WO2018109903A1 - Flight control method, unmanned aircraft, flight system, program, and recording medium - Google Patents

Flight control method, unmanned aircraft, flight system, program, and recording medium Download PDF

Info

Publication number
WO2018109903A1
WO2018109903A1 PCT/JP2016/087395 JP2016087395W WO2018109903A1 WO 2018109903 A1 WO2018109903 A1 WO 2018109903A1 JP 2016087395 W JP2016087395 W JP 2016087395W WO 2018109903 A1 WO2018109903 A1 WO 2018109903A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
unmanned aircraft
aerial vehicle
control mode
abnormality
Prior art date
Application number
PCT/JP2016/087395
Other languages
French (fr)
Japanese (ja)
Inventor
長屋 豪
知長 安田
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to PCT/JP2016/087395 priority Critical patent/WO2018109903A1/en
Priority to JP2018556122A priority patent/JP6835871B2/en
Publication of WO2018109903A1 publication Critical patent/WO2018109903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/30Constructional aspects of UAVs for safety, e.g. with frangible components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present disclosure relates to a flight control method, an unmanned aircraft, and a flight system that control a control mode during flight of an unmanned aircraft.
  • the present disclosure relates to a program for controlling a control mode during flight of an unmanned aerial vehicle, and a computer-readable recording medium on which the program is recorded.
  • AAV Automaterial Vehicle
  • An object for example, a person, a pet, another animal
  • AAV propeller see Patent Document 1
  • the propeller described in Patent Document 1 is formed of a conductive material, and conductance through the propeller or the capacitance of the propeller is monitored. When a change in conductance or capacitance is detected, it is detected that the propeller has touched the object.
  • the AAV detects the contact between the propeller and the object, the AAV stops the rotation of the propeller.
  • the unmanned aircraft such as AAV described in Patent Document 1 stops the propeller after the contact between the propeller and the object is detected, so that the propeller is rotating immediately before or at the time of contact between the propeller and the object. Therefore, the object can be damaged by the rotating propeller. If the object is a human body, the damage to the object may include injury to the person by a rotating propeller. Further, for example, when the unmanned aircraft is difficult to control due to a failure and the unmanned aircraft falls, an impact force due to gravity is also added, and the impact force when the rotating propeller comes into contact with the object further increases.
  • the flight control method is a flight control method for controlling a control mode during a flight of an unmanned aircraft, the step of detecting a flight state abnormality of the unmanned aircraft, and a case where a flight state abnormality is detected, Changing the control mode to the safe control mode.
  • the flight control method may further include a step of transmitting information relating to the abnormality to an operating device that instructs control of the unmanned aircraft when an abnormality in the flight state is detected.
  • the step of detecting an abnormality in the flight state includes a step of acquiring acceleration in the direction of gravity of the unmanned aircraft, and a step of determining that the flight state is abnormal when the acceleration in the direction of gravity of the unmanned aircraft is greater than or equal to a predetermined value. It's okay.
  • the step of detecting the abnormality of the flight state includes the step of acquiring the acceleration in the gravitational direction of the unmanned aircraft and the state in which the acceleration of the unmanned aircraft in the gravitational direction is equal to or greater than a predetermined value for a predetermined time, and determines that the flight state is abnormal. And may include the steps of:
  • the flight control method may further include a step of determining the presence / absence of an operation input signal from the operation device.
  • the step of changing to the safety control mode may include the step of changing the control mode to the safety control mode when there is no operation input signal.
  • the step of detecting an abnormality in the flight state includes a step of acquiring a parameter command value indicating a flight state based on the operation input signal, a step of acquiring an actual measurement value of the parameter, And changing the control mode to the safe control mode when the actual measured value of the parameter is outside the predetermined range.
  • the parameter may include at least one of the driving current of the rotor blades of the unmanned aircraft, the acceleration of the unmanned aircraft, and the speed of the unmanned aircraft.
  • the command value of the parameter may be obtained from an operating device that instructs control of the unmanned aircraft.
  • the command value of the parameter may be included in the setting information held in the unmanned aircraft memory.
  • the flight control method may further include a step of setting a driving current for driving the rotor wing of the unmanned aircraft to a predetermined current larger than the driving current in the safety control mode.
  • the flight control method further includes a step of detecting a flight altitude of the unmanned aircraft, and a step of stopping the rotation of the rotor blades of the unmanned aircraft when the flight altitude is equal to or lower than the first predetermined altitude. May include.
  • the flight control method includes a step of detecting a flight altitude of the unmanned aircraft, and a step of outputting a warning sound indicating an abnormal flight state when the flight altitude is equal to or lower than a second predetermined altitude. Further may be included.
  • the flight control method includes a step of detecting a flight altitude of the unmanned aircraft, and a cushioning material surrounding at least a part of the rotor wing of the unmanned aircraft when the flight altitude is equal to or lower than a third predetermined altitude. And unpacking.
  • the flight control method includes a step of determining whether the rotation of the rotor blades of the unmanned aircraft has stopped, and if the rotation of the rotor blades of the unmanned aircraft does not stop, at least a part of the rotor blades of the unmanned aircraft Unfolding the cushioning material surrounding the.
  • the cushioning material may surround at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
  • the cushioning material may be developed so as to cover at least the lower side and the side of the rotor blade.
  • An unmanned aerial vehicle may include a plurality of rotor blades and a plurality of cushioning materials. Each shock absorbing material may surround at least a part of the periphery of each rotor blade when the shock absorbing material is deployed.
  • the unmanned aerial vehicle is an unmanned aerial vehicle that controls a control mode during the flight, and a detection unit that detects an abnormal flight state of the unmanned aircraft, and a safety control mode when the abnormal flight state is detected.
  • a change unit for changing to the control mode.
  • the unmanned aerial vehicle may further include a communication unit that transmits information related to the abnormality to an operating device that instructs control of the unmanned aircraft when an abnormality in the flight state is detected.
  • the detection unit may acquire the acceleration in the gravity direction of the unmanned aircraft, and the detection unit may determine that the flight state is abnormal when the acceleration in the gravity direction of the unmanned aircraft is equal to or greater than a predetermined value.
  • the detecting unit may acquire the acceleration in the gravity direction of the unmanned aircraft, and may determine that the flight state is abnormal when the acceleration in the gravity direction of the unmanned aircraft continues for a predetermined time.
  • the unmanned aerial vehicle may further include a first determination unit that determines the presence or absence of an operation input signal from an operation device that instructs control of the unmanned aircraft.
  • the change unit may change the control mode to the safety control mode when there is no operation input signal.
  • the detection unit may acquire a command value of a parameter indicating a flight state based on the operation input signal, and may acquire an actual measurement value of the parameter.
  • the changing unit may change the control mode to the safe control mode when the measured value of the parameter with respect to the command value of the parameter is outside a predetermined range.
  • the parameter may include at least one of the driving current of the rotor blades of the unmanned aircraft, the acceleration of the unmanned aircraft, and the speed of the unmanned aircraft.
  • the command value of the parameter may be obtained from an operating device that instructs control of the unmanned aircraft.
  • the command value of the parameter may be included in the setting information held in the unmanned aircraft memory.
  • the safety control mode may further include a setting unit that sets a driving current for driving the rotor blades of the unmanned aircraft to a predetermined current larger than the driving current.
  • the unmanned aircraft includes an acquisition unit that acquires the flight altitude of the unmanned aircraft, and a first control unit that stops the rotation of the rotor blades of the unmanned aircraft when the flight altitude is equal to or lower than a first predetermined altitude. , May be further provided.
  • the unmanned aircraft has an acquisition unit that acquires the flight altitude of the unmanned aircraft, an output unit that outputs a warning sound indicating an abnormal flight state when the flight altitude is equal to or lower than a second predetermined altitude, May further be included.
  • the unmanned aircraft includes an acquisition unit that acquires the flight altitude of the unmanned aircraft, and a cushioning material that surrounds at least a part of the rotor blades of the unmanned aircraft when the flight altitude falls below a third predetermined altitude. And a second control unit that deploys.
  • the unmanned aircraft is configured to determine whether or not the rotation of the rotor blades of the unmanned aircraft has stopped, and when the rotation of the rotor blades of the unmanned aircraft does not stop, And a third control unit that deploys a cushioning material that surrounds a part of the cushioning material.
  • the cushioning material may surround at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
  • the cushioning material may be developed so as to cover at least the lower side and the side of the rotor blade.
  • the unmanned aerial vehicle may further include a plurality of rotor blades and a plurality of cushioning materials.
  • Each shock absorbing material may surround at least a part of the periphery of each rotor blade when the shock absorbing material is deployed.
  • the flight system includes an unmanned aircraft that controls a control mode during flight and an operating device that directs control of the unmanned aircraft, the unmanned aircraft detecting an abnormality in a flight state of the unmanned aircraft. If a flight state abnormality is detected, the control mode is changed to the safety control mode, and if a flight state abnormality is detected, information related to the abnormality is transmitted to the operation device. And presents that there is an abnormality in the flight status of the unmanned aircraft based on the abnormality information.
  • the program detects, in the unmanned aerial vehicle, which is a computer that controls the control mode during the flight of the unmanned aircraft, an abnormality in the flight state of the unmanned aircraft; And a step of changing to a safe control mode.
  • the recording medium includes a step of detecting an abnormality in a flight state of the unmanned aircraft in the unmanned aircraft that is a computer that controls a control mode during the flight of the unmanned aircraft, and a control when an abnormality in the flight state is detected. And a step of changing the mode to the safety control mode.
  • a figure showing an example of the appearance of an unmanned aerial vehicle The figure which shows an example of the concrete appearance of an unmanned aerial vehicle
  • the block diagram which shows an example of the hardware constitutions of the unmanned aircraft in 1st Embodiment The block diagram which shows an example of a function structure of the unmanned aerial vehicle in 1st Embodiment
  • the perspective view which shows an example of the external appearance of a transmitter Block diagram showing an example of the hardware configuration of the transmitter
  • the schematic diagram which shows the 2nd transition example of the control mode of the unmanned aerial vehicle in the first embodiment Schematic diagram illustrating a third transition example of the control mode of the unmanned aerial vehicle according to the first embodiment.
  • the schematic diagram which shows the 1st example of presentation of the abnormality of the flight state of the unmanned aircraft by the transmitter Schematic diagram showing a second example of presentation of abnormal flight state of an unmanned aerial vehicle by a transmitter
  • the flowchart which shows the operation example of the unmanned aerial vehicle in 1st Embodiment Flowchart showing an operation example of
  • FIG. 18A is a front view showing a first example of an unmanned aerial vehicle through which a part of the airbag of FIG. 18A is seen.
  • FIG. 18A is a front view showing a second example of an unmanned aerial vehicle through which a part of the airbag of FIG.
  • FIG. 18A is seen.
  • Plan view of the unmanned aerial vehicle of FIG. 18C viewed from above Front view showing an example of an unmanned aerial vehicle in a state where an airbag when covering four rotor blades with four airbags is deployed
  • FIG. 19A is a front view showing an example of an unmanned aerial vehicle through which a part of the airbag of FIG. 19A is seen.
  • the flowchart which shows the operation example of the unmanned aerial vehicle in 2nd Embodiment
  • Unmanned aerial vehicle UAV: Unmanned Aero Vehicle
  • Unmanned aerial vehicles include aircraft that travel in the air.
  • the unmanned aerial vehicle is represented as “UAV”.
  • the flight control method the operation in the unmanned aerial vehicle is defined.
  • the recording medium is a recording medium of a program (for example, a program that causes an unmanned aircraft to execute various processes).
  • FIG. 1 is a schematic diagram illustrating a configuration example of a flight system 10 according to the first embodiment.
  • the flight system 10 includes an unmanned aircraft 100 and a transmitter 50.
  • the unmanned aircraft 100 and the transmitter 50 can communicate with each other by wired communication or wireless communication (for example, a wireless LAN (Local Area Network)).
  • wired communication or wireless communication for example, a wireless LAN (Local Area Network)
  • FIG. 2 is a diagram illustrating an example of the appearance of the unmanned aerial vehicle 100.
  • FIG. 3 is a diagram illustrating an example of a specific appearance of the unmanned aerial vehicle 100. A side view when the unmanned aircraft 100 flies in the moving direction STV0 is shown in FIG. 2, and a perspective view when the unmanned aircraft 100 flies in the moving direction STV0 is shown in FIG.
  • a roll axis (see x-axis) is defined in a direction parallel to the ground and along the moving direction STV0.
  • a pitch axis (see y-axis) is defined in a direction parallel to the ground and perpendicular to the roll axis, and further, a yaw axis (z-axis) in a direction perpendicular to the ground and perpendicular to the roll axis and the pitch axis. See).
  • the unmanned aerial vehicle 100 includes a UAV main body 102, a gimbal 200, an imaging device 220, and a plurality of imaging devices 230.
  • the UAV main body 102 includes a plurality of rotor blades (propellers).
  • the UAV main body 102 causes the unmanned aircraft 100 to fly by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 102 causes the unmanned aircraft 100 to fly using, for example, four rotary wings.
  • the number of rotor blades is not limited to four.
  • Unmanned aerial vehicle 100 may also be a fixed wing aircraft that does not have rotating wings.
  • the imaging device 220 is an imaging camera that captures a subject included in a desired imaging range (for example, an aerial subject, a landscape such as a mountain or a river, a building on the ground).
  • a desired imaging range for example, an aerial subject, a landscape such as a mountain or a river, a building on the ground.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the unmanned aircraft 100 in order to control the flight of the unmanned aircraft 100.
  • the two imaging devices 230 may be provided on the front surface that is the nose of the unmanned aircraft 100.
  • the other two imaging devices 230 may be provided on the bottom surface of the unmanned aircraft 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • Three-dimensional spatial data around the unmanned aerial vehicle 100 may be generated based on images captured by the plurality of imaging devices 230. Note that the number of imaging devices 230 included in the unmanned aerial vehicle 100 is not limited to four.
  • the unmanned aircraft 100 only needs to include at least one imaging device 230.
  • the unmanned aerial vehicle 100 may include at least one imaging device 230 on each of the nose, tail, side, bottom, and ceiling of the unmanned aircraft 100.
  • the angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 220.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the unmanned aerial vehicle 100.
  • the unmanned aircraft 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotary wing mechanism 210, an imaging device 220, an imaging device 230, a GPS receiver 240, an inertial measurement device (
  • the configuration includes an IMU (Inertial Measurement Unit) 250, a magnetic compass 260, a barometric altimeter 270, an ultrasonic altimeter 280, and a speaker 290.
  • the communication interface 150 is an example of a communication unit.
  • the UAV control unit 110 is configured using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
  • the UAV control unit 110 performs signal processing for overall control of operations of each unit of the unmanned aircraft 100, data input / output processing with respect to other units, data calculation processing, and data storage processing.
  • the UAV control unit 110 controls the flight of the unmanned aircraft 100 according to a program stored in the memory 160.
  • UAV control unit 110 controls the flight of unmanned aerial vehicle 100 in accordance with instructions received from remote transmitter 50 via communication interface 150.
  • Memory 160 may be removable from unmanned aerial vehicle 100.
  • the UAV control unit 110 may specify the environment around the unmanned aircraft 100 by analyzing a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 controls the flight based on the environment around the unmanned aircraft 100 while avoiding obstacles, for example.
  • the UAV control unit 110 acquires date / time information indicating the current date / time.
  • the UAV control unit 110 may acquire date / time information indicating the current date / time from the GPS receiver 240.
  • the UAV control unit 110 may acquire date / time information indicating the current date / time from a timer (not shown) mounted on the unmanned aircraft 100.
  • the UAV control unit 110 acquires position information indicating the position of the unmanned aircraft 100.
  • the UAV control unit 110 may acquire position information indicating the latitude, longitude, and altitude at which the unmanned aircraft 100 exists from the GPS receiver 240.
  • the UAV control unit 110 acquires, from the GPS receiver 240, latitude / longitude information indicating the latitude and longitude where the unmanned aircraft 100 exists, and altitude information indicating the altitude where the unmanned aircraft 100 exists from the barometric altimeter 270, as position information.
  • the UAV control unit 110 may acquire the distance between the ultrasonic radiation point and the ultrasonic reflection point by the ultrasonic altimeter 280 as altitude information.
  • the UAV control unit 110 acquires orientation information indicating the orientation of the unmanned aircraft 100 from the magnetic compass 260.
  • direction information for example, a direction corresponding to the nose direction of the unmanned aircraft 100 is indicated.
  • the UAV control unit 110 may acquire position information indicating a position where the unmanned aircraft 100 should be present when the imaging device 220 captures an imaging range to be imaged.
  • the UAV control unit 110 may acquire position information indicating the position where the unmanned aircraft 100 should be present from the memory 160.
  • the UAV control unit 110 may acquire position information indicating the position where the unmanned aircraft 100 should exist from another device such as the transmitter 50 via the communication interface 150.
  • the UAV control unit 110 refers to the 3D map database, specifies a position where the unmanned aircraft 100 can exist in order to capture an imaging range to be imaged, and sets the position where the unmanned aircraft 100 should exist. May be acquired as position information indicating.
  • the UAV control unit 110 acquires imaging information indicating the imaging ranges of the imaging device 220 and the imaging device 230.
  • the UAV control unit 110 acquires angle-of-view information indicating the angle of view of the imaging device 220 and the imaging device 230 from the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range.
  • the UAV control unit 110 acquires information indicating the imaging direction of the imaging device 220 and the imaging device 230 as a parameter for specifying the imaging range.
  • the UAV control unit 110 acquires posture information indicating the posture state of the imaging device 220 from the gimbal 200 as information indicating the imaging direction of the imaging device 220, for example.
  • the UAV control unit 110 acquires information indicating the direction of the unmanned aircraft 100.
  • Information indicating the posture state of the imaging device 220 indicates a rotation angle from the reference rotation angle of the pitch axis and yaw axis of the gimbal 200.
  • the UAV control unit 110 acquires position information indicating a position where the unmanned aircraft 100 exists as a parameter for specifying the imaging range.
  • the UAV control unit 110 defines an imaging range indicating a geographical range captured by the imaging device 220 based on the angle of view and the imaging direction of the imaging device 220 and the imaging device 230, and the position where the unmanned aircraft 100 exists.
  • the imaging information may be acquired by generating imaging information indicating the imaging range.
  • the UAV control unit 110 may acquire imaging information indicating an imaging range to be imaged by the imaging device 220.
  • the UAV control unit 110 may acquire imaging information to be imaged by the imaging device 220 from the memory 160.
  • the UAV control unit 110 may acquire imaging information to be imaged by the imaging device 220 from another device such as the transmitter 50 via the communication interface 150.
  • the UAV control unit 110 may acquire three-dimensional information (three-dimensional information) indicating the three-dimensional shape (three-dimensional shape) of an object existing around the unmanned aircraft 100.
  • the object is a part of a landscape such as a building, a road, a car, and a tree.
  • the three-dimensional information is, for example, three-dimensional space data.
  • the UAV control unit 110 may acquire the three-dimensional information by generating the three-dimensional information indicating the three-dimensional shape of the object existing around the unmanned aircraft 100 from each image obtained from the plurality of imaging devices 230.
  • the UAV control unit 110 may acquire the three-dimensional information indicating the three-dimensional shape of the object existing around the unmanned aircraft 100 by referring to the three-dimensional map database stored in the memory 160.
  • the UAV control unit 110 may acquire three-dimensional information related to the three-dimensional shape of an object existing around the unmanned aircraft 100 by referring to a three-dimensional map database managed by a server existing on the network.
  • the UAV control unit 110 acquires image data captured by the imaging device 220 and the imaging device 230.
  • the UAV control unit 110 controls the gimbal 200, the rotary blade mechanism 210, the imaging device 220, and the imaging device 230.
  • the UAV control unit 110 controls the imaging range of the imaging device 220 by changing the imaging direction or angle of view of the imaging device 220.
  • the UAV control unit 110 controls the imaging range of the imaging device 220 supported by the gimbal 200 by controlling the rotation mechanism of the gimbal 200.
  • the imaging range refers to a geographical range captured by the imaging device 220 or the imaging device 230.
  • the imaging range is defined by latitude, longitude, and altitude.
  • the imaging range may be a range in three-dimensional spatial data defined by latitude, longitude, and altitude.
  • the imaging range is specified based on the angle of view and imaging direction of the imaging device 220 or the imaging device 230, and the position where the unmanned aircraft 100 is present.
  • the imaging directions of the imaging device 220 and the imaging device 230 are defined from the azimuth and the depression angle in which the front surface where the imaging lenses of the imaging device 220 and the imaging device 230 are provided is directed.
  • the imaging direction of the imaging device 220 is a direction specified from the heading direction of the unmanned aerial vehicle 100 and the posture state of the imaging device 220 with respect to the gimbal 200.
  • the imaging direction of the imaging device 230 is a direction specified from the heading of the unmanned aerial vehicle 100 and the position where the imaging device 230 is provided.
  • the UAV control unit 110 controls the flight of the unmanned aircraft 100 by controlling the rotary wing mechanism 210. That is, the UAV control unit 110 controls the position including the latitude, longitude, and altitude of the unmanned aircraft 100 by controlling the rotary wing mechanism 210.
  • the UAV control unit 110 may control the imaging ranges of the imaging device 220 and the imaging device 230 by controlling the flight of the unmanned aircraft 100.
  • the UAV control unit 110 may control the angle of view of the imaging device 220 by controlling a zoom lens included in the imaging device 220.
  • the UAV control unit 110 may control the angle of view of the imaging device 220 by digital zoom using the digital zoom function of the imaging device 220.
  • the UAV control unit 110 moves the unmanned aircraft 100 to a specific position at a specific date and time to perform desired imaging under a desired environment.
  • the range can be imaged by the imaging device 220.
  • the UAV control unit 110 moves the unmanned aircraft 100 to a specific position at the specified date and time to In this environment, the imaging device 220 can capture a desired imaging range.
  • the communication interface 150 communicates with the transmitter 50.
  • the communication interface 150 receives various commands and information for the UAV control unit 110 from the remote transmitter 50.
  • the UAV control unit 110 controls the gimbal 200, the rotating blade mechanism 210, the imaging device 220, the imaging device 230, the GPS receiver 240, the inertial measurement device 250, the magnetic compass 260, the barometric altimeter 270, and the ultrasonic altimeter 280. Stores the programs necessary for this.
  • the memory 160 may be a computer-readable recording medium, such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), and It may include at least one flash memory such as a USB memory.
  • the memory 160 may be provided inside the UAV main body 102. It may be provided so as to be removable from the UAV main body 102.
  • the gimbal 200 supports the imaging device 220 to be rotatable about at least one axis.
  • the gimbal 200 may support the imaging device 220 rotatably about the yaw axis, pitch axis, and roll axis.
  • the gimbal 200 may change the imaging direction of the imaging device 220 by rotating the imaging device 220 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotary blade mechanism 210 includes a plurality of rotary blades 211, a plurality of drive motors 212 that rotate the plurality of rotary blades 211, and a current sensor that measures a current value (actual value) of a drive current for driving the drive motor 212. 213.
  • the drive current is supplied to the drive motor 212.
  • the imaging device 220 captures a subject within a desired imaging range and generates captured image data.
  • Image data obtained by imaging by the imaging device 220 is stored in a memory included in the imaging device 220 or the memory 160.
  • the imaging device 230 captures the surroundings of the unmanned aircraft 100 and generates captured image data. Image data of the imaging device 230 is stored in the memory 160.
  • the GPS receiver 240 receives a plurality of signals indicating times and positions (coordinates) of each GPS satellite transmitted from a plurality of navigation satellites (that is, GPS satellites).
  • the GPS receiver 240 calculates the position of the GPS receiver 240 (that is, the position of the unmanned aircraft 100) based on the plurality of received signals.
  • the GPS receiver 240 outputs the position information of the unmanned aircraft 100 to the UAV control unit 110.
  • the calculation of the position information of the GPS receiver 240 may be performed by the UAV control unit 110 instead of the GPS receiver 240. In this case, the UAV control unit 110 receives information indicating the time and the position of each GPS satellite included in a plurality of signals received by the GPS receiver 240.
  • the inertial measurement device 250 detects the attitude of the unmanned aircraft 100 and outputs the detection result to the UAV control unit 110.
  • the inertial measurement device IMU 250 detects the acceleration of the unmanned aircraft 100 in the three axial directions of the front, rear, left and right, and the angular velocity in the three axial directions of the pitch axis, the roll axis, and the yaw axis. .
  • the magnetic compass 260 detects the heading of the unmanned aircraft 100 and outputs the detection result to the UAV control unit 110.
  • the barometric altimeter 270 detects the altitude at which the unmanned aircraft 100 flies and outputs the detection result to the UAV control unit 110.
  • Ultrasonic altimeter 280 emits ultrasonic waves, detects ultrasonic waves reflected by the ground and objects, and outputs detection results to UAV control unit 110.
  • the detection result may indicate a distance from the unmanned aircraft 100 to the ground, that is, an altitude.
  • the detection result may indicate the distance from the unmanned aerial vehicle 100 to the object.
  • the speaker 290 acquires audio data from the UAV control unit 110 and outputs the audio data as audio.
  • the speaker 290 may output voice data as a warning sound.
  • the number of speakers 290 is one or more and is arbitrary.
  • the installation position of the speaker 290 in the unmanned aircraft 100 is arbitrary.
  • the warning sound output from the speaker 290 has a sound component that goes in the direction of gravity (that is, the direction of the ground). The warning sound can be confirmed by a person existing on the ground when the altitude of the unmanned aerial vehicle 100 decreases.
  • FIG. 5 is a block diagram illustrating an example of a functional configuration of the UAV control unit 110.
  • the UAV control unit 110 includes an abnormality processing unit 111, a signal determination unit 112, a control mode change unit 113, an altitude acquisition unit 114, a drive current setting unit 115, a rotor blade control unit 116, and a voice control unit 117. *
  • the abnormality processing unit 111 is an example of a detection unit.
  • the signal determination unit 112 is an example of a first determination unit.
  • the control mode changing unit 113 is an example of a changing unit.
  • the altitude acquisition unit 114 is an example of an acquisition unit.
  • the drive current setting unit 115 is an example of a setting unit.
  • the rotary blade control unit 116 is an example of a first control unit.
  • the voice control unit 117 is an example of an output unit.
  • the abnormality processing unit 111 determines whether there is an abnormality in the flight state of the unmanned aircraft 100.
  • the abnormality processing unit 111 detects an abnormality in the flight state when the flight state of the unmanned aircraft 100 is abnormal.
  • the flight state of the unmanned aerial vehicle 100 may be indicated by a parameter indicating the flight state of the unmanned aircraft 100 (also referred to as a flight parameter).
  • the flight parameters may include at least one of a drive current for driving a rotor included in the rotor mechanism 210, an acceleration of the unmanned aircraft 100, a speed of the unmanned aircraft 100, and an altitude of the unmanned aircraft 100.
  • the abnormality processing unit 111 may acquire the current value obtained by the current sensor 213 as the actual value of the drive current (actual value of the drive current).
  • the abnormality processing unit 111 may acquire the acceleration measured by the inertial measurement device 250 as an actual value of acceleration of the unmanned aircraft 100 (actual measurement value of acceleration).
  • the abnormality processing unit 111 acquires altitude information from the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280, and acquires the acceleration calculated by the second derivative of the altitude information as an actual measured value of the unmanned aircraft 100 acceleration. You can do it.
  • the abnormality processing unit 111 may acquire the acceleration measured by the inertial measurement device 250, integrate the acceleration, and acquire the actual value of the speed of the unmanned aircraft 100 (measured value of the speed).
  • the abnormality processing unit 111 acquires altitude information from the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280, and acquires the speed calculated by differentiation of the altitude information as an actual measurement value of the speed of the unmanned aircraft 100. Good.
  • the abnormality processing unit 111 determines that the flight state is abnormal You may judge.
  • the threshold th1 may be other than 1 g, for example, 0.8 g.
  • the abnormality processing unit 111 may determine that there is an abnormality in the flight state when there is no operation input signal based on the operator's operation on the transmitter 50 as a result of the determination by the signal determination unit 112. Further, instead of the operation input signal, the abnormality processing unit 111 may determine whether or not predetermined setting information is stored in the memory 160. This setting information may include an abnormality determination program for determining an abnormality in the flight state.
  • the abnormality processing unit 111 may acquire a command value (command value of the flight parameter) for commanding the value of the flight parameter.
  • the abnormality processing unit 111 may acquire the flight parameter command value included in the operation input signal from the transmitter 50 via the communication interface 150.
  • the abnormality processing unit 111 may acquire setting information stored in the memory 160, and acquire a flight parameter command value from the setting information.
  • This setting information may include an abnormality determination program for determining an abnormality in the flight state.
  • the flight parameter command value includes a drive current command value for commanding the magnitude of the drive current supplied to the drive motor 212, an acceleration command value for commanding the magnitude of acceleration, and the magnitude of the speed. And a command value of speed for commanding.
  • the abnormality processing unit 111 may acquire an acceleration command value included in the operation input signal or the setting information held in the memory 160.
  • the abnormality processing unit 111 converts the command value of the drive current into the command value of the drive current by converting the command value of the acceleration into the command value of the drive current based on a conversion table (not shown) between the command value of the acceleration and the command value of the drive current. You may get it.
  • the conversion table includes information on a one-to-one correspondence between the acceleration command value and the drive current command value, and may be stored in the memory 160 in advance.
  • the abnormality processing unit 111 may acquire the speed command value by integrating the acceleration command value and calculating the speed command value.
  • the abnormality processing unit 111 may acquire a speed command value included in the operation input signal or the setting information held in the memory 160.
  • the abnormality processing unit 111 converts the command value of the drive current into the command value of the drive current by converting the command value of the speed into the command value of the drive current based on the conversion table (not shown) of the command value of the speed and the command value of the drive current. You may get it.
  • This conversion table may include information on a one-to-one correspondence between the speed command value and the drive current command value, and may be stored in the memory 160 in advance.
  • the abnormality processing unit 111 may obtain the acceleration command value by differentiating the speed command value and calculating the acceleration command value.
  • the abnormality processing unit 111 may determine that there is an abnormality in the flight state of the unmanned aircraft 100 when the actual measurement value of the parameter with respect to the flight parameter command value is not within the predetermined range. For example, the abnormality processing unit 111 may determine that there is an abnormality in the flight state of the unmanned aircraft 100 when the ratio of the actually measured parameter value to the flight parameter command value is not within a desired ratio range.
  • the abnormality processing unit 111 may transmit information regarding the abnormality in the flight state to the transmitter 50 via the communication interface 150 when the flight state of the unmanned aircraft 100 is abnormal.
  • the information regarding the abnormality in the flight state may be information indicating that there is an abnormality in the flight state, or may be information indicating specific contents regarding the abnormality in the flight state (for example, an actual measurement value of acceleration of the unmanned aircraft 100).
  • the signal determination unit 112 may determine the presence / absence of an operation input signal from the transmitter 50 via the communication interface 150. That is, the signal determination unit 112 may determine whether an operation input signal is received by the communication interface 150.
  • the control mode changing unit 113 controls the control mode during the flight of the unmanned aircraft 100.
  • the control mode during flight includes a normal control mode that is performed when there is no abnormality in the flight state, and a safety control mode that is performed when there is an abnormality in the flight state.
  • the control mode changing unit 113 changes the control mode to the safety control mode when the flight state of the unmanned aircraft 100 is abnormal.
  • a plurality of safety control modes may be provided.
  • the unmanned aerial vehicle 100 may include a program that defines a UAV flight control method for each control mode. The program defining the flight control method is held in the memory 160, and can be acquired from the memory 160 and executed when the control mode is set.
  • the altitude acquisition unit 114 may acquire altitude information acquired by the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280 as the altitude (measured value of altitude) of the unmanned aircraft 100.
  • the altitude acquisition unit 114 may acquire an acceleration measured by the inertial measurement device 250, integrate the acceleration twice, and acquire an actually measured value of the altitude of the unmanned aircraft 100.
  • the drive current setting unit 115 sets a drive current command value for driving the drive motor 212.
  • the drive current setting unit 115 may set the drive current command value acquired by the abnormality processing unit 111 as the drive current command value.
  • the drive current command value in the safety control mode may be set larger than the drive current command value in the normal control mode.
  • the rotary blade control unit 116 controls the rotation of the rotary blade 211 by controlling the drive motor 212.
  • the rotor control unit 116 supplies drive current from the power supply (not shown) of the unmanned aircraft 100 to the drive motor 212 based on the drive current command value set by the drive current setting unit 115.
  • the drive current increases, the drive force of the drive motor 212 increases and the rotational speed of the rotary blade 211 per unit time increases.
  • the drive current decreases, the drive force of the drive motor 212 decreases, and the rotational speed per unit time of the rotary blade 211 decreases.
  • the voice control unit 117 may send the voice data to the speaker 290 and cause the speaker 290 to output the voice data.
  • the sound data widely includes sound, music, mechanical sound, and other sound data.
  • the audio data may be used as a warning sound indicating a warning.
  • the UAV control unit 110 may acquire audio data held in the memory 160.
  • the audio data may be received from a server that provides external audio data via the communication interface 150 and held in the memory 160.
  • the voice data may be recorded by the recording function of the unmanned aircraft 100 and held in the memory 160.
  • FIG. 6 is a perspective view showing an example of the appearance of the transmitter 50.
  • the up / down / front / rear and left / right directions with respect to the transmitter 50 are assumed to follow the directions of the arrows shown in FIG.
  • the transmitter 50 is used in a state of being held by both hands of a person using the transmitter 50 (hereinafter referred to as “operator”), for example.
  • the transmitter 50 includes, for example, a resin casing 50B having a substantially rectangular parallelepiped shape (in other words, a substantially box shape) having a substantially square bottom surface and a height shorter than one side of the bottom surface.
  • a left control rod 53L and a right control rod 53R are provided in a projecting manner at approximately the center of the housing surface of the transmitter 50.
  • the left control rod 53L and the right control rod 53R are used in operations for remotely controlling the movement of the unmanned aircraft 100 by the operator (for example, moving the unmanned aircraft 100 back and forth, moving left and right, moving up and down, and changing the direction).
  • the left control rod 53L and the right control rod 53R automatically return to a predetermined position (for example, the initial position shown in FIG. 6) after the external force applied by the operator is released.
  • the power button B1 of the transmitter 50 is disposed on the front side (in other words, the operator side) of the left control rod 53L.
  • the power button B1 is pressed once by the operator, for example, the remaining capacity of the battery (not shown) built in the transmitter 50 is displayed in the remaining battery capacity display portion L2.
  • the power button B1 is pressed again by the operator, for example, the power of the transmitter 50 is turned on, and power is supplied to each part (see FIG. 7) of the transmitter 50 so that it can be used.
  • RTH (Return To Home) button B2 is arranged on the front side (in other words, the operator side) of the right control rod 53R.
  • the transmitter 50 transmits a signal for automatically returning the unmanned aircraft 100 to a predetermined position.
  • the transmitter 50 can automatically return the unmanned aircraft 100 to a predetermined position (for example, a take-off position stored in the unmanned aircraft 100).
  • the RTH button B2 is used when, for example, the operator loses sight of the fuselage of the unmanned aircraft 100 during aerial shooting with the unmanned aircraft 100 outdoors, or when it becomes impossible to operate due to radio interference or unexpected troubles. Is available.
  • the remote status display part L1 and the remaining battery capacity display part L2 are arranged on the front side (in other words, the operator side) of the power button B1 and the RTH button B2.
  • the remote status display unit L1 is configured using, for example, an LED (Light Emission Diode), and displays a wireless connection state between the transmitter 50 and the unmanned aircraft 100.
  • the battery remaining amount display unit L2 is configured using, for example, an LED, and displays the remaining amount of the capacity of a battery (not shown) built in the transmitter 50.
  • Two antennas AN1 and AN2 project from the rear side of the housing 50B of the transmitter 50 and rearward from the left control rod 53L and the right control rod 53R.
  • the antennas AN1 and AN2 are unmanned signals generated by the transmitter control unit 61 (that is, signals for controlling the movement of the unmanned aircraft 100) based on the operations of the left control rod 53L and the right control rod 53R by the operator. Transmit to aircraft 100. This signal is one of the operation input signals input by the transmitter 50.
  • the antennas AN1 and AN2 can cover a transmission / reception range of 2 km, for example.
  • the antennas AN ⁇ b> 1 and AN ⁇ b> 2 are used when images taken by the imaging devices 220 and 230 included in the unmanned aircraft 100 wirelessly connected to the transmitter 50 or various data acquired by the unmanned aircraft 100 are transmitted from the unmanned aircraft 100. In addition, these images or various data can be received.
  • the display unit DP includes, for example, an LCD (Crystal Liquid Display).
  • LCD Crystal Liquid Display
  • the shape, size, and arrangement position of the display unit DP are arbitrary, and are not limited to the example of FIG.
  • FIG. 7 is a block diagram illustrating an example of a hardware configuration of the transmitter 50.
  • the transmitter 50 includes a left control rod 53L, a right control rod 53R, a transmitter control unit 61, a wireless communication unit 63, a power button B1, an RTH button B2, an operation unit set OPS, and a remote status display unit.
  • L1 the battery remaining amount display part L2, and the display part DP are comprised.
  • the transmitter 50 is an example of an operating device that instructs control of the unmanned aircraft 100.
  • the left control rod 53L is used for an operation for remotely controlling the movement of the unmanned aircraft 100 by, for example, the left hand of the operator.
  • the right control rod 53R is used for an operation for remotely controlling the movement of the unmanned aircraft 100 by, for example, the operator's right hand.
  • the unmanned aircraft 100 may move forward, move backward, move left, move right, move up, move down, rotate the unmanned aircraft 100 left. Or a combination thereof, and so on.
  • the transmitter control unit 61 displays the remaining capacity of the battery (not shown) built in the transmitter 50 on the remaining battery amount display unit L2. Thus, the operator can easily check the remaining capacity of the battery capacity built in the transmitter 50.
  • the power button B1 is pressed twice, a signal indicating that the power button B1 has been pressed twice is passed to the transmitter control unit 61.
  • the transmitter control unit 61 instructs a battery (not shown) built in the transmitter 50 to supply power to each unit in the transmitter 50. As a result, the operator turns on the power of the transmitter 50 and can easily start using the transmitter 50.
  • a signal indicating that the RTH button B2 has been pressed is input to the transmitter control unit 61.
  • the transmitter control unit 61 generates a signal for automatically returning the unmanned aircraft 100 to a predetermined position (for example, the takeoff position of the unmanned aircraft 100), via the wireless communication unit 63 and the antennas AN1 and AN2. Transmit to unmanned aerial vehicle 100.
  • the operator can automatically return (return) the unmanned aircraft 100 to a predetermined position by a simple operation on the transmitter 50.
  • the operation unit set OPS is configured using a plurality of operation units (for example, operation units OP1,..., Operation unit OPn) (n: an integer of 2 or more).
  • the operation unit set OPS supports other operation units (for example, the remote control of the unmanned aircraft 100 by the transmitter 50) except for the left control rod 53L, the right control rod 53R, the power button B1, and the RTH button B2 shown in FIG. Various operation units).
  • the various operation units referred to here are, for example, a button for instructing imaging of a still image using the imaging device 220 of the unmanned aerial vehicle 100, and an instruction for starting and ending video recording using the imaging device 220 of the unmanned aircraft 100.
  • the remote status display unit L1 and the remaining battery level display unit L2 have been described with reference to FIG.
  • the transmitter controller 61 is configured using a processor (for example, CPU, MPU or DSP).
  • the transmitter control unit 61 performs signal processing for overall control of operations of the respective units of the transmitter 50, data input / output processing with other units, data calculation processing, and data storage processing.
  • the transmitter control unit 61 may generate a signal for controlling the movement of the unmanned aircraft 100 specified by the operation of the left control rod 53L and the right control rod 53R of the operator.
  • the transmitter control unit 61 may remotely control the unmanned aircraft 100 by transmitting the generated signal to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2. Thereby, the transmitter 50 can control the movement of the unmanned aircraft 100 remotely.
  • the signal for controlling the movement of the unmanned aircraft 100 includes a flight parameter command value for controlling the flight state of the unmanned aircraft 100.
  • the transmitter control unit 61 increases the command value (for example, acceleration or the like) of the flight parameter as the operation amount of the left control rod 53L and the right control rod 53R (that is, the movement amount of the left control rod 53L or the right control rod 53R with respect to the initial position) increases. (Speed) may be increased. In consideration of the direction of movement, the magnitude of this command value is the magnitude of the absolute value of the command value.
  • the transmitter control unit 61 may decrease the flight parameter command value as the operation amount of the left control rod 53L or the right control rod 53R is smaller.
  • the transmitter control unit 61 may generate an operation input signal including a flight parameter command value and transmit the operation input signal to the unmanned aircraft 100 via the wireless communication unit 63.
  • the transmitter controller 61 may generate an acceleration command value according to the operation amount of the left control rod 53L and the right control rod 53R. In this case, when the left control rod 53L and the right control rod 53R are set to the initial positions, the acceleration is 0, and the unmanned aircraft 100 can be instructed to fly at a constant speed.
  • the transmitter controller 61 may generate a speed command value according to the operation amount of the left control rod 53L and the right control rod 53R. In this case, when the left control rod 53L and the right control rod 53R are set to the initial positions, the speed becomes 0, and a flight instruction (hovering instruction) indicating that the vehicle does not move to the unmanned aircraft 100 is possible.
  • the transmitter control unit 61 generates an operation input signal based on an operation on an arbitrary button or an arbitrary operation unit included in the transmitter 50, and transmits the operation input signal to the unmanned aircraft 100 via the wireless communication unit 63. It's okay. In this case, the unmanned aircraft 100 can recognize that it is under the control of the operator of the transmitter 50 by receiving the operation input signal from the transmitter 50.
  • the transmitter control unit 61 may receive information about an abnormality in the flight state of the unmanned aircraft 100 (for example, information that an abnormality has occurred) from the unmanned aircraft 100 via the wireless communication unit 63.
  • the transmitter control unit 61 may present information related to an abnormality in the flight state of the unmanned aircraft 100.
  • the transmitter control unit 61 may display information regarding the abnormality in the flight state via the display unit DP.
  • the transmitter control unit 61 may output information related to an abnormality in the flight state via a voice output unit (speaker, not shown).
  • the transmitter control unit 61 may present information related to an abnormality in the flight state via vibration via a vibration unit (vibrator, not shown).
  • the wireless communication unit 63 is connected to two antennas AN1 and AN2.
  • the wireless communication unit 63 transmits / receives information and data to / from the unmanned aircraft 100 via the two antennas AN1 and AN2 using a predetermined wireless communication method (for example, WiFi (registered trademark)).
  • a predetermined wireless communication method for example, WiFi (registered trademark)
  • Display unit DP displays various data.
  • the display unit DP may display information related to the abnormality in the abnormal state.
  • the transmitter 50 may be connected to a display terminal (not shown) by wire or wireless instead of including the display unit DP. Similar to the display unit DP, the display terminal may display information related to an abnormality in the flight state of the unmanned aircraft 100.
  • the display terminal may be a smartphone, a tablet terminal, a PC (Personal Computer), or the like.
  • FIG. 8 is a schematic diagram illustrating a first transition example of the control mode of the unmanned aerial vehicle 100.
  • FIG. 8 shows a situation where the unmanned aircraft 100 falls into an unexpected situation and the aircraft descends.
  • the control mode changing unit 113 sets the control mode to the normal control mode (T11).
  • the normal control mode when the flight state of the unmanned aircraft 100 is abnormal (T12), the control mode changing unit 113 changes the control mode to the safety control mode.
  • T12 when the flight state of the unmanned aircraft 100 is abnormal (T12), the control mode changing unit 113 changes the control mode to the safety control mode.
  • a transition is made to the first safety control mode.
  • the first safety control mode is a control mode in which the unmanned aircraft 100 is landed at a reduced altitude while decelerating.
  • the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the first safety control mode.
  • the first safety control mode is useful when the unmanned aircraft 100 reacts to some extent with respect to the flight parameter command value. This is because even if the flight control of the unmanned aircraft 100 is incomplete, it is possible to some extent.
  • the case where the unmanned aircraft 100 reacts to some extent may refer to the case where the ratio of the actually measured value of the flight parameter to the command value of the flight parameter is a value of 0.3 or more.
  • the value 0.3 is an example, and other values may be used.
  • the unmanned aircraft 100 can attempt to land the unmanned aircraft 100 safely by reducing the descent speed of the unmanned aircraft 100. For example, by returning the unmanned aircraft 100 to a predetermined position during a period in which the unmanned aircraft 100 is not completely broken and flight control is possible to some extent, damage to the object due to the unmanned aircraft 100 coming into contact with the object can be prevented. Can be prevented. Even if it is difficult for the unmanned aircraft 100 to return to a predetermined position, by reducing the descent speed of the unmanned aircraft 100, a person located on the ground confirms the whereabouts of the unmanned aircraft 100, and the unmanned aircraft 100 Move to avoid 100 falling points. Therefore, the unmanned aircraft 100 can reduce the possibility of contact with a person.
