WO2018105740A1 - Crane - Google Patents

Crane Download PDF

Info

Publication number
WO2018105740A1
WO2018105740A1 PCT/JP2017/044233 JP2017044233W WO2018105740A1 WO 2018105740 A1 WO2018105740 A1 WO 2018105740A1 JP 2017044233 W JP2017044233 W JP 2017044233W WO 2018105740 A1 WO2018105740 A1 WO 2018105740A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
information
transport
load
route
Prior art date
Application number
PCT/JP2017/044233
Other languages
French (fr)
Japanese (ja)
Inventor
真輔 神田
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Publication of WO2018105740A1 publication Critical patent/WO2018105740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/42Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with jibs of adjustable configuration, e.g. foldable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus

Definitions

  • This invention relates to the crane which calculates the conveyance route of a load.
  • An object of the present invention is to provide a crane that allows an operator to select an appropriate conveyance path corresponding to the work situation.
  • the crane of the present invention is a crane having a boom that can be raised and lowered, and includes three-dimensional information on a work site, position information of the crane on the work site, three-dimensional information on the crane, and weight of the load. And the information on the shape, the information on the conveyance start position and the target position of the load, the workable range of the crane determined from the weight of the load is calculated, and the crane arranged at the position indicated by the position information The position of the tip of the boom for lifting the load at the transfer start position and the position of the tip of the boom for hanging the load at the target position are within the workable range.
  • the information on the shape of the load To the structure using the information on the workable range, the information on the shape of the load, the three-dimensional information on the crane, and the three-dimensional information on the work site.
  • a transportable range in which contact between the load and the boom can be avoided is calculated, and an arbitrary parameter is selected from the parameters related to the transfer route of the load from the transfer start position to the target position and the parameter of the crane related to transfer work.
  • the transport path that satisfies the optimization condition is calculated from the transportable range.
  • the crane according to the present invention calculates a route candidate range that satisfies a condition for optimizing any one of the parameters related to the cargo transportation route and the crane parameters from the transportable range, and the route candidate. From the range, the transport route that satisfies the conditions for optimizing any other parameter among the parameters related to the transport route of the load and the parameters of the crane is calculated.
  • the crane of the present invention displays the image of the work site indicating the three-dimensional information of the work site, displays the transport route that is different for each of the selected conditions on the image, and displays the displayed transport route.
  • the information regarding the operation of the crane that conveys the load along the selected conveyance route is displayed.
  • the crane of the present invention displays the operation of the crane that transports the load along the transport route selected from the displayed transport routes.
  • the present invention it is possible to calculate a transport route that satisfies a condition for optimizing an arbitrary parameter among the parameters related to the transport route of the cargo and the parameters of the crane related to the transport work, that is, a transport route that differs for each parameter.
  • a transport route that differs for each parameter As a result, the operator is presented with a plurality of transport routes with different conditions. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
  • information related to crane operation is displayed to the operator. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
  • the figure which shows the control system of a crane (A) is a top view which shows the workable range and conveyance possible range of the crane arrange
  • route The figure which shows the control aspect regarding calculation of a route candidate range and calculation of a conveyance route.
  • (A) is a plan view of the work site showing the transport route of the luggage transported by the crane arranged at the work site and the trajectory of the tip of the boom, and (B) shows the transport route and the trajectory of the tip of the boom.
  • the crane 1 is a mobile crane that can move to an unspecified location.
  • the crane 1 has a vehicle 2 and a crane device 6.
  • the vehicle 2 conveys the crane device 6.
  • the vehicle 2 has a plurality of wheels 3 and travels using the engine 4 as a power source.
  • the vehicle 2 is provided with an outrigger 5.
  • the outrigger 5 includes a projecting beam that can be extended by hydraulic pressure on both sides in the width direction of the vehicle 2 and a hydraulic jack cylinder that can extend in a direction perpendicular to the ground.
  • the vehicle 2 can extend the workable range R (see FIG. 3) of the crane 1 by extending the outrigger 5 in the width direction of the vehicle 2 and grounding the jack cylinder.
  • the crane device 6 lifts the load W with a wire rope.
  • the crane device 6 includes a swivel base 7, a telescopic boom 8, a jib 9, a main hook block 10, a sub hook block 11, a telescopic cylinder 12, a hoisting cylinder 13, a main winch 14, a main wire rope 15, a sub winch 16, and a sub wire rope. 17, a camera 18, a cabin 19, and the like.
  • the swivel base 7 is configured to allow the crane device 6 to turn.
  • the swivel base 7 is provided on the frame of the vehicle 2 via an annular bearing.
  • the annular bearing is arranged so that the center of rotation is perpendicular to the installation surface of the vehicle 2.
  • the swivel base 7 is configured to be rotatable in one direction and the other direction with the center of the annular bearing as the center of rotation.
  • the telescopic boom 8 is configured to be horizontally rotatable and swingable on the frame of the vehicle 2.
  • the telescopic boom 8 includes a base boom member 8a, a second boom member 8b, a third boom member 8c, a force boom member 8d, a fifth boom member 8e, and a top boom member 8f, which are a plurality of boom members.
  • the telescopic boom 8 is configured to be telescopic in the axial direction by moving each boom member with the telescopic cylinder 12.
  • a camera 18 is provided at the tip of the top boom member 8 f of the telescopic boom 8.
  • the jib 9 expands the lift and work radius of the crane device 6.
  • the jib 9 is held in a posture along the base boom member 8a by a jib support 8g provided on the base boom member 8a of the telescopic boom 8.
  • the base end of the jib 9 is configured to be connectable to the jib support portion 8g of the top boom member 8f.
  • the jib 9 is configured to be connectable to the tip of the top boom member 8f by driving a pin (not shown) into the jib support portion 8g.
  • the main hook block 10 hangs the luggage W.
  • the main hook block 10 is provided with a plurality of hook sheaves around which the main wire rope 15 is wound and a main hook 10a for hanging the luggage W.
  • the sub-hook block 11 hangs the luggage W.
  • the sub hook block 11 is provided with a sub hook 11a for hanging the luggage W.
  • the hoisting cylinder 13 stands up and down on the telescopic boom 8 and maintains the posture of the telescopic boom 8.
  • the hoisting cylinder 13 is composed of a hydraulic cylinder composed of a cylinder part and a rod part.
  • the main winch 14 which is a hydraulic winch is for carrying in (winding up) and feeding out (winding down) the main wire rope 15.
  • the sub-winch 16 that is a hydraulic winch is used for feeding and unloading the sub-wire rope 17.
  • the cabin 19 covers the cockpit.
  • the cabin 19 is provided on the side of the telescopic boom 8 in the swivel base 7.
  • a cockpit is provided inside the cabin 19.
  • the cockpit is provided with a display unit 20 (see FIG. 2) that is a touch panel.
  • the crane 1 configured as described above can move the crane device 6 to an arbitrary position by running the vehicle 2. Moreover, the crane 1 raises the telescopic boom 8 to an arbitrary hoisting angle by the hoisting cylinder 13, extends the telescopic boom 8 to an arbitrary telescopic boom length, or connects the jib 9 to connect the crane device 6.
  • the head and working radius can be expanded.
  • the crane 1 includes a priority condition selection unit 21, a data storage unit 22, a route calculation unit 23, a 3D data generation unit 24, and a crane information calculation unit 25 in addition to the display unit 20.
  • the priority condition selection unit 21 selects, as each priority condition applied to the calculation of the transport route Rt, one of the conditions that minimizes a plurality of parameters described later according to the operation of the operator.
  • the operator can select one or more arbitrary parameters among the parameters related to the transport route of the cargo W and the parameters of the crane 1 related to the transport work by operating the priority condition selection unit 21.
  • the priority condition selection unit 21 can select one of a plurality of parameters so that one transport route Rt is calculated.
  • the priority condition selection unit 21 can also select a plurality of parameters so that each transport route Rt in which one parameter is applied to one transport route Rt is calculated simultaneously.
  • the priority condition selection unit 21 can also select a plurality of parameters so that a plurality of transport routes Rt in which a plurality of parameters are applied to one transport route Rt are calculated simultaneously.
  • the data storage unit 22 stores three-dimensional information of the crane 1, information on a plurality of parameters, 3D data, information on the posture of the crane 1, and information on the luggage W.
  • the data storage unit 22 also includes information on the work range of the crane 1 determined by the maximum length, minimum length, maximum tilt angle, and minimum tilt angle of the telescopic boom 8, and the tilt angle and length of the telescopic boom 8 in the work range.
  • Information on the rated total load set in each case is stored as information on the crane 1.
  • the 3D data generation unit 24 creates 3D data (three-dimensional information on the work site) based on the image data on the work site obtained by photographing with the camera 18. Note that the 3D data generation unit 24 may create 3D data based on image data obtained by photographing with another camera brought into the work site. The 3D data may be created based on point cloud data obtained by measuring the ground surface and the ground structure S at the work site using a laser scanner.
  • the crane information calculation unit 25 calculates the attitude of the crane 1 and the information on the load W from the output values of various sensors attached to the crane 1.
  • the crane 1 includes a sensor 31 that detects a turning angle of the swivel base 7 or a rotation angle of a turning motor (not shown), a sensor 32 that detects the extension length of the telescopic boom 8, and a sensor that detects the tilt angle of the telescopic boom 8. 33 and a sensor 34 for detecting the weight of the load W.
  • the crane 1 calculates the posture of the crane device 6 and the weight and posture of the load W, and information on the posture of the crane device 6 and the weight and weight of the load W
  • the posture information is stored in the data storage unit 22 and the posture information of the crane device 6 corresponding to the weight and posture of the load W is updated each time.
  • the display unit 20 displays an image of the work site showing the 3D data, and displays the transport route Rt on the image.
  • the crane 1 has a position specifying unit 26.
  • the position specifying unit 26 specifies the current position of the crane 1 based on the radio wave received by the GNSS antenna.
  • the transport route Rt to which time is applied as an arbitrary parameter is a route that minimizes the time taken to transport the package W from the transport start position Pa to the target position Pb.
  • the transfer route Rt to which the lift is applied is a route that minimizes the maximum lift of the load W that is suspended while the load W is transferred from the transfer start position Pa to the target position Pb.
  • the transport route Rt to which the fuel consumption is applied is a route that minimizes the energy consumed by the crane 1 while transporting the load W from the transport start position Pa to the target position Pb.
  • the transfer route Rt to which noise is applied is a route that minimizes the maximum value of noise generated from the crane 1 while the load W is transferred from the transfer start position Pa to the target position Pb.
  • the transfer route Rt to which the contact pressure is applied is a route that minimizes the maximum value of the contact surface pressure of the crane 1 when the load W is transferred from the transfer start position Pa to the target position Pb.
  • the transport route Rt to which the load factor is applied is a route that minimizes the maximum value of the stability of the crane 1 when transporting the load W from the transport start position Pa to the target position Pb.
  • the three-dimensional information of the crane 1 is information on each dimension of the crane 1 having a three-dimensional shape.
  • the information on the minimum length, maximum length, minimum tilt angle, and maximum tilt angle of the telescopic boom 8 is three-dimensional information of the crane 1. It corresponds to. Minimum length, maximum length, minimum tilt angle, and maximum tilt angle of the telescopic boom 8 set based on a height or the like that is limited in advance to avoid contact with the ground structure S (see FIG. 4). This information also corresponds to the three-dimensional information of the crane 1.
  • the information on the position of the tip of the telescopic boom 8 with respect to the vehicle 2 determined for each length and tilt angle of the telescopic boom 8 corresponds to the three-dimensional information of the crane 1.
  • the distal end portion of the telescopic boom 8 is a portion immediately above the sub hook block 11 in the telescopic boom 8.
  • the information on the package W includes information such as the weight and shape of the package W, the conveyance start position Pa and the target position Pb of the package W, and the like.
  • the conveyance start position Pa of the load W is a position of the load W that is a starting point of lifting and transfer at a preset work site.
  • the target position Pb of the baggage W is a position of the baggage W that is the end point of lifting and transporting at a preset work site.
  • Information on the conveyance start position Pa and the target position Pb of the package W is synchronized with the 3D data. Accordingly, the transport start position Pa and the target position Pb of the luggage W are set to predetermined positions on the work site.
  • the information on the luggage W may include information on the center of gravity position as well as information on the weight and shape of the luggage W.
  • the conveyance start position Pa and the target position Pb of the luggage W may be set so that the center of gravity position of the luggage W corresponds to the conveyance start position Pa and the target position Pb.
  • the posture of the load W when it is lifted by the crane 1 each posture of the load W at the transfer start position Pa and the target position Pb may be included in the information of the load W.
  • the route calculation unit 23 calculates a workable range R determined from the weight of the luggage W within the work range.
  • the workable range R is a work range in which the crane 1 does not fall.
  • the workable range R shown in the figure is calculated for the weight of the luggage W used in the description of the present embodiment.
  • the workable range R indicates the lifting ability in a state where the outrigger 5 is extended to the maximum extended position.
  • the route calculation unit 23 uses the calculated workable range R information, the shape information of the load W, the three-dimensional information of the crane 1 and the 3D data, and the load W and the telescopic boom 8 to the ground structure S.
  • the transportable range Ra that can avoid the contact is calculated from the workable range R.
  • the route calculation unit 23 transports the transport route Rt that satisfies the condition that minimizes any parameter among the parameters related to the transport route of the cargo W from the transport start position Pa to the target position Pb and the parameters of the crane 1 related to the transport work. Calculate from the possible range Ra.
  • step S11 the crane 1 recognizes information on parameters selected by the operator.
  • step S12 the crane 1 acquires 3D data generated by the 3D data generation unit 24.
  • the crane 1 acquires 3D data from a remote server. Thereafter, the process proceeds to step S13.
  • step S13 the crane 1 acquires the position information of the crane 1 at the work site specified by the position specifying unit 26.
  • the position information includes altitude in addition to longitude and latitude. Furthermore, the direction of the crane 1 is also included. The crane 1 can also acquire virtual position information input by an operator's operation. Thereafter, the process proceeds to step S14.
  • step S14 the crane 1 acquires the information on the load W.
  • the crane 1 recognizes by selecting and reading information on the weight and shape of the load W stored in the data storage unit 22 and information on the transport start position Pa and the target position Pb of the load W. Thereafter, the process proceeds to step S15.
  • step S16 the crane 1 calculates the workable range R of the crane 1 using information on the weight of the load W. Thereafter, the process proceeds to step S17.
  • step S ⁇ b> 17 the crane 1 uses the information on the workable range R, the information on the load W, the three-dimensional information, the position information, and the 3D data of the crane 1, with respect to the crane 1 arranged at the position indicated by the position information. Whether the position of the tip of the telescopic boom 8 for lifting the load W at the transfer start position Pa and the position of the tip of the telescopic boom 8 for hanging the load W at the target position Pb are within the workable range R. Determine whether.
  • step S18 the crane 1 calculates the transportable range Ra. Thereafter, the process proceeds to step S19.
  • step S19 the crane 1 starts control of the calculation A of the transport route Rt, and shifts the step to step S21 (see FIG. 5). Then, when the calculation A of the transport route Rt is completed, the step is shifted to step S1a.
  • step S21 the crane 1 determines whether there is one parameter selected by the operator (see step S11 in FIG. 4). As a result, when it is determined that the selected parameter is one, the process proceeds to step S22. On the other hand, when it is determined that the selected parameter is two or more, the process proceeds to step S23.
  • step S22 the crane 1 calculates a transport route Rt that satisfies the condition that minimizes the selected one parameter from the transportable range Ra. Thereafter, the control of the calculation A of the transport route Rt is finished, and the process proceeds to step S1a (see FIG. 4).
  • step S23 the crane 1 determines whether or not the operator has selected one parameter for each transport route Rt for two or more parameters. As a result, when it is determined that one parameter is selected for each transport route Rt, the process proceeds to step S24. On the other hand, when it is determined that one parameter is not selected for each transport route Rt, that is, two or more parameters are selected for each transport route Rt, the process proceeds to step S25.
  • step S24 the crane 1 calculates the transport route Rt that satisfies the condition for minimizing each selected parameter from the transportable range Ra. Thereafter, the control of the calculation A of the transport route Rt is finished, and the process proceeds to step S1a (see FIG. 4).
  • step S25 the crane 1 starts control of calculation B of the transport route Rt, and shifts the step to step S31 (see FIG. 6). Then, when the calculation B of the transport route Rt is completed, the step is shifted to step S1a (see FIG. 4).
  • the crane 1 may calculate two or more transport routes Rt in which one parameter and other parameters are considered.
  • step S ⁇ b> 31 the crane 1 calculates a route candidate range Rb that satisfies a condition that minimizes any one of the parameters of the crane 1 related to the transport operation from the transportable range Ra. . Thereafter, the process proceeds to step S32.
  • step S32 the crane 1 calculates a transport route Rt that satisfies a condition that minimizes any other parameter among the parameters related to the transport route of the load W and the parameters of the crane 1 from the route candidate range Rb. Thereafter, the control of the calculation B of the transport route Rt is finished, and the process proceeds to step S1a (see FIGS. 4 and 5).
  • the crane 1 determines the transportable range Ra, the route candidate range Rb, and the transport route Rt for the position of the crane 1 indicated by the virtual position information. Can be calculated.
  • step S1b the crane 1 recognizes the transport route Rt selected by the operator from among the transport routes Rt displayed on the display unit 20. The operator can select one of the displayed one or more transport routes Rt by touching the display unit 20. Thereafter, the process proceeds to step S1c.
  • step S1c the crane 1 displays on the display unit 20 the operation of the crane 1 that transports the load W along the selected transport route Rt among the displayed transport routes Rt. Thereafter, the process proceeds to step S1d.
  • step S1d the crane 1 displays information on the operation of the crane 1 that transports the cargo W along the selected transport route Rt among the displayed transport routes Rt on the display unit 20.
  • step S1e the crane 1 hangs the load W at the target position Pb and the position of the tip of the telescopic boom 8 for lifting the load W at the transfer start position Pa with respect to the position of the crane 1 indicated by the position information.
  • the display unit 20 displays that the position of the distal end of the telescopic boom 8 is not within the workable range R.
  • the transport route Rt1 is a route that satisfies a condition that minimizes time among parameters related to the transport route of the package W from the transport start position Pa to the target position Pb.
  • the transport route Rt1 is a route that connects the transport start position Pa to the target position Pb with a straight line in a plan view of the work site.
  • the transport route Rt1 lifts the load W placed at the transport start position Pa and passes over the ground structure S on the right side in the drawing.
  • the locus L1 of the distal end portion of the telescopic boom 8 is drawn above the transport path Rt1.
  • the transport route Rt1 that satisfies the condition that minimizes the time is a route that satisfies the condition that minimizes the transport distance among the parameters related to the transport of the luggage W from the transport start position Pa to the target position Pb.
  • the transport route Rt2 is a route calculated from the route candidate range Rb that satisfies the condition that minimizes the lift among the parameters related to the transport route of the package W from the transport start position Pa to the target position Pb. It is the path
  • the crane 1 calculates the route candidate range Rb that satisfies the condition that minimizes the lift from the transportable range Ra, and further calculates the transport route Rt that satisfies the condition that minimizes the transport distance from the route candidate range Rb.
  • the transport route Rt2 lifts the cargo W placed at the transport start position Pa, passes the ground structure S on the left side in the figure from the side, and then transports the cargo W to the rear of the crane 1 in a straight line. Furthermore, it becomes a path
  • a locus L2 of the telescopic boom 8 is shown.
  • the route candidate range Rb that satisfies the condition for minimizing the head may be calculated from the transportable range Ra, and the transport route that satisfies the condition for maximizing the time may be calculated from the route candidate range Rb.
  • a disturbance such as wind appears greatly, it is possible to present to the operator that the load W can be safely transported over the longest possible time while minimizing the lift.
  • the crane 1 it is possible to calculate a plurality of transport routes Rt1 and Rt2 in which the state of the work site is reflected by the three-dimensional information for each parameter.
  • the crane 1 has a transport route Rt1 and Rt2 that satisfy conditions for optimizing an arbitrary parameter among the parameters related to the transport route of the cargo W and the parameters of the crane 1 related to the transport operation, that is, the transport routes Rt1 and Rt2 that are different for each parameter. Can be calculated.
  • a plurality of transport routes Rt1 and Rt2 having different conditions are presented to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
  • the crane 1 it is possible to calculate the transport route Rt2 in which one parameter and another parameter are considered. As a result, the transport route Rt2 based on detailed conditions is presented to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
  • the arbitrary parameters include the maximum value of the contact surface pressure of the crane 1 (in other words, the outrigger reaction force), the maximum value of the load factor (in other words, the stability of the crane 1), and the noise.
  • the maximum value and fuel consumption are also included.
  • the crane 1 calculates each transport route Rt that satisfies the conditions that minimize these parameters.
  • the maximum value of the contact surface pressure of the crane 1 and the maximum value of the load factor can be replaced with the working radius of the crane device 6. That is, the crane 1 may apply a condition for minimizing the work radius as a parameter of the crane 1 related to the transport work to the calculation of the transport route Rt.
  • the data storage unit 22 (see FIG. 2) stores engine sound information quantified for each output of the engine 4 as information on the crane 1. In addition, the data storage unit 22 quantifies each rope speed, information on each operating sound when the main winch 14 is extended and when it is supplied, and when the sub winch 16 is extended and when it is supplied. Stores information on each operating sound.
  • the data storage unit 22 includes information on the operation sound when the telescopic boom 8 is raised, the operation sound when the telescopic boom 8 is expanded, and the operation sound when the telescopic boom 8 is contracted. And store.
  • the crane information calculation unit 25 uses these pieces of information to calculate the loudness of each operation sound from the respective operation speeds of the main winch 14, the sub winch 16, the telescopic boom 8, and the swivel base 7 with respect to a constant load due to the weight of the load W. And the loudness of the engine sound.
  • the data storage unit 22 stores information on the fuel consumption quantified for each output of the engine 4 as information on the crane 1. More specifically, the data storage unit 22 quantifies each rope speed, information on each engine output when the main winch 14 is extended and when it is supplied, and when the sub winch 16 is extended and when it is supplied. Stores information about each engine output.
  • the data storage unit 22 has information on engine output when the telescopic boom 8 is raised, information on engine output when extended and contracted, and information on engine output when turning the swivel base 7 quantified for each turning speed. And store.
  • the crane information calculation unit 25 uses these pieces of information to output engine outputs corresponding to the operating speeds of the main winch 14, the sub winch 16, the telescopic boom 8, and the swivel base 7 for a constant load due to the weight of the load W. calculate. Further, the fuel consumption is calculated based on the calculated engine output.
  • the display unit 20 displays an image of a work site showing 3D data on two screens, a plan view and a side view.
  • one or more transport routes Rt calculated for each parameter are displayed on the image.
  • the locus of the distal end portion of the telescopic boom 8 that differs depending on the above conditions is also displayed on the image.
  • the display form may be a mode in which the direction of the line of sight can be appropriately changed, such as another side view or a perspective view, according to the touch operation of the display unit 20 by the operator.
  • the display size may be changeable according to a touch operation on the screen of the display unit 20.
  • icons indicating each condition are displayed separately from the image of the work site.
  • the operator for example, by touching on the screen of the display unit 20, "minimum time”, “minimum lift”, “minimum fuel consumption”, “minimum noise”, “minimum ground pressure”, “minimum load factor” and “minimum lift” Any one of the conditions of “+ shortest time”, that is, the transport route Rt that satisfies any of these conditions can be selected.
  • the display unit 20 displays the transport routes Rt1 and Rt2 that satisfy the conditions of “the shortest time” and “the shortest lift + the shortest time” (see the alternate long and short dash line in the figure).
  • the display unit 20 displays a locus L1 that satisfies the condition “shortest time” and a locus L2 that satisfies the condition “minimum lift + minimum distance” (see the broken line in the figure).
  • the time required for transporting the load W from the transport start position Pa to the target position Pb, the maximum lift, the maximum noise, the maximum ground pressure, and the maximum load factor are included. Is displayed.
  • the display unit 20 displays the baggage W along any of the displayed transport routes Rt1 and Rt2.
  • the information regarding operation of the crane 1 which conveys is displayed.
  • the candidate transport route Rt is displayed in reverse video, etc.
  • the candidate transport route Rt may be displayed in a different form from the other transport routes Rt.
  • the display unit 20 displays information related to the operation of the crane 1 that transports the load W along the selected transport route Rt1.
  • the display unit 20 displays information related to the operation of the crane 1 by switching from the screen displaying the 3D data and the transport route Rt to another screen.
  • the crane 1 presets the sections P1, P2, P3, and P4 in which the operation of the crane 1 is divided in order to transport the cargo W along the transport path Rt1 when calculating the transport path Rt1.
  • the crane 1 further sets necessary operations in each section P1, P2, P3, and P4 and calculates the operation amount.
  • icons indicating the sections P1, P2, P3, and P4 are displayed separately from the image of the work site.
  • the icon of the section P2 is selected by the operation by the operator, and information regarding the operation of the crane 1 in the section P2 is displayed.
  • the change amount of the turning angle (clockwise) of the crane device 6 in the section P2 the change amount of the length of the telescopic boom 8, and the change amount of the tilt angle (upward standing) are displayed.
  • the display is switched from the point when the tip of the telescopic boom 8 passes through each of the sections P1, P2, and P3. For example, when the tip of the telescopic boom 8 passes through the section P3, the amount of change in the turning angle (clockwise) of the crane device 6 in the section P4, the telescopic boom 8 is the same as when the section P4 is selected on the screen. The amount of change in length and the amount of change in tilt angle (downward fall) are displayed.
  • the crane 1 information regarding the operation of the crane 1 is displayed to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
  • the crane 1 may have an autopilot function. As described above, when any one of the transport routes Rt is selected, sections are set, necessary operations are set in each section, and the operation amount is calculated. The crane 1 can automatically transport the load W by automatically operating according to a necessary operation and an operation amount in each section.
  • the operation of the crane 1 that transports the cargo W along the selected transport route Rt out of the displayed transport routes Rt1 and Rt2 may be displayed on the display unit 20.
  • an animation shows that the crane device 6 turns and the telescopic boom 8 expands and contracts so that the tip of the telescopic boom 8 follows the trajectory corresponding to the selected transport route Rt. Is displayed on the display unit 20.
  • the display unit 20 may display the operation of the crane 1 together with the image of the work site by changing the viewpoint, such as a perspective view, instead of the plan view and the side view shown in FIG.
  • the operation of the crane 1 that conveys the load W along the selected conveyance route Rt is displayed to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
  • the present invention can be used for a crane.

