WO2018109690A1 - Production of lipid nanoparticles by microwave synthesis - Google Patents

Production of lipid nanoparticles by microwave synthesis Download PDF

Info

Publication number
WO2018109690A1
WO2018109690A1 PCT/IB2017/057900 IB2017057900W WO2018109690A1 WO 2018109690 A1 WO2018109690 A1 WO 2018109690A1 IB 2017057900 W IB2017057900 W IB 2017057900W WO 2018109690 A1 WO2018109690 A1 WO 2018109690A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
microwave
nanoparticles
process according
microwave tube
Prior art date
Application number
PCT/IB2017/057900
Other languages
French (fr)
Portuguese (pt)
Inventor
José Lamartine SOARES SOBRINHO
Suellen MELO TIBÚRCIO CAVALCANTI DUARTE COELHO
Maria De La Salette DE FREITAS FERNANDES HIPÓLITO REIS DIAS RODRIGUES
Cláudia Daniela OLIVEIRA DE LACERDA NUNES PINHO
Original Assignee
Universidade Do Porto
Universidade Federal De Pernambuco - Ufpe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Do Porto, Universidade Federal De Pernambuco - Ufpe filed Critical Universidade Do Porto
Publication of WO2018109690A1 publication Critical patent/WO2018109690A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars

Definitions

  • the present invention is in the field of nanotechnology, specifically in the technology of producing lipid nanoparticles, for medicinal (therapeutic and / or diagnostic), cosmetic and food purposes. It concerns a simple, fast and economical process of obtaining lipid nanoparticles by a new microwave preparation method.
  • LNPs Lipid nanoparticles
  • Solid lipid nanoparticles appeared in the early 1990s (H. Muller et al.,
  • LNPs are generally composed of a physiological or physiologically related lipid matrix and characterized by their versatility, biocompatibility and biodegradability (Das and Chaudhury, 2011, Battaglia and Gallarate, 2012, Pardeike et al., 2009). Lipids are materials that can be degraded by natural processes such as enzymatic activity.
  • the excipients that make up the LNPS matrix are generally recognized as safe (GRAS) (Severino et al., 2012, Pardeike et al., 2009).
  • the lipids used may be triglycerides (example: tristrearin), partial glycerides (example: Imwitor), fatty acids (examples: stearic acid and palmitic acid), steroids (example: cholesterol) and waxes (example: cetyl palmitate) (Mukherjee et al., 2009).
  • Various emulsifying agents and combinations thereof have been used to stabilize lipid dispersions.
  • LNPS have other circulating advantages compared to other colloidal drug delivery systems, including improved kinetic stability, controlled drug release, low toxicity, high drug payload, and the ability to encapsulate lipophilic and hydrophilic drugs (Das and Chaudhury,
  • LNPs have been investigated for various pharmaceutical applications and include various types of administration, such as parenteral (Bondi et al., 2007, Brioschi et al., 2007, Wissing et al., 2004) (Blasi et al. 2007). , perorai (Muller et al., 2006, Martins et al., 2007, Sarmento et al., 2007, Yuan et al., 2007), dermally (Muller et al., 2002) (Priano et al.
  • lipid nanoparticles have become very attractive to the cosmetic industry (Pardeike et al., 2009).
  • Hot and cold high pressure homogenization In high pressure homogenization a particle dispersion is driven at high pressure (100-2000 bar) through a narrow cavity (few micrometers) and accelerated over a short distance at high speed ( about 100 km / h) to meet a barrier. The collision with the barrier enables the formation of small diameter nanoparticles (Mehnert and Mder, 2001). Disadvantages - hot homogenization: Induction of drug degradation by temperature; partitioning effect; complexity of crystallization. Disadvantages - Cold Homogenization: Large particle sizes and wider size distribution; It does not prevent thermal exposure, but minimizes.
  • High Shear Homogenization This method includes fusion of lipids and formation of an emulsion using ultra-turrax and / or sonication.
  • Several parameters influence the particle size obtained such as emulsification time, stirring and cooling rate.
  • Disadvantages Potential metal contamination; wider particle size distribution; physical instability as well as particle growth under storage.
  • Microemulsion technique Preparation by stirring an optically clear mixture at 65 - 70 ° C, comprising: a low melting fatty acid, emulsifier, co-emulsifier and water. This hot microemulsion is immediately dispersed in cold water (2-4 ° C) under stirring. Disadvantages: Need to remove excess water (by ultracentrifugation, lyophilization or dialysis); use of high concentrations of surfactants and co-surfactants.
  • Microwave-assisted microemulsion technique Similar to conventional microemulsion technique. The difference is that the heating step is performed in a microwave and already with all the constituents of the formulation. The microemulsion formed is immediately dispersed in cold water (2-4 ° C) under agitation to form the nanoparticles. Disadvantages: Need to remove excess water (by ultracentrifugation, lyophilization or dialysis); use of high concentrations of surfactants and co-surfactants.
  • Solvent evaporation Lipids are dissolved in an immiscible organic solvent (eg chloroform) and the solution will be emulsified in an aqueous phase with co-solvent. After evaporation of the organic solvent, the lipid will precipitate forming the nanoparticles.
  • an immiscible organic solvent eg chloroform
  • Residual Organic Solvent very dilute dispersions; produces microparticles and not nanoparticles.
  • Solvent Diffusion Lipids are dissolved in a miscible organic solvent (eg acetone) and the solution will be mixed in an aqueous phase with surfactant. Then the organic solvent will be evaporated.
  • a miscible organic solvent eg acetone
  • Disadvantages Residual Organic Solvent; difficulty in producing the particles on a large scale.
  • Double Emulsion An aqueous solution is emulsified in a previously melted lipid or lipid mixture to produce a primary w / o emulsion and is stabilized by surfactants added to the aqueous phase. Thereafter the primary emulsion will be dispersed in a second surfactant solution under constant stirring, forming a double w / o / w emulsion. Disadvantages: Low lipid content; difficult stability; long and multistep process.
  • Solvent Injection (Displacement): The lipid or lipid mixture is solubilized in a semi-polar, water-soluble solvent. The organic phase is rapidly injected under constant agitation into the aqueous phase containing the surfactant. Thus lipid nanopathules precipitate due to the distribution of the solvent to the aqueous phase. Disadvantages: Difficult solvent removal; need for lyophilization or evaporation processes under reduced pressure; low lipid content.
  • a lipid / oil phase is diffused through the pores of a membrane into a tangentially flowing aqueous phase, forming droplets. Oil droplets crystallize to form lipid particles. Disadvantages: Saturation of the pores of the membrane, which lead to its obstruction; Frequent cleaning and membrane replacement procedure.
  • Coacervation technique Lipid nanoparticles are formed from a micellar solution of alkaline salts in the presence of a stabilizing polymeric agent. Acidification by a coacervent solution leads to a drop in pH, causing proton exchange and consequent lipid precipitation. Disadvantages: Method not suitable for encapsulation of pH sensitive drugs.
  • Phase inversion temperature technique Spontaneous inversion of an o / w emulsion to a w / o type emulsion caused by heat treatment (through heating / cooling cycles). Crystallization of lipids results from the breakdown of the emulsion due to the irreversible shock caused by rapid cooling. Disadvantages: Particle aggregation; emulsion instability; Different excipients influence the phase inversion behavior.
  • Spray Drier Lipid and drug are dissolved in an organic solvent (eg chloroform). The solution is then sprayed into an apparatus in which the continuous flow of hot air rapidly evaporates the solvent from the sprayed droplets to dry particles.
  • organic solvent eg chloroform
  • lecithin is used together with lipid.
  • sray-congealing technique Disadvantages: Applied to obtain microparticles and not nanoparticles.
  • US20060024374A1 (Gasco et al., 2006a, Gasco et al., 2006b) describes solid lipid nanoparticle formulations for the treatment of ophthalmic diseases suitable for topical ocular and systemic administration, with a mean diameter of 50 and 400 nm. These nanoparticles being obtained by the microemulsion technique.
  • EP2413918A1 (Padois et al., 2012) relates to the suspension of solid lipid nanoparticles in an aqueous phase with the encapsulated minoxidil drug prepared by high pressure homogenization technique.
  • US20110171308A1 reports a pH-sensitive solid compound used for oral preparations and a method of preparation thereof. It is pH sensitive and can increase the absorption of drugs in the gastrointestinal tract or improve other performances.
  • the method of preparation is reported as novel and uses solvent to dissolve the pH sensitive polymer and drug with subsequent solvent removal.
  • CN102151250A describes a new method for preparing
  • Lipid nanoparticles characterized by 5 steps: (1) dissolution of lipid components, drug and the surfactant may be included in water-miscible organic solvent, corresponding to the oil phase; (2) hydrophilic compounds dissolved in water to form an aqueous phase; (3) then the appropriate oil volume is injected into the stirring aqueous phase in an appropriate volume ratio to obtain a solid dispersion of nanoparticles; (4) the dispersion is lyophilized to remove solvent and deliver a dry product; (5) Finally, it is hydrated to obtain the lipid nanoparticles.
  • Lipid nanostructures characterized by 6 steps: (1) vegetable oil and a suitable proportion fatty acid are mixed to form the oil phase; (2) Span emulsifier in appropriate proportion is added to the oil phase; (3) this mixture is heated to 60-80 ° C, a fat-soluble drug is added, and the water at the same temperature with subsequent use of the high shear homogenizer; (4) the polysorbate emulsifier dissolved in water and heated is added under stirring; (5) the preparation is subjected to ultrasound; (6) Finally, freeze-drying.
  • thermolabile nanoparticles consisting of biocompatible materials such as lipids and biopolymers.
  • a prototype aerosol system is described for single step production of these nanoparticles.
  • - BR1020140173161A2 (Rigon; et al., 2016) describes a process of obtaining solid lipid nanoparticles with trans-resveratrol (RES) by sonication using pegylated lipid, as well as the nanoparticles obtained and their use in antitumor therapy of melanoma.
  • RES trans-resveratrol
  • CN101890170A et al., 2010 refers to the formulation technology of
  • the method presented herein makes it possible to obtain SLN and NLC type lipid particles using the microwave reactor only, and it is possible to produce lipid particles in a very short time (preferably 5-20 minutes).
  • the method is robust, reproducible and allows to control particle characteristics such as particle size by adjusting some factors such as process time, temperature and applied power.
  • the present invention consists in the process of obtaining lipid nanoparticles, especially of the NLC type (nanostructured lipid carriers), by one-pot technique performed solely by microwave equipment.
  • lipid or lipid mixture the constituents are added: the lipid or lipid mixture, surfactant (s), if applicable, co-sufactor (s), aqueous solution and the active compound (s) for therapeutic and / or preventive and / or nutritional and / or cosmetic and / or diagnostic, and subjected to heating at or above the melting temperature of the lipid constituents for a given time (1 to 60 minutes) and agitation (low, medium or high).
  • lipid constituents, surfactant (s) and, if applicable, co-surfactant (s) and active compound (s) are added to the microwave tube; This microwave tube is subjected to heating at or above the melting temperature of the lipid constituents for a specified time (1 to 60 minutes) and stirring (low, medium or high). Afterwards the aqueous phase is added to the same tube which is then re-heated at or above the melting temperature of the lipid constituents for a given time (1 to 60 minutes) and stirring (low, medium or high).
  • the nanoemulsions are already obtained by letting them cool - with or without stirring, with or without thermal shock - until reaching room temperature for the solidification of the lipid matrix, with the consequent formation of the lipid nanoparticles themselves.
  • the invention features a closed system, which means less human manipulation - handling of hazardous substances is minimized, less error passivity and thus greater reproducibility.
  • batch processes have inherent risks of batch-to-batch variation, thus requiring careful and complex procedures and controls, continuous processes are typically preferred in the pharmaceutical and chemical industry over batch processes. Continuous processes can lower the cost of production by requiring less space, labor and resources, as well as providing high efficiency and better quality of the desired product compared to a batch process. As such, it would be desirable to provide a continuous process for nanoparticle formulation (ICH, 2000, ICH, 2009a, ICH, 2009b).
  • the present invention circumvents yet other drawbacks such as degradation of sonication energy sensitive active compounds and titanium detachment from the sonication tip inherent in the High Shear Homogenization technique. Additionally, it makes it possible to avoid the isolated step of conventional heating of the aforementioned technique and High Pressure Hot Homogenization, as well as circumvent problems such as high sample stress, low yield, relatively low sample volumes. high requirements and the need for special know-how.
  • microwave microwave
  • the lipid nanoparticles produced by the process of the present invention are within gauge scale, have moderate zeta potentials, and acceptable range polydispersion.
  • the magnitude of the zeta potential in all cases is high enough to provide good physical stability of the nonionic surfactant stabilized systems as used in this invention.
  • FIGURE 1 Process of production of lipid nanoparticles in a single step may or may not have thermal shock and agitation.
  • FIGURE IA Scheme of the invention in single step.
  • FIGURE 1B Flowchart of the invention in single step.
  • FIGURE 2 Two-step lipid nanoparticle production process with or without thermal shock and agitation.
  • FIGURE 2A Scheme of the invention in two steps.
  • FIGURE 2B Flowchart of the invention in two steps.
  • FIGURE 3 Ishikawa diagram for selection of the most critical factors considered development of the new microwave lipid nanoparticle process - bolding the most relevant factors.
  • FIGURE 4 Pareto plots of standard effects for (4A) loading capacity, (4B) polydispersion "PI” and (4C) mean particle size responses. Optimized development of zidovudine formulation.
  • FIGURE 5 Response Surfaces for each of three responses considered in the zidovudine formulation development study.
  • Response load capacity (5A) polydispersity (5B) and average particle size (SC).
  • FIGURE 6 Pareto plots for the polydispersion response "PI” (6A) and average particle size “Size” (6B).
  • FIGURE 7 TEM images of the selected formulation of zidovudine and nevirapine - Figure 7A with zidovudine drug and Figure 7B with nevirapine drug.
  • FIGURE 8 Graph of the in vitro release study of zidovudine optimized formulations.
  • FIGURE 9 Formulation stability study graph. Bars represent mean particle size in nm and circular markers represent zeta potential in mv. In this study the formulations were stored as aqueous suspensions at 4 ° C and protected from light.
  • FIGURE 9A Stability study of "Example 14" zidovudine drug.
  • FIGURE 9B Stability study of "Example 15", nevirapine drug. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention relates to a one-pot microwave synthesis process of solid lipid nanoparticles with an average diameter of 30 to 900 nm, more preferably 60 to 300 nm characterized in that the synthesis of the nanoparticles is performed by heating with micro under 90 ° C with continuous simultaneous stirring followed by cooling.
  • the process is characterized in that the synthesis of lipid nanoparticles comprises:
  • the process is characterized in that the heating is carried out at or above the melting temperature of the lipid constituents for 1 to 60 minutes.
  • the process has a single heating step and is characterized in that the heating is carried out at a temperature of 5 to 20 ° C above the melting temperature of the lipid constituents for 5 to 20 minutes.
  • the process has two heating steps and characterized in that heating is carried out at a temperature of 5 to 15 ° C above the melting temperature of the lipid constituents for 5 to 15 minutes.
  • the process is characterized in that the cooling is performed without constant agitation; with constant stirring to room temperature; or by constant stirring with thermal shock, for partial cooling or to room temperature, by cooling programmed by the microwave itself, by ice bath or a combination thereof.
  • the process is characterized in that agitation is of moderate to vigorous intensity, preferably 900 rpm.
  • stirring is effected by adding a magnetic bar to the microwave tube, which is as large as possible to allow greater homogeneity and more vigorous stirring.
  • the process is characterized in that the final volume of the constituents inserted in the microwave tube is preferably 1/7 to 1/2 the volume of the tube to ensure complete and controlled homogenization during the process. stirring.
  • the process is characterized in that the lipid constituent consists of one or more components selected from the group of fatty acids, steroids, waxes, monoglycerides, diglycerides, triglycerides and optionally phospholipids.
  • the process is characterized in that the surfactant or surfactant assembly is of the nonionic type.
  • the process is characterized in that the co-surfactant consists of one or more components selected from the group butanol, hexanediol, propylene glycol, hexanol, butyric and hexanoic acid, phosphoric acid esters, benzyl alcohol.
  • the process is characterized in that the aqueous solution has an appropriate pH, preferably between 5 and 7, adjustable with buffer solutions, and optionally contains salts, preservatives, antioxidants, stabilizers and markers.
  • the process is characterized in that the lipid or lipid group is comprised in a ratio of 1 to 20%, preferably 1.5 to 8%, of the total weight; 70 to 96% aqueous solution, preferably 80 to 95.5%, of the total weight; surfactants from 1 to 20%, preferably from 2 to 15%, of the total weight; co-surfactants between 0 and 15%, preferably 0 to 10%, of the total weight; and, the active compounds are from 0 to 50% of the lipid constituents, preferably from 1 to 15%.
  • the process is characterized by incorporating binders or markers, specific to each formulation, on the surface of lipid nanoparticles.
  • the process is characterized in that solid lipid nanoparticles having an average diameter of 30 to 900nm, preferably 60 to 300nm, with polydispersion of 0.05 to 0.5, preferably 0, are obtained. , 1 to 0.3, and zeta potential of 10 to 70 mv, preferably 20 to 40 mv.
  • the invention further relates to lipid nanoparticles obtained by the process described above, preferably lipid nanoparticles having an average diameter of 30 to 900 nm, preferably 60 to 300 nm, with polydispersion of 0.05 to 0.5, preferably of 0, 1 to 0.3, and zeta potential of 10 to 70 mV, preferably 20 to 40 mV.
  • the process of the invention has proven to be a surprisingly simple technique for producing lipid nanoparticles which contain active compound (s) which have at least one effective physiological and / or diagnostic effect.
  • the technology of the present invention allows one-pot manufacture of said particles in one or two steps - but in the same reaction tube and same equipment - and, if desired, with active compound (s) charged by these nanostructures.
  • This technique allows the manufacture of small as well as large quantities, ie it is scalable. Contrary to the state of the art nanotechnology, the technique can be carried out in a very simple and fast way, enabling the manufacture by people without know-how in the area, as well as the problem of handling hazardous substances is solved. Unstable substances (eg substances sensitive to sonication energy or organic solvents) as well as substances with distinct physicochemical properties may be inserted into lipid-based nanoparticles.
  • the magnetic bar added to the microwave tube, in which the constituents of the preparation are contained, should preferably be as large as possible with respect to the diameter of the microwave tube, so as to allow greater homogeneity and more vigorous agitation leading to better values. polydispersion and smaller particle sizes of nanoemulsions and hence nanoparticles.
  • the final volume of the constituents inserted into the microwave tube must be controlled and sufficient, preferably from ⁇ to 1 ⁇ 2, to ensure complete and controlled homogenization during the stirring process. Very large or very small volumes compromise the homogenization and consequently the quality parameters of lipid nanoparticles.
  • the nanoparticles obtained by this invention have average sizes between 30 and 900 nm, preferably between 60 and 300 nm; a polydispersion of from 0.05 to 0.5, preferably from 0.1 to 0.3; and the zeta potential has a modular value between 10 and 70 mv, preferably between 20 and 40 mv.
  • the encapsulation efficiency and load capacity, image microscopy analysis, in vitro release study and stability were very similar to the traditional technique "Hot Homogenization by Ultrasonication", by making a comparative.
  • the process of this invention has delivered profiles superior to those of the traditional technique. These aspects depend heavily on formulation for formulation - preselected excipients, compound to be encapsulated, and adjustments to the critical process factors presented here for optimization for each formulation.
  • the method described in the present invention has multiple advantages.
  • the present method enables the production of nanoparticles in a larger size range, between 30 and 900 nm, which is much more interesting for drug delivery systems.
  • the method described by Dunn et al. 2017 first requires the formation of a lipid film on the tube walls, with subsequent addition of water, needs to use organic solvents, chloroform, something our method does not use. Additionally it presupposes the use of very high temperatures, over 200 oc, which in an aqueous environment is only possible with low pressure, so that the water does not boil, therefore the energy consumption is much higher. Additionally, the present methodology also permits the obtainment of NLC.
  • the preparation of the nanoparticles mentioned in the invention may not occur in a single step, preferably, or in two steps, in some cases, for example, of very lipophilic active compounds.
  • One-step preparation In a suitable microwave tube, the lipid or lipid mixture, surfactant (s) and optionally co-sufactant (s), aqueous solution (with appropriate pH and or other required constituent) are added, and may contain the active compound (s) for therapeutic and / or preventative and / or nutritional and / or cosmetic and / or diagnostic purposes which may have lipophilic or hydrophilic characteristics.
  • a magnetic bar is inserted and then sealed with the specific microwave tube cap.
  • This tube with the preparation is then placed in the microwave reactor (CEM Discover SP ® ) and subjected to a temperature equal to or greater than the melting temperature of the lipid constituents, preferably 5 to 20 higher than the melting temperature of the lipid constituents. and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 20 minutes.
  • 2-Step Preparation In a suitable microwave tube the lipid or lipid mixture, surfactant (s) and optionally co-sufactant (s) are placed, and may further contain the active compound (s). A magnetic bar is inserted and then sealed with the specific microwave tube cap. This tube with the preparation is then placed in the microwave reactor (CEM Discover SP ® ) and subjected to a temperature equal to or greater than the melting temperature of the lipid constituents, preferably 5 to 15 ° C above the melting temperature of the lipid constituents, and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 15 minutes.
  • CEM Discover SP ® the microwave reactor
  • an aqueous solution (with appropriate pH and or other required constituent) is added to the same microwave tube and subjected to a melting temperature of the lipid constituents or above, preferably 5 to 15 ° C above the melting temperature. of the lipid constituents, and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 15 minutes.
  • the nanoemulsions formed may or may not be subjected to immediate thermal shock and may or may not be subjected to stirring to ambient temperature with the consequent formation of the nanoparticles themselves.
  • some cooling options among them:
  • Thermal shock which may be partial or even room temperature.
  • Thermal shock can be caused by a cooling mechanism programmed by the microwave itself or by an ice bath or a combination of these. Stirring should be constant until it reaches room temperature;
  • the lipid components used in the process of the present invention may be from the group of fatty acids, steroids, waxes, monoglycerides, diglycerides and triglycerides. Phospholipids may also be added.
  • Surfactants may be selected from the group of nonionics.
  • Co-surfactants are selected but not limited to the group comprising: low molecular weight alcohols or glycols, such as, for example, butanol, hexanol, hexanediol, propylene glycol; low molecular weight fatty acids such as butyric acid, hexanoic acid, phosphoric acid esters and benzyl alcohol, among others.
  • composition of the formulation may be: lipid components, between 1 and 20%, preferably 1.5 and 8% (by total mass); aqueous solution, between 70 and 96%, preferably 80 and 95.5% (by total mass); surfactants, 1 and 20%, preferably 2 and 15% (by total mass); 0 and 15% co-surfactants, preferably 0 and 10% (by total mass).
  • lipid components between 1 and 20%, preferably 1.5 and 8% (by total mass); aqueous solution, between 70 and 96%, preferably 80 and 95.5% (by total mass); surfactants, 1 and 20%, preferably 2 and 15% (by total mass); 0 and 15% co-surfactants, preferably 0 and 10% (by total mass).
  • the process of the present invention has numerous advantages over the state of the art, including, for example: better process control, considerably simplified, fast, scalable, sustainable operation, safe and economical operation, all-in-one process, pot, and necessarily using only one device.
  • the process of the non-invention does not require the use of any organic solvent,
  • Lipid nanoparticles according to the present invention have an average diameter of between 30 and 900 nm, preferably between 60 and 300 nm; a polydispersion of from 0.05 to 0.5, preferably from 0.1 to 0.3; and the zeta potential has a modular value between 10 and 70 mv, preferably between 20 and 40 mv. These parameters are adjustable according to each objective. Thus, they may be successfully employed as carriers for active compounds that have at least one effective physiological and / or diagnostic effect.
  • Table 1 General table with all formulations used as examples of the Invention (1-a) and test results (1-b).
  • * 17 partial heat shock cooling (up to 70 to 60 ° C) and constant stirring and then complete cooling at room temperature;
  • Compritol ® ATO 888 solid lipid
  • Ratio lipid phase / aqueous phase 1/10
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature without magnetic stirring for at least 10 minutes.
  • the obtained lipid nanoformulations had - through n.6 - average size of 853nm and polydispersion of 0.376.
  • Ratio lipid phase / aqueous phase 1/20
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
  • the obtained lipid nanoformulations had - through n.6 - average size of 703 nm and polydispersion of 0.356.
  • Ratio lipid phase / aqueous phase 1/20
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the obtained lipid nanoformulations had - through n.6 - average size of 716 nm and polydispersion of 0.361.
  • Compritol ® ATO 888 solid lipid
  • Mygliol 812 liquid lipid
  • 250.5 mg Tween 80 5 mL aqueous solution pH 7.4 (Hepes buffer plus adjustment with NaCI IM) and the largest possible magnetic bar that fits into the microwave tube.
  • Ratio lipid phase / aqueous phase 1/30
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
  • the lipid nanoformulations obtained had - through n.6 - average size of 233 nm and polydispersion of 0.278.
  • Ratio lipid phase / aqueous phase 1/30
  • Lipid phase / surfactant ratio 1 / 1.5 Solid lipid / liquid lipid ratio: 3/1
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the lipid nanoformulations obtained had - through n.6 - average size of 183 nm and polydispersion of 0.298.
  • Ratio lipid phase / aqueous phase 1/40
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
  • the lipid nanoformulations obtained had - through n.6 - average size of 93 nm and polydispersion of 0.218.
  • Ratio lipid phase / aqueous phase 1/40
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the lipid nanoformulations obtained had - through n.6 - average size of 95 nm and polydispersion of 0.205.
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the obtained lipid nanoformulations had - through n.6 - average size of 759.5 nm and polydispersion of 0.398.
  • Ratio lipid phase / aqueous phase 1/40
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the obtained lipid nanoformulations had - through n.6 - average size of 121 nm and polydispersion of 0.309.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5 Solid lipid / liquid lipid ratio: 4/1
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the lipid nanoformulations obtained had - through n.6 - average size of 162 nm and polydispersion of 0.231.
  • Ratio lipid phase / aqueous phase 1/50
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the lipid nanoformulations obtained had - through n.6 - average size of 219 nm and polydispersion of 0.390.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1/1
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the lipid nanoformulations obtained had - through n.6 - average size of 902 nm and polydispersion of 0.395.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 2/1
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes.
  • the obtained lipid nanoformulations had - through n.6 - average size of 288 nm and polydispersion of 0.374.
  • Mygliol 812 liquid lipid
  • 150 mg Tween 80 15 mg zidovudine (drug)
  • 5 mL of aqueous solution (MiliQ ultrapure water) and a largest possible magnetic bar that fits into the microwave tube.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.58
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
  • the lipid nanoformulations obtained had - through n.6 - average size of 113 nm, polydispersion of 0.216, zeta potential of -21 mv, TEM analysis confirmed the size of these nanoparticles and showed that they have spherical shape (Figure 7A). 23% encapsulation efficiency, 1.4% load capacity. Drug release assay showed in gastric medium more than 50% of the drug remains in the nanoparticle without being released and at least 24 hours are required to release 100% of the drug in physiological medium from this nanoformulation ( Figures 8 - 8A and 8B).
  • LC - loading capacity
  • PI polydispersion
  • average particle size Some parameters were previously set as a result of the pre-formulation study. Only two quantitative variables were selected for continuation of this study: LL: LS ratio (liquid lipid and solid lipid) in a range of 36.7 mg LL to 63.3 mg SL and 13.3 mg LL to 86.7 mg SL, and amount of Tween surfactant 80, in a range of 79.3 to 220.7 mg.
  • Table 2 presents the matrix of experimental conditions with the combinations of lower (-1) and upper (+1) levels, axial points and central point replication, resulting in a total of 13 experiments for the purpose of analyzing the influence of these variables. study.
  • Table 2 Experimental design performed for optimized development of the zidovudine formulation by the methodology of the invention.
  • B The Pareto diagram shown in figure 4 (4A, 4B, 4C) illustrates the effects of individual factors and their interactions. The length of each bar is proportional to the absolute value of the associated regression coefficient or estimated effect. The effects of all parameters and interactions were standardized (each effect was divided by its standard error). The order in which bars are displayed corresponds to the order of effect size. The chart includes a vertical line indicating the 95% statistical significance limit. An effect was therefore significant if the corresponding bar crossed this vertical line.
  • X and Y are Tween 80 amount and LL: SL ratio, respectively.
  • the critical values found were 158 mg T-80 and 27 mg LL: 73 mg SL for LC response.
  • the critical values were 150 mg T-80 and 25 mg LL: 75 mg SL.
  • the amount of T-80 was fixed at 158 mg and the ratio of LL: SL was fixed at 25mg LL: 75mg SL for the developed formulation.
  • Step 1 In a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg Mygliol 812 (liquid lipid), 150 mg Tween 80, 2 mg nevirapine (drug) and a sized magnetic bar. as large as possible that fits in the microwave tube.
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Step 2 To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
  • the lipid nanoformulations obtained had - through n.6 - average size of 69 nm, polydispersion of 0.263, zeta potential of -22 mv, TEM analysis confirmed the size of these nanoparticles and showed that they have a spherical shape (Figure 7B). 42% encapsulation efficiency, 0.2% load capacity. Physical stability of this formulation was observed for 30 days for all parameters evaluated. This was the time when the stability study was conducted ( Figure 9B).
  • the pH chosen was 8.7, as it corresponds to the isoelectric point of nevirapine drug, aiming to contribute to the greater preference and retention of nevirapine molecular form by the lipid matrix in the formulation.
  • the aqueous phase is composed of Hepes buffer adjusted with 1M NaCl.
  • the solid lipid Stearic Acid was eliminated from the study because it is incompatible with alkaline medium.
  • the solid lipids chosen to remain in this study were: Compritol ® ATO 888, Precitol ® ATO 5.
  • the amount of NVP was set at 2mg because it is an average value that already shows saturation in the lipid phase. And the NVP addition medium was in the lipid phase due to the high lipophilicity of this drug.
  • the surfactant was fixed on Tween 80 for its characteristics of being a steric surfactant and non-toxic. This being added to the lipid phase of the preparation.
  • the ratio of lipid mass to aqueous solution was set at 1 : 50 (w / w). While the solid lipid: liquid lipid ratio was set at 3: 1 (75mg: 25mg) and the total lipid mass: surfactant ratio was set at 1: 1.5 (100mg: 150mg).
  • Cooling was fixed, with partial cooling under stirring for formulation rapidly reaching 70 ° C (programmed in the microwave reactor itself) and completion of cooling at room temperature without stirring.
  • Table 4 Factorial Planning performed for the development of nevirapine formulation by the methodology of the invention
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with an appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 120oC.
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
  • the lipid nanoformulations obtained had - through n.6 - average size of 73 nm, polydispersion of 0.261, zeta potential of -21 mv. Encapsulation efficiency 2.75%, load capacity 0.02%.
  • Step 1 In a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg oleic acid (liquid lipid), 150 mg Tween 80, 2 mg nevirapine (drug) and a sized magnetic bar. as large as possible that fits in the microwave tube.
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Step 2 To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
  • the obtained lipid nanoformulations had - through n.6 - average size of 459 nm and polydispersion of 0.371.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5
  • the microwave tube was properly closed with an appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 120oC.
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to complete the cooling naturally to room temperature with the consequent formation of NLC.
  • the obtained lipid nanoformulations had - through n.6 - average size of 579 nm and polydispersion of 0.381.
  • Step 1 In a microwave tube was added 75 mg of Compritol ® ATO 888 (solid lipid), 150 mg of Tween 80 and a largest possible magnetic bar that fits into the microwave tube. The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Step 2 To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.5
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of SLN.
  • the lipid nanoformulations obtained had - through n.6 - average size of 67 nm, polydispersion of 0.198 and zeta potential of -19mv.
  • Ratio lipid phase / aqueous phase 1/50
  • Lipid phase / surfactant ratio 1 / 1.58
  • the microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
  • the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of SLN.
  • the lipid nanoformulations obtained had - through n.6 - average size of 118 nm, polydispersion of 0.234 and zeta potential of -15mv.
  • Lipid nanoparticles have increasingly attracted much interest from the food industry, particularly pharmaceuticals (Kuchler et al., 2009, Wissing et al., 2004), cosmetics (Wissing and Muller, 2003, Wissing et al., 2004) ( Jee et al., 2006, Weiss et al., 2008) and textile.
  • the present invention is in the field of nanotechnology, specifically the technology of production of lipid nanoparticles, for the purpose of obtaining medicinal (therapeutic and / or diagnostic), cosmetic and food products. Being possible the encapsulation of one or more fat soluble but also water soluble active compound.
  • Lipid nanoparticles may or may not be entrapped and / or have specific markers, and have the potential for their own advantages of lipid nanoparticles, such as: increased bioavailability and stability of very unstable assets, increased solubility of lipophilic active compounds, controlled release of active compound, reduced absorption variability, reduced toxicity, increased efficacy and improved organoleptic characteristics (Llner and Yener, 2007, Severino et al., 2012, Muchow et al., 2008).
  • they may be used for intravenous, intramuscular, oral, rectal, ocular or dermal administration as already mentioned above.
  • Lipid nanoparticles are also considered promising carriers of cosmetic active ingredients as they allow: protection of unstable compounds against chemical degradation, eg retinoids (Volkhard Jenning, 2001); release of the active ingredient in a controlled manner; function as occlusion complexes; be used as UV blockers, capable of acting on their own as sunscreens or in combination with other substances (Wissing and Muller, 2003).
  • Lipid nanoparticles state of the art, new preparation methods and challenges in drug delivery. Expert Opinion on Drug Delivery, 9, 497-508.
  • Nanostructured Lipid Carriers - Containing Anticancer Compounds Preparation , Characterization, and Cytotoxicity Studies. Drug Delivery, 14, 61-67.
  • BRIOSCHI A., ZENGA, F., ZARA, G. P., GASCO, M. R., DUCATI, A. & MAURO, A.
  • Solid lipid nanoparticles could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurological Research, 29, 324-330.
  • Solid Lipid Nanoparticles with a matrix (SLN ®, NLC ®, ® CDP) for Oral Drug Delivery. Drug Development and Industrial Pharmacy, 34, 1394-1405.
  • thermolabile nanoparticles with controlled properties and nanoparticles matrices made thereby.

