からイオンが射出される第1の方向、及び、本発明に係る第2の態様の質量分析装置においてイオン押出部からイオンが射出される方向はいずれも、イオン押出部へのイオン導入方向に対し略直交する方向とすることが好ましい。また、本発明に係る第1の態様の質量分析装置においてイオン押出部で偏向されてイオンが進行する第2の方向は、上記第1の方向とほぼ正反対の方向とすればよい。 In the mass spectrometer of the first aspect according to the present invention, ions are ejected from the ion extruding unit in the first direction in which ions are ejected from the ion extruding part, and in the mass spectrometer of the second aspect according to the present invention. It is preferable that any of the directions is substantially perpendicular to the direction of ion introduction into the ion extrusion section. In the mass spectrometer according to the first aspect of the present invention, the second direction in which ions travel after being deflected by the ion extruding unit may be a direction almost opposite to the first direction.
 本発明に係る第1の態様の質量分析装置において、第1の分析モードを実行するべく制御部が各部を制御するとき、イオン押出部は電場の作用により、導入されたイオンを第1の方向に射出する。上述したように第1の方向がイオン押出部へのイオン導入方向に対し略直交する方向である場合、イオン押出部は飛行時間型質量分析部の飛行空間にイオンを送り込む直交加速部として機能する。イオン押出部から所定のエネルギを付与されて射出されたイオンは飛行空間中を飛行し、その間に質量電荷比に応じて各イオンには位置の差がついて第1の検出部に到達する。信号解析部は第1の検出部による検出信号に基づいて各イオンの飛行時間を求め、飛行時間を質量電荷比に換算することで質量情報を取得する。試料成分由来の特定の質量電荷比を有するイオンを四重極マスフィルタで選択し、その選択されたイオンを解離させてイオンガイドを通してイオン押出部に導入する構成の質量分析装置の場合、上記第1の分析モードはQ-TOFMSに相当する分析を行うモードである。 In the mass spectrometer according to the first aspect of the present invention, when the control unit controls each unit to execute the first analysis mode, the ion push-out unit converts the introduced ions into the first direction by the action of the electric field. To ejaculate. As described above, when the first direction is substantially perpendicular to the direction of ion introduction into the ion pusher, the ion pusher functions as an orthogonal acceleration unit that sends ions into the flight space of the time-of-flight mass spectrometer. . Ions ejected with a predetermined energy from the ion pusher fly in the flight space, and during that time, each ion reaches a first detector with a position difference according to the mass-to-charge ratio. The signal analyzer obtains the flight time of each ion based on the detection signal from the first detector, and acquires the mass information by converting the flight time into a mass-to-charge ratio. In the case of a mass spectrometer configured to select ions having a specific mass-to-charge ratio derived from a sample component with a quadrupole mass filter, dissociate the selected ions, and introduce the ions into an ion extrusion unit through an ion guide. The first analysis mode is a mode for performing analysis corresponding to Q-TOFMS.
 本発明に係る第1の態様の質量分析装置において、第2の分析モードを実行するべく制御部が各部を制御するとき、イオン押出部は電場の作用により、導入されたイオンを第2の方向に吐き出す。このイオンはその第2の方向に位置するイオン捕捉部に導入される。イオン捕捉部は電場の作用によりイオンを捕捉して一時的に保持し、該保持したイオンを所定のタイミングで飛行時間型質量分析部の飛行空間に向けて射出する。上述したように第2の方向が第1の方向とほぼ正反対の方向である場合、イオン捕捉部は該イオン捕捉部へイオンが導入された方向と反対方向にイオンを射出することで、イオンをイオン押出部を素通りさせて飛行空間へと送り込むことができる。 In the mass spectrometer according to the first aspect of the present invention, when the control unit controls each unit to execute the second analysis mode, the ion pusher unit converts the introduced ions into the second direction by the action of the electric field. Spit out. This ion is introduced into the ion trapping part located in the second direction. The ion trapping unit traps and temporarily holds ions by the action of an electric field, and ejects the held ions toward the flight space of the time-of-flight mass analysis unit at a predetermined timing. As described above, when the second direction is substantially opposite to the first direction, the ion trapping unit ejects ions in a direction opposite to the direction in which ions are introduced into the ion trapping unit, thereby The ion pusher can be passed through and sent into the flight space.
 第2の分析モードでは、イオン捕捉部から射出されたイオンが飛行空間に導入され、該イオンが一対のイオン反射部のうち飛行軌道上でイオン押出部に近い側のイオン反射部を通過したあと、該一対のイオン反射部はそれぞれイオンを反射させる電場を形成する。すると、イオンは一対のイオン反射部の間で飛行軌道に沿って往復動する。そして、一対のイオン反射部のうち飛行軌道上で第1の検出部に近い側のイオン反射部における反射電場がなくなると、イオンは該イオン反射部を通過して第1の検出部に到達する。イオンは一対のイオン反射部の間で1又は複数回往復動するからその分だけ飛行距離は長くなり、質量分解能が向上することになる。上述した、試料成分由来の特定の質量電荷比を有するイオンを四重極マスフィルタで選択し、その選択されたイオンを解離させてイオンガイドを通してイオン押出部に導入する構成の質量分析装置の場合、上記第2の分析モードはMR-TOFMSに相当する分析を行うモードである。 In the second analysis mode, ions ejected from the ion trapping part are introduced into the flight space, and after the ions have passed through the ion reflecting part on the side close to the ion pushing part on the flight trajectory of the pair of ion reflecting parts. Each of the pair of ion reflecting portions forms an electric field that reflects ions. Then, ions reciprocate along the flight path between the pair of ion reflecting portions. Then, when the reflected electric field in the ion reflecting portion on the side close to the first detecting portion on the flight trajectory of the pair of ion reflecting portions disappears, the ions pass through the ion reflecting portion and reach the first detecting portion. . Since ions reciprocate one or more times between the pair of ion reflecting portions, the flight distance becomes longer and the mass resolution is improved. In the case of the mass spectrometer configured as described above, wherein ions having a specific mass-to-charge ratio derived from the sample component are selected by the quadrupole mass filter, and the selected ions are dissociated and introduced into the ion extrusion unit through the ion guide. The second analysis mode is a mode for performing analysis corresponding to MR-TOFMS.
 本発明に係る第1の態様の質量分析装置において、第3の分析モードでは制御部は基本的に第2の分析モードと同様に各部を制御する。そのため、飛行空間に導入されたイオンは一対のイオン反射部の間で往復動する。ただし、第2の分析モードでは第2の検出部が実質的に機能していないのに対し、第3の分析モードでは、第2の検出部は少なくともイオンが1往復する間に1回イオンを検出し検出信号を出力する。信号解析部は第2の検出部による検出信号に基づいて得られるスペクトル信号に対しフーリエ変換を行って各イオンの質量情報を取得する。即ち、上述した、試料成分由来の特定の質量電荷比を有するイオンを四重極マスフィルタで選択し、その選択されたイオンを解離させてイオンガイドを通してイオン押出部に導入する構成の質量分析装置の場合、上記第3の分析モードはFT-MSに相当する分析を行うモードである。 In the mass spectrometer according to the first aspect of the present invention, in the third analysis mode, the control unit basically controls each unit in the same manner as in the second analysis mode. Therefore, the ions introduced into the flight space reciprocate between the pair of ion reflecting portions. However, in the second analysis mode, the second detection unit does not substantially function, whereas in the third analysis mode, the second detection unit generates ions once during at least one round trip of ions. Detect and output detection signal. The signal analysis unit obtains mass information of each ion by performing Fourier transform on the spectrum signal obtained based on the detection signal from the second detection unit. That is, the above-described mass spectrometer configured to select ions having a specific mass-to-charge ratio derived from the sample component with a quadrupole mass filter, dissociate the selected ions, and introduce the ions to the ion extrusion unit through the ion guide. In this case, the third analysis mode is a mode for performing analysis corresponding to FT-MS.