Abstract

Provided is a crane which allows an operator to select a proper conveyance path corresponding to an operating condition. The operable range R of a crane 1, which is determined from the weight of a package W, is calculated. With respect to the crane 1 disposed at a position shown by positional information, it is determined whether or not the tip position of a telescopic boom 8 for hoisting the package W located at a conveyance start position Pa and the tip position of the telescopic boom 8 for lowering the package W located at a target position Pb are within the operable range R. A conveyable range Ra where contact of the package W and the telescopic boom 8 with a ground-based structure S can be avoided is calculated using information relating to the operable range R, information relating to the shape of the package W, and the three-dimensional information and 3D data of the crane 1. Furthermore, a conveyance path Rt which satisfies conditions for optimizing optional parameters among the parameters relating to the conveyance path of the package W from the conveyance start position Pa to the target position Pb and the parameters of the crane 1 relating to conveyance operations is calculated from within the conveyable range Ra.

Description

クレーンcrane
 本発明は、荷物の搬送経路を算出するクレーンに関する。 This invention relates to the crane which calculates the conveyance route of a load.
 一般的に、クレーンによって荷物を搬送する作業に対して、工期短縮やコスト削減を実現することが望まれている。クレーンの動作の変更やそれによる荷物の吊り姿勢の変更を少なくすることによって、オペレータに掛かる負担を抑えて、時間短縮やコスト低減に寄与でき、工期短縮やコスト削減に繋げることができる。そのため、オペレータに掛かる負担を抑えることができる効率的な搬送経路を、コンピュータを用いて自動的に算出するシステムが従来から提供されている(特許文献1参照)。 In general, it is desired to reduce the work period and cost for the work of transporting cargo with a crane. By reducing the change in crane operation and the change in the hanging posture of the load, the burden on the operator can be suppressed, which can contribute to time reduction and cost reduction, leading to reduction in construction period and cost. For this reason, a system that automatically calculates an efficient transport path that can suppress the burden on the operator using a computer has been conventionally provided (see Patent Document 1).
 特許文献1に記載の搬送経路算出システムは、工期短縮やコスト削減を実現することを目的とし、荷物と周囲の建物との干渉を回避できるように、計算装置が非干渉且つ好適な吊り姿勢や円弧軌道を含む搬送経路を生成している。 The transport route calculation system described in Patent Document 1 is intended to reduce the work period and cost, and the calculation device is capable of non-interfering and having a suitable hanging posture so as to avoid interference between the load and the surrounding building. A transport path including an arc trajectory is generated.
 しかし、作業現場でクレーンを使用する場合には、オペレータの技量及び当該作業現場の環境等、作業の状況ごとに異なった優先事項が要求される。従って、搬送経路が自動的に算出される場合でも、個々の優先事項が考慮されていることが望ましい。 However, when using a crane at the work site, different priorities are required for each work situation, such as the skill of the operator and the environment of the work site. Therefore, it is desirable that individual priorities be taken into account even when the transport route is automatically calculated.
 特許文献1に記載の搬送経路算出システムにおいて、演算のパラメータには作業の状況に対応した個々の優先事項が適用されておらず、算出される搬送経路は、作業の状況に対応した適切な優先事項が考慮されたものではなかった。このように、作業の状況に対応した適切な優先事項が考慮されずに搬送経路が算出されていると、この搬送経路が、作業の状況には相応せず、適切な搬送経路にはなり得ない場合があった。 In the transport route calculation system described in Patent Document 1, individual priority items corresponding to the work situation are not applied to the calculation parameters, and the calculated transport route has an appropriate priority corresponding to the work situation. The matter was not taken into account. As described above, when the transport path is calculated without considering the priority corresponding to the work situation, the transport path does not correspond to the work situation and can be an appropriate transport path. There was no case.
特開2015-68019号公報Japanese Patent Laying-Open No. 2015-68019
 本発明は、作業の状況に対応した適切な搬送経路をオペレータが選択できるクレーンを提供することを目的とする。 An object of the present invention is to provide a crane that allows an operator to select an appropriate conveyance path corresponding to the work situation.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 本発明のクレーンは、起伏自在且つ伸縮自在のブームを備えるクレーンであって、作業現場の三次元情報と、前記作業現場における当該クレーンの位置情報と、当該クレーンの三次元情報と、荷物の重量及び形状の情報と、前記荷物の搬送開始位置及び目標位置の情報とを取得し、前記荷物の重量から定まる当該クレーンの作業可能範囲を算出し、前記位置情報が示す位置に配置された当該クレーンについて、前記搬送開始位置にある前記荷物を吊り上げるための前記ブームの先端部の位置と前記目標位置にある前記荷物を吊り下げるための前記ブームの先端部の位置とが前記作業可能範囲内か否かを判定し、前記作業可能範囲の情報と前記荷物の形状の情報と前記クレーンの三次元情報と前記作業現場の三次元情報とを用いて、構造物への前記荷物及び前記ブームの接触を回避できる搬送可能範囲を算出し、更に、前記搬送開始位置から前記目標位置までの前記荷物の搬送経路に関するパラメータ及び搬送作業に関する当該クレーンのパラメータのうち任意のパラメータを最適化する条件を満たす搬送経路を前記搬送可能範囲の中から算出する、としたものである。 The crane of the present invention is a crane having a boom that can be raised and lowered, and includes three-dimensional information on a work site, position information of the crane on the work site, three-dimensional information on the crane, and weight of the load. And the information on the shape, the information on the conveyance start position and the target position of the load, the workable range of the crane determined from the weight of the load is calculated, and the crane arranged at the position indicated by the position information The position of the tip of the boom for lifting the load at the transfer start position and the position of the tip of the boom for hanging the load at the target position are within the workable range. To the structure using the information on the workable range, the information on the shape of the load, the three-dimensional information on the crane, and the three-dimensional information on the work site. A transportable range in which contact between the load and the boom can be avoided is calculated, and an arbitrary parameter is selected from the parameters related to the transfer route of the load from the transfer start position to the target position and the parameter of the crane related to transfer work. The transport path that satisfies the optimization condition is calculated from the transportable range.
 本発明のクレーンは、前記荷物の搬送経路に関するパラメータ及び前記クレーンのパラメータのうち任意の一のパラメータを最適化する条件を満たす経路候補範囲を、前記搬送可能範囲の中から算出し、前記経路候補範囲から前記荷物の搬送経路に関するパラメータ及び前記クレーンのパラメータのうち任意の他のパラメータを最適化する条件を満たす前記搬送経路を算出する、としたものである。 The crane according to the present invention calculates a route candidate range that satisfies a condition for optimizing any one of the parameters related to the cargo transportation route and the crane parameters from the transportable range, and the route candidate. From the range, the transport route that satisfies the conditions for optimizing any other parameter among the parameters related to the transport route of the load and the parameters of the crane is calculated.
 本発明のクレーンは、前記作業現場の三次元情報を示す前記作業現場の画像を表示するとともに、選択された前記条件ごとに異なる前記搬送経路を前記画像上に表示し、表示された前記搬送経路のうち選択された前記搬送経路に沿って前記荷物を搬送する当該クレーンの操作に関する情報を表示する、としたものである。 The crane of the present invention displays the image of the work site indicating the three-dimensional information of the work site, displays the transport route that is different for each of the selected conditions on the image, and displays the displayed transport route. The information regarding the operation of the crane that conveys the load along the selected conveyance route is displayed.
 本発明のクレーンは、表示された前記搬送経路のうち選択された前記搬送経路に沿って前記荷物を搬送する当該クレーンの動作を表示する、としたものである。 The crane of the present invention displays the operation of the crane that transports the load along the transport route selected from the displayed transport routes.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明によれば、荷物の搬送経路に関するパラメータ及び搬送作業に関する当該クレーンのパラメータのうち任意のパラメータを最適化する条件を満たす搬送経路、即ち、パラメータごとに異なる搬送経路を算出できる。これにより、オペレータに条件の異なる複数の搬送経路が提示される。従って、作業の状況に対応した適切な搬送経路をオペレータが選択できるクレーンを提供することができる。 According to the present invention, it is possible to calculate a transport route that satisfies a condition for optimizing an arbitrary parameter among the parameters related to the transport route of the cargo and the parameters of the crane related to the transport work, that is, a transport route that differs for each parameter. As a result, the operator is presented with a plurality of transport routes with different conditions. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
 本発明によれば、一のパラメータと他のパラメータとが考慮された搬送経路を算出できる。これにより、オペレータに細かい条件に基づいた搬送経路が提示される。従って、作業の状況に対応した適切な搬送経路をオペレータが選択できるクレーンを提供することができる。 According to the present invention, it is possible to calculate a transport route that takes into account one parameter and another parameter. Thereby, a conveyance route based on detailed conditions is presented to the operator. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
 本発明によれば、オペレータに対して、クレーンの操作に関する情報が表示される。従って、作業の状況に対応した適切な搬送経路をオペレータが選択できるクレーンを提供することができる。 According to the present invention, information related to crane operation is displayed to the operator. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
 本発明によれば、オペレータに対して、選択された搬送経路に沿って荷物を搬送する当該クレーンの動作が表示される。従って、作業の状況に対応した適切な搬送経路をオペレータが選択できるクレーンを提供することができる。 According to the present invention, the operation of the crane that transports the cargo along the selected transport route is displayed to the operator. Therefore, it is possible to provide a crane that allows the operator to select an appropriate conveyance path corresponding to the work situation.
吊上作業時におけるクレーンを示す図。The figure which shows the crane at the time of lifting work. クレーンの制御システムを示す図。The figure which shows the control system of a crane. (A)は作業現場に配置されたクレーンの作業可能範囲と搬送可能範囲とを示す平面図、(B)はその側面図。(A) is a top view which shows the workable range and conveyance possible range of the crane arrange | positioned at the work site, (B) is the side view. 搬送経路の算出と搬送経路の表示とに関する制御態様を示す図。The figure which shows the control aspect regarding calculation of a conveyance path | route, and the display of a conveyance path | route. 搬送経路の算出に関する制御態様を示す図。The figure which shows the control aspect regarding calculation of a conveyance path | route. 経路候補範囲の算出と搬送経路の算出とに関する制御態様を示す図。The figure which shows the control aspect regarding calculation of a route candidate range and calculation of a conveyance route. (A)は作業現場に配置されたクレーンによって搬送される荷物の搬送経路とブームの先端部の軌跡とを示す作業現場の平面図、(B)は搬送経路とブームの先端部の軌跡とを示す作業現場の側面図。(A) is a plan view of the work site showing the transport route of the luggage transported by the crane arranged at the work site and the trajectory of the tip of the boom, and (B) shows the transport route and the trajectory of the tip of the boom. The side view of the work site shown. 作業現場の画像と搬送経路との表示を示す図。The figure which shows the display of the image of a work site, and a conveyance path | route. 作業現場の画像と搬送経路とクレーンの操作に関する情報との表示を示す図。The figure which shows the display of the information regarding the operation of the image of a work site, a conveyance path | route, and a crane.
 以下に、本発明の一実施形態としてクレーン1を説明する。 Hereinafter, a crane 1 will be described as an embodiment of the present invention.
 図1に示すように、クレーン1は、不特定の場所に移動可能な移動式クレーンである。クレーン1は、車両2、クレーン装置6を有する。 As shown in FIG. 1, the crane 1 is a mobile crane that can move to an unspecified location. The crane 1 has a vehicle 2 and a crane device 6.
 車両2は、クレーン装置6を搬送するものである。車両2は、複数の車輪3を有し、エンジン4を動力源として走行する。車両2には、アウトリガ5が設けられている。アウトリガ5は、車両2の幅方向両側に油圧によって延伸可能な張り出しビームと地面に垂直な方向に延伸可能な油圧式のジャッキシリンダとから構成されている。車両2は、アウトリガ5を車両2の幅方向に延伸させるとともにジャッキシリンダを接地させることにより、クレーン1の作業可能範囲R(図3参照)を広げることができる。 The vehicle 2 conveys the crane device 6. The vehicle 2 has a plurality of wheels 3 and travels using the engine 4 as a power source. The vehicle 2 is provided with an outrigger 5. The outrigger 5 includes a projecting beam that can be extended by hydraulic pressure on both sides in the width direction of the vehicle 2 and a hydraulic jack cylinder that can extend in a direction perpendicular to the ground. The vehicle 2 can extend the workable range R (see FIG. 3) of the crane 1 by extending the outrigger 5 in the width direction of the vehicle 2 and grounding the jack cylinder.
 クレーン装置6は、荷物Wをワイヤロープによって吊り上げるものである。クレーン装置6は、旋回台7、伸縮ブーム8、ジブ9、メインフックブロック10、サブフックブロック11、伸縮シリンダ12、起伏シリンダ13、メインウインチ14、メインワイヤロープ15、サブウインチ16、サブワイヤロープ17、カメラ18、キャビン19等を具備する。 The crane device 6 lifts the load W with a wire rope. The crane device 6 includes a swivel base 7, a telescopic boom 8, a jib 9, a main hook block 10, a sub hook block 11, a telescopic cylinder 12, a hoisting cylinder 13, a main winch 14, a main wire rope 15, a sub winch 16, and a sub wire rope. 17, a camera 18, a cabin 19, and the like.
