WO2018109563A2 - 用于确定服务ue的doa信息的方法和装置 - Google Patents

用于确定服务ue的doa信息的方法和装置 Download PDF

Info

Publication number
WO2018109563A2
WO2018109563A2 PCT/IB2017/001693 IB2017001693W WO2018109563A2 WO 2018109563 A2 WO2018109563 A2 WO 2018109563A2 IB 2017001693 W IB2017001693 W IB 2017001693W WO 2018109563 A2 WO2018109563 A2 WO 2018109563A2
Authority
WO
WIPO (PCT)
Prior art keywords
doa
information
base station
serving
ues
Prior art date
Application number
PCT/IB2017/001693
Other languages
English (en)
French (fr)
Other versions
WO2018109563A3 (zh
Inventor
吕星哉
赵松峄
张鹏杰
蒋智宁
Original Assignee
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿尔卡特朗讯 filed Critical 阿尔卡特朗讯
Publication of WO2018109563A2 publication Critical patent/WO2018109563A2/zh
Publication of WO2018109563A3 publication Critical patent/WO2018109563A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0081Transmission between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals

Definitions

  • the present invention relates to the field of computer technologies, and in particular, to a method and apparatus for determining DOA information of a serving UE in a base station. Background technique
  • Multi-cell interference is an important factor limiting wireless network throughput and capacity.
  • analog beamforming and digital beamforming are key technologies for improving signal strength in 5G systems. Therefore, it is very promising to develop a next-generation wireless communication system that can avoid interference on the basis of multi-cell beamforming technology.
  • Coordinated Beamforming is an effective and low complexity solution for multi-cell interference.
  • the base station utilizes the heterogeneity of the wireless channels in the time division duplex system to obtain the characteristics of the downlink channel. It can obtain DOA information from the Sounding Reference Signal (SRS) and eliminate the transmitted signal directed in the direction to eliminate the transmission interference to the UE.
  • SRS Sounding Reference Signal
  • This solution works well in wireless environments where the low or medium spatial dispersion environment is present. Due to the slow change in DOA information, this solution does not require a very powerful backhaul like other interference avoidance, making it easy to deploy. And in the target serving cell, the interference DOA information can be easily transformed into a precoding matrix.
  • FIG. 1 is a schematic diagram showing a calculated beam angle distribution of a 0.65-wavelength pitch antenna array when the beam arrival direction is 45 degrees.
  • a method for determining DOA information of a serving UE in a base station wherein the base station obtains DOA information of the serving UE by performing DOA detection on the serving UE, where the DOA information includes the DOA information.
  • the DOA information of the UE and the DOA information of other UEs, the method includes the following steps:
  • an azimuth determining apparatus for determining DOA information of a serving UE in a base station, wherein the base station obtains DOA information of the serving UE by performing DOA detection on the serving UE, where the DOA information is included in the DOA information.
  • the location determining apparatus includes:
  • a receiving device configured to receive multiple candidate DOA information from one or more neighboring base stations, where the candidate DOA information includes DOA information obtained by the neighboring base station for DOA detection;
  • And determining means configured to determine, according to the candidate DOA information, real DOA information of the serving UE in the DOA information obtained by performing DOA detection by itself.
  • the base station is based on other adjacent bases.
  • the DOA information of the station is used to determine the real DOA of the serving UE, so that the transmission interference to other UEs is eliminated when performing the beamforming operation; and the computational complexity of the scheme according to the present invention is lower, and the interaction between the base stations is more expensive. small.
  • FIG. 1 shows a schematic diagram of a beam angle distribution of an exemplary receiving antenna array
  • FIG. 2 shows a flow chart of a method for determining DOA information of a serving UE in a base station according to the present invention
  • FIG. 3 is a block diagram showing the structure of an orientation determining apparatus for determining DOA information of a serving UE in a base station according to the present invention
  • 4a is a diagram showing a performance comparison of an exemplary cooperative beamforming scheme and a real-time zero-forcing cooperative beamforming scheme in accordance with the present invention
  • Figure 4b shows a schematic diagram of performance comparison of an exemplary cooperative beamforming scheme and a non-cooperative beamforming scheme in accordance with the present invention.
  • FIG. 2 is a flow chart showing a method for determining DOA information of a serving UE in a base station in accordance with the present invention.
  • the method according to the invention comprises a step S1 and a step S2.
  • step S1 the position determining means receives a plurality of candidate DOA information from one or more neighboring base stations.
  • the base station first obtains the DOA information of the serving UE by performing DOA detection on the serving UE, and the DOA information includes the DOA information of the serving UE and the DOA information of other UEs.
  • the base station performs DOA detection based on the SRS signal.
  • the base station may use multiple estimation algorithms to determine the DOA information of the serving UE, such as the MUSIC algorithm or ESPRIT. Algorithms and so on.
  • the candidate DOA information includes DOA information obtained by the neighboring base station for DOA detection.
  • step S2 the azimuth determining device determines, based on the candidate DOA information, real DOA information of the serving UE in the DOA information obtained by performing DOA detection by itself.
  • the method includes a step S3 (not shown), and the step S2 includes a step S201 (not shown).
  • step S3 the position determining means acquires the antenna array facing information of one or more neighboring base stations, and has been stored.
