WO2018107525A1 - 一种电动注塑机模具检测方法 - Google Patents

一种电动注塑机模具检测方法 Download PDF

Info

Publication number
WO2018107525A1
WO2018107525A1 PCT/CN2016/112574 CN2016112574W WO2018107525A1 WO 2018107525 A1 WO2018107525 A1 WO 2018107525A1 CN 2016112574 W CN2016112574 W CN 2016112574W WO 2018107525 A1 WO2018107525 A1 WO 2018107525A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
image
detected
straight line
sub
Prior art date
Application number
PCT/CN2016/112574
Other languages
English (en)
French (fr)
Inventor
钟震宇
周广兵
马敬奇
Original Assignee
广东省智能制造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省智能制造研究所 filed Critical 广东省智能制造研究所
Publication of WO2018107525A1 publication Critical patent/WO2018107525A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds

Definitions

  • the invention relates to a method for testing a mold of an electric injection molding machine, in particular to a method for detecting surface residue of an electric injection mold.
  • the injection molding machine is constantly improving its performance and automation.
  • the manipulator is used for production with the injection molding machine.
  • the mold is opened, and the robot often finds plastic mold residue and incomplete demolding after the product is grasped. If it is not treated in time, the residue under the huge impact force of the injection molding machine will cause great damage to the mold, which will seriously affect the production efficiency and increase the production cost.
  • the main mold protection methods are all-electric and hydraulic.
  • the full-electric type can not detect the presence of residue quickly when the current output lag time is too long in the injection molding machine; while the hydraulic type is in the position of the moving mold position. There is a large deviation, resulting in a large gap between the actual position and the measurement position, and the detection is not accurate.
  • the manual detection method is currently the most widely used detection method, but the visual fatigue caused by the long working time is likely to cause false detection and missed judgment, causing unnecessary downtime or even destroying the mold.
  • the invention combines the advantages of fast image processing, high detection precision and intelligence, and proposes a mold detecting method for the electric injection molding machine.
  • the technical problem to be solved by the present invention is to provide a mold detecting method for an electric injection molding machine, which can quickly and accurately detect the residue in the mold.
  • the present invention adopts the following technical solutions:
  • a method for testing a mold of an electric injection molding machine comprising the following steps:
  • the compensation for the brightness specifically includes:
  • the gray level of the original image of the mold image to be detected is i ⁇ [0, a], and the gray level after gray level mapping is j ⁇ [0, b];
  • the step of dividing the mold area in the mold image to be detected in the step S3 specifically includes the following steps:
  • the step of dividing the mold area in the mold image to be detected in the step S3 specifically includes the following steps:
  • the method further includes the following steps:
  • n ⁇ (x m1 , y m1 ), (x m2 , y m2 )...(x mn , y mn ) ⁇ ;
  • the straight line L up , the straight line L down , the straight line L left, and the straight line are L right.
  • the absolute value of the difference between the ordinates of the points is smaller than the set value P h , and the absolute value of the difference between the abscissas of all points on L left and L right is smaller than the set value P w , and a straight line segment that does not satisfy the judgment formula 2 is acquired;
  • step S3.12 for the straight line segment that does not satisfy the judgment formula 2 in step S3.11, further check is Whether there is a straight line segment with the same midpoint coordinate, if any, the straight line segment where the next point is located returns to step S3.11 until a straight line segment satisfying the judgment formula 1 is found; if not, it returns to the midpoint coordinate set of step S9, and Select the boundary line; the selection method is as follows:
  • the four straight lines establish a system of equations to find the intersection coordinates (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y) of the adjacent two straight line segments. 3 ), (X 4 , Y 4 ).
  • b 1 , b 2 , b 3 , and b 4 are the intersection ordinates of the straight line and the Y-axis of the coordinate system.
  • the mold area is segmented from the global image according to the mold frame and corner coordinates to be detected.