  • the rotary wing controller 116 may stop the rotary wing 211 after the unmanned aircraft 100 has landed. That is, the unmanned aerial vehicle 100 can secure safety without stopping the rotor wing 211 during the flight, can reduce damage to objects including the human body, and can minimize damage to humans.
  • FIG. 9A is a schematic diagram illustrating a second transition example of the control mode of the unmanned aerial vehicle 100.
  • FIG. 9A shows a situation in which the unmanned aerial vehicle 100 falls into an unforeseen situation, the aircraft descends, and falls.
  • the control mode changing unit 113 sets the control mode to the normal control mode (T21).
  • the normal control mode when there is an abnormality in the flight state of the unmanned aircraft 100 (T22), the control mode changing unit 113 changes the control mode to the safety control mode.
  • a transition is made to the second safety control mode.
  • the second safety control mode is a control mode in which the rotation of the rotor blades 211 of the unmanned aircraft 100 is stopped at a predetermined altitude H1 (for example, 5 m).
  • the predetermined altitude H1 is an example of a first predetermined altitude.
  • the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the second safety control mode.
  • the rotational speed of the rotary wing 211 increases (T23)
  • the lift in the direction opposite to the direction of gravity that is, the direction in which the unmanned aircraft 100 rises
  • the acceleration in the direction opposite to the direction of gravity increases.
  • the rotary wing control unit 116 detects that the actual measured value of the altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H1 (for example, 5 m), the rotary wing control unit 116 The rotation is stopped (T24). In this case, the rotary wing controller 116 may stop the rotation of the rotary wing 211 by setting the command value of the drive current of the drive motor 212 to 0 when the unmanned aircraft 100 reaches the predetermined altitude H1. .
  • the rotary wing control unit 116 moves and inserts a protrusion (not shown) that inhibits the rotation of the rotary wing 211 on the rotary orbit of the rotary wing 211 when the unmanned aircraft 100 reaches a predetermined altitude H1.
  • the rotation of the rotary blade 211 may be stopped by locking the rotation of the rotary blade 211.
  • the rotary blade control unit 116 can instantaneously stop the rotation of the rotary blade 211.
  • the predetermined altitude H1 which is a threshold for stopping the rotation of the rotary blade 211, may be a value other than 5 m.
  • the predetermined altitude H1 may be set to 5 m higher than the height assumed as a person.
  • the predetermined altitude H1 may be set to an arbitrary value higher than the predetermined height.
  • the second safety control mode is useful when the unmanned aerial vehicle 100 does not respond to the flight parameter command value. This is because flight control of the unmanned aerial vehicle 100 can hardly be performed, and the descent speed of the unmanned aircraft 100 cannot be sufficiently reduced.
  • the case where the unmanned aerial vehicle 100 does not react so much may indicate a case where the ratio of the actually measured value to the command value of the flight parameter is less than 0.3.
  • the value 0.3 is an example, and other values may be used.
  • the unmanned aerial vehicle 100 can reduce the impact force when the rotating blades 21 come into contact with an object or the like by stopping the rotation of the rotating blades 21.
  • the unmanned aircraft 100 can suppress the unmanned aircraft 100 from acquiring a propulsive force in an unexpected direction and keep the flight in an unexpected direction as the rotary wing 21 continues to rotate.
  • the unmanned aircraft 100 avoids stopping the rotation of the rotary blades 211 at a high altitude by stopping the rotation of the rotary blades 21 after the unmanned aircraft 100 descends to a predetermined altitude H1, and the unmanned aircraft 100 due to gravity. Can suppress an increase in the risk due to the high-speed falling.
  • FIG. 9B is a schematic diagram illustrating a third transition example of the control mode of the unmanned aerial vehicle 100.
  • FIG. 9B shows a state where the unmanned aerial vehicle 100 falls into an unforeseen situation, the aircraft descends, and falls.
  • the control mode changing unit 113 sets the control mode to the normal control mode (T31).
  • the control mode changing unit 113 changes the control mode to the safety control mode.
  • a transition is made to the third safety control mode.
  • the third safety control mode is a control mode in which a warning sound indicating an abnormal flight state is emitted from the speaker 290 at a predetermined altitude H2 (for example, 10 m).
  • the predetermined altitude H2 is an example of a second predetermined altitude.
  • the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the third safety control mode.
  • the rotational speed of the rotary wing 211 increases (T33)
  • the lift in the direction opposite to the direction of gravity that is, the direction in which the unmanned aircraft 100 rises
  • the acceleration in the direction opposite to the direction of gravity increases.
  • the voice control unit 117 When the descent of the unmanned aircraft 100 proceeds and the voice control unit 117 detects that the actual measured value of the altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H2 (for example, 10 m), the voice control unit 117 emits a warning sound (outputs a voice). (T34).
  • the warning sound may be an alert sound, a warning voice message, music indicating a warning, or the like.
  • a value other than 10 m may be used as the predetermined altitude H2 serving as a threshold value for generating a warning sound.
  • the predetermined altitude H2 may be a height at which a warning sound generated by the unmanned aircraft 100 can be heard by a person existing on the ground.
  • the voice control unit 117 may start outputting a warning sound by the speaker 290 in accordance with the transition to the third safety control mode without particularly considering the predetermined altitude H2.
  • the predetermined altitude H2 may be the same as the predetermined altitude H1 described above.
  • the unmanned aircraft 100 can output a warning sound from the speaker 290 when there is an abnormality in the flight state. Accordingly, a person present in the vicinity where the unmanned aircraft 100 flies can check the warning sound emitted by the unmanned aircraft 100, and by confirming the warning sound, the moving direction of the unmanned aircraft 100 and the position of the unmanned aircraft 100 descending (eg, falling) can be determined. Predictable. Therefore, the person who confirmed the warning sound can confirm the whereabouts of the unmanned aircraft 100 and move so as to avoid the falling point of the unmanned aircraft 100. Therefore, the unmanned aerial vehicle 100 can reduce the possibility of contact with a person on the ground, and can reduce the possibility of human injury due to contact between the rotary wing 211 and the person.
  • Each process in the third safety control mode may be performed separately from each process in the second safety control mode, or may be performed together with each process in the second safety control mode.
  • FIG. 10 is a graph showing an example of the relationship between the drive current command value Iin for driving the drive motor 212 and the measured drive current value Iout.
  • the command value Iin of the drive current and the measured value Iout of the drive current may be in a proportional relationship. In this case, the following relationship holds between the command value Iin of the drive current and the measured value Iout of the drive current.
  • Iout ⁇ 1 * Iin “ ⁇ 1” is indicated by Iout / Iin and indicates the ratio of the measured value of the drive current to the command value of the drive current. That is, ⁇ 1 indicates the sensitivity to the command value.
  • An asterisk “*” indicates a multiplication sign.
  • a straight line L1N shows an example of the relationship between the drive current command value in the normal state and the measured drive current value
  • the straight line L1A shows the drive current command value and the drive current measured value in the abnormal state. An example of the relationship is shown.
  • the abnormality processing unit 111 acquires the command value Iin of the drive current and the measured value Iout of the drive current. Based on the acquired command value Iin of the drive current and the measured value Iout of the drive current, it may be determined whether it is a normal state or an abnormal state.
  • the abnormality processing unit 111 may determine whether the ratio ⁇ 1 is a normal state or an abnormal state depending on whether the ratio ⁇ 1 is equal to or greater than one threshold value (for example, value 0.8). That is, the abnormality processing unit 111 determines that the normal state is present when the ratio ⁇ 1 is within a predetermined range that is equal to or greater than one threshold, and determines that the abnormal state is determined when the ratio ⁇ 1 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value.
  • the threshold value may be other than 0.8, or any value between 0.5 and 0.8.
  • the actual value Iout of the drive current with respect to the command value Iin of the drive current can be considered to be a value within a predetermined range assumed in advance.
  • the actual measured value Iout of the drive current with respect to the command value Iin of the drive current can be considered to be a value outside a predetermined range assumed in advance.
  • the unmanned aircraft 100 When the abnormality is determined in the flight state by performing the abnormality determination based on the command value and the actual measurement value of the drive current as shown in FIG. 10, the unmanned aircraft 100 causes the command value of the drive current due to some failure in the unmanned aircraft 100. It can be recognized that the driving force of the driving motor 212 is too small or too large. Therefore, the unmanned aerial vehicle 100 can recognize that there is a risk of falling because the appropriate lifting force of the unmanned aircraft 100 cannot be obtained.
  • FIG. 11A is a graph showing an example of the relationship between the upward acceleration command value Ain and the upward acceleration actual measurement value Aout.
  • Upward refers to the direction opposite to the direction of gravity.
  • the command value Ain for the upward acceleration and the actually measured value Aout for the upward acceleration may be in a proportional relationship. In this case, the following relationship holds between the upward acceleration command value Ain and the upward acceleration actual measurement value Aout.
  • Aout ⁇ 2 * Ain “ ⁇ 2” is indicated by Aout / Ain, and indicates the ratio of the measured value of the upward acceleration to the command value of the upward acceleration.
  • the straight line L21N shows an example of the relationship between the upward acceleration command value Ain and the upward acceleration measured value Aout in the normal state
  • the straight line L21A shows the upward acceleration command value Ain and the upward acceleration in the abnormal state.
  • An example of the relationship with the actual measurement value Aout is shown.
  • the straight line L21A indicates that the downward acceleration is detected despite the command to accelerate upward, and the unmanned aircraft 100 decelerates upward, that is, accelerates downward.
  • the abnormality processing unit 111 may obtain the upward acceleration command value Ain and the upward acceleration actual measurement value Aout.
  • the upward acceleration command value Ain is a component in the direction opposite to the gravity direction of the acceleration command value.
  • the actually measured acceleration value Aout is a component in the direction opposite to the gravitational direction of the measured acceleration value.
  • the abnormality processing unit 111 may determine whether the state is a normal state or an abnormal state based on the acquired upward acceleration command value Ain and the actually measured upward acceleration value Aout.
  • the abnormality processing unit 111 may determine whether the ratio ⁇ 2 is in a normal state or an abnormal state depending on whether the ratio ⁇ 2 is greater than or equal to one threshold value (for example, value 0.8) or less than the threshold value. That is, the abnormality processing unit 111 determines that the normal state is present when the ratio ⁇ 2 is within a predetermined range that is equal to or larger than one threshold, and determines that the abnormal state is determined when the ratio ⁇ 2 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value.
  • the threshold value may be other than 0.8, or any value between 0.5 and 0.8.
  • the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain can be considered to be a value within a predetermined range assumed in advance.
  • the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain can be considered to be a value outside a predetermined range assumed in advance.
  • the unmanned aircraft 100 When abnormality is detected in the flight state by performing abnormality determination based on the upward acceleration command value and the actual measurement value as illustrated in FIG. 11A, the unmanned aircraft 100 responds to the upward acceleration command value due to some failure in the unmanned aircraft 100. It can be recognized that the acceleration is too small or too large. Therefore, the unmanned aerial vehicle 100 cannot recognize the appropriate altitude of the unmanned aircraft 100 and can recognize that there is a risk of falling.
  • FIG. 11A the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain was examined. However, even if the acceleration command value is downward, it is possible to determine the abnormality of the flight state.
  • FIG. 11B is a graph showing an example of the relationship between the downward acceleration command value Ain and the downward acceleration measured value Aout. Downward refers to the direction of gravity. In FIG. 11B, description of processes and operations similar to those in FIG. 11A is omitted or simplified.
  • the command value Ain for the downward acceleration and the actually measured value Aout for the downward acceleration may be in a proportional relationship. In this case, the following relationship holds between the command value Ain for the downward acceleration and the actual measurement value Aout for the downward acceleration.
  • Aout ⁇ 3 * Ain “ ⁇ 3” is indicated by Aout / Ain, and indicates the ratio of the measured value of the downward acceleration to the command value of the downward acceleration.
  • the value of the measured value Aout of the downward acceleration with respect to the command value Ain of the downward acceleration is considered to be a value within a predetermined range assumed in advance.
  • the actual measured value Aout of the downward acceleration with respect to the command value Ain of the downward acceleration is considered to be a value outside a predetermined range assumed in advance.
  • a3 is a value 1, for example.
  • a straight line L22N shows an example of a relationship between a downward acceleration command value Ain and a downward acceleration measured value Aout in a normal state
  • a straight line L22A indicates a downward acceleration command value Ain and a downward acceleration in an abnormal state.
  • An example of the relationship with the actual measurement value Aout is shown.
  • the straight line L22A indicates that an excessive downward acceleration is detected with respect to the downward acceleration command value Ain, and the unmanned aircraft 100 is not properly flight-controlled, and the unmanned aircraft 100 descends rapidly.
  • the abnormality processing unit 111 may acquire the command value Ain for the downward acceleration and the actual measurement value Aout for the downward acceleration.
  • the downward acceleration command value Ain is a gravity direction component of the acceleration command value.
  • the measured value Aout of the downward acceleration is a component in the gravity direction of the measured value of acceleration.
  • the abnormality processing unit 111 may determine whether the normal state or the abnormal state is based on the acquired downward acceleration command value Ain and the actual measured value Aout of the downward acceleration.
  • the abnormality processing unit 111 may determine whether the ratio ⁇ 3 is a normal state or an abnormal state depending on whether the ratio ⁇ 3 is equal to or greater than one threshold (for example, value 1.2) or less than the threshold. That is, the abnormality processing unit 111 determines that an abnormal state occurs when the ratio ⁇ 3 is outside a predetermined range that is equal to or greater than one threshold, and the normal state when the ratio ⁇ 3 is within a predetermined range that is less than one threshold. May be determined. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. This threshold value may be other than the value 1.2, or any value between the value 1.2 and the value 1.5.
  • one threshold for example, value 1.2
  • the unmanned aircraft 100 When the abnormality is detected in the flight state by performing abnormality determination based on the downward acceleration command value and the actual measurement value as shown in FIG. 11B, the unmanned aircraft 100 responds to the downward acceleration command value due to some failure in the unmanned aircraft 100. It can be recognized that the acceleration is excessive. Therefore, the unmanned aerial vehicle 100 is not under appropriate flight control and cannot maintain an appropriate altitude, and therefore can recognize that there is a risk of falling.
  • FIG. 12A is a graph illustrating an example of a relationship between an upward speed command value Vin and an upward speed measured value Vout.
  • the upward speed command value Vin and the upward speed actual measurement value Vout may be in a proportional relationship. In this case, the following relationship holds between the upward speed command value Vin and the upward speed measured value Vout.
  • Vout ⁇ 4 * Vin “ ⁇ 4” is indicated by Vout / Vin, and indicates the ratio of the actually measured value of the upward speed to the command value of the upward speed.
  • a4 is, for example, the value 1.
  • the straight line L31N shows an example of the relationship between the upward speed command value Vin and the upward speed measured value Vout in the normal state
  • the straight line L31A shows the upward speed command value Vin and the upward speed in the abnormal state.
  • An example of the relationship with the measured value of is shown.
  • the straight line L31A indicates that the downward speed is detected even though the altitude is commanded to rise, and the unmanned aircraft 100 descends.
  • the abnormality processing unit 111 may obtain the upward speed command value Vin and the upward speed actual measurement value Vout.
  • the upward speed command value Vin is a component in the direction opposite to the gravity direction of the speed command value.
  • the actual measured value Vout of the upward speed is a component in the direction opposite to the direction of gravity of the actual measured value of speed.
  • the abnormality processing unit 111 may determine whether the state is a normal state or an abnormal state based on the acquired upward speed command value Vin and the actually measured upward speed value Vout.
  • the abnormality processing unit 111 may determine whether the ratio ⁇ 4 is in a normal state or an abnormal state depending on whether the ratio ⁇ 4 is greater than or equal to one threshold (for example, value 0.8) or less than the threshold. That is, the abnormality processing unit 111 determines that the normal state is present when the ratio ⁇ 4 is within a predetermined range that is equal to or greater than one threshold, and determines that the abnormal state is determined when the ratio ⁇ 4 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value.
  • the threshold value may be other than 0.8, or any value between 0.5 and 0.8.
  • the actual measured value Vout of the upward speed with respect to the upward speed command value Vin is considered to be a value within a predetermined range that is assumed in advance.
  • the actual measured value Vout of the upward speed with respect to the upward speed command value Vin can be considered to be a value outside a predetermined range assumed in advance.
  • the unmanned aircraft 100 responds to the upward speed command value due to some failure in the unmanned aircraft 100. It can be recognized that the speed is too low or too high. Therefore, the unmanned aerial vehicle 100 cannot recognize the appropriate altitude of the unmanned aircraft 100 and can recognize that there is a risk of falling.
  • FIG. 12A the actual measured value Vout of the upward speed with respect to the upward speed command value Vin was examined. However, even if the speed command value is downward, it is possible to determine an abnormality in the flight state.
  • FIG. 12B is a graph showing an example of the relationship between the downward speed command value Vin and the downward speed measured value Vout. In FIG. 12B, description of processes and operations similar to those in FIG. 12A is omitted or simplified.
  • the downward speed command value Vin and the actual measured value Vout of the downward speed may be in a proportional relationship.
  • the following relationship holds between the downward speed command value Vin and the downward speed measured value Vout.
  • Vout ⁇ 5 * Vin “ ⁇ 5” is indicated by Vout / Vin and indicates the ratio of the measured value of the downward speed to the command value of the downward speed.
  • the value of the actually measured value Vout of the downward speed with respect to the downward speed command value Vin is considered to be a value within a predetermined range assumed in advance.
  • the actual measured value Vout of the downward speed with respect to the downward speed command value Vin can be considered to be a value outside a predetermined range assumed in advance.
  • a5 is, for example, the value 1.
  • the straight line L32N shows an example of the relationship between the downward speed command value and the downward speed measured value in the normal state
  • the straight line L32A shows the downward speed command value and the downward speed actual value in the abnormal state. An example of the relationship is shown.
  • the straight line L32A indicates that an excessive downward speed is detected with respect to the downward speed command value, and the unmanned aircraft 100 is not properly flight-controlled, and the unmanned aircraft 100 descends rapidly.
  • the abnormality processing unit 111 may determine whether the ratio ⁇ 5 is a normal state or an abnormal state depending on whether the ratio ⁇ 5 is equal to or greater than one threshold value (for example, value 1.2). That is, the abnormality processing unit 111 determines that an abnormal state occurs when the ratio ⁇ 5 is outside a predetermined range that is equal to or greater than one threshold, and the normal state when the ratio ⁇ 5 is within a predetermined range that is less than one threshold. May be determined. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. This threshold value may be other than the value 1.2, or any value between the value 1.2 and the value 1.5.
  • one threshold value for example, value 1.2
  • the unmanned aircraft 100 When the abnormality determination is performed based on the downward speed command value and the actual measurement value as shown in FIG. 12B, when there is an abnormality in the flight state, the unmanned aircraft 100 responds to the downward speed command value due to some failure in the unmanned aircraft 100. You can recognize that the speed is excessive. Therefore, the unmanned aerial vehicle 100 is not under appropriate flight control and cannot maintain an appropriate altitude, and therefore can recognize that there is a risk of falling.
  • FIG. 13A is a schematic diagram illustrating a first presentation example of an abnormality in the flight state of the unmanned aircraft 100 by the transmitter 50.
  • the transmitter 50 may include an abnormality display unit L3 as means for displaying an abnormality in the flight state of the unmanned aircraft 100.
  • the abnormality display unit L3 may be configured using LEDs.
  • the transmitter control unit 61 may display the information on the abnormality on the abnormality display unit L3.
  • the abnormality display unit L3 may change the lighting mode (for example, lighting, blinking, and extinguishing) of the LED when receiving information regarding the abnormality in the flight state.
  • the abnormality display unit L3 may change the color of the LED (for example, change it to red) when receiving information related to abnormality in the flight state.
  • the abnormality display unit L3 may change the blinking pattern of the LED when information related to an abnormality in the flight state is received. In FIG. 13A, the abnormality display portion L3 is lit to indicate that there is an abnormality in the flight state.
  • FIG. 13B is a schematic diagram illustrating a second presentation example of an abnormality in the flight state of the unmanned aircraft 100 by the transmitter 50.
  • the transmitter control unit 61 may display the information on the abnormality on the display unit DP.
  • the transmitter control unit 61 may display the information on the flight state abnormality received via the wireless communication unit 63 as it is on the display unit DP, or may process the received information on the flight state abnormality. You may display on display part DP.
  • the display unit DP displays a text message “A flight abnormality has occurred!” As an example of a message for notifying abnormality. It should be noted that other text messages may be displayed on the display unit DP, and specific contents regarding the abnormality in the flight state (for example, information indicating an actual acceleration value) may be displayed. A predetermined figure or symbol may be displayed to indicate an abnormality.
  • the unmanned aircraft 100 notifies the transmitter 50 of an abnormality in the flight state, and the transmitter 50 displays information related to the abnormality, so that the operator of the transmitter 50 can Can confirm the abnormal flight status. Therefore, the operator may operate the unmanned aircraft 100 in which an abnormality has occurred using the transmitter 50 to change the flight parameters of the unmanned aircraft 100 and attempt to stabilize the flight state of the unmanned aircraft 100. it can.
  • FIG. 14A and FIG. 14B are flowcharts showing an operation example of the unmanned aerial vehicle 100.
  • the abnormality processing unit 111 acquires an actual measurement value of acceleration, for example, in the normal control mode (S11).
  • the abnormality processing unit 111 calculates a motion vector (value of the gravity direction component) in the gravity direction of the actually measured value of the acquired acceleration (S12).
  • a motion vector value of the gravity direction component
  • the value of the gravity direction component of the actually measured acceleration value is indicated by the actually measured value of upward acceleration.
  • the abnormality processing unit 111 determines whether or not the value of the gravity direction component of the measured acceleration value is equal to or less than a threshold th11 (for example, ⁇ 10 m / s 2 , that is, 1 G) (S13). That is, the abnormality processing unit 111 determines whether or not the actually measured value of the upward acceleration is equal to or less than the threshold th11. Note that when the unmanned aerial vehicle 100 is descending, the actual measured value of the upward acceleration is a negative value.
  • the threshold value th11 has a value opposite to that of the threshold value th1. If the value of the gravity direction component of the measured acceleration value is greater than the threshold th11 (No in S13), the process proceeds to S11.
  • the unmanned aerial vehicle 100 When the unmanned aerial vehicle 100 falls freely, it will fly at an upward acceleration equal to or less than the threshold th11. On the other hand, when the unmanned aircraft 100 descends, for example, by an operation by the transmitter 50, the unmanned aircraft 100 flies at an upward acceleration equal to or higher than the threshold th11. Therefore, it is possible to distinguish the free fall and the descent due to the operation by the threshold th11.
  • the abnormality processing unit 111 performs a predetermined time T1 after the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11. It is determined whether (for example, 1 second) has elapsed (S14). If the predetermined time T1 has not elapsed since the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11 (No in S14), the process proceeds to S11.
  • the signal determination unit 112 receives an operation input from the transmitter 50 via the communication interface 150. It is determined whether or not a signal has been acquired (S15). When the operation input signal is not acquired, the process proceeds to S19.
  • the abnormality processing unit 111 acquires the flight parameter command value included in the operation input signal (S16).
  • the abnormality processing unit 111 acquires the actual flight parameter measurement value that is the same as the flight parameter command value acquired in S16 (S17).
  • the abnormality processing unit 111 determines whether or not the ratio between the flight parameter command value and the flight parameter measured value is outside a predetermined range (S18). If the ratio between the flight parameter command value and the flight parameter measured value is within the predetermined range (No in S18), the process proceeds to S11. That is, the abnormality processing unit 111 determines that the descent of the unmanned aircraft 100 is due to the operator's intention and that there is no abnormality in the flight state.
  • the abnormality processing unit 111 determines that the flight state of the unmanned aircraft 100 is abnormal. That is, the abnormality processing unit 111 recognizes that the unmanned aircraft 100 exhibits a behavior that does not conform to the intention of the operator of the transmitter 50 due to an abnormality such as a failure.
  • the abnormality processing unit 111 acquires the operation input signal through S15 to S18, but when the unmanned aircraft 100 continues to descend, the abnormal processing unit 111 refers to the actually measured value for the flight parameter command value (that is, the response of the unmanned aircraft 100), It is possible to determine whether or not the unmanned aircraft 100 is descending due to a failure or the like. For example, if the ratio of the actual measurement value / command value of the flight parameter is smaller than that at the normal time, it can be determined that a failure with insufficient ascending force has occurred. For example, the abnormality processing unit 111 can detect the occurrence of a failure when an actual measurement value of a downward acceleration or a downward speed is detected with respect to an upward acceleration command or an upward speed command.
  • the control mode changing unit 113 changes the control mode to the safe control mode (S19). Here, it is changed to the second safety control mode.
  • the drive current setting unit 115 sets the drive current of the rotor blade 211 to a predetermined current (for example, the maximum drive current) by increasing the drive current before changing to the safe control mode (S21).
  • the drive current setting unit 115 sends the set drive current command value to the rotary blade control unit 116.
  • the altitude acquisition unit 114 acquires altitude information related to the altitude of the unmanned aircraft 100 (S22). Altitude information may be acquired periodically. The altitude acquisition unit 114 sends altitude information to the rotor blade control unit 116.
  • the rotating blade control unit 116 determines whether or not the altitude indicated by the acquired altitude information is a predetermined altitude H1 (for example, 5 m) or less (S23). When the altitude indicated by the altitude information is higher than the predetermined altitude H1 (No in S23), the process proceeds to S22.
  • a predetermined altitude H1 for example, 5 m
  • the rotary blade control unit 116 stops the rotation of the rotary blade 211 (S24).
  • the unmanned aerial vehicle 100 determines the presence / absence of an abnormality in the flight state using the actual measurement value of the flight parameter.
  • the unmanned aircraft 100 can consider that the rotating rotor blade 211 does not directly contact an object (including a human body) by shifting the control mode to the safety control mode. Thereby, the unmanned aerial vehicle 100 can reduce the impact force on the object due to the rotation of the rotary wing 211. Therefore, the unmanned aerial vehicle 100 can suppress the destruction of the object and reduce human injury.
  • the unmanned aerial vehicle 100 when the unmanned aerial vehicle 100 has a large acceleration in the direction of gravity, it can be determined that the unmanned aerial vehicle 100 is in a state close to free fall. In this case, it is possible to estimate that the unmanned aircraft 100 is not under the control of the operator of the transmitter 50, and it can be determined that the flight state is abnormal. This is because a state close to free fall is not detected when the transmitter 50 is under the control of the operator.
  • the unmanned aircraft 100 can determine that there is an abnormality in the flight state on the basis that the time during which the acceleration in the direction of gravity is large continues. Therefore, the unmanned aerial vehicle 100 can suppress the determination that the unmanned aircraft 100 is abnormal although there is no abnormality in the flight state, for example, when the unmanned aircraft 100 suddenly falls due to a sudden gust of wind, and improves the detection accuracy of the abnormality. it can.
  • the unmanned aircraft 100 recognizes that the unmanned aircraft 100 is not under the control of the operator of the transmitter 50, and determines that the flight state is abnormal. it can. Therefore, the unmanned aircraft 100 detects the abnormality in the flight state and changes to the safety control mode even when the transmitter 50 goes off the scheduled flight course and the transmitter 50 and the unmanned aircraft 100 cannot communicate with each other. it can.
  • the unmanned aircraft 100 when the ratio between the flight parameter command value and the flight parameter actual measurement value is outside the predetermined range, the unmanned aircraft 100 has a command value due to an abnormality in various sensors or the rotary wing mechanism 210 of the unmanned aircraft 100. It can be detected that the operation of the unmanned aerial vehicle 100 has not been reached. Therefore, the unmanned aerial vehicle 100 can detect that the flight state of the unmanned aerial vehicle 100 is an abnormal state, rather than performing a flight operation on the command value related to the descent of the unmanned aircraft 100. In addition, the determination accuracy of the flight state abnormality can be improved by combining the determination of whether or not the state is close to free fall and the determination of the value based on the actually measured value for the flight parameter command value.
  • the flight parameters for which the command value and the actually measured value are compared may include the driving current, the acceleration of the unmanned aircraft 100, and the speed of the unmanned aircraft 100. Therefore, unmanned aerial vehicle 100 can detect an abnormality in rotary wing mechanism 210 when the flight parameter includes a drive current. For example, when a frictional force due to deterioration occurs between the rotor blade 211 and its rotating shaft (not shown), the rotational force of the rotor blade 211 based on the drive current is regulated by the frictional force, and the drive current command value The measured value of the drive current can be reduced. In this case, when the measured value of the drive current with respect to the command value of the drive current has reached a predetermined range, an abnormality in the flight state can be detected.
  • the unmanned aircraft 100 is accelerated by the rotation of the rotary wing 211 by the rotary wing mechanism 210. Therefore, if the rotary wing mechanism 210 is normal, a sensor for detecting acceleration is used. Abnormality (for example, inertial measurement device 250) can be detected.
  • the flight parameter includes speed
  • the unmanned aircraft 100 moves due to the rotation of the rotary wing 211 by the rotary wing mechanism 210. Therefore, if the rotary wing mechanism 210 is normal, a sensor for detecting the speed.
  • Abnormalities for example, inertial measurement device 250, barometric altimeter 270, ultrasonic altimeter 280
  • inertial measurement device 250 for example, barometric altimeter 270, ultrasonic altimeter 280
  • the unmanned aircraft 100 can determine the abnormality of the flight state according to the intention of the operator of the transmitter 50 by acquiring the flight parameter command value included in the operation input signal.
  • the flight parameter included in the setting information related to the abnormality determination program stored in the memory 160 may be used instead of the flight parameter included in the operation input signal.
  • the unmanned aircraft 100 can determine whether there is an abnormality in the flight state using the command value of the flight parameter and the actual measurement value without acquiring the operation input signal from the transmitter 50. Therefore, the unmanned aerial vehicle 100 uses the flight parameter command value and the actual measurement value included in the setting information to determine whether the flight state is abnormal even if the wireless communication environment is poor due to the positional relationship between the unmanned aircraft 100 and the transmitter 50, for example. Can be implemented.
  • the abnormality processing unit 111 may determine whether there is an abnormality in the flight state without considering the acquisition of the operation input signal from the transmitter 50. That is, when S15 to S18 are omitted and S14 is Yes, the process may proceed to S19.
  • the abnormality processing unit 111 may omit the determination of the elapse of the predetermined time T1 in S14. Thereby, the unmanned aerial vehicle 100 can shorten the period required for the determination of the abnormality of the flight state.
  • the abnormality processing unit 111 repeats the processes of S11 to S13 a predetermined number of times, and at any time, when the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11, the process proceeds to S14. You can proceed.
  • the rotary wing controller 116 may omit stopping the rotation of the rotary wing 211 when the altitude of the unmanned aircraft 100 is equal to or lower than the predetermined altitude H1. That is, S22 to S24 may be omitted.
  • the second embodiment exemplifies that the safety control mode includes a control mode for operating the airbag.
  • the flight system 10A (not shown) in the second embodiment includes an unmanned aerial vehicle 100A (see FIGS. 15 and 16) and a transmitter 50.
  • the description of the same configuration and operation as in the first embodiment is omitted or simplified.
  • FIG. 15 is a block diagram illustrating an example of a hardware configuration of the unmanned aircraft 100A.
  • the unmanned aircraft 100 ⁇ / b> A further includes an airbag 310 and a gas generator 320, and includes a UAV control unit 110 ⁇ / b> A instead of the UAV control unit 110.
  • the same components as those of the unmanned aircraft 100 of FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the airbag 310 is an example of a cushioning material.
  • the airbag 310 may be accommodated in the UAV main body 102 in the contracted state.
  • the airbag 310 may be folded, rolled, or bundled in the deflated state.
  • the air bag 310 may be formed of a woven fabric, air bag, elastomeric material, or other flexible material.
  • the airbag 310 may be formed of nylon fabric, polyester fabric, or vinyl chloride.
  • the airbag 310 receives the gas from the gas generator 320 and deploys toward the outside of the UAV main body 102.
  • the airbag 310 is deployed so as to surround the plurality of rotary blades 211.
  • the airbag 310 in the deployed state may be a sphere, ellipse, cylinder, prism, torus, deer drop, flattened sphere or ellipse, other polygon, ball, or other shape. Good.
  • the number of airbags 310 is arbitrary, and may be one, the same as the number of rotor blades 211, or any other number.
  • a plurality of rotor blades 211 may be surrounded by one airbag 310 in the deployed state.
  • Each of the plurality of airbags 310 may surround each of the plurality of rotor blades 211 in the deployed state.
  • two or more of the plurality of rotor blades 211 are surrounded by the plurality of rotor blades 211 so that all of the plurality of rotor blades 211 are surrounded by the plurality of airbags 310. It's okay.
  • the gas generator 320 may be connected to the airbag 310 via a flow path, pipe, passage, opening, or other connection.
  • the gas generator 320 may ignite at a predetermined timing, generate a gas by a chemical reaction by combustion, and supply the gas to the airbag 310.
  • the gas generator 320 may supply gas to the airbag 310 by previously putting gas in a tank, starting gas ejection at a predetermined timing.
  • the number of gas generators 320 is arbitrary, and may be one, the same as the number of airbags 310, or any other number.
  • FIG. 16 is a block diagram illustrating an example of a functional configuration of the UAV control unit 110A.
  • the UAV control unit 110A further includes a deployment control unit 118.
  • the deployment control unit 118 is an example of a second control unit and a third control unit.
  • the same components as those of the UAV control unit 110 of FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the deployment control unit 118 controls the airbag 310 to be deployed at a predetermined timing. For example, when the abnormality control unit 111 determines that the flight state of the unmanned aircraft 100A is abnormal, the deployment control unit 118 generates gas at a predetermined timing (for example, when the flight altitude drops to the predetermined altitude H1). A deployment command is sent to the device 320. The gas generator 320 ignites in response to the ignition command from the deployment controller 118 and deploys the airbag 310.
  • FIG. 17 is a schematic diagram showing a transition example of the control mode of the unmanned aircraft 100A.
  • FIG. 17 shows a state in which the unmanned aircraft 100A falls into an unexpected situation, the aircraft descends, and falls.
  • the control mode changing unit 113 sets the control mode to the normal control mode (T41). If there is an abnormality in the flight state of the unmanned aircraft 100A in the normal control mode (T42), the control mode changing unit 113 changes the control mode to the safety control mode. In this transition example, a transition is made to the fourth safety control mode.
  • the fourth safety control mode is a control mode in which the airbag 310 is deployed so as to cover the rotor blades 211 of the unmanned aircraft 100A at a predetermined altitude H1 (for example, 5 m).
  • the predetermined altitude H1 is an example of a third predetermined altitude.
  • the drive current setting unit 115 increases the command value of the drive current more than the command value of the drive current before the change to the fourth safety control mode.
  • the rotational speed of the rotary wing 211 increases (T43)
  • the lift in the direction opposite to the direction of gravity that is, the direction in which the unmanned aircraft 100A rises
  • the upward acceleration increases.
  • the deployment control unit 118 When the unmanned aircraft 100A descends and the deployment control unit 118 detects that the actually measured altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H1 (for example, 5 m), the deployment control unit 118 sends a deployment command to the gas generator 320. Then, the airbag 310 is ignited to deploy the airbag 310 (T44).
  • H1 for example, 5 m
  • the predetermined altitude H1 serving as a threshold for deploying the airbag 310 may be a value other than 5 m.
  • the threshold may be set to 5 m, which is higher than the height assumed for the person.
  • it is assumed as the structure. It may be set to an arbitrary threshold value that is higher than a certain height.
  • the fourth safety control mode is useful when the unmanned aerial vehicle 100A does not respond very much to the command value of the flight parameter. This is because the flight control of the unmanned aircraft 100A can hardly be performed, and the descent speed of the unmanned aircraft 100A cannot be sufficiently reduced.
  • the case where the unmanned aircraft 100A does not respond so much may indicate a case where the ratio of the actually measured value to the command value of the flight parameter is less than 0.3.
  • the unmanned aircraft 100A can suppress contact of an object with the rotor wing 211 by surrounding the rotor wing 211 with the airbag 310.
  • the unmanned aircraft 100A has a high possibility that a portion in contact with the object becomes a cushioning material, and can reduce the impact force on the object.
  • the unmanned aerial vehicle 100A suppresses a reduction in lift due to the rotor 310 being surrounded by the airbag 310 by deploying the airbag 310 after the unmanned aircraft 100A descends to a predetermined altitude H1. An increase in the risk due to the unmanned aircraft 100A falling at a high speed can be suppressed.
  • “downward” is the direction of the imaging device 220 as viewed from the UAV body 102 (for example, the direction of gravity).
  • “Upward” is a direction opposite to the imaging device 220 viewed from the UAV main body 102 (for example, a direction opposite to the direction of gravity).
  • “Side” is a direction perpendicular to the lower side and the upper side.
  • FIG. 18A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by one airbag 310.
  • FIG. 18A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by one airbag 310.
  • the unmanned aerial vehicle 100A may include one airbag 310 and a plurality of (for example, four) rotating blades 211.
  • the airbag 310 may surround at least a part of the outer periphery of the plurality of rotor blades 211 in the deployed state.
  • one airbag 310 surrounds the outer periphery of the plurality of rotor blades 211, for example, when the unmanned aircraft 100A rapidly drops, the plurality of rotor blades 211 contact the airbag 310 before contacting an object. The possibility increases. Therefore, the unmanned aircraft 100A can reduce the possibility of an object coming into contact with the rotating rotor blades 211, and can reduce damage to the object by the rotating rotor blades 211.
  • the unmanned aircraft 100A surrounds the entire rotor wing 211 with a single airbag 310, thereby preventing airflow between the rotor wings 211.
  • the unmanned aircraft 100A can easily take a horizontal attitude, and can take a flight attitude. It becomes easy to stabilize.
  • FIG. 18B is a front view showing a first example of the unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 18A.
  • the UAV main body 102 has an upper housing 102a and a lower housing 102b.
  • the upper housing 102a is located above the lower housing 102b.
  • the lower housing 102b is located below the upper housing 102a.
  • the upper housing 102 a may have an opening 103.
  • the opening 103 may be formed in the central portion 102c of the cross section when the UAV main body 102 is viewed from above in the upper housing 102a.
  • the UAV main body 102 may have an accommodating portion 104 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to the opening 103.
  • the shape of the accommodating part 104 and the arrangement position in the UAV main body 102 are arbitrary.
  • a container (not shown) for housing the airbag 310 in a contracted state may be provided separately from the UAV main body 102. In this case, the container may be provided near the opening 103.
  • the airbag 310 When the airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, the airbag 310 is released from the contracted state stored in the storage unit 104 to the outside of the UAV main body 102 through the opening 103. Expanded state. In this case, the airbag 310 deploys around the plurality of rotating blades 211.
  • the airbag 310 first covers the side of the upper casing 102a of each of the plurality of rotor blades 211 on the central portion 102c side. Next, the airbag 310 covers each of the plurality of rotor blades 211.
  • the airbag 310 covers the side of each of the plurality of rotor blades 211 on the outer peripheral side (the side opposite to the central portion 102c side).
  • the airbag 310 may cover at least a part of the lower part on the outer peripheral side of each of the plurality of rotor blades 211.
  • the airbag 310 wraps around the opening 103 of the UAV main body 102 and surrounds at least a part (for example, the upper side and the side) of the plurality of rotor blades 211. Even when falling, it is possible to avoid the rotating blade 211 from coming into contact with an object. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
  • FIG. 18C is a front view showing a second example of the unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 18A.
  • FIG. 18D is a plan view of unmanned aerial vehicle 100A of FIG. 18C as viewed from above.
  • the upper housing 102a and the lower housing 102b of the UAV main body may have an opening 105 at the side end.
  • the opening 105 may be formed including the arrangement position of the rotor blade 211 in a cross section when the UAV main body 102 is viewed from above.
  • the UAV main body 102 may have an accommodating portion 106 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to the opening 105.
  • the shape of the accommodating part 106 and the arrangement position in the UAV main body 102 are arbitrary.
  • the airbag 310 When the airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, the airbag 310 is released from the contracted state stored in the storage unit 106 to the outside of the UAV main body 102 through the opening 105. Expanded state. In this case, the airbag 310 deploys around the plurality of rotating blades 211.
  • the airbag 310 first covers the lower part of the outer peripheral side of each of the plurality of rotor blades 211.
  • the airbag 310 covers the outer peripheral side of each of the plurality of rotor blades 211.
  • the airbag 310 may cover at least a part of the upper part of each of the plurality of rotor blades 211.
  • the airbag 310 wraps around the opening 105 of the UAV main body 102 and surrounds at least a part (for example, the lower side and the side) of the plurality of rotor blades 211. Even when falling, it is possible to avoid the rotating blade 211 from coming into contact with an object. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
  • the unmanned aircraft 100A can easily cover the lower side and the side of the rotary wing 211 with the airbag 310. Therefore, the probability that the unmanned aircraft 100A can suitably surround the rotor wing 211 by the airbag 310 is increased even for a short time immediately before the ground drop.
  • FIG. 19A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by the four airbags 310.
  • FIG. 19A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by the four airbags 310.
  • the unmanned aircraft 100A may include a plurality (for example, four) of airbags 310 and a plurality (for example, four) of rotating blades 211.
  • Each of the plurality of airbags 310 may surround at least a part of the periphery of each of the plurality of rotor blades 211 in the deployed state.
  • Each of the plurality of airbags 310 surrounds the outer periphery of each of the plurality of rotor blades 211.
  • the unmanned aircraft 100A rapidly drops, the airbags before the rotor blades 211 come into contact with an object. The possibility of contacting 310 increases. Therefore, the unmanned aircraft 100A can reduce the possibility of an object coming into contact with the rotating rotor blades 211, and can reduce damage to the object by the rotating rotor blades 211.
  • the size of one airbag 310 can be reduced. Therefore, the storage space of the airbag 310 is reduced, and the space in the main body of the unmanned aircraft 100A can be effectively used. Further, since the size of the airbag 310 is small, the unmanned aircraft 100A can shorten the time from the deployment command of the airbag 310 to the completion of deployment, and can improve the safety around the rotor blade 211 at an early stage.
  • FIG. 19B is a front view showing an example of an unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 19A.
  • FIG. 19C is a plan view of the unmanned aerial vehicle 100A of FIG. 19B as viewed from above.
  • the upper casing 102a and the lower casing 102b of the UAV main body 102 may have a plurality of (for example, four) openings 107 at the side ends.
  • Each of the plurality of openings 107 may be formed around each arrangement position of the rotor blades 211 in a cross section when the UAV main body 102 is viewed from above.
  • the UAV main body 102 may have a plurality (for example, four) of accommodating portions 108 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to each of the plurality of openings 107.
  • the shape of the plurality of accommodating portions 108 and the arrangement position in the UAV main body 102 are arbitrary.
  • a plurality of containers (not shown) for accommodating the airbag 310 in a contracted state may be provided separately from the UAV main body 102. In this case, each of the plurality of containers may be provided in the vicinity of each of the plurality of openings 107.
  • each airbag 310 When each airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, each airbag 310 is in a contracted state housed in each of the plurality of housing portions 108 through each of the plurality of openings 107. Then, it is released to the outside of the UAV main body 102 to be in a developed state. In this case, each airbag 310 is deployed around each rotor blade 211. Each airbag 310 first covers the lower side of each rotor blade 211. Next, each airbag 310 covers the outer peripheral side and the central part 201c side of each rotor blade 211. Each air bag 310 may then cover at least a portion above each rotor blade 211.
  • each of the plurality of airbags 310 wraps around each of the openings 105 of the UAV main body 102 and surrounds at least a part of each of the plurality of rotor blades 211 (for example, the lower side and the side).
  • the unmanned aircraft 100A can avoid the rotating wings 211 from contacting an object even when the unmanned aircraft 100A falls in the direction of gravity from the imaging device 220 side. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
  • the unmanned aircraft 100A can easily cover the lower side and the side of the rotary wing 211 with the airbag 310. Therefore, the probability that the unmanned aircraft 100A can suitably surround the rotor wing 211 by the airbag 310 is increased even for a short time immediately before the ground drop.
  • FIG. 20 is a flowchart showing an operation example of the unmanned aerial vehicle 100A.
  • the same steps as those shown in FIGS. 14A and 14B are denoted by the same step numbers, and description thereof is omitted or simplified.
  • the unmanned aerial vehicle 100A executes the processing of S11 to S19 in FIG. 14A as in the first embodiment.
  • the control mode of the unmanned aircraft 100A transitions to a fourth safety control mode, which is one of the safety control modes.
  • the unmanned aerial vehicle 100A performs the processes of S21 to S24.
  • the deployment control unit 118 deploys the airbag 310 (S31).
  • the unmanned aircraft 100A can suppress the airbag 310 from directly contacting an object.
  • the deployment control unit 118 may deploy the airbag 310 when the rotation of the rotary blade 211 is stopped. Whether or not the rotation of the rotary blade 211 is stopped may be determined by the rotary blade control unit 116.
  • the rotor control unit 116 acquires detection information from, for example, an infrared sensor (not shown) or a magnetic sensor (not shown) included in the unmanned aircraft 100A, and whether or not the rotation of the rotor 211 is stopped based on this detection information. May be determined.
  • the rotary blade control unit 116 is an example of a second determination unit.
  • Unmanned aerial vehicle 100 ⁇ / b> A can suppress damage to airbag 310 due to rotation of rotating blade 211 by deploying airbag 310 when rotation of rotating blade 211 is stopped. Therefore, there is a high possibility that the rotor blades 211 are protected by the undamaged airbag 310, and the unmanned aircraft 100A can reduce damage to objects.