  • the antenna array is used to indicate the orientation of the antenna array of the base station.
  • the azimuth determining apparatus determines, for the plurality of candidate DOA information from a neighboring base station, based on the antenna array information of the neighboring base station and the neighboring base station, determining that the DOA information obtained by performing DOA detection by itself corresponds to the Serving DOA information of UEs and other UEs.
  • the base station calculates the DOA of the neighboring base station and the serving UE by adding or subtracting the offsets of the antenna arrays of the neighboring base stations by the respective candidate DOAs, respectively, if the obtained DOA and the DOA are detected by itself.
  • the resulting DOA matches, and the DOA matching the candidate DOA in the DOA obtained by the DOA detection is the real DOA of the serving UE.
  • the position determining means is included in the base station node-1, and the interval between the base station node-1 and the antenna array of the adjacent base station is 0.65 wavelength.
  • the position determining means receives the antenna array facing information from the adjacent base station node-2 in step S3, and stores the antenna array facing information boresight_node2 corresponding to the base station node-2.
  • the azimuth determining device performs DOA detection based on the SRS signal, and obtains two DOA information DOA-1 and DOA-2 of the serving UE (represented by ue-1) of the base station node-1.
  • the position determining means receives the two candidate DO A information can_DOAl and can_DOA2 from the base station node-2 in step S1.
  • the orientation determining means calculates, in step S201, each candidate DOA is added or subtracted from the offset of the antenna array of the neighboring base station, respectively.
  • the neighboring base station and the DOA of the serving UE determine that the DOA obtained based on the can_DOA1 matches the DOA-2 obtained by the DOA detection by the base station node-1, and the position determining apparatus determines that the DOA-2 is the true DOA of ue-1.
  • the method according to the invention comprises a step S4 (not shown).
  • step S4 the azimuth determining apparatus performs a cooperative beamforming operation based on the determined DOA information respectively corresponding to the serving UE and other UEs, and cancels a transmission interface corresponding to the other UEs, thereby eliminating transmission to other UEs.
  • the azimuth determining device may use a lookup table that records beam azimuth information, and uses a DOA corresponding to the serving UE and other UEs to derive a beamforming matrix corresponding to the orientation of the serving UE and other UEs. For each DOA pair, the beam can be searched and designed offline, so that the current serving UE is invalid for the interference of other UEs after performing the beamforming operation.
  • the orientation determining apparatus performs a cooperative beamforming operation based on the true DOA information DOA-2 of ue-1 and the DOA information DOA-1 of other UEs, and cancels the UE corresponding to the DOA-1 direction.
  • the interface is transmitted, thereby eliminating transmission interference to the UE.
  • the executing device may select one or more other UEs; then perform a coordinated beamforming operation based on the selected one or more other UEs' DOA information to eliminate the one or more Transmission interference of other UEs.
  • the azimuth determining device may select to cancel the transmission interference of the UEs in multiple manners, for example, only select other UEs that are determined earliest, or select other UEs with the strongest signal power, etc., and those skilled in the art may Based on actual needs, and based on the trade-off between performance and computational complexity, choose the appropriate approach.
  • the method comprises a step S5 (not shown).
  • step S5 the azimuth determining means transmits the DOA information obtained by the DOA detection to one or more neighboring base stations for the neighboring base station to determine the DOA information of the UE it serves.
  • the base station determines the true DOA of the serving UE based on the DOA information from other neighboring base stations, thereby canceling the interfaces of other UEs when performing the beamforming operation, thereby eliminating transmission interference to other UEs;
  • Method according to the invention The computational complexity is low, and the overhead of interaction between base stations is small.
  • FIG. 3 is a block diagram showing the structure of an orientation determining apparatus for determining DOA information of a serving UE in a base station according to the present invention.
  • the position determining device according to the present invention comprises a receiving device 1 and a determining device 2.
  • the receiving device 1 receives a plurality of candidate DOA information from one or more neighboring base stations.
  • the base station first obtains the DOA information of the serving UE by performing DOA detection on the serving UE, and the DOA information includes the DOA information of the serving UE and the DOA information of other UEs.
  • the base station performs DOA detection based on the SRS signal.
  • the base station may use multiple estimation algorithms to determine the DOA information of the serving UE, such as the MUSIC algorithm or the ESPRIT algorithm.
  • the candidate DOA information includes DOA information obtained by the neighboring base station for DOA detection.
  • the determining device 2 determines, based on the candidate DO A information, the real DOA information of the serving UE in the DOA information obtained by performing the DO A detection by itself.
  • the orientation determining means comprises acquisition means (not shown).
  • the acquisition device acquires antenna array oriented information of one or more neighboring base stations and has been stored.
  • the antenna array is used to indicate the orientation of the antenna array of the base station.
  • Determining means 2 for a plurality of candidate DOA information from a neighboring base station, based on the antenna array information of the neighboring base station and the neighboring base station, determining that the DOA information obtained by performing DOA detection by itself corresponds to the serving UE and other UEs, respectively DOA information.