  • the feature value set marked by the sub-module image is composed:
  • the feature values of the sub-module image include energy moment, contrast and information entropy, where W Asm is the energy moment, W Con is the contrast, and W Ent is the information entropy.
  • the method of the invention can quickly and accurately detect the residue of the residue in the mold, and has the characteristics of rapid detection, stable operation and high detection precision.
  • Rapid detection can accelerate the production cycle and increase the production volume; the operation stability can meet the requirements that the equipment used in the industrial production process must be stable; the high detection accuracy reduces the possibility of missed judgment and misjudgment, and reduces the leakage rate. It can reduce damage to the mold and reduce the false positive rate to save production time.
  • the invention can save the standard template parameters in the use process during the operation process, and the next time the use does not need to change the mold, the machine can be quickly turned on into the processing stage, and the same standard template can be used.
  • the invention has perfect light compensation function, can effectively resist the problem of poor shooting effect caused by light changes in the production process, and ensures the accuracy of image shooting.
  • Figure 1 is a schematic flow chart of the present invention
  • FIG. 2 is a schematic diagram of a template matching process of the present invention.
  • a method for detecting a mold of an electric injection molding machine of the present invention comprises the following steps:
  • the residue threshold in the standard template image be T.
  • the feature values of the sub-module image include energy moment, contrast and information entropy.
  • W Asm is the energy moment
  • W Con is the contrast
  • W Ent is the information entropy.
  • m 16 sub-module images.
  • the compensation for the brightness specifically includes:
  • the optimal threshold values for the edge detection using the Canny operator are T 1 and T 2 , and the above-mentioned optimal threshold is used for edge detection of the mold image to be detected, thereby using the standard template.
  • the image is a reference parameter to quickly obtain an edge image of the mold image to be detected.
  • dividing the mold area in the mold image to be detected specifically includes the following steps:
  • the step of dividing the mold area in the mold image to be detected in the step S3 specifically includes the following steps:
  • n ⁇ (x m1 , y m1 ), (x m2 , y m2 )...(x mn , y mn ) ⁇ .
  • the straight line L up , the straight line L down , the straight line L left, and the straight line are L right.
  • the absolute value of the difference between the ordinates of all the points is smaller than the set value P h , and the absolute value of the difference between the abscissas of all points on L left and L right is smaller than the set value P w , and a line that does not satisfy the judgment formula 2 is acquired. segment.
  • step S3.12 for a straight line segment that does not satisfy the judgment formula 2 in step S3.11, further check whether there is a straight line segment having the same midpoint coordinate, and if so, take the straight line segment where the next point is located and return to step S3.11, Until the line segment satisfying the judgment formula 1 is found; if not, return to the midpoint coordinate set of step S9, and re-select the boundary line; the selection method is as follows:
  • the four straight lines establish a system of equations to find the intersection coordinates (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y) of the adjacent two straight line segments. 3 ), (X 4 , Y 4 ).
  • b 1 , b 2 , b 3 , and b 4 are the intersection ordinates of the straight line and the Y-axis of the coordinate system.
  • the mold area is segmented from the global image according to the mold frame and corner coordinates to be detected, thereby obtaining an accurate mold area.
  • the residue in the mold can be accurately and quickly detected, the detection efficiency is improved, the automation degree of the mold processing industry is improved, and the mold can be effectively protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种电动注塑机模具检测方法,获取一幅无残留物的矩形标准模具图像作为标准模板图像,去除该标准模板图像的背景区域得到模具区域,将标准模板图像尺寸归一化为L×L大小,将标准模板图像分割为m个大小均为W×W的子模块图像,提取各个子模块图像的特征值;采集开模后的待检测模具图像,提取待检测模具图像的边缘图像,并将其模具区域分割出来;将待检测模具图像尺寸归一化为L×L大小,并且分割为m个大小均为W×W的子图像,提取各个子图像的特征值;将标准模板图像的子模块图像特征值与待检测模具图像的子图像的特征值比较,从而得出待检测模具图像的残留物的情况。该检测方法能够快速、准确地检测到模具中的残留物情况,提高检测效率,提高模具加工行业的自动化程度。