 旋回台7は、クレーン装置6を旋回可能に構成するものである。旋回台7は、円環状の軸受を介して車両2のフレーム上に設けられる。円環状の軸受は、その回転中心が車両2の設置面に対して垂直になるように配置されている。旋回台7は、円環状の軸受の中心を回転中心として一方向と他方向とに回転自在に構成されている。 The swivel base 7 is configured to allow the crane device 6 to turn. The swivel base 7 is provided on the frame of the vehicle 2 via an annular bearing. The annular bearing is arranged so that the center of rotation is perpendicular to the installation surface of the vehicle 2. The swivel base 7 is configured to be rotatable in one direction and the other direction with the center of the annular bearing as the center of rotation.
 伸縮ブーム8は、車両2のフレーム上で水平回転可能且つ揺動自在に構成されている。伸縮ブーム8は、複数のブーム部材であるベースブーム部材8a、セカンドブーム部材8b、サードブーム部材8c、フォースブーム部材8d、フィフスブーム部材8e、トップブーム部材8fから構成されている。伸縮ブーム8は、各ブーム部材を伸縮シリンダ12で移動させることで軸方向に伸縮自在に構成されている。伸縮ブーム8のトップブーム部材8fの先端には、カメラ18が設けられている。 The telescopic boom 8 is configured to be horizontally rotatable and swingable on the frame of the vehicle 2. The telescopic boom 8 includes a base boom member 8a, a second boom member 8b, a third boom member 8c, a force boom member 8d, a fifth boom member 8e, and a top boom member 8f, which are a plurality of boom members. The telescopic boom 8 is configured to be telescopic in the axial direction by moving each boom member with the telescopic cylinder 12. A camera 18 is provided at the tip of the top boom member 8 f of the telescopic boom 8.
 ジブ9は、クレーン装置6の揚程や作業半径を拡大するものである。ジブ9は、伸縮ブーム8のベースブーム部材8aに設けられたジブ支持部8gによってベースブーム部材8aに沿った姿勢で保持されている。ジブ9の基端は、トップブーム部材8fのジブ支持部8gに連結可能に構成されている。ジブ9は、ジブ支持部8gに図示しないピンを打ち込むことによりトップブーム部材8fの先端に連結可能に構成されている。 The jib 9 expands the lift and work radius of the crane device 6. The jib 9 is held in a posture along the base boom member 8a by a jib support 8g provided on the base boom member 8a of the telescopic boom 8. The base end of the jib 9 is configured to be connectable to the jib support portion 8g of the top boom member 8f. The jib 9 is configured to be connectable to the tip of the top boom member 8f by driving a pin (not shown) into the jib support portion 8g.
 メインフックブロック10は、荷物Wを吊るものである。メインフックブロック10には、メインワイヤロープ15が巻き掛けられる複数のフックシーブと、荷物Wを吊るメインフック10aとが設けられている。サブフックブロック11は、荷物Wを吊るものである。サブフックブロック11には、荷物Wを吊るサブフック11aが設けられている。 The main hook block 10 hangs the luggage W. The main hook block 10 is provided with a plurality of hook sheaves around which the main wire rope 15 is wound and a main hook 10a for hanging the luggage W. The sub-hook block 11 hangs the luggage W. The sub hook block 11 is provided with a sub hook 11a for hanging the luggage W.
 起伏シリンダ13は、伸縮ブーム8を起立及び倒伏させ、伸縮ブーム8の姿勢を保持するものである。起伏シリンダ13はシリンダ部とロッド部とからなる油圧シリンダから構成されている。 The hoisting cylinder 13 stands up and down on the telescopic boom 8 and maintains the posture of the telescopic boom 8. The hoisting cylinder 13 is composed of a hydraulic cylinder composed of a cylinder part and a rod part.
 油圧ウインチであるメインウインチ14は、メインワイヤロープ15の繰り入れ(巻き上げ)及び繰り出し(巻き下げ)を行うものである。油圧ウインチであるサブウインチ16は、サブワイヤロープ17の繰り入れ及び繰り出しを行うものである。 The main winch 14 which is a hydraulic winch is for carrying in (winding up) and feeding out (winding down) the main wire rope 15. The sub-winch 16 that is a hydraulic winch is used for feeding and unloading the sub-wire rope 17.
 キャビン19は、操縦席を覆うものである。キャビン19は、旋回台7における伸縮ブーム8の側方に設けられている。キャビン19の内部には、操縦席が設けられている。操縦席には、タッチパネルである表示部20(図2参照)が設けられている。 The cabin 19 covers the cockpit. The cabin 19 is provided on the side of the telescopic boom 8 in the swivel base 7. A cockpit is provided inside the cabin 19. The cockpit is provided with a display unit 20 (see FIG. 2) that is a touch panel.
 このように構成されるクレーン1は、車両2を走行させることで任意の位置にクレーン装置6を移動させることができる。また、クレーン1は、起伏シリンダ13で伸縮ブーム8を任意の起伏角度に起立させて、伸縮ブーム8を任意の伸縮ブーム長さに延伸させたりジブ9を連結させたりすることでクレーン装置6の揚程や作業半径を拡大することができる。 The crane 1 configured as described above can move the crane device 6 to an arbitrary position by running the vehicle 2. Moreover, the crane 1 raises the telescopic boom 8 to an arbitrary hoisting angle by the hoisting cylinder 13, extends the telescopic boom 8 to an arbitrary telescopic boom length, or connects the jib 9 to connect the crane device 6. The head and working radius can be expanded.
 次に、図2を用いて、クレーン1の制御システムについて説明する。 Next, the control system of the crane 1 will be described with reference to FIG.
 クレーン1は、表示部20の他、優先条件選択部21、データ格納部22、経路算出部23、3Dデータ生成部24、及び、クレーン情報算出部25を有している。 The crane 1 includes a priority condition selection unit 21, a data storage unit 22, a route calculation unit 23, a 3D data generation unit 24, and a crane information calculation unit 25 in addition to the display unit 20.
 優先条件選択部21は、搬送経路Rtの算出に適用される各優先条件として、後述する複数のパラメータを最小にする条件の何れかをオペレータの操作に応じて選択する。オペレータは、優先条件選択部21を操作することによって、荷物Wの搬送経路に関するパラメータ及び搬送作業に関するクレーン1のパラメータのうち一以上の任意のパラメータを選択できる。 The priority condition selection unit 21 selects, as each priority condition applied to the calculation of the transport route Rt, one of the conditions that minimizes a plurality of parameters described later according to the operation of the operator. The operator can select one or more arbitrary parameters among the parameters related to the transport route of the cargo W and the parameters of the crane 1 related to the transport work by operating the priority condition selection unit 21.
 優先条件選択部21は、一つの搬送経路Rtが算出されるように、複数のパラメータのうちの一つを選択することができる。優先条件選択部21は、一つの搬送経路Rtに対して一つのパラメータが適用された各搬送経路Rtが同時に算出されるように、複数のパラメータを選択することもできる。また、優先条件選択部21は、一つの搬送経路Rtに対して複数のパラメータが適用された複数の搬送経路Rtが同時に算出されるように、複数のパラメータを選択することもできる。表示部20に表示される各条件のアイコンをオペレータがタッチ操作することによって、優先条件選択部21は、各パラメータを選択することができる。 The priority condition selection unit 21 can select one of a plurality of parameters so that one transport route Rt is calculated. The priority condition selection unit 21 can also select a plurality of parameters so that each transport route Rt in which one parameter is applied to one transport route Rt is calculated simultaneously. The priority condition selection unit 21 can also select a plurality of parameters so that a plurality of transport routes Rt in which a plurality of parameters are applied to one transport route Rt are calculated simultaneously. When the operator touches an icon for each condition displayed on the display unit 20, the priority condition selection unit 21 can select each parameter.
 データ格納部22には、クレーン1の三次元情報、複数のパラメータの情報、3Dデータ、クレーン1の姿勢の情報、及び、荷物Wの情報が格納されている。また、データ格納部22には、伸縮ブーム8の最大長さ、最小長さ、最大傾倒角度及び最小傾倒角度によって定まるクレーン1の作業範囲の情報と、作業範囲において伸縮ブーム8の傾倒角度及び長さごとに設定された定格総荷重の情報とが、クレーン1に関する情報として格納されている。 The data storage unit 22 stores three-dimensional information of the crane 1, information on a plurality of parameters, 3D data, information on the posture of the crane 1, and information on the luggage W. The data storage unit 22 also includes information on the work range of the crane 1 determined by the maximum length, minimum length, maximum tilt angle, and minimum tilt angle of the telescopic boom 8, and the tilt angle and length of the telescopic boom 8 in the work range. Information on the rated total load set in each case is stored as information on the crane 1.
 経路算出部23は、データ格納部22に格納された情報を用いて、搬送経路Rtを算出する。 The route calculation unit 23 uses the information stored in the data storage unit 22 to calculate the transport route Rt.
 3Dデータ生成部24は、カメラ18が撮影して得られた作業現場の画像データに基づいて3Dデータ(作業現場の三次元情報)を作成する。なお、3Dデータ生成部24は、作業現場に持ち込まれた他のカメラが撮影して得られた画像データに基づいて3Dデータを作成していてもよい。また、3Dデータは、レーザースキャナによって作業現場の地表面及び地上構造物Sを計測し、得られた点群データに基づいて作成されるものであってもよい。 The 3D data generation unit 24 creates 3D data (three-dimensional information on the work site) based on the image data on the work site obtained by photographing with the camera 18. Note that the 3D data generation unit 24 may create 3D data based on image data obtained by photographing with another camera brought into the work site. The 3D data may be created based on point cloud data obtained by measuring the ground surface and the ground structure S at the work site using a laser scanner.
 クレーン情報算出部25は、クレーン1に取り付けられた各種センサの出力値からクレーン1の姿勢と荷物Wの情報とを算出する。クレーン1は、旋回台7の旋回角度又は旋回モータ(図示せず)の回転角度を検出するセンサ31、伸縮ブーム8の伸縮長さを検出するセンサ32、伸縮ブーム8の傾倒角度を検出するセンサ33、及び、荷物Wの重量を検出するセンサ34を備えている。これらのセンサ31・32・33・34の出力値を用いて、クレーン1は、クレーン装置6の姿勢と荷物Wの重量及び姿勢を算出し、クレーン装置6の姿勢の情報と荷物Wの重量及び姿勢の情報とをデータ格納部22に格納し、荷物Wの重量及び姿勢に対応するクレーン装置6の姿勢の情報を都度更新している。 The crane information calculation unit 25 calculates the attitude of the crane 1 and the information on the load W from the output values of various sensors attached to the crane 1. The crane 1 includes a sensor 31 that detects a turning angle of the swivel base 7 or a rotation angle of a turning motor (not shown), a sensor 32 that detects the extension length of the telescopic boom 8, and a sensor that detects the tilt angle of the telescopic boom 8. 33 and a sensor 34 for detecting the weight of the load W. Using the output values of these sensors 31, 32, 33, and 34, the crane 1 calculates the posture of the crane device 6 and the weight and posture of the load W, and information on the posture of the crane device 6 and the weight and weight of the load W The posture information is stored in the data storage unit 22 and the posture information of the crane device 6 corresponding to the weight and posture of the load W is updated each time.
 クレーン情報算出部25は、一つの荷物Wごとに荷物Wの重量を算出する。また、クレーン情報算出部25は、荷物Wの搬送開始位置Pa及び目標位置Pbが変更される度に、荷物Wの搬送開始位置Pa及び目標位置Pbの情報を更新する。 The crane information calculation unit 25 calculates the weight of the load W for each load W. Further, the crane information calculation unit 25 updates the information on the conveyance start position Pa and the target position Pb of the luggage W every time the conveyance start position Pa and the target position Pb of the luggage W are changed.
 表示部20は、3Dデータを示す作業現場の画像を表示するとともに、この画像上に搬送経路Rtを表示する。 The display unit 20 displays an image of the work site showing the 3D data, and displays the transport route Rt on the image.
 また、クレーン1は、位置特定部26を有している。位置特定部26は、GNSSアンテナが受信した電波に基づいてクレーン1の現在位置を特定するものである。 Further, the crane 1 has a position specifying unit 26. The position specifying unit 26 specifies the current position of the crane 1 based on the radio wave received by the GNSS antenna.
 更に、クレーン1は、情報受信部27を有している。情報受信部27は、図示しないアンテナが電波を受信することにより、様々な情報を取得できる。例えば、クレーン1の三次元情報は、データ格納部22に格納される代わりに、クレーン1の機種ごとに異なる情報として遠隔サーバに格納されていてもよい。また、3Dデータは、作業現場ごとに異なる情報として、荷物Wの情報は、荷物Wごとに異なる情報として、それぞれ遠隔サーバに格納されていてもよい。情報受信部27は、通信ネットワークを介して遠隔サーバに格納されている様々な情報を取得できる。データ格納部22は、遠隔サーバから取得した情報を格納する。 Furthermore, the crane 1 has an information receiving unit 27. The information receiving unit 27 can acquire various pieces of information when an antenna (not shown) receives radio waves. For example, the three-dimensional information of the crane 1 may be stored in the remote server as different information for each model of the crane 1 instead of being stored in the data storage unit 22. Further, the 3D data may be stored in the remote server as information different for each work site, and the information of the package W may be stored as information different for each package W. The information receiving unit 27 can acquire various information stored in the remote server via the communication network. The data storage unit 22 stores information acquired from the remote server.
 ここで、搬送経路Rtの算出に適用される複数のパラメータについて説明する。 Here, a plurality of parameters applied to the calculation of the transport route Rt will be described.
 クレーン1は、各パラメータとして、時間、揚程、燃費、騒音、接地圧及び負荷率を搬送経路Rtの算出に適用する。時間と揚程とは、荷物Wの搬送経路に関するパラメータに該当する。燃費、騒音、接地圧及び負荷率は、搬送作業に関するクレーン1のパラメータに該当する。クレーン1は、これらのパラメータのうち任意のパラメータを最小にする条件を満たす搬送経路Rtを算出する。 The crane 1 applies time, lift, fuel consumption, noise, contact pressure, and load factor as parameters to the calculation of the transport route Rt. The time and the lift correspond to parameters relating to the transport route of the luggage W. The fuel consumption, noise, contact pressure, and load factor correspond to the parameters of the crane 1 related to the conveyance work. The crane 1 calculates a transport route Rt that satisfies a condition that minimizes any of these parameters.