 また本発明に係る第1の態様の質量分析装置において、前記制御部はさらに、前記イオン押出部から前記第1の方向にイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する分析モードを選択的に行うように各部を制御する構成とすることができる。
 このときの分析モードでは、イオンをイオン捕捉部に捕捉せずにイオン押出部から直接飛行空間に向けて射出するので、第2の分析モードに比べれば質量分解能が若干犠牲になるものの、イオン捕捉部でのイオン捕捉を行わない分、MR-TOFMSに相当する分析の測定周期を短縮することができる。
Further, in the mass spectrometer according to the first aspect of the present invention, the control unit further ejects ions from the ion push-out unit in the first direction and introduces them into the flight space, and the pair of ion reflection units Then, after reciprocating once or a plurality of times, each part can be controlled to selectively perform the analysis mode detected by the first detection part.
In the analysis mode at this time, ions are not directly captured by the ion trapping part, but are ejected directly from the ion pusher toward the flight space. Therefore, although the mass resolution is slightly sacrificed as compared with the second analysis mode, the ion trapping is performed. Since the ion trapping is not performed in the part, the analysis measurement period corresponding to MR-TOFMS can be shortened.
 また本発明に係る第1の態様の質量分析装置において、前記制御部はさらに、前記イオン押出部から前記第1の方向にイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する分析モードを選択的に行うように各部を制御する構成とすることができる。
 このときの分析モードでも、イオンをイオン捕捉部に捕捉せずにイオン押出部から直接飛行空間に向けて射出するので、第3の分析モードに比べれば質量分解能が若干犠牲になるものの、イオン捕捉部でのイオン捕捉を行わない分、FT-MSに相当する分析の測定周期を短縮することができる。
Further, in the mass spectrometer according to the first aspect of the present invention, the control unit further ejects ions from the ion push-out unit in the first direction and introduces them into the flight space, and the pair of ion reflection units Thus, each part can be controlled so as to selectively perform the analysis mode in which the second detection part repeatedly detects the reciprocating motion multiple times.
Even in the analysis mode at this time, ions are not directly captured by the ion trapping part, but are ejected directly from the ion pusher toward the flight space. Therefore, although the mass resolution is slightly sacrificed compared to the third analysis mode, the ion trapping is performed. Since the ion capture in the part is not performed, the measurement cycle of analysis corresponding to FT-MS can be shortened.
 また本発明に係る第1の態様の質量分析装置において、前記制御部はさらに、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する分析モードを選択的に行うように各部を制御する構成とすることもできる。
 この分析モードでは、イオンをイオン捕捉部に一旦捕捉し該イオン捕捉部から飛行空間に向けて射出するので、第1の分析モードに比べれば測定周期が若干長くなるものの、Q-TOFMSに相当する分析の質量分解能を向上させることができる。
 このように分析モードのバリエーションをさらに多く用意しておくことで、目的とする測定周期、質量分解能により近い分析モードをユーザが選択することが可能となる。
Moreover, in the mass spectrometer according to the first aspect of the present invention, the control unit further causes ions to travel from the ion extrusion unit in the second direction and are captured by the ion capture unit, and then from the ion capture unit. It is also possible to adopt a configuration in which each unit is controlled so as to selectively perform an analysis mode in which ions are ejected to fly in the flight space and detected by the first detection unit.
In this analysis mode, ions are once trapped in the ion trapping part and ejected from the ion trapping part toward the flight space. Therefore, although the measurement cycle is slightly longer than in the first analysis mode, this corresponds to Q-TOFMS. The mass resolution of the analysis can be improved.
By preparing more variations of the analysis mode in this way, the user can select an analysis mode that is closer to the target measurement cycle and mass resolution.
 本発明に係る第1の態様の質量分析装置では、第2及び第3の分析モードの際にイオン捕捉部をイオン射出源として飛行時間を算出するのに対し、本発明に係る第2の態様の質量分析装置では、第1乃至第3の分析モードのいずれにおいてもイオン押出部がイオン射出源となる。一般に、イオン捕捉部に一旦イオンを捕捉したほうが飛行時間のエネルギ収束性を高めることが容易であるため、質量情報の精度を高めるには第1の態様の質量分析装置のほうが有利である。一方、第2の態様の質量分析装置では、イオン捕捉部を設ける必要がなく、またイオン押出部は一方向にのみイオンを射出する構成とすればよいので、コスト的には第2の態様の質量分析装置のほうが有利である。 In the mass spectrometer according to the first aspect of the present invention, the time of flight is calculated using the ion trapping unit as the ion ejection source in the second and third analysis modes, whereas the second aspect according to the present invention. In the mass spectrometer, the ion extruding unit serves as an ion ejection source in any of the first to third analysis modes. In general, once the ions are trapped in the ion trapping part, it is easier to improve the energy convergence of the flight time. Therefore, the mass spectrometer of the first aspect is more advantageous for improving the accuracy of the mass information. On the other hand, in the mass spectrometer of the second mode, it is not necessary to provide an ion trapping unit, and the ion push-out unit may be configured to eject ions only in one direction. A mass spectrometer is more advantageous.
 また本発明に係る第1又は第2の態様の質量分析装置において、好ましくは、前記飛行時間型質量分析部は前記一対のイオン反射部とは異なる主イオン反射部を有するリフレクトロン型の飛行時間型質量分析部であり、前記一対のイオン反射部は、前記飛行軌道上で前記主イオン反射部を挟んだ両側に対向して配置される構成とするとよい。
 この構成によれば、比較的狭い飛行空間でありながら高いエネルギ収束性を実現することができる。
In the mass spectrometer according to the first or second aspect of the present invention, preferably, the time-of-flight mass analyzer is a reflectron type time-of-flight having a main ion reflector different from the pair of ion reflectors. It is a type | mold mass spectrometry part, The said pair of ion reflection part is good to set it as the structure arrange | positioned facing both sides which pinched | interposed the said main ion reflection part on the said flight track.
According to this configuration, high energy convergence can be realized in a relatively narrow flight space.