Abstract

There is a need to reduce damage to objects due to contact with a rotating rotary wing. A flight control method controls the control mode during flight of an unmanned aircraft, the method having a step for detecting abnormalities in the flight state of the unmanned aircraft, and a step for, when an abnormality in the flight state is detected, changing the control mode to a safe control mode.

Description

飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体Flight control method, unmanned aircraft, flight system, program, and recording medium
 本開示は、無人航空機の飛行中の制御モードを制御する飛行制御方法、無人航空機及び飛行システムに関する。本開示は、無人航空機の飛行中の制御モードを制御するためのプログラムと、そのプログラムを記録したコンピュータ読取り可能な記録媒体と、に関する。 The present disclosure relates to a flight control method, an unmanned aircraft, and a flight system that control a control mode during flight of an unmanned aircraft. The present disclosure relates to a program for controlling a control mode during flight of an unmanned aerial vehicle, and a computer-readable recording medium on which the program is recorded.
 従来のAAV(Automated Aerial Vehicle)は、物体(例えば人、ペット、他の動物)とAAVのプロペラとの間での接触を検出可能である(特許文献1参照)。特許文献1に記載されたプロペラは導電性材料により形成され、プロペラを介したコンダクタンス又はプロペラのキャパシタンスが監視される。コンダクタンス又はキャパシタンスの変化が検出されると、プロペラが物体に接触したことが検出される。AAVは、プロペラと物体との接触を検出すると、プロペラの回転を停止する。 Conventional AAV (Automated Aerial Vehicle) can detect contact between an object (for example, a person, a pet, another animal) and an AAV propeller (see Patent Document 1). The propeller described in Patent Document 1 is formed of a conductive material, and conductance through the propeller or the capacitance of the propeller is monitored. When a change in conductance or capacitance is detected, it is detected that the propeller has touched the object. When the AAV detects the contact between the propeller and the object, the AAV stops the rotation of the propeller.
米国特許出願公開第2016/0039529号明細書US Patent Application Publication No. 2016/0039529
 特許文献1に記載されたAAV等の無人航空機は、プロペラと物体との接触が検出された後にプロペラを停止するので、プロペラと物体との接触直前や接触時にはプロペラが回転している。そのため、回転するプロペラにより物体が損傷し得る。物体が人体の場合には、物体の損傷には回転するプロペラにより人が負傷することが含まれ得る。また、例えば故障によって無人航空機の制御が困難となり、無人航空機が落下する場合には、重力に起因する衝撃力も加わり、回転するプロペラが物体に接触する際の衝撃力が更に大きくなる。 The unmanned aircraft such as AAV described in Patent Document 1 stops the propeller after the contact between the propeller and the object is detected, so that the propeller is rotating immediately before or at the time of contact between the propeller and the object. Therefore, the object can be damaged by the rotating propeller. If the object is a human body, the damage to the object may include injury to the person by a rotating propeller. Further, for example, when the unmanned aircraft is difficult to control due to a failure and the unmanned aircraft falls, an impact force due to gravity is also added, and the impact force when the rotating propeller comes into contact with the object further increases.
 一態様において、飛行制御方法は、無人航空機の飛行中の制御モードを制御する飛行制御方法であって、無人航空機の飛行状態の異常を検出するステップと、飛行状態の異常が検出された場合、制御モードを安全制御モードに変更するステップと、を有する。 In one aspect, the flight control method is a flight control method for controlling a control mode during a flight of an unmanned aircraft, the step of detecting a flight state abnormality of the unmanned aircraft, and a case where a flight state abnormality is detected, Changing the control mode to the safe control mode.
 飛行制御方法は、飛行状態の異常が検出された場合、異常に関する情報を、無人航空機の制御を指示する操作装置へ送信するステップ、を更に含んでよい。 The flight control method may further include a step of transmitting information relating to the abnormality to an operating device that instructs control of the unmanned aircraft when an abnormality in the flight state is detected.
 飛行状態の異常を検出するステップは、無人航空機の重力方向の加速度を取得するステップと、無人航空機の重力方向の加速度が所定値以上である場合、飛行状態を異常と判定するステップと、を含んでよい。 The step of detecting an abnormality in the flight state includes a step of acquiring acceleration in the direction of gravity of the unmanned aircraft, and a step of determining that the flight state is abnormal when the acceleration in the direction of gravity of the unmanned aircraft is greater than or equal to a predetermined value. It's okay.
 飛行状態の異常を検出するステップは、無人航空機の重力方向の加速度を取得するステップと、無人航空機の重力方向の加速度が所定値以上である状態が所定時間継続した場合、飛行状態を異常と判定するステップと、を含んでよい。 The step of detecting the abnormality of the flight state includes the step of acquiring the acceleration in the gravitational direction of the unmanned aircraft and the state in which the acceleration of the unmanned aircraft in the gravitational direction is equal to or greater than a predetermined value for a predetermined time, and determines that the flight state is abnormal. And may include the steps of:
 飛行制御方法は、操作装置からの操作入力信号の有無を判定するステップ、を更に含んでよい。安全制御モードに変更するステップは、操作入力信号がない場合、制御モードを安全制御モードに変更するステップを含んでよい。 The flight control method may further include a step of determining the presence / absence of an operation input signal from the operation device. The step of changing to the safety control mode may include the step of changing the control mode to the safety control mode when there is no operation input signal.
 飛行状態の異常を検出するステップは、操作入力信号がある場合、操作入力信号に基づく飛行状態を示すパラメータの指令値を取得するステップと、パラメータの実測値を取得するステップと、パラメータの指令値に対するパラメータの実測値が所定範囲外である場合、制御モードを安全制御モードに変更するステップと、を含んでよい。 When there is an operation input signal, the step of detecting an abnormality in the flight state includes a step of acquiring a parameter command value indicating a flight state based on the operation input signal, a step of acquiring an actual measurement value of the parameter, And changing the control mode to the safe control mode when the actual measured value of the parameter is outside the predetermined range.
 パラメータは、無人航空機の回転翼の駆動電流、無人航空機の加速度、無人航空機の速度、の少なくとも1つを含んでよい。 The parameter may include at least one of the driving current of the rotor blades of the unmanned aircraft, the acceleration of the unmanned aircraft, and the speed of the unmanned aircraft.
 パラメータの指令値は、無人航空機の制御を指示する操作装置から取得されてよい。 The command value of the parameter may be obtained from an operating device that instructs control of the unmanned aircraft.
 パラメータの指令値は、無人航空機のメモリが保持する設定情報に含まれてよい。 The command value of the parameter may be included in the setting information held in the unmanned aircraft memory.
 飛行制御方法は、安全制御モードでは、無人航空機の回転翼を駆動するための駆動電流を駆動電流より大きい所定の電流に設定するステップ、を更に含んでよい。 The flight control method may further include a step of setting a driving current for driving the rotor wing of the unmanned aircraft to a predetermined current larger than the driving current in the safety control mode.
 飛行制御方法は、安全制御モードでは、無人航空機の飛行高度を検出するステップと、飛行高度が第1の所定高度以下となった場合、無人航空機の回転翼の回転を停止するステップと、を更に含んでよい。 In the safety control mode, the flight control method further includes a step of detecting a flight altitude of the unmanned aircraft, and a step of stopping the rotation of the rotor blades of the unmanned aircraft when the flight altitude is equal to or lower than the first predetermined altitude. May include.
 飛行制御方法は、安全制御モードでは、無人航空機の飛行高度を検出するステップと、飛行高度が第2の所定高度以下となった場合、飛行状態の異常を示す警告音を出力するステップと、を更に含んでよい。 In the safety control mode, the flight control method includes a step of detecting a flight altitude of the unmanned aircraft, and a step of outputting a warning sound indicating an abnormal flight state when the flight altitude is equal to or lower than a second predetermined altitude. Further may be included.
 飛行制御方法は、安全制御モードでは、無人航空機の飛行高度を検出するステップと、飛行高度が第3の所定高度以下となった場合、無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開するステップと、を更に含んでよい。 In the safety control mode, the flight control method includes a step of detecting a flight altitude of the unmanned aircraft, and a cushioning material surrounding at least a part of the rotor wing of the unmanned aircraft when the flight altitude is equal to or lower than a third predetermined altitude. And unpacking.
 飛行制御方法は、安全制御モードでは、無人航空機の回転翼の回転が停止したか否かを判定するステップと、無人航空機の回転翼の回転が停止しない場合、無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開するステップと、を含んでよい。 In the safety control mode, the flight control method includes a step of determining whether the rotation of the rotor blades of the unmanned aircraft has stopped, and if the rotation of the rotor blades of the unmanned aircraft does not stop, at least a part of the rotor blades of the unmanned aircraft Unfolding the cushioning material surrounding the.
 緩衝材は、緩衝材の展開状態では、無人航空機の複数の回転翼の外周の少なくとも一部を包囲してよい。 The cushioning material may surround at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
 緩衝材は、少なくとも回転翼の下方及び側方を覆うように展開してよい。 The cushioning material may be developed so as to cover at least the lower side and the side of the rotor blade.
 無人航空機は、複数の回転翼及び複数の緩衝材を含んでよい。それぞれの緩衝材は、緩衝材の展開状態では、それぞれの回転翼の周囲の少なくとも一部を包囲してよい。 An unmanned aerial vehicle may include a plurality of rotor blades and a plurality of cushioning materials. Each shock absorbing material may surround at least a part of the periphery of each rotor blade when the shock absorbing material is deployed.
 一態様において、無人航空機は、飛行中の制御モードを制御する無人航空機であって、無人航空機の飛行状態の異常を検出する検出部と、飛行状態の異常が検出された場合、制御モードを安全制御モードに変更する変更部と、を備える。 In one aspect, the unmanned aerial vehicle is an unmanned aerial vehicle that controls a control mode during the flight, and a detection unit that detects an abnormal flight state of the unmanned aircraft, and a safety control mode when the abnormal flight state is detected. A change unit for changing to the control mode.
 無人航空機は、飛行状態の異常が検出された場合、異常に関する情報を、無人航空機の制御を指示する操作装置へ送信する通信部、を更に備えてよい。 The unmanned aerial vehicle may further include a communication unit that transmits information related to the abnormality to an operating device that instructs control of the unmanned aircraft when an abnormality in the flight state is detected.
 検出部は、無人航空機の重力方向の加速度を取得し、検出部は、無人航空機の重力方向の加速度が所定値以上である場合、飛行状態を異常と判定してよい。 The detection unit may acquire the acceleration in the gravity direction of the unmanned aircraft, and the detection unit may determine that the flight state is abnormal when the acceleration in the gravity direction of the unmanned aircraft is equal to or greater than a predetermined value.
 検出部は、無人航空機の重力方向の加速度を取得し、記無人航空機の重力方向の加速度が所定値以上である状態が所定時間継続した場合、飛行状態を異常と判定してよい。 The detecting unit may acquire the acceleration in the gravity direction of the unmanned aircraft, and may determine that the flight state is abnormal when the acceleration in the gravity direction of the unmanned aircraft continues for a predetermined time.
 無人航空機は、無人航空機の制御を指示する操作装置からの操作入力信号の有無を判定する第1判定部、を更に備えてよい。変更部は、操作入力信号がない場合、制御モードを安全制御モードに変更してよい。 The unmanned aerial vehicle may further include a first determination unit that determines the presence or absence of an operation input signal from an operation device that instructs control of the unmanned aircraft. The change unit may change the control mode to the safety control mode when there is no operation input signal.
 検出部は、操作入力信号がある場合、操作入力信号に基づく飛行状態を示すパラメータの指令値を取得し、パラメータの実測値を取得してよい。変更部は、パラメータの指令値に対するパラメータの実測値が所定範囲外である場合、制御モードを安全制御モードに変更してよい。 When the operation input signal is present, the detection unit may acquire a command value of a parameter indicating a flight state based on the operation input signal, and may acquire an actual measurement value of the parameter. The changing unit may change the control mode to the safe control mode when the measured value of the parameter with respect to the command value of the parameter is outside a predetermined range.
 パラメータは、無人航空機の回転翼の駆動電流、無人航空機の加速度、無人航空機の速度、の少なくとも1つを含んでよい。 The parameter may include at least one of the driving current of the rotor blades of the unmanned aircraft, the acceleration of the unmanned aircraft, and the speed of the unmanned aircraft.
 パラメータの指令値は、無人航空機の制御を指示する操作装置から取得されてよい。 The command value of the parameter may be obtained from an operating device that instructs control of the unmanned aircraft.
 パラメータの指令値は、無人航空機のメモリが保持する設定情報に含まれてよい。 The command value of the parameter may be included in the setting information held in the unmanned aircraft memory.
 安全制御モードでは、無人航空機の回転翼を駆動するための駆動電流を駆動電流より大きい所定の電流に設定する設定部、を更に備えてよい。 The safety control mode may further include a setting unit that sets a driving current for driving the rotor blades of the unmanned aircraft to a predetermined current larger than the driving current.
 無人航空機は、安全制御モードでは、無人航空機の飛行高度を取得する取得部と、飛行高度が第1の所定高度以下となった場合、無人航空機の回転翼の回転を停止する第1制御部と、を更に備えてよい。 In the safety control mode, the unmanned aircraft includes an acquisition unit that acquires the flight altitude of the unmanned aircraft, and a first control unit that stops the rotation of the rotor blades of the unmanned aircraft when the flight altitude is equal to or lower than a first predetermined altitude. , May be further provided.
 無人航空機は、安全制御モードでは、無人航空機の飛行高度を取得する取得部と、飛行高度が第2の所定高度以下となった場合、飛行状態の異常を示す警告音を出力する出力部と、を更に含んでよい。 In the safety control mode, the unmanned aircraft has an acquisition unit that acquires the flight altitude of the unmanned aircraft, an output unit that outputs a warning sound indicating an abnormal flight state when the flight altitude is equal to or lower than a second predetermined altitude, May further be included.
 無人航空機は、安全制御モードでは、無人航空機の飛行高度を取得する取得部と、飛行高度が第3の所定高度以下となった場合、無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開する第2制御部と、を更に備えてよい。 In the safety control mode, the unmanned aircraft includes an acquisition unit that acquires the flight altitude of the unmanned aircraft, and a cushioning material that surrounds at least a part of the rotor blades of the unmanned aircraft when the flight altitude falls below a third predetermined altitude. And a second control unit that deploys.
 無人航空機は、安全制御モードでは、無人航空機の回転翼の回転が停止したか否かを判定する第2判定部と、無人航空機の回転翼の回転が停止しない場合、無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開する第3制御部と、を更に備えてよい。 In the safety control mode, the unmanned aircraft is configured to determine whether or not the rotation of the rotor blades of the unmanned aircraft has stopped, and when the rotation of the rotor blades of the unmanned aircraft does not stop, And a third control unit that deploys a cushioning material that surrounds a part of the cushioning material.
 緩衝材は、緩衝材の展開状態では、無人航空機の複数の回転翼の外周の少なくとも一部を包囲してよい。 The cushioning material may surround at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
 緩衝材は、少なくとも回転翼の下方及び側方を覆うように展開してよい。 The cushioning material may be developed so as to cover at least the lower side and the side of the rotor blade.
 無人航空機は、複数の回転翼と、複数の緩衝材と、を更に備えてよい。それぞれの緩衝材は、緩衝材の展開状態では、それぞれの回転翼の周囲の少なくとも一部を包囲してよい。 The unmanned aerial vehicle may further include a plurality of rotor blades and a plurality of cushioning materials. Each shock absorbing material may surround at least a part of the periphery of each rotor blade when the shock absorbing material is deployed.
 一態様において、飛行システムは、飛行中の制御モードを制御する無人航空機と無人航空機の制御を指示する操作装置とを備える飛行システムであって、無人航空機は、無人航空機の飛行状態の異常を検出し、飛行状態の異常が検出された場合、制御モードを安全制御モードに変更し、飛行状態の異常が検出された場合、異常に関する情報を、操作装置へ送信し、操作装置は、異常に関する情報を受信し、異常の情報に基づき、無人航空機の飛行状態に異常がある旨を提示する。 In one aspect, the flight system includes an unmanned aircraft that controls a control mode during flight and an operating device that directs control of the unmanned aircraft, the unmanned aircraft detecting an abnormality in a flight state of the unmanned aircraft. If a flight state abnormality is detected, the control mode is changed to the safety control mode, and if a flight state abnormality is detected, information related to the abnormality is transmitted to the operation device. And presents that there is an abnormality in the flight status of the unmanned aircraft based on the abnormality information.
 一態様において、プログラムは、無人航空機の飛行中の制御モードを制御するコンピュータである無人航空機に、無人航空機の飛行状態の異常を検出するステップと、飛行状態の異常が検出された場合、制御モードを安全制御モードに変更するステップと、を実行させるためのプログラムである。 In one aspect, the program detects, in the unmanned aerial vehicle, which is a computer that controls the control mode during the flight of the unmanned aircraft, an abnormality in the flight state of the unmanned aircraft; And a step of changing to a safe control mode.
 一態様において、記録媒体は、無人航空機の飛行中の制御モードを制御するコンピュータである無人航空機に、無人航空機の飛行状態の異常を検出するステップと、飛行状態の異常が検出された場合、制御モードを安全制御モードに変更するステップと、を実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体である。 In one aspect, the recording medium includes a step of detecting an abnormality in a flight state of the unmanned aircraft in the unmanned aircraft that is a computer that controls a control mode during the flight of the unmanned aircraft, and a control when an abnormality in the flight state is detected. And a step of changing the mode to the safety control mode.
 なお、上記の発明の概要は、本開示の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present disclosure. In addition, a sub-combination of these feature groups can also be an invention.
第1の実施形態における飛行システムの構成例を示す模式図The schematic diagram which shows the structural example of the flight system in 1st Embodiment. 無人航空機の外観の一例を示す図A figure showing an example of the appearance of an unmanned aerial vehicle 無人航空機の具体的な外観の一例を示す図The figure which shows an example of the concrete appearance of an unmanned aerial vehicle 第1の実施形態における無人航空機のハードウェア構成の一例を示すブロック図The block diagram which shows an example of the hardware constitutions of the unmanned aircraft in 1st Embodiment 第1の実施形態における無人航空機の機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the unmanned aerial vehicle in 1st Embodiment 送信機の外観の一例を示す斜視図The perspective view which shows an example of the external appearance of a transmitter 送信機のハードウェア構成の一例を示すブロック図Block diagram showing an example of the hardware configuration of the transmitter 第1の実施形態における無人航空機の制御モードの第1遷移例を示す模式図The schematic diagram which shows the 1st transition example of the control mode of the unmanned aerial vehicle in 1st Embodiment. 第1の実施形態における無人航空機の制御モードの第2遷移例を示す模式図The schematic diagram which shows the 2nd transition example of the control mode of the unmanned aerial vehicle in the first embodiment 第1の実施形態における無人航空機の制御モードの第3遷移例を示す模式図Schematic diagram illustrating a third transition example of the control mode of the unmanned aerial vehicle according to the first embodiment. 駆動電流の指令値と駆動電流の実測値との関係の一例を示すグラフThe graph which shows an example of the relationship between the command value of drive current, and the measured value of drive current 上向き加速度の指令値と上向き加速度の実測値との関係の一例を示すグラフGraph showing an example of the relationship between the command value for upward acceleration and the actual measured value for upward acceleration 下向き加速度の指令値と下向き加速度の実測値との関係の一例を示すグラフGraph showing an example of the relationship between the command value for downward acceleration and the actual measured value for downward acceleration 上向き速度の指令値と上向き速度の実測値との関係の一例を示すグラフGraph showing an example of the relationship between the command value for upward speed and the actual value for upward speed 下向き速度の指令値と下向き速度の実測値との関係の一例を示すグラフGraph showing an example of the relationship between the command value for downward speed and the actual measured value for downward speed 送信機による無人航空機の飛行状態の異常の第1提示例を示す模式図The schematic diagram which shows the 1st example of presentation of the abnormality of the flight state of the unmanned aircraft by the transmitter 送信機による無人航空機の飛行状態の異常の第2提示例を示す模式図Schematic diagram showing a second example of presentation of abnormal flight state of an unmanned aerial vehicle by a transmitter 第1の実施形態における無人航空機の動作例を示すフローチャートThe flowchart which shows the operation example of the unmanned aerial vehicle in 1st Embodiment 第1の実施形態における無人航空機の動作例を示すフローチャート(図14Aの続き)Flowchart showing an operation example of the unmanned aerial vehicle in the first embodiment (continuation of FIG. 14A) 第2の実施形態における無人航空機のハードウェア構成の一例を示すブロック図The block diagram which shows an example of the hardware constitutions of the unmanned aircraft in 2nd Embodiment 第2の実施形態における無人航空機の機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the unmanned aerial vehicle in 2nd Embodiment 第2の実施形態における無人航空機の制御モードの遷移例を示す模式図The schematic diagram which shows the example of a transition of the control mode of the unmanned aerial vehicle in 2nd Embodiment 1つのエアバッグにより4つの回転翼を覆う場合のエアバッグが展開された状態の無人航空機の一例を示す正面図Front view showing an example of an unmanned aerial vehicle in a state in which an airbag in a case where four rotor blades are covered by one airbag is deployed 図18Aのエアバッグの一部を透視した無人航空機の第1例を示す正面図FIG. 18A is a front view showing a first example of an unmanned aerial vehicle through which a part of the airbag of FIG. 18A is seen. 図18Aのエアバッグの一部を透視した無人航空機の第2例を示す正面図FIG. 18A is a front view showing a second example of an unmanned aerial vehicle through which a part of the airbag of FIG. 18A is seen. 図18Cの無人航空機を上方から見た平面図Plan view of the unmanned aerial vehicle of FIG. 18C viewed from above 4つのエアバッグにより4つの回転翼を覆う場合のエアバッグが展開された状態の無人航空機の一例を示す正面図Front view showing an example of an unmanned aerial vehicle in a state where an airbag when covering four rotor blades with four airbags is deployed 図19Aのエアバッグの一部を透視した無人航空機の一例を示す正面図FIG. 19A is a front view showing an example of an unmanned aerial vehicle through which a part of the airbag of FIG. 19A is seen. 図19Bの無人航空機を上方から見た平面図A plan view of the unmanned aerial vehicle of FIG. 19B as viewed from above. 第2の実施形態における無人航空機の動作例を示すフローチャートThe flowchart which shows the operation example of the unmanned aerial vehicle in 2nd Embodiment
 以下、発明の実施の形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須とは限らない。 Hereinafter, the present disclosure will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Not all combinations of features described in the embodiments are essential for the solution of the invention.
 特許請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイル又はレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を留保する。 The claims, the description, the drawings, and the abstract include matters that are subject to copyright protection. The copyright owner will not object to any number of copies of these documents as they appear in the JPO file or record. However, in other cases, all copyrights are reserved.
 以下の実施形態では、無人航空機(UAV:Unmanned Aerial Vehicle)を例示する。無人航空機は、空中を移動する航空機を含む。本明細書に添付する図面では、無人航空機を「UAV」と表記する。飛行制御方法は、無人航空機における動作が規定されたものである。また、記録媒体は、プログラム(例えば無人航空機に各種の処理を実行させるプログラム)が記録されたものである。 In the following embodiment, an unmanned aerial vehicle (UAV: Unmanned Aero Vehicle) is illustrated. Unmanned aerial vehicles include aircraft that travel in the air. In the drawings attached to this specification, the unmanned aerial vehicle is represented as “UAV”. In the flight control method, the operation in the unmanned aerial vehicle is defined. The recording medium is a recording medium of a program (for example, a program that causes an unmanned aircraft to execute various processes).
(第1の実施形態)
 図1は、第1の実施形態における飛行システム10の構成例を示す模式図である。飛行システム10は、無人航空機100及び送信機50を備える。無人航空機100及び送信機50は、有線通信又は無線通信(例えば無線LAN(Local Area Network))により通信可能である。
(First embodiment)
FIG. 1 is a schematic diagram illustrating a configuration example of a flight system 10 according to the first embodiment. The flight system 10 includes an unmanned aircraft 100 and a transmitter 50. The unmanned aircraft 100 and the transmitter 50 can communicate with each other by wired communication or wireless communication (for example, a wireless LAN (Local Area Network)).
 次に、無人航空機100の構成例について説明する。図2は、無人航空機100の外観の一例を示す図である。図3は、無人航空機100の具体的な外観の一例を示す図である。無人航空機100が移動方向STV0に飛行する時の側面図が図2に示され、無人航空機100が移動方向STV0に飛行する時の斜視図が図3に示されている。 Next, a configuration example of the unmanned aircraft 100 will be described. FIG. 2 is a diagram illustrating an example of the appearance of the unmanned aerial vehicle 100. FIG. 3 is a diagram illustrating an example of a specific appearance of the unmanned aerial vehicle 100. A side view when the unmanned aircraft 100 flies in the moving direction STV0 is shown in FIG. 2, and a perspective view when the unmanned aircraft 100 flies in the moving direction STV0 is shown in FIG.
 図2及び図3に示すように、地面と平行であって移動方向STV0に沿う方向にロール軸(x軸参照)が定義されたとする。この場合、地面と平行であってロール軸に垂直な方向にピッチ軸(y軸参照)が定められ、更に、地面に垂直であってロール軸及びピッチ軸に垂直な方向にヨー軸(z軸参照)が定められる。 As shown in FIGS. 2 and 3, it is assumed that a roll axis (see x-axis) is defined in a direction parallel to the ground and along the moving direction STV0. In this case, a pitch axis (see y-axis) is defined in a direction parallel to the ground and perpendicular to the roll axis, and further, a yaw axis (z-axis) in a direction perpendicular to the ground and perpendicular to the roll axis and the pitch axis. See).
 無人航空機100は、UAV本体102と、ジンバル200と、撮像装置220と、複数の撮像装置230とを含む構成である。 The unmanned aerial vehicle 100 includes a UAV main body 102, a gimbal 200, an imaging device 220, and a plurality of imaging devices 230.
 UAV本体102は、複数の回転翼(プロペラ)を備える。UAV本体102は、複数の回転翼の回転を制御することにより無人航空機100を飛行させる。UAV本体102は、例えば4つの回転翼を用いて無人航空機100を飛行させる。回転翼の数は、4つに限定されない。また、無人航空機100は、回転翼を有さない固定翼機でもよい。 The UAV main body 102 includes a plurality of rotor blades (propellers). The UAV main body 102 causes the unmanned aircraft 100 to fly by controlling the rotation of a plurality of rotor blades. The UAV main body 102 causes the unmanned aircraft 100 to fly using, for example, four rotary wings. The number of rotor blades is not limited to four. Unmanned aerial vehicle 100 may also be a fixed wing aircraft that does not have rotating wings.
 撮像装置220は、所望の撮像範囲に含まれる被写体(例えば、空撮対象となる上空の様子、山や川等の景色、地上の建物)を撮像する撮像用のカメラである。 The imaging device 220 is an imaging camera that captures a subject included in a desired imaging range (for example, an aerial subject, a landscape such as a mountain or a river, a building on the ground).
 複数の撮像装置230は、無人航空機100の飛行を制御するために無人航空機100の周囲を撮像するセンシング用のカメラである。2つの撮像装置230が、無人航空機100の機首である正面に設けられてよい。さらに、他の2つの撮像装置230が、無人航空機100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、無人航空機100の周囲の3次元空間データが生成されてよい。なお、無人航空機100が備える撮像装置230の数は4つに限定されない。無人航空機100は、少なくとも1つの撮像装置230を備えていればよい。無人航空機100は、無人航空機100の機首、機尾、側面、底面、及び天井面のそれぞれに少なくとも1つの撮像装置230を備えてよい。撮像装置230で設定できる画角は、撮像装置220で設定できる画角より広くてよい。撮像装置230は、単焦点レンズ又は魚眼レンズを有してよい。 The plurality of imaging devices 230 are sensing cameras that image the surroundings of the unmanned aircraft 100 in order to control the flight of the unmanned aircraft 100. The two imaging devices 230 may be provided on the front surface that is the nose of the unmanned aircraft 100. Furthermore, the other two imaging devices 230 may be provided on the bottom surface of the unmanned aircraft 100. The two imaging devices 230 on the front side may be paired and function as a so-called stereo camera. The two imaging devices 230 on the bottom side may also be paired and function as a stereo camera. Three-dimensional spatial data around the unmanned aerial vehicle 100 may be generated based on images captured by the plurality of imaging devices 230. Note that the number of imaging devices 230 included in the unmanned aerial vehicle 100 is not limited to four. The unmanned aircraft 100 only needs to include at least one imaging device 230. The unmanned aerial vehicle 100 may include at least one imaging device 230 on each of the nose, tail, side, bottom, and ceiling of the unmanned aircraft 100. The angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 220. The imaging device 230 may have a single focus lens or a fisheye lens.
 図4は、無人航空機100のハードウェア構成の一例を示すブロック図である。無人航空機100は、UAV制御部110と、通信インタフェース150と、メモリ160と、ジンバル200と、回転翼機構210と、撮像装置220と、撮像装置230と、GPS受信機240と、慣性計測装置(IMU:Inertial Measurement Unit)250と、磁気コンパス260と、気圧高度計270と、超音波高度計280と、スピーカ290と、を含む構成である。通信インタフェース150は、通信部の一例である。 FIG. 4 is a block diagram showing an example of the hardware configuration of the unmanned aerial vehicle 100. As shown in FIG. The unmanned aircraft 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotary wing mechanism 210, an imaging device 220, an imaging device 230, a GPS receiver 240, an inertial measurement device ( The configuration includes an IMU (Inertial Measurement Unit) 250, a magnetic compass 260, a barometric altimeter 270, an ultrasonic altimeter 280, and a speaker 290. The communication interface 150 is an example of a communication unit.
 UAV制御部110は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)又はDSP(Digital Signal Processor)を用いて構成される。UAV制御部110は、無人航空機100の各部の動作を統括して制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。 The UAV control unit 110 is configured using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor). The UAV control unit 110 performs signal processing for overall control of operations of each unit of the unmanned aircraft 100, data input / output processing with respect to other units, data calculation processing, and data storage processing.
 UAV制御部110は、メモリ160に格納されたプログラムに従って無人航空機100の飛行を制御する。UAV制御部110は、通信インタフェース150を介して遠隔の送信機50から受信した命令に従って、無人航空機100の飛行を制御する。メモリ160は無人航空機100から取り外し可能であってもよい。 The UAV control unit 110 controls the flight of the unmanned aircraft 100 according to a program stored in the memory 160. UAV control unit 110 controls the flight of unmanned aerial vehicle 100 in accordance with instructions received from remote transmitter 50 via communication interface 150. Memory 160 may be removable from unmanned aerial vehicle 100.
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像を解析することで、無人航空機100の周囲の環境を特定してよい。UAV制御部110は、無人航空機100の周囲の環境に基づいて、例えば障害物を回避して飛行を制御する。 The UAV control unit 110 may specify the environment around the unmanned aircraft 100 by analyzing a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 controls the flight based on the environment around the unmanned aircraft 100 while avoiding obstacles, for example.
 UAV制御部110は、現在の日時を示す日時情報を取得する。UAV制御部110は、GPS受信機240から現在の日時を示す日時情報を取得してよい。UAV制御部110は、無人航空機100に搭載されたタイマ(不図示)から現在の日時を示す日時情報を取得してよい。 The UAV control unit 110 acquires date / time information indicating the current date / time. The UAV control unit 110 may acquire date / time information indicating the current date / time from the GPS receiver 240. The UAV control unit 110 may acquire date / time information indicating the current date / time from a timer (not shown) mounted on the unmanned aircraft 100.
 UAV制御部110は、無人航空機100の位置を示す位置情報を取得する。UAV制御部110は、GPS受信機240から、無人航空機100が存在する緯度、経度及び高度を示す位置情報を取得してよい。UAV制御部110は、GPS受信機240から無人航空機100が存在する緯度及び経度を示す緯度経度情報、並びに気圧高度計270から無人航空機100が存在する高度を示す高度情報をそれぞれ位置情報として取得してよい。UAV制御部110は、超音波高度計280による超音波の放射点と超音波の反射点との距離を高度情報として取得してよい。 The UAV control unit 110 acquires position information indicating the position of the unmanned aircraft 100. The UAV control unit 110 may acquire position information indicating the latitude, longitude, and altitude at which the unmanned aircraft 100 exists from the GPS receiver 240. The UAV control unit 110 acquires, from the GPS receiver 240, latitude / longitude information indicating the latitude and longitude where the unmanned aircraft 100 exists, and altitude information indicating the altitude where the unmanned aircraft 100 exists from the barometric altimeter 270, as position information. Good. The UAV control unit 110 may acquire the distance between the ultrasonic radiation point and the ultrasonic reflection point by the ultrasonic altimeter 280 as altitude information.
 UAV制御部110は、磁気コンパス260から無人航空機100の向きを示す向き情報を取得する。向き情報には、例えば無人航空機100の機首の向きに対応する方位が示される。 The UAV control unit 110 acquires orientation information indicating the orientation of the unmanned aircraft 100 from the magnetic compass 260. In the direction information, for example, a direction corresponding to the nose direction of the unmanned aircraft 100 is indicated.
 UAV制御部110は、撮像装置220が撮像すべき撮像範囲を撮像する時に無人航空機100が存在すべき位置を示す位置情報を取得してよい。UAV制御部110は、無人航空機100が存在すべき位置を示す位置情報をメモリ160から取得してよい。UAV制御部110は、無人航空機100が存在すべき位置を示す位置情報を、通信インタフェース150を介して送信機50等の他の装置から取得してよい。UAV制御部110は、3次元地図データベースを参照して、撮像すべき撮像範囲を撮像するために、無人航空機100が存在可能な位置を特定して、その位置を無人航空機100が存在すべき位置を示す位置情報として取得してよい。 The UAV control unit 110 may acquire position information indicating a position where the unmanned aircraft 100 should be present when the imaging device 220 captures an imaging range to be imaged. The UAV control unit 110 may acquire position information indicating the position where the unmanned aircraft 100 should be present from the memory 160. The UAV control unit 110 may acquire position information indicating the position where the unmanned aircraft 100 should exist from another device such as the transmitter 50 via the communication interface 150. The UAV control unit 110 refers to the 3D map database, specifies a position where the unmanned aircraft 100 can exist in order to capture an imaging range to be imaged, and sets the position where the unmanned aircraft 100 should exist. May be acquired as position information indicating.
 UAV制御部110は、撮像装置220及び撮像装置230のそれぞれの撮像範囲を示す撮像情報を取得する。UAV制御部110は、撮像範囲を特定するためのパラメータとして、撮像装置220及び撮像装置230の画角を示す画角情報を撮像装置220及び撮像装置230から取得する。UAV制御部110は、撮像範囲を特定するためのパラメータとして、撮像装置220及び撮像装置230の撮像方向を示す情報を取得する。UAV制御部110は、例えば撮像装置220の撮像方向を示す情報として、ジンバル200から撮像装置220の姿勢の状態を示す姿勢情報を取得する。UAV制御部110は、無人航空機100の向きを示す情報を取得する。撮像装置220の姿勢の状態を示す情報は、ジンバル200のピッチ軸及びヨー軸の基準回転角度からの回転角度を示す。UAV制御部110は、撮像範囲を特定するためのパラメータとして、無人航空機100が存在する位置を示す位置情報を取得する。UAV制御部110は、撮像装置220及び撮像装置230の画角及び撮像方向、並びに無人航空機100が存在する位置に基づいて、撮像装置220が撮像する地理的な範囲を示す撮像範囲を画定し、撮像範囲を示す撮像情報を生成することで、撮像情報を取得してよい。 The UAV control unit 110 acquires imaging information indicating the imaging ranges of the imaging device 220 and the imaging device 230. The UAV control unit 110 acquires angle-of-view information indicating the angle of view of the imaging device 220 and the imaging device 230 from the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range. The UAV control unit 110 acquires information indicating the imaging direction of the imaging device 220 and the imaging device 230 as a parameter for specifying the imaging range. The UAV control unit 110 acquires posture information indicating the posture state of the imaging device 220 from the gimbal 200 as information indicating the imaging direction of the imaging device 220, for example. The UAV control unit 110 acquires information indicating the direction of the unmanned aircraft 100. Information indicating the posture state of the imaging device 220 indicates a rotation angle from the reference rotation angle of the pitch axis and yaw axis of the gimbal 200. The UAV control unit 110 acquires position information indicating a position where the unmanned aircraft 100 exists as a parameter for specifying the imaging range. The UAV control unit 110 defines an imaging range indicating a geographical range captured by the imaging device 220 based on the angle of view and the imaging direction of the imaging device 220 and the imaging device 230, and the position where the unmanned aircraft 100 exists. The imaging information may be acquired by generating imaging information indicating the imaging range.
 UAV制御部110は、撮像装置220が撮像すべき撮像範囲を示す撮像情報を取得してよい。UAV制御部110は、メモリ160から撮像装置220が撮像すべき撮像情報を取得してよい。UAV制御部110は、通信インタフェース150を介して送信機50等の他の装置から撮像装置220が撮像すべき撮像情報を取得してよい。 The UAV control unit 110 may acquire imaging information indicating an imaging range to be imaged by the imaging device 220. The UAV control unit 110 may acquire imaging information to be imaged by the imaging device 220 from the memory 160. The UAV control unit 110 may acquire imaging information to be imaged by the imaging device 220 from another device such as the transmitter 50 via the communication interface 150.
 UAV制御部110は、無人航空機100の周囲に存在するオブジェクトの立体形状(3次元形状)を示す立体情報(3次元情報)を取得してよい。オブジェクトは、例えば、建物、道路、車、木等の風景の一部である。立体情報は、例えば、3次元空間データである。UAV制御部110は、複数の撮像装置230から得られたそれぞれの画像から、無人航空機100の周囲に存在するオブジェクトの立体形状を示す立体情報を生成することで、立体情報を取得してよい。UAV制御部110は、メモリ160に格納された3次元地図データベースを参照することにより、無人航空機100の周囲に存在するオブジェクトの立体形状を示す立体情報を取得してよい。UAV制御部110は、ネットワーク上に存在するサーバが管理する3次元地図データベースを参照することで、無人航空機100の周囲に存在するオブジェクトの立体形状に関する立体情報を取得してよい。 The UAV control unit 110 may acquire three-dimensional information (three-dimensional information) indicating the three-dimensional shape (three-dimensional shape) of an object existing around the unmanned aircraft 100. The object is a part of a landscape such as a building, a road, a car, and a tree. The three-dimensional information is, for example, three-dimensional space data. The UAV control unit 110 may acquire the three-dimensional information by generating the three-dimensional information indicating the three-dimensional shape of the object existing around the unmanned aircraft 100 from each image obtained from the plurality of imaging devices 230. The UAV control unit 110 may acquire the three-dimensional information indicating the three-dimensional shape of the object existing around the unmanned aircraft 100 by referring to the three-dimensional map database stored in the memory 160. The UAV control unit 110 may acquire three-dimensional information related to the three-dimensional shape of an object existing around the unmanned aircraft 100 by referring to a three-dimensional map database managed by a server existing on the network.
 UAV制御部110は、撮像装置220及び撮像装置230により撮像された画像データを取得する。 The UAV control unit 110 acquires image data captured by the imaging device 220 and the imaging device 230.
 UAV制御部110は、ジンバル200、回転翼機構210、撮像装置220、及び撮像装置230を制御する。UAV制御部110は、撮像装置220の撮像方向又は画角を変更することによって、撮像装置220の撮像範囲を制御する。UAV制御部110は、ジンバル200の回転機構を制御することで、ジンバル200に支持されている撮像装置220の撮像範囲を制御する。 The UAV control unit 110 controls the gimbal 200, the rotary blade mechanism 210, the imaging device 220, and the imaging device 230. The UAV control unit 110 controls the imaging range of the imaging device 220 by changing the imaging direction or angle of view of the imaging device 220. The UAV control unit 110 controls the imaging range of the imaging device 220 supported by the gimbal 200 by controlling the rotation mechanism of the gimbal 200.
 本明細書では、撮像範囲は、撮像装置220又は撮像装置230により撮像される地理的な範囲をいう。撮像範囲は、緯度、経度、及び高度で定義される。撮像範囲は、緯度、経度、及び高度で定義される3次元空間データにおける範囲でよい。撮像範囲は、撮像装置220又は撮像装置230の画角及び撮像方向、並びに無人航空機100が存在する位置に基づいて特定される。撮像装置220及び撮像装置230の撮像方向は、撮像装置220及び撮像装置230の撮像レンズが設けられた正面が向く方位と俯角とから定義される。撮像装置220の撮像方向は、無人航空機100の機首の方位と、ジンバル200に対する撮像装置220の姿勢の状態とから特定される方向である。撮像装置230の撮像方向は、無人航空機100の機首の方位と、撮像装置230が設けられた位置とから特定される方向である。 In this specification, the imaging range refers to a geographical range captured by the imaging device 220 or the imaging device 230. The imaging range is defined by latitude, longitude, and altitude. The imaging range may be a range in three-dimensional spatial data defined by latitude, longitude, and altitude. The imaging range is specified based on the angle of view and imaging direction of the imaging device 220 or the imaging device 230, and the position where the unmanned aircraft 100 is present. The imaging directions of the imaging device 220 and the imaging device 230 are defined from the azimuth and the depression angle in which the front surface where the imaging lenses of the imaging device 220 and the imaging device 230 are provided is directed. The imaging direction of the imaging device 220 is a direction specified from the heading direction of the unmanned aerial vehicle 100 and the posture state of the imaging device 220 with respect to the gimbal 200. The imaging direction of the imaging device 230 is a direction specified from the heading of the unmanned aerial vehicle 100 and the position where the imaging device 230 is provided.
 UAV制御部110は、回転翼機構210を制御することで、無人航空機100の飛行を制御する。つまり、UAV制御部110は、回転翼機構210を制御することにより、無人航空機100の緯度、経度、及び高度を含む位置を制御する。UAV制御部110は、無人航空機100の飛行を制御することにより、撮像装置220及び撮像装置230の撮像範囲を制御してよい。UAV制御部110は、撮像装置220が備えるズームレンズを制御することで、撮像装置220の画角を制御してよい。UAV制御部110は、撮像装置220のデジタルズーム機能を利用して、デジタルズームにより、撮像装置220の画角を制御してよい。 The UAV control unit 110 controls the flight of the unmanned aircraft 100 by controlling the rotary wing mechanism 210. That is, the UAV control unit 110 controls the position including the latitude, longitude, and altitude of the unmanned aircraft 100 by controlling the rotary wing mechanism 210. The UAV control unit 110 may control the imaging ranges of the imaging device 220 and the imaging device 230 by controlling the flight of the unmanned aircraft 100. The UAV control unit 110 may control the angle of view of the imaging device 220 by controlling a zoom lens included in the imaging device 220. The UAV control unit 110 may control the angle of view of the imaging device 220 by digital zoom using the digital zoom function of the imaging device 220.
 撮像装置220が無人航空機100に固定され、撮像装置220を動かせない場合、UAV制御部110は、特定の日時に特定の位置に無人航空機100を移動させることにより、所望の環境下で所望の撮像範囲を撮像装置220に撮像させることができる。あるいは撮像装置220がズーム機能を有さず、撮像装置220の画角を変更できない場合でも、UAV制御部110は、特定された日時に、特定の位置に無人航空機100を移動させることで、所望の環境下で所望の撮像範囲を撮像装置220に撮像させることができる。 When the imaging device 220 is fixed to the unmanned aircraft 100 and the imaging device 220 cannot be moved, the UAV control unit 110 moves the unmanned aircraft 100 to a specific position at a specific date and time to perform desired imaging under a desired environment. The range can be imaged by the imaging device 220. Alternatively, even when the imaging device 220 does not have a zoom function and the angle of view of the imaging device 220 cannot be changed, the UAV control unit 110 moves the unmanned aircraft 100 to a specific position at the specified date and time to In this environment, the imaging device 220 can capture a desired imaging range.
 通信インタフェース150は、送信機50と通信する。通信インタフェース150は、遠隔の送信機50からUAV制御部110に対する各種の命令や情報を受信する。 The communication interface 150 communicates with the transmitter 50. The communication interface 150 receives various commands and information for the UAV control unit 110 from the remote transmitter 50.
 メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像装置220、撮像装置230、GPS受信機240、慣性計測装置250、磁気コンパス260、気圧高度計270及び超音波高度計280を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、及びUSBメモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、UAV本体102の内部に設けられてよい。UAV本体102から取り外し可能に設けられてよい。 In the memory 160, the UAV control unit 110 controls the gimbal 200, the rotating blade mechanism 210, the imaging device 220, the imaging device 230, the GPS receiver 240, the inertial measurement device 250, the magnetic compass 260, the barometric altimeter 270, and the ultrasonic altimeter 280. Stores the programs necessary for this. The memory 160 may be a computer-readable recording medium, such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), and It may include at least one flash memory such as a USB memory. The memory 160 may be provided inside the UAV main body 102. It may be provided so as to be removable from the UAV main body 102.
 ジンバル200は、少なくとも1つの軸を中心に撮像装置220を回転可能に支持する。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸を中心に撮像装置220を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像装置220を回転させることで、撮像装置220の撮像方向を変更してよい。 The gimbal 200 supports the imaging device 220 to be rotatable about at least one axis. The gimbal 200 may support the imaging device 220 rotatably about the yaw axis, pitch axis, and roll axis. The gimbal 200 may change the imaging direction of the imaging device 220 by rotating the imaging device 220 about at least one of the yaw axis, the pitch axis, and the roll axis.
 回転翼機構210は、複数の回転翼211と、複数の回転翼211を回転させる複数の駆動モータ212と、駆動モータ212を駆動するための駆動電流の電流値(実測値)を計測する電流センサ213と、を有する。駆動電流は、駆動モータ212に供給される。 The rotary blade mechanism 210 includes a plurality of rotary blades 211, a plurality of drive motors 212 that rotate the plurality of rotary blades 211, and a current sensor that measures a current value (actual value) of a drive current for driving the drive motor 212. 213. The drive current is supplied to the drive motor 212.
 撮像装置220は、所望の撮像範囲の被写体を撮像して撮像画像のデータを生成する。撮像装置220の撮像により得られた画像データは、撮像装置220が有するメモリ、又はメモリ160に格納される。 The imaging device 220 captures a subject within a desired imaging range and generates captured image data. Image data obtained by imaging by the imaging device 220 is stored in a memory included in the imaging device 220 or the memory 160.
 撮像装置230は、無人航空機100の周囲を撮像して撮像画像のデータを生成する。撮像装置230の画像データは、メモリ160に格納される。 The imaging device 230 captures the surroundings of the unmanned aircraft 100 and generates captured image data. Image data of the imaging device 230 is stored in the memory 160.