 任意のパラメータとして時間が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送に掛かる時間を最小にする経路となる。揚程が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまで荷物Wを搬送する間に吊下げられる荷物Wの最大揚程を最小にする経路となる。燃費が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまで荷物Wを搬送する間にクレーン1が消費するエネルギーを最小にする経路となる。騒音が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまで荷物Wを搬送する間にクレーン1から発生する騒音の最大値を最小にする経路となる。接地圧が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまで荷物Wを搬送する場合のクレーン1の接地面圧の最大値を最小にする経路となる。また、負荷率が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまで荷物Wを搬送する場合のクレーン1の安定度の最大値を最小にする経路となる。 The transport route Rt to which time is applied as an arbitrary parameter is a route that minimizes the time taken to transport the package W from the transport start position Pa to the target position Pb. The transfer route Rt to which the lift is applied is a route that minimizes the maximum lift of the load W that is suspended while the load W is transferred from the transfer start position Pa to the target position Pb. The transport route Rt to which the fuel consumption is applied is a route that minimizes the energy consumed by the crane 1 while transporting the load W from the transport start position Pa to the target position Pb. The transfer route Rt to which noise is applied is a route that minimizes the maximum value of noise generated from the crane 1 while the load W is transferred from the transfer start position Pa to the target position Pb. The transfer route Rt to which the contact pressure is applied is a route that minimizes the maximum value of the contact surface pressure of the crane 1 when the load W is transferred from the transfer start position Pa to the target position Pb. Further, the transport route Rt to which the load factor is applied is a route that minimizes the maximum value of the stability of the crane 1 when transporting the load W from the transport start position Pa to the target position Pb.
 或いは、風等の外乱が大きく現れる状況下において、荷物Wの振れを防止して安全に作業を実施することを目的として、任意のパラメータとして時間が適用された搬送経路Rtは、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送に掛かる時間を最大にする経路となる。このように、クレーン1は、任意のパラメータを最小にする条件の他に、任意のパラメータを最大にする条件を満たす搬送経路Rtを算出することができる。つまり、クレーン1は、任意のパラメータを最適化する条件を満たす搬送経路Rtを算出することができる。 Alternatively, the transport route Rt to which time is applied as an arbitrary parameter for the purpose of preventing the swing of the luggage W and performing the work safely in a situation where a disturbance such as wind appears greatly is the transport start position Pa. To the target position Pb is a route that maximizes the time taken to transport the package W. Thus, the crane 1 can calculate the transport route Rt that satisfies the condition for maximizing the arbitrary parameter in addition to the condition for minimizing the arbitrary parameter. That is, the crane 1 can calculate the transport route Rt that satisfies the condition for optimizing an arbitrary parameter.
 クレーン1は、オペレータの操作に応じて、選択された任意のパラメータを一以上の搬送経路Rtの算出に適用することができる。例えば、クレーン1は、一つのパラメータごとに一つの搬送経路Rtを算出することができる。また、クレーン1は、一つの搬送経路Rtに対して複数のパラメータが適用された一以上の搬送経路Rtを算出することもできる。 The crane 1 can apply any selected parameter to the calculation of one or more transport routes Rt according to the operation of the operator. For example, the crane 1 can calculate one transport route Rt for each parameter. The crane 1 can also calculate one or more transport routes Rt in which a plurality of parameters are applied to one transport route Rt.
 次に、クレーン1の三次元情報について説明する。 Next, the three-dimensional information of the crane 1 will be described.
 クレーン1の三次元情報とは、立体形状を有するクレーン1の各寸法の情報のことである。車両2及びクレーン装置6のそれぞれの全高、全長、全幅等の寸法の情報の他、伸縮ブーム8の最小長さ、最大長さ、最小傾倒角度及び最大傾倒角度の情報がクレーン1の三次元情報に該当する。地上構造物S(図4参照)との接触を回避するために予め制限された高さ等に基づいて設定された、伸縮ブーム8の最小長さ、最大長さ、最小傾倒角度及び最大傾倒角度の情報もクレーン1の三次元情報に該当する。また、伸縮ブーム8の長さ及び傾倒角度ごとに定まる伸縮ブーム8の先端部の車両2に対する位置の情報がクレーン1の三次元情報に該当する。伸縮ブーム8の先端部は、伸縮ブーム8のうちサブフックブロック11の直上方の部分とする。 The three-dimensional information of the crane 1 is information on each dimension of the crane 1 having a three-dimensional shape. In addition to information on the dimensions of the vehicle 2 and the crane device 6 such as the total height, total length, and full width, the information on the minimum length, maximum length, minimum tilt angle, and maximum tilt angle of the telescopic boom 8 is three-dimensional information of the crane 1. It corresponds to. Minimum length, maximum length, minimum tilt angle, and maximum tilt angle of the telescopic boom 8 set based on a height or the like that is limited in advance to avoid contact with the ground structure S (see FIG. 4). This information also corresponds to the three-dimensional information of the crane 1. Further, the information on the position of the tip of the telescopic boom 8 with respect to the vehicle 2 determined for each length and tilt angle of the telescopic boom 8 corresponds to the three-dimensional information of the crane 1. The distal end portion of the telescopic boom 8 is a portion immediately above the sub hook block 11 in the telescopic boom 8.
 次に、図3(A)(B)を用いて、作業現場の三次元情報、荷物Wの情報、作業可能範囲R及び搬送可能範囲Raについて説明する。 Next, with reference to FIGS. 3A and 3B, the three-dimensional information on the work site, the information on the luggage W, the workable range R, and the transportable range Ra will be described.
 作業現場の三次元情報は、作業現場にある建物等の地上構造物Sの立体形状、及び、建物内の設備の立体形状が表された3Dメッシュ、デジタルオルソ画像、数値地表モデル(DSM)等であって、作業現場の状況を三次元で表す3Dデータである。ここでいう地上構造物Sには、作業現場にある凸形状を有する物体であって、図示しない丘陵等が含まれていてもよい。なお、クレーン1は、作業現場を特定することにより、3Dデータを遠隔サーバから取得していてもよい。 The three-dimensional information of the work site includes a 3D shape of the ground structure S such as a building at the work site, a 3D mesh representing a 3D shape of the equipment in the building, a digital ortho image, a numerical ground model (DSM), etc. And it is 3D data which represents the situation of a work site in three dimensions. The above-described ground structure S is an object having a convex shape at a work site, and may include a hill or the like (not shown). The crane 1 may acquire 3D data from a remote server by specifying a work site.
 荷物Wの情報には、荷物Wの重量及び形状、荷物Wの搬送開始位置Pa及び目標位置Pb等の情報が該当する。荷物Wの搬送開始位置Paは、予め設定された作業現場における吊上及び搬送の始点となる荷物Wの位置である。荷物Wの目標位置Pbは、予め設定された作業現場における吊上及び搬送の終点となる荷物Wの位置である。荷物Wの搬送開始位置Pa及び目標位置Pbの情報は、3Dデータに同期されている。従って、荷物Wの搬送開始位置Pa及び目標位置Pbは、作業現場上の所定位置に設定されている。荷物Wの情報には、荷物Wの重量及び形状の情報とともに重心位置の情報が含まれていてもよい。荷物Wの搬送開始位置Pa及び目標位置Pbは、荷物Wの重心位置が搬送開始位置Pa及び目標位置Pbに対応するように設定されているとしてもよい。また、クレーン1によって吊り上げられた際の荷物Wの姿勢、搬送開始位置Pa及び目標位置Pbにおける荷物Wの各姿勢も、荷物Wの情報に含まれていてもよい。 The information on the package W includes information such as the weight and shape of the package W, the conveyance start position Pa and the target position Pb of the package W, and the like. The conveyance start position Pa of the load W is a position of the load W that is a starting point of lifting and transfer at a preset work site. The target position Pb of the baggage W is a position of the baggage W that is the end point of lifting and transporting at a preset work site. Information on the conveyance start position Pa and the target position Pb of the package W is synchronized with the 3D data. Accordingly, the transport start position Pa and the target position Pb of the luggage W are set to predetermined positions on the work site. The information on the luggage W may include information on the center of gravity position as well as information on the weight and shape of the luggage W. The conveyance start position Pa and the target position Pb of the luggage W may be set so that the center of gravity position of the luggage W corresponds to the conveyance start position Pa and the target position Pb. In addition, the posture of the load W when it is lifted by the crane 1, each posture of the load W at the transfer start position Pa and the target position Pb may be included in the information of the load W.
 経路算出部23は、作業範囲内において、荷物Wの重量から定まる作業可能範囲Rを算出する。作業可能範囲Rは、クレーン1が転倒しない作業範囲である。本実施形態の説明に用いられる荷物Wの重量に対しては、図示する作業可能範囲Rが算出される。本実施形態において、作業可能範囲Rは、アウトリガ5を最大張出位置まで張り出した状態における吊上能力を示す。 The route calculation unit 23 calculates a workable range R determined from the weight of the luggage W within the work range. The workable range R is a work range in which the crane 1 does not fall. The workable range R shown in the figure is calculated for the weight of the luggage W used in the description of the present embodiment. In the present embodiment, the workable range R indicates the lifting ability in a state where the outrigger 5 is extended to the maximum extended position.
 また、経路算出部23は、算出した作業可能範囲Rの情報と荷物Wの形状の情報とクレーン1の三次元情報と3Dデータとを用いて、地上構造物Sへの荷物W及び伸縮ブーム8の接触を回避できる搬送可能範囲Raを作業可能範囲Rの中から算出する。そして、経路算出部23は、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送経路に関するパラメータ及び搬送作業に関するクレーン1のパラメータのうち任意のパラメータを最小にする条件を満たす搬送経路Rtを搬送可能範囲Raの中から算出する。 Further, the route calculation unit 23 uses the calculated workable range R information, the shape information of the load W, the three-dimensional information of the crane 1 and the 3D data, and the load W and the telescopic boom 8 to the ground structure S. The transportable range Ra that can avoid the contact is calculated from the workable range R. Then, the route calculation unit 23 transports the transport route Rt that satisfies the condition that minimizes any parameter among the parameters related to the transport route of the cargo W from the transport start position Pa to the target position Pb and the parameters of the crane 1 related to the transport work. Calculate from the possible range Ra.
 次に、図4、図5及び図6を用いて、搬送経路Rtの算出の制御態様について説明する。 Next, a control mode for calculating the transport route Rt will be described with reference to FIGS. 4, 5, and 6.
 ステップS11において、クレーン1は、オペレータが選択したパラメータの情報を認識する。 In step S11, the crane 1 recognizes information on parameters selected by the operator.
 ステップS12において、クレーン1は、3Dデータ生成部24が生成する3Dデータを取得する。若しくは、クレーン1は、遠隔サーバから3Dデータを取得する。その後、ステップS13に移行する。 In step S12, the crane 1 acquires 3D data generated by the 3D data generation unit 24. Alternatively, the crane 1 acquires 3D data from a remote server. Thereafter, the process proceeds to step S13.
 ステップS13において、クレーン1は、位置特定部26が特定する作業現場におけるクレーン1の位置情報を取得する。位置情報には、経度や緯度に加えて標高が含まれる。更に、クレーン1の方角も含まれる。また、クレーン1は、オペレータの操作によって入力された仮想上の位置情報を取得することもできる。その後、ステップS14に移行する。 In step S13, the crane 1 acquires the position information of the crane 1 at the work site specified by the position specifying unit 26. The position information includes altitude in addition to longitude and latitude. Furthermore, the direction of the crane 1 is also included. The crane 1 can also acquire virtual position information input by an operator's operation. Thereafter, the process proceeds to step S14.
 ステップS14において、クレーン1は、荷物Wの情報を取得する。クレーン1は、データ格納部22に格納された荷物Wの重量及び形状の情報と、荷物Wの搬送開始位置Pa及び目標位置Pbの情報とを選択して読み出すことによって認識する。その後、ステップS15に移行する。 In step S14, the crane 1 acquires the information on the load W. The crane 1 recognizes by selecting and reading information on the weight and shape of the load W stored in the data storage unit 22 and information on the transport start position Pa and the target position Pb of the load W. Thereafter, the process proceeds to step S15.
 ステップS15において、クレーン1は、クレーン1の三次元情報を取得する。クレーン1は、データ格納部22に格納されたクレーン1の三次元情報を選択して読み出すことによって認識する。その後、ステップS16に移行する。 In step S15, the crane 1 acquires the three-dimensional information of the crane 1. The crane 1 recognizes by selecting and reading out the three-dimensional information of the crane 1 stored in the data storage unit 22. Thereafter, the process proceeds to step S16.
 ステップS16において、クレーン1は、荷物Wの重量の情報を用いて、クレーン1の作業可能範囲Rを算出する。その後、ステップS17に移行する。 In step S16, the crane 1 calculates the workable range R of the crane 1 using information on the weight of the load W. Thereafter, the process proceeds to step S17.
 ステップS17において、クレーン1は、作業可能範囲Rの情報と荷物Wの情報とクレーン1の三次元情報と位置情報と3Dデータとを用いて、位置情報が示す位置に配置されたクレーン1について、搬送開始位置Paにある荷物Wを吊り上げるための伸縮ブーム8の先端部の位置と目標位置Pbにある荷物Wを吊り下げるための伸縮ブーム8の先端部の位置とが作業可能範囲R内か否かを判定する。 In step S <b> 17, the crane 1 uses the information on the workable range R, the information on the load W, the three-dimensional information, the position information, and the 3D data of the crane 1, with respect to the crane 1 arranged at the position indicated by the position information. Whether the position of the tip of the telescopic boom 8 for lifting the load W at the transfer start position Pa and the position of the tip of the telescopic boom 8 for hanging the load W at the target position Pb are within the workable range R. Determine whether.
 その結果、図3(A)に示すように、搬送開始位置Paにある荷物Wを吊り上げるための伸縮ブーム8の先端部の位置と目標位置Pbにある荷物Wを吊り下げるための伸縮ブーム8の先端部の位置とが作業可能範囲R内にあると判定された場合、ステップS18に移行する。一方、作業可能範囲R内でないと判定された場合、ステップS1eに移行する。 As a result, as shown in FIG. 3 (A), the position of the tip of the telescopic boom 8 for lifting the load W at the transport start position Pa and the position of the telescopic boom 8 for hanging the load W at the target position Pb. When it is determined that the position of the tip is within the workable range R, the process proceeds to step S18. On the other hand, when it is determined that it is not within the workable range R, the process proceeds to step S1e.
 ステップS18において、クレーン1は、搬送可能範囲Raを算出する。その後、ステップS19に移行する。 In step S18, the crane 1 calculates the transportable range Ra. Thereafter, the process proceeds to step S19.