  • the determining means 2 calculates the DOA of the neighboring base station and the serving UE based on adding or subtracting the offsets of the antenna arrays of the neighboring base stations by the respective candidate DOAs, respectively, if the obtained DOA and itself pass The DOA detected by the DOA matches, and the DOA matching the candidate DOA in the DOA obtained by the DOA detection is the real DOA of the serving UE.
  • the position determining means is included in the base station node-1, the base station
  • the spacing between node-1 and the antenna array of the adjacent base station is 0.65 wavelength.
  • the obtaining means receives the antenna array facing information from the adjacent base station node-2 to store the antenna array facing information boresight_node2 corresponding to the base station node-2.
  • the azimuth determining device performs DOA detection based on the SRS signal, and obtains two DOA information DOA-1 and DOA-2 of the serving UE (represented by ue-1) of the base station node-1.
  • the receiving device 1 receives two candidate DOA information can_DO A 1 and can_ DOA2 from the base station node-2.
  • the determining device 2 adds the respective candidate DO A to the antenna array-oriented offset of the neighboring base station, respectively, to calculate the DOA of the neighboring base station and the serving UE, and determines the DOA and the base station obtained based on the can_DOA1.
  • the node-1 is matched by the DOA-2 obtained by the DOA detection, and the position determining device determines that the DOA-2 is the true DOA of ue-1.
  • the orientation determining device includes an executing device (not shown).
  • the executing device performs a cooperative beamforming operation based on the determined DOA information respectively corresponding to the serving UE and other UEs, and eliminates transmission interference to other UEs.
  • the executing device may use a lookup table that records beam direction information, and uses a DOA corresponding to the serving UE and other UEs as a reference to obtain a beam shaping matrix corresponding to the orientations of the serving UE and other UEs. For each DOA pair, the beam can be searched and designed offline, so that the current serving UE is invalid for the interference of other UEs after performing the beamforming operation.
  • the orientation determining apparatus performs a cooperative beamforming operation based on the true DOA information DOA-2 of ue-1 and the DOA information DOA-1 of other UEs, and cancels the UE corresponding to the DOA-1 direction.
  • the interface is transmitted, thereby eliminating transmission interference to the UE.
  • the orientation determining means may select one or more other UEs; then perform a coordinated beamforming operation based on the selected one or more other UE's DOA information to eliminate the one or Transmission interference of multiple other UEs.
  • the azimuth determining device may select to cancel the transmission interference of the UEs in multiple manners, for example, only select other UEs that are determined earliest, or select other UEs with the strongest signal power, etc., and those skilled in the art may Based on actual needs, and based on the trade-off between performance and computational complexity, choose the appropriate approach.
  • the orientation determining device comprises a transmitting device (not shown).
  • the transmitting device transmits the DOA information obtained by the DOA detection to one or more neighboring base stations for the neighboring base station to determine the DOA information of the UE it serves.
  • the base station determines the true DOA of the serving UE based on the DOA information from other neighboring base stations, thereby eliminating the transmission interference to other UEs when performing the beamforming operation; and, according to the solution of the present invention
  • the computational complexity is low, and the overhead of interaction between base stations is small.
  • Figure 4a shows a schematic diagram of performance comparison of an exemplary cooperative beamforming scheme and a real-time zero-forcing cooperative beamforming scheme in accordance with the present invention.
  • Figure 4b shows a schematic diagram of performance comparison of an exemplary cooperative beamforming scheme and a non-cooperative beamforming scheme in accordance with the present invention.
  • the simulated real face shown in Fig. 4a and Fig. 4b uses the predetermined parameters to obtain the simulation data.
  • the traffic model is a full buffer model, which means that the network is fully loaded.
  • the process of cooperative beamforming can obtain a codebook offline using a zero-forcing algorithm.
  • the codebook is generated as follows: First, a grid grid A with a beam from 60 degrees to 60 degrees and a granularity of 10 degrees is generated; then, two grids B and grids respectively generating the same granularity to two adjacent base stations are generated C, wherein the beam of the grid B is from -120 degrees to -60 degrees, and the beam of the grid C is from 60 degrees to 180 degrees; then, the forced-zero algorithm is used to generate the CBF weight, and a beam in the grid A represents the orientation of the serving UE, The beam in grid B or grid C represents the orientation of other UEs that are harassed by the serving UE.
  • d denotes the spacing of the antenna elements
  • denotes the wavelength of the working carrier frequency
  • denotes the orientation of the radio waves.
  • Grid C beam set can be table
  • the representation is located
  • [F is the transposition operation
  • [F is the Hermitian operation. This vector is included in the codebook.
  • a Cell Aggregated Throughput and a Cell Edge Throughput are implemented, and a real-time based ZF CBF is implemented by an ideal real-time zero-forcing algorithm.
  • the DOA based CBF proposed by the proposed scheme can achieve similar performance, while the complexity and interaction overhead are much lower.
  • the DOA based on the present invention is maintained while maintaining the same level of cell aggregation throughput compared to the no-cluster beamforming scheme (No CBF case).
  • the cooperative beamforming scheme achieves a cell edge throughput gain of approximately 17%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