 GPS受信機240は、複数の航法衛星(つまり、GPS衛星)から発信された時刻及び各GPS衛星の位置(座標)を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいて、GPS受信機240の位置(つまり、無人航空機100の位置)を算出する。GPS受信機240は、無人航空機100の位置情報をUAV制御部110に出力する。なお、GPS受信機240の位置情報の算出は、GPS受信機240の代わりにUAV制御部110により行われてよい。この場合、UAV制御部110には、GPS受信機240が受信した複数の信号に含まれる時刻及び各GPS衛星の位置を示す情報が入力される。 The GPS receiver 240 receives a plurality of signals indicating times and positions (coordinates) of each GPS satellite transmitted from a plurality of navigation satellites (that is, GPS satellites). The GPS receiver 240 calculates the position of the GPS receiver 240 (that is, the position of the unmanned aircraft 100) based on the plurality of received signals. The GPS receiver 240 outputs the position information of the unmanned aircraft 100 to the UAV control unit 110. The calculation of the position information of the GPS receiver 240 may be performed by the UAV control unit 110 instead of the GPS receiver 240. In this case, the UAV control unit 110 receives information indicating the time and the position of each GPS satellite included in a plurality of signals received by the GPS receiver 240.
 慣性計測装置250は、無人航空機100の姿勢を検出し、検出結果をUAV制御部110に出力する。慣性計測装置IMU250は、無人航空機100の姿勢として、無人航空機100の前後、左右、及び上下の3軸方向の加速度と、ピッチ軸、ロール軸、及びヨー軸の3軸方向の角速度とを検出する。 The inertial measurement device 250 detects the attitude of the unmanned aircraft 100 and outputs the detection result to the UAV control unit 110. The inertial measurement device IMU 250 detects the acceleration of the unmanned aircraft 100 in the three axial directions of the front, rear, left and right, and the angular velocity in the three axial directions of the pitch axis, the roll axis, and the yaw axis. .
 磁気コンパス260は、無人航空機100の機首の方位を検出し、検出結果をUAV制御部110に出力する。 The magnetic compass 260 detects the heading of the unmanned aircraft 100 and outputs the detection result to the UAV control unit 110.
 気圧高度計270は、無人航空機100が飛行する高度を検出し、検出結果をUAV制御部110に出力する。 The barometric altimeter 270 detects the altitude at which the unmanned aircraft 100 flies and outputs the detection result to the UAV control unit 110.
 超音波高度計280は、超音波を放射し、地面や物体により反射された超音波を検出し、検出結果をUAV制御部110に出力する。検出結果は、無人航空機100から地面までの距離つまり高度を示してよい。検出結果は、無人航空機100から物体までの距離を示してよい。 Ultrasonic altimeter 280 emits ultrasonic waves, detects ultrasonic waves reflected by the ground and objects, and outputs detection results to UAV control unit 110. The detection result may indicate a distance from the unmanned aircraft 100 to the ground, that is, an altitude. The detection result may indicate the distance from the unmanned aerial vehicle 100 to the object.
 スピーカ290は、UAV制御部110から音声データを取得し、音声データを音声出力する。スピーカ290は、音声データを警告音として音声出力してよい。スピーカ290の個数は1つ以上であり、任意である。スピーカ290の無人航空機100における設置位置は、任意である。スピーカ290から出力される警告音は、重力方向(つまり地面方向)に向かう音成分を有する。警告音は、無人航空機100の高度が低下した際に、地上に存在する人物に確認され得る。 The speaker 290 acquires audio data from the UAV control unit 110 and outputs the audio data as audio. The speaker 290 may output voice data as a warning sound. The number of speakers 290 is one or more and is arbitrary. The installation position of the speaker 290 in the unmanned aircraft 100 is arbitrary. The warning sound output from the speaker 290 has a sound component that goes in the direction of gravity (that is, the direction of the ground). The warning sound can be confirmed by a person existing on the ground when the altitude of the unmanned aerial vehicle 100 decreases.
 図5は、UAV制御部110の機能構成の一例を示すブロック図である。UAV制御部110は、異常処理部111、信号判定部112、制御モード変更部113、高度取得部114、駆動電流設定部115、回転翼制御部116、及び音声制御部117を備える。    FIG. 5 is a block diagram illustrating an example of a functional configuration of the UAV control unit 110. The UAV control unit 110 includes an abnormality processing unit 111, a signal determination unit 112, a control mode change unit 113, an altitude acquisition unit 114, a drive current setting unit 115, a rotor blade control unit 116, and a voice control unit 117. *
 異常処理部111は、検出部の一例である。信号判定部112は、第1判定部の一例である。制御モード変更部113は、変更部の一例である。高度取得部114は、取得部の一例である。駆動電流設定部115は、設定部の一例である。回転翼制御部116は、第1制御部の一例である。音声制御部117は、出力部の一例である。 The abnormality processing unit 111 is an example of a detection unit. The signal determination unit 112 is an example of a first determination unit. The control mode changing unit 113 is an example of a changing unit. The altitude acquisition unit 114 is an example of an acquisition unit. The drive current setting unit 115 is an example of a setting unit. The rotary blade control unit 116 is an example of a first control unit. The voice control unit 117 is an example of an output unit.
 異常処理部111は、無人航空機100の飛行状態の異常の有無を判定する。異常処理部111は、無人航空機100の飛行状態に異常がある場合、飛行状態の異常を検出する。無人航空機100の飛行状態は、無人航空機100の飛行状態を示すパラメータ(飛行パラメータとも称する)により示されてよい。飛行パラメータには、回転翼機構210に含まれる回転翼を駆動するための駆動電流、無人航空機100の加速度、無人航空機100の速度、無人航空機100の高度の少なくとも1つが含まれてよい。 The abnormality processing unit 111 determines whether there is an abnormality in the flight state of the unmanned aircraft 100. The abnormality processing unit 111 detects an abnormality in the flight state when the flight state of the unmanned aircraft 100 is abnormal. The flight state of the unmanned aerial vehicle 100 may be indicated by a parameter indicating the flight state of the unmanned aircraft 100 (also referred to as a flight parameter). The flight parameters may include at least one of a drive current for driving a rotor included in the rotor mechanism 210, an acceleration of the unmanned aircraft 100, a speed of the unmanned aircraft 100, and an altitude of the unmanned aircraft 100.
 異常処理部111は、電流センサ213により得られた電流値を、駆動電流の実際の値(駆動電流の実測値)として取得してよい。 The abnormality processing unit 111 may acquire the current value obtained by the current sensor 213 as the actual value of the drive current (actual value of the drive current).
 異常処理部111は、慣性計測装置250により計測される加速度を、無人航空機100の加速度の実際の値(加速度の実測値)として取得してよい。異常処理部111は、GPS受信機240、気圧高度計270又は超音波高度計280から高度情報を取得し、この高度情報の2回微分により算出された加速度を、無人航空機100の加速度の実測値として取得してよい。 The abnormality processing unit 111 may acquire the acceleration measured by the inertial measurement device 250 as an actual value of acceleration of the unmanned aircraft 100 (actual measurement value of acceleration). The abnormality processing unit 111 acquires altitude information from the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280, and acquires the acceleration calculated by the second derivative of the altitude information as an actual measured value of the unmanned aircraft 100 acceleration. You can do it.
 異常処理部111は、慣性計測装置250により計測される加速度を取得し、加速度を積分して、無人航空機100の速度の実際の値(速度の実測値)を取得してよい。異常処理部111は、GPS受信機240、気圧高度計270又は超音波高度計280から高度情報を取得し、この高度情報の微分により算出された速度を、無人航空機100の速度の実測値として取得してよい。 The abnormality processing unit 111 may acquire the acceleration measured by the inertial measurement device 250, integrate the acceleration, and acquire the actual value of the speed of the unmanned aircraft 100 (measured value of the speed). The abnormality processing unit 111 acquires altitude information from the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280, and acquires the speed calculated by differentiation of the altitude information as an actual measurement value of the speed of the unmanned aircraft 100. Good.
 異常処理部111は、無人航空機100の重量方向の加速度の実測値が、閾値th1(例えば10m/s、つまり1g(g:重力加速度))以上である場合に、飛行状態に異常があると判定してよい。閾値th1は、1g以外でもよく、例えば0.8gでもよい。 If the measured value of the acceleration in the weight direction of the unmanned aircraft 100 is greater than or equal to a threshold th1 (for example, 10 m / s 2 , that is, 1 g (g: gravitational acceleration)), the abnormality processing unit 111 determines that the flight state is abnormal You may judge. The threshold th1 may be other than 1 g, for example, 0.8 g.
 異常処理部111は、信号判定部112による判定の結果、送信機50に対する操作者の操作に基づく操作入力信号がない場合、飛行状態に異常があると判定してよい。また、操作入力信号の代わりに、異常処理部111は、メモリ160に所定の設定情報が格納されているか否かを判定してよい。この設定情報は、飛行状態の異常を判定するための異常判定プログラムを含んでよい。 The abnormality processing unit 111 may determine that there is an abnormality in the flight state when there is no operation input signal based on the operator's operation on the transmitter 50 as a result of the determination by the signal determination unit 112. Further, instead of the operation input signal, the abnormality processing unit 111 may determine whether or not predetermined setting information is stored in the memory 160. This setting information may include an abnormality determination program for determining an abnormality in the flight state.
 異常処理部111は、飛行パラメータの値を指令するための指令値(飛行パラメータの指令値)を取得してよい。異常処理部111は、通信インタフェース150を介して、送信機50からの操作入力信号に含まれる飛行パラメータの指令値を取得してよい。異常処理部111は、メモリ160に格納された設定情報を取得し、この設定情報から飛行パラメータの指令値を取得してよい。この設定情報は、飛行状態の異常を判定するための異常判定プログラムを含んでよい。 The abnormality processing unit 111 may acquire a command value (command value of the flight parameter) for commanding the value of the flight parameter. The abnormality processing unit 111 may acquire the flight parameter command value included in the operation input signal from the transmitter 50 via the communication interface 150. The abnormality processing unit 111 may acquire setting information stored in the memory 160, and acquire a flight parameter command value from the setting information. This setting information may include an abnormality determination program for determining an abnormality in the flight state.
 飛行パラメータの指令値は、駆動モータ212に供給される駆動電流の大きさを指令するための駆動電流の指令値と、加速度の大きさを指令するための加速度の指令値と、速度の大きさを指令するための速度の指令値と、を含んでよい。 The flight parameter command value includes a drive current command value for commanding the magnitude of the drive current supplied to the drive motor 212, an acceleration command value for commanding the magnitude of acceleration, and the magnitude of the speed. And a command value of speed for commanding.
 異常処理部111は、操作入力信号又はメモリ160に保持された設定情報に含まれる加速度の指令値を取得してよい。異常処理部111は、加速度の指令値と駆動電流の指令値との変換テーブル(不図示)を基に、加速度の指令値から駆動電流の指令値に変換することで、駆動電流の指令値を取得してよい。この変換テーブルは、加速度の指令値と駆動電流の指令値との1対1の対応関係の情報を含み、メモリ160に予め保持されてよい。異常処理部111は、加速度の指令値を積分して速度の指令値を算出することで、速度の指令値を取得してよい。 The abnormality processing unit 111 may acquire an acceleration command value included in the operation input signal or the setting information held in the memory 160. The abnormality processing unit 111 converts the command value of the drive current into the command value of the drive current by converting the command value of the acceleration into the command value of the drive current based on a conversion table (not shown) between the command value of the acceleration and the command value of the drive current. You may get it. The conversion table includes information on a one-to-one correspondence between the acceleration command value and the drive current command value, and may be stored in the memory 160 in advance. The abnormality processing unit 111 may acquire the speed command value by integrating the acceleration command value and calculating the speed command value.
 異常処理部111は、操作入力信号又はメモリ160に保持された設定情報に含まれる速度の指令値を取得してよい。異常処理部111は、速度の指令値と駆動電流の指令値との変換テーブル(不図示)を基に、速度の指令値から駆動電流の指令値に変換することで、駆動電流の指令値を取得してよい。この変換テーブルは、速度の指令値と駆動電流の指令値との1対1の対応関係の情報を含み、メモリ160に予め保持されてよい。異常処理部111は、速度の指令値を微分して加速度の指令値を算出することで、加速度の指令値を取得してよい。 The abnormality processing unit 111 may acquire a speed command value included in the operation input signal or the setting information held in the memory 160. The abnormality processing unit 111 converts the command value of the drive current into the command value of the drive current by converting the command value of the speed into the command value of the drive current based on the conversion table (not shown) of the command value of the speed and the command value of the drive current. You may get it. This conversion table may include information on a one-to-one correspondence between the speed command value and the drive current command value, and may be stored in the memory 160 in advance. The abnormality processing unit 111 may obtain the acceleration command value by differentiating the speed command value and calculating the acceleration command value.
 異常処理部111は、飛行パラメータの指令値に対するパラメータの実測値が所定範囲にない場合、無人航空機100の飛行状態に異常があると判定してよい。例えば、異常処理部111は、飛行パラメータの指令値に対するパラメータの実測値の比が所望の比の範囲にない場合、無人航空機100の飛行状態に異常があると判定してよい。 The abnormality processing unit 111 may determine that there is an abnormality in the flight state of the unmanned aircraft 100 when the actual measurement value of the parameter with respect to the flight parameter command value is not within the predetermined range. For example, the abnormality processing unit 111 may determine that there is an abnormality in the flight state of the unmanned aircraft 100 when the ratio of the actually measured parameter value to the flight parameter command value is not within a desired ratio range.
 異常処理部111は、無人航空機100の飛行状態に異常がある場合、通信インタフェース150を介して、飛行状態の異常に関する情報を送信機50へ送信してよい。飛行状態の異常に関する情報は、飛行状態に異常がある旨を示す情報でもよいし、飛行状態の異常に関する具体的な内容(例えば、無人航空機100の加速度の実測値)を示す情報でもよい。 The abnormality processing unit 111 may transmit information regarding the abnormality in the flight state to the transmitter 50 via the communication interface 150 when the flight state of the unmanned aircraft 100 is abnormal. The information regarding the abnormality in the flight state may be information indicating that there is an abnormality in the flight state, or may be information indicating specific contents regarding the abnormality in the flight state (for example, an actual measurement value of acceleration of the unmanned aircraft 100).
 信号判定部112は、通信インタフェース150を介して、送信機50からの操作入力信号の有無を判定してよい。つまり、信号判定部112は、通信インタフェース150により操作入力信号が受信されたか否かを判定してよい。 The signal determination unit 112 may determine the presence / absence of an operation input signal from the transmitter 50 via the communication interface 150. That is, the signal determination unit 112 may determine whether an operation input signal is received by the communication interface 150.
 制御モード変更部113は、無人航空機100の飛行中の制御モードを制御する。飛行中の制御モードは、飛行状態に異常がない場合に実施される通常制御モードと、飛行状態に異常がある場合に実施される安全制御モードを含む。制御モード変更部113は、無人航空機100の飛行状態に異常がある場合、制御モードを安全制御モードに変更する。安全制御モードは、複数設けられてよい。無人航空機100は、制御モード毎に、UAVの飛行制御方法を規定するプログラムを備えてよい。この飛行制御方法を規定するプログラムは、メモリ160に保持され、制御モードが設定された際にメモリ160から取得され、実行され得る。 The control mode changing unit 113 controls the control mode during the flight of the unmanned aircraft 100. The control mode during flight includes a normal control mode that is performed when there is no abnormality in the flight state, and a safety control mode that is performed when there is an abnormality in the flight state. The control mode changing unit 113 changes the control mode to the safety control mode when the flight state of the unmanned aircraft 100 is abnormal. A plurality of safety control modes may be provided. The unmanned aerial vehicle 100 may include a program that defines a UAV flight control method for each control mode. The program defining the flight control method is held in the memory 160, and can be acquired from the memory 160 and executed when the control mode is set.
 高度取得部114は、GPS受信機240、気圧高度計270又は超音波高度計280により取得された高度情報を、無人航空機100の高度(高度の実測値)として取得してよい。高度取得部114は、慣性計測装置250により計測される加速度を取得し、加速度を2回積分して、無人航空機100の高度の実測値を取得してよい。 The altitude acquisition unit 114 may acquire altitude information acquired by the GPS receiver 240, the barometric altimeter 270, or the ultrasonic altimeter 280 as the altitude (measured value of altitude) of the unmanned aircraft 100. The altitude acquisition unit 114 may acquire an acceleration measured by the inertial measurement device 250, integrate the acceleration twice, and acquire an actually measured value of the altitude of the unmanned aircraft 100.
 駆動電流設定部115は、駆動モータ212を駆動するための駆動電流の指令値を設定する。駆動電流設定部115は、異常処理部111により取得された駆動電流の指令値を、駆動電流の指令値として設定してよい。安全制御モードでの駆動電流の指令値は、通常制御モードでの駆動電流の指令値より大きく設定されてよい。 The drive current setting unit 115 sets a drive current command value for driving the drive motor 212. The drive current setting unit 115 may set the drive current command value acquired by the abnormality processing unit 111 as the drive current command value. The drive current command value in the safety control mode may be set larger than the drive current command value in the normal control mode.
 回転翼制御部116は、駆動モータ212を制御することで、回転翼211の回転を制御する。回転翼制御部116は、駆動電流設定部115により設定された駆動電流の指令値に基づいて、無人航空機100の電源(不図示)から駆動モータ212へ駆動電流を供給する。駆動電流が大きくなる程、駆動モータ212の駆動力が大きくなり、回転翼211の単位時間当たりの回転数が大きくなる。一方、駆動電流が小さくなる程、駆動モータ212の駆動力が小さくなり、回転翼211の単位時間当たりの回転数が小さくなる。 The rotary blade control unit 116 controls the rotation of the rotary blade 211 by controlling the drive motor 212. The rotor control unit 116 supplies drive current from the power supply (not shown) of the unmanned aircraft 100 to the drive motor 212 based on the drive current command value set by the drive current setting unit 115. As the drive current increases, the drive force of the drive motor 212 increases and the rotational speed of the rotary blade 211 per unit time increases. On the other hand, as the drive current decreases, the drive force of the drive motor 212 decreases, and the rotational speed per unit time of the rotary blade 211 decreases.
 音声制御部117は、音声データをスピーカ290に送り、スピーカ290に音声データを出力させてよい。音声データは、音声、音楽、機械音、その他の音のデータを広く含む。音声データは、警告を示す警告音として使用されてよい。UAV制御部110は、メモリ160に保持された音声データを取得してよい。音声データは、通信インタフェース150を介して、外部の音声データを提供するサーバから受信されて、メモリ160に保持されてよい。音声データは、無人航空機100の録音機能により録音され、メモリ160に保持されてよい。 The voice control unit 117 may send the voice data to the speaker 290 and cause the speaker 290 to output the voice data. The sound data widely includes sound, music, mechanical sound, and other sound data. The audio data may be used as a warning sound indicating a warning. The UAV control unit 110 may acquire audio data held in the memory 160. The audio data may be received from a server that provides external audio data via the communication interface 150 and held in the memory 160. The voice data may be recorded by the recording function of the unmanned aircraft 100 and held in the memory 160.
 次に、送信機50の構成例について説明する。図6は、送信機50の外観の一例を示す斜視図である。送信機50に対する上下前後左右の方向は、図6に示す矢印の方向にそれぞれ従うとする。送信機50は、例えば送信機50を使用する人物(以下、「操作者」という)の両手で把持された状態で使用される。 Next, a configuration example of the transmitter 50 will be described. FIG. 6 is a perspective view showing an example of the appearance of the transmitter 50. The up / down / front / rear and left / right directions with respect to the transmitter 50 are assumed to follow the directions of the arrows shown in FIG. The transmitter 50 is used in a state of being held by both hands of a person using the transmitter 50 (hereinafter referred to as “operator”), for example.
 送信機50は、例えば略正方形状の底面を有し、かつ高さが底面の一辺より短い略直方体(言い換えると、略箱形)の形状をした樹脂製の筐体50Bを有する。送信機50の筐体表面の略中央には、左制御棒53Lと右制御棒53Rとが突設して配置される。 The transmitter 50 includes, for example, a resin casing 50B having a substantially rectangular parallelepiped shape (in other words, a substantially box shape) having a substantially square bottom surface and a height shorter than one side of the bottom surface. A left control rod 53L and a right control rod 53R are provided in a projecting manner at approximately the center of the housing surface of the transmitter 50.
 左制御棒53L、右制御棒53Rは、それぞれ操作者による無人航空機100の移動を遠隔で制御(例えば、無人航空機100の前後移動、左右移動、上下移動、向き変更)するための操作において使用される。図6では、左制御棒53L及び右制御棒53Rは、操作者の両手からそれぞれ外力が印加されていない初期状態の位置が示されている。左制御棒53L及び右制御棒53Rは、操作者により印加された外力が解放された後、自動的に所定位置(例えば図6に示す初期位置)に復帰する。 The left control rod 53L and the right control rod 53R are used in operations for remotely controlling the movement of the unmanned aircraft 100 by the operator (for example, moving the unmanned aircraft 100 back and forth, moving left and right, moving up and down, and changing the direction). The In FIG. 6, the left control rod 53L and the right control rod 53R show positions in an initial state where no external force is applied from both hands of the operator. The left control rod 53L and the right control rod 53R automatically return to a predetermined position (for example, the initial position shown in FIG. 6) after the external force applied by the operator is released.
 左制御棒53Lの手前側(言い換えると、操作者側)には、送信機50の電源ボタンB1が配置される。電源ボタンB1が操作者により一度押下されると、例えば送信機50に内蔵されるバッテリ(不図示)の容量の残量がバッテリ残量表示部L2において表示される。電源ボタンB1が操作者によりもう一度押下されると、例えば送信機50の電源がオンとなり、送信機50の各部(図7参照)に電源が供給されて使用可能となる。 The power button B1 of the transmitter 50 is disposed on the front side (in other words, the operator side) of the left control rod 53L. When the power button B1 is pressed once by the operator, for example, the remaining capacity of the battery (not shown) built in the transmitter 50 is displayed in the remaining battery capacity display portion L2. When the power button B1 is pressed again by the operator, for example, the power of the transmitter 50 is turned on, and power is supplied to each part (see FIG. 7) of the transmitter 50 so that it can be used.
 右制御棒53Rの手前側(言い換えると、操作者側)には、RTH(Return To Home)ボタンB2が配置される。RTHボタンB2が操作者により押下されると、送信機50は、無人航空機100に所定の位置に自動復帰させるための信号を送信する。これにより、送信機50は、無人航空機100を所定の位置(例えば無人航空機100が記憶している離陸位置)に自動的に帰還させることができる。RTHボタンB2は、例えば屋外での無人航空機100による空撮中に操作者が無人航空機100の機体を見失った場合、又は電波干渉や予期せぬトラブルに遭遇して操作不能になった場合等に利用可能である。 RTH (Return To Home) button B2 is arranged on the front side (in other words, the operator side) of the right control rod 53R. When the RTH button B2 is pressed by the operator, the transmitter 50 transmits a signal for automatically returning the unmanned aircraft 100 to a predetermined position. Thereby, the transmitter 50 can automatically return the unmanned aircraft 100 to a predetermined position (for example, a take-off position stored in the unmanned aircraft 100). The RTH button B2 is used when, for example, the operator loses sight of the fuselage of the unmanned aircraft 100 during aerial shooting with the unmanned aircraft 100 outdoors, or when it becomes impossible to operate due to radio interference or unexpected troubles. Is available.
 電源ボタンB1及びRTHボタンB2の手前側(言い換えると、操作者側)には、リモートステータス表示部L1及びバッテリ残量表示部L2が配置される。リモートステータス表示部L1は、例えばLED(Light Emission Diode)を用いて構成され、送信機50と無人航空機100との無線の接続状態を表示する。バッテリ残量表示部L2は、例えばLEDを用いて構成され、送信機50に内蔵されたバッテリ(不図示)の容量の残量を表示する。 The remote status display part L1 and the remaining battery capacity display part L2 are arranged on the front side (in other words, the operator side) of the power button B1 and the RTH button B2. The remote status display unit L1 is configured using, for example, an LED (Light Emission Diode), and displays a wireless connection state between the transmitter 50 and the unmanned aircraft 100. The battery remaining amount display unit L2 is configured using, for example, an LED, and displays the remaining amount of the capacity of a battery (not shown) built in the transmitter 50.
 左制御棒53L及び右制御棒53Rより後側であって、かつ送信機50の筐体50Bの後方側面から、2つのアンテナAN1,AN2が突設して配置される。アンテナAN1,AN2は、操作者の左制御棒53L及び右制御棒53Rの操作に基づき、送信機制御部61により生成された信号(つまり、無人航空機100の移動を制御するための信号)を無人航空機100に送信する。この信号は、送信機50により入力された操作入力信号の1つである。アンテナAN1,AN2は、例えば2kmの送受信範囲をカバーできる。また、アンテナAN1,AN2は、送信機50と無線接続中の無人航空機100が有する撮像装置220,230により撮像された画像、又は無人航空機100が取得した各種データが無人航空機100から送信された場合に、これらの画像又は各種データを受信できる。 Two antennas AN1 and AN2 project from the rear side of the housing 50B of the transmitter 50 and rearward from the left control rod 53L and the right control rod 53R. The antennas AN1 and AN2 are unmanned signals generated by the transmitter control unit 61 (that is, signals for controlling the movement of the unmanned aircraft 100) based on the operations of the left control rod 53L and the right control rod 53R by the operator. Transmit to aircraft 100. This signal is one of the operation input signals input by the transmitter 50. The antennas AN1 and AN2 can cover a transmission / reception range of 2 km, for example. The antennas AN <b> 1 and AN <b> 2 are used when images taken by the imaging devices 220 and 230 included in the unmanned aircraft 100 wirelessly connected to the transmitter 50 or various data acquired by the unmanned aircraft 100 are transmitted from the unmanned aircraft 100. In addition, these images or various data can be received.
 表示部DPは、例えばLCD(Crystal Liquid Display)を含んで構成される。表示部DPの形状、サイズ、及び配置位置は、任意であり、図6の例に限られない。 The display unit DP includes, for example, an LCD (Crystal Liquid Display). The shape, size, and arrangement position of the display unit DP are arbitrary, and are not limited to the example of FIG.
 図7は、送信機50のハードウェア構成の一例を示すブロック図である。送信機50は、左制御棒53Lと、右制御棒53Rと、送信機制御部61と、無線通信部63と、電源ボタンB1と、RTHボタンB2と、操作部セットOPSと、リモートステータス表示部L1と、バッテリ残量表示部L2と、表示部DPとを含む構成である。送信機50は、無人航空機100の制御を指示する操作装置の一例である。 FIG. 7 is a block diagram illustrating an example of a hardware configuration of the transmitter 50. The transmitter 50 includes a left control rod 53L, a right control rod 53R, a transmitter control unit 61, a wireless communication unit 63, a power button B1, an RTH button B2, an operation unit set OPS, and a remote status display unit. L1, the battery remaining amount display part L2, and the display part DP are comprised. The transmitter 50 is an example of an operating device that instructs control of the unmanned aircraft 100.
 左制御棒53Lは、例えば操作者の左手により、無人航空機100の移動を遠隔で制御するための操作に使用される。右制御棒53Rは、例えば操作者の右手により、無人航空機100の移動を遠隔で制御するための操作に使用される。無人航空機100の移動は、例えば前進する方向の移動、後進する方向の移動、左方向の移動、右方向の移動、上昇する方向の移動、下降する方向の移動、左方向に無人航空機100を回転する移動、右方向に無人航空機100を回転する移動のうちいずれか又はこれらの組み合わせであり、以下同様である。 The left control rod 53L is used for an operation for remotely controlling the movement of the unmanned aircraft 100 by, for example, the left hand of the operator. The right control rod 53R is used for an operation for remotely controlling the movement of the unmanned aircraft 100 by, for example, the operator's right hand. For example, the unmanned aircraft 100 may move forward, move backward, move left, move right, move up, move down, rotate the unmanned aircraft 100 left. Or a combination thereof, and so on.
 電源ボタンB1は一度押下されると、一度押下された旨の信号が送信機制御部61に入力される。送信機制御部61は、この信号に従い、送信機50に内蔵されるバッテリ(不図示)の容量の残量をバッテリ残量表示部L2に表示する。これにより、操作者は、送信機50に内蔵されるバッテリの容量の残量を簡単に確認できる。また、電源ボタンB1は二度押下されると、二度押下された旨の信号が送信機制御部61に渡される。送信機制御部61は、この信号に従い、送信機50に内蔵されるバッテリ(不図示)に対し、送信機50内の各部への電源供給を指示する。これにより、操作者は、送信機50の電源がオンとなり、送信機50の使用を簡単に開始できる。 When the power button B1 is pressed once, a signal indicating that the power button B1 has been pressed is input to the transmitter control unit 61. In accordance with this signal, the transmitter control unit 61 displays the remaining capacity of the battery (not shown) built in the transmitter 50 on the remaining battery amount display unit L2. Thus, the operator can easily check the remaining capacity of the battery capacity built in the transmitter 50. When the power button B1 is pressed twice, a signal indicating that the power button B1 has been pressed twice is passed to the transmitter control unit 61. In accordance with this signal, the transmitter control unit 61 instructs a battery (not shown) built in the transmitter 50 to supply power to each unit in the transmitter 50. As a result, the operator turns on the power of the transmitter 50 and can easily start using the transmitter 50.
 RTHボタンB2は押下されると、押下された旨の信号が送信機制御部61に入力される。送信機制御部61は、この信号に従い、無人航空機100に所定の位置(例えば無人航空機100の離陸位置)に自動復帰させるための信号を生成し、無線通信部63及びアンテナAN1,AN2を介して無人航空機100に送信する。これにより、操作者は、送信機50に対する簡単な操作により、無人航空機100を所定の位置に自動で復帰(帰還)させることができる。 When the RTH button B2 is pressed, a signal indicating that the RTH button B2 has been pressed is input to the transmitter control unit 61. In accordance with this signal, the transmitter control unit 61 generates a signal for automatically returning the unmanned aircraft 100 to a predetermined position (for example, the takeoff position of the unmanned aircraft 100), via the wireless communication unit 63 and the antennas AN1 and AN2. Transmit to unmanned aerial vehicle 100. Thus, the operator can automatically return (return) the unmanned aircraft 100 to a predetermined position by a simple operation on the transmitter 50.
 操作部セットOPSは、複数の操作部(例えば操作部OP1,…,操作部OPn)(n:2以上の整数)を用いて構成される。操作部セットOPSは、図4に示す左制御棒53L、右制御棒53R、電源ボタンB1及びRTHボタンB2を除く他の操作部(例えば、送信機50による無人航空機100の遠隔制御を支援するための各種の操作部)により構成される。ここでいう各種の操作部とは、例えば、無人航空機100の撮像装置220を用いた静止画の撮像を指示するボタン、無人航空機100の撮像装置220を用いた動画の録画の開始及び終了を指示するボタン、無人航空機100のジンバル200(図4参照)のチルト方向の傾きを調整するダイヤル、無人航空機100のフライトモードを切り替えるボタン、無人航空機100の撮像装置220の設定を行うダイヤルが該当する。 The operation unit set OPS is configured using a plurality of operation units (for example, operation units OP1,..., Operation unit OPn) (n: an integer of 2 or more). The operation unit set OPS supports other operation units (for example, the remote control of the unmanned aircraft 100 by the transmitter 50) except for the left control rod 53L, the right control rod 53R, the power button B1, and the RTH button B2 shown in FIG. Various operation units). The various operation units referred to here are, for example, a button for instructing imaging of a still image using the imaging device 220 of the unmanned aerial vehicle 100, and an instruction for starting and ending video recording using the imaging device 220 of the unmanned aircraft 100. Button for adjusting the tilt direction of the gimbal 200 (see FIG. 4) of the unmanned aircraft 100, a button for switching the flight mode of the unmanned aircraft 100, and a dial for setting the imaging device 220 of the unmanned aircraft 100.
 リモートステータス表示部L1及びバッテリ残量表示部L2は、図6を参照して説明したので、ここでは説明を省略する。 The remote status display unit L1 and the remaining battery level display unit L2 have been described with reference to FIG.
 送信機制御部61は、プロセッサ(例えばCPU、MPU又はDSP)を用いて構成される。送信機制御部61は、送信機50の各部の動作を統括して制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。 The transmitter controller 61 is configured using a processor (for example, CPU, MPU or DSP). The transmitter control unit 61 performs signal processing for overall control of operations of the respective units of the transmitter 50, data input / output processing with other units, data calculation processing, and data storage processing.
 送信機制御部61は、操作者の左制御棒53L及び右制御棒53Rの操作により、その操作により指定された無人航空機100の移動を制御するための信号を生成してよい。送信機制御部61は、この生成した信号を、無線通信部63及びアンテナAN1,AN2を介して、無人航空機100に送信して無人航空機100を遠隔制御してよい。これにより、送信機50は、無人航空機100の移動を遠隔で制御できる。 The transmitter control unit 61 may generate a signal for controlling the movement of the unmanned aircraft 100 specified by the operation of the left control rod 53L and the right control rod 53R of the operator. The transmitter control unit 61 may remotely control the unmanned aircraft 100 by transmitting the generated signal to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2. Thereby, the transmitter 50 can control the movement of the unmanned aircraft 100 remotely.
 無人航空機100の移動を制御するための信号は、無人航空機100の飛行状態を制御する飛行パラメータの指令値を含む。送信機制御部61は、左制御棒53L及び右制御棒53Rの操作量(つまり初期位置に対する左制御棒53L又は右制御棒53Rの移動量)が大きい程、飛行パラメータの指令値(例えば加速度又は速度)を大きくしてよい。移動の向きを考慮すると、この指令値の大きさは、指令値の絶対値の大きさとなる。送信機制御部61は、左制御棒53L又は右制御棒53Rの操作量が小さい程、飛行パラメータの指令値を小さくしてよい。送信機制御部61は、飛行パラメータの指令値を含む操作入力信号を生成し、無線通信部63を介して、操作入力信号を無人航空機100に送信してよい。 The signal for controlling the movement of the unmanned aircraft 100 includes a flight parameter command value for controlling the flight state of the unmanned aircraft 100. The transmitter control unit 61 increases the command value (for example, acceleration or the like) of the flight parameter as the operation amount of the left control rod 53L and the right control rod 53R (that is, the movement amount of the left control rod 53L or the right control rod 53R with respect to the initial position) increases. (Speed) may be increased. In consideration of the direction of movement, the magnitude of this command value is the magnitude of the absolute value of the command value. The transmitter control unit 61 may decrease the flight parameter command value as the operation amount of the left control rod 53L or the right control rod 53R is smaller. The transmitter control unit 61 may generate an operation input signal including a flight parameter command value and transmit the operation input signal to the unmanned aircraft 100 via the wireless communication unit 63.
 送信機制御部61は、左制御棒53L及び右制御棒53Rの操作量に応じて、加速度の指令値を生成してよい。この場合、左制御棒53L及び右制御棒53Rが初期位置とされた場合、加速度が値0となり、無人航空機100へ等速での飛行指示が可能である。 The transmitter controller 61 may generate an acceleration command value according to the operation amount of the left control rod 53L and the right control rod 53R. In this case, when the left control rod 53L and the right control rod 53R are set to the initial positions, the acceleration is 0, and the unmanned aircraft 100 can be instructed to fly at a constant speed.
 送信機制御部61は、左制御棒53L及び右制御棒53Rの操作量に応じて、速度の指令値を生成してよい。この場合、左制御棒53L及び右制御棒53Rが初期位置とされた場合、速度が値0となり、無人航空機100へ移動しない旨の飛行指示(ホバリングの指示)が可能である。 The transmitter controller 61 may generate a speed command value according to the operation amount of the left control rod 53L and the right control rod 53R. In this case, when the left control rod 53L and the right control rod 53R are set to the initial positions, the speed becomes 0, and a flight instruction (hovering instruction) indicating that the vehicle does not move to the unmanned aircraft 100 is possible.
 送信機制御部61は、送信機50が有する任意のボタンや任意の操作部への操作に基づく操作入力信号を生成し、無線通信部63を介して、操作入力信号を無人航空機100に送信してよい。この場合、無人航空機100は、操作入力信号を送信機50から受信することで、送信機50の操作者の制御下にあることを認識可能である。 The transmitter control unit 61 generates an operation input signal based on an operation on an arbitrary button or an arbitrary operation unit included in the transmitter 50, and transmits the operation input signal to the unmanned aircraft 100 via the wireless communication unit 63. It's okay. In this case, the unmanned aircraft 100 can recognize that it is under the control of the operator of the transmitter 50 by receiving the operation input signal from the transmitter 50.
 送信機制御部61は、無線通信部63を介して、無人航空機100から、無人航空機100の飛行状態の異常に関する情報(例えば異常が発生した旨の情報)を受信してよい。送信機制御部61は、無人航空機100の飛行状態の異常に関する情報を提示してよい。この場合、送信機制御部61は、表示部DPを介して、飛行状態の異常に関する情報を表示してよい。送信機制御部61は、音声出力部(スピーカ、不図示)を介して、飛行状態の異常に関する情報を音声出力してよい。送信機制御部61は、振動部(バイブレータ、不図示)を介して、飛行状態の異常に関する情報を振動により提示してよい。 The transmitter control unit 61 may receive information about an abnormality in the flight state of the unmanned aircraft 100 (for example, information that an abnormality has occurred) from the unmanned aircraft 100 via the wireless communication unit 63. The transmitter control unit 61 may present information related to an abnormality in the flight state of the unmanned aircraft 100. In this case, the transmitter control unit 61 may display information regarding the abnormality in the flight state via the display unit DP. The transmitter control unit 61 may output information related to an abnormality in the flight state via a voice output unit (speaker, not shown). The transmitter control unit 61 may present information related to an abnormality in the flight state via vibration via a vibration unit (vibrator, not shown).
 無線通信部63は、2つのアンテナAN1,AN2と接続される。無線通信部63は、2つのアンテナAN1,AN2を介して、無人航空機100との間で所定の無線通信方式(例えばWifi(登録商標))を用いた情報やデータの送受信を行う。 The wireless communication unit 63 is connected to two antennas AN1 and AN2. The wireless communication unit 63 transmits / receives information and data to / from the unmanned aircraft 100 via the two antennas AN1 and AN2 using a predetermined wireless communication method (for example, WiFi (registered trademark)).
 表示部DPは、各種データを表示する。表示部DPは、異常状態の異常に関する情報を、表示してよい。 Display unit DP displays various data. The display unit DP may display information related to the abnormality in the abnormal state.
 尚、送信機50は、表示部DPを備える代わりに、表示端末(不図示)と有線又は無線により接続されてもよい。表示端末には、表示部DPと同様に、無人航空機100の飛行状態の異常に関する情報が表示されてよい。表示端末は、スマートフォン、タブレット端末、PC(Personal Computer)等でよい。 Note that the transmitter 50 may be connected to a display terminal (not shown) by wire or wireless instead of including the display unit DP. Similar to the display unit DP, the display terminal may display information related to an abnormality in the flight state of the unmanned aircraft 100. The display terminal may be a smartphone, a tablet terminal, a PC (Personal Computer), or the like.
 次に、無人航空機100の制御モードの遷移について説明する。 Next, the transition of the control mode of the unmanned aircraft 100 will be described.
 図8は、無人航空機100の制御モードの第1遷移例を示す模式図である。図8では、無人航空機100が不測の事態に陥り機体が降下する様子を示す。 FIG. 8 is a schematic diagram illustrating a first transition example of the control mode of the unmanned aerial vehicle 100. FIG. 8 shows a situation where the unmanned aircraft 100 falls into an unexpected situation and the aircraft descends.
 まず、制御モード変更部113は、制御モードを、通常制御モードに設定している(T11)。通常制御モードにおいて、無人航空機100の飛行状態に異常があると(T12)、制御モード変更部113は、制御モードを安全制御モードに変更する。第1遷移例では、第1の安全制御モードに遷移する。第1の安全制御モードは、無人航空機100が減速しながら高度を低下させて着陸させる制御モードである。 First, the control mode changing unit 113 sets the control mode to the normal control mode (T11). In the normal control mode, when the flight state of the unmanned aircraft 100 is abnormal (T12), the control mode changing unit 113 changes the control mode to the safety control mode. In the first transition example, a transition is made to the first safety control mode. The first safety control mode is a control mode in which the unmanned aircraft 100 is landed at a reduced altitude while decelerating.
 第1の安全制御モードでは、駆動電流設定部115が、駆動電流の指令値を、第1の安全制御モードに変更前の駆動電流の指令値よりも大きな駆動電流の指令値に設定する。これにより、無人航空機100では、回転翼211の回転数が増大し(T13)、重力方向と反対方向(つまり無人航空機100が上昇する方向)への揚力を増大し、重力方向と反対方向の加速度(上向き加速度とも称する)が増大する。 In the first safety control mode, the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the first safety control mode. Thereby, in the unmanned aircraft 100, the rotational speed of the rotary wing 211 increases (T13), the lift in the direction opposite to the direction of gravity (that is, the direction in which the unmanned aircraft 100 rises) is increased, and the acceleration in the direction opposite to the direction of gravity occurs. (Also referred to as upward acceleration) increases.
 第1の安全制御モードは、飛行パラメータの指令値に対して、ある程度無人航空機100が反応する場合に有益である。無人航空機100の飛行制御が不完全であってもある程度可能であるためである。ある程度無人航空機100が反応する場合とは、飛行パラメータの指令値に対する飛行パラメータの実測値の割合が、値0.3以上である場合を指してよい。尚、値0.3は一例であり、他の値でもよい。 The first safety control mode is useful when the unmanned aircraft 100 reacts to some extent with respect to the flight parameter command value. This is because even if the flight control of the unmanned aircraft 100 is incomplete, it is possible to some extent. The case where the unmanned aircraft 100 reacts to some extent may refer to the case where the ratio of the actually measured value of the flight parameter to the command value of the flight parameter is a value of 0.3 or more. The value 0.3 is an example, and other values may be used.
 第1の安全制御モードによれば、無人航空機100は、無人航空機100の降下速度を低下させて、無人航空機100が安全に着陸するよう試みることができる。例えば、無人航空機100が完全に故障しておらず、ある程度飛行制御が可能な期間に無人航空機100を所定の位置に帰還させることで、無人航空機100が物体に接触することによる物体の損傷を未然に防止できる。また、無人航空機100が所定の位置に帰還することが困難な場合でも、無人航空機100の降下速度を減速することで、地上に所在する人物は、無人航空機100の行方を確認して、無人航空機100の落下点を避けるように移動できる。従って、無人航空機100は、人物と接触する可能性を低減できる。 According to the first safety control mode, the unmanned aircraft 100 can attempt to land the unmanned aircraft 100 safely by reducing the descent speed of the unmanned aircraft 100. For example, by returning the unmanned aircraft 100 to a predetermined position during a period in which the unmanned aircraft 100 is not completely broken and flight control is possible to some extent, damage to the object due to the unmanned aircraft 100 coming into contact with the object can be prevented. Can be prevented. Even if it is difficult for the unmanned aircraft 100 to return to a predetermined position, by reducing the descent speed of the unmanned aircraft 100, a person located on the ground confirms the whereabouts of the unmanned aircraft 100, and the unmanned aircraft 100 Move to avoid 100 falling points. Therefore, the unmanned aircraft 100 can reduce the possibility of contact with a person.
 尚、回転翼制御部116は、無人航空機100が着陸してから回転翼211を停止してよい。つまり、無人航空機100は、飛行中に回転翼211を停止させなくても、安全性を確保でき、人体を含む物体の損傷を低減でき、人への被害を最小限にし得る。 The rotary wing controller 116 may stop the rotary wing 211 after the unmanned aircraft 100 has landed. That is, the unmanned aerial vehicle 100 can secure safety without stopping the rotor wing 211 during the flight, can reduce damage to objects including the human body, and can minimize damage to humans.
 図9Aは、無人航空機100の制御モードの第2遷移例を示す模式図である。図9Aでは、無人航空機100が不測の事態に陥り機体が降下し、落下に至る様子を示す。 FIG. 9A is a schematic diagram illustrating a second transition example of the control mode of the unmanned aerial vehicle 100. FIG. 9A shows a situation in which the unmanned aerial vehicle 100 falls into an unforeseen situation, the aircraft descends, and falls.
 まず、制御モード変更部113は、制御モードを、通常制御モードに設定している(T21)。通常制御モードにおいて、無人航空機100の飛行状態に異常があると(T22)、制御モード変更部113は、制御モードを安全制御モードに変更する。第2遷移例では、第2の安全制御モードに遷移する。第2の安全制御モードは、所定高度H1(例えば5m)で無人航空機100の回転翼211の回転を停止する制御モードである。所定高度H1は、第1の所定高度の一例である。 First, the control mode changing unit 113 sets the control mode to the normal control mode (T21). In the normal control mode, when there is an abnormality in the flight state of the unmanned aircraft 100 (T22), the control mode changing unit 113 changes the control mode to the safety control mode. In the second transition example, a transition is made to the second safety control mode. The second safety control mode is a control mode in which the rotation of the rotor blades 211 of the unmanned aircraft 100 is stopped at a predetermined altitude H1 (for example, 5 m). The predetermined altitude H1 is an example of a first predetermined altitude.
 第2の安全制御モードでは、駆動電流設定部115が、駆動電流の指令値を、第2の安全制御モードに変更前の駆動電流の指令値よりも大きな駆動電流の指令値に設定する。これにより、回転翼211の回転数が増大し(T23)、重力方向と反対方向(つまり無人航空機100が上昇する方向)への揚力を増大し、重力方向と反対方向の加速度が増大する。 In the second safety control mode, the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the second safety control mode. Thereby, the rotational speed of the rotary wing 211 increases (T23), the lift in the direction opposite to the direction of gravity (that is, the direction in which the unmanned aircraft 100 rises) is increased, and the acceleration in the direction opposite to the direction of gravity increases.
 回転翼制御部116は、無人航空機100の降下が進み、高度取得部114により取得された高度の実測値が所定高度H1(例えば5m)であることを検出すると、無人航空機100の回転翼211の回転を停止させる(T24)。この場合、回転翼制御部116は、無人航空機100が所定高度H1に達した際に、駆動モータ212の駆動電流の指令値を値0とすることで、回転翼211の回転を停止させてよい。また、回転翼制御部116は、無人航空機100が所定高度H1に達した際に、回転翼211の回転を阻害する突起(不図示)を回転翼211の回転軌道上に移動して挿入し、回転翼211の回転をロックすることで、回転翼211の回転を停止させてよい。これにより、回転翼制御部116は、回転翼211の回転を瞬時に停止できる。 When the descent of the unmanned aircraft 100 proceeds and the rotary wing control unit 116 detects that the actual measured value of the altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H1 (for example, 5 m), the rotary wing control unit 116 The rotation is stopped (T24). In this case, the rotary wing controller 116 may stop the rotation of the rotary wing 211 by setting the command value of the drive current of the drive motor 212 to 0 when the unmanned aircraft 100 reaches the predetermined altitude H1. . Further, the rotary wing control unit 116 moves and inserts a protrusion (not shown) that inhibits the rotation of the rotary wing 211 on the rotary orbit of the rotary wing 211 when the unmanned aircraft 100 reaches a predetermined altitude H1. The rotation of the rotary blade 211 may be stopped by locking the rotation of the rotary blade 211. Thereby, the rotary blade control unit 116 can instantaneously stop the rotation of the rotary blade 211.
 回転翼211の回転を停止させるための閾値となる所定高度H1は、5m以外の値でもよい。地上に存在する人物の負傷を軽減することを考慮する場合、人物として想定される高さよりも高い5mに所定高度H1が設定されてよい。また、地上に建設された特定の建造物(例えば、外力に対する耐久性が不十分な建造物、重要文化財等の建造物)の損傷を軽減することを考慮する場合、その建造物として想定される高さよりも高い任意の値に所定高度H1が設定されてよい。 The predetermined altitude H1, which is a threshold for stopping the rotation of the rotary blade 211, may be a value other than 5 m. When considering reducing the injury of a person existing on the ground, the predetermined altitude H1 may be set to 5 m higher than the height assumed as a person. In addition, when considering reducing damage to a specific structure built on the ground (for example, a structure with insufficient durability against external force, a structure such as an important cultural property), it is assumed as the structure. The predetermined altitude H1 may be set to an arbitrary value higher than the predetermined height.
 第2の安全制御モードは、飛行パラメータの指令値に対して、無人航空機100があまり反応しない場合に有益である。無人航空機100の飛行制御がほとんどできず、無人航空機100の降下速度を十分に減速できないためである。無人航空機100があまり反応しない場合とは、飛行パラメータの指令値に対する実測値の比が、値0.3未満である場合を指してよい。尚、値0.3は一例であり、他の値でもよい。 The second safety control mode is useful when the unmanned aerial vehicle 100 does not respond to the flight parameter command value. This is because flight control of the unmanned aerial vehicle 100 can hardly be performed, and the descent speed of the unmanned aircraft 100 cannot be sufficiently reduced. The case where the unmanned aerial vehicle 100 does not react so much may indicate a case where the ratio of the actually measured value to the command value of the flight parameter is less than 0.3. The value 0.3 is an example, and other values may be used.