Abstract

The present invention describes a simple, quick, economical and sustainable production process for producing lipid nanoparticles using a microwave reactor. The technology of the present invention allows one-pot production of said particles, in one or two steps and in a closed system. Said technology does not use organic solvents or large volumes of water. Said technology allows lipid nanoparticles to be produced for medicinal (therapeutic and/or diagnostic), cosmetic and nutritional purposes. By adjusting the main critical factors of the process, such as time, temperature and stirring efficiency (which are dependent on the dimensions of the magnetic bar, stirring speed and total volume of the formulation), it is possible to produce lipid nanoparticles with the intended features, such as: average size comprised between 30 and 900 nm, preferably between 60 and 300 nm; polydispersion between 0.05 and 0.5, preferably between 0.1 and 0.3; and modular zeta potential value between 10 and 50 mV, preferably between 20 and 40 mV.

Description

DESCRIÇÃO  DESCRIPTION
PRODUÇÃO DE NANO PARTÍCULAS LIPÍDICAS MEDIANTE SÍNTESE POR MICROONDAS PRODUCTION OF LIPID NANO PARTICULES BY MICROWAVE SYNTHESIS
Domínio da invenção Field of the invention
A presente invenção insere-se na área da nanotecnologia, especificamente na tecnologia de produção de nanopartículas lipídicas, para fins medicinais (terapêutica e/ou diagnóstico), cosméticos e alimentares. Diz respeito a um processo simples, rápido e económico de obtenção de nanopartículas lipídicas, através de um novo método de preparação por microondas. The present invention is in the field of nanotechnology, specifically in the technology of producing lipid nanoparticles, for medicinal (therapeutic and / or diagnostic), cosmetic and food purposes. It concerns a simple, fast and economical process of obtaining lipid nanoparticles by a new microwave preparation method.
Antecedentes da invenção Background of the invention
Nas últimas décadas, muitos sistemas coloidais têm sido desenvolvidos e estudados para melhorar a administração de fármacos, por forma a aumentar a entrega nos tecidos alvo e a diminuir os efeitos secundários. Estes veículos incluem micelas, nanoemulsões, nanosuspensões, nanopartículas poliméricas e lipossomas. Para a maioria desses transportadores, um método de produção de baixo custo em grande escala não existe. As nanopartículas lipídicas (LNPs) surgiram com o potencial de superar esta limitação, apresentando ainda outras vantagens. Over the past decades, many colloidal systems have been developed and studied to improve drug delivery to increase delivery to target tissues and decrease side effects. These vehicles include micelles, nanoemulsions, nanosuspensions, polymeric nanoparticles and liposomes. For most of these carriers, a low cost large scale production method does not exist. Lipid nanoparticles (LNPs) have emerged with the potential to overcome this limitation, with other advantages.
As nanopartículas lipídicas sólidas (SLN) surgiram no início dos anos 90 (H. Muller et al., Solid lipid nanoparticles (SLN) appeared in the early 1990s (H. Muller et al.,
2011). Desde aí que vários grupos se dedicaram ao seu estudo e modificações com o intuito de melhorarem as suas propriedades a partir do conceito original, criando assim sistemas mais complexos, tais como os carregadores lipídicos nanoestruturados (NLC) e os conjugados lípido- fármaco (Kriti Soni, 2015). Todos eles se baseiam no uso de materiais lipídicos para formar um veículo transportador, o que se apresenta muito vantajoso sobre outros tipos de materiais. Todas as LNPs são geralmente compostas por uma matriz de lípidos fisiológicos ou fisiologicamente relacionados e caracterizados pela sua versatilidade, biocompatibilidade e biodegradabilidade (Das and Chaudhury, 2011, Battaglia and Gallarate, 2012, Pardeike et al., 2009). Os lípidos são materiais que podem ser degradados por processos naturais, tais como a atividade enzimática. Devido a estes processos, lípidos complexos são facilmente e completamente degradados no corpo humano. Por conseguinte, os excipientes que compõem a matriz de LNPS são geralmente reconhecidos como seguros (GRAS) (Severino et al., 2012, Pardeike et al., 2009). Os lípidos utilizados podem ser triglicéridos (exemplo: tri- estearina), glicéridos parciais (exemplo: Imwitor), ácidos gordos (exemplos: ácido esteárico e ácido palmítico), esteroides (exemplo: colesterol) e ceras (exemplo: palmitato de cetilo) (Mukherjee et al., 2009). Vários agentes emulsionantes e suas combinações têm sido utilizados para estabilizar as dispersões de lípidos. As LNPS apresentam outras vantagens em circulação quando comparadas com outros sistemas de entrega de fármacos coloidais, incluindo a melhoria da estabilidade cinética, libertação de fármaco controlada, baixa toxicidade, elevada carga útil de fármaco e a capacidade de encapsular fármacos lipofílicos e hidrofílicos (Das and Chaudhury, 2011). Since then, several groups have devoted themselves to their study and modifications in order to improve their properties from the original concept, thus creating more complex systems such as nanostructured lipid carriers (NLC) and lipid-drug conjugates (Kriti Soni). , 2015). They all rely on the use of lipid materials to form a carrier vehicle, which is very advantageous over other types of materials. All LNPs are generally composed of a physiological or physiologically related lipid matrix and characterized by their versatility, biocompatibility and biodegradability (Das and Chaudhury, 2011, Battaglia and Gallarate, 2012, Pardeike et al., 2009). Lipids are materials that can be degraded by natural processes such as enzymatic activity. Due to these processes, complex lipids are easily and completely degraded in the human body. Therefore, the excipients that make up the LNPS matrix are generally recognized as safe (GRAS) (Severino et al., 2012, Pardeike et al., 2009). The lipids used may be triglycerides (example: tristrearin), partial glycerides (example: Imwitor), fatty acids (examples: stearic acid and palmitic acid), steroids (example: cholesterol) and waxes (example: cetyl palmitate) (Mukherjee et al., 2009). Various emulsifying agents and combinations thereof have been used to stabilize lipid dispersions. LNPS have other circulating advantages compared to other colloidal drug delivery systems, including improved kinetic stability, controlled drug release, low toxicity, high drug payload, and the ability to encapsulate lipophilic and hydrophilic drugs (Das and Chaudhury,
2011). 2011).
Atualmente, mais de 40 grupos de pesquisa em todo o mundo, trabalham de uma forma sistemática com LNPs, tendo sido publicados mais de 2000 artigos com arbitragem científica desde 1995. Isto prova o interesse crescente no campo das nanopartículas lipídicas. As LNPs têm sido investigadas para várias aplicações farmacêuticas e contemplando vários tipos de administração, como por exemplo: parentérica (Bondi et al., 2007, Brioschi et al., 2007, Wissing et al., 2004) (Blasi et al. 2007), perorai (Muller et al., 2006, Martins et al., 2007, Sarmento et al., 2007, Yuan et al., 2007), por via cutânea (Muller et al., 2002) (Priano et al. 2007), ocular (Attama and Muller-Goymann, 2008, Ugazio et al., 2002) e pulmonar (Xiang et al. 2007; Liu et al. 2008). Adicionalmente, e uma vez que têm sido bastante estudadas para aplicação dérmica, as nanopartículas lipídicas tornaram-se muito atrativas para a indústria cosmética (Pardeike et al., 2009). Currently, more than 40 research groups around the world work systematically with LNPs, and more than 2000 peer-reviewed articles have been published since 1995. This proves the growing interest in the field of lipid nanoparticles. LNPs have been investigated for various pharmaceutical applications and include various types of administration, such as parenteral (Bondi et al., 2007, Brioschi et al., 2007, Wissing et al., 2004) (Blasi et al. 2007). , perorai (Muller et al., 2006, Martins et al., 2007, Sarmento et al., 2007, Yuan et al., 2007), dermally (Muller et al., 2002) (Priano et al. 2007) , ocular (Attama and Muller-Goymann, 2008, Ugazio et al., 2002) and pulmonary (Xiang et al. 2007; Liu et al. 2008). Additionally, and since they have been extensively studied for dermal application, lipid nanoparticles have become very attractive to the cosmetic industry (Pardeike et al., 2009).
Existem várias técnicas relatadas para a produção de nanopartículas lipídicas, cada qual com suas vantagens e desvantagens e por isso apropriadas a realidades distintas (Llner and Yener, 2007, Marcato, 2009). Em seguida são apresentadas de forma sucinta os métodos de preparação existentes: There are several reported techniques for the production of lipid nanoparticles, each with its advantages and disadvantages and therefore appropriate to different realities (Llner and Yener, 2007, Marcato, 2009). The following briefly describe the existing preparation methods:
Homogeneização a alta pressão a quente e a frio: Na homogeneização a alta pressão uma dispersão de partículas é impulsionada com alta pressão (100-2000 bar) através de uma cavidade estreita (poucos micrômetros), e acelerada numa curta distância, com alta velocidade (cerca de 100 km/h) ao encontro de uma barreira. A colisão com a barreira possibilita a formação de nanopartículas com reduzido diâmetro (Mehnert and Mãder, 2001). Desvantagens - homogeneização quente: Indução da degradação do fármaco pela temperatura; efeito de particionamento; complexidade da cristalização. Desvantagens - homogeneização fria: Tamanhos de partículas grandes e distribuição de tamanho mais amplo; não evita exposição térmica, mas minimiza.  Hot and cold high pressure homogenization: In high pressure homogenization a particle dispersion is driven at high pressure (100-2000 bar) through a narrow cavity (few micrometers) and accelerated over a short distance at high speed ( about 100 km / h) to meet a barrier. The collision with the barrier enables the formation of small diameter nanoparticles (Mehnert and Mder, 2001). Disadvantages - hot homogenization: Induction of drug degradation by temperature; partitioning effect; complexity of crystallization. Disadvantages - Cold Homogenization: Large particle sizes and wider size distribution; It does not prevent thermal exposure, but minimizes.
Homogeneização de alto corte e ultrassonicação (High Shear Homogenization): Este método inclui a fusão dos lípidos e formação de uma emulsão recorrendo a ultra-turrax e/ou sonicação. Vários parâmetros influenciam o tamanho da partícula obtido, tais como o tempo de emulsificação, velocidade de agitação e de arrefecimento. Desvantagens: Potencial contaminação por metais; distribuição de tamanho de partícula mais amplo; instabilidade física como de crescimento das partículas sob armazenamento.  High Shear Homogenization: This method includes fusion of lipids and formation of an emulsion using ultra-turrax and / or sonication. Several parameters influence the particle size obtained, such as emulsification time, stirring and cooling rate. Disadvantages: Potential metal contamination; wider particle size distribution; physical instability as well as particle growth under storage.
Técnica microemulsão: Preparação por agitação de uma mistura opticamente transparente a 65 - 70 °C, composta por: um ácido gordo de baixo ponto de fusão, emulsionante, co- emulsificante e água. Esta microemulsão quente é imediatamente dispersa em água fria (2-4 2C) sob agitação. Desvantagens: Necessidade de remoção do excesso de água (por ultracentrifugação, liofilização ou diálise); uso de altas concentrações de surfactantes e co- surfactantes. Microemulsion technique: Preparation by stirring an optically clear mixture at 65 - 70 ° C, comprising: a low melting fatty acid, emulsifier, co-emulsifier and water. This hot microemulsion is immediately dispersed in cold water (2-4 ° C) under stirring. Disadvantages: Need to remove excess water (by ultracentrifugation, lyophilization or dialysis); use of high concentrations of surfactants and co-surfactants.
Técnica microemulsão assistida por microondas: Similar à técnica convencional de microemulsão. A diferença é que a etapa de aquecimento é realizada em aparelho microondas e já com todos os constituintes da formulação. A microemulsão formada é imediatamente dispersa em água fria (2-4ºC) sob agitação para formação das nanopartículas. Desvantagens: Necessidade de remover do excesso de água (por ultracentrifugação, liofilização ou diálise); uso de altas concentrações de surfactantes e co-surfactantes.  Microwave-assisted microemulsion technique: Similar to conventional microemulsion technique. The difference is that the heating step is performed in a microwave and already with all the constituents of the formulation. The microemulsion formed is immediately dispersed in cold water (2-4 ° C) under agitation to form the nanoparticles. Disadvantages: Need to remove excess water (by ultracentrifugation, lyophilization or dialysis); use of high concentrations of surfactants and co-surfactants.
Evaporação de solvente: Os lípidos são dissolvidos num solvente orgânico imiscível (por exemplo: clorofórmio) e a solução será emulsificada numa fase aquosa com co-solvente. Depois da evaporação do solvente orgânico, o lípido precipitará formando as nanopartículas. Desvantagens: Solvente orgânico residual; dispersões muito diluídas; produz micropartículas e não nanopartículas.  Solvent evaporation: Lipids are dissolved in an immiscible organic solvent (eg chloroform) and the solution will be emulsified in an aqueous phase with co-solvent. After evaporation of the organic solvent, the lipid will precipitate forming the nanoparticles. Disadvantages: Residual Organic Solvent; very dilute dispersions; produces microparticles and not nanoparticles.
Difusão de solvente: Os lípidos são dissolvidos num solvente orgânico miscível (por exemplo: acetona) e a solução será misturada numa fase aquosa com surfactante. Depois o solvente orgânico será evaporado. Desvantagens: Solvente orgânico residual; dificuldade de produzir as partículas em larga escala.  Solvent Diffusion: Lipids are dissolved in a miscible organic solvent (eg acetone) and the solution will be mixed in an aqueous phase with surfactant. Then the organic solvent will be evaporated. Disadvantages: Residual Organic Solvent; difficulty in producing the particles on a large scale.
Dupla emulsão: Uma solução aquosa é emulsificada num lípido ou mistura de lípidos previamente derretidos, por forma a produzir uma emulsão primária w/o, sendo estabilizada por surfactantes adicionados na fase aquosa. Seguidamente a emulsão primária será dispersa numa segunda solução de surfactante sob constante agitação, formando uma dupla emulsão w/o/w. Desvantagens: Baixo conteúdo lipídico; difícil estabilidade; processo demorado e em múltiplas etapas.  Double Emulsion: An aqueous solution is emulsified in a previously melted lipid or lipid mixture to produce a primary w / o emulsion and is stabilized by surfactants added to the aqueous phase. Thereafter the primary emulsion will be dispersed in a second surfactant solution under constant stirring, forming a double w / o / w emulsion. Disadvantages: Low lipid content; difficult stability; long and multistep process.
Injeção de solvente (deslocamento): O lípido ou mistura de lípidos são solubilizados num solvente semi-polar e solúvel em água. A fase orgânica é rapidamente injectada, sob agitação constante na fase aquosa que contêm o surfactante. Assim as nanopaticulas lipídicas precipitam devido à distribuição do solvente a fase aquosa. Desvantagens: Difícil remoção de solvente; necessidade de uso de processos de liofilização ou evaporação a pressão reduzida; baixo conteúdo lipídico.  Solvent Injection (Displacement): The lipid or lipid mixture is solubilized in a semi-polar, water-soluble solvent. The organic phase is rapidly injected under constant agitation into the aqueous phase containing the surfactant. Thus lipid nanopathules precipitate due to the distribution of the solvent to the aqueous phase. Disadvantages: Difficult solvent removal; need for lyophilization or evaporation processes under reduced pressure; low lipid content.
Membrana de contato: Uma fase lípido/óleo é difundida através dos poros de uma membrana para uma fase aquosa em fluxo tangencial, formando gotículas. As gotículas de óleo cristalizam, formando partículas lipídicas. Desvantagens: Saturação dos poros da membrana, que levam à sua obstrução; procedimento de limpeza e substituição de membranas frequente.  Contact Membrane: A lipid / oil phase is diffused through the pores of a membrane into a tangentially flowing aqueous phase, forming droplets. Oil droplets crystallize to form lipid particles. Disadvantages: Saturation of the pores of the membrane, which lead to its obstruction; Frequent cleaning and membrane replacement procedure.
Extração de emulsões por fluídos supercríticos: Processo simultâneo de extração por fluidos supercríticos (difusão) dos solventes orgânicos da emulsão e dissolução lipídica. A expansão da fase orgânica leva à cristalização lipídica. Desvantagens: Uso de grandes quantidades de solventes orgânicos. Necessidade de equipamento sofisticado. Extraction of emulsions by supercritical fluids: Simultaneous process of extraction by supercritical fluids (diffusion) of organic emulsion solvents and lipid dissolution. The expansion of the organic phase leads to lipid crystallization. Disadvantages: Use of large quantities of organic solvents. Need sophisticated equipment.
Técnica de coacervação: As nanopartículas lipídicas são formadas a partir de uma solução micelar de sais alcalinos na presença de um agente polimérico estabilizante. A acidificação, por uma solução coacervente leva à descida do pH, causando troca de protões e consequente precipitação do lípido. Desvantagens: Método não adequado para encapsulação de fármacos sensíveis ao pH.  Coacervation technique: Lipid nanoparticles are formed from a micellar solution of alkaline salts in the presence of a stabilizing polymeric agent. Acidification by a coacervent solution leads to a drop in pH, causing proton exchange and consequent lipid precipitation. Disadvantages: Method not suitable for encapsulation of pH sensitive drugs.
Técnica "Phase inversion temperature": Inversão espontânea de uma emulsão o/w para uma do tipo w/o, provocado por tratamento térmico (através de ciclos de aquecimento/arrefecimento). A cristalização dos lípidos resulta da quebra da emulsão devido ao choque irreversível provocado pelo arrefecimento rápido. Desvantagens: Agregação das partículas; instabilidade das emulsões; diferentes excipientes influenciam o comportamento de inversão de fase.  Phase inversion temperature technique: Spontaneous inversion of an o / w emulsion to a w / o type emulsion caused by heat treatment (through heating / cooling cycles). Crystallization of lipids results from the breakdown of the emulsion due to the irreversible shock caused by rapid cooling. Disadvantages: Particle aggregation; emulsion instability; Different excipients influence the phase inversion behavior.
"Spray Drier": O lípido e o fármaco são dissolvidos num solvente orgânico (por exemplo: clorofórmio). Em seguida, a solução é aspergida num aparelho, no qual o fluxo contínuo de ar quente evapora rapidamente o solvente das gotas aspergidas obtendo partículas secas. Para evitar a agregação das partículas e para aumentar as propriedades de fluxo, utiliza-se, por exemplo, lecitina juntamente com o lípido. Existe a variação da técnica sray-congealing. Desvantagens: Aplicado para obter micropartículas e não nanopartículas.  Spray Drier: Lipid and drug are dissolved in an organic solvent (eg chloroform). The solution is then sprayed into an apparatus in which the continuous flow of hot air rapidly evaporates the solvent from the sprayed droplets to dry particles. To avoid particle aggregation and to increase flow properties, for example, lecithin is used together with lipid. There is a variation of the sray-congealing technique. Disadvantages: Applied to obtain microparticles and not nanoparticles.
Quanto a propriedade intelectual relacionada com tecnologia de produção de nanopartículas: Regarding intellectual property related to nanoparticle production technology:
- O documento US20060024374A1 (Gasco et al., 2006a, Gasco et al., 2006b) descreve formulações de nanopartículas de lipídicas sólidas para o tratamento de doenças oftálmicas, adequadas para administração tópica ocular e para a administração sistémica, com diâmetro médio compreendido entre 50 e 400 nm. Estas nanopartículas sendo obtidas pela técnica da microemulsão. US20060024374A1 (Gasco et al., 2006a, Gasco et al., 2006b) describes solid lipid nanoparticle formulations for the treatment of ophthalmic diseases suitable for topical ocular and systemic administration, with a mean diameter of 50 and 400 nm. These nanoparticles being obtained by the microemulsion technique.
- O documento EP2413918A1 (Padois et al., 2012) refere-se a suspensão de nanopartículas de lípidos sólidos numa fase aquosa, com o fármaco minoxidil encapsulado, preparada por técnica de homogeneização a alta pressão a quente.  EP2413918A1 (Padois et al., 2012) relates to the suspension of solid lipid nanoparticles in an aqueous phase with the encapsulated minoxidil drug prepared by high pressure homogenization technique.
- O documento US20110171308A1 (Zhang et al., 2011b, Zhang et al., 2011a) relata um composto sólido sensível ao pH utilizado para preparações orais e um método de preparação destes. É pH sensível, podendo aumentar a absorção de fármacos no trato gastrointestinal ou melhorar outros desempenhos. O método de preparação é relatado como novo e utiliza solvente para dissolução do polímero pH sensível e do fármaco com posterior remoção do solvente.  US20110171308A1 (Zhang et al., 2011b, Zhang et al., 2011a) reports a pH-sensitive solid compound used for oral preparations and a method of preparation thereof. It is pH sensitive and can increase the absorption of drugs in the gastrointestinal tract or improve other performances. The method of preparation is reported as novel and uses solvent to dissolve the pH sensitive polymer and drug with subsequent solvent removal.
- O documento CN102151250A descreve um novo método de preparação de
Figure imgf000006_0001
CN102151250A describes a new method for preparing
Figure imgf000006_0001
nanopartículas lipídicas caracterizado por 5 etapas: (1) dissolução de componentes lipídicos, fármaco e pode ser incluso o tensoativo, em solvente orgânico miscível em água, correspondendo então a fase oleosa; (2) os compostos hidrofílicos dissolvido em água para formar uma fase aquosa; (3) depois procede-se a injeção, numa proporção de volume adequada, da fase oleosa na fase aquosa sob agitação, para obter uma dispersão sólida de nanopartículas; (4) a dispersão é liofilizada para remover o solvente e entregar um produto seco; (5) Por fim, é hidratado para obter as nanopartículas lipídicas. Lipid nanoparticles characterized by 5 steps: (1) dissolution of lipid components, drug and the surfactant may be included in water-miscible organic solvent, corresponding to the oil phase; (2) hydrophilic compounds dissolved in water to form an aqueous phase; (3) then the appropriate oil volume is injected into the stirring aqueous phase in an appropriate volume ratio to obtain a solid dispersion of nanoparticles; (4) the dispersion is lyophilized to remove solvent and deliver a dry product; (5) Finally, it is hydrated to obtain the lipid nanoparticles.
- O documento CN1490055A 2004) relata um método para a preparação de um
Figure imgf000007_0002
- Document CN1490055A 2004) reports a method for the preparation of a
Figure imgf000007_0002