 ステップS19において、クレーン1は、搬送経路Rtの算出Aの制御を開始し、ステップをステップS21に移行させる(図5参照)。そして、搬送経路Rtの算出Aが終了するとステップをステップS1aに移行させる。 In step S19, the crane 1 starts control of the calculation A of the transport route Rt, and shifts the step to step S21 (see FIG. 5). Then, when the calculation A of the transport route Rt is completed, the step is shifted to step S1a.
 図5に示すように、ステップS21において、クレーン1は、オペレータが選択したパラメータ(図4のステップS11参照)が一つであるか否かを判定する。その結果、選択されたパラメータが一つであると判定された場合、ステップS22に移行する。一方、選択されたパラメータが二以上であると判定された場合、ステップS23に移行する。 As shown in FIG. 5, in step S21, the crane 1 determines whether there is one parameter selected by the operator (see step S11 in FIG. 4). As a result, when it is determined that the selected parameter is one, the process proceeds to step S22. On the other hand, when it is determined that the selected parameter is two or more, the process proceeds to step S23.
 ステップS22において、クレーン1は、選択された一のパラメータを最小にする条件を満たす搬送経路Rtを搬送可能範囲Raの中から算出する。その後、搬送経路Rtの算出Aの制御を終了して、ステップS1aに移行する(図4参照)。 In step S22, the crane 1 calculates a transport route Rt that satisfies the condition that minimizes the selected one parameter from the transportable range Ra. Thereafter, the control of the calculation A of the transport route Rt is finished, and the process proceeds to step S1a (see FIG. 4).
 ステップS23において、クレーン1は、二以上のパラメータについて、オペレータが搬送経路Rtごとに一のパラメータを選択したか否かを判定する。その結果、搬送経路Rtごとに一のパラメータが選択されたと判定された場合、ステップS24に移行する。一方、搬送経路Rtごとに一のパラメータが選択されていない、即ち、搬送経路Rtごとに二以上のパラメータが選択されていると判定された場合、ステップS25に移行する。 In step S23, the crane 1 determines whether or not the operator has selected one parameter for each transport route Rt for two or more parameters. As a result, when it is determined that one parameter is selected for each transport route Rt, the process proceeds to step S24. On the other hand, when it is determined that one parameter is not selected for each transport route Rt, that is, two or more parameters are selected for each transport route Rt, the process proceeds to step S25.
 ステップS24において、クレーン1は、選択された各パラメータを最小にする条件を満たす搬送経路Rtをそれぞれ搬送可能範囲Raの中から算出する。その後、搬送経路Rtの算出Aの制御を終了して、ステップS1aに移行する(図4参照)。 In step S24, the crane 1 calculates the transport route Rt that satisfies the condition for minimizing each selected parameter from the transportable range Ra. Thereafter, the control of the calculation A of the transport route Rt is finished, and the process proceeds to step S1a (see FIG. 4).
 ステップS25において、クレーン1は、搬送経路Rtの算出Bの制御を開始し、ステップをステップS31に移行させる(図6参照)。そして、搬送経路Rtの算出Bが終了するとステップをステップS1aに移行させる(図4参照)。 In step S25, the crane 1 starts control of calculation B of the transport route Rt, and shifts the step to step S31 (see FIG. 6). Then, when the calculation B of the transport route Rt is completed, the step is shifted to step S1a (see FIG. 4).
 ここでは、搬送経路Rtの算出Bの制御として、一つの搬送経路Rtに対して二つのパラメータが選択且つ適用される場合について説明する。なお、クレーン1は、一のパラメータと他のパラメータとが考慮された搬送経路Rtを二以上算出するものであってもよい。 Here, a case will be described in which two parameters are selected and applied to one transport path Rt as the control B for calculating the transport path Rt. The crane 1 may calculate two or more transport routes Rt in which one parameter and other parameters are considered.
 図6に示すように、ステップS31において、クレーン1は、搬送作業に関するクレーン1のパラメータのうち任意の一のパラメータを最小にする条件を満たす経路候補範囲Rbを搬送可能範囲Raの中から算出する。その後、ステップS32に移行する。 As shown in FIG. 6, in step S <b> 31, the crane 1 calculates a route candidate range Rb that satisfies a condition that minimizes any one of the parameters of the crane 1 related to the transport operation from the transportable range Ra. . Thereafter, the process proceeds to step S32.
 ステップS32において、クレーン1は、経路候補範囲Rbから、荷物Wの搬送経路に関するパラメータ及びクレーン1のパラメータのうち任意の他のパラメータを最小にする条件を満たす搬送経路Rtを算出する。その後、搬送経路Rtの算出Bの制御を終了して、ステップS1aに移行する(図4及び図5参照)。 In step S32, the crane 1 calculates a transport route Rt that satisfies a condition that minimizes any other parameter among the parameters related to the transport route of the load W and the parameters of the crane 1 from the route candidate range Rb. Thereafter, the control of the calculation B of the transport route Rt is finished, and the process proceeds to step S1a (see FIGS. 4 and 5).
 なお、オペレータの操作によって入力された仮想上の位置情報を取得する場合、クレーン1は、仮想上の位置情報が示すクレーン1の位置について、搬送可能範囲Raと経路候補範囲Rbと搬送経路Rtとを算出することができる。 In addition, when acquiring the virtual position information input by the operation of the operator, the crane 1 determines the transportable range Ra, the route candidate range Rb, and the transport route Rt for the position of the crane 1 indicated by the virtual position information. Can be calculated.
 図4に示すように、ステップS1aにおいて、クレーン1は、3Dデータを示す作業現場の画像を表示部20に表示するとともに、選択された上述の条件ごとに異なる一以上の搬送経路Rtを画像上に表示する。 As shown in FIG. 4, in step S <b> 1 a, the crane 1 displays an image of the work site indicating 3D data on the display unit 20, and displays one or more transport routes Rt that differ depending on the selected conditions described above. To display.
 ステップS1bにおいて、クレーン1は、表示部20に表示された搬送経路Rtのうちオペレータが選択した搬送経路Rtを認識する。オペレータは、表示部20をタッチ操作することによって、表示された一以上の搬送経路Rtの一つを選択できる。その後、ステップS1cに移行する。 In step S1b, the crane 1 recognizes the transport route Rt selected by the operator from among the transport routes Rt displayed on the display unit 20. The operator can select one of the displayed one or more transport routes Rt by touching the display unit 20. Thereafter, the process proceeds to step S1c.
 ステップS1cにおいて、クレーン1は、表示された搬送経路Rtのうち選択された搬送経路Rtに沿って荷物Wを搬送するクレーン1の動作を表示部20に表示する。その後、ステップS1dに移行する。 In step S1c, the crane 1 displays on the display unit 20 the operation of the crane 1 that transports the load W along the selected transport route Rt among the displayed transport routes Rt. Thereafter, the process proceeds to step S1d.
 ステップS1dにおいて、クレーン1は、表示された搬送経路Rtのうち選択された搬送経路Rtに沿って荷物Wを搬送するクレーン1の操作に関する情報を表示部20に表示する。 In step S1d, the crane 1 displays information on the operation of the crane 1 that transports the cargo W along the selected transport route Rt among the displayed transport routes Rt on the display unit 20.
 ステップS1eにおいて、クレーン1は、位置情報が示すクレーン1の位置について、搬送開始位置Paにある荷物Wを吊り上げるための伸縮ブーム8の先端部の位置と目標位置Pbにある荷物Wを吊り下げるための伸縮ブーム8の先端部の位置とが作業可能範囲R内でない旨を表示部20に表示する。 In step S1e, the crane 1 hangs the load W at the target position Pb and the position of the tip of the telescopic boom 8 for lifting the load W at the transfer start position Pa with respect to the position of the crane 1 indicated by the position information. The display unit 20 displays that the position of the distal end of the telescopic boom 8 is not within the workable range R.
 次に、図7(A)及び(B)を用いて、二つ搬送経路Rt(Rt1・Rt2)について説明する。なお、本実施形態の説明において、荷物Wは、サブフック11a(図1参照)に掛けられているとするが、代わりにメインフック10a(図1参照)に掛けられていてもよい。 Next, the two transport paths Rt (Rt1 and Rt2) will be described with reference to FIGS. In the description of the present embodiment, it is assumed that the luggage W is hung on the sub hook 11a (see FIG. 1), but may be hung on the main hook 10a (see FIG. 1) instead.
 搬送経路Rt1は、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送経路に関するパラメータのうち時間を最小にする条件を満たす経路である。 The transport route Rt1 is a route that satisfies a condition that minimizes time among parameters related to the transport route of the package W from the transport start position Pa to the target position Pb.
 図7(A)に示すように、搬送経路Rt1は、作業現場の平面視において、搬送開始位置Paから目標位置Pbまでを直線で結んだ経路となる。図7(B)に示すように、作業現場の側面視において、搬送経路Rt1は、搬送開始位置Paに置かれた荷物Wを吊り上げて、図中右側にある地上構造物Sの上方を越えてから目標位置Pbまで搬送する経路となる。搬送開始位置Paから目標位置Pbまで荷物Wを搬送する間に、伸縮ブーム8の先端部の軌跡L1は、搬送経路Rt1の上方に描かれる。このように、時間を最小にする条件を満たす搬送経路Rt1は、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送に関するパラメータのうち搬送距離を最小にする条件を満たす経路となる。 As shown in FIG. 7A, the transport route Rt1 is a route that connects the transport start position Pa to the target position Pb with a straight line in a plan view of the work site. As shown in FIG. 7B, in the side view of the work site, the transport route Rt1 lifts the load W placed at the transport start position Pa and passes over the ground structure S on the right side in the drawing. To the target position Pb. While the load W is being transported from the transport start position Pa to the target position Pb, the locus L1 of the distal end portion of the telescopic boom 8 is drawn above the transport path Rt1. As described above, the transport route Rt1 that satisfies the condition that minimizes the time is a route that satisfies the condition that minimizes the transport distance among the parameters related to the transport of the luggage W from the transport start position Pa to the target position Pb.
 搬送経路Rt2は、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送経路に関するパラメータのうち揚程を最小にする条件を満たす経路候補範囲Rbから算出される経路であって、荷物Wの搬送経路に関するパラメータ及びクレーン1のパラメータのうち時間を最小にする条件を満たす経路である。つまり、搬送経路Rt2は、荷物Wの搬送経路に関するパラメータ及び搬送作業に関するクレーン1のパラメータのうち二つのパラメータが適用された経路であって、一のパラメータは揚程であって、他のパラメータは時間である。 The transport route Rt2 is a route calculated from the route candidate range Rb that satisfies the condition that minimizes the lift among the parameters related to the transport route of the package W from the transport start position Pa to the target position Pb. It is the path | route which satisfy | fills the conditions which minimize time among the parameter regarding and the parameter of the crane 1. FIG. That is, the transport route Rt2 is a route to which two parameters of the parameters related to the transport route of the cargo W and the parameters of the crane 1 related to the transport work are applied, one parameter being the lift and the other parameter being the time. It is.
 クレーン1は、揚程を最小にする条件を満たす経路候補範囲Rbを搬送可能範囲Raの中から算出し、更に、搬送距離を最小にする条件を満たす搬送経路Rtを経路候補範囲Rbから算出する。搬送経路Rt2は、搬送開始位置Paに置かれた荷物Wを吊り上げて、図中左側にある地上構造物Sを側方から通過した後に、荷物Wをクレーン1の後方まで直線状に搬送し、更に、目標位置Pbまで直線状に搬送する経路となる。また、図中には、伸縮ブーム8の軌跡L2を示す。 The crane 1 calculates the route candidate range Rb that satisfies the condition that minimizes the lift from the transportable range Ra, and further calculates the transport route Rt that satisfies the condition that minimizes the transport distance from the route candidate range Rb. The transport route Rt2 lifts the cargo W placed at the transport start position Pa, passes the ground structure S on the left side in the figure from the side, and then transports the cargo W to the rear of the crane 1 in a straight line. Furthermore, it becomes a path | route conveyed linearly to the target position Pb. In the drawing, a locus L2 of the telescopic boom 8 is shown.
 任意のパラメータとして時間を最大にする条件を満たす搬送経路を算出することもできる。揚程を最小にする条件を満たす経路候補範囲Rbを搬送可能範囲Raの中から算出し、更に、時間を最大にする条件を満たす搬送経路を経路候補範囲Rbから算出することでもよい。この場合には、風等の外乱が大きく現れる状況下においても、揚程を最小にして可能な限り長い時間を掛けて安全に荷物Wを搬送することをオペレータに提示できる。 It is also possible to calculate a transport route that satisfies the condition that maximizes time as an arbitrary parameter. The route candidate range Rb that satisfies the condition for minimizing the head may be calculated from the transportable range Ra, and the transport route that satisfies the condition for maximizing the time may be calculated from the route candidate range Rb. In this case, even under a situation in which a disturbance such as wind appears greatly, it is possible to present to the operator that the load W can be safely transported over the longest possible time while minimizing the lift.
 このように、クレーン1によれば、三次元情報によって作業現場の状況が反映された複数の搬送経路Rt1・Rt2をパラメータごとに算出できる。また、クレーン1は、荷物Wの搬送経路に関するパラメータ及び搬送作業に関するクレーン1のパラメータのうち任意のパラメータを最適化する条件を満たす搬送経路Rt1・Rt2、即ち、パラメータごとに異なる搬送経路Rt1・Rt2を算出できる。これにより、オペレータに条件の異なる複数の搬送経路Rt1・Rt2が提示される。従って、作業の状況に対応した適切な搬送経路Rtをオペレータが選択できるクレーン1を提供することができる。 Thus, according to the crane 1, it is possible to calculate a plurality of transport routes Rt1 and Rt2 in which the state of the work site is reflected by the three-dimensional information for each parameter. In addition, the crane 1 has a transport route Rt1 and Rt2 that satisfy conditions for optimizing an arbitrary parameter among the parameters related to the transport route of the cargo W and the parameters of the crane 1 related to the transport operation, that is, the transport routes Rt1 and Rt2 that are different for each parameter. Can be calculated. Thereby, a plurality of transport routes Rt1 and Rt2 having different conditions are presented to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
 クレーン1によれば、一のパラメータと他のパラメータとが考慮された搬送経路Rt2を算出できる。これにより、オペレータに細かい条件に基づいた搬送経路Rt2が提示される。従って、作業の状況に対応した適切な搬送経路Rtをオペレータが選択できるクレーン1を提供することができる。 According to the crane 1, it is possible to calculate the transport route Rt2 in which one parameter and another parameter are considered. As a result, the transport route Rt2 based on detailed conditions is presented to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