Description

一种电动注塑机模具检测方法 技术领域
本发明涉及一种电动注塑机模具检测方法,具体地说是一种对电动注塑模具表面残留物进行检测的方法。
背景技术
近年来,随着科技的快速进步,国内经济呈现良好发展,其中塑料行业的发展也有很大进步。注塑机作为主要的塑料制品生产机械,其性能和自动化水平在不断提高。机械手用于配合注塑机进行生产,在注塑机生产加工过程中,在注塑机产品成型后,模具开模,机械手找抓取产品后时常会有塑料残留、脱模不完整等异常脱模现象,如不及时处理在注塑机巨大的冲击力作用下残留物会对模具造成极大破坏,严重影响生产效率,增加生产成本。目前主要的模具保护方法有全电式和油压式,全电式在注塑机中电流输出滞后时间过久时不能快速检测到残留物的存在;而油压式则在动模位置定位过程中存在较大偏差,导致实际位置与测量位置差距大,检测不准确。另外,人工检测方法是目前应用最广的检测手段,但工作时间过长导致的视觉疲劳容易引发误检和漏判,造成不必要的停工,甚至破坏模具。
目前国内图像处理与识别技术发展迅猛,逐渐向数字化、智能化方向发展,在交通、勘探、医学、工业等多个领域都有应用,但应用在注塑机模具保护中的应用还比较少,故此。本发明结合图像处理计算速度快、检测精度高、智能化等优点,提出一种电动注塑机模具检测方法。
发明内容
本发明要解决的技术问题是提供一种电动注塑机模具检测方法,能够快速、准确的检测到模具中的残留物情况。
为了解决上述技术问题,本发明采取以下技术方案:
一种电动注塑机模具检测方法,包括以下步骤:
S1,获取一幅无残留物的矩形标准模具图像作为标准模板图像,提取该标准模版图像的边缘图像,去除该标准模板图像的背景区域得到模具区域,将标准化模板图像尺寸归一化为L×L大小,将标准模板图像分割为m个大小均为W×W的子模块图像,提取各个子模块图像的特征值,设标准模板图像中的残留物阈值为T;
S2,采集开模后的待检测模具图像,对该待检测模具图像进行亮度补偿,使待检测模具图像与标准模板图像具有相同的亮度和对比度;
S3,提取待检测模具图像的边缘图像,将待检测模具图像中的模具区域分割出来;
S4,将待检测模具图像尺寸归一化为L×L大小,将待检测模具图像分割为m个大小均为W×W的子图像,提取各个子图像的特征值;
S5,将待检测模具图像中的第i个子图像的特征值与标准模板图像中的第i个子模块图像的特征值进行模板匹配,记录相似度Si,并且计算待检测模具图像中的前i个子图像与标准模板图像中的前i个子模块图像的相似度的和即总相似度S,其中i的取值范围为[1,m],
Figure PCTCN2016112574-appb-000001
S6,比较总相似度S与残留物阈值T的大小关系,若S>T,则当前待检测模具图像含有残留物,结束检测过程;若S<T,判断i与m的大小关系,若i=m,则当前待检测模具图像没有残留物,结束检测过程;若i<m,则i+1并返回步骤S5,直到i=m,结束检测过程。
所述步骤S2中,对亮度的补偿具体包括:
S2.1,设待检测模具图像的原图像灰度级为i∈[0,a],经过灰度级映射后的灰度级为j∈[0,b];
S2.2,归一化:灰度级i的概率密度函数为
Figure PCTCN2016112574-appb-000002
其中H(i)为待检测模具图像的灰度直方图中灰度级为i的像素点数量,N为待检测模具图像总的像素点数;
S2.3,灰度直方图的概率分布函数为
Figure PCTCN2016112574-appb-000003
S2.4,采取四舍五入的方法计算灰度级映射后的灰度值j=255INT[pi];
S2.5,通过以上过程实现了从原图像灰度级i→j映射后灰度级的映射关系,原始图像的灰度值从f(m,n)=i→g(m,n)=j变换。
所述步骤S3中提到边缘图像时具体包括以下步骤:
S3.1,采用Canny算子对待检测模具图像进行检测得到边缘图像,然后对所获取的边缘图像中的连通域做面积统计,将小于设定面积阈值A的连通域去除;
S3.2,在对矩形标准模具进行边缘提取时记录该矩形标准模具的四个边缘长度L1、L2、L3和L4,其中L1=L3,L2=L4,且L2>L1
S3.3,在对待检测模具外边框进行动态检测时,取l1=L1/4为Hough变换的直线低阈值,取l2=L1/2为Hough变换的直线高阈值,Hough变换过程中记录长度l>l1的直线,并将长度l≥l2的直线画出来。
所述步骤S3中将待检测模具图像中的模具区域分割出来具体包括以下步骤:
S3.4,遍历待检测模具图像中的直线,标记直线中点距离待检测模具图像四个边缘最近的4条直线分别为Lup、Ldown、Lleft、Lright,其中Lup与Ldown为上下对称,Lleft和Lright为左右对称;
S3.5,满足Lup=Ldown、Lleft=Lright
S3.6,所述步骤S3中将待检测模具图像中的模具区域分割出来具体包括以下步骤:
S3.4,遍历待检测模具图像中的直线,标记直线中点距离待检测模具图像四个边缘最近的4条直线分别为Lup、Ldown、Lleft、Lright,其中Lup与Ldown为上下对称,Lleft和Lright为左右对称;
S3.5,满足Lup=Ldown、Lleft=Lright
S3.6,Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft 和Lright上所有点的横坐标之差的绝对值小于设定值Pw
S3.7,该四条直线斜率满足kup=kdown、kleft=kright,从而Lup为距离待检测图像上边缘最近的待检测模具的上边框,Ldown为距离待检测图像下边缘最近的待检测模具的下边框,Lleft为距离待检测图像左边缘最近的待检测模具的左边框,Lright为距离待检测图像右边缘最近的待检测模具的右边框,该四条直线构成的区域为待检测模具图像中的模具区域;
S3.7,该四条直线斜率满足kup=kdown、kleft=kright,从而Lup为距离待检测图像上边缘最近的待检测模具的上边框,Ldown为距离待检测图像下边缘最近的待检测模具的下边框,Lleft为距离待检测图像左边缘最近的待检测模具的左边框,Lright为距离待检测图像右边缘最近的待检测模具的右边框,该四条直线构成的区域为待检测模具图像中的模具区域。