nanoestruturas lipídicas, caracterizado por 6 etapas: (1) óleo vegetal e um ácido gordo em proporção adequada são misturados formando a fase oleosa; (2) é adicionado à fase oleosa o emulsionante Span em proporção adequada; (3) essa mistura é aquecida entre 60-80 ° C, e adicionada um fármaco lipossolúvel, e a água em mesma temperatura com posterior utilização do homogeneizador a alto cisalhamento; (4) o emulsionante polissorbato dissolvido em água e aquecido, é adicionado sob agitação; (5) a preparação é submetida a ultra-som; (6) por fim, freeze-drying. Lipid nanostructures, characterized by 6 steps: (1) vegetable oil and a suitable proportion fatty acid are mixed to form the oil phase; (2) Span emulsifier in appropriate proportion is added to the oil phase; (3) this mixture is heated to 60-80 ° C, a fat-soluble drug is added, and the water at the same temperature with subsequent use of the high shear homogenizer; (4) the polysorbate emulsifier dissolved in water and heated is added under stirring; (5) the preparation is subjected to ultrasound; (6) Finally, freeze-drying.
- O documento UA81093 (U) (Yevheniivna; et al., 2013) descreve um método para a produção de nanopartículas sólidas compreendida de reação entre ácidos gordos e o ingrediente ativo, em proporção adequada, no meio de solvente (clorofórmio) sob aquecimento. O solvente é finalmente evaporado, e o filme de lípidos é obtido.  - Document UA81093 (U) (Yevheniivna; et al., 2013) describes a method for producing solid nanoparticles comprised of reaction between fatty acids and the active ingredient in appropriate proportion in the solvent (chloroform) medium under heating. The solvent is finally evaporated, and the lipid film is obtained.
- O documento US20130035279A1 (Venkataraman and Pawar, 2013) relata um método e um sistema de produção de nanopartículas termolábeis, constituídas de materiais biocompatíveis como lípidos e biopolímeros. Um sistema aerossol protótipo é descrito para produção em etapa única destas nanopartículas.  - US20130035279A1 (Venkataraman and Pawar, 2013) reports a method and system for producing thermolabile nanoparticles consisting of biocompatible materials such as lipids and biopolymers. A prototype aerosol system is described for single step production of these nanoparticles.
- O documento BR1020140173161A2 (Rigon; et al., 2016) descreve um processo de obtenção de nanopartículas lipídicas sólidas com trans-resveratrol (RES) por sonicação, utilizando lípido peguilado, bem como as nanopartículas obtidas e seu uso na terapia antitumoral do melanoma.  - BR1020140173161A2 (Rigon; et al., 2016) describes a process of obtaining solid lipid nanoparticles with trans-resveratrol (RES) by sonication using pegylated lipid, as well as the nanoparticles obtained and their use in antitumor therapy of melanoma.
- O documento CN101890170A et al., 2010) refere-se a tecnologia de formulação de
Figure imgf000007_0001
CN101890170A et al., 2010) refers to the formulation technology of
Figure imgf000007_0001
nanopartículas lipídicas com lectina, sua aplicação e método de preparação por homogeneização a alta pressão a quente. lectin lipid nanoparticles, their application and preparation method by high pressure homogenization in hot.
Além destes, vários outros documentos, como: CN1278682C, US8715736B2, CN102846552B ( and 2014), RO128703A2 (Lacatusu loana et al., 2013), US8709487B1 (Kinnan and In addition to these, various other documents, such as: CN1278682C, US8715736B2, CN102846552B (and 2014), RO128703A2 (Lacatusu loana et al., 2013), US8709487B1 (Kinnan and
Schreuder-Gibson, 2014) e US6551619B1 (Penkler et al., 2003) descrevem formulações e métodos de obtenção de nanopartículas, porém não relacionadas com a técnica proposta nessa invenção. Schreuder-Gibson, 2014) and US6551619B1 (Penkler et al., 2003) describe formulations and methods for obtaining nanoparticles, but not related to the technique proposed in this invention.
A vasta investigação no campo de obtenção das partículas lipídicas, assim como os vários métodos desenvolvidos até agora para a sua produção, atestam das suas enormes potencialidades e interesse comercial. No entanto, a grande maioria dos métodos desenvolvidos até agora apresentam dificuldades para serem transferidos para a escala industrial, o que representa um grande impedimento para que este tipo de partícula possa efetivamente ter sucesso quer como transportadores de fármacos, quer em aplicações cosméticas ou diagnostica. O novo método de obtenção de nanopartículas lipídicas apresentado neste documento, por microondas, é distinto de todos os até agora implementados. Na verdade, e tal como descrito anteriormente, já existe um método em que usa o microondas, porém apenas com a finalidade de aquecimento dos constituintes da formulação em proposta de substituição da técnica tradicional por "banho térmico". Assim como especificado pelos próprios autores. Ou seja, o método em si é a microemulsão, em que utiliza o microondas apenas para prévio aquecimento dos componentes da formulação em substituição ao "banho térmico". The extensive research in the field of obtaining lipid particles, as well as the various methods developed so far for their production, attest to their enormous potential and commercial interest. However, the vast majority of methods developed so far have difficulty being transferred to industrial scale, which is a major impediment for this type of particle to effectively succeed as either drug carriers, cosmetic or diagnostic applications. The new method for obtaining lipid nanoparticles presented in this document by microwave is distinct from all the hitherto implemented. In fact, and as described above, there is already a method in which uses the microwave, but only for the purpose of heating the formulation constituents in order to replace the traditional technique with "thermal bath". As specified by the authors themselves. That is, the method itself is microemulsion, which uses the microwave only to preheat the formulation components in place of the "thermal bath".
O método aqui apresentado possibilita a obtenção de partículas lipídicas do tipo SLN e NLC utilizando unicamente o reator microondas, sendo possível produzir partículas lipídicas num tempo muito curto (preferencialmente de 5-20 minutos). O método é robusto, reprodutível e permite controlar as características das partículas, tal como o tamanho das partículas, pelo ajuste de alguns fatores, como: o tempo do processo, a temperatura e a potência aplicada.  The method presented herein makes it possible to obtain SLN and NLC type lipid particles using the microwave reactor only, and it is possible to produce lipid particles in a very short time (preferably 5-20 minutes). The method is robust, reproducible and allows to control particle characteristics such as particle size by adjusting some factors such as process time, temperature and applied power.
SUMÁRIO DA INVENÇÃO E VANTAGENS SUMMARY OF THE INVENTION AND ADVANTAGES
A presente invenção consiste no processo de obtenção de nanopartículas lipídicas, especialmente do tipo NLC (carregadores lipídicos nanoestruturados), através de técnica one- pot realizada unicamente por equipamento microondas. The present invention consists in the process of obtaining lipid nanoparticles, especially of the NLC type (nanostructured lipid carriers), by one-pot technique performed solely by microwave equipment.
A técnica é caracterizada sumariamente por: The technique is briefly characterized by:
Num tubo de microondas são acrescentados todos os constituintes: o lípido ou mistura de lípidos, surfactante(s), se aplicável, co-sufactante(s), solução aquosa e o composto(s) ativo(s) para fins terapêuticos e/ou preventivos e/ou nutricionais e/ou cosméticos e/ou diagnóstico, e submetido ao aquecimento em temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos por um determinado tempo (1 a 60 minutos) e agitação (baixa, média ou alta). Ou ainda, num primeiro momento são acrescentados ao tubo de microondas os constituintes lipídicos, surfactante(s) e, se aplicável, co-surfactante(s) e composto(s) ativo(s); este tubo de microondas é submetido ao aquecimento em temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos por um determinado tempo (1 a 60 minutos) e agitação (baixa, média ou alta). À posteriori é adicionada a fase aquosa no mesmo tubo que então é novamente submetido ao aquecimento em temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos por um determinado tempo (1 a 60 minutos) e agitação (baixa, média ou alta). In a microwave tube all the constituents are added: the lipid or lipid mixture, surfactant (s), if applicable, co-sufactor (s), aqueous solution and the active compound (s) for therapeutic and / or preventive and / or nutritional and / or cosmetic and / or diagnostic, and subjected to heating at or above the melting temperature of the lipid constituents for a given time (1 to 60 minutes) and agitation (low, medium or high). Or, at first, lipid constituents, surfactant (s) and, if applicable, co-surfactant (s) and active compound (s) are added to the microwave tube; This microwave tube is subjected to heating at or above the melting temperature of the lipid constituents for a specified time (1 to 60 minutes) and stirring (low, medium or high). Afterwards the aqueous phase is added to the same tube which is then re-heated at or above the melting temperature of the lipid constituents for a given time (1 to 60 minutes) and stirring (low, medium or high).
No final do processo realizado são já obtidas as nanoemulsões, bastando deixar arrefecer - com ou sem agitação, com ou sem choque térmico - até atingir a temperatura ambiente para a solidificação da matriz lipídica, com a consequente formação das nanopartículas lipídicas em si.  At the end of the process, the nanoemulsions are already obtained by letting them cool - with or without stirring, with or without thermal shock - until reaching room temperature for the solidification of the lipid matrix, with the consequent formation of the lipid nanoparticles themselves.
PROBLEMAS TÉCNICOS RESOLVIDOS TECHNICAL PROBLEMS SOLVED
Por ser um processo em one-pot está associado a economia de tempo e de recursos, além de maior rendimento, praticidade e reprodutibilidade quando comparado com as demais técnicas que necessitam de várias etapas distintas, de transferências e de controles diferenciados em cada etapa do processo (ICH, 2005, ICH, 2009a, Broadwater et al., 2005). As it is a one-pot process, it is associated with time and resource saving, as well as greater performance, practicality and reproducibility when compared to other techniques that require several distinct steps, transfers and controls. differentiated in each step of the process (ICH, 2005, ICH, 2009a, Broadwater et al., 2005).
Além disso, a invenção tem como característica ser um sistema fechado, o que significa menor manipulação humana - o manuseamento de substâncias perigosas é minimizado, menor passividade a erros e assim maior reprodutibilidade. Como processos descontínuos têm associados riscos inerentes de variação entre lotes, assim, exigindo procedimentos e controles cuidadosos e complexos, processos contínuos são tipicamente preferidos na indústria farmacêutica e química em detrimento a processos descontínuos. Os processos contínuos podem diminuir o custo de produção por necessitarem de menos espaço, trabalho e de recursos, assim como por proporcionar uma elevada eficácia e uma melhor qualidade do produto desejado, em comparação com um processo descontínuo. Como tal, seria desejável proporcionar um processo contínuo para a formulação de nanopartículas (ICH, 2000, ICH, 2009a, ICH, 2009b). In addition, the invention features a closed system, which means less human manipulation - handling of hazardous substances is minimized, less error passivity and thus greater reproducibility. Because batch processes have inherent risks of batch-to-batch variation, thus requiring careful and complex procedures and controls, continuous processes are typically preferred in the pharmaceutical and chemical industry over batch processes. Continuous processes can lower the cost of production by requiring less space, labor and resources, as well as providing high efficiency and better quality of the desired product compared to a batch process. As such, it would be desirable to provide a continuous process for nanoparticle formulation (ICH, 2000, ICH, 2009a, ICH, 2009b).
Trata-se de um processo rápido (geralmente de 5 a 20 minutos), económico (para a produção apenas é necessário o equipamento microondas e seus utensílios próprios), mais controlável e mensurável, com menor manipulação humana, maior uniformidade de distribuição do aquecimento, controle da fusão dos constituintes da formulação e controle da energia aplicada necessária a formação das nanopartículas. Mais ainda, trata-se de uma técnica ecológica (sem necessidade de solventes orgânicos) e escalável para produções industriais. A presente invenção contorna ainda outros inconvenientes, como degradação de compostos ativos sensíveis a energia de sonicação e desprendimento de titânio da ponta de sonicação inerentes a técnica de Homogeneização de alto corte (High Shear Homogenization). Adicionalmente, torna possível evitar a etapa isolada de aquecimento convencional da técnica atrás mencionada e da Homogeneização de alta pressão a quente (High Pressure Hot Homogenization), bem como, contorna problemas como elevado stress da amostra, o baixo rendimento, os volumes de amostra relativamente altas exigidas e a necessidade de know- how especial.  It is a fast (usually 5 to 20 minutes) process, economical (only microwave equipment and its own utensils required for production), more controllable and measurable, with less human handling, greater uniformity of heat distribution, control of the fusion of the constituents of the formulation and control of the applied energy required to form the nanoparticles Moreover, it is an ecological technique (no need for organic solvents) and scalable for industrial production. The present invention circumvents yet other drawbacks such as degradation of sonication energy sensitive active compounds and titanium detachment from the sonication tip inherent in the High Shear Homogenization technique. Additionally, it makes it possible to avoid the isolated step of conventional heating of the aforementioned technique and High Pressure Hot Homogenization, as well as circumvent problems such as high sample stress, low yield, relatively low sample volumes. high requirements and the need for special know-how.
A utilização de solventes orgânicos não é ecologicamente amigável, pois são potencialmente tóxicos e devem passar por etapa de remoção da formulação (Wissing et al., 2004), mesmo assim, ainda com o risco de existir quantidades residuais nas preparações feitas por técnicas como: "Evaporação de solvente" e "Difusão de solvente".  The use of organic solvents is not environmentally friendly, as they are potentially toxic and must go through the formulation removal step (Wissing et al., 2004), even though there is a risk of residual amounts in preparations made by techniques such as: "Solvent Evaporation" and "Solvent Diffusion".
Evita ainda etapas adicionais (diluições, remoção do solvente aquoso por técnicas, como diafiltração) e aparelhagem adicional o que deixa o processo mais complexo, mais caro e passível a maiores controles de qualidade como nos processos "técnica microemulsão" e "técnica microemulsão assistida por microondas".  It also avoids additional steps (dilutions, aqueous solvent removal by techniques such as diafiltration) and additional apparatus which makes the process more complex, more expensive and subject to higher quality controls as in the "microemulsion technique" and "microemulsion assisted technique" processes. microwave ".
As nanopartículas lipídicas produzidas pelo processo da presente invenção estão dentro da escala manométrica, possuem potenciais zeta moderados, e polidispersão em faixa aceitáveis. A magnitude do potencial zeta, em todos os casos, é suficientemente elevada para proporcionar uma boa estabilidade física dos sistemas estabilizados por tensoativos não iónicos, tais como utilizados nesta invenção. BREVE DESCRIÇÃO DOS DESENHOS The lipid nanoparticles produced by the process of the present invention are within gauge scale, have moderate zeta potentials, and acceptable range polydispersion. The magnitude of the zeta potential in all cases is high enough to provide good physical stability of the nonionic surfactant stabilized systems as used in this invention. BRIEF DESCRIPTION OF DRAWINGS
Para obter uma completa visualização do objeto desta invenção, são apresentadas as figuras as quais se fazem referências, conforme se segue:  For a complete view of the object of this invention, reference figures are given as follows:
FIGURA 1: Processo de produção de nanopartículas lipídicas em etapa única podendo ou não ter choque térmico e agitação. FIGURE 1: Process of production of lipid nanoparticles in a single step may or may not have thermal shock and agitation.
FIGURA IA: Esquema da invenção em etapa única.  FIGURE IA: Scheme of the invention in single step.
FIGURA 1B: Fluxograma da invenção em etapa única. FIGURE 1B: Flowchart of the invention in single step.
FIGURA 2: Processo de produção de nanopartículas lipídicas em duas etapas podendo ou não ter choque térmico e agitação. FIGURE 2: Two-step lipid nanoparticle production process with or without thermal shock and agitation.
FIGURA 2A: Esquema da invenção em duas etapas.  FIGURE 2A: Scheme of the invention in two steps.
FIGURA 2B: Fluxograma da invenção em duas etapas. FIGURE 2B: Flowchart of the invention in two steps.
FIGURA 3: Diagrama de Ishikawa para seleção dos fatores mais críticos considerados desenvolvimento do novo processo de obtenção das nanopartículas lipídicas por microondas - em negrito os fatores mais relevantes. FIGURE 3: Ishikawa diagram for selection of the most critical factors considered development of the new microwave lipid nanoparticle process - bolding the most relevant factors.
FIGURA 4: Gráficos de Pareto dos efeitos padronizados para as respostas (4A) capacidade de carga, (4B) polidispersão "PI" e (4C) tamanho médio de partícula "size". Desenvolvimento otimizado da formulação com zidovudina.  FIGURE 4: Pareto plots of standard effects for (4A) loading capacity, (4B) polydispersion "PI" and (4C) mean particle size responses. Optimized development of zidovudine formulation.
FIGURA 5: Superfícies de Resposta para cada uma três respostas consideradas no estudo de desenvolvimento da formulação com zidovudina. Resposta capacidade de carga (5A), polidispersão (5B) e tamanho médio de partícula (SC).  FIGURE 5: Response Surfaces for each of three responses considered in the zidovudine formulation development study. Response load capacity (5A), polydispersity (5B) and average particle size (SC).
FIGURA 6: Gráficos de Pareto para a resposta polidispersão "PI" (6A) e tamanho médio de partícula "Size" (6B).  FIGURE 6: Pareto plots for the polydispersion response "PI" (6A) and average particle size "Size" (6B).
FIGURA 7: Imagens TEM da formulação selecionada da zidovudina e da nevirapina - sendo a figura 7A com o fármaco zidovudina e a figura 7B com o fármaco nevirapina.  FIGURE 7: TEM images of the selected formulation of zidovudine and nevirapine - Figure 7A with zidovudine drug and Figure 7B with nevirapine drug.
FIGURA 8: Gráfico do estudo de libertação in vitro da formulações otimizada com o fármaco zidovudina.  FIGURE 8: Graph of the in vitro release study of zidovudine optimized formulations.
FIGURA 8A: Perfil de libertação da Zidovudina in vitro da formulação "exemplo 14" simulando o meio gástrico e temperatura corporal (pH 1.2 a 37ºC). Os dados correspondem a média e desvio padrão para n=2.  FIGURE 8A: In vitro release profile of Zidovudine from formulation "Example 14" simulating gastric environment and body temperature (pH 1.2 at 37 ° C). Data correspond to mean and standard deviation for n = 2.
FIGURA 8B: Perfil de libertação da Zidovudina in vitro a formulação "exemplo 14" simulando o meio fisiológico e temperatura corporal (pH 7.4 a 37ºC). Os dados correspondem a média e desvio padrão para n=2.  FIGURE 8B: In vitro release profile of Zidovudine to formulation "example 14" simulating physiological medium and body temperature (pH 7.4 at 37 ° C). Data correspond to mean and standard deviation for n = 2.
FIGURA 9: Gráfico do estudo de estabilidade das formulações. As barras representam o tamanho médio das partículas em nm e o marcadores circulares representam o potencial zeta em mv. Nesse estudo as formulações foram armazenadas como suspenções aquosas, a 4ºC e protegidas da luz. FIGURE 9: Formulation stability study graph. Bars represent mean particle size in nm and circular markers represent zeta potential in mv. In this study the formulations were stored as aqueous suspensions at 4 ° C and protected from light.
FIGURA 9A: Estudo de estabilidade do "exemplo 14", fármaco zidovudina. FIGURA 9B: Estudo de estabilidade do "exemplo 15", fármaco nevirapina. DESCRIÇÃO DETALHADA DA INVENÇÃO  FIGURE 9A: Stability study of "Example 14" zidovudine drug. FIGURE 9B: Stability study of "Example 15", nevirapine drug. DETAILED DESCRIPTION OF THE INVENTION
A presente invenção refere-se a um processo one-pot de síntese por micro-ondas de nanopartículas lipídicas sólidas com diâmetro médio de 30 a 900 nm, mais preferencialmente de 60 a 300 nm caracterizado por a síntese das nanopartículas ser realizada por aquecimento com micro-ondas a uma temperatura inferior a 90°C com agitação simultânea contínua, seguida de arrefecimento. The present invention relates to a one-pot microwave synthesis process of solid lipid nanoparticles with an average diameter of 30 to 900 nm, more preferably 60 to 300 nm characterized in that the synthesis of the nanoparticles is performed by heating with micro under 90 ° C with continuous simultaneous stirring followed by cooling.
Num modo preferencial de realização da invenção, o processo é caraterizado por a síntese das nanopartículas lipídicas compreender: In a preferred embodiment of the invention, the process is characterized in that the synthesis of lipid nanoparticles comprises:
i) colocação do lípido ou mistura de lipídios, surfactantes e, opcionalmente, co-sufactantes, solução aquosa e compostos ativos num tubo de micro-ondas; (i) placing the lipid or mixture of lipids, surfactants and optionally co-suffactants, aqueous solution and active compounds in a microwave tube;
ii) aquecimento da mistura com energia de micro-ondas, com agitação simultânea; ii) heating the mixture with microwave energy with simultaneous stirring;
iii) arrefecimento até ser atingida a temperatura ambiente. iii) cooling to room temperature.
Num outro modo preferencial de realização da invenção, o processo de acordo com a reivindicação nºl caraterizado por a síntese das nanopartículas lipídicas compreender: In a further preferred embodiment of the invention the process according to claim 1 wherein the synthesis of lipid nanoparticles comprises:
i) colocação do lípido ou mistura de lipídios, surfactantes e, opcionalmente, co-sufactantes e compostos ativos num tubo de micro-ondas; i) placing the lipid or mixture of lipids, surfactants and, optionally, co-sufactants and active compounds in a microwave tube;
ii) aquecimento da mistura com energia de micro-ondas, com agitação simultânea; ii) heating the mixture with microwave energy with simultaneous stirring;
iii) adição de solução aquosa; iii) adding aqueous solution;
iv) aquecimento da mistura com energia de micro-ondas, com agitação simultânea; iv) heating the mixture with microwave energy with simultaneous stirring;
v) arrefecimento até ser atingida a temperatura ambiente. v) cooling to room temperature.
Num modo ainda mais preferencial de realização da invenção, o processo é caracterizado pelo aquecimento ser efetuado a uma temperatura igual ou superior à temperatura de fusão dos constituintes lipídicos, durante 1 a 60 minutos. In an even more preferred embodiment of the invention, the process is characterized in that the heating is carried out at or above the melting temperature of the lipid constituents for 1 to 60 minutes.