 なお、搬送作業に関するクレーン1のパラメータのうち任意のパラメータには、クレーン1の接地面圧(言い換えるとアウトリガ反力)の最大値、負荷率(言い換えるとクレーン1の安定度)の最大値、騒音の最大値、燃料消費量が更に含まれている。オペレータによる選択に応じて、クレーン1は、これらのパラメータを最小にする条件を満たす各搬送経路Rtを算出する。 Among the parameters of the crane 1 related to the transfer work, the arbitrary parameters include the maximum value of the contact surface pressure of the crane 1 (in other words, the outrigger reaction force), the maximum value of the load factor (in other words, the stability of the crane 1), and the noise. The maximum value and fuel consumption are also included. In response to the selection by the operator, the crane 1 calculates each transport route Rt that satisfies the conditions that minimize these parameters.
 クレーン1の接地面圧の最大値と負荷率の最大値とは、クレーン装置6の作業半径に置き換えることができる。つまり、クレーン1は、搬送作業に関するクレーン1のパラメータとしての作業半径を最小にする条件を搬送経路Rtの算出に適用していてもよい。 The maximum value of the contact surface pressure of the crane 1 and the maximum value of the load factor can be replaced with the working radius of the crane device 6. That is, the crane 1 may apply a condition for minimizing the work radius as a parameter of the crane 1 related to the transport work to the calculation of the transport route Rt.
 データ格納部22(図2参照)は、クレーン1に関する情報として、エンジン4の出力ごとに定量化されたエンジン音の情報を格納している。また、データ格納部22は、それぞれロープ速度ごとに定量化された、メインウインチ14の繰出時と繰入時との各作動音の情報、及び、サブウインチ16の繰出時と繰入時との各作動音の情報を格納している。データ格納部22は、伸縮ブーム8の俯仰時の作動音、伸長時の作動音及び収縮時の作動音の情報と、旋回速度ごとに定量化された旋回台7の旋回時の作動音の情報とを格納している。クレーン情報算出部25は、これらの情報を用いて、荷物Wの重量による定荷重に対してのメインウインチ14、サブウインチ16、伸縮ブーム8、旋回台7の各作動速度から各作動音の大きさとエンジン音の大きさとを算出する。 The data storage unit 22 (see FIG. 2) stores engine sound information quantified for each output of the engine 4 as information on the crane 1. In addition, the data storage unit 22 quantifies each rope speed, information on each operating sound when the main winch 14 is extended and when it is supplied, and when the sub winch 16 is extended and when it is supplied. Stores information on each operating sound. The data storage unit 22 includes information on the operation sound when the telescopic boom 8 is raised, the operation sound when the telescopic boom 8 is expanded, and the operation sound when the telescopic boom 8 is contracted. And store. The crane information calculation unit 25 uses these pieces of information to calculate the loudness of each operation sound from the respective operation speeds of the main winch 14, the sub winch 16, the telescopic boom 8, and the swivel base 7 with respect to a constant load due to the weight of the load W. And the loudness of the engine sound.
 データ格納部22は、クレーン1に関する情報として、エンジン4の出力ごとに定量化された燃料消費量の情報を格納している。より詳細には、データ格納部22は、それぞれロープ速度ごとに定量化された、メインウインチ14の繰出時と繰入時との各エンジン出力の情報及びサブウインチ16の繰出時と繰入時との各エンジン出力の情報を格納している。データ格納部22は、伸縮ブーム8の俯仰時のエンジン出力、伸長時のエンジン出力及び収縮時のエンジン出力の情報と、旋回速度ごとに定量化された旋回台7の旋回時のエンジン出力の情報とを格納している。クレーン情報算出部25は、これらの情報を用いて、荷物Wの重量による定荷重に対してのメインウインチ14、サブウインチ16、伸縮ブーム8、旋回台7の各作動速度に対応したエンジン出力を算出する。更に、算出したエンジン出力に基づいて、燃料消費量を算出する。 The data storage unit 22 stores information on the fuel consumption quantified for each output of the engine 4 as information on the crane 1. More specifically, the data storage unit 22 quantifies each rope speed, information on each engine output when the main winch 14 is extended and when it is supplied, and when the sub winch 16 is extended and when it is supplied. Stores information about each engine output. The data storage unit 22 has information on engine output when the telescopic boom 8 is raised, information on engine output when extended and contracted, and information on engine output when turning the swivel base 7 quantified for each turning speed. And store. The crane information calculation unit 25 uses these pieces of information to output engine outputs corresponding to the operating speeds of the main winch 14, the sub winch 16, the telescopic boom 8, and the swivel base 7 for a constant load due to the weight of the load W. calculate. Further, the fuel consumption is calculated based on the calculated engine output.
 次に、作業現場の画像と搬送経路Rtとの表示について説明する。 Next, the display of the work site image and the transport route Rt will be described.
 図8に示すように、表示部20は、平面図と側面図との二つの画面で、3Dデータを示す作業現場の画像を表示する。また、パラメータごとに算出された一以上の搬送経路Rtが画像上に表示される。また、上述の条件ごとに異なる伸縮ブーム8の先端部の軌跡も画像上に表示する。表示の形態は、平面図と側面図との他に、オペレータによる表示部20のタッチ操作に応じて、別の側面図又は斜視図等、視線の方向を適宜変更可能なものであってもよく、表示部20の画面上のタッチ操作に応じて表示サイズが変更可能なものであってもよい。 As shown in FIG. 8, the display unit 20 displays an image of a work site showing 3D data on two screens, a plan view and a side view. In addition, one or more transport routes Rt calculated for each parameter are displayed on the image. In addition, the locus of the distal end portion of the telescopic boom 8 that differs depending on the above conditions is also displayed on the image. In addition to the plan view and the side view, the display form may be a mode in which the direction of the line of sight can be appropriately changed, such as another side view or a perspective view, according to the touch operation of the display unit 20 by the operator. The display size may be changeable according to a touch operation on the screen of the display unit 20.
 画面上には、各条件を示すアイコンが、作業現場の画像とは別に表示されている。オペレータは、例えば表示部20の画面上のタッチ操作によって、『時間最短』、『揚程最小』、『燃費最小』、『騒音最小』、『接地圧最小』、『負荷率最小』及び『揚程最小+時間最短』の何れかの条件、即ち、これら何れかの条件を満たす搬送経路Rtを選択できる。 On the screen, icons indicating each condition are displayed separately from the image of the work site. The operator, for example, by touching on the screen of the display unit 20, "minimum time", "minimum lift", "minimum fuel consumption", "minimum noise", "minimum ground pressure", "minimum load factor" and "minimum lift" Any one of the conditions of “+ shortest time”, that is, the transport route Rt that satisfies any of these conditions can be selected.
 ここでは、表示部20は、『時間最短』と『揚程最小+時間最短』との条件を満たす搬送経路Rt1・Rt2を表示している(図中の一点鎖線を参照)。また、表示部20は、『時間最短』の条件を満たす軌跡L1と『揚程最小+距離最小』の条件を満たす軌跡L2とを表示している(図中の破線を参照)。また、搬送経路Rt1・Rt2ごとに、経路の情報として、搬送開始位置Paから目標位置Pbまでの荷物Wの搬送に掛かる時間、最大揚程、最大騒音、最大接地圧及び最大負荷率の各値が表示される。 Here, the display unit 20 displays the transport routes Rt1 and Rt2 that satisfy the conditions of “the shortest time” and “the shortest lift + the shortest time” (see the alternate long and short dash line in the figure). The display unit 20 displays a locus L1 that satisfies the condition “shortest time” and a locus L2 that satisfies the condition “minimum lift + minimum distance” (see the broken line in the figure). Further, for each of the transport routes Rt1 and Rt2, as the route information, the time required for transporting the load W from the transport start position Pa to the target position Pb, the maximum lift, the maximum noise, the maximum ground pressure, and the maximum load factor are included. Is displayed.
 表示部20の画面を通してオペレータによって表示された搬送経路Rt1・Rt2のうちの何れかが選択されると、表示部20は、表示された搬送経路Rt1・Rt2のうちの何れかに沿って荷物Wを搬送するクレーン1の操作に関する情報を表示する。図示していないが、オペレータが、選択候補として、画面上の搬送経路Rt1・Rt2の何れか又はアイコンをタッチ操作する場合に、候補とされた搬送経路Rtが反転して表示される等、選択候補の搬送経路Rtが他の搬送経路Rtとは異なる形態で表示されていてもよい。 When one of the transport routes Rt1 and Rt2 displayed by the operator through the screen of the display unit 20 is selected, the display unit 20 displays the baggage W along any of the displayed transport routes Rt1 and Rt2. The information regarding operation of the crane 1 which conveys is displayed. Although not shown, when the operator touches one of the transport routes Rt1 and Rt2 on the screen or an icon as a selection candidate, the candidate transport route Rt is displayed in reverse video, etc. The candidate transport route Rt may be displayed in a different form from the other transport routes Rt.
 図9に示すように、表示部20は、選択された搬送経路Rt1に沿って荷物Wを搬送するクレーン1の操作に関する情報を表示する。表示部20は、3Dデータと搬送経路Rtとを表示する画面から別の画面に切り替えてクレーン1の操作に関する情報を表示する。 As shown in FIG. 9, the display unit 20 displays information related to the operation of the crane 1 that transports the load W along the selected transport route Rt1. The display unit 20 displays information related to the operation of the crane 1 by switching from the screen displaying the 3D data and the transport route Rt to another screen.
 クレーン1は、搬送経路Rt1の算出時に、搬送経路Rt1に沿って荷物Wを搬送するためにクレーン1の操作が区分けされた区間P1・P2・P3・P4を予め設定している。クレーン1は、更に、各区間P1・P2・P3・P4において必要な操作を設定し、且つ、その操作量を算出している。 The crane 1 presets the sections P1, P2, P3, and P4 in which the operation of the crane 1 is divided in order to transport the cargo W along the transport path Rt1 when calculating the transport path Rt1. The crane 1 further sets necessary operations in each section P1, P2, P3, and P4 and calculates the operation amount.
 画面上には、各区間P1・P2・P3・P4を示すアイコンが、作業現場の画像とは別に表示されている。ここでは、オペレータによる操作によって、区間P2のアイコンが選択され、区間P2のクレーン1の操作に関する情報が表示されている。区間P2のクレーン装置6の旋回角度(右回り)の変化量、伸縮ブーム8の長さの変化量及び傾倒角度(上方起立)の変化量が表示されている。 On the screen, icons indicating the sections P1, P2, P3, and P4 are displayed separately from the image of the work site. Here, the icon of the section P2 is selected by the operation by the operator, and information regarding the operation of the crane 1 in the section P2 is displayed. The change amount of the turning angle (clockwise) of the crane device 6 in the section P2, the change amount of the length of the telescopic boom 8, and the change amount of the tilt angle (upward standing) are displayed.
 オペレータが実際にクレーン1を操縦して荷物Wを搬送する場合には、各区間P1・P2・P3を伸縮ブーム8の先端部が通過した時点から表示が切り替わる。例えば、区間P3を伸縮ブーム8の先端部が通過したときには、区間P4が画面上で選択された場合と同様に、区間P4のクレーン装置6の旋回角度(右回り)の変化量、伸縮ブーム8の長さの変化量及び傾倒角度(下方倒伏)の変化量が表示される。 When the operator actually steers the crane 1 and transports the load W, the display is switched from the point when the tip of the telescopic boom 8 passes through each of the sections P1, P2, and P3. For example, when the tip of the telescopic boom 8 passes through the section P3, the amount of change in the turning angle (clockwise) of the crane device 6 in the section P4, the telescopic boom 8 is the same as when the section P4 is selected on the screen. The amount of change in length and the amount of change in tilt angle (downward fall) are displayed.
 このように、クレーン1によれば、オペレータに対して、クレーン1の操作に関する情報が表示される。従って、作業の状況に対応した適切な搬送経路Rtをオペレータが選択できるクレーン1を提供することができる。 Thus, according to the crane 1, information regarding the operation of the crane 1 is displayed to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
 なお、クレーン1は、自動操縦の機能を有していてもよい。上述のように、何れかの搬送経路Rtが選択される場合には、区間が設定され、各区間において必要な操作が設定され、且つ、その操作量が算出される。クレーン1は、各区間において必要な操作及びその操作量に応じて自動的に作動することによって、自動的に荷物Wを搬送できる。 Note that the crane 1 may have an autopilot function. As described above, when any one of the transport routes Rt is selected, sections are set, necessary operations are set in each section, and the operation amount is calculated. The crane 1 can automatically transport the load W by automatically operating according to a necessary operation and an operation amount in each section.
 表示部20には、表示された搬送経路Rt1・Rt2のうち、選択された搬送経路Rtに沿って荷物Wを搬送するクレーン1の動作が表示されてもよい。アイコン即ち搬送経路Rtの選択が切り替えられると、選択された搬送経路Rtに対応する軌跡を伸縮ブーム8の先端部が辿るようにクレーン装置6が旋回して伸縮ブーム8が伸縮する様子が、アニメーションで表示部20に表示される。この場合に、表示部20は、図8に示す平面図と側面図とではなく、斜視図等、視点を変えて作業現場の画像とともにクレーン1の動作を表示していてもよい。 The operation of the crane 1 that transports the cargo W along the selected transport route Rt out of the displayed transport routes Rt1 and Rt2 may be displayed on the display unit 20. When the selection of the icon, that is, the transport route Rt is switched, an animation shows that the crane device 6 turns and the telescopic boom 8 expands and contracts so that the tip of the telescopic boom 8 follows the trajectory corresponding to the selected transport route Rt. Is displayed on the display unit 20. In this case, the display unit 20 may display the operation of the crane 1 together with the image of the work site by changing the viewpoint, such as a perspective view, instead of the plan view and the side view shown in FIG.
 このように、クレーン1によれば、オペレータに対して、選択された搬送経路Rtに沿って荷物Wを搬送するクレーン1の動作が表示される。従って、作業の状況に対応した適切な搬送経路Rtをオペレータが選択できるクレーン1を提供することができる。 Thus, according to the crane 1, the operation of the crane 1 that conveys the load W along the selected conveyance route Rt is displayed to the operator. Accordingly, it is possible to provide the crane 1 in which the operator can select an appropriate transport route Rt corresponding to the work situation.
 本発明は、クレーンに利用可能である。 The present invention can be used for a crane.
 1     クレーン
 8     伸縮ブーム(ブーム)
 20    表示部
 Pa    搬送開始位置
 Pb    目標位置
 R     作業可能範囲
 Ra    搬送可能範囲
 Rb    経路候補範囲
 Rt    搬送経路
1 Crane 8 Telescopic boom (boom)
20 Display part Pa Transport start position Pb Target position R Workable range Ra Transportable range Rb Route candidate range Rt Transport route