 本発明に係る質量分析装置によれば、一台の装置で、Q-TOFMSに相当する分析、MR-TOFMSに相当する分析、及びFT-MSに相当する分析を選択的に実行することができる。即ち、測定目的等に応じて、測定周期はかなり長いもののきわめて高い質量分解能を実現できる測定と、質量分解能は相対的に低いものの短い測定周期での測定とを、選択的に行うことができる。これにより、異なる方式の複数台の質量分析装置を揃える経済的な負担が軽減されるとともに、管理・保守の煩雑さがなくなり、また装置の設置スペースも小さくて済む。 According to the mass spectrometer according to the present invention, the analysis corresponding to Q-TOFMS, the analysis corresponding to MR-TOFMS, and the analysis corresponding to FT-MS can be selectively executed by one apparatus. . That is, depending on the purpose of measurement and the like, it is possible to selectively perform measurement capable of realizing extremely high mass resolution although the measurement period is considerably long, and measurement in a short measurement period although the mass resolution is relatively low. This reduces the economic burden of arranging a plurality of mass spectrometers of different methods, eliminates the complexity of management and maintenance, and reduces the installation space for the apparatus.
本発明に係る質量分析装置の一実施例の概略構成図。The schematic block diagram of one Example of the mass spectrometer which concerns on this invention. 本実施例の質量分析装置におけるQ-TOFモード実行時の動作説明図。Operation | movement explanatory drawing at the time of Q-TOF mode execution in the mass spectrometer of a present Example. 本実施例の質量分析装置におけるMR-TOFモード実行時の動作説明図。Explanatory drawing of operation | movement at the time of MR-TOF mode execution in the mass spectrometer of a present Example. 本実施例の質量分析装置におけるMR-FTモード実行時の動作説明図。Explanatory drawing of operation | movement at the time of MR-FT mode execution in the mass spectrometer of a present Example.
 本発明に係る質量分析装置の一実施例について、添付図面を参照して説明する。
 図1は本実施例の質量分析装置の概略構成図である。
An embodiment of a mass spectrometer according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of the mass spectrometer of the present embodiment.
 本実施例の質量分析装置は、真空に維持される図示しないチャンバの内部に、イオン源1と、四重極マスフィルタ2と、内部にイオンガイド4を備えるコリジョンセル3と、イオン押出部5と、イオントラップ6と、飛行空間8及び主イオン検出器11を含む飛行時間型質量分析部7と、を備える。また、本実施例の質量分析装置は、制御・処理系の機能ブロックとして、制御部20と、イオントラップ電源部22と、押出電極電源部21と、MR用反射器電源部24と、RT用反射器電源部23と、入力部25と、信号解析部30と、を備える。 The mass spectrometer of the present embodiment includes an ion source 1, a quadrupole mass filter 2, a collision cell 3 having an ion guide 4 therein, and an ion pusher 5 inside a chamber (not shown) maintained in a vacuum. And an ion trap 6 and a time-of-flight mass analyzer 7 including a flight space 8 and a main ion detector 11. In addition, the mass spectrometer of the present embodiment includes a control unit 20, an ion trap power supply unit 22, an extrusion electrode power supply unit 21, an MR reflector power supply unit 24, and an RT unit as functional blocks of a control / processing system. The reflector power supply unit 23, the input unit 25, and the signal analysis unit 30 are provided.
 イオン源1は例えば電子イオン化(EI)法により試料ガス中の試料成分をイオン化するものである。もちろん、イオン化法はEI法に限るものでなく、任意のイオン化法を用いることができる。なお、イオン源1として、エレクトロスプレーイオン化(ESI)法などの大気圧イオン化法によるイオン原を用いる場合には、該イオン源1は大気圧下に置かれる。 The ion source 1 ionizes sample components in the sample gas by, for example, electron ionization (EI). Of course, the ionization method is not limited to the EI method, and any ionization method can be used. In addition, when using the ion source by atmospheric pressure ionization methods, such as an electrospray ionization (ESI) method, as the ion source 1, this ion source 1 is put under atmospheric pressure.
 四重極マスフィルタ2はX軸方向に延伸するイオン光軸Cを囲むように配置された4本のロッド電極を含み、その4本のロッド電極で囲まれる空間に導入されたイオンを質量電荷比に応じて分離し、特定の質量電荷比(又は質量電荷比範囲)を有するイオンを選択的に通過させる。 The quadrupole mass filter 2 includes four rod electrodes arranged so as to surround the ion optical axis C extending in the X-axis direction, and ions introduced into the space surrounded by the four rod electrodes are mass-charged. According to the ratio, ions having a specific mass-to-charge ratio (or mass-to-charge ratio range) are selectively passed.
 コリジョンセル3はイオン導入口3a、イオン導出口3bを有する箱状体であり、その内部にはAr等のコリジョンガスが導入される。イオン導入口3aを経てコリジョンセル3内に入ったイオンは適宜のエネルギを有してコリジョンガスに接触し、衝突誘起解離(CID)により解離され種々のプロダクトイオンが生成される。 The collision cell 3 is a box-like body having an ion inlet 3a and an ion outlet 3b, into which a collision gas such as Ar is introduced. Ions entering the collision cell 3 through the ion inlet 3a have appropriate energy and come into contact with the collision gas, and are dissociated by collision-induced dissociation (CID) to generate various product ions.
 イオン押出部5はイオン光軸Cを挟んで対向して配置された、X-Y平面内で延展する一対の平板状の押出電極5aを含む。一対の押出電極5aはイオンが通過可能な開口をそれぞれ有する。或いは、押出電極5aの少なくとも一部がメッシュ状であってもよい。押出電極電源部21はこの押出電極5aにパルス状の直流電圧を印加するものであり、イオン光軸Cに沿ってコリジョンセル3側から押出電極5a間の空間にイオンが導入されている状態で該押出電極5aに所定の電圧が印加されると、それによって形成される電場の作用により、イオンはイオン光軸Cと略直交する方向に吐き出される。イオンの極性と押出電極5aに印加される電圧の極性との関係に応じて、イオンは互いにほぼ逆向きの二方向(図1においてZ軸に沿った正方向又は負方向)のいずれかに吐き出される。 The ion extruding unit 5 includes a pair of flat plate-shaped extruding electrodes 5a that are arranged to face each other with the ion optical axis C interposed therebetween and extend in the XY plane. The pair of extrusion electrodes 5a have openings through which ions can pass. Or at least one part of the extrusion electrode 5a may be mesh shape. The extrusion electrode power supply unit 21 applies a pulsed DC voltage to the extrusion electrode 5a, and ions are introduced into the space between the extrusion electrodes 5a from the collision cell 3 side along the ion optical axis C. When a predetermined voltage is applied to the extrusion electrode 5a, ions are discharged in a direction substantially orthogonal to the ion optical axis C by the action of an electric field formed thereby. Depending on the relationship between the polarity of the ions and the polarity of the voltage applied to the extrusion electrode 5a, the ions are discharged in one of two directions that are substantially opposite to each other (in the positive direction or the negative direction along the Z axis in FIG. 1). It is.