Num outro modo ainda mais preferencial de realização da invenção, o p rocesso tem um só passo de aquecimento e é caracterizado pelo aquecimento ser efetuado a uma temperatura de 5 a 20°C superior a temperatura de fusão dos constituintes lipídicos, durante 5 a 20 minutos. In a still more preferred embodiment of the invention, the process has a single heating step and is characterized in that the heating is carried out at a temperature of 5 to 20 ° C above the melting temperature of the lipid constituents for 5 to 20 minutes.
Num outro modo ainda mais preferencial de realização da invenção, o processo tem dois passos de aquecimento e é caracterizado aquecimento ser efetuado a uma temperatura de 5 a 15°C superior à temperatura de fusão dos constituintes lipídicos, durante 5 a 15 minutos. Num outro modo ainda mais preferencial de realização da invenção, o processo é caraterizado por o arrefecimento ser realizado sem agitação constante; com agitação constante até atingir a temperatura ambiente; ou através de agitação constante com choque térmico, para um arrefecimento parcial ou até atingir a temperatura ambiente, através de arrefecimento programado pelo próprio aparelho micro-ondas, por banho de gelo ou ainda uma combinação destes. In another even more preferred embodiment of the invention, the process has two heating steps and characterized in that heating is carried out at a temperature of 5 to 15 ° C above the melting temperature of the lipid constituents for 5 to 15 minutes. In another even more preferred embodiment of the invention, the process is characterized in that the cooling is performed without constant agitation; with constant stirring to room temperature; or by constant stirring with thermal shock, for partial cooling or to room temperature, by cooling programmed by the microwave itself, by ice bath or a combination thereof.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por a agitação ser de intensidade moderada a vigorosa, preferencialmente de 900 rpm. Num modo de realização ainda mais preferencial, a agitação é efetuada por adição de barra magnética ao tubo de microondas, com uma dimensão o maior possível de forma a permitir uma maior homogeneidade e agitação mais vigorosa. In a still more preferred embodiment of the invention, the process is characterized in that agitation is of moderate to vigorous intensity, preferably 900 rpm. In an even more preferred embodiment, stirring is effected by adding a magnetic bar to the microwave tube, which is as large as possible to allow greater homogeneity and more vigorous stirring.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado pelo volume final dos constituintes inseridos no tubo de microondas ser preferencialmente de 1/7 a 1/2 do volume do tubo, para garantir uma completa e controlada homogeneização durante o processo de agitação. In a still more preferred embodiment of the invention, the process is characterized in that the final volume of the constituents inserted in the microwave tube is preferably 1/7 to 1/2 the volume of the tube to ensure complete and controlled homogenization during the process. stirring.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por o constituinte lipídico consistir num ou mais componentes selecionados de entre o grupo de ácidos gordos, esteróides, ceras, monoglicerídeos, diglicerídeos, triglicerídeos e, opcionalmente, fosfolípidos. In a still more preferred embodiment of the invention, the process is characterized in that the lipid constituent consists of one or more components selected from the group of fatty acids, steroids, waxes, monoglycerides, diglycerides, triglycerides and optionally phospholipids.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por o surfactante ou conjunto de surfactantes ser do tipo não iónico. In a still more preferred embodiment of the invention, the process is characterized in that the surfactant or surfactant assembly is of the nonionic type.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por o co-surfactante consistir num ou mais componentes selecionados do grupo butanol, hexanodiol, propilenoglicol, hexanol, ácido butírico e hexanóico, ésteres de ácido fosfórico, álcool benzílico. In a still more preferred embodiment of the invention, the process is characterized in that the co-surfactant consists of one or more components selected from the group butanol, hexanediol, propylene glycol, hexanol, butyric and hexanoic acid, phosphoric acid esters, benzyl alcohol.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por a solução aquosa ter um pH apropriado, preferencialmente entre 5 e 7, ajustável com soluções tampão, e conter opcionalmente sais, conservantes, antioxidantes, estabilizantes e marcadores. In a still more preferred embodiment of the invention, the process is characterized in that the aqueous solution has an appropriate pH, preferably between 5 and 7, adjustable with buffer solutions, and optionally contains salts, preservatives, antioxidants, stabilizers and markers.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por o lípido ou conjunto de lípidos estarem compreendidos numa proporção entre 1 e 20%, preferencialmente de 1,5 a 8%, do peso total; solução aquosa entre 70 e 96%, preferencialmente de 80 a 95,5%, do peso total; surfactantes de 1 a 20%, preferencialmente de 2 a 15%, do peso total; co-surfactantes entre 0 e 15%, preferencialmente de 0 a 10%, do peso total; e, os compostos ativos entre 0 a 50% dos constituintes lipídicos, preferencialmente de 1 a 15%. In a still more preferred embodiment of the invention, the process is characterized in that the lipid or lipid group is comprised in a ratio of 1 to 20%, preferably 1.5 to 8%, of the total weight; 70 to 96% aqueous solution, preferably 80 to 95.5%, of the total weight; surfactants from 1 to 20%, preferably from 2 to 15%, of the total weight; co-surfactants between 0 and 15%, preferably 0 to 10%, of the total weight; and, the active compounds are from 0 to 50% of the lipid constituents, preferably from 1 to 15%.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado pela incorporação de ligantes ou marcadores, específicos a cada formulação, na superfície das nanopartículas lipídicas. In a still more preferred embodiment of the invention, the process is characterized by incorporating binders or markers, specific to each formulation, on the surface of lipid nanoparticles.
Num outro modo ainda mais preferencial de realização da invenção, o processo é caracterizado por serem obtidas nanopartículas lipídicas sólidas com um diâmetro médio de 30 a 900nm, preferencialmente de 60 a 300nm, com polidispersão de 0,05 a 0,5, preferencialmente de 0,1 a 0,3, e potencial zeta de 10 a 70 mv, preferencialmente de 20 a 40mv.  In a still more preferred embodiment of the invention, the process is characterized in that solid lipid nanoparticles having an average diameter of 30 to 900nm, preferably 60 to 300nm, with polydispersion of 0.05 to 0.5, preferably 0, are obtained. , 1 to 0.3, and zeta potential of 10 to 70 mv, preferably 20 to 40 mv.
A invenção refere-se ainda a nanopartículas lipídicas obtidas pelo processo descrito acima, preferencialmente nanopartículas lipídicas com um diâmetro médio de 30 a 900 nm, preferencialmente de 60 a 300 nm, com polidispersão de 0,05 a 0,5, preferencialmente de 0,1 a 0,3, e potencial zeta de 10 a 70 mV, preferencialmente de 20 a 40 mV. The invention further relates to lipid nanoparticles obtained by the process described above, preferably lipid nanoparticles having an average diameter of 30 to 900 nm, preferably 60 to 300 nm, with polydispersion of 0.05 to 0.5, preferably of 0, 1 to 0.3, and zeta potential of 10 to 70 mV, preferably 20 to 40 mV.
O processo da invenção tem provado ser uma técnica surpreendentemente simples para a produção de nanopartículas lipídicas, o qual contêm composto(s) ativo(s) que tem pelo menos um efeito fisiológico e / ou de diagnóstico eficaz. The process of the invention has proven to be a surprisingly simple technique for producing lipid nanoparticles which contain active compound (s) which have at least one effective physiological and / or diagnostic effect.
Em particular, a tecnologia da presente invenção permite o fabrico one-pot das referidas partículas numa ou duas etapas - mas no mesmo tubo reacional e mesmo equipamento - e, se desejado, com composto(s) ativo(s) carregado(s) por essas nanoestruturas. Esta técnica permite o fabrico de pequenas, como também grandes quantidades, ou seja, é escalável. Contrariamente ao estado da arte de nanotecnologia, a técnica pode ser realizada de uma maneira muito simples e rápida, viabilizando a manufatura por pessoas sem know-how na área, bem como, é solucionado o problema da manipulação de substâncias perigosas. Substâncias instáveis (por exemplo, as substâncias sensíveis à energia de sonicação ou a solventes orgânicos), bem como, substâncias com distinta propriedade físico-química podem ser inseridas em nanopartículas à base de lípidos.  In particular, the technology of the present invention allows one-pot manufacture of said particles in one or two steps - but in the same reaction tube and same equipment - and, if desired, with active compound (s) charged by these nanostructures. This technique allows the manufacture of small as well as large quantities, ie it is scalable. Contrary to the state of the art nanotechnology, the technique can be carried out in a very simple and fast way, enabling the manufacture by people without know-how in the area, as well as the problem of handling hazardous substances is solved. Unstable substances (eg substances sensitive to sonication energy or organic solvents) as well as substances with distinct physicochemical properties may be inserted into lipid-based nanoparticles.
Através de ajustes nos principais fatores críticos do processo - como tempo, temperatura e eficiência de agitação (características da barra magnética, velocidade de agitação, volume total da formulação) - é possível obter nanopartículas lipídicas com as características desejadas.  By adjusting key process critical factors - such as time, temperature and stirring efficiency (magnetic bar characteristics, stirring speed, total formulation volume) - it is possible to obtain lipid nanoparticles with the desired characteristics.
A barra magnética adicionada ao tubo de microondas, em que os constituintes da preparação estão contidos, deve preferencialmente ser de tamanho o maior possível face ao diâmetro do tubo de microondas, de forma que permita uma maior homogeneidade e agitação mais vigorosa, conduzindo a melhores valores de polidispersão e tamanhos de partículas mais reduzidos das nanoemulsões e consequentemente das nanopartículas. The magnetic bar added to the microwave tube, in which the constituents of the preparation are contained, should preferably be as large as possible with respect to the diameter of the microwave tube, so as to allow greater homogeneity and more vigorous agitation leading to better values. polydispersion and smaller particle sizes of nanoemulsions and hence nanoparticles.
O volume final dos constituintes inseridos no tubo de microondas deve ser controlado e suficiente, preferencialmente de □ a ½, para garantir uma completa e controlada homogeneização durante o processo de agitação. Volumes muito grandes ou muito pequenos comprometem a homogeneização e consequentemente os parâmetros de qualidade das nanopartículas lipídicas. The final volume of the constituents inserted into the microwave tube must be controlled and sufficient, preferably from □ to ½, to ensure complete and controlled homogenization during the stirring process. Very large or very small volumes compromise the homogenization and consequently the quality parameters of lipid nanoparticles.
Observa-se que, em geral, as nanopartículas obtidas por esta invenção apresentam tamanhos médios compreendidos entre 30 e 900 nm, preferencialmente entre 60 e 300 nm; uma polidispersão de entre 0,05 e 0,5, de preferência entre 0,1 e 0,3; e o potencial zeta tnum valor modular entre 10 e 70 mv, de preferência entre 20 e 40 mv. A eficiência de encapsulação e capacidade de carga, análise da microscópica de imagem, estudo de libertação in vitro e estabilidade se mostraram muito similares a técnica tradicional "Homogenização a quente por ultrassonicação", através da realização de um comparativo. Sendo que em alguns aspectos o processo desta invenção entregou perfis superiores aos da técnica tradicional. Estes aspectos dependem muito de formulação para formulação - excipientes pré-selecionados, composto a ser encapsulado, e ajustes dos fatores críticos do processo aqui apresentado visando a otimização para cada formulação.  It is observed that, in general, the nanoparticles obtained by this invention have average sizes between 30 and 900 nm, preferably between 60 and 300 nm; a polydispersion of from 0.05 to 0.5, preferably from 0.1 to 0.3; and the zeta potential has a modular value between 10 and 70 mv, preferably between 20 and 40 mv. The encapsulation efficiency and load capacity, image microscopy analysis, in vitro release study and stability were very similar to the traditional technique "Hot Homogenization by Ultrasonication", by making a comparative. In some respects the process of this invention has delivered profiles superior to those of the traditional technique. These aspects depend heavily on formulation for formulation - preselected excipients, compound to be encapsulated, and adjustments to the critical process factors presented here for optimization for each formulation.
Relativamente a métodos que recorrem a aquecimento por micro-ondas existentes na literatura, o método descrito na presente invenção apresenta múltiplas vantagens.  With respect to microwave heating methods in the literature, the method described in the present invention has multiple advantages.
Por exemplo, em comparação com o método descrito por Dunn et al. 2017, o presente método possibilita a produção de nanopartículas num range de tamanhos maior, entre 30 e 900 nm, o que para sistemas de entrega de fármacos é muito mais interessante. Para além disso o método descrito por Dunn et al. 2017 exige primeiro a formação de um filme lipídico nas pareces do tubo, com adição posterior da água, necessita de usar solventes orgânicos, clorofórmio, algo que o nosso método não usa. Adicionalmente pressupõe o uso de temperaturas elevadíssimas, mais de 200 ºc, o que num ambiente aquoso, só é possível com baixa pressão, para que a água não entre em ebulição, logo o consumo energético é muito maior. Adicionalmente, a presente metodologia permite também a obtenção de NLC. For example, compared to the method described by Dunn et al. 2017, the present method enables the production of nanoparticles in a larger size range, between 30 and 900 nm, which is much more interesting for drug delivery systems. In addition the method described by Dunn et al. 2017 first requires the formation of a lipid film on the tube walls, with subsequent addition of water, needs to use organic solvents, chloroform, something our method does not use. Additionally it presupposes the use of very high temperatures, over 200 ºc, which in an aqueous environment is only possible with low pressure, so that the water does not boil, therefore the energy consumption is much higher. Additionally, the present methodology also permits the obtainment of NLC.
Por sua vez, em relação ao método de Shah et al. 2016, a principal diferença de nossa metodologia é que quando o processo de micro-ondas termina, as nanopartículas estão prontas; não havendo necessidade de dispersar em água. Este passo é demorado e dilui muito a suspensão. Um aumento da quantidade de água diminui o número de partículas por mL, o que para um processo industrial não é recomendado, pois pode aumentar o número de etapas para eliminar as maiores quantidades de água. Adicionalmente, a presente metodologia permite também a obtenção de NLC. In turn, in relation to the method of Shah et al. 2016, the main difference from our methodology is that when the microwave process is over, the nanoparticles are ready; no need to disperse in water. This step is time consuming and greatly dilutes the suspension. Increasing the amount of water decreases the number of particles per mL, which for an industrial process is not recommended as it may increase the number of steps to eliminate the largest amounts of water. Additionally, the present methodology also permits the obtainment of NLC.
A preparação das nanopartículas mencionadas n a i n v e n ç ã o pode ocorrer numa etapa única, de forma preferencial, ou em duas etapas, para alguns casos, por exemplo, de compostos ativos muito lipofílicos.  The preparation of the nanoparticles mentioned in the invention may not occur in a single step, preferably, or in two steps, in some cases, for example, of very lipophilic active compounds.
Preparação em etapa única: num tubo de microondas apropriado são acrescentados o lípido ou mistura de lípidos, surfactante(s) e, opcionalmente, co-sufactante(s), solução aquosa (com pH apropriado e ou outro constituinte necessário), e pode ainda conter o composto(s) ativo(s) para fins terapêuticos e/ou preventivos e/ou nutricionais e/ou cosméticos e/ou diagnóstico que podem ter características lipofílicas ou hidrofílicas. É inserida uma barra magnética e depois é vedado com a tampa específica do tubo de microondas. Em seguida, este tubo com a preparação é colocado no reator de microondas (CEM Discover SP®) e submetido a uma temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos, preferencialmente de 5 a 20 superior a temperatura de fusão dos constituintes lipídicos, e a uma agitação magnética baixa, média ou alta, preferencialmente alta (aproximadamente 900 rmp), e a um tempo entre 1 a 60 minutos, preferencialmente 5 a 20 minutos. One-step preparation: In a suitable microwave tube, the lipid or lipid mixture, surfactant (s) and optionally co-sufactant (s), aqueous solution (with appropriate pH and or other required constituent) are added, and may contain the active compound (s) for therapeutic and / or preventative and / or nutritional and / or cosmetic and / or diagnostic purposes which may have lipophilic or hydrophilic characteristics. A magnetic bar is inserted and then sealed with the specific microwave tube cap. This tube with the preparation is then placed in the microwave reactor (CEM Discover SP ® ) and subjected to a temperature equal to or greater than the melting temperature of the lipid constituents, preferably 5 to 20 higher than the melting temperature of the lipid constituents. and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 20 minutes.
Preparação em 2 etapas: Num tubo de microondas apropriado são colocados o lípido ou mistura de lípidos, surfactante(s) e, opcionalmente, co-sufactante(s), e pode ainda conter o composto(s) ativo(s). É inserida uma barra magnética e depois é vedado com a tampa específica do tubo de microondas. Em seguida, este tubo com a preparação é colocado no reator de micro-ondas (CEM Discover SP®) e submetido a uma temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos, preferencialmente de 5 a 15 ºc superior a temperatura de fusão dos constituintes lipídicos, e a uma agitação magnética baixa, média ou alta, preferencialmente alta (aproximadamente 900 rmp), e a um tempo entre 1 a 60 minutos, preferencialmente 5 a 15 minutos. Depois desta etapa uma solução aquosa (com pH apropriado e ou outro constituinte necessário) é adicionada ao mesmo tubo de microondas e submetido a uma temperatura igual ou superior a temperatura de fusão dos constituintes lipídicos, preferencialmente de 5 a 15 ºc superior a temperatura de fusão dos constituintes lipídicos, e a uma agitação magnética baixa, média ou alta, preferencialmente alta (aproximadamente 900 rmp), e a um tempo entre 1 a 60 minutos, preferencialmente 5 a 15 minutos. 2-Step Preparation: In a suitable microwave tube the lipid or lipid mixture, surfactant (s) and optionally co-sufactant (s) are placed, and may further contain the active compound (s). A magnetic bar is inserted and then sealed with the specific microwave tube cap. This tube with the preparation is then placed in the microwave reactor (CEM Discover SP ® ) and subjected to a temperature equal to or greater than the melting temperature of the lipid constituents, preferably 5 to 15 ° C above the melting temperature of the lipid constituents, and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 15 minutes. After this step an aqueous solution (with appropriate pH and or other required constituent) is added to the same microwave tube and subjected to a melting temperature of the lipid constituents or above, preferably 5 to 15 ° C above the melting temperature. of the lipid constituents, and at low, medium or high, preferably high (approximately 900 rmp) magnetic stirring, and at a time of 1 to 60 minutes, preferably 5 to 15 minutes.
Opcionalmente, o que varia com a otimização de cada caso, as nanoemulsões formadas podem ser ou não submetidas a imediato choque térmico e podem ser ou não submetidas a agitação até atingir a temperatura ambiente com a consequente formação das nanopartículas em si. Para tanto existem algumas opções de arrefecimento, dentre elas: Optionally, which varies with the optimization of each case, the nanoemulsions formed may or may not be subjected to immediate thermal shock and may or may not be subjected to stirring to ambient temperature with the consequent formation of the nanoparticles themselves. For this there are some cooling options, among them:
- submeter imediatamente a choque térmico, que pode ser parcial ou até atingir a temperatura ambiente. O choque térmico pode se dar por mecanismo de resfriamento programado pelo próprio aparelho microondas ou por banho de gelo ou ainda uma combinação destes. A agitação deve ser constante até atingir a temperatura ambiente;  - immediately subject to thermal shock, which may be partial or even room temperature. Thermal shock can be caused by a cooling mechanism programmed by the microwave itself or by an ice bath or a combination of these. Stirring should be constant until it reaches room temperature;
- submeter apenas a agitação constante até atingir a temperatura ambiente;  - subject to constant stirring only until the ambient temperature
- não submeter nem a choque térmico nem a agitação e progressivamente a temperatura ambiente ser atingida.  - neither subject to thermal shock nor agitation and progressively the ambient temperature is reached.
Os componentes lipídicos utilizados no processo da presente invenção podem ser do grupo dos ácidos gordos, esteroides, ceras, monoglicerídeos, diglicerídeos e triglicerídeos. Pode-se ainda juntar fosfolípidos.  The lipid components used in the process of the present invention may be from the group of fatty acids, steroids, waxes, monoglycerides, diglycerides and triglycerides. Phospholipids may also be added.
Os agentes tensoativos podem ser selecionados entre o grupo dos não iónicos. Os co-agentes tensioativos, quando aplicável, são selecionados, porém não se restringindo, entre o grupo que compreende: álcoois de baixo peso molecular ou glicóis, tais como por exemplo, butanol, hexanol, hexanodiol, propilenoglicol; ácidos gordos de baixo peso molecular, tais como o ácido butírico, ácido hexanóico, ésteres de ácido fosfórico e álcool benzílico, dentre outros. Surfactants may be selected from the group of nonionics. Co-surfactants, where applicable, are selected but not limited to the group comprising: low molecular weight alcohols or glycols, such as, for example, butanol, hexanol, hexanediol, propylene glycol; low molecular weight fatty acids such as butyric acid, hexanoic acid, phosphoric acid esters and benzyl alcohol, among others.