所述将待检测模具图像中的模具区域分割出来时,还具体包括步骤:
S3.8,计算每条直线段的中点坐标,组成中点坐标集合,n为直线段总数
n={(xm1,ym1),(xm2,ym2)...(xmn,ymn)};
S3.9,将中点坐标集合的x、y分别按从小到大排列,组成两个集合
Figure PCTCN2016112574-appb-000004
S3.10,选取yi所在的直线为Lup,yn所在的直线为Ldown,xj所在的直线为Lleft,xn所在的直线为Lright,i和j的取值范围为[1,n]且从1开始取值,若存在中点坐标相同的点则排序标记;
S3.11,计算步骤S3.10中直线Lup、直线Ldown、直线Lleft和直线为Lright该四条直线的斜率kup、kdown、kleft、kright,若满足判断式一kup=kdown、kleft=kright,则转至步骤S3.13;若不满足判断式一kup=kdown、kleft=kright,则通过判断式二:Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft和Lright上所有点的横坐标之差的绝对值小于设定值Pw,获取不满足该判断式二的直线段;
S3.12,对于不满足步骤S3.11中的判断式二的直线段,进一步查看是 否有相同中点坐标的直线段,若有则取下一个点所在的直线段返回步骤S3.11,直到找到满足判断式一的直线段;若没有则返回步骤S9的中点坐标集合,重新选择边界直线;选取方法具体如下:
若通过判断式一确认是yi所在直线不满足,则i加1;若通过判断式一确认是yn所在直线不满足,则n减去1;若通过判断式一确认是xj所在直线不满足,则j加1;若通过判断式一确认是xn所在直线不满足,则n减去1,返回步骤S3.10;
S3.13确认了边界所在直线后,联立4条直线建立方程组求出相邻两条直线段的交点坐标(X1,Y1)、(X2,Y2)、(X3,Y3)、(X4,Y4)。
Figure PCTCN2016112574-appb-000005
上式中,b1、b2、b3、b4为直线与坐标系Y轴的交点纵坐标。
S3.14,根据待检测模具边框和角点坐标将模具区域从全局图像中分割出来。
所述步骤S1中提取标准模板图像中子模块图像的特征值后,组成以子模块图像为标记的特征值集合:
Figure PCTCN2016112574-appb-000006
子模块图像的特征值包括能量矩、对比度和信息熵,其中WAsm为能量矩,WCon为对比度,WEnt为信息熵。
本发明方法能够快速、准确地检测出模具中残留物的残留情况,具有检测快速性、运行稳定性、检测精度高的特点。
1)检测快速性可使生产节拍加快,提高生产量;运行稳定性能够满足工业生产过程中所用设备必须稳定的要求;检测精度高即降低了漏判和误判的可能性,降低漏判率可减少对模具的损害,降低误判率节约生产时间。
2)智能化水平高
本发明在操作过程中可以保存本次使用过程中的标准模版参数,下次使用如无需更换模具,可快速开机进入加工阶段,利用同一个标准模板即可。
3)适应性强
本发明具有完善的光线补偿功能,可有效抵制生产过程中由于光线变化导致的拍摄效果不良的问题,保证图像拍摄的精确程度。
4)进一步提高注塑加工的自动化水平,可替代目前常用的全电式和油压式保护模具方法,加快生产速度,加强了企业生产力和行业竞争力。
5)利用本方案进行自动化检测,可实现无接触式检测,降低应用软件的操作难度、节约本低,节约人力资源。
附图说明
附图1为本发明流程示意图;
附图2为本发明模板匹配流程示意图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述。
如附图1和2所示,本发明一种电动注塑机模具检测方法,包括以下步骤:
S1,获取一幅无残留物的矩形标准模具图像作为标准模板图像,提取该标准模版图像的边缘图像,去除该标准模板图像的背景区域得到模具区域,将标准化模板图像尺寸归一化为L×L大小,将标准模板图像分割为m个大小均为W×W的子模块图像,提取各个子模块图像的特征值,组成以子模块图像为标记的特征值集合:
Figure PCTCN2016112574-appb-000007
设标准模板图像中的残留物阈值为T。子模块图像的特征值包括能量矩、对比度和信息熵,上式中WAsm为能量矩,WCon为对比度,WEnt为信息熵。 通常是划分成m=16个子模块图像。
S2,采集开模后的待检测模具图像,对该待检测模具图像进行亮度补偿,使待检测模具图像与标准模板图像具有相同的亮度和对比度。保持与矩形标准模具相同的光照环境等工作环境,最大程度保证拍照效果一致,有利于后续检测的精确度。
S3,提取待检测模具图像的边缘图像,将待检测模具图像中的模具区域分割出来。利用Canny算子与Hough变换相结合的方法定位待检测模具外边框,从而准确地将模具区域分割出来。
S4,将待检测模具图像尺寸归一化为L×L大小,将待检测模具图像分割为m个大小均为W×W的子图像,提取各个子图像的特征值。与标准模版图像一致,该待检测模具图像也划分成16个子图像。
S5,将待检测模具图像中的第i个子图像的特征值与标准模板图像中的第i个子模块图像的特征值进行模板匹配,记录相似度Si,并且计算待检测模具图像中的前i个子图像与标准模板图像中的第i个子模块图像的相似度的和即总相似度S,其中i的取值范围为[1,m],
Figure PCTCN2016112574-appb-000008
即是将待检测模具图像中的第1个子图像与标准模版图像中的第1个子模块图像的相似度S1,待检测模具图像中的第2个子图像与标准模版图像中的第2个子模块图像的相似度S2,待检测模具图像中的第i-1个子图像与标准模版图像中的第i-1个子模块图像的相似度Si-1,全部相加得到前前i个子图像的相似度S。