根据本发明的一个方面,提供了一种用于在基站中确定服务UE的 DOA信息的方法,所述方法包括以下步骤:接收来自一个或多个相邻基站的多个候选DOA信息,其中,该候选DOA信息包括相邻基站进行DOA检测得到的DOA信息;基于所述候选DOA信息,确定通过自身进行DOA检测得到的DOA信息中所述服务UE的真实DOA信息。本发明具有以下优点:基站基于来自其他相邻基站的DOA信息来确定自身服务UE的真实DOA,从而在执行波束赋型操作时消除对其他UE的传输干扰;并且,根据本发明的方案计算复杂度较低,基站之间交互的开销较小。

Description

用于确定服务 UE的 DOA信息的方法和装置 技术领域
本发明涉及计算机技术领域, 尤其涉及一种用于在基站中确定服 务 UE的 DOA信息的方法和装置。 背景技术
多小区千扰是限制无线网络吞吐量和容量提高的一个重要因素。 此 外, 无论是模拟波束赋型或数字波束赋型, 均是在 5G系统中提高信号 强度的关键技术。 所以在多小区波束赋型技术的基础上发展下一代可千 扰避免的无线通信系统是十分有前景的。
基于波达方向 (Direction of the Angle , DOA ) 的十办作波束赋型, ( Coordinated Beamforming, CBF )是一种有效的且复杂度低的针对多 小区千扰解决方案。 基站利用时分双工系统中无线信道的互异性, 得到 下行信道的特性。 它可以从上行探测参考信号 (Sounding Reference Signal, SRS )得到 DOA信息, 并据此消除指向该方向的发射信号, 以 消除对该 UE的传输千扰。
在无线环境是低或中等空间色散环境中, 该方案可以工作得很好。 由于 DOA信息变化緩慢, 该方案不需要像其他千扰避免中非常强大的 回程, 从而易于部署。 并且在目标服务小区中, 千扰 DOA信息可以很 容易地变换为预编码矩阵。
然而, 为了获取准确的 DOA, 在基站侧天线阵列必须具有较好的角 度分辨力, 比如不同的天线单元之间的间距为 0.5波长, 可支持空间信 道信息的精确采样。不幸的是,这种理想的间距在现实场景中很难保持, 由于波长与载波频率相关, 而同一天线系统将部署新的或多个载波频 率。 例如, 在目前的中国移动网络中, 典型的和广泛部署的 LTE TDD 频率为 2.6GHz, 其对应天线单元间距为 0.65波长。 使用 0.65波长( λ )间距的天线阵列, 基站无法通过 SRS信号确定 方位, 因为此时空间通道是欠采样的, 接收端计算得出的角度分布图中 会出现虚假的功率峰值。 图 1示出了 0.65波长的间距天线阵列在波束到 达方向为 45度时的计算得到的波束角度分布示意图。
可以看出, 在负 45度有一个 "假"峰值。 在这种情况下, 基站无法 确定 UE 的位置。 没有方位信息, 基站不能使用任何有效的基于 DOA 的 CBF方法来消除对其他 UE的传输千扰并从而提高吞吐量。 发明内容
本发明的目的是提供一种用于在基站中确定服务 UE的 DOA信息的 方法和装置。
根据本发明的一个方面, 提供了一种用于在基站中确定服务 UE的 DOA信息的方法, 其中, 基站通过对服务 UE进行 DOA检测得到该服 务 UE的 DOA信息, 所述 DOA信息中包括该 务 UE的 DOA信息和 其他 UE的 DOA信息, 所述方法包括以下步骤:
a接收来自一个或多个相邻基站的多个候选 DOA信息, 其中, 该候 选 DOA信息包括相邻基站进行 DOA检测得到的 DOA信息;
b基于所述候选 DOA信息, 确定通过自身进行 DOA检测得到的 DOA信息中所述 务 UE的真实 DOA信息。
根据本发明的一个方面, 提供了一种用于在基站中确定服务 UE的 DOA信息的方位确定装置, 其中, 基站通过对服务 UE进行 DOA检测 得到该服务 UE的 DOA信息,所述 DOA信息中包括该服务 UE的 DOA 信息和其他 UE的 DOA信息, 所述方位确定装置包括:
接收装置, 用于接收来自一个或多个相邻基站的多个候选 DOA信 息, 其中, 该候选 DOA信息包括相邻基站进行 DOA检测得到的 DOA 信息;
确定装置, 用于基于所述候选 DOA信息, 确定通过自身进行 DOA 检测得到的 DOA信息中所述服务 UE的真实 DOA信息。
与现有技术相比, 本发明具有以下优点: 基站基于来自其他相邻基 站的 DOA信息来确定自身服务 UE的真实 DOA, 从而在执行波束赋型 操作时消除对其他 UE的传输千扰; 并且, 根据本发明的方案计算复杂 度较低, 基站之间交互的开销较小。 附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述, 本发明的其它特征、 目的和优点将会变得更明显:
图 1示出了一个示例性的接收端天线阵列的波束角度分布示意图; 图 2示出了根据本发明的一种用于在基站中确定服务 UE的 DOA 信息的方法流程图;
图 3示出了根据本发明的一种用于在基站中确定服务 UE的 DOA 信息的方位确定装置的结构示意图;
图 4a示出了根据本发明的一个示例性的协作波束赋型方案与实 时迫零协作波束赋型方案的性能对比的示意图;
图 4b示出了根据本发明的一个示例性的协作波束赋型方案与无 协作波束赋型方案的性能对比的示意图。
附图中相同或相似的附图标记代表相同或相似的部件。 具体实施方式
下面结合附图对本发明作进一步详细描述。
图 2示出了根据本发明的一种用于在基站中确定服务 UE的 DOA 信息的方法流程图。 根据本发明的方法包括步骤 S1和步骤 S2。
参照图 1, 在步骤 S1中, 方位确定装置接收来自一个或多个相邻基 站的多个候选 DOA信息。
其中,基站先通过对服务 UE进行 DOA检测得到该服务 UE的 DOA 信息, 并且所述 DOA信息中包括该服务 UE的 DOA信息和其他其他 UE的 DOA信息。
具体地, 基站基于 SRS信号来进行 DOA检测。 其中, 基站可采用 多种估计算法来确定服务 UE的 DOA信息,例如 MUSIC算法或 ESPRIT 算法等等。
其中,所述候选 DOA信息包括相邻基站进行 DOA检测得到的 DOA 信息。