Quanto à composição da formulação, esta pode ser: componentes lipídicos, entre 1 e 20%, preferencialmente 1.5 e 8% (por massa total); solução aquosa, entre 70 e 96%, preferencialmente 80 e 95.5% (por massa total); surfactantes, 1 e 20%, preferencialmente 2 e 15% (por massa total); co-surfactantes 0 e 15%, preferencialmente 0 e 10% (por massa total). O processo da presente invenção apresenta, em relação ao estado da arte, numerosas vantagens, entre as quais, por exemplo: melhor controle do processo, operação consideravelmente simplificada, rápida, escalável, sustentável, operação segura e económica, processo todo fechado, one-pot, e utilizando necessariamente apenas um equipamento. O processo da não invenção não requer utilização de nenhum solvente orgânico, nem energia de sonicação, nem contaminação de metal pesado, ou técnica agressiva e apresenta risco mínimo de contaminação cruzada.  As for the composition of the formulation, it may be: lipid components, between 1 and 20%, preferably 1.5 and 8% (by total mass); aqueous solution, between 70 and 96%, preferably 80 and 95.5% (by total mass); surfactants, 1 and 20%, preferably 2 and 15% (by total mass); 0 and 15% co-surfactants, preferably 0 and 10% (by total mass). The process of the present invention has numerous advantages over the state of the art, including, for example: better process control, considerably simplified, fast, scalable, sustainable operation, safe and economical operation, all-in-one process, pot, and necessarily using only one device. The process of the non-invention does not require the use of any organic solvent, sonication energy, heavy metal contamination, or aggressive technique and presents minimal risk of cross contamination.
As nanopartículas lipídicas, de acordo com a presente invenção, têm um diâmetro médio compreendido entre 30 e 900 nm, preferencialmente entre 60 e 300 nm; uma polidispersão de entre 0,05 e 0,5, de preferência entre 0,1 e 0,3; e o potencial zeta tnum valor modular entre 10 e 70 mv, de preferência entre 20 e 40 mv. Parâmetros esses ajustáveis de acordo com cada objetivo. Assim, podem ser empregues com sucesso como veículos para compostos ativos que têm, pelo menos, um efeito fisiológico e / ou de diagnóstico eficaz.  Lipid nanoparticles according to the present invention have an average diameter of between 30 and 900 nm, preferably between 60 and 300 nm; a polydispersion of from 0.05 to 0.5, preferably from 0.1 to 0.3; and the zeta potential has a modular value between 10 and 70 mv, preferably between 20 and 40 mv. These parameters are adjustable according to each objective. Thus, they may be successfully employed as carriers for active compounds that have at least one effective physiological and / or diagnostic effect.
Para ilustrar a invenção os seguintes exemplos são apresentados de forma sumarizada na tabela 1 e de forma detalhada abaixo: To illustrate the invention the following examples are summarized in Table 1 and detailed below:
Tabela 1: Tabela geral com todas as formulações utilizadas como exemplos da Invenção (1-a) e resultados das análises (1-b).Table 1: General table with all formulations used as examples of the Invention (1-a) and test results (1-b).
Figure imgf000017_0001
*17: arrefecimento com choque térmico parcial (até 70 a 60ºC) e agitação constante e depois completa o arrefecimento em temperatura ambiente; *18: AZT: zidovidina. Tem lopP em cerca de 0.05; *19: NVP: nevirapina. Tem logP em cerca de 2.5; *20: tempo em minuto.
Figure imgf000017_0001
* 17: partial heat shock cooling (up to 70 to 60 ° C) and constant stirring and then complete cooling at room temperature; * 18: AZT: zidovidine. It has lopP at about 0.05; * 19: NVP: nevirapine. It has logP at about 2.5; * 20: time in minutes.
EXEMPLO 1 EXAMPLE 1
(placebo) (placebo)
Num tubo de microondas foi adicionado 400 mg de Compritol® ATO 888 (lípido sólido), 400 mg Compritol ® ATO 888 (solid lipid) was added to a microwave tube,
100 mg de Mygliol 812 (lípido líquido), 750 mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. 100 mg Mygliol 812 (liquid lipid), 750 mg Tween 80, 5mL aqueous solution at pH 7.4 (Hepes buffer plus fit with 1M NaCl) and a largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/10 Ratio lipid phase / aqueous phase: 1/10
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 4/1 Solid lipid / liquid lipid ratio: 4/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado, o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente sem agitação magnética por pelo menos 10 minutos.  At the end of the programmed time, the obtained nanoemulsion microwave tube was allowed to cool to room temperature without magnetic stirring for at least 10 minutes.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de de 853nm e polidispersão de 0.376.  The obtained lipid nanoformulations had - through n.6 - average size of 853nm and polydispersion of 0.376.
EXEMPLO 2 EXAMPLE 2
(placebo) (placebo)
Num tubo de microondas foi adicionado 187.5 mg de Compritol® ATO 888 (lípido sólido), 62.5 mg de Mygliol 812 (lípido líquido), 312.5 mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 187.5 mg of Compritol ® ATO 888 (solid lipid), 62.5 mg of Mygliol 812 (liquid lipid), 312.5 mg of Tween 80, 5 mL of aqueous solution at pH 7.4 (Hepes buffer plus NaCI adjustment 1M) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/20 Ratio lipid phase / aqueous phase: 1/20
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram inseridos em banho de gelo (choque térmico) com agitação magnética constante por 10 minutos. Tempo necessário para a formulação atingir a temperatura ambiente.  At the end of the programmed time, the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 703 nm e polidispersão de 0.356. EXEMPLO 3 The obtained lipid nanoformulations had - through n.6 - average size of 703 nm and polydispersion of 0.356. EXAMPLE 3
(placebo) (placebo)
Num tubo de microondas foi adicionado 187.5 mg de Compritol® ATO 888 (lípido sólido), 65.5 mg de Mygliol (lípido líquido), 312.5 mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI IM) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 187.5 mg Compritol ® ATO 888 (solid lipid), 65.5 mg Mygliol (liquid lipid), 312.5 mg Tween 80.5 mL aqueous solution pH 7.4 (Hepes buffer plus NaCI IM adjustment). ) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/20 Ratio lipid phase / aqueous phase: 1/20
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 716 nm e polidispersão de 0.361.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The obtained lipid nanoformulations had - through n.6 - average size of 716 nm and polydispersion of 0.361.
EXEMPLO 4 EXAMPLE 4
(placebo) (placebo)
Num um tubo de microondas foi adicionado 125.25 mg de Compritol® ATO 888 (lípido sólido), 41.75 mg de Mygliol 812 (lípido líquido), 250.5 mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI IM) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 125.25 mg Compritol ® ATO 888 (solid lipid), 41.75 mg Mygliol 812 (liquid lipid), 250.5 mg Tween 80, 5 mL aqueous solution pH 7.4 (Hepes buffer plus adjustment with NaCI IM) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/30 Ratio lipid phase / aqueous phase: 1/30
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram inseridos em banho de gelo (choque térmico) com agitação magnética constante por 10 minutos. Tempo necessário para a formulação atingir a temperatura ambiente.  At the end of the programmed time, the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 233 nm e polidispersão de 0.278. The lipid nanoformulations obtained had - through n.6 - average size of 233 nm and polydispersion of 0.278.
EXEMPLO 5 EXAMPLE 5
(placebo) (placebo)
Num tubo de microondas foi adicionado 125.25 mg de Compritol® ATO 888 (lípido sólido), 41.75 mg de Mygliol 812 (lípido líquido), 250.5 mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI IM) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 125.25 mg Compritol ® ATO 888 (solid lipid), 41.75 mg Mygliol 812 (liquid lipid), 250.5 mg Tween 80.5 mL aqueous solution pH 7.4 (Hepes buffer plus NaCI adjustment IM) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/30 Ratio lipid phase / aqueous phase: 1/30
Proporção fase lipídica / surfactante: 1/1.5 Proporção lípido sólido / lípido líquido: 3/1 Lipid phase / surfactant ratio: 1 / 1.5 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 183 nm e polidispersão de 0.298.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The lipid nanoformulations obtained had - through n.6 - average size of 183 nm and polydispersion of 0.298.
EXEMPLO 6 EXAMPLE 6
(placebo) (placebo)
Num tubo de microondas foi adicionado 93.75 mg de Compritol® ATO 888 (lípido sólido), In a microwave tube was added 93.75 mg of Compritol ® ATO 888 (solid lipid),
31.25 mg de Mygliol 812 (lípido líquido), 18.75mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. 31.25 mg of Mygliol 812 (liquid lipid), 18.75 mg of Tween 80, 5 mL of aqueous solution at pH 7.4 (Hepes buffer plus fit with 1M NaCl) and a largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/40 Ratio lipid phase / aqueous phase: 1/40
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram inseridos em banho de gelo (choque térmico) com agitação magnética constante por 10 minutos. Tempo necessário para a formulação atingir a temperatura ambiente.  At the end of the programmed time, the microwave tube with nanoemulsions obtained was placed in an ice bath (thermal shock) with constant magnetic stirring for 10 minutes. Time required for formulation to reach room temperature.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 93 nm e polidispersão de 0.218. The lipid nanoformulations obtained had - through n.6 - average size of 93 nm and polydispersion of 0.218.
EXEMPLO 7 EXAMPLE 7
(placebo) (placebo)
Num tubo de microondas foi adicionado 93.75 mg de Compritol® ATO 888 (lípido sólido), 31.25 mg de Mygliol 812 (lípido líquido), 18.75mg de Tween 80, 5mL de solução aquosa em pH 7,4 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. In a microwave tube was added 93.75 mg Compritol ® ATO 888 (solid lipid), 31.25 mg Mygliol 812 (liquid lipid), 18.75 mg Tween 80.5 mL aqueous solution at pH 7.4 (Hepes buffer plus NaCI adjustment 1M) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/40 Ratio lipid phase / aqueous phase: 1/40
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 95 nm e polidispersão de 0.205. EXEMPLO 8 At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The lipid nanoformulations obtained had - through n.6 - average size of 95 nm and polydispersion of 0.205. EXAMPLE 8
(placebo) (placebo)
Num tubo de microondas foi adicionado 104 mg de Precirol® ATO 5 (lípido sólido), 20.8 mg de Mygliol 812 (lípido líquido), 187.5 mg de Tween 80, 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. Proporção fase lipídica / fase aquosa: 1/40 To a microwave tube was added 104 mg Precirol ® ATO 5 (solid lipid), 20.8 mg Mygliol 812 (liquid lipid), 187.5 mg Tween 80.5 ml aqueous solution (MiliQ ultrapure water) and a larger size magnetic bar may fit in the microwave tube. Ratio lipid phase / aqueous phase: 1/40
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 5/1 Solid lipid / liquid lipid ratio: 5/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 759.5 nm e polidispersão de 0.398.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The obtained lipid nanoformulations had - through n.6 - average size of 759.5 nm and polydispersion of 0.398.
EXEMPLO 9 EXAMPLE 9
(placebo) (placebo)
Num tubo de microondas foi adicionado 93.75 mg de Precirol® ATO 5 (lípido sólido), 31.25 mg de Mygliol 812 (lípido líquido), 187.5 mg de Tween 80, 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 93.75 mg Precirol ® ATO 5 (solid lipid), 31.25 mg Mygliol 812 (liquid lipid), 187.5 mg Tween 80, 5 mL of aqueous solution (MiliQ ultrapure water) and a larger size magnetic bar may fit in the microwave tube.
Proporção fase lipídica / fase aquosa: 1/40  Ratio lipid phase / aqueous phase: 1/40
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 121 nm e polidispersão de 0.309.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The obtained lipid nanoformulations had - through n.6 - average size of 121 nm and polydispersion of 0.309.
EXEMPLO 10 EXAMPLE 10
(placebo) (placebo)
Num tubo de microondas foi adicionado 96 mg de Precirol® ATO 5 (lípido sólido), 24 mg de Mygliol 812 (lípido líquido), 180 mg de Tween 80, 6mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 96 mg Precirol ® ATO 5 (solid lipid), 24 mg Mygliol 812 (liquid lipid), 180 mg Tween 80, 6mL aqueous solution (MiliQ ultrapure water) and a larger size magnetic bar may fit in the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Proporção lípido sólido / lípido líquido: 4/1 Lipid phase / surfactant ratio: 1 / 1.5 Solid lipid / liquid lipid ratio: 4/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 15 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 15 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 162 nm e polidispersão de 0.231.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The lipid nanoformulations obtained had - through n.6 - average size of 162 nm and polydispersion of 0.231.
EXEMPLO 11 EXAMPLE 11
(placebo) (placebo)
Num tubo de microondas foi adicionado 66.6 mg de Precirol® ATO 5 (lípido sólido), 33.3 mg de Mygliol 812 (lípido líquido), 200 mg de Tween 80, 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 66.6 mg Precirol ® ATO 5 (solid lipid), 33.3 mg Mygliol 812 (liquid lipid), 200 mg Tween 80.5 ml aqueous solution (MiliQ ultrapure water) and a larger size magnetic bar may fit in the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/2 Lipid phase / surfactant ratio: 1/2
Proporção lípido sólido / lípido líquido: 2/1 Solid lipid / liquid lipid ratio: 2/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 20 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 219 nm e polidispersão de 0.390.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The lipid nanoformulations obtained had - through n.6 - average size of 219 nm and polydispersion of 0.390.
EXEMPLO 12 EXAMPLE 12
(placebo) (placebo)
Num tubo de microondas foi adicionado 66.6 mg de Precirol® ATO 5 (lípido sólido), 33.3 mg de Mygliol 812 (lípido líquido), 200 mg de Tween 80, 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 66.6 mg Precirol ® ATO 5 (solid lipid), 33.3 mg Mygliol 812 (liquid lipid), 200 mg Tween 80.5 ml aqueous solution (MiliQ ultrapure water) and a larger size magnetic bar may fit in the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1 Lipid phase / surfactant ratio: 1/1
Proporção lípido sólido / lípido líquido: 2/1 Solid lipid / liquid lipid ratio: 2/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 20 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 902 nm e polidispersão de 0.395.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The lipid nanoformulations obtained had - through n.6 - average size of 902 nm and polydispersion of 0.395.
EXEMPLO 13 EXAMPLE 13
(placebo) (placebo)
Num tubo de microondas foi adicionado 83.3 mg de Precirol® ATO 5 (lípido sólido), 16.7 mg de Mygliol 812 (lípido líquido), 200 mg de Tween 80, 5mL. de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 83.3 mg Precirol ® ATO 5 (solid lipid), 16.7 mg Mygliol 812 (liquid lipid), 200 mg Tween 80.5mL. of aqueous solution (MiliQ ultrapure water) and the largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50  Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 2/1  Lipid phase / surfactant ratio: 2/1
Proporção lípido sólido / lípido líquido: 5/1  Solid lipid / liquid lipid ratio: 5/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões obtidas foram deixadas arrefecer a temperatura ambiente com agitação magnética por ao menos 10 minutos. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 288 nm e polidispersão de 0.374.  At the end of the programmed time the obtained nanoemulsion microwave tube was allowed to cool to room temperature with magnetic stirring for at least 10 minutes. The obtained lipid nanoformulations had - through n.6 - average size of 288 nm and polydispersion of 0.374.
EXEMPLO 14 EXAMPLE 14
(com o fármaco Zidovudina)  (with the drug Zidovudine)
Num tubo de microondas foi adicionado 75 mg de Precirol® ATO 5 (lípido sólido), 25 mg deTo a microwave tube was added 75 mg Precirol ® ATO 5 (solid lipid), 25 mg
Mygliol 812 (lípido líquido), 150 mg de Tween 80, 15 mg de zidovudina (fármaco), 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. Mygliol 812 (liquid lipid), 150 mg Tween 80, 15 mg zidovudine (drug), 5 mL of aqueous solution (MiliQ ultrapure water) and a largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50  Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.58  Lipid phase / surfactant ratio: 1 / 1.58
Proporção lípido sólido / lípido líquido: 3/1  Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo de microondas com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das NLC.  At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 113 nm, polidispersão de 0.216, potencial zeta de -21 mv, análise TEM comprovou o tamanho destas nanopartículas e mostrou que essas têm forma esférica (figura 7A). Eficiência de encapsulação de 23%, capacidade de carga de 1.4%. Ensaio de libertação do fármaco mostrou em meio gástrico mais de 50% do fármaco permanece na nanopartícula sem ser libertado e ao menos 24 horas são necessárias para libertar 100% do fármaco em meio fisiológico desta nanoformulação (figura 8 - 8A e 8B).  The lipid nanoformulations obtained had - through n.6 - average size of 113 nm, polydispersion of 0.216, zeta potential of -21 mv, TEM analysis confirmed the size of these nanoparticles and showed that they have spherical shape (Figure 7A). 23% encapsulation efficiency, 1.4% load capacity. Drug release assay showed in gastric medium more than 50% of the drug remains in the nanoparticle without being released and at least 24 hours are required to release 100% of the drug in physiological medium from this nanoformulation (Figures 8 - 8A and 8B).
Quanto a estabilidade física da formulação, observou-se que se manteve estável pelo tempo total avaliado de 45 dias, contudo, com apenas 22 dias já evidenciou alto decaimento (superior a 50%) para a resposta capacidade de carga (figura 9A).  Regarding the physical stability of the formulation, it was observed that it remained stable for the total evaluated time of 45 days, however, with only 22 days already showed high decay (greater than 50%) for the load capacity response (Figure 9A).
A abordagem do desenvolvimento desta formulação com o fármaco zidovudina é detalhada em seguida. - Previamente foi realizado um estudo de pré-formulação que consistiu das seguintes etapas: a. Teste de degradação do fármaco zidovudina submetida a reator de microondas, nas condições: 20 mg de zidovudina foi colocado no tubo de microondas, solubilizado com 5 mL de água ultrapura e submetido a 90ºC por 10 minutos em microondas. Posteriormente a zidovudina foi quantificada por espectrofotômetro e o valor do doseamento foi equivalente a quantidade pesada, ou seja, não evidenciou degradação. The approach of developing this formulation with zidovudine drug is detailed below. - Previously a pre-formulation study was carried out which consisted of the following steps: a. Zidovudine microwave degradation drug degradation test under the conditions: 20 mg zidovudine was placed in the microwave tube, solubilized with 5 mL of ultrapure water and subjected to 90 ° C for 10 minutes in microwave. Subsequently, zidovudine was quantified by spectrophotometer and the assay value was equivalent to the heavy amount, ie, it did not show degradation.
b. Foi feita uma otimização da metodologia, não sendo necessário o choque térmico da formulação ao sair do microondas. Pois a melhoria de tamanho de partícula e ou polidispersão era insignificante, enquanto que havia perda capacidade de carga das nanopartículas avaliadas sugerindo que o choque térmico estava contribuindo para parcial libertação do fármaco da matriz lipídica. B. The methodology was optimized and the thermal shock of the formulation when leaving the microwave was not necessary. For the improvement in particle size and / or polydispersion was negligible, while there was loss of charge capacity of the evaluated nanoparticles suggesting that heat shock was contributing to partial release of the drug from the lipid matrix.
c. Com base em estudos preliminares de desenvolvimento de nanopartícula lipídica tipo NLC por técnica tradicional de homogeneização a quente por ultrasonicação, com finalidade comparativa, é que fixamos a escolha qualitativa do lípido sólido, líquido, surfactante e pH da solução aquosa. ç. Based on preliminary studies of NLC-like lipid nanoparticle development by traditional ultrasonic hot homogenization technique, with comparative purpose, we have determined the qualitative choice of solid lipid, liquid, surfactant and pH of aqueous solution.
d. Através de testes preliminares fizemos uma avaliação da proporção de lípidos : solução aquosa de 1:10, 1:20, 1:30, 1:40 e 1:50. Observamos que para a composição de lípidos e surfactante utilizados nesse estudo a melhor proporção de lípido : solução aquosa era a de 1:50. Sendo esse fator então fixado. d. Through preliminary testing we made an assessment of the ratio of lipids: aqueous solution to 1:10, 1:20, 1:30, 1:40 and 1:50. We observed that for the lipid and surfactant composition used in this study the best lipid: aqueous solution ratio was 1:50. That factor then being fixed.
- Construção da Superfície de Resposta e seleção da formulação otimizado. - Response Surface construction and optimized formulation selection.
a. Foi feito um design composto central e delineamento da superfície resposta para assim identificar a condição experimental ótima que satisfaça simultaneamente a três importantes respostas The. A central composite design and response surface design were made to identify the optimal experimental condition that simultaneously satisfies three important responses.
- capacidade de carga (LC), polidispersão (PI) e tamanho médio das partículas. Alguns parâmetros foram fixados previamente, resultado do estudo de pré-formulação. Sendo selecionadas para continuação desse estudo apenas duas variáveis quantitativas, são elas: proporção de LL: LS (lípido líquido e lípido sólido) num intervalo de 36.7 mg LL para 63.3 mg SL e 13.3 mg LL para 86.7 mg SL, e quantidade do surfactante Tween 80, num intervalo de 79.3 a 220.7 mg. A tabela 2 apresenta a matrix das condições experimentais com as combinações dos níveis inferior (-1) e superior (+1), pontos axiais e replicação do ponto central, resultando no total de 13 experimentos com a finalidade de análise da influência das variáveis desse estudo.  - loading capacity (LC), polydispersion (PI) and average particle size. Some parameters were previously set as a result of the pre-formulation study. Only two quantitative variables were selected for continuation of this study: LL: LS ratio (liquid lipid and solid lipid) in a range of 36.7 mg LL to 63.3 mg SL and 13.3 mg LL to 86.7 mg SL, and amount of Tween surfactant 80, in a range of 79.3 to 220.7 mg. Table 2 presents the matrix of experimental conditions with the combinations of lower (-1) and upper (+1) levels, axial points and central point replication, resulting in a total of 13 experiments for the purpose of analyzing the influence of these variables. study.
Tabela 2: Desenho experimental realizado para o desenvolvimento otimizado da formulação com zidovudina pela metodologia da invenção.
Figure imgf000025_0001
b. O diagrama de Pareto mostrado na figura 4 (4A, 4B, 4C) ilustra os efeitos dos fatores individuais e as suas interações. O comprimento de cada barra é proporcional ao valor absoluto do coeficiente de regressão associado ou efeito estimado. Os efeitos de todos os parâmetros e as interações foram padronizadas (cada efeito foi dividido pelo seu erro padrão). A ordem na qual as barras são exibidas corresponde à ordem do tamanho do efeito. O gráfico inclui uma linha vertical que indica o limite de significância estatística de 95%. Um efeito foi significativo, por conseguinte, se a barra correspondente cruzado esta linha vertical.