S6,比较总相似度S与残留物阈值T的大小关系,若S>T,则当前待检测模具图像含有残留物,结束检测过程;若S<T,判断i与m的大小关系,若i=m,则当前待检测模具图像没有残留物,结束检测过程;若i<m,则i+1并返回步骤S5,直到i=m,由于共划分成16个子图像,因此直到i=16结束检测过程,从而完成每一个子图像的对比检测,将整个图像的检测划分成多个子图像的检测,更加精确。
所述步骤S2中,对亮度的补偿具体包括:
S2.1,设待检测模具图像的原图像灰度级为i∈[0,a],经过灰度级映 射后的灰度级为j∈[0,b]。
S2.2,归一化:灰度级i的概率密度函数为
Figure PCTCN2016112574-appb-000009
其中H(i)为待检测模具图像的灰度直方图中灰度级为i的像素点数量,N为待检测模具图像总的像素点数。
S2.3,灰度直方图的概率分布函数为
Figure PCTCN2016112574-appb-000010
S2.4,采取四舍五入的方法计算灰度级映射后的灰度值j=255INT[pi]。
S2.5,通过以上过程实现了从原图像灰度级i→j映射后灰度级的映射关系,原始图像的灰度值从f(m,n)=i→g(m,n)=j变换。
所述步骤S3中提到边缘图像时具体包括以下步骤:
S3.1,采用Canny算子对待检测模具图像进行检测得到边缘图像,然后对所获取的边缘图像中的连通域做面积统计,将小于设定面积阈值A的连通域去除,可有效去除小面积边缘图像,例如孤立斑点。在对矩形标准模具进行标准模版图像提取时同样采用Canny算子进行边缘检测时的最佳阈值为T1和T2,在对待检测模具图像进行边缘检测时采用上述最佳阈值,从而以标准模版图像为参考参数,快速获取待检测模具图像的边缘图像。
S3.2,在对矩形标准模具进行边缘提取时记录该矩形标准模具的四个边缘长度L1、L2、L3和L4,其中L1=L3,L2=L4,且L2>L1
S3.3,在对待检测模具外边框进行动态检测时,取l1=L1/4为Hough变换的直线低阈值,取l2=L1/2为Hough变换的直线高阈值,Hough变换过程中记录长度l>l1的直线,并将长度l≥l2的直线画出来。
并且进一步,将待检测模具图像中的模具区域分割出来具体包括以下步骤:
S3.4,遍历待检测模具图像中的直线,标记直线中点距离待检测模具图像四个边缘最近的4条直线分别为Lup、Ldown、Lleft、Lright,其中Lup与Ldown 为上下对称,Lleft和Lright为左右对称。
S3.5,满足Lup=Ldown、Lleft=Lright,确保对称的两边的长度相等。
S3.6,所述步骤S3中将待检测模具图像中的模具区域分割出来具体包括以下步骤:
S3.4,遍历待检测模具图像中的直线,标记直线中点距离待检测模具图像四个边缘最近的4条直线分别为Lup、Ldown、Lleft、Lright,其中Lup与Ldown为上下对称,Lleft和Lright为左右对称;
S3.5,满足Lup=Ldown、Lleft=Lright
S3.6,Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft和Lright上所有点的横坐标之差的绝对值小于设定值Pw
S3.7,该四条直线斜率满足kup=kdown、kleft=kright,从而Lup为距离待检测图像上边缘最近的待检测模具的上边框,Ldown为距离待检测图像下边缘最近的待检测模具的下边框,Lleft为距离待检测图像左边缘最近的待检测模具的左边框,Lright为距离待检测图像右边缘最近的待检测模具的右边框,该四条直线构成的区域为待检测模具图像中的模具区域。
根据上述分割方式,具体可采用下述步骤进行实现。
S3.8,计算每条直线段的中点坐标,组成中点坐标集合,n为直线段总数
n={(xm1,ym1),(xm2,ym2)...(xmn,ymn)}。
S3.9,将中点坐标集合的x、y分别按从小到大排列,组成两个集合
Figure PCTCN2016112574-appb-000011
S3.10,选取yi所在的直线为Lup,yn所在的直线为Ldown,xj所在的直线为Lleft,xn所在的直线为Lright,i和j的取值范围为[1,n]且从1开始取值,若存在中点坐标相同的点则排序标记。
S3.11,计算步骤S3.10中直线Lup、直线Ldown、直线Lleft和直线为Lright该四条直线的斜率kup、kdown、kleft、kright,若满足判断式一:kup=kdown、kleft=kright,则转至步骤S3.13;若不满足判断式一:kup=kdown、 kleft=kright,则通过判断式二:Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft和Lright上所有点的横坐标之差的绝对值小于设定值Pw,获取不满足该判断式二的直线段。
S3.12,对于不满足步骤S3.11中的判断式二的直线段,进一步查看是否有相同中点坐标的直线段,若有则取下一个点所在的直线段并返回步骤S3.11,直到找到满足判断式一的直线段;若没有则返回步骤S9的中点坐标集合,重新选择边界直线;选取方法具体如下:
若通过判断式一确认是yi所在直线不满足,则i加1;若通过判断式一确认是yn所在直线不满足,则n减去1;若通过判断式一确认是xj所在直线不满足,则j加1;若通过判断式一确认是xn所在直线不满足,则n减去1,返回步骤S3.10。
S3.13确认了边界所在直线后,联立4条直线建立方程组求出相邻两条直线段的交点坐标(X1,Y1)、(X2,Y2)、(X3,Y3)、(X4,Y4)。
Figure PCTCN2016112574-appb-000012
上式中,b1、b2、b3、b4为直线与坐标系Y轴的交点纵坐标。
S3.14,根据待检测模具边框和角点坐标将模具区域从全局图像中分割出来,从而得到准确的模具区域。
通过以上的操作,从而可以准确、快速地检测到模具中的残留物情况,提高检测效率,提高模具加工行业的自动化程度,对模具能够起到有效的保护作用。
需要说明的是,以上所述并非是对本发明的限定,在不脱离本发明的创造构思的前提下,任何显而易见的替换均在本发明的保护范围之内。