接着, 在步骤 S2中, 方位确定装置基于所述候选 DOA信息, 确定 通过自身进行 DOA检测得到的 DOA信息中所述服务 UE的真实 DOA 信息。
才艮据本发明的一个优选实施例, 所述方法包括步骤 S3 (图未示) , 所述步骤 S2包括步骤 S201 (图未示) 。
在步骤 S3中,方位确定装置获取一个或多个相邻基站的天线阵面向 信息, 已进行存储。
其中, 所述天线阵面向 (boresight )用于指示基站天线阵列的方位。 在步骤 S201中,方位确定装置对于来自一相邻基站的多个候选 DOA 信息, 基于自身与该相邻基站的天线阵面向信息, 确定通过自身进行 DOA检测得到的 DOA信息中分别对应于所述服务 UE和其他 UE的 DOA信息。
具体地, 基站基于通过将各个候选 DOA分别与该相邻基站的天线 阵面向的偏移相加或相减来计算相邻基站和服务 UE的 DOA,如果得到 的某一 DOA与本身通过 DOA检测得到的 DOA相匹配,则在通过 DOA 检测得到的 DOA中与该候选 DOA相匹配的 DOA为服务 UE的真实 DOA。
根据本发明的第一示例, 方位确定装置包含于基站 node— 1中,基站 node— 1和相邻基站的天线阵列的间隔是 0.65波长。方位确定装置在步骤 S3中接收来自相邻基站 node— 2的天线阵面向信息, 并存储对应于基站 node— 2的天线阵面向信息 boresight— node2。
并且, 方位确定装置基于 SRS 信号来进行 DOA检测, 得到基站 node— 1的服务 UE (以 ue— 1表示)的两个 DOA信息 DOA— 1和 DOA— 2。
方位确定装置在步骤 S1中接收到来自基站 node— 2的两个候选 DO A 信息 can— DOAl和 can— DOA2。接着, 方位确定装置在步骤 S201中将各 个候选 DOA分别与该相邻基站的天线阵面向的偏移相加或相减来计算 相邻基站和服务 UE的 DOA, 并确定基于 can— DOA1得到的 DOA与基 站 node— 1通过 DOA检测得到的 DOA— 2相匹配, 则方位确定装置确定 DOA— 2为 ue— 1的真实 DOA。
优选地, 才 据本发明的方法包括步骤 S4 (图未示) 。
在步骤 S4中, 方位确定装置基于所确定的分别对应于所述服务 UE 和其他 UE的 DOA信息执行协作波束赋形操作,并取消与该其他 UE对 应的传输接口, 从而消除对其他 UE的传输千扰。
具体地, 方位确定装置可使用记录波束方位信息的查询表, 并将对 应于服务 UE和其他 UE的 DOA作为引来得到与服务 UE和其他 UE的 方位对应的波束赋型矩阵。 对于每个 DOA对, 可离线来搜索和设计波 束, 使得执行波束赋型操作后当前服务 UE对其他 UE的千扰无效。
继续对前述第一示例进行说明,方位确定装置基于 ue— 1的真实 DOA 信息 DOA— 2和其他 UE的 DOA信息 DOA— 1执行协作波束赋形操作, 并取消对应于 DOA— 1方向的 UE的传输接口,从而消除对该 UE的传输 千扰。
优选地,如果存在多个其他 UE,执行装置可选择其中一个或多个其 他 UE; 接着基于所选择的一个或多个其他 UE的 DOA信息执行协作波 束赋形操作, 以消除对该一个或多个其他 UE的传输千扰。
其中, 方位确定装置可通过多种方式来选择消除对哪些 UE的传输 千扰, 例如, 可仅选择最早确定的其他 UE, 或选择信号功率最强的其 他 UE等等, 本领域技术人员人员可基于实际需求, 并基于性能和计算 复杂度之间的权衡来选择合适的方式。
优选地, 所述方法包括步骤 S5 (图未示) 。
在步骤 S5中,方位确定装置将自身通过进行 DOA检测得到的 DOA 信息发送至一个或多个相邻基站, 以供该相邻基站确定其所服务的 UE 的 DOA信息。
根据本发明的方法, 基站基于来自其他相邻基站的 DOA信息来确 定自身服务 UE的真实 DOA, 从而在执行波束赋型操作时取消其他 UE 的接口, 从而消除对其他 UE的传输千扰; 并且, 根据本发明的方法的 计算复杂度较低, 基站之间交互的开销较小。
图 3示出了根据本发明的一种用于在基站中确定服务 UE的 DOA 信息的方位确定装置的结构示意图。 根据本发明的方位确定装置包括 接收装置 1和确定装置 2。
参照图 3, 接收装置 1接收来自一个或多个相邻基站的多个候选 DOA信息。
其中, 基站先通过对服务 UE进行 DOA检测得到该服务 UE的 DOA信息, 并且所述 DOA信息中包括该 务 UE的 DOA信息和其他 UE的 DOA信息。
具体地, 基站基于 SRS信号来进行 DOA检测。 其中, 基站可采用 多种估计算法来确定服务 UE的 DOA信息,例如 MUSIC算法或 ESPRIT 算法等等。
其中,所述候选 DOA信息包括相邻基站进行 DOA检测得到的 DOA 信息。
接着,确定装置 2基于所述候选 DO A信息,确定通过自身进行 DO A 检测得到的 DOA信息中所述服务 UE的真实 DOA信息。
根据本发明的一个优选实施例,所述方位确定装置包括获取装置(图 未示) 。
获取装置获取一个或多个相邻基站的天线阵面向信息,已进行存储。 其中, 所述天线阵面向 (boresight )用于指示基站天线阵列的方位。 确定装置 2对于来自一相邻基站的多个候选 DOA信息, 基于自身 与该相邻基站的天线阵面向信息, 确定通过自身进行 DOA检测得到的 DOA信息中分别对应于所述服务 UE和其他 UE的 DOA信息。
具体地, 确定装置 2基于通过将各个候选 DOA分别与该相邻基站 的天线阵面向的偏移相加或相减来计算相邻基站和服务 UE的 DOA,如 果得到的某一 DOA与本身通过 DOA检测得到的 DOA相匹配, 则在通 过 DOA检测得到的 DOA中与该候选 DOA相匹配的 DOA为服务 UE 的真实 DOA。
根据本发明的第一示例, 方位确定装置包含于基站 node— 1中,基站 node— 1和相邻基站的天线阵列的间隔是 0.65波长。获取装置接收来自相 邻基站 node— 2的天线阵面向信息, 以存储对应于基站 node— 2的天线阵 面向信息 boresight— node2。