Table 2: Experimental design performed for optimized development of the zidovudine formulation by the methodology of the invention.
Figure imgf000025_0001
B. The Pareto diagram shown in figure 4 (4A, 4B, 4C) illustrates the effects of individual factors and their interactions. The length of each bar is proportional to the absolute value of the associated regression coefficient or estimated effect. The effects of all parameters and interactions were standardized (each effect was divided by its standard error). The order in which bars are displayed corresponds to the order of effect size. The chart includes a vertical line indicating the 95% statistical significance limit. An effect was therefore significant if the corresponding bar crossed this vertical line.
c. Foram construídos gráficos da Superfície de Resposta bidimensional (curvas de contorno) ajustados aos dados experimentais para cada resposta (figura 5: 5A, 5B, SC) para identificar as condições ótimas para a análise. ç. Two-dimensional Response Surface plots (contour curves) were plotted to fit the experimental data for each response (Figure 5: 5A, 5B, SC) to identify optimal conditions for analysis.
d. Um modelo quadrático estatisticamente significativo, correspondendo a 95%, 93% e 68% da variância para respostas L.C., PI e tamanho médio de partícula, respectivamente, foi ajustada aos dados, descrevendo a relação entre as respostas máximas e as condições experimentais ótimas. O modelo de regressão quadrática obtida são os seguintes: d. A statistically significant quadratic model, corresponding to 95%, 93% and 68% of the variance for L.C., PI and mean particle size responses, respectively, was fitted to the data, describing the relationship between maximum responses and optimal experimental conditions. The quadratic regression model obtained are as follows:
Capacidade de carga (L.C.) = - 45.91882 + 0.08973x - 0.00024x2 + 1.11304y - 0.00741y2 -  Loading capacity (L.C.) = - 45,91882 + 0.08973x - 0.00024x2 + 1.11304y - 0.00741y2 -
0,00020x0079 0.00020x0079
Polidispersão (PI) = 6.02791 - 0.00751x + 0.00003x2 - 0.14017y + 0.00095y2 - O.OOOOlxy Tamanho médio de partícula = 12861.01158 - 27.19887x + 0.13332x2 - 282.37724y + 2.21025y2 - 0.26229xy Polydispersion (PI) = 6.02791 - 0.00751x + 0.00003x2 - 0.14017y + 0.00095y2 - O.OOOOlxy Average Particle Size = 12861.01158 - 27.19887x + 0.13332x2 - 282.37724y + 2.21025y2 - 0.26229xy
Onde X e Y são quantidade de Tween 80 e proporção de LL:SL, respectivamente. Das superfícies obtidas, os valores críticos encontrados foram 158 mg T-80 e 27 mg LL: 73 mg SL para resposta L.C. Para a resposta PI os valores críticos foram 150mg T-80 e 25mg LL: 75 mg SL. E 175mg T-80 e 26mg LL: 74mg SL para a resposta tamanho médio de partícula. e. A partir da análise da metodologia de superfície de resposta, foi possível determinar as condições do processo para otimizar simultaneamente todas as respostas de interesse no presente estudo, uma vez que os valores críticos para cada resposta foram semelhantes. Desta forma, a quantidade de T-80 foi fixada em 158 mg e a proporção de LL: SL foi fixada em 25mg LL: 75mg SL para a formulação desenvolvida. Where X and Y are Tween 80 amount and LL: SL ratio, respectively. Das surfaces obtained, the critical values found were 158 mg T-80 and 27 mg LL: 73 mg SL for LC response. For the PI response the critical values were 150 mg T-80 and 25 mg LL: 75 mg SL. And 175mg T-80 and 26mg LL: 74mg SL for the average particle size response. and. From the analysis of the response surface methodology, it was possible to determine the process conditions to simultaneously optimize all the responses of interest in the present study, since the critical values for each response were similar. Thus, the amount of T-80 was fixed at 158 mg and the ratio of LL: SL was fixed at 25mg LL: 75mg SL for the developed formulation.
EXEMPLO 15 EXAMPLE 15
(com o fármaco Nevirapina)  (with the drug Nevirapine)
Processo em 2 etapas. 2 step process.
Etapa 1. Num tubo de microondas foi adicionado 75 mg de Compritol® ATO 888 (lípido sólido), 25 mg de Mygliol 812 (lípido líquido), 150 mg de Tween 80, 2 mg de nevirapina (fármaco) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC. Step 1. In a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg Mygliol 812 (liquid lipid), 150 mg Tween 80, 2 mg nevirapine (drug) and a sized magnetic bar. as large as possible that fits in the microwave tube. The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Etapa 2. Ao tubo de microondas foi adicionado 5mL de solução aquosa em pH 8,7 (tampão Hepes mais ajuste com NaCI 1M). O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC.  Step 2. To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das NLC.  At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 69 nm, polidispersão de 0.263, potencial zeta de -22 mv, análise TEM comprovou o tamanho destas nanopartículas e mostrou que essas têm forma esférica (figura 7B). Eficiência de encapsulação de 42%, capacidade de carga de 0.2%. Estabilidade física desta formulação foi observada por 30 dias para todos os parâmetros avaliados. Tempo este em que o estudo de estabilidade foi conduzido (figura 9B).  The lipid nanoformulations obtained had - through n.6 - average size of 69 nm, polydispersion of 0.263, zeta potential of -22 mv, TEM analysis confirmed the size of these nanoparticles and showed that they have a spherical shape (Figure 7B). 42% encapsulation efficiency, 0.2% load capacity. Physical stability of this formulation was observed for 30 days for all parameters evaluated. This was the time when the stability study was conducted (Figure 9B).
A abordagem do desenvolvimento desta formulação com o fármaco nevirapina é detalhada em seguida. - Previamente foi realizado um estudo de pré-formulação que consistiu das seguintes etapas: a. Teste de degradação do fármaco nevirapina submetida a reator de microondas, nas condições: 2 mg de nevirapina foi colocado no tubo de microondas, solubilizado com 5 mL de água ultrapura e submetido a ÍOOºC por 10 minutos em microondas. Posteriormente a nevirapina foi quantificada por espectrofotometro e o valor do doseamento foi equivalente a quantidade pesada. The approach of developing this formulation with nevirapine is detailed below. - Previously a pre-formulation study was carried out which consisted of the following steps: a. Degradation test of nevirapine submitted to microwave reactor under the conditions: 2 mg nevirapine was placed in the microwave tube, solubilized with 5 mL of ultrapure water and subjected to 100 ° C for 10 minutes in microwave. Subsequently nevirapine was quantified by spectrophotometer and the assay value was equivalent to the amount weighed.
b. Foi feito um estudo de solubilidade da nevirapina frente a vários lípidos sólidos e líquidos - conforme pode ser visualizado na tabela 3. Destes, foram pré-selecionados para permanecerem no estudo os lípidos sólidos: Compritol® ATO 888, Precitol® ATO 5, Ácido Esteárico e Superpolystrate e os lípidos líquidos: Miglyol 812 e Ácido oleico. B. A nevirapine solubility study was performed against various solid and liquid lipids - as shown in Table 3. Of these, the solid lipids were pre-selected to remain in the study: Compritol ® ATO 888, Precitol ® ATO 5, Stearic Acid and Superpolystrate and liquid lipids: Miglyol 812 and Oleic acid.
Tabela 3: Teste de solubilidade do fármaco nevirapina frente a variados lípidos. Table 3: Nevirapine drug solubility test against various lipids.
Figure imgf000027_0001
c. O pH escolhido foi o 8.7, por ser correspondente ao ponto isoelétrico do fármaco nevirapina, visando contribuir para a maior preferência e retenção da forma molecular da nevirapina pela matriz lipídica na formulação. Assim, a fase aquosa é composta por tampão Hepes ajustada com NaCI 1M. Nesse estágio o lípido sólido Ácido Esteárico foi eliminado do estudo por ser incompatível com meio alcalino. Os lípidos sólidos que escolhidos a permanecer nesse estudo foram: Compritol® ATO 888, Precitol® ATO 5.
Figure imgf000027_0001
ç. The pH chosen was 8.7, as it corresponds to the isoelectric point of nevirapine drug, aiming to contribute to the greater preference and retention of nevirapine molecular form by the lipid matrix in the formulation. Thus, the aqueous phase is composed of Hepes buffer adjusted with 1M NaCl. At this stage the solid lipid Stearic Acid was eliminated from the study because it is incompatible with alkaline medium. The solid lipids chosen to remain in this study were: Compritol ® ATO 888, Precitol ® ATO 5.
d. A quantidade de NVP foi fixada em 2mg por ser um valor médio em que já se evidencia saturação na fase lipídica. E a o meio de adição da NVP era na fase lipídica devido a alta lipofilicidade desta droga. d. The amount of NVP was set at 2mg because it is an average value that already shows saturation in the lipid phase. And the NVP addition medium was in the lipid phase due to the high lipophilicity of this drug.
e. Alguns fatores qualitativos foram fixados. O surfactante foi fixado no Tween 80 por suas caraterísticas de ser um surfactante estérico e não ser tóxico. Sendo este adicionado a fase lipídica da preparação. and. Some qualitative factors have been fixed. The surfactant was fixed on Tween 80 for its characteristics of being a steric surfactant and non-toxic. This being added to the lipid phase of the preparation.
f. Fatores quantitativos também foram fixados tomando como base vários testes e conhecimento prévio adquirido, visando satisfazer a esta variedade de lípidos desta investigação, nessa invenção demonstrados em alguns exemplos - figura 4. Por isso, a proporção de massa lipídica : solução aquosa foi fixada em 1:50 (w/w). Enquanto de a proporção lípido sólido : lípido líquido foi fixado em 3:1 (75mg:25mg) e a proporção de massa lipídica total : surfactante foi fixado em 1:1,5 (100mg:150mg). f. Quantitative factors were also fixed based on various tests and prior knowledge to satisfy this variety of lipids of this investigation, shown in some examples in this invention - Figure 4. Therefore, the ratio of lipid mass to aqueous solution was set at 1 : 50 (w / w). While the solid lipid: liquid lipid ratio was set at 3: 1 (75mg: 25mg) and the total lipid mass: surfactant ratio was set at 1: 1.5 (100mg: 150mg).
g. Foi feito um teste usando os parâmetros de 90ºC de temperatura por 10 minutos em agitação alta no reator de microondas. Contudo, a nevirapina ficou praticamente toda precipitada, parte floculada e com várias partículas grosseiras de lípidos na preparação final. A nevirapina é um fármaco muito hidrofóbico. Assim, foram feitas otimizações e variações da metodologia da invenção, através do ajuste de fatores críticos do processo, como tempo e temperatura na aplicação da metodologia em etapa única e em duas etapas, o que permitirá avaliar qual destas seria a mais adequada ao desenvolvimento desta formulação. g. A test was performed using the parameters of temperature 90ºC for 10 minutes under high stirring in the microwave reactor. However, nevirapine was almost all precipitated, partly flocculated and with several coarse lipid particles in the final preparation. Nevirapine is a very hydrophobic drug. Thus, optimizations and variations of the methodology of the invention were made by adjusting critical process factors, such as time and temperature in the application of the methodology in one step and in two steps, which will allow us to evaluate which one would be the most suitable for the development of this method. formulation.
h. O arrefecimento foi fixado, sendo um arrefecimento parcial sob agitação para formulação atingir rapidamente 70ºC (programado no próprio reator microondas) e conclusão do arrefecimento em temperatura ambiente sem agitação. H. Cooling was fixed, with partial cooling under stirring for formulation rapidly reaching 70 ° C (programmed in the microwave reactor itself) and completion of cooling at room temperature without stirring.
- Planeamento fatorial empregado no desenvolvimento da formulação após os estudos de pré- formulação: - Factorial planning employed in formulation development after pre-formulation studies:
a. Foi feito um planeamento fatorial 23 completo deste estudo (tabela 4) para otimização das respostas: capacidade de carga (LC), tamanho de partícula (SIZE) e polidispersão (PI). Os três fatores críticos selecionados para essa otimização foram os fatores qualitativos lípido sólido, lípido líquido e processo de produção - porém, no fator processo de produção, que indicará se o processo deve ser em etapa única ou em 2 etapas, estão contidos 2 fatores quantitativos que são tempo e temperatura. Os demais fatores foram fixados na etapa de pré-formulação. The. A complete 2 3 factorial design of this study (Table 4) was made to optimize the responses: loading capacity (LC), particle size (SIZE) and polydispersion (PI). The three critical factors selected for this optimization were the qualitative factors solid lipid, liquid lipid and production process - however, in the production process factor, which will indicate whether the process should be single or 2 steps, 2 quantitative factors are contained. which is time and temperature. The other factors were fixed at the pre-formulation stage.
Tabela 4: Planeamento Fatorial realizado para o desenvolvimento da formulação com nevirapina pela metodologia da invenção Table 4: Factorial Planning performed for the development of nevirapine formulation by the methodology of the invention
Figure imgf000029_0001
b. Para a resposta "PI" o fator lípido líquido e lípido sólido foram estatisticamente significativos (ver Gráfico Pareto da figura 6A), indicando que para menores respostas de polidispersão o lípido líquido a ser selecionado é o Miglyol 812, e o lípido sólido a ser selecionado é o Compritol® ATO 888. Para a resposta "SIZE" apenas o fator lípido líquido foi estatisticamente significativo (p = 0.05), indicando o nível (-) do fator lípido líquido, ou seja, as formulações com Miglyol 812 como as formulações que entregaram valores de tamanho de partículas menores que 400 nm (ver Gráfico Pareto da figura 6B). Para a resposta "LC" foram avaliadas apenas as formulações que entregaram valores próximos dos aceitáveis para as respostas "SIZE" e "PI". Através desses resultados ficou evidente que o processo de produção de uma etapa deveria ser eliminado do desenvolvimento desta formulação, nas condições investigadas.
Figure imgf000029_0001
B. For the "PI" response the liquid lipid and solid lipid factor were statistically significant (see Pareto Chart of Figure 6A), indicating that for lower polydispersion responses the liquid lipid to be selected is Miglyol 812, and the solid lipid to be selected. is Compritol ® ATO 888. For the "SIZE" answer only the liquid lipid factor was statistically significant (p = 0.05), indicating the level (-) of the liquid lipid factor, ie the formulations with Miglyol 812 as the formulations that delivered particle size values smaller than 400 nm (see Pareto Chart of Figure 6B). For the "LC" response, only formulations that delivered values close to the acceptable values for the "SIZE" and "PI" responses were evaluated. From these results it became evident that the one-step production process should be eliminated from the development of this formulation under the investigated conditions.
c. Assim, os fatores qualitativos do planeamento fatorial conduzido foram fixados e a formulação otimizada da nevirapina foi selecionada. ç. Thus, the qualitative factors of the conducted factorial design were fixed and the optimized nevirapine formulation was selected.
EXEMPLO 16 Example 16
(com o fármaco Nevirapine)  (with the drug Nevirapine)
Num tubo de microondas foi adicionado 75 mg de Compritol® ATO 888 (lípido sólido), 25 mg de Mygliol 812 (lípido líquido), 150 mg de Tween 80, 15 mg de nevirapina (fármaco), 5mL de solução aquosa em pH 8,7 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg Mygliol 812 (liquid lipid), 150 mg Tween 80, nevirapine 15 mg (drug), 5 mL aqueous solution at pH 8, 7 (Hepes buffer plus fit with 1M NaCI) and one largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 20 minutos a 120ºC.  The microwave tube was properly closed with an appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 120ºC.
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo de microondas com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das NLC.  At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 73 nm, polidispersão de 0.261, potencial zeta de -21 mv. Eficiência de encapsulação de 2.75%, capacidade de carga de 0.02%. The lipid nanoformulations obtained had - through n.6 - average size of 73 nm, polydispersion of 0.261, zeta potential of -21 mv. Encapsulation efficiency 2.75%, load capacity 0.02%.
EXEMPLO 17 Example 17
(com o fármaco Nevirapina)  (with the drug Nevirapine)
Processo em 2 etapas. 2 step process.
Etapa 1. Num tubo de microondas foi adicionado 75 mg de Compritol® ATO 888 (lípido sólido), 25 mg de ácido oleico (lípido líquido), 150 mg de Tween 80, 2 mg de nevirapina (fármaco) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC. Step 1. In a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg oleic acid (liquid lipid), 150 mg Tween 80, 2 mg nevirapine (drug) and a sized magnetic bar. as large as possible that fits in the microwave tube. The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Etapa 2. Ao tubo de microondas foi adicionado 5mL de solução aquosa em pH 8,7 (tampão Hepes mais ajuste com NaCI 1M). O tubo foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC.  Step 2. To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das NLC.  At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of NLC.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 459 nm e polidispersão de 0.371.  The obtained lipid nanoformulations had - through n.6 - average size of 459 nm and polydispersion of 0.371.
EXEMPLO 18 EXAMPLE 18
(com o fármaco Nevirapina)  (with the drug Nevirapine)
Num tubo de microondas foi adicionado 75 mg de Compritol® ATO 888 (lípido sólido), 25 mg de ácido oleico (lípido líquido), 150 mg de Tween 80, 15 mg de nevirapina (fármaco), 5mL de solução aquosa em pH 8,7 (tampão Hepes mais ajuste com NaCI 1M) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 75 mg Compritol ® ATO 888 (solid lipid), 25 mg oleic acid (liquid lipid), 150 mg Tween 80, nevirapine 15 mg (drug), 5 mL aqueous solution at pH 8, 7 (Hepes buffer plus fit with 1M NaCI) and one largest possible magnetic bar that fits into the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
Proporção lípido sólido / lípido líquido: 3/1 Solid lipid / liquid lipid ratio: 3/1
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 20 minutos a 120ºC.  The microwave tube was properly closed with an appropriate airtight cap and inserted into the microwave equipment for 20 minutes at 120ºC.
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das NLC. At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to complete the cooling naturally to room temperature with the consequent formation of NLC.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 579 nm e polidispersão de 0.381.  The obtained lipid nanoformulations had - through n.6 - average size of 579 nm and polydispersion of 0.381.
EXEMPLO 19 Example 19
(placebo) (placebo)
Processo em 2 etapas.  2 step process.
Etapa 1. Num tubo de microondas foi adicionado 75 mg de Compritol® ATO 888 (lípido sólido), 150 mg de Tween 80 e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC. Step 1. In a microwave tube was added 75 mg of Compritol ® ATO 888 (solid lipid), 150 mg of Tween 80 and a largest possible magnetic bar that fits into the microwave tube. The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Etapa 2. Ao tubo de microondas foi adicionado 5mL de solução aquosa em pH 8,7 (tampão Hepes mais ajuste com NaCI 1M). O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC. Step 2. To the microwave tube was added 5mL of aqueous solution at pH 8.7 (Hepes buffer plus adjustment with 1M NaCl). The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.5 Lipid phase / surfactant ratio: 1 / 1.5
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das SLN.  At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of SLN.
As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 67 nm, polidispersão de 0.198 e potencial zeta de -19mv.  The lipid nanoformulations obtained had - through n.6 - average size of 67 nm, polydispersion of 0.198 and zeta potential of -19mv.
EXEMPLO 20 EXAMPLE 20
(placebo) (placebo)
Num tubo de microondas foi adicionado 75 mg de Precirol® ATO 5 (lípido sólido), 150 mg de Tween 80 e 5mL de solução aquosa (água ultrapura MiliQ) e uma barra magnética com tamanho maior possível que caiba no tubo de microondas. To a microwave tube was added 75 mg Precirol ® ATO 5 (solid lipid), 150 mg Tween 80 and 5mL aqueous solution (MiliQ ultrapure water) and the largest possible magnetic bar to fit in the microwave tube.
Proporção fase lipídica / fase aquosa: 1/50 Ratio lipid phase / aqueous phase: 1/50
Proporção fase lipídica / surfactante: 1/1.58 Lipid phase / surfactant ratio: 1 / 1.58
O tubo de microondas foi devidamente fechado com tampa hermética apropriada e inserido no equipamento microondas por 10 minutos a 90ºC.  The microwave tube was properly closed with appropriate airtight cap and inserted into the microwave equipment for 10 minutes at 90 ° C.
No final do tempo programado o tubo de microondas com nanoemulsões passou imediatamente ao programa de arrefecimento do microondas indo para os 70ºC. Após esse programa o tubo de microondas com a formulação foi retirado do equipamento e deixado completar o arrefecimento naturalmente até atingir a temperatura ambiente com a consequente formação das SLN. As nanoformulações lipídicas obtidas tiveram - através de n.6 - tamanho médio de 118 nm, polidispersão de 0.234 e potencial zeta de -15mv. At the end of the programmed time the nanoemulsion microwave tube immediately went into the microwave cooling program going to 70 ° C. After this program the formulation microwave tube was removed from the equipment and allowed to cool naturally until it reached room temperature with the consequent formation of SLN. The lipid nanoformulations obtained had - through n.6 - average size of 118 nm, polydispersion of 0.234 and zeta potential of -15mv.
APLICAÇÃO INDUSTRIAL INDUSTRIAL APPLICATION
As nanopartículas lipídicas têm cada vez mais suscitado muito interesse por parte da indústria, particularmente farmacêutica (Kuchler et al., 2009, Wissing et al., 2004), cosmética (Wissing and Muller, 2003, Wissing et al., 2004) alimentar (Jee et al., 2006, Weiss et al., 2008) e têxtil. Lipid nanoparticles have increasingly attracted much interest from the food industry, particularly pharmaceuticals (Kuchler et al., 2009, Wissing et al., 2004), cosmetics (Wissing and Muller, 2003, Wissing et al., 2004) ( Jee et al., 2006, Weiss et al., 2008) and textile.