Claims (6)

  1. 一种电动注塑机模具检测方法,包括以下步骤:
    S1,获取一幅无残留物的矩形标准模具图像作为标准模板图像,提取该标准模版图像的边缘图像,去除该标准模板图像的背景区域得到模具区域,将标准化模板图像尺寸归一化为L×L大小,将标准模板图像分割为m个大小均为W×W的子模块图像,提取各个子模块图像的特征值,设标准模板图像中的残留物阈值为T;
    S2,采集开模后的待检测模具图像,对该待检测模具图像进行亮度补偿,使待检测模具图像与标准模板图像具有相同的亮度和对比度;
    S3,提取待检测模具图像的边缘图像,将待检测模具图像中的模具区域分割出来;
    S4,将待检测模具图像尺寸归一化为L×L大小,将待检测模具图像分割为m个大小均为W×W的子图像,提取各个子图像的特征值;
    S5,将待检测模具图像中的第i个子图像的特征值与标准模板图像中的第i个子模块图像的特征值进行模板匹配,记录相似度Si,并且计算待检测模具图像中的前i个子图像与标准模板图像中的前i个子模块图像的相似度的和即总相似度S,其中i的取值范围为[1,m],
    Figure PCTCN2016112574-appb-100001
    S6,比较总相似度S与残留物阈值T的大小关系,若S>T,则当前待检测模具图像含有残留物,结束检测过程;若S<T,判断i与m的大小关系,若i=m,则当前待检测模具图像没有残留物,结束检测过程;若i<m,则i+1并返回步骤S5,直到i=m,结束检测过程。
  2. 根据权利要求1所述的电动注塑机模具检测方法,其特征在于,所述步骤S2中,对亮度的补偿具体包括:
    S2.1,设待检测模具图像的原图像灰度级为i∈[0,a],经过灰度级映射后的灰度级为j∈[0,b];
    S2.2,归一化:灰度级i的概率密度函数为
    Figure PCTCN2016112574-appb-100002
    其中H(i)为待 检测模具图像的灰度直方图中灰度级为i的像素点数量,N为待检测模具图像总的像素点数;
    S2.3,灰度直方图的概率分布函数为
    Figure PCTCN2016112574-appb-100003
    S2.4,采取四舍五入的方法计算灰度级映射后的灰度值j=255INT[pi];
    S2.5,通过以上过程实现了从原图像灰度级i→j映射后灰度级的映射关系,原始图像的灰度值从f(m,n)=i→g(m,n)=j变换。
  3. 根据权利要求2所述的电动注塑机模具检测方法,其特征在于,所述步骤S3中提到边缘图像时具体包括以下步骤:
    S3.1,采用Canny算子对待检测模具图像进行检测得到边缘图像,然后对所获取的边缘图像中的连通域做面积统计,将小于设定面积阈值A的连通域去除;
    S3.2,在对矩形标准模具进行边缘提取时记录该矩形标准模具的四个边缘长度L1、L2、L3和L4,其中L1=L3,L2=L4,且L2>L1
    S3.3,在对待检测模具外边框进行动态检测时,取l1=L1/4为Hough变换的直线低阈值,取l2=L1/2为Hough变换的直线高阈值,Hough变换过程中记录长度l>l1的直线,并将长度l≥l2的直线画出来。
  4. 根据权利要求3所述的电动注塑机的模具检测方法,其特征在于,所述步骤S3中将待检测模具图像中的模具区域分割出来具体包括以下步骤:
    S3.4,遍历待检测模具图像中的直线,标记直线中点距离待检测模具图像四个边缘最近的4条直线分别为Lup、Ldown、Lleft、Lright,其中Lup与Ldown为上下对称,Lleft和Lright为左右对称;
    S3.5,满足Lup=Ldown、Lleft=Lright
    S3.6,Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft和Lright上所有点的横坐标之差的绝对值小于设定值Pw
    S3.7,该四条直线斜率满足kup=kdown、kleft=kright,从而Lup为距离待检测图像上边缘最近的待检测模具的上边框,Ldown为距离待检测图像下边缘最近的待检测模具的下边框,Lleft为距离待检测图像左边缘最近的待检测模具的左边框,Lright为距离待检测图像右边缘最近的待检测模具的右边框,该四条直线构成的区域为待检测模具图像中的模具区域。
  5. 根据权利要求4所述的电动注塑机的模具检测方法,其特征在于,所述将待检测模具图像中的模具区域分割出来时,还具体包括步骤:
    S3.8,计算每条直线段的中点坐标,组成中点坐标集合,n为直线段总数
    n={(xm1,ym1),(xm2,ym2)...(xmn,ymn)};
    S3.9,将中点坐标集合的x、y分别按从小到大排列,组成两个集合
    Figure PCTCN2016112574-appb-100004
    S3.10,选取yi所在的直线为Lup,yn所在的直线为Ldown,xj所在的直线为Lleft,xn所在的直线为Lright,i和j的取值范围为[1,n]且从1开始取值,若存在中点坐标相同的点则排序标记;
    S3.11,计算步骤S3.10中直线Lup、直线Ldown、直线Lleft和直线为Lright该四条直线的斜率kup、kdown、kleft、kright,若满足判断式一kup=kdown、kleft=kright,则转至步骤S3.13;若不满足判断式一kup=kdown、kleft=kright,则通过判断式二:Lup和Ldown上的所有点的纵坐标之差的绝对值小于设定值Ph,Lleft和Lright上所有点的横坐标之差的绝对值小于设定值Pw,获取不满足该判断式二的直线段;
    S3.12,对于不满足步骤S3.11中的判断式二的直线段,进一步查看是否有相同中点坐标的直线段,若有则取下一个点所在的直线段返回步骤S3.11,直到找到满足判断式一的直线段;若没有则返回步骤S9的中点坐标集合,重新选择边界直线;选取方法具体如下:
    若通过判断式一确认是yi所在直线不满足,则i加1;若通过判断式一确认是yn所在直线不满足,则n减去1;若通过判断式一确认是xj所在直 线不满足,则j加1;若通过判断式一确认是xn所在直线不满足,则n减去1,返回步骤S3.10;
    S3.13确认了边界所在直线后,联立4条直线建立方程组求出相邻两条直线段的交点坐标(X1,Y1)、(X2,Y2)、(X3,Y3)、(X4,Y4)。
    Figure PCTCN2016112574-appb-100005
    上式中,b1、b2、b3、b4为直线与坐标系Y轴的交点纵坐标。
    S3.14,根据待检测模具边框和角点坐标将模具区域从全局图像中分割出来。
  6. 根据权利要求5所述的电动注塑机的模具检测方法,其特征在于,所述步骤S1中提取标准模板图像中子模块图像的特征值后,组成以子模块图像为标记的特征值集合:
    Figure PCTCN2016112574-appb-100006
    子模块图像的特征值包括能量矩、对比度和信息熵,其中WAsm为能量矩,WCon为对比度,WEnt为信息熵。
PCT/CN2016/112574 2016-12-12 2016-12-28 一种电动注塑机模具检测方法 WO2018107525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611136387.9 2016-12-12
CN201611136387.9A CN106778779A (zh) 2016-12-12 2016-12-12 一种电动注塑机模具检测方法