并且, 方位确定装置基于 SRS 信号来进行 DOA检测, 得到基站 node— 1的服务 UE (以 ue— 1表示)的两个 DOA信息 DOA— 1和 DOA— 2。
接收装置 1接收到来自基站 node— 2的两个候选 DOA信息 can— DO A 1 和 can— DOA2。接着,确定装置 2将各个候选 DO A分别与该相邻基站的 天线阵面向的偏移相加或相减来计算相邻基站和服务 UE的 DOA,并确 定基于 can— DOA1得到的 DOA与基站 node— 1通过 DOA检测得到的 DOA— 2相匹配, 则方位确定装置确定 DOA— 2为 ue— 1的真实 DOA。
优选地, 根据本发明的方位确定装置包括执行装置 (图未示) 。 执行装置基于所确定的分别对应于所述服务 UE和其他 UE的 DOA 信息执行协作波束赋形操作, 并消除对其他 UE的传输千扰。
具体地, 执行装置可使用记录波束方位信息的查询表, 并将对应于 服务 UE和其他 UE的 DOA作为引来得到与服务 UE和其他 UE的方位 对应的波束赋型矩阵。 对于每个 DOA对, 可离线来搜索和设计波束, 使得执行波束赋型操作后当前服务 UE对其他 UE的千扰无效。
继续对前述第一示例进行说明,方位确定装置基于 ue— 1的真实 DOA 信息 DOA— 2和其他 UE的 DOA信息 DOA— 1执行协作波束赋形操作, 并取消对应于 DOA— 1方向的 UE的传输接口,从而消除对该 UE的传输 千扰。
优选地,如果存在多个其他 UE,方位确定装置可选择其中一个或多 个其他 UE; 接着基于所选择的一个或多个其他 UE的 DOA信息执行协 作波束赋形操作, 以消除对该一个或多个其他 UE的传输千扰。
其中, 方位确定装置可通过多种方式来选择消除对哪些 UE的传输 千扰, 例如, 可仅选择最早确定的其他 UE, 或选择信号功率最强的其 他 UE等等, 本领域技术人员人员可基于实际需求, 并基于性能和计算 复杂度之间的权衡来选择合适的方式。
优选地, 所述方位确定装置包括发送装置 (图未示) 。 发送装置将自身通过进行 DOA检测得到的 DOA信息发送至一个或 多个相邻基站, 以供该相邻基站确定其所服务的 UE的 DOA信息。
根据本发明的方案, 基站基于来自其他相邻基站的 DOA信息来确 定自身服务 UE 的真实 DOA, 从而在执行波束赋型操作时消除对其他 UE 的传输千扰; 并且, 根据本发明的方案的计算复杂度较低, 基站之 间交互的开销较小。
图 4a示出了根据本发明的一个示例性的协作波束赋型方案与实 时迫零协作波束赋型方案的性能对比的示意图。
图 4b示出了根据本发明的一个示例性的协作波束赋型方案与无 协作波束赋型方案的性能对比的示意图。
其中, 图 4a图 4b所示的仿真实脸采用预定的参数来得到的仿真 数据。 其中, 流量模型是满緩冲区模型, 这意味着网络是全负载的。
协作波束赋型的过程可使用基于迫零算法离线得到码本。 码本是这 样产生的: 首先, 生成一个波束从 60度到 60度且粒度为 10度的网格 grid A; 接着, 生成分别指向两个相邻基站具有相同粒度的两个网 grid B 和 grid C, 其中, grid B的波束从- 120度到- 60度, grid C的波束从 60 度到 180度; 接着, 采用迫零算法生成 CBF权重, grid A中的一波束代 表服务 UE的方位, grid B或 grid C中的波束代表被服务 UE千扰的其他 UE的方位。
量:
Figure imgf000010_0001
( 1 )
其中, d表示天线单元的间隔, λ表示工作载波频率的波长, Θ表 示无线电波的方位。
其中, grid Α的波束集合可表示为: A = M )}, = - 60,- 50" · ·,60、 grid Β β = ί^) = -120,-11(),…,- 50, grid C的波束集合可表
Figure imgf000010_0002
对于每个来自 grid A的 Θ , 和来自 grid B和 grid C的 , 可得到以 下矩阵: 0(θ, ) = [α(θ), α( )]Ί
并接着, 得到:
Ρ{θ, φ) = 0Ά {θ, %ΰ{θ, φ)0Ά {θ, φ))1 = [ωΐ{θ, φ\ ω2{θ, φ)] ( 2 ) 其中, 表示位于方位 的服务 UE的波束赋型向量, 表 示位于方位 的其他 UE的波束赋型向量。 并且, [ F是转置操作, [ F是 厄米操作。将该向量计入码本中。 当基站需要在来服务位于方位 Θ的 UE 并消除对位于 的其他 UE的传输千扰时, 可使用和作为查询索引从而 得到相应的波束赋型向量来应用于数据传输。
参照图 4a, 对于小区聚合吞吐量(Cell Aggregated Throughput )和 小区边缘吞吐量(Cell Edge Throughput ) , 与通过理想的实时迫零算法 来实现协作波束赋型向量( Real- time based ZF CBF ) 的方案相比, 本方 案所提出的基于 DOA的协作波束赋型方案 (DOA based CBF )可以实 现相似的性能, 而复杂度和交互的开销则低得多。
参照图 4b, 可以看出, 在全负载的网络中, 与无协作波束赋型方案 ( No CBF case ) 相比, 在保持同一水平的小区聚合吞吐量的情况下, 本发明所提出的基于 DOA的协作波束赋型方案可获得约 17%的小区边 缘吞吐量增益。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例 的细节, 而且在不背离本发明的精神或基本特征的情况下, 能够以其 他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例 看作是示范性的, 而且是非限制性的, 本发明的范围由所附权利要求 而不是上述说明限定, 因此旨在将落在权利要求的等同要件的含义和 范围内的所有变化涵括在本发明内。 不应将权利要求中的任何附图标 记视为限制所涉及的权利要求。 此外, 显然"包括"一词不排除其他单 元或步骤, 单数不排除复数。 系统权利要求中陈述的多个单元或装置 也可以由一个单元或装置通过软件或者硬件来实现。 第一, 第二等词 语用来表示名称, 而并不表示任何特定的顺序。