 イオントラップ6は、イオン押出部5からイオンが放出される一方向の延長上に配置されており、この例では、図1においてY軸方向に延伸する軸を取り囲むように配置された内面が断面双曲線である4本のロッド電極を含むリニアイオントラップである。イオントラップ6は3次元四重極型のイオントラップでもよい。イオントラップ6を構成するロッド電極の一つのロッド電極6aにあって、イオン押出部5から吐き出されたイオンを受け入れ可能である位置には、イオン入出射口6bが形成されている。イオントラップ電源部22はイオントラップ6を構成する各ロッド電極にそれぞれ高周波電圧、直流電圧又はその両方を印加するものであり、イオン入出射口6bを通してイオントラップ6内部に導入されたイオンを高周波電場の作用で捕捉することができる。 The ion trap 6 is disposed on an extension in one direction from which ions are ejected from the ion extruding unit 5. In this example, the inner surface disposed so as to surround the axis extending in the Y-axis direction in FIG. It is a linear ion trap including four rod electrodes that are hyperbolic. The ion trap 6 may be a three-dimensional quadrupole ion trap. In one rod electrode 6a of the rod electrode constituting the ion trap 6, an ion entrance / exit port 6b is formed at a position where ions ejected from the ion extruding unit 5 can be received. The ion trap power supply unit 22 applies a high frequency voltage, a direct current voltage, or both to each rod electrode constituting the ion trap 6, and the ions introduced into the ion trap 6 through the ion entrance / exit port 6b are converted into a high frequency electric field. It can be captured by the action of.
 飛行時間型質量分析部7はリフレクトロン型の構成であり、イオン押出部5から射出されたイオン又は上記イオントラップ6から射出されイオン押出部5を通過して来たイオンを折り返し飛行させるように、飛行空間8内の所定位置に電場の作用によってイオンを反射する主反射器10が配置されている。主反射器10は平板状のバックプレートと複数枚のリング電極から成り、RT用反射器電源部23から各電極にそれぞれ印加される直流電圧により反射電場が形成される。この主反射器10によって反射されたイオンが到達する位置、つまりは飛行空間8内の飛行軌道Aの延長上に主イオン検出器11が配置されている。 The time-of-flight mass analysis unit 7 has a reflectron type configuration, so that the ions ejected from the ion pusher 5 or the ions ejected from the ion trap 6 and passed through the ion pusher 5 are turned back. A main reflector 10 that reflects ions by the action of an electric field is disposed at a predetermined position in the flight space 8. The main reflector 10 is composed of a flat back plate and a plurality of ring electrodes, and a reflected electric field is formed by a DC voltage applied to each electrode from the RT reflector power supply unit 23. A main ion detector 11 is arranged at a position where ions reflected by the main reflector 10 arrive, that is, on an extension of the flight trajectory A in the flight space 8.
 また飛行軌道Aに沿って、主反射器10の両側に、一対のMR用反射器9A、9Bが配置されている。MR用反射器9A、9Bはそれぞれ複数のリング状電極を含む。MR用反射器電源部24からMR用反射器9A、9Bの各電極にそれぞれ印加される直流電圧により、各MR用反射器9A、9Bにおいては主反射器10側から到達するイオンをほぼ鏡面的に反射させる(ただし、イオンの速度によって反射する位置は異なる)反射電場が形成される。また、飛行軌道Aに沿って一対のMR用反射器9A、9Bの間には、通過する(飛行する)イオンを非接触・非破壊で検出する副イオン検出器12が配置されている。 Also, along the flight path A, a pair of MR reflectors 9A and 9B are arranged on both sides of the main reflector 10. Each of the MR reflectors 9A and 9B includes a plurality of ring electrodes. Due to the DC voltage applied to each electrode of the MR reflectors 9A and 9B from the MR reflector power supply unit 24, in each of the MR reflectors 9A and 9B, ions arriving from the main reflector 10 side are substantially specular. Reflected electric field is formed (however, the reflection position differs depending on the velocity of ions). Further, a sub-ion detector 12 that detects passing (flying) ions in a non-contact and non-destructive manner is disposed between the pair of MR reflectors 9A and 9B along the flight path A.
 主イオン検出器11及び副イオン検出器12による検出信号はいずれも信号解析部30に入力され、それぞれデジタルデータに変換されたあとに所定の解析処理が実行されることでマススペクトルが作成される。
 なお、図面が煩雑になるのを避けるため、図1では、四重極マスフィルタ2やイオンガイド4等にそれぞれ電圧を印加するための回路ブロックの記載を省略しているが、これらが設けられていることは当然である。
The detection signals from the main ion detector 11 and the sub ion detector 12 are both input to the signal analysis unit 30 and converted into digital data, respectively, and then a predetermined analysis process is executed to create a mass spectrum. .
In order to avoid complication of the drawing, in FIG. 1, description of circuit blocks for applying voltages to the quadrupole mass filter 2, the ion guide 4 and the like is omitted, but these are provided. Of course.
 本実施例の質量分析装置では、操作者(ユーザ)が入力部25で所定の指示を行うことで、次に述べる三つの分析モードのいずれかの測定を実施することができる。以下、各分析モードにおける測定動作を詳述する。 In the mass spectrometer of the present embodiment, an operator (user) can perform measurement in one of the following three analysis modes by giving a predetermined instruction using the input unit 25. Hereinafter, the measurement operation in each analysis mode will be described in detail.
(i)Q-TOFモード
 図2は本実施例の質量分析装置におけるQ-TOFモード時の動作説明図である。図2(及び後出の図3、図4)は図1に示した本実施例の質量分析装置の構成要素のうち説明に必要なもののみを抜き出したものである。
 Q-TOFモードは文字通り、Q-TOF型質量分析装置と同等の測定を実施するモードである。
(I) Q-TOF mode FIG. 2 is a diagram for explaining the operation in the Q-TOF mode in the mass spectrometer of the present embodiment. FIG. 2 (and FIG. 3 and FIG. 4 below) shows only the components necessary for explanation out of the components of the mass spectrometer of the present embodiment shown in FIG.
Literally, the Q-TOF mode is a mode for carrying out measurement equivalent to that of the Q-TOF type mass spectrometer.
 試料成分由来のイオンがイオン源1で生成され、そのうち特定の質量電荷比を有するイオンが四重極マスフィルタ2で選択されてプリカーサイオンとしてコリジョンセル3に導入される。このプリカーサイオンはコリジョンセル3においてコリジョンガスを接触して解離し、各種のプロダクトイオンが生成される。イオンガイド4は簡易的なリニアイオントラップの機能を有しており、生成されたプロダクトイオンを一時的に蓄積し、所定のタイミングで後段へと送り出す。イオン光軸Cに沿ってイオン群がイオン押出部5に導入されたあとの所定のタイミングで、押出電極電源部21は所定の直流電圧を押出電極5aに印加する。すると、これにより形成される電場によってイオンはZ軸に沿った正方向(図1で下向き)に力を受け、所定のエネルギを有して飛行空間8に射出される。射出される直前にイオンはX軸に沿った正方向に進行しているため、該イオンが実際に射出される方向はZ軸方向ではなく、Z軸方向からやや傾いた方向になる。 The ions derived from the sample components are generated by the ion source 1, and ions having a specific mass-to-charge ratio are selected by the quadrupole mass filter 2 and introduced into the collision cell 3 as precursor ions. The precursor ions are dissociated by contacting the collision gas in the collision cell 3 to generate various product ions. The ion guide 4 has a simple linear ion trap function, temporarily accumulates the generated product ions, and sends them out to the subsequent stage at a predetermined timing. At a predetermined timing after the ion group is introduced into the ion extrusion unit 5 along the ion optical axis C, the extrusion electrode power supply unit 21 applies a predetermined DC voltage to the extrusion electrode 5a. Then, the ion is subjected to a force in the positive direction along the Z axis (downward in FIG. 1) by the electric field formed thereby, and is ejected to the flight space 8 with a predetermined energy. Since ions have traveled in the positive direction along the X axis immediately before being ejected, the direction in which the ions are actually ejected is not the Z axis direction, but is slightly inclined from the Z axis direction.