Publications (1)

Publication Number Publication Date
WO2018107525A1 true WO2018107525A1 (zh) 2018-06-21

Family

ID=58879957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112574 WO2018107525A1 (zh) 2016-12-12 2016-12-28 一种电动注塑机模具检测方法

Country Status (2)

Country Link
CN (1) CN106778779A (zh)
WO (1) WO2018107525A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070528A (zh) * 2019-04-18 2019-07-30 天津工业大学 一种应用于模具镶块工件加工在线定位的二维检测方法
CN111626339A (zh) * 2020-05-08 2020-09-04 北京嘎嘎博视科技有限责任公司 一种抗光影和抖动影响的注塑机模腔异常检测方法
CN112806295A (zh) * 2020-12-28 2021-05-18 重庆市农业科学院 一种智能投饲方法
CN113658090A (zh) * 2020-04-29 2021-11-16 河北荣泰模具科技股份有限公司 金属模具零件智能检测判别方法
CN114236885A (zh) * 2021-11-10 2022-03-25 云南电网有限责任公司 一种电能表液晶显示机器视觉检测系统和方法
CN114445483A (zh) * 2022-01-28 2022-05-06 泗阳三江橡塑有限公司 基于图像金字塔的注塑件质量分析方法
CN115272341A (zh) * 2022-09-29 2022-11-01 华联机械集团有限公司 一种基于机器视觉的包装机缺陷产品检测方法
CN116400588A (zh) * 2023-06-07 2023-07-07 烟台金丝猴食品科技有限公司 一种面包模具残渣自动定位清洗方法及设备
WO2024109669A1 (zh) * 2022-11-21 2024-05-30 利多(香港)有限公司 一种检测包装盒内物料放置情况的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409288B (zh) * 2018-10-25 2022-02-01 北京市商汤科技开发有限公司 图像处理方法、装置、电子设备和存储介质
CN109547845B (zh) * 2018-12-24 2021-10-01 武汉烽火众智智慧之星科技有限公司 一种视频标记方法及装置
CN111951210A (zh) * 2019-05-14 2020-11-17 阿里巴巴集团控股有限公司 数据的处理方法、装置及设备
CN113233273B (zh) * 2020-05-21 2023-08-25 山东中兴合智通信新技术有限公司 电梯故障监测方法、装置、存储介质、电子设备及电梯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012214A (ja) * 2007-07-02 2009-01-22 Ushio Inc 金型監視装置
CN102896752A (zh) * 2012-10-07 2013-01-30 浙江大学 一种注塑机模具图像监测报警系统及方法
CN104772880A (zh) * 2015-04-10 2015-07-15 浙江工业大学 一种基于lmdo的注塑机械手模具异常检测方法
CN104809732A (zh) * 2015-05-07 2015-07-29 山东鲁能智能技术有限公司 一种基于图像比对的电力设备外观异常检测方法
CN105005852A (zh) * 2015-07-06 2015-10-28 深圳市鹏安视科技有限公司 一种基于图像分析的宿舍环境智能监测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345820B (zh) * 2008-08-01 2010-06-16 中兴通讯股份有限公司 一种图像亮度的增强方法
CN104850858B (zh) * 2015-05-15 2016-09-07 华中科技大学 一种注塑制品缺陷检测识别方法
CN104992145B (zh) * 2015-06-15 2018-01-16 山东大学 一种矩采样车道跟踪检测方法
CN105809674A (zh) * 2016-03-03 2016-07-27 厦门大学 一种基于机器视觉的模具保护装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012214A (ja) * 2007-07-02 2009-01-22 Ushio Inc 金型監視装置
CN102896752A (zh) * 2012-10-07 2013-01-30 浙江大学 一种注塑机模具图像监测报警系统及方法
CN104772880A (zh) * 2015-04-10 2015-07-15 浙江工业大学 一种基于lmdo的注塑机械手模具异常检测方法
CN104809732A (zh) * 2015-05-07 2015-07-29 山东鲁能智能技术有限公司 一种基于图像比对的电力设备外观异常检测方法
CN105005852A (zh) * 2015-07-06 2015-10-28 深圳市鹏安视科技有限公司 一种基于图像分析的宿舍环境智能监测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA, LIN ET AL.: "The Detection of Residuum in Injection Mold Based on Gray Level Co-Occurrence Matrix", ELECTRONIC DESIGN ENGINEERING, vol. 23, no. 7, 30 April 2015 (2015-04-30), pages 138 - 140, ISSN: 1674-6236 *
MA, LIN: "Research of Residuum Detection System Based on Industrial Machine Vision", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 July 2015 (2015-07-15), pages 17 - 23, ISSN: 1674-0246 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070528A (zh) * 2019-04-18 2019-07-30 天津工业大学 一种应用于模具镶块工件加工在线定位的二维检测方法
CN110070528B (zh) * 2019-04-18 2023-04-21 天津工业大学 一种应用于模具镶块工件加工在线定位的二维检测方法
CN113658090A (zh) * 2020-04-29 2021-11-16 河北荣泰模具科技股份有限公司 金属模具零件智能检测判别方法
CN111626339B (zh) * 2020-05-08 2023-06-13 北京嘎嘎博视科技有限责任公司 一种抗光影和抖动影响的注塑机模腔异常检测方法
CN111626339A (zh) * 2020-05-08 2020-09-04 北京嘎嘎博视科技有限责任公司 一种抗光影和抖动影响的注塑机模腔异常检测方法
CN112806295B (zh) * 2020-12-28 2022-11-04 重庆市农业科学院 一种智能投饲方法
CN112806295A (zh) * 2020-12-28 2021-05-18 重庆市农业科学院 一种智能投饲方法
CN114236885A (zh) * 2021-11-10 2022-03-25 云南电网有限责任公司 一种电能表液晶显示机器视觉检测系统和方法
CN114236885B (zh) * 2021-11-10 2023-09-12 云南电网有限责任公司 一种电能表液晶显示机器视觉检测系统和方法
CN114445483A (zh) * 2022-01-28 2022-05-06 泗阳三江橡塑有限公司 基于图像金字塔的注塑件质量分析方法
CN115272341A (zh) * 2022-09-29 2022-11-01 华联机械集团有限公司 一种基于机器视觉的包装机缺陷产品检测方法
WO2024109669A1 (zh) * 2022-11-21 2024-05-30 利多(香港)有限公司 一种检测包装盒内物料放置情况的方法
CN116400588A (zh) * 2023-06-07 2023-07-07 烟台金丝猴食品科技有限公司 一种面包模具残渣自动定位清洗方法及设备
CN116400588B (zh) * 2023-06-07 2023-08-15 烟台金丝猴食品科技有限公司 一种面包模具残渣自动定位清洗方法及设备