Claims

权 利 要 求 书
1. 一种用于在基站中确定服务 UE的 DOA信息的方法, 其中, 基 站通过对服务 UE进行 DOA检测得到该服务 UE的 DOA信息,所述 DOA 信息中包括该服务 UE的 DOA信息和其他 UE的 DOA信息, 所述方法 包括以下步骤:
a接收来自一个或多个相邻基站的多个候选 DOA信息, 其中, 该候 选 DOA信息包括相邻基站进行 DOA检测得到的 DOA信息;
b基于所述候选 DOA信息, 确定通过自身进行 DOA检测得到的 DOA信息中所述 务 UE的真实 DOA信息。
2.根据权利要求 1所述的方法, 其中, 所述方法包括以下步骤: - 获取一个或多个相邻基站的天线阵面向信息, 已进行存储。
其中, 所述步骤 b包括以下步骤:
-对于来自一相邻基站的多个候选 DO A信息,基于自身与该相邻基 站的天线阵面向信息,确定通过自身进行 DOA检测得到的 DOA信息中 分别对应于所述服务 UE和其他 UE的 DOA信息。
3. 根据权利要求 1或 2所述的方法,其中,所述方法包括以下步骤: m基于所确定的分别对应于所述服务 UE和其他 UE的 DOA信息 执行协作波束赋形操作, 并取消与该其他 UE对应的传输接口, 从而消 除对其他 UE的传输千扰。
4.根据权利要求 3所述的方法, 其中, 所述步骤 m包括以下步骤: - 如果存在多个其他 UE, 选择其中一个或多个其他 UE;
-基于所选择的一个或多个其他 UE的 DOA信息执行协作波束赋形 操作, 从而消除对该一个或多个其他 UE的传输千扰。
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述方法包括 以下步骤:
- 将自身通过进行 DOA检测得到的 DOA信息发送至一个或多个相 邻基站, 以供该相邻基站确定其所服务的 UE的 DOA信息。
6. 一种用于在基站中确定服务 UE的 DOA信息的方位确定装置, 其中,基站通过对服务 UE进行 DOA检测得到该服务 UE的 DOA信息, 所述 DO A信息中包括该服务 UE的 DO A信息和其他 UE的 DO A信息, 所述方位确定装置包括:
接收装置, 用于接收来自一个或多个相邻基站的多个候选 DOA信 息, 其中, 该候选 DOA信息包括相邻基站进行 DOA检测得到的 DOA 信息;
确定装置, 用于基于所述候选 DOA信息, 确定通过自身进行 DOA 检测得到的 DOA信息中所述服务 UE的真实 DOA信息。
7. 根据权利要求 6所述的方位确定装置, 其中, 所述方位确定装置 包括:
获取装置, 用于获取一个或多个相邻基站的天线阵面向信息, 已进 行存储。
其中, 所述确定装置用于:
-对于来自一相邻基站的多个候选 DO A信息,基于自身与该相邻基 站的天线阵面向信息,确定通过自身进行 DOA检测得到的 DOA信息中 分别对应于所述服务 UE和其他 UE的 DOA信息。
8. 根据权利要求 6或 7所述的方位确定装置, 其中, 所述方位确定 装置包括:
执行装置, 用于基于所确定的分别对应于所述服务 UE和其他 UE 的 DOA信息执行协作波束赋形操作, 并取消与该其他 UE对应的传输 接口, 从而消除对其他 UE的传输千扰。
9. 根据权利要求 8所述的方位确定装置,其中,所述执行装置用于: - 如果存在多个其他 UE, 选择其中一个或多个其他 UE;
-基于所选择的一个或多个其他 UE的 DOA信息执行协作波束赋形 操作, 从而消除对该一个或多个其他 UE的传输千扰。
10. 根据权利要求 6至 9中任一项所述的方位确定装置, 其中, 所 述方位确定装置包括:
发送装置,用于将自身通过进行 DOA检测得到的 DOA信息发送至 一个或多个相邻基站, 以供该相邻基站确定其所服务的 UE的 DOA信
C69TOO/Z.lOZai/X3d C9S60l/8T0Z OAV
PCT/IB2017/001693 2016-12-16 2017-12-18 用于确定服务ue的doa信息的方法和装置 WO2018109563A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611170641.7 2016-12-16
CN201611170641.7A CN108207026B (zh) 2016-12-16 2016-12-16 用于确定服务ue的doa信息的方法和装置