Claims (4)

  1.  起伏自在且つ伸縮自在のブームを備えるクレーンであって、
     作業現場の三次元情報と、前記作業現場における当該クレーンの位置情報と、当該クレーンの三次元情報と、荷物の重量及び形状の情報と、前記荷物の搬送開始位置及び目標位置の情報とを取得し、
     前記荷物の重量から定まる当該クレーンの作業可能範囲を算出し、
     前記位置情報が示す位置に配置された当該クレーンについて、前記搬送開始位置にある前記荷物を吊り上げるための前記ブームの先端部の位置と前記目標位置にある前記荷物を吊り下げるための前記ブームの先端部の位置とが前記作業可能範囲内か否かを判定し、
     前記作業可能範囲の情報と前記荷物の形状の情報と前記クレーンの三次元情報と前記作業現場の三次元情報とを用いて、構造物への前記荷物及び前記ブームの接触を回避できる搬送可能範囲を算出し、更に、
     前記搬送開始位置から前記目標位置までの前記荷物の搬送経路に関するパラメータ及び搬送作業に関する当該クレーンのパラメータのうち任意のパラメータを最適化する条件を満たす搬送経路を前記搬送可能範囲の中から算出する、ことを特徴とするクレーン。
    A crane with a hoisting and telescopic boom,
    Obtain 3D information of the work site, position information of the crane at the work site, 3D information of the crane, weight and shape information of the load, and information on the start position and target position of the load And
    Calculate the workable range of the crane determined from the weight of the load,
    For the crane arranged at the position indicated by the position information, the position of the tip of the boom for lifting the load at the transfer start position and the tip of the boom for hanging the load at the target position Determine whether the position of the part is within the workable range,
    Using the information on the workable range, the information on the shape of the load, the three-dimensional information on the crane, and the three-dimensional information on the work site, it is possible to avoid the contact between the load and the boom on the structure. Is calculated, and
    Calculating from the transportable range a transport path that satisfies a condition for optimizing an arbitrary parameter among the parameters regarding the transport path of the cargo from the transport start position to the target position and the parameters of the crane regarding the transport work; A crane characterized by that.
  2.  前記荷物の搬送経路に関するパラメータ及び前記クレーンのパラメータのうち任意の一のパラメータを最適化する条件を満たす経路候補範囲を、前記搬送可能範囲の中から算出し、
     前記経路候補範囲から前記荷物の搬送経路に関するパラメータ及び前記クレーンのパラメータのうち任意の他のパラメータを最適化する条件を満たす前記搬送経路を算出する、ことを特徴とする請求項1に記載のクレーン。
    A route candidate range that satisfies a condition for optimizing any one of the parameters related to the cargo transport route and the crane parameters is calculated from the transportable range,
    2. The crane according to claim 1, wherein the transport route satisfying a condition for optimizing any other parameter among the parameter related to the load transport route and the parameter of the crane is calculated from the route candidate range. .
  3.  前記作業現場の三次元情報を示す前記作業現場の画像を表示するとともに、選択された前記条件ごとに異なる前記搬送経路を前記画像上に表示し、表示された前記搬送経路のうち選択された前記搬送経路に沿って前記荷物を搬送する当該クレーンの操作に関する情報を表示する、ことを特徴とする請求項1又は請求項2に記載のクレーン。 While displaying the image of the work site showing the three-dimensional information of the work site, displaying the transport path that is different for each of the selected conditions on the image, the selected one of the displayed transport paths The crane according to claim 1 or 2, wherein information related to an operation of the crane that conveys the load along a conveyance path is displayed.
  4.  表示された前記搬送経路のうち選択された前記搬送経路に沿って前記荷物を搬送する当該クレーンの動作を表示する、ことを特徴とする請求項3に記載のクレーン。 The crane according to claim 3, wherein an operation of the crane that transports the cargo along the selected transport path among the displayed transport paths is displayed.
PCT/JP2017/044233 2016-12-09 2017-12-08 Crane WO2018105740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-239911 2016-12-09
JP2016239911A JP6772803B2 (en) 2016-12-09 2016-12-09 crane