 第2の安全制御モードによれば、無人航空機100は、回転翼21の回転停止により回転翼21の物体等への接触時の衝撃力を低減できる。また、無人航空機100は、回転翼21が回転し続けることで、無人航空機100が予期せぬ方向への推進力を取得することを抑制でき、予期せぬ方向に飛行することを抑制できる。また、無人航空機100は、所定高度H1まで無人航空機100が降下してから回転翼21の回転を停止することで、高高度での回転翼211の回転の停止を回避し、重力により無人航空機100が高速落下することによる危険度の増大を抑制できる。 According to the second safety control mode, the unmanned aerial vehicle 100 can reduce the impact force when the rotating blades 21 come into contact with an object or the like by stopping the rotation of the rotating blades 21. In addition, the unmanned aircraft 100 can suppress the unmanned aircraft 100 from acquiring a propulsive force in an unexpected direction and keep the flight in an unexpected direction as the rotary wing 21 continues to rotate. Further, the unmanned aircraft 100 avoids stopping the rotation of the rotary blades 211 at a high altitude by stopping the rotation of the rotary blades 21 after the unmanned aircraft 100 descends to a predetermined altitude H1, and the unmanned aircraft 100 due to gravity. Can suppress an increase in the risk due to the high-speed falling.
 図9Bは、無人航空機100の制御モードの第3遷移例を示す模式図である。図9Bでは、無人航空機100が不測の事態に陥り機体が降下し、落下に至る様子を示す。 FIG. 9B is a schematic diagram illustrating a third transition example of the control mode of the unmanned aerial vehicle 100. FIG. 9B shows a state where the unmanned aerial vehicle 100 falls into an unforeseen situation, the aircraft descends, and falls.
 まず、制御モード変更部113は、制御モードを、通常制御モードに設定している(T31)。通常制御モードにおいて、無人航空機100の飛行状態に異常があると(T32)、制御モード変更部113は、制御モードを安全制御モードに変更する。第3遷移例では、第3の安全制御モードに遷移する。第3の安全制御モードは、所定高度H2(例えば10m)でスピーカ290により飛行状態の異常を示す警告音を発する制御モードである。所定高度H2は、第2の所定高度の一例である。 First, the control mode changing unit 113 sets the control mode to the normal control mode (T31). When the flight state of the unmanned aircraft 100 is abnormal in the normal control mode (T32), the control mode changing unit 113 changes the control mode to the safety control mode. In the third transition example, a transition is made to the third safety control mode. The third safety control mode is a control mode in which a warning sound indicating an abnormal flight state is emitted from the speaker 290 at a predetermined altitude H2 (for example, 10 m). The predetermined altitude H2 is an example of a second predetermined altitude.
 第3の安全制御モードでは、駆動電流設定部115が、駆動電流の指令値を、第3の安全制御モードに変更前の駆動電流の指令値よりも大きな駆動電流の指令値に設定する。これにより、回転翼211の回転数が増大し(T33)、重力方向と反対方向(つまり無人航空機100が上昇する方向)への揚力を増大し、重力方向と反対方向の加速度が増大する。 In the third safety control mode, the drive current setting unit 115 sets the command value of the drive current to a command value of the drive current that is larger than the command value of the drive current before the change to the third safety control mode. Thereby, the rotational speed of the rotary wing 211 increases (T33), the lift in the direction opposite to the direction of gravity (that is, the direction in which the unmanned aircraft 100 rises) is increased, and the acceleration in the direction opposite to the direction of gravity increases.
 音声制御部117は、無人航空機100の降下が進み、高度取得部114により取得された高度の実測値が所定高度H2(例えば10m)であることを検出すると、警告音を発する(音声出力する)(T34)。警告音は、アラート音、警告音声メッセージ、警告を示す音楽、等でよい。 When the descent of the unmanned aircraft 100 proceeds and the voice control unit 117 detects that the actual measured value of the altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H2 (for example, 10 m), the voice control unit 117 emits a warning sound (outputs a voice). (T34). The warning sound may be an alert sound, a warning voice message, music indicating a warning, or the like.
 警告音を発する閾値となる所定高度H2は、10m以外の値でもよい。例えば、所定高度H2は、無人航空機100が発する警告音が地上に存在する人物に聞こえる高さでよい。また、音声制御部117は、所定高度H2を特に考慮せずに、第3の安全制御モードへの移行に伴って、スピーカ290による警告音の出力を開始してもよい。所定高度H2は、上述した所定高度H1と同じでもよい。 A value other than 10 m may be used as the predetermined altitude H2 serving as a threshold value for generating a warning sound. For example, the predetermined altitude H2 may be a height at which a warning sound generated by the unmanned aircraft 100 can be heard by a person existing on the ground. In addition, the voice control unit 117 may start outputting a warning sound by the speaker 290 in accordance with the transition to the third safety control mode without particularly considering the predetermined altitude H2. The predetermined altitude H2 may be the same as the predetermined altitude H1 described above.
 第3の安全制御モードによれば、無人航空機100は、飛行状態に異常がある場合に、スピーカ290から警告音を出力できる。従って、無人航空機100が飛行する周辺に存在する人物は、無人航空機100が発する警告音を確認でき、警告音を確認することで無人航空機100の移動方向や地上への降下(例えば落下)位置を予測できる。よって、警告音を確認した人物は、無人航空機100の行方を確認して、無人航空機100の落下点を避けるように移動できる。したがって、無人航空機100は、地上の人物と接触する可能性を低減でき、回転翼211と人物との接触による人物の負傷の可能性を低減できる。 According to the third safety control mode, the unmanned aircraft 100 can output a warning sound from the speaker 290 when there is an abnormality in the flight state. Accordingly, a person present in the vicinity where the unmanned aircraft 100 flies can check the warning sound emitted by the unmanned aircraft 100, and by confirming the warning sound, the moving direction of the unmanned aircraft 100 and the position of the unmanned aircraft 100 descending (eg, falling) can be determined. Predictable. Therefore, the person who confirmed the warning sound can confirm the whereabouts of the unmanned aircraft 100 and move so as to avoid the falling point of the unmanned aircraft 100. Therefore, the unmanned aerial vehicle 100 can reduce the possibility of contact with a person on the ground, and can reduce the possibility of human injury due to contact between the rotary wing 211 and the person.
 尚、第3の安全制御モードの各処理は、第2の安全制御モードの各処理とは別に実施されても、第2の安全制御モードの各処理とともに実施されてもよい。 Each process in the third safety control mode may be performed separately from each process in the second safety control mode, or may be performed together with each process in the second safety control mode.
 次に、飛行パラメータの指令値及び実測値に基づく異常判定について説明する。 Next, the abnormality determination based on the command value and actual measurement value of the flight parameter will be described.
 図10は、駆動モータ212を駆動するための駆動電流の指令値Iinと駆動電流の実測値Ioutとの関係の一例を示すグラフである。駆動電流の指令値Iinと駆動電流の実測値Ioutとは、比例関係であってよい。この場合、駆動電流の指令値Iinと駆動電流の実測値Ioutとは、以下の関係が成り立つ。
 Iout=α1*Iin
 尚、「α1」は、Iout/Iinで示され、駆動電流の指令値に対する駆動電流の実測値の比を示す。つまり、α1は、指令値に対する敏感度を示す。アスタリスク「*」は、乗算符号を示す。
FIG. 10 is a graph showing an example of the relationship between the drive current command value Iin for driving the drive motor 212 and the measured drive current value Iout. The command value Iin of the drive current and the measured value Iout of the drive current may be in a proportional relationship. In this case, the following relationship holds between the command value Iin of the drive current and the measured value Iout of the drive current.
Iout = α1 * Iin
“Α1” is indicated by Iout / Iin and indicates the ratio of the measured value of the drive current to the command value of the drive current. That is, α1 indicates the sensitivity to the command value. An asterisk “*” indicates a multiplication sign.
 飛行状態に異常がない(通常状態である)場合、駆動電流の指令値Iinに対する駆動電流の実測値Ioutとして、比較的大きな値が得られる。したがって、比α1の値は比較的大きくなる。一方、飛行状態に異常がある(異常状態である)場合、駆動電流の指令値Iinに対する駆動電流の実測値Ioutとして、比較的小さな値が得られる。よって、通常状態での比α1=a1とし、異常状態での比α1=b1とすると、a1>b1の関係が成り立つ。a1は、例えば値1である。 When there is no abnormality in the flight state (normal state), a relatively large value is obtained as the actual measured value Iout of the drive current with respect to the drive current command value Iin. Therefore, the value of the ratio α1 is relatively large. On the other hand, when the flight state is abnormal (abnormal state), a relatively small value is obtained as the actual measured value Iout of the drive current with respect to the drive current command value Iin. Therefore, when the ratio α1 = a1 in the normal state and the ratio α1 = b1 in the abnormal state, the relationship of a1> b1 is established. a1 is, for example, the value 1.
 図10では、直線L1Nは、通常状態での駆動電流の指令値と駆動電流の実測値との関係の一例を示し、直線L1Aは、異常状態での駆動電流の指令値と駆動電流の実測値との関係の一例を示す。 In FIG. 10, a straight line L1N shows an example of the relationship between the drive current command value in the normal state and the measured drive current value, and the straight line L1A shows the drive current command value and the drive current measured value in the abnormal state. An example of the relationship is shown.
 異常処理部111は、駆動電流の指令値Iin及び駆動電流の実測値Ioutを取得する。取得された駆動電流の指令値Iinと駆動電流の実測値Ioutを基に、通常状態か異常状態かを判定してよい。 The abnormality processing unit 111 acquires the command value Iin of the drive current and the measured value Iout of the drive current. Based on the acquired command value Iin of the drive current and the measured value Iout of the drive current, it may be determined whether it is a normal state or an abnormal state.
 異常処理部111は、比α1が1つの閾値(例えば値0.8)以上か閾値未満かに応じて、通常状態か異常状態かを判定してもよい。つまり、異常処理部111は、比α1が1つの閾値以上である所定範囲にある場合に、通常状態と判定し、比α1が1つの閾値未満である所定範囲外にある場合に、異常状態と判定してよい。これにより、異常処理部111は、1つの閾値を用いて簡単に、異常状態か否かを判定できる。なお、この閾値は値0.8以外でもよく、値0.5~値0.8の間のいずれかの値でもよい。 The abnormality processing unit 111 may determine whether the ratio α1 is a normal state or an abnormal state depending on whether the ratio α1 is equal to or greater than one threshold value (for example, value 0.8). That is, the abnormality processing unit 111 determines that the normal state is present when the ratio α1 is within a predetermined range that is equal to or greater than one threshold, and determines that the abnormal state is determined when the ratio α1 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. The threshold value may be other than 0.8, or any value between 0.5 and 0.8.
 また、通常状態である場合、駆動電流の指令値Iinに対する駆動電流の実測値Ioutの値は、予め想定される所定範囲内の値となると考えらえる。一方、異常状態である場合、駆動電流の指令値Iinに対する駆動電流の実測値Ioutは、予め想定される所定範囲外の値となると考えらえる。 Also, in the normal state, the actual value Iout of the drive current with respect to the command value Iin of the drive current can be considered to be a value within a predetermined range assumed in advance. On the other hand, in an abnormal state, the actual measured value Iout of the drive current with respect to the command value Iin of the drive current can be considered to be a value outside a predetermined range assumed in advance.
 従って、異常処理部111は、比α1と比較するための上限閾値(例えば値1.2)と下限閾値(例えば値0.8)とを用いて、比α1が上限閾値と下限閾値との間である所定範囲(例えば0.8≦α1(=a1)≦1.2)である場合に、通常状態と判定し、比α1が所定範囲外(例えばα1(=b1)<0.8,1.2<α1(=b1))である場合に、異常状態と判定してよい。つまり、通常状態である場合の比として想定される値の例えば±20%の範囲内の比であれば、通常状態と判定し、例えば±20%の範囲外の比であれば、異常状態と判定してよい。なお、±20%以外の値でもよく、±20%~±50%の間のいずれかの値でもよい。 Therefore, the abnormality processing unit 111 uses the upper threshold (for example, value 1.2) and the lower threshold (for example, value 0.8) for comparison with the ratio α1, and the ratio α1 is between the upper threshold and the lower threshold. Is within a predetermined range (for example, α1 (= b1) <0.8, 1). .2 <α1 (= b1)), it may be determined as an abnormal state. That is, if it is a ratio within a range of, for example, ± 20% of a value assumed as a ratio in the normal state, it is determined as a normal state. You may judge. The value may be other than ± 20% or any value between ± 20% and ± 50%.
 図10のように駆動電流の指令値及び実測値に基づき異常判定を行うことで、飛行状態に異常がある場合、無人航空機100は、無人航空機100内での何らかの故障により、駆動電流の指令値に対する駆動モータ212の駆動力が過小又は過大していることを認識できる。よって、無人航空機100は、無人航空機100の適切な上昇力が得られず、落下の危険性があることを認識できる。 When the abnormality is determined in the flight state by performing the abnormality determination based on the command value and the actual measurement value of the drive current as shown in FIG. 10, the unmanned aircraft 100 causes the command value of the drive current due to some failure in the unmanned aircraft 100. It can be recognized that the driving force of the driving motor 212 is too small or too large. Therefore, the unmanned aerial vehicle 100 can recognize that there is a risk of falling because the appropriate lifting force of the unmanned aircraft 100 cannot be obtained.
 図11Aは、上向き加速度の指令値Ainと上向き加速度の実測値Aoutとの関係の一例を示すグラフである。上向きとは、重力方向と反対方向を指す。上向き加速度の指令値Ainと上向き加速度の実測値Aoutとは、比例関係であってよい。この場合、上向き加速度の指令値Ainと上向き加速度の実測値Aoutとは、以下の関係が成り立つ。
 Aout=α2*Ain
 尚、「α2」は、Aout/Ainで示され、上向き加速度の指令値に対する上向き加速度の実測値の比を示す。
FIG. 11A is a graph showing an example of the relationship between the upward acceleration command value Ain and the upward acceleration actual measurement value Aout. Upward refers to the direction opposite to the direction of gravity. The command value Ain for the upward acceleration and the actually measured value Aout for the upward acceleration may be in a proportional relationship. In this case, the following relationship holds between the upward acceleration command value Ain and the upward acceleration actual measurement value Aout.
Aout = α2 * Ain
“Α2” is indicated by Aout / Ain, and indicates the ratio of the measured value of the upward acceleration to the command value of the upward acceleration.
 通常状態である場合、上向き加速度の指令値Ainに対する上向き加速度の実測値Aoutとして、比較的大きな値が得られる。したがって、比α2の値は比較的大きくなる。一方、異常状態である場合、上向き加速度の指令値Ainに対する上向き加速度の実測値Aoutとして、比較的小さな値が得られる。よって、通常状態での比α2=a2とし、異常状態での比α2=b2とすると、a2>b2の関係が成り立つ。a2は、例えば値1である。 In the normal state, a relatively large value is obtained as the actual measured value Aout of the upward acceleration with respect to the command value Ain of the upward acceleration. Therefore, the value of the ratio α2 is relatively large. On the other hand, in the abnormal state, a relatively small value is obtained as the actual measured value Aout of the upward acceleration relative to the upward acceleration command value Ain. Therefore, if the ratio α2 = a2 in the normal state and the ratio α2 = b2 in the abnormal state, the relationship of a2> b2 is established. a2 is, for example, the value 1.
 図11Aでは、直線L21Nは、通常状態での上向き加速度の指令値Ainと上向き加速度の実測値Aoutとの関係の一例を示し、直線L21Aは、異常状態での上向き加速度の指令値Ainと上向き加速度の実測値Aoutとの関係の一例を示す。直線L21Aは、上向きに加速するよう指令しているにも関わらず、下向きの加速度が検出されており、無人航空機100が上向きに減速つまり下向きに加速することを示している。 In FIG. 11A, the straight line L21N shows an example of the relationship between the upward acceleration command value Ain and the upward acceleration measured value Aout in the normal state, and the straight line L21A shows the upward acceleration command value Ain and the upward acceleration in the abnormal state. An example of the relationship with the actual measurement value Aout is shown. The straight line L21A indicates that the downward acceleration is detected despite the command to accelerate upward, and the unmanned aircraft 100 decelerates upward, that is, accelerates downward.
 異常処理部111は、上向き加速度の指令値Ain及び上向き加速度の実測値Aoutを取得してよい。上向き加速度の指令値Ainは、加速度の指令値の重力方向と反対方向の成分である。上向き加速度の実測値Aoutは、加速度の実測値の重力方向と反対方向の成分である。異常処理部111は、取得された上向き加速度の指令値Ainと上向き加速度の実測値Aoutを基に、通常状態か異常状態かを判定してよい。 The abnormality processing unit 111 may obtain the upward acceleration command value Ain and the upward acceleration actual measurement value Aout. The upward acceleration command value Ain is a component in the direction opposite to the gravity direction of the acceleration command value. The actually measured acceleration value Aout is a component in the direction opposite to the gravitational direction of the measured acceleration value. The abnormality processing unit 111 may determine whether the state is a normal state or an abnormal state based on the acquired upward acceleration command value Ain and the actually measured upward acceleration value Aout.
 異常処理部111は、比α2が1つの閾値(例えば値0.8)以上か閾値未満かに応じて、通常状態か異常状態かを判定してもよい。つまり、異常処理部111は、比α2が1つの閾値以上である所定範囲にある場合に、通常状態と判定し、比α2が1つの閾値未満である所定範囲外にある場合に、異常状態と判定してよい。これにより、異常処理部111は、1つの閾値を用いて簡単に、異常状態か否かを判定できる。なお、この閾値は値0.8以外でもよく、値0.5~値0.8の間のいずれかの値でもよい。 The abnormality processing unit 111 may determine whether the ratio α2 is in a normal state or an abnormal state depending on whether the ratio α2 is greater than or equal to one threshold value (for example, value 0.8) or less than the threshold value. That is, the abnormality processing unit 111 determines that the normal state is present when the ratio α2 is within a predetermined range that is equal to or larger than one threshold, and determines that the abnormal state is determined when the ratio α2 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. The threshold value may be other than 0.8, or any value between 0.5 and 0.8.
 また、通常状態である場合、上向き加速度の指令値Ainに対する上向き加速度の実測値Aoutの値は、予め想定される所定範囲内の値となると考えらえる。一方、異常状態である場合、上向き加速度の指令値Ainに対する上向き加速度の実測値Aoutは、予め想定される所定範囲外の値となると考えらえる。 Further, in the normal state, the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain can be considered to be a value within a predetermined range assumed in advance. On the other hand, in the abnormal state, the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain can be considered to be a value outside a predetermined range assumed in advance.
 従って、異常処理部111は、比α2と比較するための上限閾値(例えば値1.2)と下限閾値(例えば値0.8)とを用いて、比α2が上限閾値と下限閾値との間である所定範囲(例えば0.8≦α2(=a2)≦1.2)である場合に、通常状態と判定し、比α2が所定範囲外(例えばα2(=b2)<0.8,1.2<α2(=b2))である場合に、異常状態と判定してよい。つまり、通常状態である場合の比として想定される値の例えば±20%の範囲内の比であれば、通常状態と判定し、例えば±20%の範囲外の比であれば、異常状態と判定してよい。なお、±20%以外の値でもよく、±20%~±50%の間のいずれかの値でもよい。 Therefore, the abnormality processing unit 111 uses the upper threshold (for example, value 1.2) and the lower threshold (for example, value 0.8) for comparison with the ratio α2, and the ratio α2 is between the upper threshold and the lower threshold. Is within the predetermined range (for example, 0.8 ≦ α2 (= a2) ≦ 1.2), and the ratio α2 is outside the predetermined range (for example, α2 (= b2) <0.8,1). .2 <α2 (= b2)), it may be determined as an abnormal state. That is, if it is a ratio within a range of, for example, ± 20% of a value assumed as a ratio in the normal state, it is determined as a normal state. You may judge. The value may be other than ± 20% or any value between ± 20% and ± 50%.
 図11Aのように上向き加速度の指令値及び実測値に基づき異常判定を行うことで、飛行状態に異常がある場合、無人航空機100は、無人航空機100内での何らかの故障により上向き加速度の指令値に対する加速度が過小又は過大であることを認識できる。よって、無人航空機100は、無人航空機100の適切な高度を維持できず、落下の危険性があることを認識できる。 When abnormality is detected in the flight state by performing abnormality determination based on the upward acceleration command value and the actual measurement value as illustrated in FIG. 11A, the unmanned aircraft 100 responds to the upward acceleration command value due to some failure in the unmanned aircraft 100. It can be recognized that the acceleration is too small or too large. Therefore, the unmanned aerial vehicle 100 cannot recognize the appropriate altitude of the unmanned aircraft 100 and can recognize that there is a risk of falling.
 図11Aでは、上向き加速度の指令値Ainに対する上向き加速度の実測値Aoutを検討したが、加速度の指令値が下向きであっても、飛行状態の異常判定が可能である。図11Bは、下向き加速度の指令値Ainと下向き加速度の実測値Aoutとの関係の一例を示すグラフである。下向きとは、重力方向を指す。図11Bにおいて、図11Aと同様の処理や動作については、説明を省略又は簡略化する。 In FIG. 11A, the actual measured value Aout of the upward acceleration with respect to the upward acceleration command value Ain was examined. However, even if the acceleration command value is downward, it is possible to determine the abnormality of the flight state. FIG. 11B is a graph showing an example of the relationship between the downward acceleration command value Ain and the downward acceleration measured value Aout. Downward refers to the direction of gravity. In FIG. 11B, description of processes and operations similar to those in FIG. 11A is omitted or simplified.
 下向き加速度の指令値Ainと下向き加速度の実測値Aoutとは、比例関係であってよい。この場合、下向き加速度の指令値Ainと下向き加速度の実測値Aoutとは、以下の関係が成り立つ。
 Aout=α3*Ain
 尚、「α3」は、Aout/Ainで示され、下向き加速度の指令値に対する下向き加速度の実測値の比を示す。
The command value Ain for the downward acceleration and the actually measured value Aout for the downward acceleration may be in a proportional relationship. In this case, the following relationship holds between the command value Ain for the downward acceleration and the actual measurement value Aout for the downward acceleration.
Aout = α3 * Ain
“Α3” is indicated by Aout / Ain, and indicates the ratio of the measured value of the downward acceleration to the command value of the downward acceleration.
 下向き加速度の場合、通常状態である場合には、下向き加速度の指令値Ainに対する下向き加速度の実測値Aoutの値は、予め想定される所定範囲内の値となると考えらえる。一方、異常状態である場合、下向き加速度の指令値Ainに対する下向き加速度の実測値Aoutは、予め想定される所定範囲外の値となると考えらえる。さらに、無人航空機100の落下の危険性が高いのは、下向き加速度の指令値Ainに対して過大な加速度の実測値Aoutが得られた場合である。よって、通常状態での比α3=a3とし、異常状態での比α3=b3とすると、a3<b3の関係が成り立つ。a3は、例えば値1である。 In the case of the downward acceleration, in the normal state, the value of the measured value Aout of the downward acceleration with respect to the command value Ain of the downward acceleration is considered to be a value within a predetermined range assumed in advance. On the other hand, in the abnormal state, the actual measured value Aout of the downward acceleration with respect to the command value Ain of the downward acceleration is considered to be a value outside a predetermined range assumed in advance. Furthermore, the danger of the unmanned aircraft 100 falling is high when an actual measured value Aout of excessive acceleration with respect to the downward acceleration command value Ain is obtained. Therefore, when the ratio α3 = a3 in the normal state and the ratio α3 = b3 in the abnormal state, the relationship of a3 <b3 is established. a3 is a value 1, for example.
 図11Bでは、直線L22Nは、通常状態での下向き加速度の指令値Ainと下向き加速度の実測値Aoutとの関係の一例を示し、直線L22Aは、異常状態での下向き加速度の指令値Ainと下向き加速度の実測値Aoutとの関係の一例を示す。直線L22Aは、下向き加速度の指令値Ainに対して過大な下向き加速度が検出されており、無人航空機100が適切に飛行制御されておらず、無人航空機100が急速に降下することを示している。 In FIG. 11B, a straight line L22N shows an example of a relationship between a downward acceleration command value Ain and a downward acceleration measured value Aout in a normal state, and a straight line L22A indicates a downward acceleration command value Ain and a downward acceleration in an abnormal state. An example of the relationship with the actual measurement value Aout is shown. The straight line L22A indicates that an excessive downward acceleration is detected with respect to the downward acceleration command value Ain, and the unmanned aircraft 100 is not properly flight-controlled, and the unmanned aircraft 100 descends rapidly.
 異常処理部111は、下向き加速度の指令値Ain及び下向き加速度の実測値Aoutを取得してよい。下向き加速度の指令値Ainは、加速度の指令値の重力方向の成分である。下向き加速度の実測値Aoutは、加速度の実測値の重力方向の成分である。異常処理部111は、取得された下向き加速度の指令値Ainと下向き加速度の実測値Aoutを基に、通常状態か異常状態かを判定してよい。 The abnormality processing unit 111 may acquire the command value Ain for the downward acceleration and the actual measurement value Aout for the downward acceleration. The downward acceleration command value Ain is a gravity direction component of the acceleration command value. The measured value Aout of the downward acceleration is a component in the gravity direction of the measured value of acceleration. The abnormality processing unit 111 may determine whether the normal state or the abnormal state is based on the acquired downward acceleration command value Ain and the actual measured value Aout of the downward acceleration.
 異常処理部111は、比α3が1つの閾値(例えば値1.2)以上か閾値未満かに応じて、通常状態か異常状態かを判定してもよい。つまり、異常処理部111は、比α3が1つの閾値以上である所定範囲外にある場合に、異常状態と判定し、比α3が1つの閾値未満である所定範囲内にある場合に、通常状態と判定してよい。これにより、異常処理部111は、1つの閾値を用いて簡単に、異常状態か否かを判定できる。尚、この閾値は値1.2以外でもよく、値1.2~値1.5の間のいずれかの値でもよい。 The abnormality processing unit 111 may determine whether the ratio α3 is a normal state or an abnormal state depending on whether the ratio α3 is equal to or greater than one threshold (for example, value 1.2) or less than the threshold. That is, the abnormality processing unit 111 determines that an abnormal state occurs when the ratio α3 is outside a predetermined range that is equal to or greater than one threshold, and the normal state when the ratio α3 is within a predetermined range that is less than one threshold. May be determined. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. This threshold value may be other than the value 1.2, or any value between the value 1.2 and the value 1.5.
 図11Bのように下向き加速度の指令値及び実測値に基づき異常判定を行うことで、飛行状態に異常がある場合、無人航空機100は、無人航空機100内での何らかの故障により下向き加速度の指令値に対する加速度が過大であることを認識できる。よって、無人航空機100は、適切な飛行制御下になく、適切な高度を維持できないため、落下の危険性があることを認識できる。 When the abnormality is detected in the flight state by performing abnormality determination based on the downward acceleration command value and the actual measurement value as shown in FIG. 11B, the unmanned aircraft 100 responds to the downward acceleration command value due to some failure in the unmanned aircraft 100. It can be recognized that the acceleration is excessive. Therefore, the unmanned aerial vehicle 100 is not under appropriate flight control and cannot maintain an appropriate altitude, and therefore can recognize that there is a risk of falling.
 図12Aは、上向き速度の指令値Vinと上向き速度の実測値Voutとの関係の一例を示すグラフである。上向き速度の指令値Vinと上向き速度の実測値Voutとは、比例関係であってよい。この場合、上向き速度の指令値Vinと上向き速度の実測値Voutとは、以下の関係が成り立つ。
 Vout=α4*Vin
 尚、「α4」は、Vout/Vinで示され、上向き速度の指令値に対する上向き速度の実測値の比を示す。
FIG. 12A is a graph illustrating an example of a relationship between an upward speed command value Vin and an upward speed measured value Vout. The upward speed command value Vin and the upward speed actual measurement value Vout may be in a proportional relationship. In this case, the following relationship holds between the upward speed command value Vin and the upward speed measured value Vout.
Vout = α4 * Vin
“Α4” is indicated by Vout / Vin, and indicates the ratio of the actually measured value of the upward speed to the command value of the upward speed.
 通常状態である場合、上向き速度の指令値Vinに対する上向き速度の実測値Voutとして、比較的大きな値が得られる。したがって、比α4の値は比較的大きくなる。一方、異常状態である場合、上向き速度の指令値Vinに対する上向き速度の実測値Voutとして、比較的小さな値が得られる。よって、通常状態での比α4=a4とし、異常状態での比α4=b4とすると、a4>b4の関係が成り立つ。a4は、例えば値1である。 In the normal state, a relatively large value is obtained as the actual measured value Vout of the upward speed with respect to the upward speed command value Vin. Therefore, the value of the ratio α4 is relatively large. On the other hand, in the abnormal state, a relatively small value is obtained as the actual measured value Vout of the upward speed with respect to the upward speed command value Vin. Therefore, when the ratio α4 = a4 in the normal state and the ratio α4 = b4 in the abnormal state, the relationship of a4> b4 is established. a4 is, for example, the value 1.
 図12Aでは、直線L31Nは、通常状態での上向き速度の指令値Vinと上向き速度の実測値Voutとの関係の一例を示し、直線L31Aは、異常状態での上向き速度の指令値Vinと上向き速度の実測値との関係の一例を示す。直線L31Aは、高度を上昇するよう指令しているにも関わらず、下向きの速度が検出されており、無人航空機100が降下することを示している。 In FIG. 12A, the straight line L31N shows an example of the relationship between the upward speed command value Vin and the upward speed measured value Vout in the normal state, and the straight line L31A shows the upward speed command value Vin and the upward speed in the abnormal state. An example of the relationship with the measured value of is shown. The straight line L31A indicates that the downward speed is detected even though the altitude is commanded to rise, and the unmanned aircraft 100 descends.
 異常処理部111は、上向き速度の指令値Vin及び上向き速度の実測値Voutを取得してよい。上向き速度の指令値Vinは、速度の指令値の重力方向と反対方向の成分である。上向き速度の実測値Voutは、速度の実測値の重力方向と反対方向の成分である。異常処理部111は、取得された上向き速度の指令値Vinと上向き速度の実測値Voutを基に、通常状態か異常状態かを判定してよい。 The abnormality processing unit 111 may obtain the upward speed command value Vin and the upward speed actual measurement value Vout. The upward speed command value Vin is a component in the direction opposite to the gravity direction of the speed command value. The actual measured value Vout of the upward speed is a component in the direction opposite to the direction of gravity of the actual measured value of speed. The abnormality processing unit 111 may determine whether the state is a normal state or an abnormal state based on the acquired upward speed command value Vin and the actually measured upward speed value Vout.
 異常処理部111は、比α4が1つの閾値(例えば値0.8)以上か閾値未満かに応じて、通常状態か異常状態かを判定してもよい。つまり、異常処理部111は、比α4が1つの閾値以上である所定範囲にある場合に、通常状態と判定し、比α4が1つの閾値未満である所定範囲外にある場合に、異常状態と判定してよい。これにより、異常処理部111は、1つの閾値を用いて簡単に、異常状態か否かを判定できる。なお、この閾値は値0.8以外でもよく、値0.5~値0.8の間のいずれかの値でもよい。 The abnormality processing unit 111 may determine whether the ratio α4 is in a normal state or an abnormal state depending on whether the ratio α4 is greater than or equal to one threshold (for example, value 0.8) or less than the threshold. That is, the abnormality processing unit 111 determines that the normal state is present when the ratio α4 is within a predetermined range that is equal to or greater than one threshold, and determines that the abnormal state is determined when the ratio α4 is outside the predetermined range that is less than one threshold. You may judge. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. The threshold value may be other than 0.8, or any value between 0.5 and 0.8.
 また、通常状態である場合、上向き速度の指令値Vinに対する上向き速度の実測値Voutの値は、予め想定される所定範囲内の値となると考えらえる。一方、異常状態である場合、上向き速度の指令値Vinに対する上向き速度の実測値Voutは、予め想定される所定範囲外の値となると考えらえる。 Further, in the normal state, the actual measured value Vout of the upward speed with respect to the upward speed command value Vin is considered to be a value within a predetermined range that is assumed in advance. On the other hand, in an abnormal state, the actual measured value Vout of the upward speed with respect to the upward speed command value Vin can be considered to be a value outside a predetermined range assumed in advance.
 従って、異常処理部111は、比α4と比較するための上限閾値(例えば値1.2)と下限閾値(例えば値0.8)とを用いて、比α4が上限閾値と下限閾値との間である所定範囲(例えば0.8≦α4(=a4)≦1.2)である場合に、通常状態と判定し、比α4が所定範囲外(例えばα4(=b4)<0.8,1.2<α4(=b4))である場合に、異常状態と判定してよい。つまり、通常状態である場合の比として想定される値の例えば±20%の範囲内の比であれば、通常状態と判定し、例えば±20%の範囲外の比であれば、異常状態と判定してよい。なお、±20%以外の値でもよい。なお、±20%以外の値でもよく、±20%~±50%の間のいずれかの値でもよい。 Therefore, the abnormality processing unit 111 uses the upper threshold (for example, value 1.2) and the lower threshold (for example, value 0.8) for comparison with the ratio α4, and the ratio α4 is between the upper threshold and the lower threshold. Is within the predetermined range (for example, 0.8 ≦ α4 (= a4) ≦ 1.2), and the ratio α4 is outside the predetermined range (for example, α4 (= b4) <0.8,1). .2 <α4 (= b4)), it may be determined as an abnormal state. That is, if it is a ratio within a range of, for example, ± 20% of a value assumed as a ratio in the normal state, it is determined as a normal state. You may judge. A value other than ± 20% may be used. The value may be other than ± 20% or any value between ± 20% and ± 50%.
 図12Aのように上向き速度の指令値及び実測値に基づき異常判定を行うことで、飛行状態に異常がある場合、無人航空機100は、無人航空機100内での何らかの故障により上向き速度の指令値に対する速度が過小又は過大であることを認識できる。よって、無人航空機100は、無人航空機100の適切な高度を維持できず、落下の危険性があることを認識できる。 As shown in FIG. 12A, when the abnormality determination is performed based on the upward speed command value and the actual measurement value, the unmanned aircraft 100 responds to the upward speed command value due to some failure in the unmanned aircraft 100. It can be recognized that the speed is too low or too high. Therefore, the unmanned aerial vehicle 100 cannot recognize the appropriate altitude of the unmanned aircraft 100 and can recognize that there is a risk of falling.
 図12Aでは、上向き速度の指令値Vinに対する上向き速度の実測値Voutを検討したが、速度の指令値が下向きであっても、飛行状態の異常判定が可能である。図12Bは、下向き速度の指令値Vinと下向き速度の実測値Voutとの関係の一例を示すグラフである。図12Bにおいて、図12Aと同様の処理や動作については、説明を省略又は簡略化する。 In FIG. 12A, the actual measured value Vout of the upward speed with respect to the upward speed command value Vin was examined. However, even if the speed command value is downward, it is possible to determine an abnormality in the flight state. FIG. 12B is a graph showing an example of the relationship between the downward speed command value Vin and the downward speed measured value Vout. In FIG. 12B, description of processes and operations similar to those in FIG. 12A is omitted or simplified.
 下向き速度の指令値Vinと下向き速度の実測値Voutとは、比例関係であってよい。この場合、下向き速度の指令値Vinと下向き速度の実測値Voutとは、以下の関係が成り立つ。
 Vout=α5*Vin
 尚、「α5」は、Vout/Vinで示され、下向き速度の指令値に対する下向き速度の実測値の比を示す。
The downward speed command value Vin and the actual measured value Vout of the downward speed may be in a proportional relationship. In this case, the following relationship holds between the downward speed command value Vin and the downward speed measured value Vout.
Vout = α5 * Vin
“Α5” is indicated by Vout / Vin and indicates the ratio of the measured value of the downward speed to the command value of the downward speed.
 下向き速度の場合、通常状態である場合には、下向き速度の指令値Vinに対する下向き速度の実測値Voutの値は、予め想定される所定範囲内の値となると考えらえる。一方、異常状態である場合、下向き速度の指令値Vinに対する下向き速度の実測値Voutは、予め想定される所定範囲外の値となると考えらえる。さらに、無人航空機100の落下の危険性が高いのは、下向き速度の指令値Vinに対して過大な速度の実測値Voutが得られた場合である。よって、通常状態での比α5=a5とし、異常状態での比α5=b5とすると、a5<b5の関係が成り立つ。a5は、例えば値1である。 In the case of the downward speed, in the normal state, the value of the actually measured value Vout of the downward speed with respect to the downward speed command value Vin is considered to be a value within a predetermined range assumed in advance. On the other hand, in the abnormal state, the actual measured value Vout of the downward speed with respect to the downward speed command value Vin can be considered to be a value outside a predetermined range assumed in advance. Furthermore, the danger of dropping the unmanned aerial vehicle 100 is high when an actually measured value Vout of an excessive speed is obtained with respect to the downward speed command value Vin. Therefore, if the ratio α5 = a5 in the normal state and the ratio α5 = b5 in the abnormal state, the relationship of a5 <b5 is established. a5 is, for example, the value 1.
 図12Bでは、直線L32Nは、通常状態での下向き速度の指令値と下向き速度の実測値との関係の一例を示し、直線L32Aは、異常状態での下向き速度の指令値と下向き速度の実測値との関係の一例を示す。直線L32Aは、下向き速度の指令値に対して過大な下向き速度が検出されており、無人航空機100が適切に飛行制御されておらず、無人航空機100が急速に降下することを示している。 In FIG. 12B, the straight line L32N shows an example of the relationship between the downward speed command value and the downward speed measured value in the normal state, and the straight line L32A shows the downward speed command value and the downward speed actual value in the abnormal state. An example of the relationship is shown. The straight line L32A indicates that an excessive downward speed is detected with respect to the downward speed command value, and the unmanned aircraft 100 is not properly flight-controlled, and the unmanned aircraft 100 descends rapidly.
 異常処理部111は、比α5が1つの閾値(例えば値1.2)以上か閾値未満かに応じて、通常状態か異常状態かを判定してもよい。つまり、異常処理部111は、比α5が1つの閾値以上である所定範囲外にある場合に、異常状態と判定し、比α5が1つの閾値未満である所定範囲内にある場合に、通常状態と判定してよい。これにより、異常処理部111は、1つの閾値を用いて簡単に、異常状態か否かを判定できる。なお、この閾値は値1.2以外でもよく、値1.2~値1.5の間のいずれかの値でもよい。 The abnormality processing unit 111 may determine whether the ratio α5 is a normal state or an abnormal state depending on whether the ratio α5 is equal to or greater than one threshold value (for example, value 1.2). That is, the abnormality processing unit 111 determines that an abnormal state occurs when the ratio α5 is outside a predetermined range that is equal to or greater than one threshold, and the normal state when the ratio α5 is within a predetermined range that is less than one threshold. May be determined. Accordingly, the abnormality processing unit 111 can easily determine whether or not there is an abnormal state using one threshold value. This threshold value may be other than the value 1.2, or any value between the value 1.2 and the value 1.5.
 図12Bのように下向き速度の指令値及び実測値に基づき異常判定を行うことで、飛行状態に異常がある場合、無人航空機100は、無人航空機100内での何らかの故障により下向き速度の指令値に対する速度が過大であることを認識できる。よって、無人航空機100は、適切な飛行制御下になく、適切な高度を維持できないため、落下の危険性があることを認識できる。 When the abnormality determination is performed based on the downward speed command value and the actual measurement value as shown in FIG. 12B, when there is an abnormality in the flight state, the unmanned aircraft 100 responds to the downward speed command value due to some failure in the unmanned aircraft 100. You can recognize that the speed is excessive. Therefore, the unmanned aerial vehicle 100 is not under appropriate flight control and cannot maintain an appropriate altitude, and therefore can recognize that there is a risk of falling.
 図13Aは、送信機50による無人航空機100の飛行状態の異常の第1提示例を示す模式図である。図13Aに示すように、無人航空機100の飛行状態の異常を表示する手段として、送信機50が異常表示部L3を備えてよい。異常表示部L3は、LEDを用いて構成されてよい。 FIG. 13A is a schematic diagram illustrating a first presentation example of an abnormality in the flight state of the unmanned aircraft 100 by the transmitter 50. As shown in FIG. 13A, the transmitter 50 may include an abnormality display unit L3 as means for displaying an abnormality in the flight state of the unmanned aircraft 100. The abnormality display unit L3 may be configured using LEDs.
 送信機制御部61は、無線通信部63を介して、無人航空機100の飛行状態の異常に関する情報を受信すると、異常表示部L3により、異常に関する情報を表示してよい。異常表示部L3は、飛行状態の異常に関する情報を受信した場合、LEDの点灯形態(例えば点灯、点滅、消灯)を変更してよい。異常表示部L3は、飛行状態の異常に関する情報を受信した場合、LEDの色を変更(例えば赤色に変更)してよい。異常表示部L3は、飛行状態の異常に関する情報を受信した場合、LEDの点滅パターンを変更してよい。図13Aでは、異常表示部L3が、飛行状態の異常がある旨を示すべく点灯している。 When the transmitter control unit 61 receives information on an abnormality in the flight state of the unmanned aircraft 100 via the wireless communication unit 63, the transmitter control unit 61 may display the information on the abnormality on the abnormality display unit L3. The abnormality display unit L3 may change the lighting mode (for example, lighting, blinking, and extinguishing) of the LED when receiving information regarding the abnormality in the flight state. The abnormality display unit L3 may change the color of the LED (for example, change it to red) when receiving information related to abnormality in the flight state. The abnormality display unit L3 may change the blinking pattern of the LED when information related to an abnormality in the flight state is received. In FIG. 13A, the abnormality display portion L3 is lit to indicate that there is an abnormality in the flight state.
 図13Bは、送信機50による無人航空機100の飛行状態の異常の第2提示例を示す模式図である。 FIG. 13B is a schematic diagram illustrating a second presentation example of an abnormality in the flight state of the unmanned aircraft 100 by the transmitter 50.
 送信機制御部61は、無線通信部63を介して、無人航空機100の飛行状態の異常に関する情報を受信すると、表示部DPにより、異常に関する情報を表示してよい。送信機制御部61は、無線通信部63を介して受信された飛行状態の異常に関する情報を、そのまま表示部DPに表示してもよいし、受信された飛行状態の異常に関する情報を加工して表示部DPに表示してもよい。図13Bでは、表示部DPは、異常を報知するメッセージの一例として、「飛行異常発生!」の文字メッセージを表示している。なお、表示部DPには、他の文字メッセージが表示されてもよいし、飛行状態の異常に関する具体的な内容(例えば加速度の実測値を示す情報)が表示されてもよいし、飛行状態の異常を示すものとして予め定められた図形や記号が表示されてもよい。 When the transmitter control unit 61 receives information on the abnormality in the flight state of the unmanned aircraft 100 via the wireless communication unit 63, the transmitter control unit 61 may display the information on the abnormality on the display unit DP. The transmitter control unit 61 may display the information on the flight state abnormality received via the wireless communication unit 63 as it is on the display unit DP, or may process the received information on the flight state abnormality. You may display on display part DP. In FIG. 13B, the display unit DP displays a text message “A flight abnormality has occurred!” As an example of a message for notifying abnormality. It should be noted that other text messages may be displayed on the display unit DP, and specific contents regarding the abnormality in the flight state (for example, information indicating an actual acceleration value) may be displayed. A predetermined figure or symbol may be displayed to indicate an abnormality.
 図13A又は図13に示すように、無人航空機100が飛行状態の異常を送信機50へ通知し、送信機50が異常に関する情報を表示することで、送信機50の操作者は、無人航空機100の飛行状態の異常を確認できる。したがって、操作者は、異常が発生した無人航空機100に対して、送信機50を用いて、無人航空機100の飛行パラメータを変更するよう操作し、無人航空機100の飛行状態の安定化を試みることができる。 As shown in FIG. 13A or FIG. 13, the unmanned aircraft 100 notifies the transmitter 50 of an abnormality in the flight state, and the transmitter 50 displays information related to the abnormality, so that the operator of the transmitter 50 can Can confirm the abnormal flight status. Therefore, the operator may operate the unmanned aircraft 100 in which an abnormality has occurred using the transmitter 50 to change the flight parameters of the unmanned aircraft 100 and attempt to stabilize the flight state of the unmanned aircraft 100. it can.
 次に、無人航空機100の動作例について説明する。
 図14A及び図14Bは、無人航空機100の動作例を示すフローチャートである。
Next, an operation example of the unmanned aircraft 100 will be described.
FIG. 14A and FIG. 14B are flowcharts showing an operation example of the unmanned aerial vehicle 100.
 まず、異常処理部111は、例えば通常制御モードにおいて、加速度の実測値を取得する(S11)。 First, the abnormality processing unit 111 acquires an actual measurement value of acceleration, for example, in the normal control mode (S11).
 異常処理部111は、取得された加速度の実測値の重力方向の運動ベクトル(重力方向成分の値)を算出する(S12)。ここでの加速度の実測値の重力方向成分の値は、上向き加速度の実測値で示されることを想定する。 The abnormality processing unit 111 calculates a motion vector (value of the gravity direction component) in the gravity direction of the actually measured value of the acquired acceleration (S12). Here, it is assumed that the value of the gravity direction component of the actually measured acceleration value is indicated by the actually measured value of upward acceleration.
 異常処理部111は、加速度の実測値の重力方向成分の値が、閾値th11(例えば-10m/s、つまり1G)以下であるか否かを判定する(S13)。つまり、異常処理部111が、上向き加速度の実測値が閾値th11以下であるか否かを判定する。なお、無人航空機100が降下している場合、上向き加速度の実測値は負の値となる。閾値th11は、閾値th1と正負の符号が逆の値となる。加速度の実測値の重力方向成分の値が、閾値th11より大きい場合(S13のNo)、S11に進む。 The abnormality processing unit 111 determines whether or not the value of the gravity direction component of the measured acceleration value is equal to or less than a threshold th11 (for example, −10 m / s 2 , that is, 1 G) (S13). That is, the abnormality processing unit 111 determines whether or not the actually measured value of the upward acceleration is equal to or less than the threshold th11. Note that when the unmanned aerial vehicle 100 is descending, the actual measured value of the upward acceleration is a negative value. The threshold value th11 has a value opposite to that of the threshold value th1. If the value of the gravity direction component of the measured acceleration value is greater than the threshold th11 (No in S13), the process proceeds to S11.
 無人航空機100は、自由落下する場合には、閾値th11以下の上向き加速度での飛行となる。一方、無人航空機100は、例えば送信機50による操作により降下する場合、閾値th11以上の上向き加速度での飛行となる。したがって、閾値th11によって、自由落下と操作による降下とは区別可能である。 When the unmanned aerial vehicle 100 falls freely, it will fly at an upward acceleration equal to or less than the threshold th11. On the other hand, when the unmanned aircraft 100 descends, for example, by an operation by the transmitter 50, the unmanned aircraft 100 flies at an upward acceleration equal to or higher than the threshold th11. Therefore, it is possible to distinguish the free fall and the descent due to the operation by the threshold th11.
 加速度の実測値の重力方向成分の値が閾値th11以下である場合(S13のYes)、異常処理部111は、加速度の実測値の重力方向成分の値が閾値th11以下となってから所定時間T1(例えば1秒)経過したか否かを判定する(S14)。加速度の実測値の重力方向成分の値が閾値th11以下となってから所定時間T1経過していない場合(S14のNo)、S11に進む。 When the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11 (Yes in S13), the abnormality processing unit 111 performs a predetermined time T1 after the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11. It is determined whether (for example, 1 second) has elapsed (S14). If the predetermined time T1 has not elapsed since the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11 (No in S14), the process proceeds to S11.
 加速度の実測値の重力方向成分の値が閾値th11以下となってから所定時間T1経過した場合(S14のYes)、信号判定部112は、通信インタフェース150を介して、送信機50からの操作入力信号を取得したか否かを判定する(S15)。操作入力信号が取得されていない場合、S19に進む。 When a predetermined time T1 has elapsed since the value of the gravity direction component of the actually measured acceleration value is equal to or less than the threshold th11 (Yes in S14), the signal determination unit 112 receives an operation input from the transmitter 50 via the communication interface 150. It is determined whether or not a signal has been acquired (S15). When the operation input signal is not acquired, the process proceeds to S19.
 操作入力信号が取得された場合、異常処理部111は、操作入力信号に含まれる飛行パラメータの指令値を取得する(S16)。 When the operation input signal is acquired, the abnormality processing unit 111 acquires the flight parameter command value included in the operation input signal (S16).
 異常処理部111は、S16で取得された飛行パラメータの指令値と同じ飛行パラメータの実測値を取得する(S17)。 The abnormality processing unit 111 acquires the actual flight parameter measurement value that is the same as the flight parameter command value acquired in S16 (S17).