Publications (2)

Publication Number Publication Date
WO2018109563A2 true WO2018109563A2 (zh) 2018-06-21
WO2018109563A3 WO2018109563A3 (zh) 2018-11-01

Family

ID=62200481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001693 WO2018109563A2 (zh) 2016-12-16 2017-12-18 用于确定服务ue的doa信息的方法和装置

Country Status (2)

Country Link
CN (1) CN108207026B (zh)
WO (1) WO2018109563A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11627613B2 (en) 2019-12-13 2023-04-11 Apple Inc. Mechanism for low latency communication using historical beam information

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE317625T1 (de) * 2001-04-20 2006-02-15 Lg Electronics Inc Positionsbestimmung eines mobilkommunikationsendgeräts aufgrund einer kombination von messungen von zwischen dem mobilkommunikationsendgerät und basisstationen ausgetauschten signalen
CN101931446A (zh) * 2009-06-25 2010-12-29 中兴通讯股份有限公司 小区间干扰的抑制方法以及基站
EP2534867B1 (en) * 2010-02-11 2018-09-12 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a wireless communication system
CN102281543B (zh) * 2010-06-08 2014-03-05 鼎桥通信技术有限公司 干扰处理方法、无线网络控制器和通信系统
CN102545981B (zh) * 2010-12-20 2015-11-25 上海贝尔股份有限公司 在无线通信系统中基于doa进行波束赋形的方法与设备
WO2012096607A1 (en) * 2011-01-13 2012-07-19 Telefonaktiebolaget L M Ericsson (Publ) Enhanced angle-of-arrival positioning
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
CN106034307A (zh) * 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种到达角波束赋形权值估计方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11627613B2 (en) 2019-12-13 2023-04-11 Apple Inc. Mechanism for low latency communication using historical beam information

Also Published As

Publication number Publication date
CN108207026B (zh) 2020-11-03
WO2018109563A3 (zh) 2018-11-01
CN108207026A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
Fascista et al. Millimeter-wave downlink positioning with a single-antenna receiver
Decurninge et al. CSI-based outdoor localization for massive MIMO: Experiments with a learning approach
Menta et al. On the performance of AoA–based localization in 5G ultra–dense networks
US11943022B2 (en) Techniques for elevated device communication
Han et al. Large scale antenna system with hybrid digital and analog beamforming structure
CN106576026A (zh) 用于无线通信的装置和方法、电子设备及其方法
JP2016519882A (ja) ワイヤレス通信におけるチャンネル推定
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
CN113015192B (zh) 天线权值确定方法、装置、设备及存储介质
CN107305246B (zh) 基于接收信号强度指示的定位方法和装置
WO2019118250A1 (en) Non-constant modulus codebook design
Vaghefi et al. Cooperative RF pattern matching positioning for LTE cellular systems
Abdallah et al. Angle-based multipath estimation and beamforming for FDD cell-free massive MIMO
CN108604918A (zh) 基于定向传输的被动式定位
Ning et al. Multi-grid-based localized statistical channel modeling: A radio map approach
WO2018109563A2 (zh) 用于确定服务ue的doa信息的方法和装置
CN106559119B (zh) 用于大规模天线虚拟扇区赋形的方法、基站和系统
WO2020128694A1 (en) Precoder codebook modification based on far field radiation pattern for advanced antenna systems
JP6179985B2 (ja) 無線通信システム、共同受信装置及びユーザ端末
CN112235757B (zh) 用于定位的方法、设备、装置和计算机可读存储介质
US20210349171A1 (en) Using recursive phase vector subspace estimation to localize and track client devices
Zhang et al. Target Localization and Performance Trade-Offs in Cooperative ISAC Systems: A Scheme Based on 5G NR OFDM Signals
Iscar et al. Noise variance estimation for 5G wireless networks under pilot contamination
Marinho et al. Performance assessment for distributed broadband radio localization
Huang et al. Big data analysis on beam spectrum for handover optimization in massive-MIMO cellular systems

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872898

Country of ref document: EP

Kind code of ref document: A2