 このQ-TOFモードでは、反射器9A、9Bの各電極に電圧は印加されないため、反射器9A、9Bは存在しないのと同等である。また副イオン検出器12もイオンの飛行の障害にはならない。そのため、イオン押出部5から射出されたイオンは飛行軌道Aに沿って進み、主反射器10において反射電場によって折り返され、最終的に主イオン検出器11に到達し検出される。主イオン検出器11による検出信号を受けた信号解析部30は、イオン押出部5においてイオンが射出された時点を起点として各イオンの飛行時間を求め、飛行時間を質量電荷比に換算することでマススペクトルを作成する。 In this Q-TOF mode, no voltage is applied to the electrodes of the reflectors 9A and 9B, which is equivalent to the absence of the reflectors 9A and 9B. Further, the secondary ion detector 12 does not become an obstacle to the flight of ions. Therefore, the ions ejected from the ion pusher 5 travel along the flight path A, are folded back by the reflected electric field in the main reflector 10, and finally reach the main ion detector 11 and are detected. Upon receiving the detection signal from the main ion detector 11, the signal analysis unit 30 obtains the flight time of each ion starting from the time when the ions are ejected by the ion pusher 5, and converts the flight time into a mass-to-charge ratio. Create a mass spectrum.
(ii)MR-TOFモード
 図3は本実施例の質量分析装置におけるMR-TOFモード時の動作説明図である。
 試料成分由来のプリカーサイオンがコリジョンセル3内で解離され、生成されたプロダクトイオンがイオン光軸Cに沿ってイオン押出部5に導入されるまでのイオンの挙動は上記Q-TOFモードと同じである。
(Ii) MR-TOF mode FIG. 3 is a diagram for explaining the operation in the MR-TOF mode in the mass spectrometer of the present embodiment.
Precursor ions derived from sample components are dissociated in the collision cell 3, and the behavior of ions until the generated product ions are introduced into the ion extruding unit 5 along the ion optical axis C is the same as in the Q-TOF mode. is there.
 イオン群がイオン押出部5に導入されたあとの所定のタイミングで、押出電極電源部21は所定の直流電圧を押出電極5aに印加する。このときに印加される電圧の極性はQ-TOFモードとは逆である。そのため、これにより形成される電場によってイオンはZ軸に沿った負方向(図1において上向き)に力を受けて吐き出される。そのため、イオンは概ね軌道Bに沿って進み、イオン入出射口6bを通してイオントラップ6の内部に入る。イオントラップ6の内部に入ったイオンは、イオントラップ電源部22からイオントラップ6の各ロッド電極に印加される高周波電圧により形成される電場によって捕捉される。なお、イオン押出部5からのイオン吐出し時に大きなエネルギをイオンに与えると、イオントラップ6でイオンが捕捉されずに通り抜けたり消失したりするおそれがある。そのため、このときには、イオン押出部5においてイオンに与えるエネルギをQ-TOFモード時に比べて小さくしておくことが好ましい。 The extrusion electrode power supply unit 21 applies a predetermined DC voltage to the extrusion electrode 5a at a predetermined timing after the ion group is introduced into the ion extrusion unit 5. The polarity of the voltage applied at this time is opposite to that in the Q-TOF mode. Therefore, ions are discharged by receiving a force in the negative direction (upward in FIG. 1) along the Z axis by the electric field formed thereby. Therefore, the ions generally travel along the trajectory B and enter the inside of the ion trap 6 through the ion entrance / exit 6b. Ions entering the inside of the ion trap 6 are captured by an electric field formed by a high frequency voltage applied to each rod electrode of the ion trap 6 from the ion trap power supply unit 22. If a large energy is given to the ions when the ions are ejected from the ion extruding unit 5, the ions may pass through or disappear without being captured by the ion trap 6. Therefore, at this time, it is preferable that the energy given to the ions in the ion pusher 5 is made smaller than that in the Q-TOF mode.
 イオントラップ6に捕捉されたイオンは例えば該イオントラップ6内に供給されるクーリングガスに接触してクーリングされる。そして、イオントラップ電源部22からイオントラップ6に印加される直流高電圧によって、捕捉されていた各種イオンはイオン入出射口6bを通して一斉に射出される。このとき、イオン押出部5には電場は形成されておらず、イオンはイオン押出部5を素通りして飛行空間8に入り、飛行軌道Aに沿って進む。イオン群がイオン押出部5に近い側のMR用反射器(以下「第1MR用反射器」という)を通り過ぎたあとであって、該イオン群が主反射器10で反射されて主イオン検出器11に近い側のMR用反射器(以下「第2MR用反射器」という)9Bに達するまでの間に、MR用反射器電源部24は第1、第2MR用反射器9A、9Bの各電極にそれぞれ所定の電圧を印加する。これにより、第1、第2MR用反射器9A、9Bにはそれぞれ反射電場が形成される。 The ions trapped in the ion trap 6 are cooled in contact with, for example, a cooling gas supplied into the ion trap 6. Then, the various ions that have been trapped are simultaneously ejected through the ion entrance / exit 6b by the DC high voltage applied to the ion trap 6 from the ion trap power supply unit 22. At this time, an electric field is not formed in the ion extruding unit 5, and ions pass through the ion extruding unit 5 and enter the flight space 8 and travel along the flight trajectory A. After the ion group passes through the MR reflector on the side close to the ion pusher 5 (hereinafter referred to as “first MR reflector”), the ion group is reflected by the main reflector 10 to be the main ion detector. The MR reflector power supply unit 24 uses the electrodes of the first and second MR reflectors 9A and 9B before reaching the MR reflector 9B on the side close to 11 (hereinafter referred to as “second MR reflector”) 9B. A predetermined voltage is applied to each. Thereby, a reflected electric field is formed in each of the first and second MR reflectors 9A and 9B.