 異常処理部111は、飛行パラメータの指令値と飛行パラメータの実測値との比が所定範囲外にあるか否かを判定する(S18)。飛行パラメータの指令値と飛行パラメータの実測値との比が所定範囲内にある場合(S18のNo)、S11に進む。つまり、異常処理部111は、無人航空機100の降下は操作者の意図によるものであり、飛行状態に異常がないと判定する。 The abnormality processing unit 111 determines whether or not the ratio between the flight parameter command value and the flight parameter measured value is outside a predetermined range (S18). If the ratio between the flight parameter command value and the flight parameter measured value is within the predetermined range (No in S18), the process proceeds to S11. That is, the abnormality processing unit 111 determines that the descent of the unmanned aircraft 100 is due to the operator's intention and that there is no abnormality in the flight state.
 飛行パラメータの指令値と飛行パラメータの実測値との比が所定範囲外にある場合(S18のYes)、異常処理部111は、無人航空機100の飛行状態に異常があると判定する。つまり、異常処理部111は、無人航空機100が、故障等の異常によって送信機50の操作者の意図に沿わない挙動を示していると認識する。 When the ratio between the flight parameter command value and the flight parameter actual measurement value is outside the predetermined range (Yes in S18), the abnormality processing unit 111 determines that the flight state of the unmanned aircraft 100 is abnormal. That is, the abnormality processing unit 111 recognizes that the unmanned aircraft 100 exhibits a behavior that does not conform to the intention of the operator of the transmitter 50 due to an abnormality such as a failure.
 異常処理部111は、S15~S18により、操作入力信号を取得したが無人航空機100が降下を続けた場合、飛行パラメータの指令値に対する実測値(つまり無人航空機100の応答)を参照することで、無人航空機100の故障等による降下か否かを判定できる。例えば、通常時に比べて飛行パラメータの実測値/指令値の比が小さければ、上昇力が不足する故障が発生したと判定できる。例えば、異常処理部111は、上向き加速度指令や上向き速度指令に対して下向き加速度や下向き速度の実測値が検出された場合、故障発生を検知できる。 The abnormality processing unit 111 acquires the operation input signal through S15 to S18, but when the unmanned aircraft 100 continues to descend, the abnormal processing unit 111 refers to the actually measured value for the flight parameter command value (that is, the response of the unmanned aircraft 100), It is possible to determine whether or not the unmanned aircraft 100 is descending due to a failure or the like. For example, if the ratio of the actual measurement value / command value of the flight parameter is smaller than that at the normal time, it can be determined that a failure with insufficient ascending force has occurred. For example, the abnormality processing unit 111 can detect the occurrence of a failure when an actual measurement value of a downward acceleration or a downward speed is detected with respect to an upward acceleration command or an upward speed command.
 飛行パラメータの指令値と飛行パラメータの実測値との比が所定範囲外にある場合(S18のYes)、制御モード変更部113は、制御モードを安全制御モードに変更する(S19)。ここでは、第2の安全制御モードに変更されている。 When the ratio between the flight parameter command value and the actual flight parameter value is outside the predetermined range (Yes in S18), the control mode changing unit 113 changes the control mode to the safe control mode (S19). Here, it is changed to the second safety control mode.
 駆動電流設定部115は、回転翼211の駆動電流を安全制御モードに変更する前の駆動電流よりも増大させて所定の電流(例えば最大の駆動電流)に設定する(S21)。駆動電流設定部115は、設定された駆動電流の指令値を回転翼制御部116へ送る。 The drive current setting unit 115 sets the drive current of the rotor blade 211 to a predetermined current (for example, the maximum drive current) by increasing the drive current before changing to the safe control mode (S21). The drive current setting unit 115 sends the set drive current command value to the rotary blade control unit 116.
 高度取得部114は、無人航空機100の高度に係る高度情報を取得する(S22)。高度情報は、定期的に取得されてよい。高度取得部114は、高度情報を回転翼制御部116へ送る。 The altitude acquisition unit 114 acquires altitude information related to the altitude of the unmanned aircraft 100 (S22). Altitude information may be acquired periodically. The altitude acquisition unit 114 sends altitude information to the rotor blade control unit 116.
 回転翼制御部116は、取得された高度情報が示す高度が所定高度H1(例えば5m)以下であるか否かを判定する(S23)。高度情報が示す高度が所定高度H1より高い場合(S23のNo)、S22に進む。 The rotating blade control unit 116 determines whether or not the altitude indicated by the acquired altitude information is a predetermined altitude H1 (for example, 5 m) or less (S23). When the altitude indicated by the altitude information is higher than the predetermined altitude H1 (No in S23), the process proceeds to S22.
 高度情報が示す高度が所定高度H1以下である場合(S23のYes)、回転翼制御部116は、回転翼211の回転を停止させる(S24)。 When the altitude indicated by the altitude information is equal to or less than the predetermined altitude H1 (Yes in S23), the rotary blade control unit 116 stops the rotation of the rotary blade 211 (S24).
 図14A及び図14Bの処理によれば、無人航空機100は、飛行パラメータの実測値を用いて飛行状態の異常の有無を判定する。無人航空機100は、飛行状態に異常がある場合には、制御モードを安全制御モードへ移行することで、回転する回転翼211が直接物体(人体含む)に接触しないよう配慮できる。これにより、無人航空機100は、回転翼211の回転に起因する物体に対する衝撃力を軽減できる。したがって、無人航空機100は、物体の破壊を抑制し、人体の負傷を低減できる。 14A and 14B, the unmanned aerial vehicle 100 determines the presence / absence of an abnormality in the flight state using the actual measurement value of the flight parameter. When there is an abnormality in the flight state, the unmanned aircraft 100 can consider that the rotating rotor blade 211 does not directly contact an object (including a human body) by shifting the control mode to the safety control mode. Thereby, the unmanned aerial vehicle 100 can reduce the impact force on the object due to the rotation of the rotary wing 211. Therefore, the unmanned aerial vehicle 100 can suppress the destruction of the object and reduce human injury.
 また、無人航空機100は、重力方向の加速度が大きい場合、無人航空機100が自由落下に近い状態にあると判断できる。この場合、無人航空機100は、送信機50の操作者による制御下にないものと推定でき、飛行状態に異常があると判定できる。送信機50の操作者による制御下にある場合には自由落下に近い状態は検出されないためである。 Further, when the unmanned aerial vehicle 100 has a large acceleration in the direction of gravity, it can be determined that the unmanned aerial vehicle 100 is in a state close to free fall. In this case, it is possible to estimate that the unmanned aircraft 100 is not under the control of the operator of the transmitter 50, and it can be determined that the flight state is abnormal. This is because a state close to free fall is not detected when the transmitter 50 is under the control of the operator.
 また、無人航空機100は、重力方向の加速度が大きい時間が継続したことを基に、飛行状態に異常があると判定できる。よって、無人航空機100は、例えば突発的な突風により無人航空機100が急激に落下した場合など、飛行状態に異常がないにも関わらず異常と判定されることを抑制でき、異常の検出精度を向上できる。 In addition, the unmanned aircraft 100 can determine that there is an abnormality in the flight state on the basis that the time during which the acceleration in the direction of gravity is large continues. Therefore, the unmanned aerial vehicle 100 can suppress the determination that the unmanned aircraft 100 is abnormal although there is no abnormality in the flight state, for example, when the unmanned aircraft 100 suddenly falls due to a sudden gust of wind, and improves the detection accuracy of the abnormality. it can.
 また、無人航空機100は、S15において操作入力信号が取得されない場合、異常処理部111は、無人航空機100が送信機50の操作者の制御下にないと認識し、飛行状態に異常があると判定できる。よって、無人航空機100は、例えば送信機50が予定の飛行コースをはずれ、送信機50と無人航空機100とが通信不能な状態となっても、飛行状態の異常を検出して安全制御モードへ変更できる。 Further, when the operation input signal is not acquired in S15, the unmanned aircraft 100 recognizes that the unmanned aircraft 100 is not under the control of the operator of the transmitter 50, and determines that the flight state is abnormal. it can. Therefore, the unmanned aircraft 100 detects the abnormality in the flight state and changes to the safety control mode even when the transmitter 50 goes off the scheduled flight course and the transmitter 50 and the unmanned aircraft 100 cannot communicate with each other. it can.
 また、無人航空機100は、飛行パラメータの指令値と飛行パラメータの実測値との比が所定範囲外にある場合、無人航空機100の各種センサや回転翼機構210に異常があることにより、指令値に従った無人航空機100の動作に至っていないことを検出できる。したがって、無人航空機100は、無人航空機100の降下に係る指令値に対する飛行動作を行っているのではなく、無人航空機100の飛行状態の異常の状態であることを検出できる。また、自由落下に近い状態か否かの判定と、飛行パラメータの指令値に対する実測値に基づく値の判定と、を組み合わせて実施することで、飛行状態の異常の判定精度を向上できる。 In addition, when the ratio between the flight parameter command value and the flight parameter actual measurement value is outside the predetermined range, the unmanned aircraft 100 has a command value due to an abnormality in various sensors or the rotary wing mechanism 210 of the unmanned aircraft 100. It can be detected that the operation of the unmanned aerial vehicle 100 has not been reached. Therefore, the unmanned aerial vehicle 100 can detect that the flight state of the unmanned aerial vehicle 100 is an abnormal state, rather than performing a flight operation on the command value related to the descent of the unmanned aircraft 100. In addition, the determination accuracy of the flight state abnormality can be improved by combining the determination of whether or not the state is close to free fall and the determination of the value based on the actually measured value for the flight parameter command value.
 また、指令値と実測値とが比較される飛行パラメータは、駆動電流、無人航空機100の加速度、及び無人航空機100の速度を含み得る。よって、無人航空機100は、飛行パラメータが駆動電流を含む場合、回転翼機構210の異常を検出できる。例えば、回転翼211とその回転軸(不図示)との間で劣化による摩擦力が生じる場合、駆動電流に基づく回転翼211の回転力が摩擦力により規制され、駆動電流の指令値に対して駆動電流の実測値が小さくなり得る。この場合、駆動電流の指令値に対する駆動電流の実測値が所定範囲外に達している場合、飛行状態の異常を検出できる。また、飛行パラメータが加速度を含む場合、無人航空機100は、回転翼機構210による回転翼211の回転により無人航空機100が加速するため、回転翼機構210に異常がない場合、加速度の検出に係るセンサ(例えば慣性計測装置250)の異常を検出できる。また、飛行パラメータが速度を含む場合、無人航空機100は、回転翼機構210による回転翼211の回転により無人航空機100が移動するため、回転翼機構210に異常がない場合、速度の検出に係るセンサ(例えば慣性計測装置250、気圧高度計270、超音波高度計280)の異常を検出できる。 Also, the flight parameters for which the command value and the actually measured value are compared may include the driving current, the acceleration of the unmanned aircraft 100, and the speed of the unmanned aircraft 100. Therefore, unmanned aerial vehicle 100 can detect an abnormality in rotary wing mechanism 210 when the flight parameter includes a drive current. For example, when a frictional force due to deterioration occurs between the rotor blade 211 and its rotating shaft (not shown), the rotational force of the rotor blade 211 based on the drive current is regulated by the frictional force, and the drive current command value The measured value of the drive current can be reduced. In this case, when the measured value of the drive current with respect to the command value of the drive current has reached a predetermined range, an abnormality in the flight state can be detected. Further, when the flight parameter includes acceleration, the unmanned aircraft 100 is accelerated by the rotation of the rotary wing 211 by the rotary wing mechanism 210. Therefore, if the rotary wing mechanism 210 is normal, a sensor for detecting acceleration is used. Abnormality (for example, inertial measurement device 250) can be detected. In addition, when the flight parameter includes speed, the unmanned aircraft 100 moves due to the rotation of the rotary wing 211 by the rotary wing mechanism 210. Therefore, if the rotary wing mechanism 210 is normal, a sensor for detecting the speed. Abnormalities (for example, inertial measurement device 250, barometric altimeter 270, ultrasonic altimeter 280) can be detected.
 また、無人航空機100は、操作入力信号に含まれる飛行パラメータの指令値を取得することで、送信機50の操作者の意図に沿って、飛行状態の異常の判定を実施できる。 In addition, the unmanned aircraft 100 can determine the abnormality of the flight state according to the intention of the operator of the transmitter 50 by acquiring the flight parameter command value included in the operation input signal.
 また、S15~S18では、操作入力信号に含まれる飛行パラメータの代わりに、メモリ160に保持された異常判定プログラムに係る設定情報に含まれる飛行パラメータが用いられてよい。これにより、無人航空機100は、送信機50からの操作入力信号を取得しなくても、飛行パラメータの指令値と実測値とを用いて飛行状態の異常の有無を判定できる。したがって、無人航空機100は、例えば無人航空機100と送信機50との位置関係により無線通信環境が劣悪でも、設定情報に含まれる飛行パラメータの指令値と実測値とを用いて飛行状態の異常判定を実施できる。 In S15 to S18, instead of the flight parameter included in the operation input signal, the flight parameter included in the setting information related to the abnormality determination program stored in the memory 160 may be used. Thereby, the unmanned aircraft 100 can determine whether there is an abnormality in the flight state using the command value of the flight parameter and the actual measurement value without acquiring the operation input signal from the transmitter 50. Therefore, the unmanned aerial vehicle 100 uses the flight parameter command value and the actual measurement value included in the setting information to determine whether the flight state is abnormal even if the wireless communication environment is poor due to the positional relationship between the unmanned aircraft 100 and the transmitter 50, for example. Can be implemented.
 尚、図14Aでは、異常処理部111は、送信機50からの操作入力信号の取得を考慮せずに、飛行状態の異常の有無を判定してよい。つまり、S15~S18が省略され、S14がYesである場合に、S19に進んでもよい。 In FIG. 14A, the abnormality processing unit 111 may determine whether there is an abnormality in the flight state without considering the acquisition of the operation input signal from the transmitter 50. That is, when S15 to S18 are omitted and S14 is Yes, the process may proceed to S19.
 また、図14Aでは、異常処理部111は、S14における所定時間T1の経過の判定を省略してよい。これにより、無人航空機100は、飛行状態の異常判定に要する期間を短縮できる。 In FIG. 14A, the abnormality processing unit 111 may omit the determination of the elapse of the predetermined time T1 in S14. Thereby, the unmanned aerial vehicle 100 can shorten the period required for the determination of the abnormality of the flight state.
 また、図14Aでは、異常処理部111は、S11~S13の処理を所定回数反復し、いずれの回においても、加速度の実測値の重力方向成分の値が閾値th11以下である場合に、S14に進んでよい。 In FIG. 14A, the abnormality processing unit 111 repeats the processes of S11 to S13 a predetermined number of times, and at any time, when the value of the gravity direction component of the measured acceleration value is equal to or less than the threshold th11, the process proceeds to S14. You can proceed.
 また、図14Bでは、回転翼制御部116は、無人航空機100の高度が所定高度H1以下の場合に、回転翼211の回転を停止することを、省略してよい。つまり、S22~S24が省略されてもよい。 In FIG. 14B, the rotary wing controller 116 may omit stopping the rotation of the rotary wing 211 when the altitude of the unmanned aircraft 100 is equal to or lower than the predetermined altitude H1. That is, S22 to S24 may be omitted.
(第2の実施形態)
 第2の実施形態では、安全制御モードが、エアバッグを作動させる制御モードを含むことを例示する。
(Second Embodiment)
The second embodiment exemplifies that the safety control mode includes a control mode for operating the airbag.
 第2の実施形態における飛行システム10A(不図示)は、無人航空機100A(図15、図16参照)及び送信機50を備える。第2の実施形態において、第1の実施形態と同様の構成や動作については、説明を省略又は簡略化する。 The flight system 10A (not shown) in the second embodiment includes an unmanned aerial vehicle 100A (see FIGS. 15 and 16) and a transmitter 50. In the second embodiment, the description of the same configuration and operation as in the first embodiment is omitted or simplified.
 図15は、無人航空機100Aのハードウェア構成の一例を示すブロック図である。無人航空機100Aは、第1の実施形態における無人航空機100と比較すると、エアバッグ310、ガス発生装置320を更に備え、UAV制御部110の代わりにUAV制御部110Aを備える。図15の無人航空機100Aにおいて、図4の無人航空機100と同様の構成については、同一の符号を付し、その説明を省略又は簡略化する。エアバッグ310は、緩衝材の一例である。 FIG. 15 is a block diagram illustrating an example of a hardware configuration of the unmanned aircraft 100A. Compared to the unmanned aerial vehicle 100 in the first embodiment, the unmanned aircraft 100 </ b> A further includes an airbag 310 and a gas generator 320, and includes a UAV control unit 110 </ b> A instead of the UAV control unit 110. In the unmanned aircraft 100A of FIG. 15, the same components as those of the unmanned aircraft 100 of FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted or simplified. The airbag 310 is an example of a cushioning material.
 エアバッグ310は、収縮状態では、UAV本体102内に収容されてよい。エアバッグ310は、収縮状態では、折り畳まれ、巻かれ、又は束ねられてよい。エアバッグ310は、織物、空気袋、エラストマ材料、又はその他の可撓性材料により形成されてよい。エアバッグ310は、ナイロン織物、ポリエステル織物、又は塩化ビニルで形成されてよい。 The airbag 310 may be accommodated in the UAV main body 102 in the contracted state. The airbag 310 may be folded, rolled, or bundled in the deflated state. The air bag 310 may be formed of a woven fabric, air bag, elastomeric material, or other flexible material. The airbag 310 may be formed of nylon fabric, polyester fabric, or vinyl chloride.
 エアバッグ310は、展開状態では、ガス発生装置320からのガスを受けて、UAV本体102の外部に向かって展開する。エアバッグ310は、複数の回転翼211を包囲するように展開する。エアバッグ310は、展開状態では、球形、楕円形、円筒形、角柱形、トーラス形、ディアドロップ形、平坦化した球形若しくは楕円形、他の多角形、ボール形、又はその他の形状であってよい。 In the deployed state, the airbag 310 receives the gas from the gas generator 320 and deploys toward the outside of the UAV main body 102. The airbag 310 is deployed so as to surround the plurality of rotary blades 211. The airbag 310 in the deployed state may be a sphere, ellipse, cylinder, prism, torus, deer drop, flattened sphere or ellipse, other polygon, ball, or other shape. Good.
 エアバッグ310の数は、任意であり、1つでも、回転翼211の数と同数でも、それ以外でもよい。1つのエアバッグ310により、展開状態において、複数の回転翼211が包囲されてよい。複数のエアバッグ310のそれぞれにより、展開状態において、複数の回転翼211のそれぞれが包囲されてよい。1つのエアバッグ310当たり、展開状態において、複数の回転翼211のうちの2つ以上の回転翼211が包囲されることで、複数のエアバッグ310により、複数の回転翼211の全部が包囲されてよい。 The number of airbags 310 is arbitrary, and may be one, the same as the number of rotor blades 211, or any other number. A plurality of rotor blades 211 may be surrounded by one airbag 310 in the deployed state. Each of the plurality of airbags 310 may surround each of the plurality of rotor blades 211 in the deployed state. When one airbag 310 is deployed, two or more of the plurality of rotor blades 211 are surrounded by the plurality of rotor blades 211 so that all of the plurality of rotor blades 211 are surrounded by the plurality of airbags 310. It's okay.
 ガス発生装置320は、流路、管、通路、開口部又は他の接続部を介してエアバッグ310に接続されてよい。ガス発生装置320は、所定のタイミングにおいて着火し、燃焼による化学反応によりガスを発生し、エアバッグ310にガスを供給してよい。ガス発生装置320は、ガスを予めタンクに入れておき、所定のタイミングにおいてガスの噴出を開始して、エアバッグ310にガスを供給してよい。ガス発生装置320の数は、任意であり、1つでも、エアバッグ310の数と同数でも、それ以外でもよい。 The gas generator 320 may be connected to the airbag 310 via a flow path, pipe, passage, opening, or other connection. The gas generator 320 may ignite at a predetermined timing, generate a gas by a chemical reaction by combustion, and supply the gas to the airbag 310. The gas generator 320 may supply gas to the airbag 310 by previously putting gas in a tank, starting gas ejection at a predetermined timing. The number of gas generators 320 is arbitrary, and may be one, the same as the number of airbags 310, or any other number.
 図16は、UAV制御部110Aの機能構成の一例を示すブロック図である。UAV制御部110Aは、UAV制御部110と比較すると、更に展開制御部118を備える。展開制御部118は、第2制御部及び第3制御部の一例である。図16のUAV制御部110Aにおいて、図5のUAV制御部110と同様の構成については、同一の符号を付し、その説明を省略又は簡略化する。 FIG. 16 is a block diagram illustrating an example of a functional configuration of the UAV control unit 110A. Compared to the UAV control unit 110, the UAV control unit 110A further includes a deployment control unit 118. The deployment control unit 118 is an example of a second control unit and a third control unit. In the UAV control unit 110A of FIG. 16, the same components as those of the UAV control unit 110 of FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 展開制御部118は、所定のタイミングにおいてエアバッグ310を展開するよう制御する。例えば、展開制御部118は、異常処理部111により無人航空機100Aの飛行状態に異常があると判定された場合に、所定のタイミング(例えば飛行高度が所定高度H1まで降下したタイミング)で、ガス発生装置320に展開指令を送る。ガス発生装置320は、展開制御部118からの着火指令に応じて着火し、エアバッグ310を展開させる。 The deployment control unit 118 controls the airbag 310 to be deployed at a predetermined timing. For example, when the abnormality control unit 111 determines that the flight state of the unmanned aircraft 100A is abnormal, the deployment control unit 118 generates gas at a predetermined timing (for example, when the flight altitude drops to the predetermined altitude H1). A deployment command is sent to the device 320. The gas generator 320 ignites in response to the ignition command from the deployment controller 118 and deploys the airbag 310.
 次に、無人航空機100Aの制御モードの遷移について説明する。 Next, the transition of the control mode of the unmanned aircraft 100A will be described.
 図17は、無人航空機100Aの制御モードの遷移例を示す模式図である。図17では、無人航空機100Aが不測の事態に陥り機体が降下し、落下に至る様子を示す。 FIG. 17 is a schematic diagram showing a transition example of the control mode of the unmanned aircraft 100A. FIG. 17 shows a state in which the unmanned aircraft 100A falls into an unexpected situation, the aircraft descends, and falls.
 まず、制御モード変更部113は、制御モードを、通常制御モードに設定している(T41)。通常制御モードにおいて、無人航空機100Aの飛行状態に異常があると(T42)、制御モード変更部113は、制御モードを安全制御モードに変更する。この遷移例では、第4の安全制御モードに遷移する。第4の安全制御モードは、所定高度H1(例えば5m)で無人航空機100Aの回転翼211を覆うようにエアバッグ310を展開させる制御モードである。所定高度H1は、第3の所定高度の一例である。 First, the control mode changing unit 113 sets the control mode to the normal control mode (T41). If there is an abnormality in the flight state of the unmanned aircraft 100A in the normal control mode (T42), the control mode changing unit 113 changes the control mode to the safety control mode. In this transition example, a transition is made to the fourth safety control mode. The fourth safety control mode is a control mode in which the airbag 310 is deployed so as to cover the rotor blades 211 of the unmanned aircraft 100A at a predetermined altitude H1 (for example, 5 m). The predetermined altitude H1 is an example of a third predetermined altitude.
 第4の安全制御モードでは、駆動電流設定部115が、駆動電流の指令値を、第4の安全制御モードに変更前の駆動電流の指令値よりも増大させる。これにより、回転翼211の回転数が増大し(T43)、重力方向と反対方向(つまり無人航空機100Aが上昇する方向)への揚力を増大し、上向き加速度が増大する。 In the fourth safety control mode, the drive current setting unit 115 increases the command value of the drive current more than the command value of the drive current before the change to the fourth safety control mode. Thereby, the rotational speed of the rotary wing 211 increases (T43), the lift in the direction opposite to the direction of gravity (that is, the direction in which the unmanned aircraft 100A rises) is increased, and the upward acceleration increases.
 展開制御部118は、無人航空機100Aの降下が進み、高度取得部114により取得された高度の実測値が所定高度H1(例えば5m)であることを検出すると、ガス発生装置320に展開指令を送って着火させ、エアバッグ310を展開させる(T44)。 When the unmanned aircraft 100A descends and the deployment control unit 118 detects that the actually measured altitude acquired by the altitude acquisition unit 114 is a predetermined altitude H1 (for example, 5 m), the deployment control unit 118 sends a deployment command to the gas generator 320. Then, the airbag 310 is ignited to deploy the airbag 310 (T44).
 エアバッグ310を展開させるための閾値となる所定高度H1は、5m以外の値でもよい。地上に存在する人物の負傷を軽減することを考慮する場合、人物として想定される高さよりも高い5mに閾値が設定されてよい。また、地上に建設された特定の建造物(例えば、外力に対する耐久性が不十分な建造物、重要文化財等の建造物)の損傷を軽減することを考慮する場合、その建造物として想定される高さよりも高い任意の閾値に設定されてよい。 The predetermined altitude H1 serving as a threshold for deploying the airbag 310 may be a value other than 5 m. When considering reducing the injury of a person existing on the ground, the threshold may be set to 5 m, which is higher than the height assumed for the person. In addition, when considering reducing damage to a specific structure built on the ground (for example, a structure with insufficient durability against external force, a structure such as an important cultural property), it is assumed as the structure. It may be set to an arbitrary threshold value that is higher than a certain height.
 第4の安全制御モードは、飛行パラメータの指令値に対して、無人航空機100Aがあまり反応しない場合に有益である。無人航空機100Aの飛行制御がほとんどできず、無人航空機100Aの降下速度を十分に減速できないためである。無人航空機100Aがあまり反応しない場合とは、飛行パラメータの指令値に対する実測値の比が、値0.3未満である場合を指してよい。 The fourth safety control mode is useful when the unmanned aerial vehicle 100A does not respond very much to the command value of the flight parameter. This is because the flight control of the unmanned aircraft 100A can hardly be performed, and the descent speed of the unmanned aircraft 100A cannot be sufficiently reduced. The case where the unmanned aircraft 100A does not respond so much may indicate a case where the ratio of the actually measured value to the command value of the flight parameter is less than 0.3.
 第4の安全制御モードによれば、無人航空機100Aは、回転翼211をエアバッグ310が包囲することで、回転翼211に対する物体の接触を抑制できる。また、無人航空機100Aは、物体に接触する部分が緩衝材となる可能性が高くなり、物体への衝撃力を低減できる。また、無人航空機100Aは、所定高度H1まで無人航空機100Aが降下してからエアバッグ310を展開することで、回転翼211がエアバッグ310に包囲されることによる揚力の低下を抑制し、重力により無人航空機100Aが高速落下することによる危険度の増大を抑制できる。 According to the fourth safety control mode, the unmanned aircraft 100A can suppress contact of an object with the rotor wing 211 by surrounding the rotor wing 211 with the airbag 310. In addition, the unmanned aircraft 100A has a high possibility that a portion in contact with the object becomes a cushioning material, and can reduce the impact force on the object. In addition, the unmanned aerial vehicle 100A suppresses a reduction in lift due to the rotor 310 being surrounded by the airbag 310 by deploying the airbag 310 after the unmanned aircraft 100A descends to a predetermined altitude H1. An increase in the risk due to the unmanned aircraft 100A falling at a high speed can be suppressed.
 次に、エアバッグ310が展開された状態の無人航空機100Aの構造例について説明する。ここでは、「下方」を、UAV本体102から見た撮像装置220の方向(例えば重力方向)とする。「上方」を、UAV本体102から見た撮像装置220と反対の方向(例えば重力方向と反対方向)とする。「側方」を、下方及び上方に垂直な方向とする。 Next, a structural example of the unmanned aerial vehicle 100A with the airbag 310 deployed will be described. Here, “downward” is the direction of the imaging device 220 as viewed from the UAV body 102 (for example, the direction of gravity). “Upward” is a direction opposite to the imaging device 220 viewed from the UAV main body 102 (for example, a direction opposite to the direction of gravity). “Side” is a direction perpendicular to the lower side and the upper side.
 図18Aは、1つのエアバッグ310により4つの回転翼211を覆う場合のエアバッグ310が展開された状態の無人航空機100Aの一例を示す正面図である。 FIG. 18A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by one airbag 310. FIG.
 無人航空機100Aは、1つのエアバッグ310及び複数(例えば4つ)の回転翼211を有してよい。エアバッグ310は、展開状態において、複数の回転翼211の外周の少なくとも一部を包囲してよい。 The unmanned aerial vehicle 100A may include one airbag 310 and a plurality of (for example, four) rotating blades 211. The airbag 310 may surround at least a part of the outer periphery of the plurality of rotor blades 211 in the deployed state.
 1つのエアバッグ310が複数の回転翼211の外周を包囲することで、例えば無人航空機100Aが急速に落下する場合に、複数の回転翼211が、物体に接触する前にエアバッグ310に接触する可能性が高くなる。よって、無人航空機100Aは、回転する複数の回転翼211に物体が接触する可能性を低減でき、回転する回転翼211による物体の損傷を軽減できる。 Since one airbag 310 surrounds the outer periphery of the plurality of rotor blades 211, for example, when the unmanned aircraft 100A rapidly drops, the plurality of rotor blades 211 contact the airbag 310 before contacting an object. The possibility increases. Therefore, the unmanned aircraft 100A can reduce the possibility of an object coming into contact with the rotating rotor blades 211, and can reduce damage to the object by the rotating rotor blades 211.
 また、無人航空機100Aは、1つのエアバッグ310で回転翼211の全体を包囲することで、各回転翼211の間に気流が発生することを防止でき、例えば水平姿勢を取りやすくなり、飛行姿勢を安定化し易くなる。 In addition, the unmanned aircraft 100A surrounds the entire rotor wing 211 with a single airbag 310, thereby preventing airflow between the rotor wings 211. For example, the unmanned aircraft 100A can easily take a horizontal attitude, and can take a flight attitude. It becomes easy to stabilize.
 図18Bは、図18Aのエアバッグ310の一部を透視した無人航空機100Aの第1例を示す正面図である。 FIG. 18B is a front view showing a first example of the unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 18A.
 UAV本体102は、上筐体102aと下筐体102bとを有する。上筐体102aは、下筐体102bよりも上方に位置する。下筐体102bは、上筐体102aよりも下方に位置する。上筐体102aは、開口部103を有してよい。開口部103は、上筐体102aにおいて、UAV本体102を上方から見た断面の中央部102cに形成されてよい。UAV本体102は、開口部103に接続してUAV本体102内部に、収縮状態のエアバッグ310を収容するための収容部104を有してよい。収容部104の形状及びUAV本体102における配置位置は、任意である。尚、収縮状態のエアバッグ310を収容するための収容器(不図示)が、UAV本体102とは別体で設けられてよい。この場合、収容器は、開口部103付近に設けられてよい。 The UAV main body 102 has an upper housing 102a and a lower housing 102b. The upper housing 102a is located above the lower housing 102b. The lower housing 102b is located below the upper housing 102a. The upper housing 102 a may have an opening 103. The opening 103 may be formed in the central portion 102c of the cross section when the UAV main body 102 is viewed from above in the upper housing 102a. The UAV main body 102 may have an accommodating portion 104 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to the opening 103. The shape of the accommodating part 104 and the arrangement position in the UAV main body 102 are arbitrary. Note that a container (not shown) for housing the airbag 310 in a contracted state may be provided separately from the UAV main body 102. In this case, the container may be provided near the opening 103.
 エアバッグ310は、展開制御部118の制御によりガス発生装置320からガスの供給を受けると、収容部104に収容された収縮状態から、開口部103を介してUAV本体102の外部に放出されて展開状態となる。この場合、エアバッグ310は、複数の回転翼211の周囲を回り込んで展開する。エアバッグ310は、まず複数の回転翼211のそれぞれの上筐体102aの中央部102c側の側方を覆う。次にエアバッグ310は、複数の回転翼211のそれぞれの上方を覆う。次にエアバッグ310は、複数の回転翼211のそれぞれの外周側(中央部102c側と反対側)の側方を覆う。次にエアバッグ310は、複数の回転翼211のそれぞれの外周側の下方の少なくとも一部を覆ってよい。 When the airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, the airbag 310 is released from the contracted state stored in the storage unit 104 to the outside of the UAV main body 102 through the opening 103. Expanded state. In this case, the airbag 310 deploys around the plurality of rotating blades 211. The airbag 310 first covers the side of the upper casing 102a of each of the plurality of rotor blades 211 on the central portion 102c side. Next, the airbag 310 covers each of the plurality of rotor blades 211. Next, the airbag 310 covers the side of each of the plurality of rotor blades 211 on the outer peripheral side (the side opposite to the central portion 102c side). Next, the airbag 310 may cover at least a part of the lower part on the outer peripheral side of each of the plurality of rotor blades 211.
 無人航空機100Aは、エアバッグ310がUAV本体102の開口部103から回り込んで複数の回転翼211の少なくとも一部(例えば上方及び側方)を包囲することで、回転翼211側から重力方向に落下する場合でも、回転翼211が物体に接触することを回避できる。よって、回転翼211が回転していても、回転する回転翼211による物体の損傷を低減できる。 In the unmanned aircraft 100A, the airbag 310 wraps around the opening 103 of the UAV main body 102 and surrounds at least a part (for example, the upper side and the side) of the plurality of rotor blades 211. Even when falling, it is possible to avoid the rotating blade 211 from coming into contact with an object. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
 図18Cは、図18Aのエアバッグ310の一部を透視した無人航空機100Aの第2例を示す正面図である。図18Dは、図18Cの無人航空機100Aを上方から見た平面図である。 FIG. 18C is a front view showing a second example of the unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 18A. FIG. 18D is a plan view of unmanned aerial vehicle 100A of FIG. 18C as viewed from above.
 UAV本体の上筐体102a及び下筐体102bは、側方端部に開口部105を有してよい。開口部105は、UAV本体102を上方から見た断面において回転翼211の配置位置を含んで形成されてよい。UAV本体102は、開口部105に接続してUAV本体102内部に、収縮状態のエアバッグ310を収容するための収容部106を有してよい。収容部106の形状及びUAV本体102における配置位置は、任意である。 The upper housing 102a and the lower housing 102b of the UAV main body may have an opening 105 at the side end. The opening 105 may be formed including the arrangement position of the rotor blade 211 in a cross section when the UAV main body 102 is viewed from above. The UAV main body 102 may have an accommodating portion 106 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to the opening 105. The shape of the accommodating part 106 and the arrangement position in the UAV main body 102 are arbitrary.
 エアバッグ310は、展開制御部118の制御によりガス発生装置320からガスの供給を受けると、収容部106に収容された収縮状態から、開口部105を介してUAV本体102の外部に放出されて展開状態となる。この場合、エアバッグ310は、複数の回転翼211の周囲を回り込んで展開する。エアバッグ310は、まず複数の回転翼211のそれぞれの外周側の下方を覆う。次にエアバッグ310は、複数の回転翼211のそれぞれの外周側の側方を覆う。次にエアバッグ310は、複数の回転翼211のそれぞれの上方の少なくとも一部を覆ってよい。 When the airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, the airbag 310 is released from the contracted state stored in the storage unit 106 to the outside of the UAV main body 102 through the opening 105. Expanded state. In this case, the airbag 310 deploys around the plurality of rotating blades 211. The airbag 310 first covers the lower part of the outer peripheral side of each of the plurality of rotor blades 211. Next, the airbag 310 covers the outer peripheral side of each of the plurality of rotor blades 211. Next, the airbag 310 may cover at least a part of the upper part of each of the plurality of rotor blades 211.
 無人航空機100Aは、エアバッグ310がUAV本体102の開口部105から回り込んで複数の回転翼211の少なくとも一部(例えば下方及び側方)を包囲することで、撮像装置220側から重力方向に落下する場合でも、回転翼211が物体に接触することを回避できる。よって、回転翼211が回転していても、回転する回転翼211による物体の損傷を低減できる。 In the unmanned aircraft 100A, the airbag 310 wraps around the opening 105 of the UAV main body 102 and surrounds at least a part (for example, the lower side and the side) of the plurality of rotor blades 211. Even when falling, it is possible to avoid the rotating blade 211 from coming into contact with an object. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
 また、無人航空機100Aは、無人航空機100Aの下降により気流が発生しても、気流によりエアバッグ310に重力方向と反対方向に力がかかりやすい。そのため、無人航空機100Aは、回転翼211の下方及び側方をエアバッグ310により覆いやすい。したがって、無人航空機100Aは、地面落下直前の短時間でも、エアバッグ310により好適に回転翼211を包囲可能な確率が高くなる。 In addition, even if the unmanned aircraft 100A generates an airflow due to the descent of the unmanned aircraft 100A, the airflow tends to apply a force to the airbag 310 in the direction opposite to the gravity direction. Therefore, the unmanned aircraft 100A can easily cover the lower side and the side of the rotary wing 211 with the airbag 310. Therefore, the probability that the unmanned aircraft 100A can suitably surround the rotor wing 211 by the airbag 310 is increased even for a short time immediately before the ground drop.
 図19Aは、4つのエアバッグ310により4つの回転翼211を覆う場合のエアバッグ310が展開された状態の無人航空機100Aの一例を示す正面図である。 FIG. 19A is a front view showing an example of the unmanned aerial vehicle 100A in a state where the airbag 310 is deployed when the four rotor blades 211 are covered by the four airbags 310. FIG.
 無人航空機100Aは、複数(例えば4つ)のエアバッグ310及び複数(例えば4つ)の回転翼211を有してよい。複数のエアバッグ310のそれぞれは、展開状態において、複数の回転翼211のそれぞれの外周の周囲の少なくとも一部を包囲してよい。 The unmanned aircraft 100A may include a plurality (for example, four) of airbags 310 and a plurality (for example, four) of rotating blades 211. Each of the plurality of airbags 310 may surround at least a part of the periphery of each of the plurality of rotor blades 211 in the deployed state.
 複数のエアバッグ310のそれぞれが複数の回転翼211のそれぞれの外周を包囲することで、例えば無人航空機100Aが急速に落下する場合に、複数の回転翼211が、物体に接触する前にエアバッグ310に接触する可能性が高くなる。よって、無人航空機100Aは、回転する複数の回転翼211に物体が接触する可能性を低減でき、回転する回転翼211による物体の損傷を軽減できる。 Each of the plurality of airbags 310 surrounds the outer periphery of each of the plurality of rotor blades 211. For example, when the unmanned aircraft 100A rapidly drops, the airbags before the rotor blades 211 come into contact with an object. The possibility of contacting 310 increases. Therefore, the unmanned aircraft 100A can reduce the possibility of an object coming into contact with the rotating rotor blades 211, and can reduce damage to the object by the rotating rotor blades 211.
 また、1つのエアバッグ310が1つの回転翼211を包囲することで足りるため、1つのエアバッグ310のサイズを小さくできる。したがって、エアバッグ310の収納スペースが小さくなり、無人航空機100A本体内のスペースが有効に利用され得る。また、エアバッグ310のサイズが小さいことで、無人航空機100Aは、エアバッグ310の展開指令から展開完了までの時間を短縮でき、早期に回転翼211の周囲の安全性を向上できる。 Moreover, since it is sufficient that one airbag 310 surrounds one rotor blade 211, the size of one airbag 310 can be reduced. Therefore, the storage space of the airbag 310 is reduced, and the space in the main body of the unmanned aircraft 100A can be effectively used. Further, since the size of the airbag 310 is small, the unmanned aircraft 100A can shorten the time from the deployment command of the airbag 310 to the completion of deployment, and can improve the safety around the rotor blade 211 at an early stage.
 図19Bは、図19Aのエアバッグ310の一部を透視した無人航空機100Aの一例を示す正面図である。図19Cは、図19Bの無人航空機100Aを上方から見た平面図である。 FIG. 19B is a front view showing an example of an unmanned aerial vehicle 100A seen through a part of the airbag 310 of FIG. 19A. FIG. 19C is a plan view of the unmanned aerial vehicle 100A of FIG. 19B as viewed from above.
 UAV本体102の上筐体102a及び下筐体102bは、側方端部に複数(例えば4つ)の開口部107を有してよい。複数の開口部107のそれぞれは、UAV本体102を上方から見た断面において回転翼211のそれぞれの配置位置の周辺に形成されてよい。 The upper casing 102a and the lower casing 102b of the UAV main body 102 may have a plurality of (for example, four) openings 107 at the side ends. Each of the plurality of openings 107 may be formed around each arrangement position of the rotor blades 211 in a cross section when the UAV main body 102 is viewed from above.
 UAV本体102は、複数の開口部107のそれぞれに接続してUAV本体102内部に、収縮状態のエアバッグ310を収容するための複数(例えば4つ)の収容部108を有してよい。複数の収容部108の形状及びUAV本体102における配置位置は、任意である。また、収縮状態のエアバッグ310を収容するための複数の収容器(不図示)が、UAV本体102とは別体で設けられてよい。この場合、複数の収容器のそれぞれは、複数の開口部107のそれぞれの付近に設けられてよい。 The UAV main body 102 may have a plurality (for example, four) of accommodating portions 108 for accommodating the airbag 310 in a contracted state inside the UAV main body 102 by connecting to each of the plurality of openings 107. The shape of the plurality of accommodating portions 108 and the arrangement position in the UAV main body 102 are arbitrary. Further, a plurality of containers (not shown) for accommodating the airbag 310 in a contracted state may be provided separately from the UAV main body 102. In this case, each of the plurality of containers may be provided in the vicinity of each of the plurality of openings 107.
 それぞれのエアバッグ310は、展開制御部118の制御によりガス発生装置320からガスの供給を受けると、複数の収容部108のそれぞれに収容された収縮状態から、複数の開口部107のそれぞれを介してUAV本体102の外部に放出されて展開状態となる。この場合、それぞれのエアバッグ310は、それぞれの回転翼211の周囲を回り込んで展開する。それぞれのエアバッグ310は、まずそれぞれの回転翼211の下方を覆う。次にそれぞれのエアバッグ310は、それぞれの回転翼211の外周側及び中央部201c側の側方を覆う。次にそれぞれのエアバッグ310は、それぞれの回転翼211の上方の少なくとも一部を覆ってよい。 When each airbag 310 is supplied with gas from the gas generator 320 under the control of the deployment control unit 118, each airbag 310 is in a contracted state housed in each of the plurality of housing portions 108 through each of the plurality of openings 107. Then, it is released to the outside of the UAV main body 102 to be in a developed state. In this case, each airbag 310 is deployed around each rotor blade 211. Each airbag 310 first covers the lower side of each rotor blade 211. Next, each airbag 310 covers the outer peripheral side and the central part 201c side of each rotor blade 211. Each air bag 310 may then cover at least a portion above each rotor blade 211.
 無人航空機100Aでは、複数のエアバッグ310のそれぞれが、UAV本体102の開口部105のそれぞれから回り込んで、複数の回転翼211のそれぞれの少なくとも一部(例えば下方及び側方)を包囲する。これにより、無人航空機100Aは、撮像装置220側から重力方向に落下する場合でも、回転翼211が物体に接触することを回避できる。よって、回転翼211が回転していても、回転する回転翼211による物体の損傷を低減できる。 In the unmanned aerial vehicle 100A, each of the plurality of airbags 310 wraps around each of the openings 105 of the UAV main body 102 and surrounds at least a part of each of the plurality of rotor blades 211 (for example, the lower side and the side). As a result, the unmanned aircraft 100A can avoid the rotating wings 211 from contacting an object even when the unmanned aircraft 100A falls in the direction of gravity from the imaging device 220 side. Therefore, even if the rotary blade 211 is rotating, damage to the object by the rotating rotary blade 211 can be reduced.
 また、無人航空機100Aは、無人航空機100Aの下降により気流が発生しても、気流によりエアバッグ310に重力方向と反対方向に力がかかりやすい。そのため、無人航空機100Aは、回転翼211の下方及び側方をエアバッグ310により覆いやすい。従って、無人航空機100Aは、地面落下直前の短時間でも、エアバッグ310により好適に回転翼211を包囲可能な確率が高くなる。 In addition, even if the unmanned aircraft 100A generates an airflow due to the descent of the unmanned aircraft 100A, the airflow tends to apply a force to the airbag 310 in the direction opposite to the gravity direction. Therefore, the unmanned aircraft 100A can easily cover the lower side and the side of the rotary wing 211 with the airbag 310. Therefore, the probability that the unmanned aircraft 100A can suitably surround the rotor wing 211 by the airbag 310 is increased even for a short time immediately before the ground drop.
 次に、無人航空機100Aの動作例について説明する。 Next, an operation example of the unmanned aircraft 100A will be described.
 図20は、無人航空機100Aの動作例を示すフローチャートである。図20において、図14A及び図14Bに示した処理と同様の処理については、同一のステップ番号を付し、その説明を省略又は簡略化する。 FIG. 20 is a flowchart showing an operation example of the unmanned aerial vehicle 100A. In FIG. 20, the same steps as those shown in FIGS. 14A and 14B are denoted by the same step numbers, and description thereof is omitted or simplified.
 まず、無人航空機100Aは、不図示であるが、第1の実施形態と同様に、図14AのS11~S19の処理を実行する。S19の処理により、無人航空機100Aの制御モードは、安全制御モードの1つである第4の安全制御モードに遷移する。第4の安全制御モードに遷移すると、無人航空機100Aは、S21~S24の処理を実施する。 First, although not shown, the unmanned aerial vehicle 100A executes the processing of S11 to S19 in FIG. 14A as in the first embodiment. By the process of S19, the control mode of the unmanned aircraft 100A transitions to a fourth safety control mode, which is one of the safety control modes. When transitioning to the fourth safety control mode, the unmanned aerial vehicle 100A performs the processes of S21 to S24.
 S24において回転翼211の回転が停止すると、展開制御部118は、エアバッグ310を展開させる(S31)。 When the rotation of the rotary blade 211 stops in S24, the deployment control unit 118 deploys the airbag 310 (S31).
 図20の処理によれば、回転翼211の周囲の少なくとも一部がエアバッグ310により覆われるので、無人航空機100Aは、エアバッグ310が物体に直接接触することを抑制できる。 20, since at least a part of the periphery of the rotor blade 211 is covered with the airbag 310, the unmanned aircraft 100A can suppress the airbag 310 from directly contacting an object.
 また、展開制御部118は、回転翼211の回転が停止された場合に、エアバッグ310を展開させてよい。回転翼211の回転が停止されたか否かは、回転翼制御部116により判定されてよい。回転翼制御部116は、例えば無人航空機100Aが備える赤外線センサ(不図示)や磁力センサ(不図示)から検出情報を取得し、この検出情報を基に回転翼211の回転が停止されたか否かを判定してよい。回転翼制御部116は、第2判定部の一例である。 Further, the deployment control unit 118 may deploy the airbag 310 when the rotation of the rotary blade 211 is stopped. Whether or not the rotation of the rotary blade 211 is stopped may be determined by the rotary blade control unit 116. The rotor control unit 116 acquires detection information from, for example, an infrared sensor (not shown) or a magnetic sensor (not shown) included in the unmanned aircraft 100A, and whether or not the rotation of the rotor 211 is stopped based on this detection information. May be determined. The rotary blade control unit 116 is an example of a second determination unit.
 無人航空機100Aは、回転翼211の回転が停止された場合に、エアバッグ310を展開させることで、回転翼211の回転によりエアバッグ310が損傷することを抑制できる。よって、損傷していないエアバッグ310により回転翼211が保護される可能性が高くなり、無人航空機100Aは、物体の損傷を低減できる。 Unmanned aerial vehicle 100 </ b> A can suppress damage to airbag 310 due to rotation of rotating blade 211 by deploying airbag 310 when rotation of rotating blade 211 is stopped. Therefore, there is a high possibility that the rotor blades 211 are protected by the undamaged airbag 310, and the unmanned aircraft 100A can reduce damage to objects.
 以上、本開示を実施形態を用いて説明したが、本開示の技術的範囲は上述した実施形態に記載の範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることが当業者に明らかである。その様な変更又は改良を加えた形態も本開示の技術的範囲に含まれ得ることが、特許請求の範囲の記載からも明らかである。 As mentioned above, although this indication was explained using an embodiment, the technical scope of this indication is not limited to the range given in the above-mentioned embodiment. It will be apparent to those skilled in the art that various modifications and improvements can be made to the embodiment described above. It is also apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present disclosure.
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「先ず、」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operation, procedure, step, and stage in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. ”And the like, and can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. is not.
10 飛行システム
50 送信機
50B 筐体
53L 左制御棒
53R 右制御棒
61 送信機制御部
63 無線通信部
100,100A 無人航空機
102 UAV本体
102a 上筐体
102b 下筐体
103,105,107 開口部
104,106,108 収容部
110,110A UAV制御部
111 異常処理部
112 信号判定部
113 制御モード変更部
114 高度取得部
115 駆動電流設定部
116 回転翼制御部
117 音声制御部
118 展開制御部
150 通信インタフェース
160 メモリ
200 ジンバル
210 回転翼機構
211 回転翼
212 駆動モータ
213 電流センサ
220,230 撮像装置
240 GPS受信機
250 慣性計測装置
260 磁気コンパス
270 気圧高度計
280 超音波高度計
290 スピーカ
310 エアバッグ
320 ガス発生装置
AN1,AN2 アンテナ
B1 電源ボタン
B2 RTHボタン
DP 表示部
L1 リモートステータス表示部
L2 バッテリ残量表示部
L3 異常表示部
OPS 操作部セット
10 Flight System 50 Transmitter 50B Housing 53L Left Control Rod 53R Right Control Rod 61 Transmitter Control Unit 63 Wireless Communication Unit 100, 100A Unmanned Aircraft 102 UAV Main Body 102a Upper Housing 102b Lower Housing 103, 105, 107 Opening 104 , 106, 108 accommodation unit 110, 110A UAV control unit 111 abnormality processing unit 112 signal determination unit 113 control mode change unit 114 altitude acquisition unit 115 drive current setting unit 116 rotor blade control unit 117 voice control unit 118 deployment control unit 150 communication interface 160 Memory 200 Gimbal 210 Rotary blade mechanism 211 Rotary blade 212 Drive motor 213 Current sensor 220, 230 Imaging device 240 GPS receiver 250 Inertial measurement device 260 Magnetic compass 270 Barometric altimeter 280 Ultrasonic altimeter 290 Speaker 310 Air bag 32 0 Gas generator AN1, AN2 Antenna B1 Power button B2 RTH button DP Display part L1 Remote status display part L2 Battery residual quantity display part L3 Abnormal display part OPS Operation part set