Publications (1)

Publication Number Publication Date
WO2018105740A1 true WO2018105740A1 (en) 2018-06-14

Family

ID=62491979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044233 WO2018105740A1 (en) 2016-12-09 2017-12-08 Crane

Country Status (2)

Country Link
JP (1) JP6772803B2 (en)
WO (1) WO2018105740A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218198A (en) * 2018-06-21 2019-12-26 鹿島建設株式会社 Operation support system
WO2020166455A1 (en) * 2019-02-14 2020-08-20 株式会社タダノ Crane and path generation system
JP2020152529A (en) * 2019-03-20 2020-09-24 株式会社タダノ crane
JP2020152532A (en) * 2019-03-20 2020-09-24 株式会社タダノ crane
JP2020158278A (en) * 2019-03-27 2020-10-01 株式会社タダノ Method for controlling crane and crane
WO2020196809A1 (en) * 2019-03-27 2020-10-01 株式会社タダノ Crane control method and crane
CN111891922A (en) * 2020-07-17 2020-11-06 徐州重型机械有限公司 Crane operation real-time navigation system and method
WO2020235679A1 (en) * 2019-05-22 2020-11-26 株式会社タダノ Remote operation terminal and mobile crane provided with remote operation terminal
WO2021157646A1 (en) * 2020-02-05 2021-08-12 株式会社タダノ Performance information server, work machine display operation application, movement path information providing method, movement path information acquisition method, and movement path information acquisition system
JPWO2021157645A1 (en) * 2020-02-05 2021-08-12
CN113382948A (en) * 2019-02-14 2021-09-10 株式会社多田野 Crane and route generation system for crane
EP3988493A4 (en) * 2019-06-20 2023-08-09 Tadano Ltd. Movable range display system and crane equipped with movable range display system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167759B2 (en) * 2019-02-14 2022-11-09 株式会社タダノ Crane and crane path generation system
JP7223227B2 (en) * 2019-02-14 2023-02-16 株式会社タダノ Crane and path generation system
JP7159899B2 (en) * 2019-02-14 2022-10-25 株式会社タダノ Crane and crane path generation system
JP7310164B2 (en) * 2019-02-14 2023-07-19 株式会社タダノ Crane and path generation system
JP7247634B2 (en) * 2019-02-14 2023-03-29 株式会社タダノ Crane and crane path generation system
JP7243260B2 (en) * 2019-02-14 2023-03-22 株式会社タダノ Crane and crane path generation system
JP6737369B1 (en) * 2019-03-20 2020-08-05 株式会社タダノ crane
JP7264839B2 (en) * 2020-02-03 2023-04-25 株式会社日立製作所 Installation control device and installation control method
JP7447561B2 (en) 2020-03-09 2024-03-12 株式会社タダノ Crane and transportation destination presentation method
CN115803279A (en) * 2020-06-22 2023-03-14 杰富意钢铁株式会社 Loading and unloading crane, anti-swing method for loading and unloading crane, and loading and unloading transport method
MX2023006122A (en) * 2020-11-30 2023-06-02 Jfe Steel Corp Method for generating cargo handling transport path, cargo handling transport crane, and cargo handling transport method.
WO2023100889A1 (en) * 2021-11-30 2023-06-08 株式会社タダノ Maneuvering assistance system and work vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239050A (en) * 2003-01-17 2004-08-26 Kajima Corp Crane plan method for erection and program
JP2006525928A (en) * 2003-05-30 2006-11-16 リープヘル−ヴェルク ネンツィング ゲーエムベーハー Crane or excavator with optimal movement guidance for handling rope-loaded luggage
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2013145497A (en) * 2012-01-16 2013-07-25 Hitachi Ltd Carry-in route planning system
JP2014031223A (en) * 2012-08-01 2014-02-20 Tadano Ltd Work range figure, and device for displaying the same
JP2014069933A (en) * 2012-09-28 2014-04-21 Ns Solutions Corp Information processor, information processing method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239050A (en) * 2003-01-17 2004-08-26 Kajima Corp Crane plan method for erection and program
JP2006525928A (en) * 2003-05-30 2006-11-16 リープヘル−ヴェルク ネンツィング ゲーエムベーハー Crane or excavator with optimal movement guidance for handling rope-loaded luggage
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2013145497A (en) * 2012-01-16 2013-07-25 Hitachi Ltd Carry-in route planning system
JP2014031223A (en) * 2012-08-01 2014-02-20 Tadano Ltd Work range figure, and device for displaying the same
JP2014069933A (en) * 2012-09-28 2014-04-21 Ns Solutions Corp Information processor, information processing method and program

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064977B2 (en) 2018-06-21 2022-05-11 鹿島建設株式会社 Operation support system
JP2019218198A (en) * 2018-06-21 2019-12-26 鹿島建設株式会社 Operation support system
CN113382948A (en) * 2019-02-14 2021-09-10 株式会社多田野 Crane and route generation system for crane
WO2020166455A1 (en) * 2019-02-14 2020-08-20 株式会社タダノ Crane and path generation system
CN113382948B (en) * 2019-02-14 2023-03-31 株式会社多田野 Crane and route generation system for crane
JP7173176B2 (en) 2019-02-14 2022-11-16 株式会社タダノ Crane and path generation system
JPWO2020166455A1 (en) * 2019-02-14 2021-11-18 株式会社タダノ Crane and route generation system
JP2020152529A (en) * 2019-03-20 2020-09-24 株式会社タダノ crane
JP2020152532A (en) * 2019-03-20 2020-09-24 株式会社タダノ crane
JP2020158279A (en) * 2019-03-27 2020-10-01 株式会社タダノ Control method of crane and crane
WO2020196809A1 (en) * 2019-03-27 2020-10-01 株式会社タダノ Crane control method and crane
CN113574006B (en) * 2019-03-27 2024-04-09 株式会社多田野 Crane control device and crane
JP7293795B2 (en) 2019-03-27 2023-06-20 株式会社タダノ Crane control method and crane
JP2020158278A (en) * 2019-03-27 2020-10-01 株式会社タダノ Method for controlling crane and crane
JP7247703B2 (en) 2019-03-27 2023-03-29 株式会社タダノ Crane control method and crane
CN113574006A (en) * 2019-03-27 2021-10-29 株式会社多田野 Crane control method and crane
WO2020196808A1 (en) * 2019-03-27 2020-10-01 株式会社タダノ Crane control method, and crane
WO2020235679A1 (en) * 2019-05-22 2020-11-26 株式会社タダノ Remote operation terminal and mobile crane provided with remote operation terminal
JP7380685B2 (en) 2019-05-22 2023-11-15 株式会社タダノ Mobile crane with remote control terminal and remote control terminal
EP3988493A4 (en) * 2019-06-20 2023-08-09 Tadano Ltd. Movable range display system and crane equipped with movable range display system
US11905146B2 (en) 2019-06-20 2024-02-20 Tadano Ltd. Movable range display system and crane equipped with movable range display system
JP7124836B2 (en) 2020-02-05 2022-08-24 株式会社タダノ Performance information server, work machine display operation application, moving route information providing method, moving route information acquiring method, and moving route information acquiring system
JP7156561B2 (en) 2020-02-05 2022-10-19 株式会社タダノ Performance information server, work machine display operation application, model information providing method, model information acquisition method, and model information acquisition system
WO2021157646A1 (en) * 2020-02-05 2021-08-12 株式会社タダノ Performance information server, work machine display operation application, movement path information providing method, movement path information acquisition method, and movement path information acquisition system
JP2021124986A (en) * 2020-02-05 2021-08-30 株式会社タダノ Performance information server, work-machine display operation application, method for providing travel path information, method for acquiring travel path information, and travel path information acquiring system
WO2021157645A1 (en) * 2020-02-05 2021-08-12 株式会社タダノ Performance information server, work machine display operation application, machine type information provision method, machine type information acquisition method, and machine type information acquisition system
JPWO2021157645A1 (en) * 2020-02-05 2021-08-12
CN111891922A (en) * 2020-07-17 2020-11-06 徐州重型机械有限公司 Crane operation real-time navigation system and method

Also Published As

Publication number Publication date
JP2018095369A (en) 2018-06-21
JP6772803B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2018105740A1 (en) Crane
JP6161776B1 (en) Crane work auxiliary device
JP6776861B2 (en) Co-suspension control system for mobile cranes
JP7416063B2 (en) Mobile crane with remote control terminal and remote control terminal
EP3763658A1 (en) Remote control terminal, and working vehicle provided with remote control terminal
JP2019156527A (en) Remote control terminal and mobile crane comprising remote control terminal
WO2019172417A1 (en) Remote control terminal and work vehicle
JP7172199B2 (en) Remote control terminal and work vehicle
US20220106168A1 (en) Crane, and path generation system for crane
JP6809186B2 (en) crane
JP6919548B2 (en) Work vehicle equipped with a remote control terminal and a remote control terminal
WO2020256106A1 (en) Movable range display system and crane equipped with movable range display system
JP7380685B2 (en) Mobile crane with remote control terminal and remote control terminal
JP2018090372A (en) Workpiece conveyance method using crane
JP7167464B2 (en) Remote control terminal and work vehicle equipped with remote control terminal
US20220317684A1 (en) Display device and route display program
US20220041410A1 (en) Crane, crane body, and mobile unit
JP7379990B2 (en) An information display system, an aerial work vehicle equipped with the information display system, and a mobile crane equipped with the information display system.
WO2020166455A1 (en) Crane and path generation system
JP7067123B2 (en) Hook position controller
JP2022002993A (en) Mobile crane
JP2022015237A (en) Work machine interference determination device, work machine interference determination system, and work machine interference determination method
JP2021038086A (en) Mobile crane and remote terminal device
JP2018197161A (en) crane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878031

Country of ref document: EP

Kind code of ref document: A1