 飛行軌道Aに沿って飛行するイオンが第2MR用反射器9Bに到達すると反射電場によって反射され、飛行軌道Aを逆戻りする。また、戻って来たイオンが第1MR用反射器9Aに到達すると、反射電場によって反射される。このように、イオンは第1MR用反射器9Aと第2MR用反射器9Bとの間の飛行軌道A上に閉じ込められることになり往復動する。そして、イオンが第2MR用反射器9Bに到達したときに反射電場がなくなっていると、該イオンは第2MR用反射器9Bを通り抜けて主イオン検出器11に到達し検出される。主イオン検出器11による検出信号を受けた信号解析部30は、イオン押出部5においてイオンが射出された時点を起点として各イオンの飛行時間を求め、想定される往復回数に基づく飛行距離を一つの条件として飛行時間を質量電荷比に換算することでマススペクトルを作成する。 When the ions flying along the flight trajectory A reach the second MR reflector 9B, the ions are reflected by the reflected electric field and return to the flight trajectory A. Further, when the returned ions reach the first MR reflector 9A, they are reflected by the reflected electric field. In this way, the ions are confined on the flight path A between the first MR reflector 9A and the second MR reflector 9B and reciprocate. If the reflected electric field disappears when the ions reach the second MR reflector 9B, the ions pass through the second MR reflector 9B and reach the main ion detector 11 to be detected. Upon receiving the detection signal from the main ion detector 11, the signal analysis unit 30 obtains the flight time of each ion starting from the time when the ions are ejected by the ion pusher 5, and sets the flight distance based on the assumed number of round trips. A mass spectrum is created by converting the time of flight into a mass-to-charge ratio as one condition.
(iii)FT-MSモード
 図4は本実施例の質量分析装置におけるFT-MSモード時の動作説明図である。
 イオントラップ6から射出された分析対象のイオンがMR用反射器9A、9Bの間の飛行軌道Aに導入されるまでの動作はMR-TOFMSモード時と同じである。イオンの挙動自体はMR-TOFMSモード時と同じであるが、このFT-MSモードでは、イオンが繰り返し往復動する際に副イオン検出器12は一方向(例えば第1MR用反射器9Aから主反射器10へと向かう方向)に通過するイオンを検出する。副イオン検出器12はイオンが飛行軌道Aに導入された以降、ほぼ連続的にイオンを検出し検出信号を出力する。信号解析部30は副イオン検出器12による検出信号をデジタルデータに変換して所定時間蓄積し、このデータに対してフーリエ変換演算を行うことで各イオンの質量情報が反映されたマススペクトルを作成する。
(Iii) FT-MS Mode FIG. 4 is a diagram for explaining the operation in the FT-MS mode in the mass spectrometer of the present embodiment.
The operation until the analysis target ions ejected from the ion trap 6 are introduced into the flight path A between the MR reflectors 9A and 9B is the same as in the MR-TOFMS mode. The ion behavior itself is the same as in the MR-TOFMS mode, but in this FT-MS mode, the secondary ion detector 12 moves in one direction (for example, the main reflection from the first MR reflector 9A) when the ions repeatedly reciprocate. Ion passing in the direction toward the vessel 10). After the ions are introduced into the flight trajectory A, the secondary ion detector 12 detects the ions almost continuously and outputs a detection signal. The signal analysis unit 30 converts the detection signal from the secondary ion detector 12 into digital data and accumulates it for a predetermined time, and creates a mass spectrum in which the mass information of each ion is reflected by performing a Fourier transform operation on this data. To do.
 また、必要な測定が終了したならば、MR-TOFMSモードと同様に第2MR用反射器9Bの反射電場を解除し、イオンを順に主イオン検出器11に到達させて検出するようにしてもよい。この場合、信号解析部30は主イオン検出器11による検出信号に基づいてもマススペクトルを作成することができる。 When necessary measurement is completed, the reflected electric field of the second MR reflector 9B may be canceled in the same manner as in the MR-TOFMS mode, and ions may sequentially reach the main ion detector 11 to be detected. . In this case, the signal analysis unit 30 can also create a mass spectrum based on the detection signal from the main ion detector 11.
 上述したように本実施例の質量分析装置では、操作者の指示により、Q-TOFモード、MR-TOFモード、FT-MSモードという三種類の測定のいずれかを選択的に実施することができる。質量分解能はFT-MSモードが最も高く、MR-TOFモード、Q-TOFモードの順に低くなる。逆に測定周期はQ-TOFモードが最も短く、MR-TOFモード、FT-MSモードの順に長くなる。操作者は必要な質量分解能と測定周期に応じていずれかのモードを任意に選択することができる。もちろん、自動的にモードを切り替えるようにしても構わない。 As described above, in the mass spectrometer of the present embodiment, any one of the three types of measurement, the Q-TOF mode, the MR-TOF mode, and the FT-MS mode, can be selectively performed according to an operator's instruction. . Mass resolution is highest in the FT-MS mode, and decreases in the order of the MR-TOF mode and the Q-TOF mode. Conversely, the measurement cycle is the shortest in the Q-TOF mode, and becomes longer in the order of the MR-TOF mode and the FT-MS mode. The operator can arbitrarily select one of the modes according to the required mass resolution and measurement period. Of course, the mode may be automatically switched.
 また、上記Q-TOFモード、MR-TOFモード、FT-MSモードという三種類のモードのほかに、イオンを一旦イオントラップ6に保持し、イオントラップ6からイオンを射出して主イオン検出器11で検出するモード(変形Q-TOFモード)、イオン押出部5から射出したイオンを直接飛行空間8に導入し、MR用反射器9A、9Bの間で一又は複数回反射させたあとに主イオン検出器11で検出するモード(変形MR-TOFモード)、及び、イオン押出部5から射出したイオンを直接飛行空間8に導入し、MR用反射器9A、9Bの間で反射させつつ副イオン検出器12で検出するモード(変形FT-MSモード)、のうちの少なくとも一つを追加的に設けてもよい。このように分析モードのバリエーションを増やしておくことで、ユーザの選択の幅が広がり、目的により則した分析を行うことができる。 In addition to the three types of modes, the Q-TOF mode, the MR-TOF mode, and the FT-MS mode, ions are temporarily held in the ion trap 6, and ions are ejected from the ion trap 6 to cause the main ion detector 11. Mode (deformed Q-TOF mode), and ions ejected from the ion pusher 5 are directly introduced into the flight space 8 and reflected one or more times between the MR reflectors 9A and 9B, and then the main ions Detection mode by the detector 11 (deformed MR-TOF mode), and ions ejected from the ion pusher 5 are directly introduced into the flight space 8 and reflected between the MR reflectors 9A and 9B while detecting secondary ions At least one of the modes (modified FT-MS mode) detected by the device 12 may be additionally provided. By increasing the variation of the analysis modes in this way, the range of selection by the user is widened, and analysis can be performed in accordance with the purpose.
 なお、上記実施例は本発明の一例に過ぎず、本発明の趣旨の範囲で適宜、変更や修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 It should be noted that the above embodiment is merely an example of the present invention, and it should be understood that modifications, corrections, and additions may be made as appropriate within the scope of the present invention.