Claims (37)

  1.  無人航空機の飛行中の制御モードを制御する飛行制御方法であって、
     前記無人航空機の飛行状態の異常を検出するステップと、
     前記飛行状態の異常が検出された場合、前記制御モードを安全制御モードに変更するステップと、
     を有する飛行制御方法。
    A flight control method for controlling a control mode during flight of an unmanned aerial vehicle,
    Detecting an abnormal flight state of the unmanned aerial vehicle;
    If an abnormality in the flight state is detected, changing the control mode to a safe control mode;
    A flight control method.
  2.  前記飛行状態の異常が検出された場合、前記異常に関する情報を、前記無人航空機の制御を指示する操作装置へ送信するステップ、を更に含む、
     請求項1に記載の飛行制御方法。
    When the abnormality of the flight state is detected, further comprising the step of transmitting information relating to the abnormality to an operating device that instructs control of the unmanned aircraft.
    The flight control method according to claim 1.
  3.  前記飛行状態の異常を検出するステップは、
     前記無人航空機の重力方向の加速度を取得するステップと、
     前記無人航空機の重力方向の加速度が所定値以上である場合、前記飛行状態を異常と判定するステップと、
     を含む、請求項1又は2に記載の飛行制御方法。
    The step of detecting an abnormality in the flight state includes:
    Obtaining acceleration in the direction of gravity of the unmanned aircraft;
    When the acceleration in the direction of gravity of the unmanned aircraft is greater than or equal to a predetermined value, the step of determining the flight state as abnormal,
    The flight control method according to claim 1, comprising:
  4.  前記飛行状態の異常を検出するステップは、
     前記無人航空機の重力方向の加速度を取得するステップと、
     前記無人航空機の重力方向の加速度が所定値以上である状態が所定時間継続した場合、前記飛行状態を異常と判定するステップと、
     を含む、請求項1又は2に記載の飛行制御方法。
    The step of detecting an abnormality in the flight state includes:
    Obtaining acceleration in the direction of gravity of the unmanned aircraft;
    Determining that the flight state is abnormal when a state in which the acceleration of the unmanned aircraft in the gravitational direction is equal to or greater than a predetermined value continues for a predetermined time;
    The flight control method according to claim 1, comprising:
  5.  前記無人航空機の制御を指示する操作装置からの操作入力信号の有無を判定するステップ、を更に含み、
     前記安全制御モードに変更するステップは、前記操作入力信号がない場合、前記制御モードを前記安全制御モードに変更するステップを含む、
     請求項1~4のいずれかに1項に記載の飛行制御方法。
    Further including the step of determining the presence or absence of an operation input signal from an operating device that instructs control of the unmanned aircraft,
    The step of changing to the safety control mode includes the step of changing the control mode to the safety control mode when there is no operation input signal.
    The flight control method according to any one of claims 1 to 4.
  6.  前記飛行状態の異常を検出するステップは、
     前記操作入力信号がある場合、前記操作入力信号に基づく前記飛行状態を示すパラメータの指令値を取得するステップと、
     前記パラメータの実測値を取得するステップと、
     前記パラメータの指令値に対する前記パラメータの実測値が所定範囲外である場合、前記制御モードを前記安全制御モードに変更するステップと、
     を含む、請求項5に記載の飛行制御方法。
    The step of detecting an abnormality in the flight state includes:
    When there is the operation input signal, obtaining a command value of a parameter indicating the flight state based on the operation input signal;
    Obtaining an actual measurement value of the parameter;
    When the measured value of the parameter with respect to the command value of the parameter is outside a predetermined range, changing the control mode to the safety control mode;
    The flight control method according to claim 5, comprising:
  7.  前記パラメータは、前記無人航空機の回転翼の駆動電流、前記無人航空機の加速度、前記無人航空機の速度、の少なくとも1つを含む、
     請求項6に記載の飛行制御方法。
    The parameter includes at least one of a driving current of a rotor blade of the unmanned aircraft, an acceleration of the unmanned aircraft, and a speed of the unmanned aircraft.
    The flight control method according to claim 6.
  8.  前記パラメータの指令値は、前記無人航空機の制御を指示する操作装置から取得される、
     請求項6または7に記載の飛行制御方法。
    The command value of the parameter is acquired from an operating device that instructs control of the unmanned aircraft.
    The flight control method according to claim 6 or 7.
  9.  前記パラメータの指令値は、前記無人航空機のメモリが保持する設定情報に含まれる、
     請求項6または7に記載の飛行制御方法。
    The command value of the parameter is included in setting information held by the memory of the unmanned aircraft.
    The flight control method according to claim 6 or 7.
  10.  前記安全制御モードでは、前記無人航空機の回転翼を駆動するための駆動電流を前記駆動電流より大きい所定の電流に設定するステップ、を更に含む、
     請求項1~9のいずれか1項に記載の飛行制御方法。
    In the safety control mode, the method further includes a step of setting a drive current for driving the rotor wing of the unmanned aircraft to a predetermined current larger than the drive current.
    The flight control method according to any one of claims 1 to 9.
  11.  前記安全制御モードでは、
     前記無人航空機の飛行高度を検出するステップと、
     前記飛行高度が第1の所定高度以下となった場合、前記無人航空機の回転翼の回転を停止するステップと、
     を更に含む、請求項1~9のいずれか1項に記載の飛行制御方法。
    In the safety control mode,
    Detecting the flight altitude of the unmanned aerial vehicle;
    When the flight altitude is less than or equal to a first predetermined altitude, stopping the rotation of the rotor blades of the unmanned aircraft;
    The flight control method according to any one of claims 1 to 9, further comprising:
  12.  前記安全制御モードでは、
     前記無人航空機の飛行高度を検出するステップと、
     前記飛行高度が第2の所定高度以下となった場合、前記飛行状態の異常を示す警告音を出力するステップと、
     を更に含む、請求項1~9のいずれか1項に記載の飛行制御方法。
    In the safety control mode,
    Detecting the flight altitude of the unmanned aerial vehicle;
    Outputting a warning sound indicating an abnormality in the flight state when the flight altitude falls below a second predetermined altitude;
    The flight control method according to any one of claims 1 to 9, further comprising:
  13.  前記安全制御モードでは、
     前記無人航空機の飛行高度を検出するステップと、
     前記飛行高度が第3の所定高度以下となった場合、前記無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開するステップと、
     を更に含む、請求項1~9のいずれか1項に記載の飛行制御方法。
    In the safety control mode,
    Detecting the flight altitude of the unmanned aerial vehicle;
    Deploying a cushioning material surrounding at least a portion of the rotor blades of the unmanned aerial vehicle when the flight altitude falls below a third predetermined altitude;
    The flight control method according to any one of claims 1 to 9, further comprising:
  14.  前記安全制御モードでは、
     前記無人航空機の回転翼の回転が停止したか否かを判定するステップと、
     前記無人航空機の回転翼の回転が停止しない場合、前記無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開するステップと、
     を含む、請求項11に記載の飛行制御方法。
    In the safety control mode,
    Determining whether the rotation of the rotor of the unmanned aircraft has stopped;
    If the rotation of the rotor blades of the unmanned aircraft does not stop, deploying a cushioning material surrounding at least a part of the rotor blades of the unmanned aircraft; and
    The flight control method according to claim 11, comprising:
  15.  前記緩衝材は、前記緩衝材の展開状態では、前記無人航空機の複数の回転翼の外周の少なくとも一部を包囲する、
     請求項13又は14のいずれか1項に記載の飛行制御方法。
    The cushioning material surrounds at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
    The flight control method according to any one of claims 13 and 14.
  16.  前記緩衝材は、少なくとも前記回転翼の下方及び側方を覆うように展開する、
     請求項15に記載の飛行制御方法。
    The cushioning material is expanded so as to cover at least the lower side and the side of the rotor blade,
    The flight control method according to claim 15.
  17.  前記無人航空機は、複数の回転翼及び複数の緩衝材を含み、
     それぞれの前記緩衝材は、前記緩衝材の展開状態では、それぞれの前記回転翼の周囲の少なくとも一部を包囲する、
     請求項13又は14に記載の飛行制御方法。
    The unmanned aerial vehicle includes a plurality of rotor blades and a plurality of cushioning materials,
    Each of the cushioning materials surrounds at least a part of the periphery of each of the rotor blades in the deployed state of the cushioning material.
    The flight control method according to claim 13 or 14.
  18.  飛行中の制御モードを制御する無人航空機であって、
     前記無人航空機の飛行状態の異常を検出する検出部と、
     前記飛行状態の異常が検出された場合、前記制御モードを安全制御モードに変更する変更部と、
     を備える無人航空機。
    An unmanned aerial vehicle that controls the control mode during flight,
    A detection unit for detecting an abnormality in a flight state of the unmanned aircraft;
    When an abnormality in the flight state is detected, a changing unit that changes the control mode to a safe control mode;
    An unmanned aircraft equipped with.
  19.  前記飛行状態の異常が検出された場合、前記異常に関する情報を、前記無人航空機の制御を指示する操作装置へ送信する通信部、を更に備え、
     請求項18に記載の無人航空機。
    A communication unit that transmits information regarding the abnormality to an operating device that instructs control of the unmanned aircraft when an abnormality in the flight state is detected;
    The unmanned aerial vehicle according to claim 18.
  20.  前記検出部は、
     前記無人航空機の重力方向の加速度を取得し、
     前記無人航空機の重力方向の加速度が所定値以上である場合、前記飛行状態を異常と判定する、
     請求項18又は19に記載の無人航空機。
    The detector is
    Obtain the acceleration in the direction of gravity of the unmanned aircraft,
    When the acceleration in the gravitational direction of the unmanned aircraft is greater than or equal to a predetermined value, the flight state is determined to be abnormal.
    An unmanned aerial vehicle according to claim 18 or 19.
  21.  前記検出部は、
     前記無人航空機の重力方向の加速度を取得し、
     前記無人航空機の重力方向の加速度が所定値以上である状態が所定時間継続した場合、前記飛行状態を異常と判定する、
     請求項18又は19に記載の無人航空機。
    The detector is
    Obtain the acceleration in the direction of gravity of the unmanned aircraft,
    When the state in which the acceleration in the gravity direction of the unmanned aircraft is equal to or greater than a predetermined value continues for a predetermined time, the flight state is determined to be abnormal.
    An unmanned aerial vehicle according to claim 18 or 19.
  22.  前記無人航空機の制御を指示する操作装置からの操作入力信号の有無を判定する第1判定部、を更に備え、
     前記変更部は、前記操作入力信号がない場合、前記制御モードを前記安全制御モードに変更する、
     請求項18~21のいずれかに1項に記載の無人航空機。
    A first determination unit that determines the presence or absence of an operation input signal from an operation device that instructs control of the unmanned aircraft;
    The change unit changes the control mode to the safety control mode when there is no operation input signal.
    The unmanned aerial vehicle according to any one of claims 18 to 21.
  23.  前記検出部は、
     前記操作入力信号がある場合、前記操作入力信号に基づく前記飛行状態を示すパラメータの指令値を取得し、
     前記パラメータの実測値を取得し、
     前記変更部は、前記パラメータの指令値に対する前記パラメータの実測値が所定範囲外である場合、前記制御モードを前記安全制御モードに変更する、
     請求項22に記載の無人航空機。
    The detector is
    When there is the operation input signal, obtain a command value of a parameter indicating the flight state based on the operation input signal,
    Obtain the measured value of the parameter,
    The changing unit changes the control mode to the safety control mode when the measured value of the parameter with respect to the command value of the parameter is out of a predetermined range.
    The unmanned aerial vehicle according to claim 22.
  24.  前記パラメータは、前記無人航空機の回転翼の駆動電流、前記無人航空機の加速度、前記無人航空機の速度、の少なくとも1つを含む、
     請求項23に記載の無人航空機。
    The parameter includes at least one of a driving current of a rotor blade of the unmanned aircraft, an acceleration of the unmanned aircraft, and a speed of the unmanned aircraft.
    24. An unmanned aerial vehicle according to claim 23.
  25.  前記パラメータの指令値は、前記無人航空機の制御を指示する操作装置から取得される、
     請求項23または24に記載の無人航空機。
    The command value of the parameter is acquired from an operating device that instructs control of the unmanned aircraft.
    An unmanned aerial vehicle according to claim 23 or 24.
  26.  前記パラメータの指令値は、前記無人航空機のメモリが保持する設定情報に含まれる、
     請求項23または24に記載の無人航空機。
    The command value of the parameter is included in setting information held by the memory of the unmanned aircraft.
    An unmanned aerial vehicle according to claim 23 or 24.
  27.  前記安全制御モードでは、前記無人航空機の回転翼を駆動するための駆動電流を前記駆動電流より大きい所定の電流に設定する設定部、を更に備える、
     請求項18~26のいずれか1項に記載の無人航空機。
    The safety control mode further includes a setting unit that sets a drive current for driving the rotor blades of the unmanned aircraft to a predetermined current larger than the drive current.
    The unmanned aerial vehicle according to any one of claims 18 to 26.
  28.  前記安全制御モードでは、前記無人航空機の飛行高度を取得する取得部と、
     前記飛行高度が第1の所定高度以下となった場合、前記無人航空機の回転翼の回転を停止する第1制御部と、
     を更に備える、請求項18~26のいずれか1項に記載の無人航空機。
    In the safety control mode, an acquisition unit for acquiring a flight altitude of the unmanned aircraft;
    A first control unit for stopping rotation of a rotor blade of the unmanned aircraft when the flight altitude is equal to or lower than a first predetermined altitude;
    The unmanned aerial vehicle according to any one of claims 18 to 26, further comprising:
  29.  前記安全制御モードでは、
     前記無人航空機の飛行高度を取得する取得部と、
     前記飛行高度が第2の所定高度以下となった場合、前記飛行状態の異常を示す警告音を出力する出力部と、
     を更に含む、請求項18~26のいずれか1項に記載の無人航空機。
    In the safety control mode,
    An acquisition unit for acquiring a flight altitude of the unmanned aircraft;
    An output unit that outputs a warning sound indicating an abnormality in the flight state when the flight altitude is equal to or lower than a second predetermined altitude;
    The unmanned aerial vehicle according to any one of claims 18 to 26, further comprising:
  30.  前記安全制御モードでは、
     前記無人航空機の飛行高度を取得する取得部と、
     前記飛行高度が第3の所定高度以下となった場合、前記無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開する第2制御部と、
     を更に備える、請求項18~26のいずれか1項に記載の無人航空機。
    In the safety control mode,
    An acquisition unit for acquiring a flight altitude of the unmanned aircraft;
    A second control unit that deploys a cushioning material that surrounds at least a part of the rotor wing of the unmanned aerial vehicle when the flight altitude is equal to or lower than a third predetermined altitude;
    The unmanned aerial vehicle according to any one of claims 18 to 26, further comprising:
  31.  前記安全制御モードでは、前記無人航空機の回転翼の回転が停止したか否かを判定する第2判定部と、
     前記無人航空機の回転翼の回転が停止しない場合、前記無人航空機の回転翼の少なくとも一部を包囲する緩衝材を展開する第3制御部と、
     を更に備える、
     請求項28に記載の無人航空機。
    In the safety control mode, a second determination unit that determines whether rotation of the rotor blades of the unmanned aircraft has stopped,
    A third control unit that deploys a cushioning material that surrounds at least a part of the rotor blades of the unmanned aircraft when rotation of the rotor blades of the unmanned aircraft does not stop;
    Further comprising
    The unmanned aerial vehicle according to claim 28.
  32.  前記緩衝材は、前記緩衝材の展開状態では、前記無人航空機の複数の回転翼の外周の少なくとも一部を包囲する、
     請求項30又は31に記載の無人航空機。
    The cushioning material surrounds at least a part of the outer periphery of the plurality of rotor blades of the unmanned aircraft in the deployed state of the cushioning material.
    The unmanned aerial vehicle according to claim 30 or 31.
  33.  前記緩衝材は、少なくとも前記回転翼の下方及び側方を覆うように展開する、
     請求項32に記載の無人航空機。
    The cushioning material is expanded so as to cover at least the lower side and the side of the rotor blade,
    An unmanned aerial vehicle according to claim 32.
  34.  複数の回転翼と、複数の緩衝材と、を更に備え、
     それぞれの前記緩衝材は、前記緩衝材の展開状態では、それぞれの前記回転翼の周囲の少なくとも一部を包囲する、
     請求項30又は31に記載の無人航空機。
    A plurality of rotor blades and a plurality of buffer materials;
    Each of the cushioning materials surrounds at least a part of the periphery of each of the rotor blades in the deployed state of the cushioning material.
    The unmanned aerial vehicle according to claim 30 or 31.
  35.  飛行中の制御モードを制御する無人航空機と前記無人航空機の制御を指示する操作装置とを備える飛行システムであって、
     前記無人航空機は、
     前記無人航空機の飛行状態の異常を検出し、
     前記飛行状態の異常が検出された場合、前記制御モードを安全制御モードに変更し、
     前記飛行状態の異常が検出された場合、前記異常に関する情報を、前記操作装置へ送信し、
     前記操作装置は、
     前記異常に関する情報を受信し、
     前記異常に関する情報に基づき、前記無人航空機の飛行状態に異常がある旨を提示する、
     飛行システム。
    A flight system comprising an unmanned aerial vehicle for controlling a control mode during flight and an operating device for instructing the control of the unmanned aircraft,
    The unmanned aircraft
    Detecting an abnormal flight state of the unmanned aerial vehicle;
    If an abnormality in the flight state is detected, the control mode is changed to a safety control mode,
    When an abnormality in the flight state is detected, information on the abnormality is transmitted to the operating device,
    The operating device is:
    Receiving information about the anomaly;
    Based on the information on the abnormality, presents that there is an abnormality in the flight state of the unmanned aircraft,
    Flight system.
  36.  無人航空機の飛行中の制御モードを制御するコンピュータである無人航空機に、
     前記無人航空機の飛行状態の異常を検出するステップと、
     前記飛行状態の異常が検出された場合、前記制御モードを安全制御モードに変更するステップと、
     を実行させるためのプログラム。
    In the unmanned aerial vehicle, which is a computer that controls the control mode during the flight of the unmanned aerial vehicle,
    Detecting an abnormal flight state of the unmanned aerial vehicle;
    If an abnormality in the flight state is detected, changing the control mode to a safe control mode;
    A program for running
  37.  無人航空機の飛行中の制御モードを制御するコンピュータである無人航空機に、
     前記無人航空機の飛行状態の異常を検出するステップと、
     前記飛行状態の異常が検出された場合、前記制御モードを安全制御モードに変更するステップと、
     を実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
     
    In the unmanned aerial vehicle, which is a computer that controls the control mode during the flight of the unmanned aerial vehicle,
    Detecting an abnormal flight state of the unmanned aerial vehicle;
    If an abnormality in the flight state is detected, changing the control mode to a safe control mode;
    The computer-readable recording medium which recorded the program for performing this.
PCT/JP2016/087395 2016-12-15 2016-12-15 Flight control method, unmanned aircraft, flight system, program, and recording medium WO2018109903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/087395 WO2018109903A1 (en) 2016-12-15 2016-12-15 Flight control method, unmanned aircraft, flight system, program, and recording medium
JP2018556122A JP6835871B2 (en) 2016-12-15 2016-12-15 Flight control methods, unmanned aerial vehicles, flight systems, programs, and recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087395 WO2018109903A1 (en) 2016-12-15 2016-12-15 Flight control method, unmanned aircraft, flight system, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2018109903A1 true WO2018109903A1 (en) 2018-06-21

Family

ID=62559846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087395 WO2018109903A1 (en) 2016-12-15 2016-12-15 Flight control method, unmanned aircraft, flight system, program, and recording medium

Country Status (2)

Country Link
JP (1) JP6835871B2 (en)
WO (1) WO2018109903A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112006A (en) * 2017-12-26 2019-07-11 東京電力ホールディングス株式会社 Unmanned flying body crash notification system, ground station, notification method, and program
JP2019209927A (en) * 2018-06-08 2019-12-12 カシオ計算機株式会社 Flight device, flight method, and program
WO2020116495A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
KR102168842B1 (en) * 2020-07-22 2020-10-22 유콘시스템 주식회사 Emergency control device to respond in the event of a loss of communication or failure situation of a hybrid unmanned aerial vehicle
JPWO2020022266A1 (en) * 2018-07-25 2020-12-17 株式会社ナイルワークス Drones, drone control methods, and drone control programs
CN113294247A (en) * 2020-02-24 2021-08-24 通用电气公司 Autonomous safety mode for distributed control of a turbomachine
JP2021133910A (en) * 2020-02-28 2021-09-13 豊田合成株式会社 Drone protection device
WO2022176446A1 (en) * 2021-02-19 2022-08-25 ソニーグループ株式会社 Flight vehicle, control method, and program
JP2022125239A (en) * 2018-06-08 2022-08-26 カシオ計算機株式会社 Flight device, flight method, and program
WO2023238208A1 (en) * 2022-06-06 2023-12-14 株式会社RedDotDroneJapan Aerial photography system, aerial photography method, and aerial mobile body management device
US11873100B2 (en) 2018-12-05 2024-01-16 Nileworks Inc. Drone system, drone, movable body, drone system control method, and drone system control program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017722A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Vtol aircraft
JP2006001487A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Unmanned helicopter
JP2016518286A (en) * 2014-02-27 2016-06-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Collision protection device
US20160236778A1 (en) * 2014-07-08 2016-08-18 Google Inc. Bystander Interaction During Delivery from Aerial Vehicle
WO2016171120A1 (en) * 2015-04-19 2016-10-27 株式会社プロドローン Unmanned aircraft
JP2016210302A (en) * 2015-05-10 2016-12-15 幹夫 福永 Unmanned airplane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017722A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Vtol aircraft
JP2006001487A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Unmanned helicopter
JP2016518286A (en) * 2014-02-27 2016-06-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Collision protection device
US20160236778A1 (en) * 2014-07-08 2016-08-18 Google Inc. Bystander Interaction During Delivery from Aerial Vehicle
WO2016171120A1 (en) * 2015-04-19 2016-10-27 株式会社プロドローン Unmanned aircraft
JP2016210302A (en) * 2015-05-10 2016-12-15 幹夫 福永 Unmanned airplane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112006A (en) * 2017-12-26 2019-07-11 東京電力ホールディングス株式会社 Unmanned flying body crash notification system, ground station, notification method, and program
JP7226629B2 (en) 2018-06-08 2023-02-21 カシオ計算機株式会社 Flight device, flight method and program
JP2019209927A (en) * 2018-06-08 2019-12-12 カシオ計算機株式会社 Flight device, flight method, and program
JP2022125239A (en) * 2018-06-08 2022-08-26 カシオ計算機株式会社 Flight device, flight method, and program
JP7102958B2 (en) 2018-06-08 2022-07-20 カシオ計算機株式会社 Flight equipment, flight methods and programs
JPWO2020022266A1 (en) * 2018-07-25 2020-12-17 株式会社ナイルワークス Drones, drone control methods, and drone control programs
US11873100B2 (en) 2018-12-05 2024-01-16 Nileworks Inc. Drone system, drone, movable body, drone system control method, and drone system control program
JP7329858B2 (en) 2018-12-05 2023-08-21 株式会社ナイルワークス drone system
WO2020116495A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Drone system
JPWO2020116495A1 (en) * 2018-12-05 2021-10-07 株式会社ナイルワークス Drone system
US11661895B2 (en) 2020-02-24 2023-05-30 General Electric Comapny Autonomous safety mode for distributed control of turbomachines
CN113294247A (en) * 2020-02-24 2021-08-24 通用电气公司 Autonomous safety mode for distributed control of a turbomachine
JP7215449B2 (en) 2020-02-28 2023-01-31 豊田合成株式会社 Drone protector
JP2021133910A (en) * 2020-02-28 2021-09-13 豊田合成株式会社 Drone protection device
KR102168842B1 (en) * 2020-07-22 2020-10-22 유콘시스템 주식회사 Emergency control device to respond in the event of a loss of communication or failure situation of a hybrid unmanned aerial vehicle
WO2022176446A1 (en) * 2021-02-19 2022-08-25 ソニーグループ株式会社 Flight vehicle, control method, and program
WO2023238208A1 (en) * 2022-06-06 2023-12-14 株式会社RedDotDroneJapan Aerial photography system, aerial photography method, and aerial mobile body management device

Also Published As

Publication number Publication date
JPWO2018109903A1 (en) 2019-10-24
JP6835871B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2018109903A1 (en) Flight control method, unmanned aircraft, flight system, program, and recording medium
US9789969B2 (en) Impact protection apparatus
US11338923B2 (en) Parachute control system for an unmanned aerial vehicle
JP6123032B2 (en) Assisted takeoff
WO2018190319A1 (en) Flight vehicle and method for controlling flight vehicle
US11209836B1 (en) Long line loiter apparatus, system, and method
US20190138005A1 (en) Unmanned Aerial Vehicle Damage Mitigation System
TWI686686B (en) Method and apparatus for controlling aircraft
JP6302012B2 (en) Collision protection device
KR101723066B1 (en) Drone units for rescue and information providing method for rescue situation using drone units
KR20160094214A (en) An unmanned airborne vehicle and a method for controlling thereof
GB2559185A (en) Surveillance apparatus
JP7166587B2 (en) Monitoring system
CN113138603A (en) Tether management system and method
JP6856670B2 (en) Aircraft, motion control methods, motion control systems, programs and recording media
WO2022075165A1 (en) Autonomous mobile device, flying system, control method, and program
WO2017221867A1 (en) Moving device, program, and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16923952

Country of ref document: EP

Kind code of ref document: A1