A presente invenção insere-se na área da nanotecnologia, especificamente a tecnologia de produção de nanopartículas lipídicas, para fins de obtenção de produtos medicinais (terapêutica e/ou diagnóstico), cosméticos e alimentícios. Sendo possível o encapsulamento de um ou mais composto ativo lipossolúvel, mas também hidrossolúvel. As nanopartículas lipídicas podem ou não ser pegladas e ou terem marcadores específicos, e apresentam as possibilidades de vantagens próprias de nanopartículas lipídicas, como: possibilidade de aumento da biodisponibilidade e estabilidade de ativos muito instáveis, incremento da solubilidade de compostos ativos lipofílicos, liberação controlada do composto ativo, redução da variabilidade de absorção, redução da toxicidade, aumento da eficácia e melhoria das características organolépticas (Llner and Yener, 2007, Severino et al., 2012, Muchow et al., 2008). Para além disso podem ser usadas por administração intravenosa, intramuscular, oral, retal, ocular ou dérmica, tal como já foi referido acima no documento. The present invention is in the field of nanotechnology, specifically the technology of production of lipid nanoparticles, for the purpose of obtaining medicinal (therapeutic and / or diagnostic), cosmetic and food products. Being possible the encapsulation of one or more fat soluble but also water soluble active compound. Lipid nanoparticles may or may not be entrapped and / or have specific markers, and have the potential for their own advantages of lipid nanoparticles, such as: increased bioavailability and stability of very unstable assets, increased solubility of lipophilic active compounds, controlled release of active compound, reduced absorption variability, reduced toxicity, increased efficacy and improved organoleptic characteristics (Llner and Yener, 2007, Severino et al., 2012, Muchow et al., 2008). In addition they may be used for intravenous, intramuscular, oral, rectal, ocular or dermal administration as already mentioned above.
As nanopartículas lipídicas são também consideradas portadores promissores de ingredientes ativos com fins cosméticos, uma vez que permitem: proteção dos compostos instáveis contra a degradação química, por exemplo, retinóides (Volkhard Jenning, 2001); libertação do ingrediente ativo de uma forma controlada; funcionar como complexos de oclusão; serem usados como bloqueadores de UV, capazes de funcionar por si só como protetores solares ou em combinação com outras substâncias (Wissing and Muller, 2003). Lipid nanoparticles are also considered promising carriers of cosmetic active ingredients as they allow: protection of unstable compounds against chemical degradation, eg retinoids (Volkhard Jenning, 2001); release of the active ingredient in a controlled manner; function as occlusion complexes; be used as UV blockers, capable of acting on their own as sunscreens or in combination with other substances (Wissing and Muller, 2003).
As novas dietas emergentes relacionadas com o intuito de melhorar a saúde, de forma a prevenir/combater doenças do sistema circulatório, a obesidade, a hipertensão ou o cancro levaram à incorporação de compostos bioativos na indústria alimentar. De facto, ensaios clínicos confirmaram já os benefícios para a saúde de incluir componentes bioativos na dieta diária (Alissa and Ferns, 2012, Ellwood et al., 2014). No entanto, muitos desses componentes benéficos são altamente lipofílicos, possunuma baixa absorção, limitada biodisponibilidade no organismo humano e são muito instáveis. Isto, verifica-se em várias classes de componentes bioativos, tais como os carotenóides, que são praticamente insolúveis em água. Neste sentido, a inclusão deste tipo de composto em produtos alimentares apresenta-se como um desafio que pode ser ultrapassado pela incorporação destes compostos em partículas lipídicas (Weiss et al., 2008). Têm-se verificado, nos últimos anos, a tendência de incorporaar compostos bioativos também em tecidos, havendo muitos que chegaram mesmo já ser comercializados, tais como compostos e anti-celulíticos em calças de ganga. Também nesta área a incorporação deste tipo de compostos em nanopartículas lipídicas pode prevenir a sua degradação e aumentar a permeabilidade através da pele. De fato, uma investigação muito recente demonstrou o potencial das partículas lipídicas para serem usadas como "patches" para direcionamento seletivo e morte de células cancerígenas (Sempkowski et al., 2016), tendo como potencial aplicação futura, a sus incorporação em têxteis. Emerging new diets related to improving health to prevent / combat circulatory system diseases, obesity, hypertension or cancer have led to the incorporation of bioactive compounds into the food industry. In fact, clinical trials have already confirmed the health benefits of including bioactive components in the daily diet (Alissa and Ferns, 2012, Ellwood et al., 2014). However, many of these beneficial components are highly lipophilic, have low absorption, limited bioavailability in the human organism and are very unstable. This occurs in various classes of bioactive components, such as carotenoids, which are practically insoluble in water. In this sense, the inclusion of this type of compound in food products presents a challenge that can be overcome by incorporating these compounds in lipid particles (Weiss et al., 2008). In recent years there has been a tendency to incorporate bioactive compounds into tissues as well, and many have even been marketed, such as compounds and anti-cellulites in jeans. Also in this area incorporation of such compounds into lipid nanoparticles can prevent their degradation and increase permeability through the skin. Indeed, very recent research has demonstrated the potential of lipid particles to be used as patches for selective targeting and death of cancer cells (Sempkowski et al., 2016), with potential future application being their incorporation into textiles.
REFERÊNCIAS REFERENCES
ALISSA, E. M. & FERNS, G. A. 2012. Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. Journal of Nutrition and Metabolism, 16. ALISSA, E. M. & FERNS, G. A. 2012. Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. Journal of Nutrition and Metabolism, 16.
ATTAMA, A. A. & MULLER-GOYMANN, C. C. 2008. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 189-195. ATTAMA, A. A. & MULLER-GOYMANN, C. C. 2008. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 189-195.
BATTAGLIA, L. & GALLARATE, M. 2012. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opinion on Drug Delivery, 9, 497-508.  BATTAGLIA, L. & GALLARATE, M. 2012. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opinion on Drug Delivery, 9, 497-508.
BLASI, P. et al. 2007. Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews, 59(6), 454-477. BLASI, P. et al. 2007. Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews, 59 (6), 454-477.
BONDI, M. L, CRAPARO, E. F., GIAMMONA, G., CERVELLO, M., AZZOLINA, A., DIANA, P., MARTORANA, A. & CIRRINCIONE, G. 2007. Nanostructured Lipid Carriers- Containing Anticancer Compounds: Preparation, Characterization, and Cytotoxicity Studies. Drug Delivery, 14, 61-67.  BONDI, M. L, CRAPARO, EF, GIAMMONA, G., CERVELLO, M., AZZOLINA, A., DIANA, P., MARTORANA, A. & CIRRINCIONE, G. 2007. Nanostructured Lipid Carriers - Containing Anticancer Compounds: Preparation , Characterization, and Cytotoxicity Studies. Drug Delivery, 14, 61-67.
BRIOSCHI, A., ZENGA, F., ZARA, G. P., GASCO, M. R., DUCATI, A. & MAURO, A.  BRIOSCHI, A., ZENGA, F., ZARA, G. P., GASCO, M. R., DUCATI, A. & MAURO, A.
2007. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurological Research, 29, 324-330. 2007. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurological Research, 29, 324-330.
BROADWATER, S. J., ROTH, S. L, PRICE, K. E., KO BAS LU A, M. & MCQUADE, D. T. BROADWATER, S.J., ROTH, S.L., PRICE, K.E., KO BAS LUA, M. & MCQUADE, D.T.
2005. One-pot multi-step synthesis: a challenge spawning innovation. Organic & Biomolecular Chemistry, 3, 2899-2906. 2005. One-pot multi-step synthesis: a challenge spawning innovation. Organic & Biomolecular Chemistry, 3, 2899-2906.
DAS, S. & CHAUDHURY, A. 2011. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 12, 62-76. DAS, S. & CHAUDHURY, A. 2011. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 12, 62-76.
DUNN, S.S., BECKFORD VERA, D.R., BENHABBOUR, S.R., PARROTT, M.C. 2017. Rapid microwave- assisted synthesis of sub-30 nm lipid nanoparticles. Journal of Colloid and Interface Science, 488, 240-245.  DUNN, S.S., BECKFORD VERA, D.R., BENHABBOUR, S.R., PARROTT, M.C. 2017. Rapid microwave-assisted synthesis of sub-30 nm lipid nanoparticles. Journal of Colloid and Interface Science, 488, 240-245.
ELLWOOD, K., BALENTINE, D. A., DWYER, J. T., ERDMAN, J. W., GAINE, P. C. & KWIK-URIBE, C. L. 2014. Considerations on an Approach for Establishing a Framework for Bioactive Food Components. Advances in Nutrition: An International Review Journal, 5, 693-701. GASCO, M., SAETTONE, M. & ZARA, G. 2006a. Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. USA patent application US 10/533,512. ELLWOOD, K., BALENTINE, DA, DWYER, JT, ERDMAN, JW, GAINE, PC & KWIK-URIBE, CL 2014. Considerations on an Approach for Establishing a Framework for Bioactive Food Components. Advances in Nutrition: An International Review Journal, 5, 693-701. GASCO, M., SAETTONE, M. & ZARA, G. 2006a. Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. USA patent application US 10 / 533.512.
GASCO, M., SAETTONE, M. & ZARA, G. 2006b. Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. USA patent application US 10/533,512.  GASCO, M., SAETTONE, M. & ZARA, G. 2006b. Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. USA patent application US 10 / 533.512.
H. MULLER, R., SHEGOKAR, R. & M. KECK, C. 2011. 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications. Current Drug Discovery Technologies, 8, 207-227. H. MULLER, R., SHEGOKAR, R. & M. KECK, C. 2011. 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications. Current Drug Discovery Technologies, 8, 207-227.
ICH 2000. Good Manufacturing Practice Guide for Active Pharmaceutical Ingredients - Q7 http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q7/Step4/Q7_Guid eline. pdf: International conference on harmonisation of technical Requirements for registration of pharmaceuticals for human use.  ICH 2000. Good Manufacturing Practice Guide for Active Pharmaceutical Ingredients - Q7 http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q7/Step4/Q7_Guid eline. pdf: International conference on harmonization of technical Requirements for registration of pharmaceuticals for human use.
ICH 2005. Quality Risk Management Q9. In: ICH (ed.). International conference on harmonisation of technical Requirements for registration of pharmaceuticals for human use. ICH 2009a. pharmaceutical development - Q8(R2). In: ICH (ed.). International conference on harmonisation of technical Requirements for registration of pharmaceuticals for human use. ICH 2009b. Pharmaceutical Quality System - Q10. http://www.fda.gov/downloads/Drugs/.../Guidances/ucm073517. pdf: International conference on harmonisation of technical Requirements for registration of pharmaceuticals for human use. JEE, J.-P., LIM, S.-J., PARK, J.-S. & KIM, C.-K. 2006. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 63, 134-139.  ICH 2005. Quality Risk Management Q9. In: ICH (ed.). International conference on harmonization of technical Requirements for registration of pharmaceuticals for human use. ICH 2009a. pharmaceutical development - Q8 (R2). In: ICH (ed.). International conference on harmonization of technical Requirements for registration of pharmaceuticals for human use. ICH 2009b. Pharmaceutical Quality System - Q10. http://www.fda.gov/downloads/Drugs/.../Guidances/ucm073517. pdf: International conference on harmonization of technical Requirements for registration of pharmaceuticals for human use. JEE, J.-P., LIM, S.-J., PARK, J.-S. & KIM, C.-K. 2006. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 63, 134-139.
KINNAN, M. K. & SCHREUDER-GIBSON, H. L. 2014. Nanoparticle entrapment of materiais. USA patent application US 13/342,274.  KINNAN, M.K. & SCHREUDER-GIBSON, H.L. 2014. Nanoparticle entrapment of materials. USA patent application US 13 / 342,274.
KRITI SONI, B. K. K., MANAVI KAPUR, KANCHAN KOHLI 2015. Lipid Nanoparticles: Future of Oral Drug Delivery and their Current Trends and Regulatory Issues. International Journal of Current Pharmaceutical Review and Research, 7, 1-18.  KRITI SONI, B. K. K., MANAVI KAPUR, KANCHAN KOHLI 2015. Lipid Nanoparticles: Future of Oral Drug Delivery and their Current Trends and Regulatory Issues. International Journal of Current Pharmaceutical Review and Research, 7, 1-18.
KUCHLER, S., RADOWSKI, M. R., BLASCHKE, T., DATHE, M., PLENDL, J., HAAG, R., SCHÀFER- KORTING, M. & KRAMER, K. D. 2009. Nanoparticles for skin penetration enhancement - A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 71, 243-250.  KUCHLER, S., RADOWSKI, MR, BLASCHKE, T., DATHE, M., PLENDL, J., HAAG, R., SCHÀFER-KORTING, M. & KRAMER, KD 2009. Nanoparticles for skin penetration enhancement - A comparison of dendritic core-multishell-nanotransporter and solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 71, 243-250.
LACATUSU IOANA, BADEA MARIA NICOLETA, LIANE GLORIA RALUCA STAN, HANGANU ANAMARIA & AURÉLIA, M. 2013. Antioxidant lipid nanoparticles and process for obtaining the same. RO20110001431 20111222  LACATUSU IOANA, BADEA MARIA NICOLETA, LIANE GLORIA RALUCA STAN, HANGANU ANAMARIA & AURÉLIA, M. 2013. Antioxidant lipid nanoparticles and process for obtaining the same. RO20110001431 20111222
LIU, J. et al. 2008. Solid lipid nanoparticles for pulmonary delivery of insulin. International Journal of Pharmaceutics, 356(1-2), 333-344.  LIU, J. et al. 2008. Solid lipid nanoparticles for pulmonary delivery of insulin. International Journal of Pharmaceutics, 356 (1-2), 333-344.
MARCATO, P. D. D. 2009. Preparação, caracterização e aplicações em fármacos e cosméticos de nanopartículas lipídicas sólidas. Revista Eletrônica de Farmácia [Online], 6. MARCATO, P. D. D. 2009. Preparation, characterization and applications in pharmaceuticals and cosmetics of solid lipid nanoparticles. Electronic Journal of Pharmacy [Online], 6.
MARTINS, S., SARMENTO B FAU - FERREIRA, D. C, FERREIRA DC FAU - SOUTO, E. B. & SOUTO, E. B. 2007. Lipid-based colloidal carriers for peptide and protein delivery-- liposomes versus lipid nanoparticles. International Journal of Nanomedicine, 2, 595-607. MARTINS, S., SARMENT B FAU - FERREIRA, D. C, FERREIRA DC FAU - SOUTO, EB & SOUTO, EB 2007. Lipid-based colloidal carriers for peptide and protein delivery-- liposomes versus lipid nanoparticles. International Journal of Nanomedicine, 2, 595-607.
MEHNERT, W. & MÀDER, K. 2001. Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, 47, 165-196.  MEHNERT, W. & MÀDER, K. 2001. Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, 47, 165-196.
MUCHOW, M., MAINCENT, P. & MLILLER, R. H. 2008. Lipid Nanoparticles with a Solid Matrix (SLN®, NLC®, LDC®) for Oral Drug Delivery. Drug Development and Industrial Pharmacy, 34, 1394-1405. Muchow, M. Maincent, P. & MLILLER, HR 2008. Solid Lipid Nanoparticles with a matrix (SLN ®, NLC ®, ® CDP) for Oral Drug Delivery. Drug Development and Industrial Pharmacy, 34, 1394-1405.
MUKHERJEE, S., RAY S FAU - THAKUR, R. S. & THAKUR, R. S. 2009. Solid lipid nanoparticles: a modem formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences 71, 349-358. MUKHERJEE, S., RAY S FAU - THAKUR, R. S. & THAKUR, R. S. 2009. Solid lipid nanoparticles: a modem formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences 71, 349-358.
MLILLER, R. H., RADTKE, M. & WISSING, S. A. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, Supplement, S131-S155.  MLILLER, R.H., RADTKE, M. & WISSING, S.A. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, Supplement, S131-S155.
MLILLER, R. H., RUNGE, S., RAVELLI, V., MEHNERT, W., THLINEMANN, A. F. & SOUTO, E. B. 2006. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. International Journal of Pharmaceutics, 317, 82-89. MLILLER, RH, RUNGE, S., RAVELLI, V., MEHNERT, W., THLINEMANN, AF & SOUTO, EB 2006. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN ® ) versus drug nanocrystals. International Journal of Pharmaceutics, 317, 82-89.
PADOIS, K., PIROT, F. & FALSON, F. 2012. Solid lipid nanoparticles encapsulating minoxidil, and aqueous suspension containing same. França patent application EP20100715993.  PADOIS, K., PIROT, F. & FALSON, F. 2012. Solid lipid encapsulating minoxidil nanoparticles, and aqueous suspension containing same. France patent application EP20100715993.
PARDEIKE, J., HOMMOSS, A. & MLILLER, R. H. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366, 170- 184. PARDEIKE, J., HOMMOSS, A. & MLILLER, R. H. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366, 170-184.
PENKLER, L. J., MLILLER, R. H., RUNGE, S. A. & RAVELLI, V. 2003. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. US 09/674,417. PENKLER, L.J., MLILLER, R.H., RUNGE, S.A. & RAVELLI, V. 2003. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. US 09 / 674,417.
PRIANO, L. et al. 2007. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. Journal of nanoscience and nanotechnology, 7(10), 3596-3601. PRIANO, L. et al. 2007. Solid lipid nanoparticles incorporating melatonin as a new model for sustained oral and transdermal delivery systems. Journal of Nanoscience and Nanotechnology, 7 (10), 3596-3601.
RIGON;, R. B., FACHINETTI;, N., CHORILLI;, M., SEVERINO;, P. & SANTANA., M. H. A. 2016. Processo de obtenção de nanopartículas lipídicas sólidas, nanopartículas lipídicas sólidas e seu uso. Brasil patent application. RIGON ;, R. B., FACHINETTI ;, N., CHORILLI ;, M., SEVERINO ;, P. & SANTANA., M. H. A. 2016. Process for obtaining solid lipid nanoparticles, solid lipid nanoparticles and their use. Brazil patent application.
SACHDEVA, M. S. & PATLOLLA, R. 2014. Nanoparticle formulations for skin delivery. US 12/433,344.  SACHDEVA, M. S. & PATLOLLA, R. 2014. Nanoparticle formulations for skin delivery. US 12 / 433.344.
SARMENTO, B., MARTINS, S., FERREIRA, D. & SOUTO, E. B. 2007. Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2, 743-749. [350] SEMPKOWSKI, M., ZHU, C, MENZENSKI, M. Z., KEVREKIDIS, I. G., BRUCHERTSEIFER, F., MORGENSTERN, A. & SOFOU, S. 2016. Sticky Patches on Lipid Nanoparticles Enable the Selective Targeting and Killing of Untargetable Câncer Celis. Langmuir, 32, 8329-8338.  SARMENTO, B., MARTINS, S., FERREIRA, D. & SOUTO, E. B. 2007. Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2, 743-749. [350] SEMPKOWSKI, M., ZHU, C, MENZENSKI, MZ, KEVREKIDIS, IG, BRUCHERTSEIFER, F., MORGENSTERN, A. & SOFOU, S. 2016. Sticky Patches on Lipid Nanoparticles Enable Selective Targeting and Killing of Untargetable Cancer Celis Langmuir, 32, 8329-8338.
SEVERINO, P., ANDREANI, T., MACEDO, A. S., FANGUEIRO, J. F., SANTANA, M. H. A., SILVA, A. M. & SOUTO, E. B. 2012. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. Journal of Drug Delivery, 10. SEVERINO P. ANDREANI T. MACEDO AS BANGER JF SANTANA MHA SILVA AM & SOUTO, EB 2012. Current State-of-the-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. Journal of Drug Delivery, 10.
SHAH, R.M., ELDRIDGE, D.S., PALOMBO, E.A., HARDING, I.H. 2016. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. International Journal of Pharmaceutics, 515(1-2), 543-554.  SHAH, R.M., ELDRIDGE, D.S., PALOMBO, E.A., HARDING, I.H. 2016. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. International Journal of Pharmaceutics, 515 (1-2), 543-554.
SHAH, R.M., BRYANT, G., TAYLOR, M., ELDRIDGE, D.S., PALOMBO, E.A., HARDING, I.H. 2016. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC ADVANCES, 6, 36803-36810.  SHAH, R.M., BRYANT, G., TAYLOR, M., ELDRIDGE, D.S., PALOMBO, E.A., HARDING, I.H. 2016. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC ADVANCES, 6, 36803-36810.
UGAZIO, E., CAVALLI, R. & GASCO, M. R. 2002. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, 241, 341-344.  UGAZIO, E., CAVALLI, R. & GASCO, M.R. 2002. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, 241, 341-344.
LINER, M. & YENER, G. 2007. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2, 289- LINER, M. & YENER, G. 2007. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2, 289-
300. 300
VENKATARAMAN, C. & PAWAR, A. A. 2013. Method and a system for producing thermolabile nanoparticles with controlled properties and nanoparticles matrices made thereby. índia patent application US 13/554,798.  VENKATARAMAN, C. & PAWAR, A. A. 2013. Method and system for producing thermolabile nanoparticles with controlled properties and nanoparticles matrices made thereby. India patent application US 13 / 554,798.
VOLKHARD JENNING, S. H. G. 2001. Encapsulation of retinoids in solid lipid nanoparticles (SLN). Journal of Microencapsulation, 18, 149-158.  VOLKHARD JENNING, S. H. G. 2001. Encapsulation of retinoids in solid lipid nanoparticles (SLN). Journal of Microencapsulation, 18, 149-158.
WEISS, J., DECKER, E. A., MCCLEMENTS, D. J., KRISTBERGSSON, K., HELGASON, T. & AWAD, T. 2008. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophysics, 3, 146-154.  WEISS, J., DECKER, E.A., MCCLEMENTS, D.J., KRISTBERGSSON, K., HELGASON, T. & AWAD, T. 2008. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophysics, 3, 146-154.
WISSING, S. A., KAYSER, O. & MULLER, R. H. 2004. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56, 1257-1272.  WISSING, S.A., KAYSER, O. & MULLER, R.H. 2004. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56, 1257-1272.
WISSING, S. A. & M LILLER, R. H. 2003. Cosmetic applications for solid lipid nanoparticles  WISSING, S.A. & M. LILLER, R.H. 2003. Cosmetic applications for solid lipid nanoparticles
(SLN). International Journal of Pharmaceutics, 254, 65-68. (SLN). International Journal of Pharmaceutics, 254, 65-68.
XIANG, Q. et al. 2007. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Archives of Pharmacal Research, 30(4), 519-525.  XIANG, Q. et al. 2007. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Archives of Pharmacal Research, 30 (4), 519-525.
YEVHENIIVNA;, Y. D., IVANIVNA;, S. N., VALERIIVNA;, B. O. & VASYLIOVYCH., S. O. 2013. Method for producing solid nanoparticles UA20120013366U 20121123  YEVHENIIVNA ;, Y. D., IVANIVNA ;, S.N., VALERIIVNA ;, B.O. & VASYLIOVYCH., S.O. 2013. Method for producing solid nanoparticles UA20120013366U 20121123
YUAN, H., CHEN J FAU - DU, Y.-Z., DU YZ FAU - HU, F.-Q., HU FQ FAU - ZENG, S., ZENG S FAU - ZHAO, H.-L. & ZHAO, H. L. 2007. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids and Surfaces B: Biointerfaces 58, 157-164.  YUAN, H., CHEN J FAU - DU, Y.-Z., DU YZ FAU - HU, F.-Q., HU FQ FAU - ZENG, S., ZENG S FAU - ZHAO, H.-L. & ZHAO, H. L. 2007. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids and Surfaces B: Biointerfaces 58, 157-164.
ZHANG, Q., WANG, J., GUO, Y., ZHANG, X., JIA, Z., LIN, P., ZHANG, J. & ZHANG, J. ZHANG, Q., WANG, J., GUO, Y., ZHANG, X., JIA, Z., LIN, P., ZHANG, J. & ZHANG, J.
2011a. Ph-sensitive solid pharmaceutical composition for oral preparation and preparation method thereof. Google Patents. 2011a. Ph-sensitive solid pharmaceutical composition for oral preparation and preparation method thereof. Google Patents.
ZHANG, Q., WANG, J., GUO, Y., ZHANG, X., JIA, Z., LIN, P., ZHANG, J. & ZHANG, J.  ZHANG, Q., WANG, J., GUO, Y., ZHANG, X., JIA, Z., LIN, P., ZHANG, J. & ZHANG, J.
2011b. Ph-sensitive solid pharmaceutical composition for oral preparation and preparation method thereof. US 12/812,687. 2010. Nanostructured lipid carrier, preparation
Figure imgf000037_0001
2011b. Ph-sensitive solid pharmaceutical composition for oral preparation and preparation method thereof. US 12 / 812,687. 2010. Nanostructured lipid carrier, preparation
Figure imgf000037_0001
method and application thereof. CN 201010224865.  method and application thereof. CN 201010224865.
2011. Novel preparation method of solid lipid nanoparticles. CN 2011. Novel preparation method of solid lipid nanoparticles. CN
Figure imgf000037_0003
Figure imgf000037_0003
201010112202.  201010112202.
2014. Quercetin nanostructured lipid carrier and preparation method thereof.
Figure imgf000037_0004
2014. Quercetin nanostructured lipid carrier and preparation method thereof.
Figure imgf000037_0004
CN 201410405191.
Figure imgf000037_0005
2006. Nanometer preparation of natural vitamin E. CN
CN 201410405191.
Figure imgf000037_0005
2006. Nanometer preparation of natural vitamin E. CN
200310106518. 200310106518.
2004. Method for preparing nanometre structure medicine. CN
Figure imgf000037_0006
2004. Method for preparing nanometer structure medicine. CN
Figure imgf000037_0006
03152856. 2014. Docetaxel preparation and application of lipid nanoparticles. CN
Figure imgf000037_0002
03152856. 2014. Docetaxel preparation and application of lipid nanoparticles. CN
Figure imgf000037_0002
201210287792.  201210287792.