1…イオン源
2…四重極マスフィルタ
3…コリジョンセル
3a…イオン導入口
3b…イオン導出口
4…イオンガイド
5…イオン押出部
5a…押出電極
6…イオントラップ
6a…ロッド電極
6b…イオン入出射口
7…飛行時間型質量分析部
8…飛行空間
9A、9B…MR用反射器
10…主反射器
11…主イオン検出器
12…副イオン検出器
20…制御部
21…押出電極電源部
22…イオントラップ電源部
23…RT用反射器電源部
24…MR用反射器電源部
25…入力部
30…信号解析部
DESCRIPTION OF SYMBOLS 1 ... Ion source 2 ... Quadrupole mass filter 3 ... Collision cell 3a ... Ion introduction port 3b ... Ion outlet 4 ... Ion guide 5 ... Ion extrusion part 5a ... Extrusion electrode 6 ... Ion trap 6a ... Rod electrode 6b ... Ion entry Exit 7: Time-of-flight mass analyzer 8 ... Flight space 9A, 9B ... MR reflector 10 ... Main reflector 11 ... Main ion detector 12 ... Sub ion detector 20 ... Control unit 21 ... Extrusion electrode power supply unit 22 ... Ion trap power supply unit 23 ... RT reflector power supply unit 24 ... MR reflector power supply unit 25 ... Input unit 30 ... Signal analysis unit

Claims (7)

  1.  a)試料成分由来のイオンを輸送するイオンガイドと、
     b)該イオンガイドにより輸送されて来るイオンをそのイオンの進行方向とは異なる第1の方向に射出する動作と、前記輸送されて来るイオンを該イオンの進行方向と前記第1の方向のいずれとも異なる第2の方向に偏向させる動作と、を選択的に行うイオン押出部と、
     c)該イオン押出部から前記第1の方向に射出されたイオンが飛行する飛行空間、及び、該飛行空間を飛行したイオンが到達する位置に設けられた第1の検出部、を含む飛行時間型質量分析部と、
     d)前記イオン押出部から前記第2の方向に進行するイオンを捕捉して一時的に保持するとともに、該保持したイオンを前記飛行時間型質量分析部の前記飛行空間に向けて射出するイオン捕捉部と、
     e)前記イオン押出部から前記第1の方向に射出されたイオンが前記第1の検出部に到達するまでの間の飛行軌道に沿って配置された一対のイオン光学素子であり、該飛行軌道に沿ってその一対のイオン光学素子の間でイオンが往復動するようにそれぞれ反射電場を形成する一対のイオン反射部と、
     f)前記一対のイオン反射部の間を飛行するイオンを非接触且つ非破壊で検出する第2の検出部と、
     g)前記イオン押出部から前記第1の方向にイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する第1の分析モードと、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する第2の分析モードと、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する第3の分析モードと、のいずれかを選択的に行うように各部を制御する制御部と、
     h)前記第1及び第2の分析モードにおいては前記第1の検出部で得られた検出信号に基づいてイオンの質量情報を求める一方、前記第3の分析モードにおいては少なくとも前記第2の検出部で得られた検出信号に基づくフーリエ変換演算によりイオンの質量情報を求める信号解析部と、
     を備えることを特徴とする質量分析装置。
    a) an ion guide for transporting ions derived from sample components;
    b) an operation of ejecting the ions transported by the ion guide in a first direction different from the traveling direction of the ions, and the transported ions in either the traveling direction of the ions or the first direction. An ion extruding unit that selectively performs an operation of deflecting in a different second direction,
    c) A flight time including a flight space in which ions ejected from the ion pusher in the first direction fly, and a first detection unit provided at a position where the ions flying in the flight space arrive. Type mass spectrometer,
    d) Ion trap that captures and temporarily holds ions traveling in the second direction from the ion pusher and ejects the held ions toward the flight space of the time-of-flight mass spectrometer And
    e) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher in the first direction reach the first detector, the flight trajectory A pair of ion reflectors that each form a reflected electric field such that ions reciprocate between the pair of ion optical elements along
    f) a second detection unit that detects non-contact and non-destructive ions flying between the pair of ion reflection units;
    g) a first analysis mode in which ions are ejected from the ion pusher in the first direction, fly in the flight space and detected by the first detector, and the second from the ion pusher. After ions are advanced in the direction and trapped in the ion trapping part, ions are ejected from the ion trapping part and introduced into the flight space, and the reciprocating motion is performed one or more times by the pair of ion reflecting parts. A second analysis mode to be detected by the first detection unit; and after the ions are advanced from the ion extrusion unit in the second direction and captured by the ion capture unit, the ions are ejected from the ion capture unit and Each part is controlled to selectively perform one of the third analysis mode that is introduced into the flight space and repeatedly detected by the second detection unit while reciprocating a plurality of times by the pair of ion reflection units. A control unit;
    h) In the first and second analysis modes, ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed. A signal analysis unit for obtaining ion mass information by Fourier transform operation based on the detection signal obtained by the unit;
    A mass spectrometer comprising:
  2.  請求項1に記載の質量分析装置であって、
     前記イオン捕捉部は高周波電場の作用によりイオンを捕捉するイオントラップであることを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The mass spectrometer is characterized in that the ion trapping part is an ion trap that traps ions by the action of a high-frequency electric field.
  3.  請求項1に記載の質量分析装置であって、
     前記制御部はさらに、前記イオン押出部から前記第1の方向にイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する分析モードを選択的に行うように各部を制御することを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The controller further ejects ions in the first direction from the ion pusher and introduces them into the flight space, and after reciprocating one or more times by the pair of ion reflectors, A mass spectrometer characterized by controlling each unit so as to selectively perform an analysis mode detected by a detection unit.
  4.  請求項1に記載の質量分析装置であって、
     前記制御部はさらに、前記イオン押出部から前記第1の方向にイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する分析モードを選択的に行うように各部を制御することを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The control unit further ejects ions from the ion pusher in the first direction and introduces the ions into the flight space, and reciprocates a plurality of times by the pair of ion reflecting units, and is repeatedly performed by the second detection unit. A mass spectrometer characterized by controlling each unit so as to selectively perform an analysis mode to be detected.
  5.  請求項1に記載の質量分析装置であって、
     前記制御部はさらに、前記イオン押出部から前記第2の方向にイオンを進行させ前記イオン捕捉部に捕捉したあと、該イオン捕捉部からイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する分析モードを選択的に行うように各部を制御することを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The controller further advances ions from the ion extruding unit in the second direction and traps them in the ion trapping unit, and then ejects ions from the ion trapper to fly through the flight space. A mass spectrometer characterized by controlling each unit so as to selectively perform an analysis mode detected by the detection unit.