Also Published As

Publication number Publication date
CN106778779A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107525A1 (zh) 一种电动注塑机模具检测方法
CN104751142B (zh) 一种基于笔划特征的自然场景文本检测方法
CN105447512B (zh) 一种精粗结合的光学表面缺陷的检测方法及装置
CN106446894B (zh) 一种基于轮廓识别球型目标物位置的方法
CN104376318B (zh) 在保留交叉字符笔划的同时去除文档图像中的下划线和表格线
CN103473785B (zh) 一种基于三值化图像聚类的快速多目标分割方法
CN110827235B (zh) 钢板表面缺陷检测方法
CN102096821A (zh) 基于复杂网络理论的强干扰环境下的车牌识别方法
CN108195841A (zh) 基于gfv-sift特征的振动环境注塑模具异常缺陷检测方法
CN103473551A (zh) 基于sift算子的台标识别方法及系统
CN114387233A (zh) 一种基于机器视觉的砂型缺陷检测方法及系统
CN102799859A (zh) 一种交通标志识别方法
CN109767445A (zh) 一种高精度的pcb缺陷智能检测方法
CN113077437B (zh) 工件质量检测方法及其系统
CN105447489A (zh) 一种图片ocr识别系统的字符与背景粘连噪声消除方法
CN109724988B (zh) 一种基于多模板匹配的pcb板缺陷定位方法
CN106778754A (zh) 一种鲁棒的工业电表数字识别方法
CN103345743A (zh) 一种用于电池尾端智能探伤的图像分割算法
Zhu et al. Integrating saliency and ResNet for airport detection in large-size remote sensing images
Ziaratban et al. An adaptive script-independent block-based text line extraction
CN116309577A (zh) 一种高强传送带物料智能检测方法及系统
CN113989308B (zh) 一种基于霍夫变换与模板匹配的多边形目标分割方法
CN107330434A (zh) 一种基于phog特征的电路图中电气符号识别方法
Jia et al. A modified centernet for crack detection of sanitary ceramics
Choi et al. Localizing slab identification numbers in factory scene images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923646

Country of ref document: EP

Kind code of ref document: A1