Claims

REIVINDICAÇÕES
1. Processo one-pot de síntese por micro-ondas de nanopartículas lipídicas com diâmetro médio de 30 a 900 nm, mais preferencialmente de 60 a 300 nm caracterizado por a síntese das nanopartículas ser realizada por aquecimento com micro-ondas a uma temperatura inferior a 90°C com agitação simultânea contínua, seguida de arrefecimento. 1. One-pot microwave synthesis process of lipid nanoparticles with an average diameter of 30 to 900 nm, more preferably 60 to 300 nm characterized in that the synthesis of the nanoparticles is performed by heating with microwaves to a temperature below 90 ° C with continuous simultaneous stirring followed by cooling.
2. Processo de acordo com a reivindicação nºl caraterizado por a síntese das nanopartículas lipídicas compreender: Process according to claim 1, characterized in that the synthesis of lipid nanoparticles comprises:
i) colocação do lípido ou mistura de lipídios, surfactantes e, opcionalmente, co-sufactantes, solução aquosa e compostos ativos num tubo de micro-ondas;  (i) placing the lipid or mixture of lipids, surfactants and optionally co-suffactants, aqueous solution and active compounds in a microwave tube;
ii) aquecimento da mistura com energia de micro-ondas, com agitação simultânea;  ii) heating the mixture with microwave energy with simultaneous stirring;
iii) arrefecimento até ser atingida a temperatura ambiente.  iii) cooling to room temperature.
3. Processo de acordo com a reivindicação nºl caraterizado por a síntese das nanopartículas lipídicas compreender: Process according to claim 1, characterized in that the synthesis of lipid nanoparticles comprises:
i) colocação do lípido ou mistura de lipídios, surfactantes e, opcionalmente, co-sufactantes e compostos ativos num tubo de micro-ondas;  i) placing the lipid or mixture of lipids, surfactants and, optionally, co-sufactants and active compounds in a microwave tube;
ii) aquecimento da mistura com energia de micro-ondas, com agitação simultânea;  ii) heating the mixture with microwave energy with simultaneous stirring;
iii) adição de solução aquosa;  iii) adding aqueous solution;
iv) aquecimento da mistura com energia de micro-ondas, com agitação simultânea;  iv) heating the mixture with microwave energy with simultaneous stirring;
v) arrefecimento até ser atingida a temperatura ambiente.  v) cooling to room temperature.
4. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado pelo aquecimento ser efetuado a uma temperatura igual ou superior à temperatura de fusão dos constituintes lipídicos, durante 1 a 60 minutos. Process according to any one of the preceding claims, characterized in that the heating is carried out at or above the melting temperature of the lipid constituents for 1 to 60 minutes.
5. Processo de acordo com a reivindicação nº2 caracterizado pelo aquecimento ser efetuado a uma temperatura de 5 a 20°C superior à temperatura de fusão dos constituintes lipídicos, durante 5 a 20 minutos. Process according to Claim 2, characterized in that the heating is carried out at a temperature of 5 to 20 ° C above the melting temperature of the lipid constituents for 5 to 20 minutes.
6. Processo de acordo com a reivindicação nº3 caracterizado pelo aquecimento ser efetuado a uma temperatura de 5 a 15°C superior à temperatura de fusão dos constituintes lipídicos, durante 5 a 15 minutos. Process according to Claim 3, characterized in that the heating is carried out at a temperature of 5 to 15 ° C above the melting temperature of the lipid constituents for 5 to 15 minutes.
7. Processo de acordo com qualquer uma das reivindicações anteriores caraterizado por o arrefecimento ser realizado sem agitação; com agitação constante até atingir a temperatura ambiente; ou com agitação constante e choque térmico, para rrefecimento parcial ou até atingir a temperatura ambiente, através de arrefecimento programado pelo próprio aparelho micro-ondas, por banho de gelo ou combinação destes. Process according to any one of the preceding claims, characterized in that the cooling is carried out without agitation; with constant stirring to room temperature; or with constant stirring and thermal shock, for partial cooling or to room temperature, by cooling programmed by the microwave apparatus itself, by ice bath or a combination thereof.
8. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por a agitação ser de intensidade moderada a vigorosa, preferencialmente de 900rpm. Process according to any one of the preceding claims, characterized in that the agitation is of moderate to vigorous intensity, preferably of 900rpm.
9. Processo de acordo com a reivindicação anterior caracterizado por a agitação ser efetuada por adição de barra magnética ao tubo de microondas, com uma dimensão o maior possível de forma a permitir uma maior homogeneidade e agitação mais vigorosa. Method according to the preceding claim, characterized in that the stirring is carried out by the addition of a magnetic rod to the microwave tube, which is as large as possible to allow greater homogeneity and more vigorous stirring.
10. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado pelo volume final dos constituintes inseridos no tubo de microondas ser preferencialmente de 1/7 a 1/2 do volume do tubo, para garantir uma completa e controlada homogeneização durante o processo de agitação. Process according to any one of the preceding claims, characterized in that the final volume of the constituents inserted in the microwave tube is preferably 1/7 to 1/2 of the volume of the tube to ensure complete and controlled homogenization during the stirring process.
11. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por o constituinte lipídico consistir num ou mais componentes selecionados de entre o grupo de ácidos gordos, esteróides, ceras, monoglicerídeos, diglicerídeos, triglicerídeos e, opcionalmente, fosfolípidos. Process according to any one of the preceding claims, characterized in that the lipid constituent consists of one or more components selected from the group of fatty acids, steroids, waxes, monoglycerides, diglycerides, triglycerides and optionally phospholipids.
12. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por o surfactante ou conjunto de surfactantes ser do tipo não iónico. Process according to any one of the preceding claims, characterized in that the surfactant or set of surfactants is of the nonionic type.
13. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por o co-surfactante consistir num ou mais componentes selecionados do grupo butanol, hexanodiol, propilenoglicol, hexanol, ácido butírico e hexanóico, ésteres de ácido fosfórico, álcool benzílico. Process according to any one of the preceding claims, characterized in that the co-surfactant consists of one or more components selected from the group butanol, hexanediol, propylene glycol, hexanol, butyric and hexanoic acid, phosphoric acid esters, benzyl alcohol.
14. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por a solução aquosa ter um pH apropriado, preferencialmente entre 5 e 7, ajustável com soluções tampão, e conter opcionalmente sais, conservantes, antioxidantes, estabilizantes e marcadores. Process according to any one of the preceding claims, characterized in that the aqueous solution has an appropriate pH, preferably between 5 and 7, adjustable with buffer solutions, and optionally contains salts, preservatives, antioxidants, stabilizers and markers.
15. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por o lípido ou conjunto de lípidos estarem compreendidos numa proporção entre 1 e 20%, preferencialmente de 1,5 a 8%, do peso total; solução aquosa entre 70 e 96%, preferencialmente de 80 a 95,5%, do peso total; surfactantes de 1 a 20%, preferencialmente de 2 a 15%, do peso total; co-surfactantes entre 0 e 15%, preferencialmente de 0 a 10%, do peso total; e, os compostos ativos entre 0 a 50% dos constituintes lipídicos, preferencialmente de 1 a 15%. Process according to any one of the preceding claims, characterized in that the lipid or lipid group comprises from 1 to 20%, preferably from 1.5 to 8%, of the total weight; 70 to 96% aqueous solution, preferably 80 to 95.5%, of the total weight; surfactants from 1 to 20%, preferably from 2 to 15%, of the total weight; co-surfactants from 0 to 15%, preferably from 0 to 10%, of the total weight; and, the active compounds are from 0 to 50% of the lipid constituents, preferably from 1 to 15%.
16. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado pela incorporação de ligantes ou marcadores, específicos a cada formulação, na superfície das nanopartículas lipídicas. Process according to any one of the preceding claims, characterized in that incorporation of formulation-specific binders or markers on the surface of lipid nanoparticles.
17. Processo de acordo com qualquer uma das reivindicações anteriores caracterizado por serem obtidas nanopartículas lipídicas com um diâmetro médio de 30 a 900 nm, preferencialmente de 60 a 300 nm, com polidispersão de 0,05 a 0,5, preferencialmente de 0,1 a 0,3, e potencial zeta de 10 a 70 mV, preferencialmente de 20 a 40 mV. Process according to any one of the preceding claims, characterized in that lipid nanoparticles with an average diameter of 30 to 900 nm, preferably 60 to 300 nm, with a polydispersion of 0.05 to 0.5, preferably 0.1, are obtained. at 0.3, and zeta potential from 10 to 70 mV, preferably from 20 to 40 mV.
18. Nanopartículas lipídicas sólidas (SLN) ou carregadores lipídicos nanoestruturados (NLC) obtidas pelo processo descrito nas reivindicações nºl a 17. Solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) obtained by the process described in claims 1 to 17.
19. Nanopartículas lipídicas sólidas (SLN) ou carregadores lipídicos nanoestruturados (NLC) de acordo com a reivindicação anterior caraterizadas por terem um diâmetro médio de 30 a 900 nm, preferencialmente de 60 a 300 nm, com polidispersão de 0,05 a 0,5, preferencialmente de 0,1 a 0,3, e potencial zeta de 10 a 70 mV, preferencialmente de 20 a Solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) according to the preceding claim, characterized in that they have an average diameter of 30 to 900 nm, preferably 60 to 300 nm, with polydispersion of 0.05 to 0.5. preferably from 0.1 to 0.3, and zeta potential from 10 to 70 mV, preferably from 20 to
PCT/IB2017/057900 2016-12-13 2017-12-13 Production of lipid nanoparticles by microwave synthesis WO2018109690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT109791 2016-12-13
PT10979116 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018109690A1 true WO2018109690A1 (en) 2018-06-21

Family

ID=61148264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/057900 WO2018109690A1 (en) 2016-12-13 2017-12-13 Production of lipid nanoparticles by microwave synthesis

Country Status (1)

Country Link
WO (1) WO2018109690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900009258A1 (en) * 2019-06-17 2020-12-17 R Bio Transfer S R L METHOD FOR THE PREPARATION OF LIPID NANOPARTICLES

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KALAYCIOGLU GOKCE DICLE ET AL: "Preparation and investigation of solid lipid nanoparticles for drug delivery", COLLOIDS AND SURFACES A: PHYSIOCHEMICAL AND ENGINEERING ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 510, 21 June 2016 (2016-06-21), pages 77 - 86, XP029780652, ISSN: 0927-7757, DOI: 10.1016/J.COLSURFA.2016.06.034 *
ROHAN M. SHAH ET AL: "Encapsulation of clotrimazole into solid lipid nanoparticles by microwave-assisted microemulsion technique", APPLIED MATERIALS TODAY, vol. 5, 13 October 2016 (2016-10-13), pages 118 - 127, XP055466144, ISSN: 2352-9407, DOI: 10.1016/j.apmt.2016.09.010 *
ROHAN M. SHAH ET AL: "Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 515, no. 1-2, 24 October 2016 (2016-10-24), NL, pages 543 - 554, XP055466130, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2016.10.054 *
SHAH ROHAN M ET AL: "Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 428, 4 May 2014 (2014-05-04), pages 286 - 294, XP028850061, ISSN: 0021-9797, DOI: 10.1016/J.JCIS.2014.04.057 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900009258A1 (en) * 2019-06-17 2020-12-17 R Bio Transfer S R L METHOD FOR THE PREPARATION OF LIPID NANOPARTICLES
WO2020254934A1 (en) * 2019-06-17 2020-12-24 R Bio Transfer S.R.L. Method for the preparation of lipid nanoparticles

Similar Documents

Publication Publication Date Title
Ganesan et al. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery
Duong et al. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method
Subramaniam et al. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations
Singh et al. Nanoemulsion: Concepts, development and applications in drug delivery
Scalia et al. Solid lipid microparticles as an approach to drug delivery
Yadav et al. Solid lipid nanoparticles-a review
Rawal et al. Lipid nanoparticulate systems: Modern versatile drug carriers
Sahu et al. Nanoemulsion: A novel eon in cancer chemotherapy
Mishra et al. Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research
Deshpande et al. Solid lipid nanoparticles in drug delivery: Opportunities and challenges
JP2013530168A (en) Colloidal nanoscale carrier for hydrophilic active substance and process for its production
Mohammed et al. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development
Shah et al. Lipid nanocarriers: Preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs
Jain et al. Solid lipid nanoparticles
Pandey et al. Solid lipid nanoparticle: a potential approach in drug delivery system
Joseph et al. Solid lipid nanoparticles for drug delivery
Patil et al. The solid lipid nanoparticles A review
Munir et al. Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery
Harish et al. Unravelling the role of solid lipid nanoparticles in drug delivery: Journey from laboratory to clinical trial
de Melo Barbosa et al. Lipid-based colloidal carriers for transdermal administration of bioactives
WO2018109690A1 (en) Production of lipid nanoparticles by microwave synthesis
Kaur et al. Innovative growth in developing new methods for formulating solid lipid nanoparticles and microparticles
Keservani et al. Nanodispersions for drug delivery
Rouco et al. Recent advances in solid lipid nanoparticles formulation and clinical applications
Tzachev et al. Lipid nanoparticles at the current stage and prospects—A review article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837990

Country of ref document: EP

Kind code of ref document: A1