  6.  a)試料成分由来のイオンを輸送するイオンガイドと、
     b)該イオンガイドにより輸送されて来るイオンをそのイオンの進行方向とは異なる方向に射出するイオン押出部と、
     c)該イオン押出部から射出されたイオンが飛行する飛行空間、及び、該飛行空間を飛行したイオンが到達する位置に設けられた第1の検出部、を含む飛行時間型質量分析部と、
     d)前記イオン押出部から射出されたイオンが前記第1の検出部に到達するまでの間の飛行軌道に沿って配置された一対のイオン光学素子であり、該飛行軌道に沿ってその一対のイオン光学素子の間でイオンが往復動するようにそれぞれ反射電場を形成する一対のイオン反射部と、
     e)前記一対のイオン反射部の間を飛行するイオンを非接触且つ非破壊で検出する第2の検出部と、
     f)前記イオン押出部からイオンを射出し前記飛行空間中を飛行させて前記第1の検出部で検出する第1の分析モードと、前記イオン押出部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で一又は複数回往復動させたあとに前記第1の検出部で検出する第2の分析モードと、前記イオン押出部からイオンを射出して前記飛行空間に導入し、前記一対のイオン反射部で複数回往復動させつつ前記第2の検出部で繰り返し検出する第3の分析モードと、のいずれかを選択的に行うように各部を制御する制御部と、
     g)前記第1及び第2の分析モードにおいては前記第1の検出部で得られた検出信号に基づいてイオンの質量情報を求める一方、前記第3の分析モードにおいては少なくとも前記第2の検出部で得られた検出信号に基づくフーリエ変換演算によりイオンの質量情報を求める信号解析部と、
     を備えることを特徴とする質量分析装置。
    a) an ion guide for transporting ions derived from sample components;
    b) an ion extruding unit that ejects ions transported by the ion guide in a direction different from the direction of travel of the ions;
    c) a time-of-flight mass analyzer including a flight space in which ions ejected from the ion pusher fly, and a first detection unit provided at a position where the ions flying in the flight space reach;
    d) a pair of ion optical elements disposed along a flight trajectory until ions ejected from the ion pusher reach the first detection unit, and the pair of ion optical elements along the flight trajectory A pair of ion reflectors that each form a reflected electric field so that ions reciprocate between ion optical elements;
    e) a second detector that detects non-contact and non-destructive ions flying between the pair of ion reflectors;
    f) a first analysis mode in which ions are ejected from the ion push-out unit, fly in the flight space and detected by the first detection unit, and ions are ejected from the ion push-out unit and introduced into the flight space A second analysis mode in which the first detection unit detects the reciprocating motion one or more times by the pair of ion reflecting units, and ions are ejected from the ion pusher and introduced into the flight space. And a control unit that controls each unit to selectively perform any one of the third analysis mode that is repeatedly detected by the second detection unit while reciprocating a plurality of times by the pair of ion reflection units,
    g) In the first and second analysis modes, ion mass information is obtained based on the detection signal obtained by the first detection unit, while in the third analysis mode, at least the second detection is performed. A signal analysis unit for obtaining ion mass information by Fourier transform operation based on the detection signal obtained by the unit;
    A mass spectrometer comprising:
  7.  請求項1又は6に記載の質量分析装置であって、
     前記飛行時間型質量分析部は前記一対のイオン反射部とは異なる主イオン反射部を有するリフレクトロン型の飛行時間型質量分析部であり、前記一対のイオン反射部は、前記飛行軌道上で前記主イオン反射部を挟んだ両側に対向して配置されていることを特徴とする質量分析装置。
    The mass spectrometer according to claim 1 or 6,
    The time-of-flight mass analyzer is a reflectron type time-of-flight mass analyzer having a main ion reflector different from the pair of ion reflectors, and the pair of ion reflectors A mass spectrometer characterized by being disposed opposite to both sides of the main ion reflecting portion.
PCT/JP2016/087512 2016-12-16 2016-12-16 Mass spectrometry device WO2018109920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087512 WO2018109920A1 (en) 2016-12-16 2016-12-16 Mass spectrometry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087512 WO2018109920A1 (en) 2016-12-16 2016-12-16 Mass spectrometry device

Publications (1)

Publication Number Publication Date
WO2018109920A1 true WO2018109920A1 (en) 2018-06-21

Family

ID=62558190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087512 WO2018109920A1 (en) 2016-12-16 2016-12-16 Mass spectrometry device

Country Status (1)

Country Link
WO (1) WO2018109920A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
JP2022540782A (en) * 2019-07-12 2022-09-20 レコ コーポレイション Method and system for multi-pass coded frequency pushing
US11587779B2 (en) 2018-06-28 2023-02-21 Micromass Uk Limited Multi-pass mass spectrometer with high duty cycle
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11837452B2 (en) 2018-02-22 2023-12-05 Micromass Uk Limited Charge detection mass spectrometry
US11842891B2 (en) 2020-04-09 2023-12-12 Waters Technologies Corporation Ion detector
US11848185B2 (en) 2019-02-01 2023-12-19 Micromass Uk Limited Electrode assembly for mass spectrometer
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184347A (en) * 2000-12-12 2002-06-28 Shimadzu Corp Mass spectroscope device
WO2012033094A1 (en) * 2010-09-08 2012-03-15 株式会社島津製作所 Time-of-flight mass spectrometer
JP2013528892A (en) * 2010-03-02 2013-07-11 レコ コーポレイション Open trap mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184347A (en) * 2000-12-12 2002-06-28 Shimadzu Corp Mass spectroscope device
JP2013528892A (en) * 2010-03-02 2013-07-11 レコ コーポレイション Open trap mass spectrometer
WO2012033094A1 (en) * 2010-09-08 2012-03-15 株式会社島津製作所 Time-of-flight mass spectrometer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11756782B2 (en) 2017-08-06 2023-09-12 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11837452B2 (en) 2018-02-22 2023-12-05 Micromass Uk Limited Charge detection mass spectrometry
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range
US11587779B2 (en) 2018-06-28 2023-02-21 Micromass Uk Limited Multi-pass mass spectrometer with high duty cycle
US11848185B2 (en) 2019-02-01 2023-12-19 Micromass Uk Limited Electrode assembly for mass spectrometer
JP7355862B2 (en) 2019-07-12 2023-10-03 レコ コーポレイション Method and system for multi-pass coded frequency extrusion
JP2022540782A (en) * 2019-07-12 2022-09-20 レコ コーポレイション Method and system for multi-pass coded frequency pushing
US11842891B2 (en) 2020-04-09 2023-12-12 Waters Technologies Corporation Ion detector

Similar Documents

Publication Publication Date Title
WO2018109920A1 (en) Mass spectrometry device
US7064319B2 (en) Mass spectrometer
JP5860958B2 (en) Target analysis for tandem mass spectrometry
JP3990889B2 (en) Mass spectrometer and measurement system using the same
US7999223B2 (en) Multiple ion isolation in multi-reflection systems
JP3971958B2 (en) Mass spectrometer
US9916968B1 (en) In-source collision-induced heating and activation of gas-phase ions for spectrometry
JP4033133B2 (en) Mass spectrometer
JP2011119279A (en) Mass spectrometer, and measuring system using the same
CN101213634A (en) Multiple ion injection in mass spectrometry
US8368014B2 (en) Ion trap time-of-flight mass spectrometer
JP2016526168A (en) How to calibrate an ion signal
JP2021015688A5 (en)
JP5226292B2 (en) Tandem time-of-flight mass spectrometry
CN109564849B (en) Mass spectrometer
JP4248540B2 (en) Mass spectrometer and measurement system using the same
JP2008108739A (en) Mass spectroscope and measurement system provided with the same
US20120085905A1 (en) Tandem Time-of-Flight Mass Spectrometer
JP2015170445A (en) Mass spectrometry apparatus and mass spectrometry method
AU2003207440A1 (en) Simultaneous acquisation of chemical information
JP6885512B2 (en) Time-of-flight mass spectrometer
JP3873867B2 (en) Mass spectrometer
Hashimoto et al. Duty cycle enhancement of an orthogonal acceleration TOF mass spectrometer using an axially-resonant excitation linear ion trap
JP6923078B2 (en) Time-of-flight mass spectrometer
JP5243977B2 (en) Vertical acceleration time-of-flight mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP