WO2018105493A1 - Radiographic image capturing device, radiographic image capturing system, radiographic image capturing method, and program - Google Patents
Radiographic image capturing device, radiographic image capturing system, radiographic image capturing method, and program Download PDFInfo
- Publication number
- WO2018105493A1 WO2018105493A1 PCT/JP2017/043116 JP2017043116W WO2018105493A1 WO 2018105493 A1 WO2018105493 A1 WO 2018105493A1 JP 2017043116 W JP2017043116 W JP 2017043116W WO 2018105493 A1 WO2018105493 A1 WO 2018105493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- pixel
- prior probability
- average
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 38
- 230000005855 radiation Effects 0.000 claims abstract description 218
- 238000009826 distribution Methods 0.000 claims description 92
- 238000003384 imaging method Methods 0.000 claims description 63
- 238000004364 calculation method Methods 0.000 claims description 38
- 239000002872 contrast media Substances 0.000 claims description 37
- 238000000605 extraction Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 238000002601 radiography Methods 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 description 23
- 238000003860 storage Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 210000000988 bone and bone Anatomy 0.000 description 7
- 210000000038 chest Anatomy 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000002583 angiography Methods 0.000 description 3
- 230000037237 body shape Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003702 image correction Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000009607 mammography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000001370 mediastinum Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012889 quartic function Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002945 steepest descent method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
Definitions
- the present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
- Patent Document 1 instead of individually measuring photons, the average energy and average of incident radiation are calculated from the average value and noise of a plurality of pixel values (values representing the amount of incident light output from the pixels of the radiation imaging apparatus). A method for estimating the number of photons has been proposed.
- Patent Document 1 has a problem that the number of pixels necessary for estimating the energy or the average number of photons with high accuracy becomes enormous.
- the radiographic apparatus is a radiographic apparatus that captures a radiographic image with radiation, and includes a determination unit that determines a prior probability based on a predetermined condition, and obtains a pixel value measured from the radiographic image. And means for calculating at least one of the average energy and the average number of photons of the radiation based on the prior probability and the pixel value.
- the present invention can calculate the average energy or the average number of photons with high accuracy with fewer pixels than the prior art.
- the figure which shows the method of determining the spatial distribution of the coefficient of a regularization term The figure which shows the method of determining the spatial distribution of the coefficient of a regularization term.
- FIG. 1 is a diagram showing an example of the configuration of a radiation imaging system according to the present invention.
- a radiation imaging system (or a radiation imaging apparatus) captures a radiation image with radiation.
- a radiation tube (radiation generator) 101 generates radiation. Radiation irradiated from the radiation tube 101 passes through the subject 102 and enters an FPD (Flat Panel Detector) 103 that is a radiation detection unit.
- the radiation tube 101 may be provided with a radiation filter for shielding low-energy radiation.
- the FPD 103 includes a phosphor that converts radiation into visible light, and an image sensor that converts visible light into electric charge and voltage (a plurality of image sensors are provided, and one image sensor corresponds to one pixel). With.
- the FPD 103 also includes an image generation unit that converts the converted voltage into a digital radiographic image, and an image correction unit that performs offset correction, gain correction, and defect correction on the radiographic image.
- a method of directly converting radiation using cadmium telluride (CdTe) or amorphous selenium (a-Se) into a voltage can be applied.
- the radiation conditions (irradiation conditions) to be irradiated are set by the operation panel 104.
- the operation panel 104 includes a condition specifying unit 105, an imaging region specifying unit 106, and a condition display unit 107.
- the condition designation unit 105 can designate irradiation conditions such as a tube voltage, a tube current, and an irradiation time with a button or the like.
- the imaging region designating unit 106 specifies the imaging region, it is possible to set the radiation irradiation condition corresponding to the imaging region.
- the irradiation instruction unit 108 includes a foot pedal, and the radiation tube 101 can emit radiation when the operator depresses the foot pedal.
- the radiation image output from the FPD 103 is transferred to the computer 109.
- the computer 109 includes an image acquisition unit 110, a prior information acquisition unit (determination unit) 111, an energy calculation unit 112, a prior information storage unit 113, an input device 114, and a display device 115.
- the image correction unit included in the FPD 103 may be included in the computer 109.
- the irradiation conditions of radiation are stored in advance in the computer 109 instead of the operation panel 104.
- the image acquisition unit 110 has a function of capturing the radiation image generated by the FPD 103 into the computer 109.
- the image acquisition unit (acquisition unit) 110 acquires a radiographic image from the FPD 103 and acquires a pixel value measured from the radiographic image.
- the prior information acquisition unit 111 acquires prior information from the radiation tube 101, the FPD 103, the operation panel 104, the prior information storage unit 113, the input device 114, the C arm 118, and the gantry 119, and determines a prior probability described later.
- the prior information acquisition unit (determination unit) 111 includes radiation generation information related to a radiation tube (radiation generation unit) 101 that generates radiation, radiation detection information related to an FPD (radiation detection unit) 103 that detects radiation, and a subject 102 to be photographed.
- Subject information relating to the subject imaging part information relating to the imaging part of the subject 102 to be photographed, contrast agent information relating to a contrast agent injected into the subject 102, support relating to the C-arm (support unit) 118 that supports the radiation imaging apparatus or the radiation tube 101
- a prior probability described later is determined.
- the prior information acquisition unit (determination unit) 111 uses a radiographic image captured before a predetermined time among a plurality of captured radiographic images, to generate radiation generation information, radiation detection information, subject information, imaging region information, And at least one of the contrast agent information may be acquired.
- Prior information acquired by the prior information acquisition unit 111 includes radiation generation information, radiation detection information, subject information, imaging region information, contrast agent information, support information, and gantry information, as well as a probability relating to the number of radiation (number of photons). There is probability distribution information of the distribution.
- the probability distribution information includes functions of Poisson distribution and normal distribution, functions derived from these functions (functions represented by expressions (15), (16), (23), and (24) described later, and Poisson distribution and normal distribution parameters).
- the radiation generation information includes at least one tube information of tube voltage of the radiation tube 101, tube current of the radiation tube 101, radiation irradiation time of the radiation tube 101, presence / absence of a radiation filter, and characteristics of the radiation filter. It is.
- the radiation generation information includes the radiation spectrum of the radiation tube 101.
- the radiation detection information regarding the FPD 103 includes an accumulation time and the like.
- the imaging part information includes information for identifying the chest and head.
- the subject information includes the identification number, name, sex, age, height, weight, and the like of the subject 102 input by the input device 114.
- the contrast agent information includes the type and concentration of the contrast agent, the site where the contrast agent is injected, and the like.
- the support information regarding the C arm 118 includes the material, position, angle, and the like of the C arm 118.
- the gantry information regarding the gantry 119 includes the position of the gantry 119 and the like.
- the prior information acquired by the prior information acquisition unit 111 is used for energy or photon number calculation, so that the average energy or average can be obtained with a smaller number of shots than the prior art (for example, the invention described in Patent Document 1). It becomes possible to calculate the number of photons with high accuracy.
- the energy calculation unit 112 is based on the probability distribution regarding the number of radiations (number of photons) acquired by the prior information acquisition unit 111, the prior probability calculated by the prior information acquisition unit 111, and the radiation image acquired by the image acquisition unit 110. Calculate and output average energy or average number of photons.
- the energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons by the Bayes' theorem described later based on the probability distribution, the prior probability, and the pixel value.
- the probability distribution of this embodiment is a probability distribution related to the number of photons of radiation.
- the image acquisition unit 110, the advance information acquisition unit 111, the energy calculation unit 112, and the advance information storage unit 113 are a central processing unit of a computer, a main storage device, a storage device such as a hard disk, a graphic processing for high-speed calculation, It can be configured by general hardware such as a unit and a LAN (Local Area Network) adapter.
- the function of each component is implemented as software. Further, a circuit that executes the function of each component may be electrically mounted.
- the input device 114 is, for example, a keyboard, a mouse, a touch panel, or the like.
- the operator can use the input device 114 to input imaging part information and subject information.
- the imaging part information and the subject information may be input through a LAN adapter mounted on the computer 109 in addition to the input by the input device 114.
- the imaging part information and subject information are acquired as prior information by the prior information acquisition unit 111 and used to determine the prior probability.
- the display device 115 is used to display a radiation image.
- the display device 115 includes a color display, it is possible to express information on average energy by color (color or gradation), and improvement in diagnostic performance of radiographic images is expected.
- Some of the functions of the operation panel 104 may be provided in the input device 114 and the display device (output device) 115.
- the input of the radiation irradiation condition performed through the condition designating unit 105 or the imaging region designating unit 106 may be performed by the input device 114.
- radiation conditions such as tube voltage, tube current, and irradiation time may be displayed on the display device 115 instead of the condition display unit 107.
- the radiation tube 101, the FPD 103, the operation panel 104, the irradiation instruction unit 108, and the computer 109 are connected to the synchronization device 116.
- the synchronization device 116 determines whether or not radiation exposure is possible from the state of the FPD 103, the pressing state of the irradiation instruction unit 108, and the processing state of the computer 109.
- the radiographic system of the present embodiment includes a contrast medium injection device 117 for performing angiography.
- the contrast medium injection device 117 injects a blood vessel contrast medium such as iodine into the subject 102 based on an instruction from the operator.
- the contrast medium injection device 117 transmits contrast medium information as prior information to the prior information acquisition unit 111.
- the contrast agent information includes the type and concentration of the contrast agent.
- FIG. 2 is a flowchart showing an example of the operation of the radiation imaging system of the present embodiment.
- the operator inputs radiation irradiation conditions.
- the radiation irradiation condition is input through, for example, the condition specifying unit 105 or the imaging region specifying unit 106.
- subject information such as the identification number of the subject 102 is input through the input device 114 together with the irradiation condition.
- step 202 the operator instructs radiation irradiation through the irradiation instruction unit.
- step 203 the synchronization device 116 determines whether or not radiation exposure is possible from the state of the radiation tube 101, the FPD 103, the operation panel 104, the irradiation instruction unit 108, and the computer 109. If it is determined that exposure is not possible, a warning is output to the display device 115 in step 204.
- the prior information acquisition unit 111 determines a probability distribution (for example, a probability distribution related to the number of radiations) and a prior probability necessary for calculating the average energy based on the prior information.
- the prior information is acquired from the radiation tube 101, the FPD 103, the operation panel 104, the prior information storage unit 113, the input device 114, the C arm 118, and the gantry 119.
- the prior information acquisition unit (determination unit) 111 determines a probability distribution and a priori probability of Bayes' theorem described later.
- the prior information acquisition unit 111 determines the number of pixel values necessary for estimating the energy or the average number of photons.
- the number of radiographic images corresponding to is determined. Data in which the imaging region and the number of images are associated with each other is stored in advance in the pre-information storage unit 113.
- the prior information acquisition unit 111 notifies the synchronization device 116 that radiation irradiation is possible, and the synchronization device 116 sends a radiation irradiation instruction signal to the radiation tube 101 and the FPD 103.
- radiation (irradiation) acquisition is started by irradiating the FPD 103 with radiation.
- step 207 the radiographic image capturing is terminated.
- step 208 the average energy is calculated from the probability distribution and prior probabilities regarding the number of radiations obtained in step 205 and the pixel value obtained in step 206.
- the energy calculation unit 112 calculates average energy. A method for calculating the average energy will be described later.
- step 209 the information on the average energy calculated in step 208 is displayed and stored.
- the information about the average energy can be displayed in color by the display device 115 by associating the obtained average energy with the color.
- Equation (1) the relationship between the average pixel value m of the pixel values acquired in step 206, the average number of photons n incident on the pixel, and the proportionality coefficient k (E) that is a function of the average energy E is expressed by equation (1). It is represented by
- K (E) is a pixel value per photon and is a function of energy E. Since the pixel value (light emission amount) per photon can be obtained as a function of the energy E, if k (E) can be calculated from the pixel value, the average energy E is calculated.
- k (E) is expressed by a linear expression of average energy E.
- k (E) E. That is, if the average pixel value m can be divided into the average photon number n and the proportional coefficient k (E), the average energy E can be calculated.
- K is a normalization constant.
- p 1 is the average pixel value m
- p 2 is the reciprocal 1 / k (E) of the proportional coefficient k (E).
- p 1 is the average pixel value m
- p 2 is the pixel value variance ⁇ 2 (or standard deviation).
- the first parameter p is at least one of a temporal average average pixel value at a predetermined pixel of the radiographic image and a spatial average average pixel value of a plurality of pixels of the radiographic image.
- the second parameter is at least one of a function having the average energy E as a variable, a variance ⁇ 2 of the pixel values of the radiographic image, and a standard deviation of the pixel values of the radiographic image.
- p, q) and the prior probability h (p, q) are calculated, the probability f (p, q
- FIG. 3 is a diagram showing the effect of this embodiment.
- the prior probability h (p, q) is determined by the equation (27).
- the horizontal axis represents the number of radiographic images (that is, the number of measurements), and the vertical axis represents the pixel value k (E) per photon corresponding to the average energy E.
- this embodiment calculates a value that approximates the true value of the average energy E with a smaller number of radiation images (number of measurements) than the prior art. can do.
- p, q) a probability distribution relating to the number of radiations (photon number) can be used in consideration of physical phenomena relating to generation and absorption of radiation.
- the prior probability h (p, q) can be calculated from information (that is, prior information) acquired separately from the measurement of the pixel value x.
- Formula (2) is described as a product of functions, but in order to facilitate calculation, Formula (3) describing Formula (2) in logarithm is used hereinafter.
- Equation (3) searching for a local maximum value according to the local maximum condition of Equation (6) based on the stationary point (p, q) that becomes Equation (4) and the Hessian matrix of Equation (5),
- a method such as a steepest descent method may be used.
- the energy calculation unit (calculation unit) 112 calculates the probability f of the event that the first parameter p 1 and the second parameter p 2 become the first value and the second value, respectively, when the pixel value x i is measured.
- the parameter solution is calculated so that (p, q
- the energy calculation unit (calculation unit) 112 has a probability distribution g (m i
- FIG. 4 is a flowchart for calculating solutions of the first parameter and the second parameter.
- the prior information acquisition unit 111 determines the prior probability log e h (p, q) from the prior information. A method for determining the prior probability log e h (p, q) will be described later.
- step 304 as described above, the parameters p and q that maximize the probability log ef (p, q
- step 305 the average pixel value m and 1 / k (E) or the variance ⁇ 2 of pixel values (or standard deviation) are determined from the parameters p and q determined in step 304.
- the energy calculation unit (calculation unit) 112 determines the average photon number n and the proportional coefficient k (E), and calculates the average energy E from the relational expression of the proportional coefficient k (E) and the average energy E.
- the probability distribution is at least one of a Poisson distribution and a normal distribution.
- mi is the pixel value of a certain pixel in the i-th frame.
- Equation 10 Substituting Equation (8) and Equation (9) into Equation (7) yields Equation (10).
- Equation (10) is a function of the pixel values m i, and the average pixel value m, the reciprocal 1 / k of the proportional coefficient k (E) and (E). Therefore, the parameters p 1 and p 2 are the average pixel value m and the reciprocal 1 / k (E) of the proportionality coefficient, respectively, and the probability g (m i
- the first parameter is an average pixel value m that is a time average of predetermined pixels of the radiation image.
- the second parameter is a function 1 / k (E) having the average energy E as a variable.
- the calculation proceeds with the second parameter as the reciprocal 1 / k (E) of k (E), but the calculation is performed with the second parameter as the proportional coefficient k (E) instead of the reciprocal 1 / k (E).
- a similar result can be obtained by proceeding.
- Equation (12) Since Equation (12), factorial ⁇ m i / k (E) ⁇ ! Is represented by a ⁇ function, Equation (12) becomes Equation (14).
- ⁇ (x) ⁇ log e ⁇ (x) / ⁇ x is a digamma function.
- the Newton method is used, and the average pixel value m as a solution and the reciprocal 1 / k (E) of the proportional coefficient can be obtained.
- the average photon number n is calculated by substituting the average pixel value m obtained by the equations (15) and (16) and the inverse of the proportionality coefficient 1 / k (E) into the equation (1).
- the energy calculation unit (calculation unit) 112 determines that the event probability f (p, q
- the solution of the first parameter m and the second parameter 1 / k (E) is calculated as follows.
- Expression (17) becomes Expression (18). Further, considering the probability normalization condition, Equation (18) becomes Equation (19).
- the parameters p 1 and p 2 are the average pixel value m and the variance ⁇ 2 of the pixel values, respectively, and the probability g (m i
- the first parameter is an average pixel value m that is a time average of predetermined pixels of the radiation image.
- the second parameter is the variance ⁇ 2 of the pixel values of the radiation image.
- the proportional coefficient k (E) can be calculated, and the average photon number n can be calculated by Equation (7).
- Equations (23) and (24) can determine the average pixel value m, which is the solution, and the variance ⁇ 2 of pixel values, for example, by using the Newton method.
- the energy calculation unit (calculation unit) 112 determines that the event probability f (p, q
- the solution of the first parameter m and the second parameter ⁇ 2 is calculated as follows.
- the prior probability h (p, q) is expressed in the form of a natural logarithm, for example, log e h (p, q) in equation (3). Therefore, the prior probability h (p, q) is represented by a canonical distribution as shown in Equation (25).
- ⁇ is a coefficient.
- Z ( ⁇ ) is a normalization constant.
- e is a natural logarithm.
- E (p, q) is a function of parameters p and q.
- the function E (p, q) is a function having at least one extreme value.
- E (p, q) By giving an extreme value to E (p, q), it is possible to make an assumption that the probability increases when the parameters p and q are predetermined values, and the number of pixel values is less than a predetermined threshold value. Even in this case, it is possible to converge to p or q with high accuracy.
- E (p, q) may be expressed by a function of quadratic or higher (in the example described later, as shown in equation (29), E (p, q) is Expressed by a quartic function).
- Equation (4) becomes Equation (23) and Equation (24)
- Equation (p, q) is expressed by a simple algebraic equation, Equation ( By substituting Equation (25) into Equation (23) and Equation (24) for transformation, an equation representing the solution may be obtained. In that case, the solution can be calculated without using the Newton method.
- L pixel values are acquired by one pixel by acquiring L radiation images.
- the pixel values necessary for the calculation of the above parameters are set to a plurality of pixels. Can also be obtained.
- the number of acquired radiological images is L / 4.
- the number of radiographic images taken can be made smaller than L, and high-precision p or q can be calculated while shortening the radiographing time.
- FIG. 5 is a diagram illustrating an example of a method for determining the prior probability h (p, q).
- step 401 tube information is acquired.
- the prior information acquisition unit 111 acquires the tube information from the operation panel 104 or the like.
- the prior information acquisition unit 111 calculates the minimum energy (or minimum average energy) of radiation and the minimum proportional coefficient kmin . As the radiation passes through the object, the low energy photons of the radiation tend to be selectively absorbed by the object, so the average energy of the radiation after passing through the object is increased compared to before passing through the object.
- the corresponding radiation spectrum is obtained from the set tube voltage of the radiation tube 101 and the presence or absence of the radiation filter, and the average energy of the radiation when not passing through the object such as the subject 102 is calculated. Then, find the minimum energy of radiation.
- the energy calculation unit 112 calculates a corresponding proportionality coefficient kmin based on the calculated minimum energy of radiation, and the prior information acquisition unit 111 acquires the calculated proportionality coefficient kmin as prior information.
- the radiation spectrum can be obtained by using a known model such as a TASMIP (Tungsten Anode Spectral Modeling Interpolating Polynomials) model.
- TASMIP Tungsten Anode Spectral Modeling Interpolating Polynomials
- the result of evaluating the characteristics of the radiation tube 101 in advance using a spectrometer may be stored in the prior information storage unit 113.
- the minimum energy of radiation may be determined from the stored radiation spectrum.
- the prior information storage unit 113 stores information on the mass attenuation coefficient of the filter as prior information, and after passing through the filter based on the stored information on the mass attenuation coefficient.
- the radiation spectrum may be determined.
- the method described in Patent Document 1 can also be used.
- the method described in Patent Document 1 it is only necessary to obtain a radiographic image with the filter inserted and obtain the average energy.
- the maximum energy (or maximum average energy) of radiation and the maximum proportionality coefficient k max are obtained.
- the maximum value of photon (radiation photon) energy is determined by the set tube voltage. For example, when the set tube voltage is 100 kilovolts, the maximum energy of radiation photons may be considered as 100 kilovolts. Therefore, the prior information acquisition unit 111 calculates the maximum energy of photons from the set tube voltage of the radiation tube 101, and calculates the corresponding proportional coefficient k max from the calculated maximum energy.
- step 404 prior probabilities log (p, q) are obtained from the proportional coefficients k min and k max calculated in steps 402 and 403.
- the calculation of the prior probability h (p, q) is performed by the prior information acquisition unit (determination unit) 111.
- the probability distribution of the number of photons is a Poisson distribution
- the prior probability h (p, q) is expressed by Equation (26).
- FIG. 6 is a diagram illustrating a distribution of prior probabilities h (p, q) when the number of photons is a normal distribution as shown in Expression (27).
- FIG. 6A is a diagram illustrating an inner region and an outer region where the horizontal axis is the average pixel value m and the vertical axis is the variance ⁇ 2 .
- FIG. 6B is a diagram illustrating the relationship between the variance ⁇ 2 and the prior probability h (m, ⁇ 2 ) when the average pixel value m is a.
- the prior probability h (m, ⁇ 2 ) becomes maximum between the second parameters (inner regions) corresponding to the minimum energy and the maximum energy of radiation.
- the prior probability h (m, ⁇ 2 ) is 0 in a range (outer region) other than between the second parameters corresponding to the minimum energy and the maximum energy of radiation.
- the prior probability h (m, ⁇ 2 ) may be maximized between the first parameters (inner regions) corresponding to the minimum energy and the maximum energy of radiation.
- the prior probability h (m, ⁇ 2 ) may be 0 in a range (outer region) other than between the first parameters corresponding to the minimum energy and the maximum energy of radiation.
- the probability does not take the maximum value, and the obtained parameter (average pixel value m) is a parameter that always exists in the inner region.
- the prior probability h (p, q) in the outer region of the equation (26) or the equation (27) is set to A instead of 0.
- a finite number that is sufficiently smaller may be set.
- FIG. 7 is a diagram showing another example of a method for determining the prior probability h (p, q).
- the prior probability h (p, q) is calculated using information input before radiographic image capturing.
- step 601 the prior information acquisition unit 111 acquires imaging part information.
- step 602 subject information is acquired.
- the subject information is information input through the input device 114 or the like and acquired by the prior information acquisition unit 111, and includes the identification number, name, sex, age, height, weight, and the like of the subject 102.
- a prior probability is determined for each pixel.
- the anatomical feature of the subject 102 captured as a radiographic image is estimated for each pixel. For example, it is estimated whether each pixel images a bone part, a muscle part, or a lung part. Then, based on the prior probabilities determined for each pixel, the average energy in each pixel is estimated.
- the prior probability h (m, ⁇ 2 ) may be the maximum in the first parameter m corresponding to the energy of the radiation that has passed through the imaging region of the subject 102 to be imaged.
- the proportionality coefficient k bone is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the bone part.
- the proportionality coefficient k muscle is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the heart or myocardial part.
- ⁇ is a parameter.
- Z ( ⁇ ) is a normalization constant.
- e is a natural logarithm.
- E (m, ⁇ 2 ) is represented by Expression (29).
- c 1 (m), c 2 (m), c 3 (m), c 4 (m), and c 5 (m) are functions of the average pixel value m.
- subject information such as the identification number of the subject 102 may be considered.
- the amount of radiation absorbed is larger than that of the thin type, and thus the observed average energy is high. Therefore, when photographing the obese body type subject 102, the prior probability of the position of higher average energy is set to be larger than that of the thin type body subject 102.
- FIG. 9 is a diagram illustrating changes in the prior probability distribution of obesity type and lean type.
- the prior probability h (m, ⁇ 2 ) is a first parameter m corresponding to the radiation absorption amount of the subject 102 to be imaged, and may be maximized.
- BMI Body Mass Index
- the body type may be determined according to the BMI.
- the body type may be determined using the body fat percentage data.
- the body shape may be determined according to the irradiation time of radiation from the radiation tube 101.
- the irradiation time of radiation can also be controlled using an AEC (Automatic Exposure Control) device or the like.
- Equation (30) represents a formula for calculating BMI.
- the imaging region, size, and body shape of the subject 102 are determined based on information (imaging region information, subject information, etc.) input by the operation panel 104 or the input device 114.
- the imaging region, size, and body shape of the subject 102 may be determined by a method such as pattern matching based on the captured radiographic image. In that case, in consideration of processing time such as pattern matching among a plurality of captured radiographic images, a determination is made using a radiographic image captured before a predetermined time, whereby the processing of the present embodiment Time can be shortened.
- the prior information acquisition unit (determination unit) 111 acquires subject information or imaging region information using a radiographic image captured before a predetermined time among a plurality of captured radiographic images.
- a prior probability distribution may be generated by using past information associated with imaging part information and subject information as prior information.
- the prior information storage unit 113 stores energy information obtained when a radiation image has been captured in the past as prior information, so that a prior probability distribution can be generated.
- a pixel value necessary for parameter determination is acquired using a certain pixel, but a pixel value required for parameter determination may be acquired using a plurality of pixels.
- the prior probability is determined for each set of a plurality of pixels. For example, as described above, when four pixels are used to obtain L pixel values, the prior probabilities corresponding to the four pixels are determined from imaging part information, subject information, images, and the like.
- FIG. 10 is a diagram illustrating a method of determining the prior probability h (m, ⁇ 2 ) according to contrast agent information such as the type and concentration of contrast agent.
- the prior probability h (m, ⁇ 2 ) is the first parameter m corresponding to the energy of the radiation that has passed through the contrast agent injected into the object 102 to be imaged, and may be maximized.
- step 901 the prior information acquisition unit 111 acquires information on contrast medium to be injected (contrast medium type, concentration, and the like).
- contrast medium to be injected
- the contrast agent is iodine or the like
- the average energy of the radiation increases after the radiation passes through the subject 102.
- the contrast agent is carbon dioxide or the like
- the average energy of the radiation decreases after the radiation passes through the subject 102.
- step 902 the prior information acquisition unit 111 and the energy calculation unit 112 calculate an expected average energy and a proportional coefficient k (E) corresponding thereto from the contrast agent information.
- the prior probability h (m, ⁇ 2 ) at the pixel is set so that the prior probability becomes maximum at the position of the average energy obtained after the radiation passes through the contrast agent. Is done.
- Proportionality factor k CM is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the imaging moiety of the contrast agent.
- step 903 a contrast medium is injected and a radiographic image is taken. Then, the average energy and the like are calculated from the radiation image (pixel value), the probability distribution information regarding the number of radiations, and the prior probability.
- the prior information acquisition unit (determination unit) 111 may acquire contrast agent information using a radiographic image captured before a predetermined time among a plurality of radiographic images captured. For example, the position of the blood vessel may be determined in advance from the radiographic image using pattern matching, and the prior probability in the pixel of the contrast portion may be calculated using the blood vessel through which the contrast agent passes as the contrast portion.
- the prior information acquisition unit (determination unit) 111 sets the first prior probability in the first pixel of the radiation image. Then, a second prior probability different from the first prior probability is set for the second pixel of the radiation image.
- the energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons in the first pixel based on the probability distribution, the first prior probability, and the pixel value of the first pixel. calculate.
- the energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons in the second pixel based on the probability distribution, the second prior probability, and the pixel value of the second pixel. calculate.
- the prior information acquisition unit 111 can also use pixel information around the target pixel for the prior probability log (p, q) of the target pixel.
- the prior information acquisition unit 111 acquires pixel information around the pixel of interest.
- the prior information acquisition unit 111 introduces an amount related to the difference between the target pixel and surrounding pixels into the prior probability, and the larger the difference is, the smaller the value of the above-described formula (3) is.
- FIG. 11 shows the relationship between the target pixel and surrounding pixels.
- examples of prior probabilities in which pixel information around a pixel of interest is introduced include, for example, the square of the difference between parameters p and q (L2 norm) as shown in Equation (31).
- (i, j) is the coordinate of the target pixel.
- ⁇ (2) k, l , ⁇ (2) k, l are coefficients ( ⁇ (2) k, l , ⁇ (2) k, l > 0).
- p i , j is the value of the parameter p at the coordinates (i, j).
- q i , j is the value of the parameter q at the coordinates (i, j).
- (2) of ⁇ (2) k, l means that the coefficient is related to the square of the difference.
- An example of calculating the prior probability in which surrounding pixel information is introduced is, for example, a form using an absolute value of a difference (
- the coefficients ⁇ k, l , ⁇ k, l are changed according to the distance from the target pixel.
- the upper left, upper right, lower left, and lower right coefficients for the pixel of interest ( ⁇ ⁇ 1, ⁇ 1 , ⁇ 1, ⁇ 1 , ⁇ ⁇ if the coefficient ⁇ is related to the parameter p).
- 1 , 1 , ⁇ 1,1 ) are the upper, lower, right, and left coefficients ( ⁇ 0, ⁇ 1 , ⁇ 0,1 , ⁇ 0,1 if the coefficient ⁇ is related to the parameter p).
- ⁇ 0, ⁇ 1 That is, the relationship shown in Expression (36) is established.
- the coefficients ⁇ k, l , ⁇ k, l and the number of surrounding pixels to be considered can be switched depending on the photographing conditions.
- the coefficients ⁇ k, l , ⁇ k, l are defined as the intensity of the regularization term.
- the coefficients ⁇ k, l , ⁇ k, l are increased and the surroundings are increased. Increase the number of pixels and give priority to noise reduction. For example, fluoroscopy is the case. In general shooting (still image shooting) that requires detailed description, the coefficients ⁇ k, l , ⁇ k, l are reduced, the number of surrounding pixels is reduced, and noise reduction is prioritized.
- the prior information acquisition unit 111 may extract edge information from the pixel value of the image and determine a regularization term coefficient for each pixel. Since the boundary portions having greatly different pixel values generally differ greatly in energy, the prior probability term (regularization term) in which peripheral pixel information is introduced is reduced in the boundary portion to reduce the influence of adjacent pixels.
- FIG. 12 is a flow showing details of step 301 (determination of prior probabilities) in FIG. 4 in the present embodiment.
- the processing from step 501 to step 504 is processing of the prior information acquisition unit 111.
- step 501 a plurality of images are averaged to generate an average image. Since one image is noisy and unsuitable for edge extraction, a plurality of images are averaged to generate an average image.
- a boundary is extracted from the average image.
- the prior information acquisition unit 111 includes a boundary extraction unit that extracts the boundary of the tissue in the image.
- a generally used image filter such as a Laplacian filter may be used.
- the boundary is, for example, a boundary between tissues in the subject such as the lungs and abdomen, and a boundary between the subject and a portion where there is no subject (elementary omission).
- FIG. 13 is a diagram illustrating a method for determining the spatial distribution of the coefficient of the regularization term of each coordinate.
- FIG. 13A shows the spatial distribution of the intensity of the regularization term when a subject (represented by a white dotted line) is photographed. The spatial distribution is determined for each pixel (the cell in FIG. 13A). When an edge of an image taken through a subject is extracted, it becomes like a black portion of a grid. For the boundary pixels and the non-boundary pixels, the coefficients of the regularization term are determined by different methods. The boundary is where the structure of the subject changes rapidly.
- the prior information acquisition unit 111 holds a threshold value in advance, and the prior information acquisition unit 111 compares the pixel value of the edge with the threshold value, and determines a boundary that exceeds the threshold value.
- a prior probability formula is determined in step 504 for each pixel.
- the determination of the prior probability is performed using a prior probability formula that introduces surrounding pixel information such as Formula (31), Formula (34), and Formula (35).
- a prior probability formula that introduces surrounding pixel information such as Formula (31), Formula (34), and Formula (35).
- FIG. 13 only the first parameter p and the coefficient ⁇ are shown in order to avoid complexity. The same applies to the second parameter q and the coefficient ⁇ .
- the form of the prior probability is the expression (31), the same applies to the expressions (34) and (35).
- the method for determining the coefficient of the regularization term is changed depending on whether or not the target pixel is a boundary.
- the regularization term is a coefficient of the regularization term of surrounding pixels to be compared (difference in this example).
- the target pixel (i, j) of the pixel A in FIG. 13A is not a boundary.
- the coefficient ⁇ relating to the comparison term ( pi, j ⁇ pi + 1, j ) 2 with the pixel (i + 1, j) on the right side of the target pixel is the coefficient ⁇ of the pixel (i + 1, j) on the right side. i + 1, j . Since the pixel (i + 1, j) is not a boundary, a relatively large value is set for the coefficient ⁇ i + 1, j .
- the target pixel (i, j) is set so as to be easily influenced by the pixel (i + 1, j) on the right side.
- the coefficient ⁇ applied to the comparison term (p i, j ⁇ p i ⁇ 1, j ) 2 with the pixel (i ⁇ 1, j ) on the left side of the target pixel is equal to the pixel (i ⁇ 1, j ) on the left side.
- j) is the coefficient ⁇ i ⁇ 1, j .
- the coefficient ⁇ i ⁇ 1, j is set to a relatively small value.
- the pixel of interest (i, j) is set so as not to be affected by the pixel (i-1, j) on the left side.
- coefficients ⁇ k, l , ⁇ k, l representing the size of the regularization term are used as the coefficients of the target pixel (i, j) in the boundary part.
- the coefficient of the regularization term of the pixel value of the boundary having a low correlation with the upper, lower, left and right pixels needs to be relatively small.
- FIG. 14 is a flow showing details of step 301 (determination of prior probabilities) in FIG. 4 in the present embodiment.
- the processing from step 701 to step 704 is the processing of the prior information acquisition unit 111.
- the prior information acquisition unit 111 acquires part information to be imaged from the operation panel 104.
- the acquired part information is used in step 702 and step 703.
- the part information is used to call a regularization term function associated with the imaging part.
- the regularization term function is a function that represents the pixel value of a pixel and the strength of the regularization term. For example, if the acquired imaging region is a chest front image, a regularization term function for the chest front is called. Details of the regularization term function will be described later.
- the regularization term function is stored in advance in the prior information storage unit 113.
- step 501 an average image for edge extraction is generated, and in step 502, the boundary is extracted.
- This step is the same as the step described in FIG.
- Step 702 region extraction and regularization term determination.
- Region extraction can be performed using, for example, a histogram.
- An example of an image histogram of the front of the chest is shown in FIG.
- the highest pixel value is a portion where there is no subject (element missing).
- the next highest pixel value is in the lung field containing a lot of air, and the pixel value is the lowest in the mediastinum or the like. Therefore, by determining which peak (peak) of the histogram the pixel value of the pixel belongs to, it is possible to identify the site where the pixel is imaged.
- the relationship between the pixel value and the part is stored in the prior information storage unit 113 and acquired in step 701.
- the region extraction method is not limited to a method using a histogram, and other known methods can be used.
- step 703 the coefficient of the regularization term of each coordinate is determined.
- the coefficient is determined based on the area determined in step 702. For example, in the case of an image of the front of the chest, there are fine blood vessels. That is, the lung field has a small correlation with surrounding pixels.
- the coefficient of the regularization term in the lung field needs to be set lower than the coefficient of the regularization term in other parts.
- the determination of the regularization term coefficient is performed using a regularization term function.
- the regularization term function is a function that represents the relationship between the pixel value and the regularization term, and is a function that differs for each imaging region. Therefore, it is called using the information on the imaging region acquired in step 701.
- the regularization term function is prepared as a curve smoothed by a Bezier curve, for example.
- FIG. 15B shows a regularization term function.
- the regularization term based on boundary extraction is determined in this step.
- the regularization term coefficient based on the boundary extraction is determined using the method described above. Note that the strength of the regularization term set at the boundary is set to be weaker than the strength of the regularization term determined based on the region. For example, in the lung field, the regularization term has a medium strength. For omissions and others, the strength of the regularization term is increased. The boundary makes the strength of the regularization term small.
- a prior probability formula is determined.
- the determination method is performed using the method described above.
- the boundary uses a regularization term of the boundary, and uses a regularization term of surrounding pixels other than the boundary. Thereafter, the procedure after step 302 in FIG. 4 is executed.
- the description is made assuming a radiation angiography apparatus and a radiography apparatus, but the present embodiment can also be applied to other radiography apparatuses (for example, a mammography apparatus).
- the present embodiment can also be applied to a radiation imaging apparatus using radiation other than X-rays, for example, ⁇ rays, ⁇ rays, and ⁇ rays.
- the present invention supplies software (program) that realizes the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed.
- the present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
A radiographic image capturing device capable of calculating with a high degree of accuracy an average energy or an average number of photons of radiation using a smaller number of pixel values than in the prior art captures a radiographic image by means of radiation, and is provided with: a determining means for determining a prior probability on the basis of predetermined criteria; an acquiring means for acquiring a pixel value measured from the radiographic image; and a calculating means for calculating at least one of the average energy and the average number of photons of the radiation on the basis of the prior probability and the pixel value.
Description
本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラムに関する。
The present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
近年、放射線撮影装置において、放射線(例えば、X線)の光子を個別に計量するフォトンカウンティング型の放射線撮影装置の実用化が進展しつつある。フォトンカウンティング型装置では、1光子当たりの持つエネルギーを弁別することが可能になり、新たな応用が期待されている。
In recent years, the practical application of photon counting type radiographic apparatuses that individually measure photons of radiation (for example, X-rays) in radiographic apparatuses has been progressing. In the photon counting type apparatus, it becomes possible to discriminate the energy per photon, and a new application is expected.
しかし、フォトンカウンティング型の放射線撮影装置を実現するためには、大量に入射する放射線光子を個別に計量する必要があるため、高速な駆動が可能である新規ハードウェアが必要であり、開発に高い障壁が存在する。
However, in order to realize a photon counting type radiation imaging apparatus, it is necessary to individually measure a large amount of incident radiation photons, so new hardware capable of high-speed driving is necessary, and development is high. There are barriers.
そこで、特許文献1では、光子を個別に計量する代わりに、複数の画素値(放射線撮影装置の画素が出力する入射光量を表す値)の平均値とノイズから、入射した放射線の平均エネルギーと平均フォトン数を推定する手法が提案されている。
Therefore, in Patent Document 1, instead of individually measuring photons, the average energy and average of incident radiation are calculated from the average value and noise of a plurality of pixel values (values representing the amount of incident light output from the pixels of the radiation imaging apparatus). A method for estimating the number of photons has been proposed.
しかしながら、特許文献1に記載の方法では、エネルギー又は平均フォトン数を高精度に推定するために必要な画素の数が膨大になるという課題が存在した。
However, the method described in Patent Document 1 has a problem that the number of pixels necessary for estimating the energy or the average number of photons with high accuracy becomes enormous.
本発明の放射線撮影装置は、放射線により放射線画像を撮影する放射線撮影装置であって、所定の条件に基づいて事前確率を決定する決定手段と、前記放射線画像から測定される画素値を取得する取得手段と、前記事前確率及び前記画素値に基づいて、前記放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する算出手段と、を備える。
The radiographic apparatus according to the present invention is a radiographic apparatus that captures a radiographic image with radiation, and includes a determination unit that determines a prior probability based on a predetermined condition, and obtains a pixel value measured from the radiographic image. And means for calculating at least one of the average energy and the average number of photons of the radiation based on the prior probability and the pixel value.
本発明は、従来技術より少ない画素の数で放射線の平均エネルギー又は平均フォトン数を高精度に算出することができる。
The present invention can calculate the average energy or the average number of photons with high accuracy with fewer pixels than the prior art.
以下、添付図面を参照して本発明の好適な実施例について説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
図1は、本発明に係る放射線撮影システムの構成の一例を示す図である。放射線撮影システム(又は、放射線撮影装置)は、放射線により放射線画像を撮影する。放射線管球(放射線発生部)101は、放射線を発生させる。放射線管球101から照射された放射線は、被写体102を透過し、放射線検出部であるFPD(Flat Panel Detector)103に入射する。放射線管球101は、低エネルギーの放射線を遮蔽するための放射線フィルタを設けてもよい。
FIG. 1 is a diagram showing an example of the configuration of a radiation imaging system according to the present invention. A radiation imaging system (or a radiation imaging apparatus) captures a radiation image with radiation. A radiation tube (radiation generator) 101 generates radiation. Radiation irradiated from the radiation tube 101 passes through the subject 102 and enters an FPD (Flat Panel Detector) 103 that is a radiation detection unit. The radiation tube 101 may be provided with a radiation filter for shielding low-energy radiation.
図示しないが、FPD103は、放射線を可視光に変換する蛍光体と、可視光を電荷及び電圧に変換する撮像素子(撮像素子は複数個備えられ、1つの撮像素子が1つの画素に対応する)とを備える。また、FPD103は、変換された電圧をデジタル値の放射線画像に変換する画像生成部と、オフセット補正、ゲイン補正、及び欠陥補正を放射線画像に施す画像補正部を備える。
Although not shown, the FPD 103 includes a phosphor that converts radiation into visible light, and an image sensor that converts visible light into electric charge and voltage (a plurality of image sensors are provided, and one image sensor corresponds to one pixel). With. The FPD 103 also includes an image generation unit that converts the converted voltage into a digital radiographic image, and an image correction unit that performs offset correction, gain correction, and defect correction on the radiographic image.
FPD103には、テルル化カドミウム(CdTe)や非晶質セレン(a-Se)を用いた放射線を直接電圧に変換する方式が適用可能である。
For the FPD 103, a method of directly converting radiation using cadmium telluride (CdTe) or amorphous selenium (a-Se) into a voltage can be applied.
照射される放射線の条件(照射条件)は、操作盤104により設定される。操作盤104は、条件指定部105、撮影部位指定部106、及び条件表示部107を備える。条件指定部105は、管電圧、管電流、及び照射時間などの照射条件をボタンなどにより指定可能である。撮影部位と放射線の照射条件が予め関連付けられており、撮影部位指定部106が撮影部位を指定すると、それに対応した放射線の照射条件を設定することが可能である。
The radiation conditions (irradiation conditions) to be irradiated are set by the operation panel 104. The operation panel 104 includes a condition specifying unit 105, an imaging region specifying unit 106, and a condition display unit 107. The condition designation unit 105 can designate irradiation conditions such as a tube voltage, a tube current, and an irradiation time with a button or the like. When the imaging region and the radiation irradiation condition are associated in advance, and the imaging region designating unit 106 specifies the imaging region, it is possible to set the radiation irradiation condition corresponding to the imaging region.
照射指示部108は、フットペダルを含み、操作者によりフットペダルが踏まれることで、放射線管球101が放射線を曝射することが可能になる。
The irradiation instruction unit 108 includes a foot pedal, and the radiation tube 101 can emit radiation when the operator depresses the foot pedal.
FPD103から出力された放射線画像は、コンピュータ109へ転送される。コンピュータ109は、画像取得部110、事前情報取得部(決定部)111、エネルギー算出部112、事前情報保存部113、入力装置114、及び表示装置115を備える。なお、FPD103が備える上記の画像補正部は、コンピュータ109に備えられる場合もある。操作盤104の代わりに、コンピュータ109に放射線の照射条件が予め保存される場合もある。
The radiation image output from the FPD 103 is transferred to the computer 109. The computer 109 includes an image acquisition unit 110, a prior information acquisition unit (determination unit) 111, an energy calculation unit 112, a prior information storage unit 113, an input device 114, and a display device 115. Note that the image correction unit included in the FPD 103 may be included in the computer 109. In some cases, the irradiation conditions of radiation are stored in advance in the computer 109 instead of the operation panel 104.
画像取得部110は、FPD103で生成された放射線画像を、コンピュータ109に取り込む機能を有する。画像取得部(取得部)110は、FPD103から放射線画像を取得し、放射線画像から測定される画素値を取得する。
The image acquisition unit 110 has a function of capturing the radiation image generated by the FPD 103 into the computer 109. The image acquisition unit (acquisition unit) 110 acquires a radiographic image from the FPD 103 and acquires a pixel value measured from the radiographic image.
事前情報取得部111は、放射線管球101、FPD103、操作盤104、事前情報保存部113、入力装置114、Cアーム118、及び架台119から事前情報を取得し、後述する事前確率を決定する。
The prior information acquisition unit 111 acquires prior information from the radiation tube 101, the FPD 103, the operation panel 104, the prior information storage unit 113, the input device 114, the C arm 118, and the gantry 119, and determines a prior probability described later.
事前情報取得部(決定部)111は、放射線を発生させる放射線管球(放射線発生部)101に関する放射線発生情報、放射線を検出するFPD(放射線検出部)103に関する放射線検出情報、撮影される被写体102に関する被写体情報、撮影される被写体102の撮影部位に関する撮影部位情報、被写体102に注入される造影剤に関する造影剤情報、放射線撮影装置又は放射線管球101を支持するCアーム(支持部)118に関する支持情報、及び被写体102を配置する架台119に関する架台情報の少なくとも1つに基づいて、後述の事前確率を決定する。
The prior information acquisition unit (determination unit) 111 includes radiation generation information related to a radiation tube (radiation generation unit) 101 that generates radiation, radiation detection information related to an FPD (radiation detection unit) 103 that detects radiation, and a subject 102 to be photographed. Subject information relating to the subject, imaging part information relating to the imaging part of the subject 102 to be photographed, contrast agent information relating to a contrast agent injected into the subject 102, support relating to the C-arm (support unit) 118 that supports the radiation imaging apparatus or the radiation tube 101 Based on the information and at least one of the gantry information about the gantry 119 on which the subject 102 is placed, a prior probability described later is determined.
事前情報取得部(決定部)111は、撮影された複数の放射線画像のうち、所定の時間以前に撮影された放射線画像を用いて、放射線発生情報、放射線検出情報、被写体情報、撮影部位情報、及び造影剤情報の少なくとも1つを取得してもよい。
The prior information acquisition unit (determination unit) 111 uses a radiographic image captured before a predetermined time among a plurality of captured radiographic images, to generate radiation generation information, radiation detection information, subject information, imaging region information, And at least one of the contrast agent information may be acquired.
事前情報取得部111が取得する事前情報としては、放射線発生情報、放射線検出情報、被写体情報、撮影部位情報、造影剤情報、支持情報、及び架台情報の他、放射線の個数(フォトン数)に関する確率分布の確率分布情報がある。
Prior information acquired by the prior information acquisition unit 111 includes radiation generation information, radiation detection information, subject information, imaging region information, contrast agent information, support information, and gantry information, as well as a probability relating to the number of radiation (number of photons). There is probability distribution information of the distribution.
確率分布情報には、ポアソン分布や正規分布の関数、これらの関数から導かれる関数(後述の式(15),式(16),式(23),式(24)で表される関数、及びポアソン分布や正規分布のパラメタなど)が含まれる。
The probability distribution information includes functions of Poisson distribution and normal distribution, functions derived from these functions (functions represented by expressions (15), (16), (23), and (24) described later, and Poisson distribution and normal distribution parameters).
放射線発生情報には、放射線管球101の管電圧、放射線管球101の管電流、放射線管球101の放射線照射時間、放射線フィルタの有無、及び放射線フィルタの特性の少なくとも1つの管球情報が含まれる。また、放射線発生情報には、放射線管球101の放射線スペクトルが含まれる。
The radiation generation information includes at least one tube information of tube voltage of the radiation tube 101, tube current of the radiation tube 101, radiation irradiation time of the radiation tube 101, presence / absence of a radiation filter, and characteristics of the radiation filter. It is. The radiation generation information includes the radiation spectrum of the radiation tube 101.
FPD103に関する放射線検出情報には、蓄積時間などが含まれる。撮影部位情報には、胸部や頭部などを識別する情報が含まれる。被写体情報には、入力装置114により入力される被写体102の識別番号、氏名、性別、年齢、身長、及び体重などが含まれる。造影剤情報には、造影剤の種類や濃度及び造影剤が注入される部位などが含まれる。Cアーム118に関する支持情報には、Cアーム118の材質、位置、及び角度などが含まれる。架台119に関する架台情報には、架台119の位置などが含まれる。
The radiation detection information regarding the FPD 103 includes an accumulation time and the like. The imaging part information includes information for identifying the chest and head. The subject information includes the identification number, name, sex, age, height, weight, and the like of the subject 102 input by the input device 114. The contrast agent information includes the type and concentration of the contrast agent, the site where the contrast agent is injected, and the like. The support information regarding the C arm 118 includes the material, position, angle, and the like of the C arm 118. The gantry information regarding the gantry 119 includes the position of the gantry 119 and the like.
本実施例では、事前情報取得部111が取得する事前情報を、エネルギー又はフォトン数計算に用いることで、従来技術(例えば、特許文献1に記載の発明)より少ない撮影枚数で、平均エネルギー又は平均フォトン数を高精度で算出することが可能になる。
In the present embodiment, the prior information acquired by the prior information acquisition unit 111 is used for energy or photon number calculation, so that the average energy or average can be obtained with a smaller number of shots than the prior art (for example, the invention described in Patent Document 1). It becomes possible to calculate the number of photons with high accuracy.
エネルギー算出部112は、事前情報取得部111が取得した放射線の個数(フォトン数)に関する確率分布と、事前情報取得部111が算出する事前確率と、画像取得部110が取得する放射線画像とから、平均エネルギー又は平均フォトン数を算出、出力する。
The energy calculation unit 112 is based on the probability distribution regarding the number of radiations (number of photons) acquired by the prior information acquisition unit 111, the prior probability calculated by the prior information acquisition unit 111, and the radiation image acquired by the image acquisition unit 110. Calculate and output average energy or average number of photons.
エネルギー算出部(算出部)112は、確率分布、事前確率、画素値に基づいて、後述のベイズの定理により、放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する。本実施例の確率分布は、放射線のフォトン数に関する確率分布である。
The energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons by the Bayes' theorem described later based on the probability distribution, the prior probability, and the pixel value. The probability distribution of this embodiment is a probability distribution related to the number of photons of radiation.
画像取得部110、事前情報取得部111、エネルギー算出部112、及び事前情報保存部113は、コンピュータの中央演算処理装置、主記憶装置、ハードディスクなどの記憶装置、高速計算のためのグラフィック・プロセッシング・ユニット、及びLAN(Local Area Network)アダプタなどの一般的なハードウェアにより構成されることが可能である。各構成部の機能は、ソフトウェアとして実装される。また、各構成部の機能を実行する回路が電気的に実装されてもよい。
The image acquisition unit 110, the advance information acquisition unit 111, the energy calculation unit 112, and the advance information storage unit 113 are a central processing unit of a computer, a main storage device, a storage device such as a hard disk, a graphic processing for high-speed calculation, It can be configured by general hardware such as a unit and a LAN (Local Area Network) adapter. The function of each component is implemented as software. Further, a circuit that executes the function of each component may be electrically mounted.
入力装置114は、例えば、キーボードやマウスやタッチパネルなどである。操作者は、入力装置114を使用し、撮影部位情報や被写体情報を入力することが可能になる。撮影部位情報や被写体情報は、入力装置114による入力の他に、コンピュータ109に実装されるLANアダプタを通じて入力されてもよい。
The input device 114 is, for example, a keyboard, a mouse, a touch panel, or the like. The operator can use the input device 114 to input imaging part information and subject information. The imaging part information and the subject information may be input through a LAN adapter mounted on the computer 109 in addition to the input by the input device 114.
撮影部位情報や被写体情報は、事前情報として事前情報取得部111により取得され、事前確率を決定するために用いられる。
The imaging part information and subject information are acquired as prior information by the prior information acquisition unit 111 and used to determine the prior probability.
表示装置115は、放射線画像を表示するために用いられる。特に、表示装置115がカラー・ディスプレイを備える場合、平均エネルギーの情報を色(色彩や階調)で表現することが可能になり、放射線画像の診断性能の向上が期待される。
The display device 115 is used to display a radiation image. In particular, when the display device 115 includes a color display, it is possible to express information on average energy by color (color or gradation), and improvement in diagnostic performance of radiographic images is expected.
操作盤104の機能の一部を、入力装置114や表示装置(出力装置)115が備えてもよい。例えば、条件指定部105又は撮影部位指定部106を通じて行われた放射線の照射条件の入力は、入力装置114により行われてもよい。また、管電圧、管電流、及び照射時間などの放射線の照射条件は、条件表示部107の代わりに、表示装置115により表示されてもよい。
Some of the functions of the operation panel 104 may be provided in the input device 114 and the display device (output device) 115. For example, the input of the radiation irradiation condition performed through the condition designating unit 105 or the imaging region designating unit 106 may be performed by the input device 114. In addition, radiation conditions such as tube voltage, tube current, and irradiation time may be displayed on the display device 115 instead of the condition display unit 107.
放射線管球101、FPD103、操作盤104、照射指示部108、及びコンピュータ109は、同期装置116に接続される。同期装置116は、FPD103の状態と、照射指示部108の押下状態と、コンピュータ109の処理状態とから、放射線の曝射可否を決定する。
The radiation tube 101, the FPD 103, the operation panel 104, the irradiation instruction unit 108, and the computer 109 are connected to the synchronization device 116. The synchronization device 116 determines whether or not radiation exposure is possible from the state of the FPD 103, the pressing state of the irradiation instruction unit 108, and the processing state of the computer 109.
また、本実施例の放射線撮影システムは、血管造影を行うための造影剤注入装置117を備える。造影剤注入装置117は、操作者の指示に基づいて、ヨウ素などの血管造影剤を、被写体102に注入する。造影剤注入装置117は、事前情報として造影剤情報を事前情報取得部111に送信する。造影剤情報には、造影剤の種類や濃度などが含まれる。
In addition, the radiographic system of the present embodiment includes a contrast medium injection device 117 for performing angiography. The contrast medium injection device 117 injects a blood vessel contrast medium such as iodine into the subject 102 based on an instruction from the operator. The contrast medium injection device 117 transmits contrast medium information as prior information to the prior information acquisition unit 111. The contrast agent information includes the type and concentration of the contrast agent.
図2は、本実施例の放射線撮影システムの動作の一例を示すフローチャートである。ステップ201において、操作者は、放射線の照射条件を入力する。放射線の照射条件の入力は、例えば、条件指定部105又は撮影部位指定部106を通じて行われる。また、入力装置114を通じて、被写体102の識別番号などの被写体情報が、照射条件とともに入力される。
FIG. 2 is a flowchart showing an example of the operation of the radiation imaging system of the present embodiment. In step 201, the operator inputs radiation irradiation conditions. The radiation irradiation condition is input through, for example, the condition specifying unit 105 or the imaging region specifying unit 106. Also, subject information such as the identification number of the subject 102 is input through the input device 114 together with the irradiation condition.
ステップ202において、操作者は、照射指示部108を通じて、放射線の照射を指示する。その後、ステップ203において、同期装置116は、放射線管球101と、FPD103と、操作盤104と、照射指示部108と、コンピュータ109との状態から、放射線の曝射可否を判断する。曝射不可と判断された場合は、ステップ204において、表示装置115に警告を出力する。
In step 202, the operator instructs radiation irradiation through the irradiation instruction unit. Thereafter, in step 203, the synchronization device 116 determines whether or not radiation exposure is possible from the state of the radiation tube 101, the FPD 103, the operation panel 104, the irradiation instruction unit 108, and the computer 109. If it is determined that exposure is not possible, a warning is output to the display device 115 in step 204.
ステップ203において、曝射可と判断された場合は、ステップ205に進む。ステップ205において、事前情報取得部111が、事前情報に基づいて、平均エネルギーの算出に必要な確率分布(例えば、放射線の個数に関する確率分布)と事前確率を決定する。事前情報は、放射線管球101、FPD103、操作盤104、事前情報保存部113、入力装置114、Cアーム118、及び架台119から取得される。事前情報取得部(決定部)111は、後述のベイズの定理の確率分布及び事前確率を決定する。
If it is determined in step 203 that exposure is possible, the process proceeds to step 205. In step 205, the prior information acquisition unit 111 determines a probability distribution (for example, a probability distribution related to the number of radiations) and a prior probability necessary for calculating the average energy based on the prior information. The prior information is acquired from the radiation tube 101, the FPD 103, the operation panel 104, the prior information storage unit 113, the input device 114, the C arm 118, and the gantry 119. The prior information acquisition unit (determination unit) 111 determines a probability distribution and a priori probability of Bayes' theorem described later.
また、事前情報取得部111が、エネルギー又は平均フォトン数を推定するために必要な画素値の数を決定する。放射線画像の撮影部位と撮影枚数とを対応させたデータ(テーブルなど)に基づいて、操作盤104から入力された撮影部位情報から、エネルギー又は平均フォトン数を推定するために必要な画素値の数に対応する放射線画像の撮影枚数が決定される。撮影部位と撮影枚数とを対応させたデータは、事前情報保存部113に予め保存される。
Also, the prior information acquisition unit 111 determines the number of pixel values necessary for estimating the energy or the average number of photons. The number of pixel values necessary to estimate the energy or the average number of photons from the imaging part information input from the operation panel 104 based on data (table or the like) in which the imaging part of the radiographic image is associated with the number of images to be taken. The number of radiographic images corresponding to is determined. Data in which the imaging region and the number of images are associated with each other is stored in advance in the pre-information storage unit 113.
その後、事前情報取得部111は、同期装置116に放射線照射可能の通知を行い、同期装置116は、放射線管球101とFPD103に、放射線照射指示の信号を送る。これにより、ステップ206において、放射線をFPD103に照射することにより、放射線画像の取得(撮影)が開始される。
Thereafter, the prior information acquisition unit 111 notifies the synchronization device 116 that radiation irradiation is possible, and the synchronization device 116 sends a radiation irradiation instruction signal to the radiation tube 101 and the FPD 103. Thus, in step 206, radiation (irradiation) acquisition is started by irradiating the FPD 103 with radiation.
平均エネルギー又は平均フォトン数を推定するために必要な画素値が取得されたら、ステップ207において、放射線画像の撮影を終了する。ステップ208において、ステップ205で求められた放射線の個数に関する確率分布や事前確率と、ステップ206で取得された画素値から平均エネルギーを算出する。エネルギー算出部112が、平均エネルギーを算出する。平均エネルギーの算出方法は、後述する。
When the pixel values necessary for estimating the average energy or the average number of photons are acquired, in step 207, the radiographic image capturing is terminated. In step 208, the average energy is calculated from the probability distribution and prior probabilities regarding the number of radiations obtained in step 205 and the pixel value obtained in step 206. The energy calculation unit 112 calculates average energy. A method for calculating the average energy will be described later.
ステップ209において、ステップ208で算出された平均エネルギーの情報は、表示や保存される。平均エネルギーの情報は、例えば、求められた平均エネルギーと色彩とを対応させることにより、表示装置115が、平均エネルギーの情報をカラーで表示することができる。
In step 209, the information on the average energy calculated in step 208 is displayed and stored. For example, the information about the average energy can be displayed in color by the display device 115 by associating the obtained average energy with the color.
次に、ステップ208の平均エネルギーの算出について、算出方法を詳述する。ここで、ステップ206で取得された画素値の平均画素値mと、画素に入射する平均フォトン数nと、平均エネルギーEの関数である比例係数k(E)との関係は、式(1)により表される。
Next, the calculation method for calculating the average energy in step 208 will be described in detail. Here, the relationship between the average pixel value m of the pixel values acquired in step 206, the average number of photons n incident on the pixel, and the proportionality coefficient k (E) that is a function of the average energy E is expressed by equation (1). It is represented by
k(E)は、フォトン1個当たりの画素値で、エネルギーEの関数である。フォトン1個当たりの画素値(発光量)は、エネルギーEの関数として求めることができるので、画素値からk(E)を算出することができれば、平均エネルギーEが算出される。
K (E) is a pixel value per photon and is a function of energy E. Since the pixel value (light emission amount) per photon can be obtained as a function of the energy E, if k (E) can be calculated from the pixel value, the average energy E is calculated.
例えば、k(E)は、平均エネルギーEの1次式で表される。従来技術(例えば、特許文献1に記載の発明)では、k(E)=Eと表される。つまり、平均画素値mを、平均フォトン数nと比例係数k(E)とに分割することができれば、平均エネルギーEを算出することができる。
For example, k (E) is expressed by a linear expression of average energy E. In the prior art (for example, the invention described in Patent Document 1), k (E) = E. That is, if the average pixel value m can be divided into the average photon number n and the proportional coefficient k (E), the average energy E can be calculated.
したがって、以下では、複数の画素値(画素値)から平均フォトン数nと比例係数k(E)とを求める方法を述べる。
Therefore, hereinafter, a method of obtaining the average photon number n and the proportional coefficient k (E) from a plurality of pixel values (pixel values) will be described.
ここで、ステップ206において、FPD103が放射線画像をL枚撮影し、或る画素で、L個の画素値x=m1,m2,・・・mLが取得(測定)されたとする。1枚の放射線画像を撮影し、1個の画素値を得ることを、測定回数が1回であると言う。測定値xがx=m1,m2,・・・mLであるとき、或るパラメタp1,p2が、p1=p,p2=qとなる確率f(p,q|m1,m2,・・・mL)は、ベイズの定理に基づいて式(2)で表わされる。
Here, it is assumed that in step 206, the FPD 103 takes L radiation images and L pixel values x = m 1 , m 2 ,..., M L are acquired (measured) at a certain pixel. Taking one radiation image and obtaining one pixel value is said to be one measurement. When the measured value x is x = m 1 , m 2 ,..., M L , the probability f (p, q | m) that a certain parameter p 1 , p 2 is p 1 = p, p 2 = q 1 , m 2 ,..., M L ) is expressed by equation (2) based on Bayes' theorem.
Kは、規格化定数である。g(m1,m2,・・・mL|p,q)は、パラメタp1がp1=p及びパラメタp2がp2=qのときに、測定値xがx=m1,m2,・・・mLとなる事象の確率(確率分布を含む)である。g(mi|p,q)は、パラメタp1がp1=p及びパラメタp2がp2=qのときに、測定回数がi番目(又は、i回目)の画素値xiがmiとなる事象の確率(確率分布を含む)である。h(p,q)は、事前確率である。
K is a normalization constant. g (m 1 , m 2 ,..., m L | p, q) indicates that the measured value x is x = m 1 , when the parameter p 1 is p 1 = p and the parameter p 2 is p 2 = q. m 2 ,... m L is the probability of the event (including probability distribution). g (m i | p, q) indicates that when the parameter p 1 is p 1 = p and the parameter p 2 is p 2 = q, the pixel value x i of the i-th (or i-th) measurement is m This is the probability (including probability distribution) of an event that is i . h (p, q) is a prior probability.
なお、パラメタp1,p2は、後述するように、p1は平均画素値mとなり、p2は比例係数k(E)の逆数1/k(E)となる。又は、p1は平均画素値mとなり、p2は画素値の分散σ2(又は、標準偏差)となる。
As will be described later, in the parameters p 1 and p 2 , p 1 is the average pixel value m, and p 2 is the reciprocal 1 / k (E) of the proportional coefficient k (E). Alternatively, p 1 is the average pixel value m, and p 2 is the pixel value variance σ 2 (or standard deviation).
このように、確率分布g(mi|p,q)及び事前確率h(p,q)は、放射線画像の平均画素値の算出に用いられる第1のパラメタp1=p及び放射線の平均エネルギーの算出に用いられる第2のパラメタp2=qを変数とする。第1のパラメタpは、放射線画像の所定の画素における時間平均の平均画素値及び放射線画像の複数の画素の空間平均の平均画素値の少なくとも1つである。また、第2のパラメタは、平均エネルギーEを変数とする関数、放射線画像の画素値の分散σ2、及び放射線画像の画素値の標準偏差の少なくとも1つである。
Thus, the probability distribution g (m i | p, q) and the prior probability h (p, q) are the first parameter p 1 = p and the average energy of the radiation used for calculating the average pixel value of the radiation image. The second parameter p 2 = q used in the calculation of is a variable. The first parameter p is at least one of a temporal average average pixel value at a predetermined pixel of the radiographic image and a spatial average average pixel value of a plurality of pixels of the radiographic image. The second parameter is at least one of a function having the average energy E as a variable, a variance σ 2 of the pixel values of the radiographic image, and a standard deviation of the pixel values of the radiographic image.
式(2)によれば、確率分布g(mi|p,q)及び事前確率h(p,q)が算出されれば、確率f(p,q|m1,m2,・・・mL)を算出することができ、従来技術より少ない画素値の数で、パラメタp,qを高精度で算出することができる。
According to the equation (2), if the probability distribution g (m i | p, q) and the prior probability h (p, q) are calculated, the probability f (p, q | m 1 , m 2 ,... m L ) can be calculated, and the parameters p and q can be calculated with high accuracy with a smaller number of pixel values than in the prior art.
図3は、本実施例の効果を示す図である。図3では、事前確率h(p,q)は式(27)で決定されている。横軸は、放射線画像の枚数(すなわち、測定回数)を表し、縦軸は、平均エネルギーEに相当するフォトン1個当たりの画素値k(E)を表している。図3に示すように、本実施例と従来技術を比較すると、本実施例は、従来技術よりも少ない放射線画像の枚数(測定回数)で、平均エネルギーEの真の値に近似した値を算出することができる。
FIG. 3 is a diagram showing the effect of this embodiment. In FIG. 3, the prior probability h (p, q) is determined by the equation (27). The horizontal axis represents the number of radiographic images (that is, the number of measurements), and the vertical axis represents the pixel value k (E) per photon corresponding to the average energy E. As shown in FIG. 3, when this embodiment is compared with the prior art, this embodiment calculates a value that approximates the true value of the average energy E with a smaller number of radiation images (number of measurements) than the prior art. can do.
なお、後述するように、確率分布g(mi|p,q)としては、放射線の発生や吸収に関する物理現象を考慮して、放射線の個数(フォトン数)に関する確率分布を用いることができる。事前確率h(p,q)は、画素値xの測定とは別に取得される情報(すなわち、事前情報)から算出することができる。
As will be described later, as the probability distribution g (m i | p, q), a probability distribution relating to the number of radiations (photon number) can be used in consideration of physical phenomena relating to generation and absorption of radiation. The prior probability h (p, q) can be calculated from information (that is, prior information) acquired separately from the measurement of the pixel value x.
式(2)は、関数の積で記述されているが、計算を容易にするために、以降では式(2)を対数で記述した式(3)を用いる。
Formula (2) is described as a product of functions, but in order to facilitate calculation, Formula (3) describing Formula (2) in logarithm is used hereinafter.
eは、自然対数の底である。式(3)の値が最大となるように、パラメタp1=p及びパラメタp2=qを探索すれば、p1である平均画素値m及びp2である1/k(E)又は画素値の分散σ2(又は、標準偏差)が算出される。式(3)の値が最大となるように、パラメタp1=p及びパラメタp2=qを探索するために、公知の方法が適用可能である。例えば、式(3)で、式(4)となる停留点(p,q)と式(5)のヘッセ行列に基づいて、式(6)の極大条件により極大値を探索することで、式(3)の値が最大となるようなパラメタp1=p及びパラメタp2=qを探索することができる。
e is the base of the natural logarithm. If the parameter p 1 = p and the parameter p 2 = q are searched so that the value of the expression (3) becomes maximum, the average pixel value m which is p 1 and 1 / k (E) or pixel which is p 2 A variance σ 2 (or standard deviation) of values is calculated. A known method can be applied to search for the parameter p 1 = p and the parameter p 2 = q so that the value of the expression (3) is maximized. For example, in Equation (3), searching for a local maximum value according to the local maximum condition of Equation (6) based on the stationary point (p, q) that becomes Equation (4) and the Hessian matrix of Equation (5), The parameter p 1 = p and the parameter p 2 = q that maximize the value of (3) can be searched.
また、容易な方法として、式(4)から求められた停留点を式(3)に代入し、式(3)の値が最大となるようなパラメタp1=p及びパラメタp2=qを探索してもよい。また、数値計算の方法では、最急降下法などの方法を用いることも可能である。
As an easy method, the stationary point obtained from the equation (4) is substituted into the equation (3), and the parameters p 1 = p and p 2 = q that maximize the value of the equation (3) are set. You may search. In the numerical calculation method, a method such as a steepest descent method may be used.
エネルギー算出部(算出部)112は、画素値xiが測定された場合に第1のパラメタp1及び第2のパラメタp2がそれぞれ第1の値及び第2の値となる事象の確率f(p,q|m1,m2,・・・mL)が最大となるように、パラメタの解を算出する。エネルギー算出部(算出部)112は、事象の確率f(p,q|m1,m2,・・・mL)が最大となるように、確率分布g(mi|p,q)及び事前確率h(p,q)の第1のパラメタp1及び第2のパラメタp2の解である第1の値p及び第2の値qを算出する。
The energy calculation unit (calculation unit) 112 calculates the probability f of the event that the first parameter p 1 and the second parameter p 2 become the first value and the second value, respectively, when the pixel value x i is measured. The parameter solution is calculated so that (p, q | m 1 , m 2 ,..., M L ) is maximized. The energy calculation unit (calculation unit) 112 has a probability distribution g (m i | p, q) and an event probability f (p, q | m 1 , m 2 ,... M L ) and the maximum. A first value p and a second value q, which are solutions of the first parameter p 1 and the second parameter p 2 of the prior probability h (p, q), are calculated.
図4は、第1のパラメタ及び第2のパラメタの解を算出するフローチャートである。まず、ステップ301において、事前情報取得部111は、事前情報から事前確率logeh(p,q)を決定する。事前確率logeh(p,q)の決定方法は後述する。ステップ302において、エネルギー算出部(算出部)112は、パラメタp,qを変数として、画素値miが観測される確率分布logeg(mi|p,q)を算出する。確率logeg(mi|p,q)の算出は後述する。
FIG. 4 is a flowchart for calculating solutions of the first parameter and the second parameter. First, in step 301, the prior information acquisition unit 111 determines the prior probability log e h (p, q) from the prior information. A method for determining the prior probability log e h (p, q) will be described later. In step 302, the energy calculator (calculating unit) 112, a parameter p, and q as a variable, the probability distribution pixel value m i is observed log e g (m i | p , q) is calculated. Probability log e g (m i | p , q) calculation will be described later.
ステップ303において、ベイズの定理から導出された式(3)を用いて、画素値x=m1,m2,・・・mLを観測するときに、エネルギー算出部(算出部)112は、パラメタp,qをとる確率logef(p,q|m1,m2,・・・mL)を計算する。ステップ304において、上記のように、確率logef(p,q|m1,m2,・・・mL)が最大となるパラメタp,qが決定される。
In step 303, when the pixel values x = m 1 , m 2 ,..., M L are observed using the equation (3) derived from Bayes' theorem, the energy calculation unit (calculation unit) 112 The probability log e f (p, q | m 1 , m 2 ,..., M L ) taking the parameters p and q is calculated. In step 304, as described above, the parameters p and q that maximize the probability log ef (p, q | m 1 , m 2 ,..., M L ) are determined.
ステップ305において、ステップ304で決定されたパラメタp,qから平均画素値m及び1/k(E)又は画素値の分散σ2(又は、標準偏差)が決定される。これにより、エネルギー算出部(算出部)112は、平均フォトン数nと比例係数k(E)とを決定し、比例係数k(E)と平均エネルギーEの関係式から平均エネルギーEを算出する。
In step 305, the average pixel value m and 1 / k (E) or the variance σ 2 of pixel values (or standard deviation) are determined from the parameters p and q determined in step 304. Thereby, the energy calculation unit (calculation unit) 112 determines the average photon number n and the proportional coefficient k (E), and calculates the average energy E from the relational expression of the proportional coefficient k (E) and the average energy E.
次に、確率logeg(mi|p,q)とパラメタp1,p2(p1=p,p2=q)の具体例を示す。以下では、フォトン数の確率分布をポアソン分布として扱う第1の事例、フォトン数の確率分布を正規分布として扱う第2の事例について説明する。つまり、本実施例では、確率分布は、ポアソン分布及び正規分布の少なくとも1つである。
Then, the probability log e g | showing (m i p, q) and parameters p 1, p 2 (p 1 = p, p 2 = q) Specific examples of. In the following, a first case where the probability distribution of the number of photons is handled as a Poisson distribution and a second case where the probability distribution of the number of photons is handled as a normal distribution will be described. That is, in this embodiment, the probability distribution is at least one of a Poisson distribution and a normal distribution.
<第1の事例:フォトン数の確率分布をポアソン分布として扱う場合>
平均フォトン数がnであるから、i番目のフレームにni個のフォトンが入射する確率は、式(7)のポアソン分布に従うことが知られている。 <First example: When the probability distribution of the number of photons is treated as a Poisson distribution>
Since the average number of photons is n, the probability that n i number of photons incident on the i-th frame is known to follow a Poisson distribution of formula (7).
平均フォトン数がnであるから、i番目のフレームにni個のフォトンが入射する確率は、式(7)のポアソン分布に従うことが知られている。 <First example: When the probability distribution of the number of photons is treated as a Poisson distribution>
Since the average number of photons is n, the probability that n i number of photons incident on the i-th frame is known to follow a Poisson distribution of formula (7).
ni!は、niの階乗である。ここで、平均フォトン数nは、式(1)を用いると、式(8)で表され、或るフレームのフォトン数niは、式(9)で表される。
ni ! Is the factorial of n i. Here, the average photon number n is expressed by equation (8) using equation (1), and the photon number n i of a certain frame is expressed by equation (9).
miは、i番目のフレームの或る画素の画素値である。
mi is the pixel value of a certain pixel in the i-th frame.
式(7)に式(8)及び式(9)を代入すると、式(10)となる。
Substituting Equation (8) and Equation (9) into Equation (7) yields Equation (10).
式(10)は、画素値miと、平均画素値mと、比例係数k(E)の逆数1/k(E)との関数である。よって、パラメタp1,p2は、それぞれ平均画素値mと比例係数の逆数1/k(E)であり、確率g(mi|p,q)は、式(11)となる。
Equation (10) is a function of the pixel values m i, and the average pixel value m, the reciprocal 1 / k of the proportional coefficient k (E) and (E). Therefore, the parameters p 1 and p 2 are the average pixel value m and the reciprocal 1 / k (E) of the proportionality coefficient, respectively, and the probability g (m i | p, q) is expressed by Equation (11).
第1のパラメタは、放射線画像の所定の画素における時間平均の平均画素値mである。また、第2のパラメタは、平均エネルギーEを変数とする関数1/k(E)である。なお、第2のパラメタをk(E)の逆数1/k(E)として計算を進めるが、逆数1/k(E)の代わりに、第2のパラメタを比例係数k(E)として計算を進めても同様の結果が得られる。
The first parameter is an average pixel value m that is a time average of predetermined pixels of the radiation image. The second parameter is a function 1 / k (E) having the average energy E as a variable. The calculation proceeds with the second parameter as the reciprocal 1 / k (E) of k (E), but the calculation is performed with the second parameter as the proportional coefficient k (E) instead of the reciprocal 1 / k (E). A similar result can be obtained by proceeding.
式(3)に式(11)を代入すると、式(12)となる。
Substituting equation (11) into equation (3) yields equation (12).
式(12)には、階乗{mi/k(E)}!が存在するので、扱いを容易にするために、式(13)のように、階乗{mi/k(E)}!をΓ関数で表わすと、式(12)は式(14)となる。
The expression (12), factorial {m i / k (E) }! Therefore, in order to facilitate handling, factorial {m i / k (E)}! Is represented by a Γ function, Equation (12) becomes Equation (14).
式(4)に式(14)を代入すると、式(15)及び式(16)となる。
Substituting equation (14) into equation (4) yields equations (15) and (16).
Ψ(x)=δlogeΓ(x)/δxは、ディガンマ関数である。式(15)及び式(16)は、例えば、ニュートン法を用いることで、解である平均画素値mと比例係数の逆数1/k(E)を求めることができる。平均フォトン数nは、式(15)及び式(16)により求められた平均画素値mと比例係数の逆数1/k(E)を式(1)に代入することで、算出される。
Ψ (x) = δlog e Γ (x) / δx is a digamma function. In Expressions (15) and (16), for example, the Newton method is used, and the average pixel value m as a solution and the reciprocal 1 / k (E) of the proportional coefficient can be obtained. The average photon number n is calculated by substituting the average pixel value m obtained by the equations (15) and (16) and the inverse of the proportionality coefficient 1 / k (E) into the equation (1).
このように、エネルギー算出部(算出部)112は、式(15)及び式(16)により、事象の確率f(p,q|m1,m2,・・・mL)が極大値となるように、第1のパラメタm及び第2のパラメタ1/k(E)の解を算出する。
In this way, the energy calculation unit (calculation unit) 112 determines that the event probability f (p, q | m 1 , m 2 ,... M L ) is a maximum value according to the equations (15) and (16). The solution of the first parameter m and the second parameter 1 / k (E) is calculated as follows.
<第2の事例:フォトン数の確率分布を正規分布として扱う場合>
フォトン数の確率分布をポアソン分布として扱った第1の事例では、階乗{mi/k(E)}!やΓ関数などの計算が容易でない項が存在する。一方、単位時間当たりのフォトン数が多くなる場合、式(17)のように、ポアソン分布は、平均n及び分散nの正規分布で近似される。 <Second example: When the probability distribution of the number of photons is treated as a normal distribution>
In the first case where the probability distribution of the number of photons is treated as a Poisson distribution, the factorial {m i / k (E)}! There are terms that are not easy to calculate, such as Γ and Γ functions. On the other hand, when the number of photons per unit time increases, the Poisson distribution is approximated by a normal distribution having an average n and a variance n as shown in Expression (17).
フォトン数の確率分布をポアソン分布として扱った第1の事例では、階乗{mi/k(E)}!やΓ関数などの計算が容易でない項が存在する。一方、単位時間当たりのフォトン数が多くなる場合、式(17)のように、ポアソン分布は、平均n及び分散nの正規分布で近似される。 <Second example: When the probability distribution of the number of photons is treated as a normal distribution>
In the first case where the probability distribution of the number of photons is treated as a Poisson distribution, the factorial {m i / k (E)}! There are terms that are not easy to calculate, such as Γ and Γ functions. On the other hand, when the number of photons per unit time increases, the Poisson distribution is approximated by a normal distribution having an average n and a variance n as shown in Expression (17).
式(8)及び式(9)を式(16)に代入すると、式(17)は式(18)となる。さらに、確率の規格化条件を考慮すると、式(18)は式(19)となる。
When Expression (8) and Expression (9) are substituted into Expression (16), Expression (17) becomes Expression (18). Further, considering the probability normalization condition, Equation (18) becomes Equation (19).
したがって、フォトン数の分布が平均n及び分散nの正規分布に従うとき、画素値の分布は平均画素値m及び分散σ2=k(E)・mの正規分布に従う。ゆえに、パラメタp1,p2は、それぞれ平均画素値mと画素値の分散σ2であり、確率g(mi|p,q)は、式(20)となる。第1のパラメタは、放射線画像の所定の画素における時間平均の平均画素値mである。第2のパラメタは、放射線画像の画素値の分散σ2である。
Therefore, when the distribution of the number of photons follows a normal distribution with mean n and variance n, the distribution of pixel values follows a normal distribution with average pixel value m and variance σ 2 = k (E) · m. Therefore, the parameters p 1 and p 2 are the average pixel value m and the variance σ 2 of the pixel values, respectively, and the probability g (m i | p, q) is expressed by Equation (20). The first parameter is an average pixel value m that is a time average of predetermined pixels of the radiation image. The second parameter is the variance σ 2 of the pixel values of the radiation image.
式(19)と式(20)を比較すると、比例係数k(E)は式(21)となる。
Comparing equation (19) and equation (20), the proportional coefficient k (E) becomes equation (21).
したがって、画素値の分散σ2を平均画素値mで除算することで、比例係数k(E)を算出することができ、式(7)により平均フォトン数nを算出することができる。
Therefore, by dividing the variance σ 2 of pixel values by the average pixel value m, the proportional coefficient k (E) can be calculated, and the average photon number n can be calculated by Equation (7).
なお、以降では、パラメタの1つを分散σ2として計算を進めるが、分散σ2の代わりに、パラメタを標準偏差√σ2=σとして計算を進めても同様の結果が得られる。
In the following, it advances the calculated one of the parameters as the dispersion sigma 2 but, in place of the variance sigma 2, the standard deviation √σ 2 = σ as Get proceed even if similar results are obtained parameters.
式(3)と式(20)より、或る画素でL個の画素値x=m1,m2,・・・mLが取得されたときの平均画素値mと分散σ2の確率分布(の対数)は、式(22)となる。
From equation (3) and equation (20), the probability distribution of mean pixel value m and variance σ 2 when L pixel values x = m 1 , m 2 ,... (Logarithm) is expressed by equation (22).
式(4)に式(22)を代入すると、式(23)及び式(24)となる。
Substituting equation (22) into equation (4) yields equations (23) and (24).
式(23)及び式(24)は、例えば、ニュートン法を用いることで、解である平均画素値mと画素値の分散σ2を求めることができる。
Equations (23) and (24) can determine the average pixel value m, which is the solution, and the variance σ 2 of pixel values, for example, by using the Newton method.
このように、エネルギー算出部(算出部)112は、式(23)及び式(24)により、事象の確率f(p,q|m1,m2,・・・mL)が極大値となるように、第1のパラメタm及び第2のパラメタσ2の解を算出する。
As described above, the energy calculation unit (calculation unit) 112 determines that the event probability f (p, q | m 1 , m 2 ,... M L ) is the maximum value according to the equations (23) and (24). The solution of the first parameter m and the second parameter σ 2 is calculated as follows.
事前確率h(p,q)は、例えば、式(3)などのlogeh(p,q)のように、自然対数の形式で表される。ゆえに、事前確率h(p,q)は、式(25)のように、カノニカル分布で表される。
The prior probability h (p, q) is expressed in the form of a natural logarithm, for example, log e h (p, q) in equation (3). Therefore, the prior probability h (p, q) is represented by a canonical distribution as shown in Equation (25).
βは、係数である。Z(β)は、規格化定数である。eは、自然対数である。E(p,q)は、パラメタpとqの関数である。関数E(p,q)は、少なくとも1つの極値を有する関数である。
Β is a coefficient. Z (β) is a normalization constant. e is a natural logarithm. E (p, q) is a function of parameters p and q. The function E (p, q) is a function having at least one extreme value.
E(p,q)に極値を持たせることで、パラメタp,qが所定の値のときに、確率が大きくなるような仮定を加えることができ、画素値の数が所定の閾値より少ない場合であっても、高精度なp又はqに収束させることができる。極値を持たせるためには、例えば、E(p,q)を2次以上の関数で表現すればよい(後述の例では、式(29)に示すように、E(p,q)は4次関数で表現される)。
By giving an extreme value to E (p, q), it is possible to make an assumption that the probability increases when the parameters p and q are predetermined values, and the number of pixel values is less than a predetermined threshold value. Even in this case, it is possible to converge to p or q with high accuracy. In order to have an extreme value, for example, E (p, q) may be expressed by a function of quadratic or higher (in the example described later, as shown in equation (29), E (p, q) is Expressed by a quartic function).
他の確率分布の例としては、ベータ分布、ガンマ分布、及びカイ二乗分布などが挙げられる。これらの確率分布も、パラメタを適切に設定することで、極値を持たせることが可能であり、事前確率として好適である。なお、確率分布が正規分布であり、式(4)が式(23)及び式(24)となる場合であって、E(p,q)が単純な代数方程式で表される場合、式(23)及び式(24)に式(25)を代入して変形することで、解を表す式が得られることがある。その場合は、ニュートン法を用いることなく、解の計算が可能である。
Examples of other probability distributions include beta distribution, gamma distribution, and chi-square distribution. These probability distributions can also have extreme values by appropriately setting parameters, and are suitable as prior probabilities. When the probability distribution is a normal distribution and Equation (4) becomes Equation (23) and Equation (24), and E (p, q) is expressed by a simple algebraic equation, Equation ( By substituting Equation (25) into Equation (23) and Equation (24) for transformation, an equation representing the solution may be obtained. In that case, the solution can be calculated without using the Newton method.
なお、本実施例では、放射線画像をL枚取得することで、1つの画素でL個の画素値を取得する例を説明したが、上記のパラメタの計算に必要な画素値を、複数の画素で得ることも可能である。例えば、上記のように、L個の画素値を得るために、4画素を用いる場合、放射線画像の取得枚数はL/4枚となる。複数の画素を用いる場合、放射線画像の撮影枚数をL枚より少なくすることができ、撮影時間を短縮しつつ高精度なp又はqを算出することができる。
In this embodiment, an example in which L pixel values are acquired by one pixel by acquiring L radiation images has been described. However, the pixel values necessary for the calculation of the above parameters are set to a plurality of pixels. Can also be obtained. For example, as described above, when 4 pixels are used to obtain L pixel values, the number of acquired radiological images is L / 4. When a plurality of pixels are used, the number of radiographic images taken can be made smaller than L, and high-precision p or q can be calculated while shortening the radiographing time.
次に、事前情報から事前確率を決定する方法について説明する。図5は、事前確率h(p,q)の決定方法の一例を示す図である。
Next, a method for determining the prior probability from the prior information will be described. FIG. 5 is a diagram illustrating an example of a method for determining the prior probability h (p, q).
ステップ401において、管球情報が取得される。上記のように、事前情報取得部111が、操作盤104などから管球情報を取得する。
In step 401, tube information is acquired. As described above, the prior information acquisition unit 111 acquires the tube information from the operation panel 104 or the like.
ステップ402において、事前情報取得部111は、放射線の最小エネルギー(又は、最小の平均エネルギー)と最小比例係数kminを算出する。放射線が物体を通過すると、放射線の低エネルギーのフォトンが選択的に物体に吸収される傾向にあるので、物体を通過した後の放射線の平均エネルギーは、物体を通過する前に比べて増加する。
In step 402, the prior information acquisition unit 111 calculates the minimum energy (or minimum average energy) of radiation and the minimum proportional coefficient kmin . As the radiation passes through the object, the low energy photons of the radiation tend to be selectively absorbed by the object, so the average energy of the radiation after passing through the object is increased compared to before passing through the object.
そこで、設定された放射線管球101の管電圧と放射線フィルタの有無から、対応する放射線スペクトルを求め、被写体102などの物体を透過したときではなく、透過しないときの放射線の平均エネルギーを計算することで、放射線の最小エネルギーを求める。エネルギー算出部112が、算出された放射線の最小エネルギーに基づいて、対応する比例係数kminを算出し、事前情報取得部111が、算出された比例係数kminを事前情報として取得する。
Therefore, the corresponding radiation spectrum is obtained from the set tube voltage of the radiation tube 101 and the presence or absence of the radiation filter, and the average energy of the radiation when not passing through the object such as the subject 102 is calculated. Then, find the minimum energy of radiation. The energy calculation unit 112 calculates a corresponding proportionality coefficient kmin based on the calculated minimum energy of radiation, and the prior information acquisition unit 111 acquires the calculated proportionality coefficient kmin as prior information.
放射線スペクトルは、例えば、TASMIP (Tungsten Anode Spectral Model using Interpolating Polynomials)モデルなど、公知のモデルを用いて求めることができる。
The radiation spectrum can be obtained by using a known model such as a TASMIP (Tungsten Anode Spectral Modeling Interpolating Polynomials) model.
また、放射線管球101などの特性に放射線スペクトルが依存することを考慮し、スペクトロメータで放射線管球101の特性を予め評価した結果が事前情報保存部113に記憶されてもよい。記憶された放射線スペクトルから放射線の最小エネルギーが求められてもよい。なお、放射線管球101にフィルタが挿入される場合、事前情報保存部113は、フィルタの質量減弱係数の情報を事前情報として記憶し、記憶された質量減弱係数の情報に基づいて、フィルタ透過後の放射線スペクトルが求められてもよい。
In consideration of the fact that the radiation spectrum depends on the characteristics of the radiation tube 101 and the like, the result of evaluating the characteristics of the radiation tube 101 in advance using a spectrometer may be stored in the prior information storage unit 113. The minimum energy of radiation may be determined from the stored radiation spectrum. When a filter is inserted into the radiation tube 101, the prior information storage unit 113 stores information on the mass attenuation coefficient of the filter as prior information, and after passing through the filter based on the stored information on the mass attenuation coefficient. The radiation spectrum may be determined.
最小の平均エネルギーを計算する他の方法としては、特許文献1に記載された方法を用いることもできる。特許文献1に記載された方法でフィルタ挿入時の平均エネルギーを計算する場合は、フィルタを入れた状態で放射線画像を取得し、平均エネルギーを求めればよい。
As another method for calculating the minimum average energy, the method described in Patent Document 1 can also be used. When calculating the average energy at the time of filter insertion by the method described in Patent Document 1, it is only necessary to obtain a radiographic image with the filter inserted and obtain the average energy.
ステップ403において、放射線の最大エネルギー(又は、最大の平均エネルギー)と最大比例係数kmaxを求める。フォトン(放射線フォトン)のエネルギーは、設定された管電圧によって最大値が決定される。例えば、設定された管電圧が100キロボルトである場合、放射線フォトンの最大エネルギーは100キロ電子ボルトと考えてよい。そこで、事前情報取得部111は、設定された放射線管球101の管電圧から、フォトンの最大エネルギーを算出し、算出された最大エネルギーから、対応する比例係数kmaxを算出する。
In step 403, the maximum energy (or maximum average energy) of radiation and the maximum proportionality coefficient k max are obtained. The maximum value of photon (radiation photon) energy is determined by the set tube voltage. For example, when the set tube voltage is 100 kilovolts, the maximum energy of radiation photons may be considered as 100 kilovolts. Therefore, the prior information acquisition unit 111 calculates the maximum energy of photons from the set tube voltage of the radiation tube 101, and calculates the corresponding proportional coefficient k max from the calculated maximum energy.
ステップ404において、ステップ402とステップ403で算出された比例係数kminとkmaxから、事前確率logh(p,q)が求められる。
In step 404, prior probabilities log (p, q) are obtained from the proportional coefficients k min and k max calculated in steps 402 and 403.
事前確率h(p,q)の計算は、事前情報取得部(決定部)111により行われる。フォトン数の確率分布がポアソン分布の場合、事前確率h(p,q)は式(26)で表される。
The calculation of the prior probability h (p, q) is performed by the prior information acquisition unit (determination unit) 111. When the probability distribution of the number of photons is a Poisson distribution, the prior probability h (p, q) is expressed by Equation (26).
フォトン数の確率分布が正規分布の場合、事前確率h(p,q)は式(27)で表される。
When the probability distribution of the number of photons is a normal distribution, the prior probability h (p, q) is expressed by Expression (27).
ここで、Aは定数である。また、1/kmax≦1/k(E)≦1/kminの領域を確率分布の内領域と呼び、1/k(E)<1/kmax及び1/kmin<1/k(E)を確率分布の外領域と呼ぶ。図6は、式(27)に示すように、フォトン数が正規分布である場合の事前確率h(p,q)の分布を示す図である。図6(a)は、横軸を平均画素値mとし、縦軸を分散σ2とした場合の内領域及び外領域を示す図である。
Here, A is a constant. Further, the region of 1 / k max ≦ 1 / k (E) ≦ 1 / k min is called an inner region of the probability distribution, and 1 / k (E) <1 / k max and 1 / k min <1 / k ( E) is called the outer region of the probability distribution. FIG. 6 is a diagram illustrating a distribution of prior probabilities h (p, q) when the number of photons is a normal distribution as shown in Expression (27). FIG. 6A is a diagram illustrating an inner region and an outer region where the horizontal axis is the average pixel value m and the vertical axis is the variance σ 2 .
図6(b)は、平均画素値mをaとした場合の分散σ2と事前確率h(m,σ2)の関係を表す図である。図6(b)に示すように、事前確率h(m,σ2)は、放射線の最小エネルギーと最大エネルギーにそれぞれ対応する第2のパラメタ間(内領域)で、最大となる。また、事前確率h(m,σ2)は、放射線の最小エネルギーと最大エネルギーにそれぞれ対応する第2のパラメタ間以外の範囲(外領域)で、0となる。
FIG. 6B is a diagram illustrating the relationship between the variance σ 2 and the prior probability h (m, σ 2 ) when the average pixel value m is a. As shown in FIG. 6B, the prior probability h (m, σ 2 ) becomes maximum between the second parameters (inner regions) corresponding to the minimum energy and the maximum energy of radiation. The prior probability h (m, σ 2 ) is 0 in a range (outer region) other than between the second parameters corresponding to the minimum energy and the maximum energy of radiation.
なお、事前確率h(m,σ2)は、放射線の最小エネルギーと最大エネルギーにそれぞれ対応する第1のパラメタ間(内領域)で、最大となってもよい。また、事前確率h(m,σ2)は、放射線の最小エネルギーと最大エネルギーにそれぞれ対応する第1のパラメタ間以外の範囲(外領域)で、0となってもよい。
The prior probability h (m, σ 2 ) may be maximized between the first parameters (inner regions) corresponding to the minimum energy and the maximum energy of radiation. The prior probability h (m, σ 2 ) may be 0 in a range (outer region) other than between the first parameters corresponding to the minimum energy and the maximum energy of radiation.
フォトン数が正規分布である場合の事前確率h(p,q)の式(27)を式(22)に代入すると、外領域では事前確率h(m,σ2)が0であるため、式(22)の確率の対数logef(p,q|m1,m2,・・・mL)が負の無限大に発散する。同様に、フォトン数がポアソン分布である場合の事前確率logh(p,q)の式(26)を式(12)又は式(14)に代入すると、外領域では事前確率h(m,1/k(E))が0であるため、式(12)又は式(14)の確率の対数が負の無限大に発散する。
Substituting the equation (27) of the prior probability h (p, q) when the number of photons is a normal distribution into the equation (22), the prior probability h (m, σ 2 ) is 0 in the outer region. The logarithm log e f (p, q | m 1 , m 2 ,..., M L ) of the probability of (22) diverges to negative infinity. Similarly, when the equation (26) of the prior probability logh (p, q) when the number of photons is Poisson distribution is substituted into the equation (12) or (14), the prior probability h (m, 1 / Since k (E)) is 0, the logarithm of the probability of Expression (12) or Expression (14) diverges to negative infinity.
したがって、外領域では、確率が最大値をとることはなくなり、求められるパラメタ(平均画素値m)は、内領域に必ず存在するパラメタになる。
Therefore, in the outer region, the probability does not take the maximum value, and the obtained parameter (average pixel value m) is a parameter that always exists in the inner region.
計算の際に確率の対数が負の無限大に発散することを避けたい場合は、式(26)又は式(27)の外領域における事前確率h(p,q)を、0の代わりにAより十分小さい有限の数を設定すればよい。
When it is desired to avoid the logarithm of the probability diverging to negative infinity during the calculation, the prior probability h (p, q) in the outer region of the equation (26) or the equation (27) is set to A instead of 0. A finite number that is sufficiently smaller may be set.
図7は、事前確率h(p,q)の決定方法の他の例を示す図である。本例では、放射線画像の撮影前に入力された情報を用いて、事前確率h(p,q)を算出する。
FIG. 7 is a diagram showing another example of a method for determining the prior probability h (p, q). In this example, the prior probability h (p, q) is calculated using information input before radiographic image capturing.
ステップ601において、事前情報取得部111は、撮影部位情報を取得する。次に、ステップ602において、被写体情報を取得する。被写体情報は、入力装置114などを通じて入力され、事前情報取得部111によって取得される情報で、被写体102の識別番号、氏名、性別、年齢、身長、及び体重などを含む。
In step 601, the prior information acquisition unit 111 acquires imaging part information. Next, in step 602, subject information is acquired. The subject information is information input through the input device 114 or the like and acquired by the prior information acquisition unit 111, and includes the identification number, name, sex, age, height, weight, and the like of the subject 102.
ステップ603において、画素ごとに事前確率を決定する。本例では、撮影部位が判明しているため、放射線画像として撮影される被写体102の解剖学的特徴が画素ごとに推定される。例えば、各画素が、骨の部分を撮影するか、筋肉の部分を撮影するか、肺の部分を撮影するかが推定される。そして、画素ごとに決定された事前確率に基づいて、各画素における平均エネルギーなどが概算される。
In step 603, a prior probability is determined for each pixel. In this example, since the imaging region is known, the anatomical feature of the subject 102 captured as a radiographic image is estimated for each pixel. For example, it is estimated whether each pixel images a bone part, a muscle part, or a lung part. Then, based on the prior probabilities determined for each pixel, the average energy in each pixel is estimated.
図8は、フォトン数の確率分布が正規分布である場合(パラメタp1,p2が平均画素値mと画素値の分散σ2である場合)の事前確率h(m=a,σ2)を模式的に示す図である。事前確率h(m=a,σ2)は、撮影される被写体102の撮影部位を透過した放射線のエネルギーに対応する第2のパラメタσ2で、最大となる。なお、事前確率h(m,σ2)は、撮影される被写体102の撮影部位を透過した放射線のエネルギーに対応する第1のパラメタmで、最大となってもよい。
FIG. 8 shows a prior probability h (m = a, σ 2 ) when the probability distribution of the number of photons is a normal distribution (when the parameters p 1 and p 2 are the average pixel value m and the variance σ 2 of the pixel values). FIG. The prior probability h (m = a, σ 2 ) is the maximum at the second parameter σ 2 corresponding to the energy of the radiation that has passed through the imaging region of the subject 102 to be imaged. The prior probability h (m, σ 2 ) may be the maximum in the first parameter m corresponding to the energy of the radiation that has passed through the imaging region of the subject 102 to be imaged.
画素Aが骨の部分に相当する場合、放射線が骨を透過した後に得られる平均エネルギーの位置で事前確率が最大になるように、画素Aでの事前確率h(m=a,σ2)が設定される。図8(b)では、分散σ2がσ2=kbone・aで、平均エネルギーが破線で示されている位置の事前確率が最大になるように、事前確率h(m=a,σ2)が設定される。比例係数kboneは、骨の部分を透過した放射線の平均エネルギーに対応する比例係数である。
When pixel A corresponds to a bone part, the prior probability h (m = a, σ 2 ) at pixel A is such that the prior probability is maximized at the position of the average energy obtained after the radiation passes through the bone. Is set. In FIG. 8B, the prior probability h (m = a, σ 2) so that the prior probability at the position where the variance σ 2 is σ 2 = k bone · a and the average energy is indicated by a broken line is maximized. ) Is set. The proportionality coefficient k bone is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the bone part.
画素Bが心臓又は心筋の部分に相当する場合、放射線が心臓を透過した後に得られる平均エネルギーの位置で事前確率が最大になるように、画素Aでの事前確率h(m=a,σ2)が設定される。図8(c)では、分散σ2がσ2=kmuscle・aで、平均エネルギーが破線で示されている位置の事前確率が最大になるように、事前確率h(m=a,σ2)が設定される。比例係数kmuscleは、心臓又は心筋の部分を透過した放射線の平均エネルギーに対応する比例係数である。
If pixel B corresponds to the heart or myocardium part, prior probability h (m = a, σ 2) at pixel A so that the prior probability is maximized at the position of the average energy obtained after the radiation passes through the heart. ) Is set. In FIG. 8C, the prior probability h (m = a, σ 2) so that the prior probability at the position where the variance σ 2 is σ 2 = k muscle · a and the average energy is indicated by a broken line is maximized. ) Is set. The proportionality coefficient k muscle is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the heart or myocardial part.
図8(b)又は図8(c)に示すように、σ2=kbone・a又はσ2=kmuscle・aで極大値を有する確率分布は、例えば、式(28)において、パラメタβ及び式(29)に示す関数c1(m),c2(m),c3(m),c4(m),c5(m)を調整することで求めることができる。
As shown in FIG. 8B or FIG. 8C, the probability distribution having the maximum value at σ 2 = k bone · a or σ 2 = k muscle · a is expressed by, for example, the parameter β in Equation (28). And by adjusting the functions c 1 (m), c 2 (m), c 3 (m), c 4 (m), and c 5 (m) shown in Equation (29).
ここで、βは、パラメタである。Z(β)は、規格化定数である。eは、自然対数である。E(m,σ2)は、式(29)で表される。
Here, β is a parameter. Z (β) is a normalization constant. e is a natural logarithm. E (m, σ 2 ) is represented by Expression (29).
関数c1(m),c2(m),c3(m),c4(m),c5(m)は、平均画素値mの関数である。
The functions c 1 (m), c 2 (m), c 3 (m), c 4 (m), and c 5 (m) are functions of the average pixel value m.
また、ステップ603では、被写体102の識別番号などの被写体情報も考慮されてもよい。一般に、被写体102の体型が肥満型の場合、やせ型より放射線吸収量が大きいため、観測される平均エネルギーが高くなる。そこで、肥満型の体型の被写体102を撮影する場合、やせ型の体型の被写体102より、高い平均エネルギーの位置の事前確率を大きく設定する。
Also, in step 603, subject information such as the identification number of the subject 102 may be considered. Generally, when the body type of the subject 102 is obese, the amount of radiation absorbed is larger than that of the thin type, and thus the observed average energy is high. Therefore, when photographing the obese body type subject 102, the prior probability of the position of higher average energy is set to be larger than that of the thin type body subject 102.
図9は、肥満型とやせ型の事前確率分布の変化を示す図である。事前確率h(m=a,σ2)は、撮影される被写体102の放射線吸収量に応じた第2のパラメタσ2で、最大となる。なお、事前確率h(m,σ2)は、撮影される被写体102の放射線吸収量に応じた第1のパラメタmで、最大となってもよい。
FIG. 9 is a diagram illustrating changes in the prior probability distribution of obesity type and lean type. The prior probability h (m = a, σ 2 ) is the maximum with the second parameter σ 2 corresponding to the amount of radiation absorbed by the subject 102 to be imaged. The prior probability h (m, σ 2 ) is a first parameter m corresponding to the radiation absorption amount of the subject 102 to be imaged, and may be maximized.
例えば、被写体情報の身長と体重からBMI(Body Mass Index)を計算し、体型は、BMIに応じて判断されればよい。また、体脂肪率のデータを用いて、体型が判断されてもよい。また、放射線管球101からの放射線の照射時間に応じて、体型が判断されてもよい。AEC(Automatic Exposure Control)装置などを用いて、放射線の照射時間を制御することもできる。なお、式(30)は、BMIの算出式を表したものである。
For example, BMI (Body Mass Index) may be calculated from the height and weight of the subject information, and the body type may be determined according to the BMI. Further, the body type may be determined using the body fat percentage data. The body shape may be determined according to the irradiation time of radiation from the radiation tube 101. The irradiation time of radiation can also be controlled using an AEC (Automatic Exposure Control) device or the like. Equation (30) represents a formula for calculating BMI.
なお、本実施例では、操作盤104や入力装置114の入力による情報(撮影部位情報や被写体情報など)に基づいて、被写体102の撮影部位や大きさや体型が判断されている。この他、撮影された放射線画像に基づいて、パターンマッチングなどの方法により、被写体102の撮影部位や大きさや体型が判断されてもよい。その場合は、撮影された複数の放射線画像のうち、パターンマッチングなどの処理時間を考慮して、所定の時間以前に撮影された放射線画像を用いて判断が行われることで、本実施例の処理時間を短縮することができる。
In this embodiment, the imaging region, size, and body shape of the subject 102 are determined based on information (imaging region information, subject information, etc.) input by the operation panel 104 or the input device 114. In addition, the imaging region, size, and body shape of the subject 102 may be determined by a method such as pattern matching based on the captured radiographic image. In that case, in consideration of processing time such as pattern matching among a plurality of captured radiographic images, a determination is made using a radiographic image captured before a predetermined time, whereby the processing of the present embodiment Time can be shortened.
この場合、事前情報取得部(決定部)111は、撮影された複数の放射線画像のうち、所定の時間以前に撮影された放射線画像を用いて、被写体情報又は撮影部位情報を取得する。
In this case, the prior information acquisition unit (determination unit) 111 acquires subject information or imaging region information using a radiographic image captured before a predetermined time among a plurality of captured radiographic images.
また、撮影部位情報や被写体情報に関連付けられた過去の情報を事前情報として、事前確率の分布が生成されてもよい。例えば、事前情報保存部113が、過去に放射線画像を撮影した際のエネルギー情報を事前情報として記憶することで、事前確率の分布の生成が可能になる。
Further, a prior probability distribution may be generated by using past information associated with imaging part information and subject information as prior information. For example, the prior information storage unit 113 stores energy information obtained when a radiation image has been captured in the past as prior information, so that a prior probability distribution can be generated.
なお、本実施例では、或る画素を用いてパラメタの決定に必要な画素値を取得するが、複数画素を用いてパラメタ決定に必要な画素値を取得してもよい。この場合、画素ごとに事前確率を定める代わりに、複数画素の組ごとに事前確率が定められる。例えば、上記のように、L個の画素値を得るために、4画素を用いる場合、その4画素に対応する事前確率は、撮影部位情報、被写体情報、及び画像などから決定される。
In this embodiment, a pixel value necessary for parameter determination is acquired using a certain pixel, but a pixel value required for parameter determination may be acquired using a plurality of pixels. In this case, instead of determining the prior probability for each pixel, the prior probability is determined for each set of a plurality of pixels. For example, as described above, when four pixels are used to obtain L pixel values, the prior probabilities corresponding to the four pixels are determined from imaging part information, subject information, images, and the like.
図10は、造影剤の種類や濃度などの造影剤情報に応じて、事前確率h(m,σ2)を決定する方法を説明する図である。事前確率h(m=a,σ2)は、撮影される被写体102に注入される造影剤を透過した放射線のエネルギーに対応する第2のパラメタσ2で、最大となる。例えば、造影剤注入装置117を用いて、血管造影を行う場合が想定される。なお、事前確率h(m,σ2)は、撮影される被写体102に注入される造影剤を透過した放射線のエネルギーに対応する第1のパラメタmで、最大となってもよい。
FIG. 10 is a diagram illustrating a method of determining the prior probability h (m, σ 2 ) according to contrast agent information such as the type and concentration of contrast agent. The prior probability h (m = a, σ 2 ) is the maximum at the second parameter σ 2 corresponding to the energy of the radiation that has passed through the contrast agent injected into the object 102 to be imaged. For example, a case where angiography is performed using the contrast medium injection device 117 is assumed. The prior probability h (m, σ 2 ) is the first parameter m corresponding to the energy of the radiation that has passed through the contrast agent injected into the object 102 to be imaged, and may be maximized.
ステップ901において、事前情報取得部111は、注入される造影剤情報(造影剤の種類や濃度など)を取得する。造影剤がヨウ素などの場合は、放射線が被写体102を透過した後、放射線の平均エネルギーは高くなる。一方、造影剤が二酸化炭素などの場合は、放射線が被写体102を透過した後、放射線の平均エネルギーが低くなる。
In step 901, the prior information acquisition unit 111 acquires information on contrast medium to be injected (contrast medium type, concentration, and the like). When the contrast agent is iodine or the like, the average energy of the radiation increases after the radiation passes through the subject 102. On the other hand, when the contrast agent is carbon dioxide or the like, the average energy of the radiation decreases after the radiation passes through the subject 102.
そこで、ステップ902において、事前情報取得部111とエネルギー算出部112は、造影剤情報から、予想される平均エネルギーとそれに対応する比例係数k(E)を計算する。
Therefore, in step 902, the prior information acquisition unit 111 and the energy calculation unit 112 calculate an expected average energy and a proportional coefficient k (E) corresponding thereto from the contrast agent information.
画素が造影剤の造影部分に相当する場合、放射線が造影剤を透過した後に得られる平均エネルギーの位置で事前確率が最大になるように、画素での事前確率h(m,σ2)が設定される。図10Bでは、分散σ2がσ2=kCM・aで、平均エネルギーが破線で示されている位置の事前確率が最大になるように、事前確率h(m,σ2)が設定される。比例係数kCMは、造影剤の造影部分を透過した放射線の平均エネルギーに対応する比例係数である。
When the pixel corresponds to the contrast portion of the contrast agent, the prior probability h (m, σ 2 ) at the pixel is set so that the prior probability becomes maximum at the position of the average energy obtained after the radiation passes through the contrast agent. Is done. In FIG. 10B, the prior probability h (m, σ 2 ) is set so that the prior probability at the position where the variance σ 2 is σ 2 = k CM · a and the average energy is indicated by a broken line is maximized. . Proportionality factor k CM is a proportionality coefficient corresponding to the average energy of the radiation transmitted through the imaging moiety of the contrast agent.
この事前確率も、式(28)により求めることができる。具体的には、σ2=kCM・aで少なくとも1つの極大値を有するように、式(28)において、パラメタβ及び式(29)に示す関数c1(m),c2(m),c3(m),c4(m),c5(m)を調整することで、確率分布を求めることができる。
This prior probability can also be obtained by equation (28). Specifically, in Equation (28), the parameter β and the functions c 1 (m) and c 2 (m) shown in Equation (29) are set so that σ 2 = k CM · a and at least one maximum value. , C 3 (m), c 4 (m), and c 5 (m) can be adjusted to obtain a probability distribution.
事前確率などの算出が終了した後、ステップ903において、造影剤が注入され、放射線画像が撮影される。そして、放射線画像(画素値)、放射線の個数に関する確率分布の情報と事前確率から平均エネルギーなどを計算する。
After the calculation of the prior probability and the like is completed, in step 903, a contrast medium is injected and a radiographic image is taken. Then, the average energy and the like are calculated from the radiation image (pixel value), the probability distribution information regarding the number of radiations, and the prior probability.
なお、事前情報取得部(決定部)111は、撮影された複数の放射線画像のうち、所定の時間以前に撮影された放射線画像を用いて、造影剤情報を取得してもよい。例えば、パターンマッチングなどを用いて、血管の位置を放射線画像から予め判別し、造影剤が通る血管を造影部分として、造影部分の画素における事前確率が算出されてもよい。
Note that the prior information acquisition unit (determination unit) 111 may acquire contrast agent information using a radiographic image captured before a predetermined time among a plurality of radiographic images captured. For example, the position of the blood vessel may be determined in advance from the radiographic image using pattern matching, and the prior probability in the pixel of the contrast portion may be calculated using the blood vessel through which the contrast agent passes as the contrast portion.
このように、被写体情報、撮影部位情報、及び造影剤情報などの事前情報に基づいて、事前情報取得部(決定部)111は、放射線画像の第1の画素に、第1の事前確率を設定し、放射線画像の第2の画素に、第1の事前確率と異なる第2の事前確率を設定する。
Thus, based on prior information such as subject information, imaging region information, and contrast agent information, the prior information acquisition unit (determination unit) 111 sets the first prior probability in the first pixel of the radiation image. Then, a second prior probability different from the first prior probability is set for the second pixel of the radiation image.
そして、エネルギー算出部(算出部)112は、確率分布、第1の事前確率、第1の画素の画素値に基づいて、第1の画素における放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する。また、エネルギー算出部(算出部)112は、確率分布、第2の事前確率、第2の画素の画素値に基づいて、第2の画素における放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する。
The energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons in the first pixel based on the probability distribution, the first prior probability, and the pixel value of the first pixel. calculate. The energy calculation unit (calculation unit) 112 calculates at least one of the average energy of radiation and the average number of photons in the second pixel based on the probability distribution, the second prior probability, and the pixel value of the second pixel. calculate.
また、事前情報取得部111は、注目画素の事前確率logh(p,q)に対して、注目画素の周囲の画素情報を利用することもできる。事前情報取得部111は、注目画素の周囲の画素情報を取得する。事前情報取得部111は、注目画素の周囲の画素との差分に関係する量を事前確率に導入し、差分が大きければ大きいほど、上述した式(3)の値が小さくなるようにする。
The prior information acquisition unit 111 can also use pixel information around the target pixel for the prior probability log (p, q) of the target pixel. The prior information acquisition unit 111 acquires pixel information around the pixel of interest. The prior information acquisition unit 111 introduces an amount related to the difference between the target pixel and surrounding pixels into the prior probability, and the larger the difference is, the smaller the value of the above-described formula (3) is.
これにより、パラメタpとqが周囲の画素に近い値に計算され、画像のノイズが低減される。注目画素の周囲の画素との差分に関係する量は、正則化項とも呼ばれる。図11は、注目画素と周囲の画素との関係を示す。
Thereby, the parameters p and q are calculated to values close to the surrounding pixels, and the noise of the image is reduced. The quantity related to the difference between the pixel of interest and the surrounding pixels is also called a regularization term. FIG. 11 shows the relationship between the target pixel and surrounding pixels.
図11Aに示すように、注目画素の周囲の画素情報を導入した事前確率の例としては、例えば、式(31)に示すようにパラメタpとqの差分の二乗(L2ノルム)があげられる。
As shown in FIG. 11A, examples of prior probabilities in which pixel information around a pixel of interest is introduced include, for example, the square of the difference between parameters p and q (L2 norm) as shown in Equation (31).
ここで,(i,j)は注目画素の座標である。λ(2)k,l,μ(2)k,lは係数(λ(2)k,l,μ(2)k,l>0)である。pi,jは座標(i,j)におけるパラメタpの値である。qi,jは座標(i,j)におけるパラメタqの値である。なお、λ(2)k,lの(2)は,差分の2乗にかかる係数であることを意味している。
Here, (i, j) is the coordinate of the target pixel. λ (2) k, l , μ (2) k, l are coefficients (λ (2) k, l , μ (2) k, l > 0). p i , j is the value of the parameter p at the coordinates (i, j). q i , j is the value of the parameter q at the coordinates (i, j). In addition, (2) of λ (2) k, l means that the coefficient is related to the square of the difference.
係数-λ(2)k,l,-μ(2)k,lは、負であるから、注目画素pi,j,qi,jと周囲の画素pi+k,j+k,qi+k,j+kの差が小さいほど、logh(pi,qj)の値は大きくなる。よって、周囲の画素との違いの小さい値pi,j,qi,jは、より尤もらしい値であると判定される。
Since the coefficients -λ (2) k, l , -μ (2) k, l are negative, the pixel of interest p i, j , q i, j and the surrounding pixels p i + k, j + k , q i + k, j + k The smaller the difference, the larger the value of log (p i , q j ). Therefore, the values p i, j , q i, j having a small difference from the surrounding pixels are determined to be more likely values.
また、式(31)を微分することにより、式(15)、式(16)、式(23)、式(24)に代入することのできる形を求めることができる。
Further, by differentiating the equation (31), a form that can be substituted into the equations (15), (16), (23), and (24) can be obtained.
周囲の画素情報を導入した事前確率の算出例は、例えば、式(34)に示すように差分の絶対値(|・|)を用いる形態である。
An example of calculating the prior probability in which surrounding pixel information is introduced is, for example, a form using an absolute value of a difference (| · |) as shown in Expression (34).
式(35)に示すように、差分の絶対値とその2乗の組み合わせる形態であってもよい。
As shown in Expression (35), the absolute value of the difference and the square thereof may be combined.
係数λk,l,μk,lは、注目画素からの距離によって変更する。例えば、図11Bに示すように、注目画素に対してななめ左上,右上,左下,右下の係数(パラメタpにかかる係数λであればλ-1,-1,λ1,-1,λ-1,1,λ1,1)は、注目画素に対して上、下、右、左の係数(パラメタpにかかる係数λであればλ0,-1,λ0,1,λ0,1,λ0,-1)より大きい値となる。つまり、式(36)に示すような関係が成り立つ。
The coefficients λ k, l , μ k, l are changed according to the distance from the target pixel. For example, as shown in FIG. 11B, the upper left, upper right, lower left, and lower right coefficients for the pixel of interest (λ −1, −1 , λ 1, −1 , λ − if the coefficient λ is related to the parameter p). 1 , 1 , λ 1,1 ) are the upper, lower, right, and left coefficients (λ 0, −1 , λ 0,1 , λ 0,1 if the coefficient λ is related to the parameter p). , Λ 0, −1 ). That is, the relationship shown in Expression (36) is established.
注目画素からの距離は、2つの画素の重心間の距離を求めればよい。また、特定の方向の解像度を向上させる場合も係数λk,l,μk,lを変化させる必要がある。
What is necessary is just to obtain | require the distance between the gravity centers of two pixels about the distance from an attention pixel. Also, in order to improve the resolution in a specific direction, it is necessary to change the coefficients λ k, l , μ k, l .
係数λk,l,μk,lや考慮する周囲の画素の数は撮影条件によって切替えることもできる。一般に、係数λk,l,μk,lが大きければ大きいほど(係数-λk,l,-μk,lが小さければ小さいほど)、また周囲の画素の数が多ければ多いほど、ノイズが少なくなる一方、画像の鮮鋭度が低下する傾向にある。なお、係数λk,l,μk,lを正則化項の強度と定義する。よって、時間方向の枚数が少ない場合、高速なフレームレートが必要な場合、線量の少ない場合、高解像度の不要な場合などにおいては、係数λk,l,μk,lを大きくし、かつ周囲の画素の数を増加させ、ノイズ低減を優先する。例えば、透視撮影がこのケースにあたる。また、細部まで描写が必要な一般撮影(静止画撮影)では、係数λk,l,μk,lを小さくし、周囲の画素の数を減少させ、ノイズ低減を優先する。
The coefficients λ k, l , μ k, l and the number of surrounding pixels to be considered can be switched depending on the photographing conditions. In general, the larger the coefficients λ k, l , μ k, l (the smaller the coefficients -λ k, l , -μ k, l ) and the greater the number of surrounding pixels, the more noise However, the sharpness of the image tends to decrease. The coefficients λ k, l , μ k, l are defined as the intensity of the regularization term. Therefore, when the number of images in the time direction is small, when a high frame rate is required, when the dose is small, or when high resolution is not required, the coefficients λ k, l , μ k, l are increased and the surroundings are increased. Increase the number of pixels and give priority to noise reduction. For example, fluoroscopy is the case. In general shooting (still image shooting) that requires detailed description, the coefficients λ k, l , μ k, l are reduced, the number of surrounding pixels is reduced, and noise reduction is prioritized.
また、事前情報取得部111は、画像の画素値からエッジ情報を抽出し、画素毎に正則化項の係数を決定してもよい。画素値の大きく異なる境界の部分は一般にはエネルギーが大きく異なるから、境界の部分では周囲の画素情報を導入した事前確率の項(正則化項)を小さくして隣接画素の影響を小さくする。
Further, the prior information acquisition unit 111 may extract edge information from the pixel value of the image and determine a regularization term coefficient for each pixel. Since the boundary portions having greatly different pixel values generally differ greatly in energy, the prior probability term (regularization term) in which peripheral pixel information is introduced is reduced in the boundary portion to reduce the influence of adjacent pixels.
図12は、本実施例における図4ステップ301(事前確率の決定)の詳細を示したフローである。ステップ501からステップ504の処理は、事前情報取得部111の処理となる。
FIG. 12 is a flow showing details of step 301 (determination of prior probabilities) in FIG. 4 in the present embodiment. The processing from step 501 to step 504 is processing of the prior information acquisition unit 111.
ステップ501において、複数の画像を平均し、平均画像を生成する。1枚の画像ではノイズが多くエッジ抽出に不適であるため、複数の画像を平均化して平均画像を生成する。
In step 501, a plurality of images are averaged to generate an average image. Since one image is noisy and unsuitable for edge extraction, a plurality of images are averaged to generate an average image.
ステップ502において、平均画像から境界を抽出する。具体的には、事前情報取得部111は、画像における組織の境界を抽出する境界抽出部を有している。境界の抽出には、例えばラプラシアンフィルタなど一般的に用いられる画像フィルタを用いればよい。境界とは、例えば、被写体における肺、腹部などの組織の境界、被写体と被写体のない部分(素抜け)の境界である。
In step 502, a boundary is extracted from the average image. Specifically, the prior information acquisition unit 111 includes a boundary extraction unit that extracts the boundary of the tissue in the image. For the boundary extraction, a generally used image filter such as a Laplacian filter may be used. The boundary is, for example, a boundary between tissues in the subject such as the lungs and abdomen, and a boundary between the subject and a portion where there is no subject (elementary omission).
ステップ503において、各座標の正則化項の係数λk,l,μk,lの空間分布を決定する。図13は、各座標の正則化項の係数の空間分布を決定する方法を示す図である。図13Aは被写体(白点線で表されている)を撮影した際の正則化項の強度の空間分布を表している。空間分布は、画素(図13Aのマス目)毎に決定される。被写体を透過して撮影される画像のエッジを抽出すると、マス目の黒い部分のようになる。境界の画素と境界以外の画素については、それぞれ異なる方法で正則化項の係数が決定される。境界とは被写体の構造が急激に変化するところである。境界の画素は、上下左右いずれの画素とも異なる値を示すことになるから正則化項が小さくなる。境界以外の画素の正則化項の係数は、境界の正則化項より大きくなる。境界を定めるために、事前情報取得部111は、予め閾値を保持し、事前情報取得部111は、エッジの画素値と閾値を比較して、閾値を超えたものを境界と定める。
In step 503, the spatial distribution of the regularization term coefficients λ k, l , μ k, l of each coordinate is determined. FIG. 13 is a diagram illustrating a method for determining the spatial distribution of the coefficient of the regularization term of each coordinate. FIG. 13A shows the spatial distribution of the intensity of the regularization term when a subject (represented by a white dotted line) is photographed. The spatial distribution is determined for each pixel (the cell in FIG. 13A). When an edge of an image taken through a subject is extracted, it becomes like a black portion of a grid. For the boundary pixels and the non-boundary pixels, the coefficients of the regularization term are determined by different methods. The boundary is where the structure of the subject changes rapidly. Since the boundary pixels show different values from the upper, lower, left, and right pixels, the regularization term becomes smaller. The coefficient of the regularization term of pixels other than the boundary is larger than the regularization term of the boundary. In order to determine the boundary, the prior information acquisition unit 111 holds a threshold value in advance, and the prior information acquisition unit 111 compares the pixel value of the edge with the threshold value, and determines a boundary that exceeds the threshold value.
ステップ503にて定められた係数の空間分布に基づいて、ステップ504にて各画素で事前確率の式を決定する。事前確率の決定は、式(31)、式(34)、式(35)などの周囲の画素情報を導入した事前確率の式を用いて行われる。なお、図13では、煩雑さを避けるため第一のパラメタpと係数λのみを示す。第二のパラメタqと係数μについても同様である。事前確率の形は式(31)としているが,式(34)、式(35)でも同様である。
Based on the spatial distribution of the coefficients determined in step 503, a prior probability formula is determined in step 504 for each pixel. The determination of the prior probability is performed using a prior probability formula that introduces surrounding pixel information such as Formula (31), Formula (34), and Formula (35). In FIG. 13, only the first parameter p and the coefficient λ are shown in order to avoid complexity. The same applies to the second parameter q and the coefficient μ. Although the form of the prior probability is the expression (31), the same applies to the expressions (34) and (35).
事前確率の決定時は、注目画素が境界であるか否かによって正則化項の係数の決定の方法を変更する。注目画素が境界以外である場合、正則化項は比較(この例の場合差分)する周囲の画素が持つ正則化項の係数とする。
When determining the prior probability, the method for determining the coefficient of the regularization term is changed depending on whether or not the target pixel is a boundary. When the pixel of interest is other than the boundary, the regularization term is a coefficient of the regularization term of surrounding pixels to be compared (difference in this example).
図13Bに示すように、図13Aの画素Aの注目画素(i,j)は境界でない。例えば、注目画素の右隣の画素(i+1,j)との比較の項(pi,j-pi+1,j)2にかかる係数λは、右隣の画素(i+1,j)が持つ係数λi+1,jとなる。画素(i+1,j)は境界でないため、係数λi+1,jは比較的大きい値が設定される。注目画素(i,j)は、右隣の画素(i+1,j)の影響を受けやすくなるように設定される。一方、注目画素の左隣の画素(i-1,j)との比較の項(pi,j-pi-1,j)2にかかる係数λは、左隣の画素(i-1,j)が持つ係数λi-1,jとなる。前述の右隣の場合と異なり(i-1,j)は境界であるため、係数λi-1,jは比較的小さい値が設定される。注目画素(i,j)は左隣の画素(i-1,j)の影響を受けにくくなるように設定される。
As shown in FIG. 13B, the target pixel (i, j) of the pixel A in FIG. 13A is not a boundary. For example, the coefficient λ relating to the comparison term ( pi, j− pi + 1, j ) 2 with the pixel (i + 1, j) on the right side of the target pixel is the coefficient λ of the pixel (i + 1, j) on the right side. i + 1, j . Since the pixel (i + 1, j) is not a boundary, a relatively large value is set for the coefficient λi + 1, j . The target pixel (i, j) is set so as to be easily influenced by the pixel (i + 1, j) on the right side. On the other hand, the coefficient λ applied to the comparison term (p i, j −p i−1, j ) 2 with the pixel (i−1, j ) on the left side of the target pixel is equal to the pixel (i−1, j ) on the left side. j) is the coefficient λ i−1, j . Unlike (i−1, j), which is the boundary on the right side, the coefficient λ i−1, j is set to a relatively small value. The pixel of interest (i, j) is set so as not to be affected by the pixel (i-1, j) on the left side.
注目画素(i,j)が境界とされた場合、境界の部分では正則化項の大きさを表す係数λk,l,μk,lを注目画素(i,j)の係数とする。上下左右の画素と相関の薄い境界の画素値の正則化項の係数は、比較的小さくする必要がある。
When the target pixel (i, j) is set as a boundary, coefficients λ k, l , μ k, l representing the size of the regularization term are used as the coefficients of the target pixel (i, j) in the boundary part. The coefficient of the regularization term of the pixel value of the boundary having a low correlation with the upper, lower, left and right pixels needs to be relatively small.
図13Cに示すように、図13Aの画素Bの注目画素(i,j)は境界である。よって、上下左右の隣接画素(i+k,j+l)((k,l)=(0,-1),(0,+1),(-1,0),(1,0))との比較の項(pi,j-pi+k,j+l)2にかかる係数λは、すべて注目画素(i,j)の持つ係数λi,jとなる。つまり、注目画素(i,j)は上下左右の画素の影響を受けにくくなるように設定される。
As shown in FIG. 13C, the target pixel (i, j) of the pixel B in FIG. 13A is a boundary. Therefore, a comparison term with the adjacent pixels (i + k, j + l) ((k, l) = (0, −1), (0, +1), (−1, 0), (1, 0)) on the upper, lower, left and right sides. (p i, j -p i + k, j + l) coefficient according to the 2 lambda, all target pixel (i, j) be a factor lambda i, j with the. That is, the target pixel (i, j) is set so as not to be affected by the upper, lower, left and right pixels.
図4に記載のステップにより、事前確率h(p,q)が決定されるから、図4に記載のステップに基づいて平均フォトン数
Since the prior probability h (p, q) is determined by the steps shown in FIG. 4, the average number of photons based on the steps shown in FIG.
と、平均エネルギーの関数である比例係数k(E)を求めればよい。
And a proportionality coefficient k (E) that is a function of average energy may be obtained.
図14は本実施例における図4ステップ301(事前確率の決定)の詳細を示したフローである。ステップ701からステップ704の処理は、事前情報取得部111の処理となる。
FIG. 14 is a flow showing details of step 301 (determination of prior probabilities) in FIG. 4 in the present embodiment. The processing from step 701 to step 704 is the processing of the prior information acquisition unit 111.
ステップ701において、事前情報取得部111は、操作盤104から撮影する部位情報を取得する。取得された部位情報は、ステップ702、ステップ703で用いられる。部位情報は、撮影部位と結び付けられた正則化項関数を呼び出すために用いられる。正則化項関数は、画素の画素値と正則化項の強さを表した関数である。例えば、取得された撮影部位が胸部正面画像であれば、胸部正面用の正則化項関数を呼び出す。正則化項関数の詳細は後述する。正則化項関数は予め事前情報保存部113に保存される。
In step 701, the prior information acquisition unit 111 acquires part information to be imaged from the operation panel 104. The acquired part information is used in step 702 and step 703. The part information is used to call a regularization term function associated with the imaging part. The regularization term function is a function that represents the pixel value of a pixel and the strength of the regularization term. For example, if the acquired imaging region is a chest front image, a regularization term function for the chest front is called. Details of the regularization term function will be described later. The regularization term function is stored in advance in the prior information storage unit 113.
次にステップ501において、エッジ抽出用の平均画像を生成し、ステップ502にて境界の抽出を行う。このステップは、図12で述べたステップと同様である。
Next, in step 501, an average image for edge extraction is generated, and in step 502, the boundary is extracted. This step is the same as the step described in FIG.
ステップ702と領域抽出と正則化項の決定を行う。領域抽出はたとえばヒストグラムを用いて行うことができる。胸部正面の画像のヒストグラムの例を図15(a)に示した。胸部正面の画像のヒストグラムの中で、一番画素値が高くなるのは被写体のない部分(素抜け)である。次に画素値が高くなるのは,空気を多く含む肺野であり、縦隔などの部分は画素値が最も低くなる。そこで画素の画素値がヒストグラムのどの山(ピーク)に所属するかを定めることにより、画素の撮影している部位を同定することができる。画素値と部位の関係は、事前情報保存部113に保存されており、ステップ701にて取得される。なお、領域抽出の方法はヒストグラムを用いた手法によらず、他の既知の手法を用いることができる。
Step 702, region extraction and regularization term determination. Region extraction can be performed using, for example, a histogram. An example of an image histogram of the front of the chest is shown in FIG. In the histogram of the image in front of the chest, the highest pixel value is a portion where there is no subject (element missing). The next highest pixel value is in the lung field containing a lot of air, and the pixel value is the lowest in the mediastinum or the like. Therefore, by determining which peak (peak) of the histogram the pixel value of the pixel belongs to, it is possible to identify the site where the pixel is imaged. The relationship between the pixel value and the part is stored in the prior information storage unit 113 and acquired in step 701. Note that the region extraction method is not limited to a method using a histogram, and other known methods can be used.
次に、ステップ703にて各座標の正則化項の係数を決定する。係数の決定では、ステップ702によって決定された領域に基づいて決定される。例えば、胸部正面の画像の場合、微細な血管が存在する。つまり、肺野部は周囲の画素との相関が小さい。肺野部の正則化項の係数は、他の部分の正則化項の係数より低く設定する必要がある。
Next, in step 703, the coefficient of the regularization term of each coordinate is determined. The coefficient is determined based on the area determined in step 702. For example, in the case of an image of the front of the chest, there are fine blood vessels. That is, the lung field has a small correlation with surrounding pixels. The coefficient of the regularization term in the lung field needs to be set lower than the coefficient of the regularization term in other parts.
正則化項の係数の決定は、正則化項関数を用いて行われる。正則化項関数は、画素値と正則化項の関係を表した関数であり、撮影部位ごとに異なる関数となっている。よって、ステップ701にて取得した撮影部位の情報を用いて呼び出されることになる。正則化項関数は、たとえばベジェ曲線などで平滑化された曲線として用意される。図15(b)は、正則化項関数を示している。
The determination of the regularization term coefficient is performed using a regularization term function. The regularization term function is a function that represents the relationship between the pixel value and the regularization term, and is a function that differs for each imaging region. Therefore, it is called using the information on the imaging region acquired in step 701. The regularization term function is prepared as a curve smoothed by a Bezier curve, for example. FIG. 15B shows a regularization term function.
また、境界抽出に基づいた正則化項の決定も本ステップで行われる。境界抽出に基づいた正則化項の係数の決定は上述した方法を用いて行われる。なお、境界に設定される正則化項の強さは、部位に基づいて決定された正則化項の強さより弱く設定される。例えば、肺野は、正則化項の強さを中とする。素抜け・その他は、正則化項の強さを大とする。境界は、正則化項の強さを小とする。
Also, the regularization term based on boundary extraction is determined in this step. The regularization term coefficient based on the boundary extraction is determined using the method described above. Note that the strength of the regularization term set at the boundary is set to be weaker than the strength of the regularization term determined based on the region. For example, in the lung field, the regularization term has a medium strength. For omissions and others, the strength of the regularization term is increased. The boundary makes the strength of the regularization term small.
ステップ704にて、事前確率の式が決定される。決定の方法は上述した方法を用いて行われる。例えば、境界は境界の正則化項を用い、境界以外は周囲の画素の正則化項を用いる。その後、図4のステップ302以降の手順を実行する。
In step 704, a prior probability formula is determined. The determination method is performed using the method described above. For example, the boundary uses a regularization term of the boundary, and uses a regularization term of surrounding pixels other than the boundary. Thereafter, the procedure after step 302 in FIG. 4 is executed.
本実施例では、放射線の血管造影装置や放射線撮影装置を想定して記述されているが、その他の放射線撮影装置(例えば、マンモグラフィ装置など)にも、本実施例は適用可能である。また、X線以外の放射線、例えば、α線、β線、及びγ線を用いた放射線撮影装置にも、本実施例は適用可能である。
In this embodiment, the description is made assuming a radiation angiography apparatus and a radiography apparatus, but the present embodiment can also be applied to other radiography apparatuses (for example, a mammography apparatus). In addition, the present embodiment can also be applied to a radiation imaging apparatus using radiation other than X-rays, for example, α rays, β rays, and γ rays.
以上、本発明に係る実施例について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。
The embodiments according to the present invention have been described above. However, the present invention is not limited to these embodiments, and can be changed or modified within the scope of the claims.
本発明は、上記の実施例の機能を実現するソフトウェア(プログラム)をネットワーク又は各種記憶媒体を介してシステム又は装置に供給し、システム又は装置のコンピュータ(CPUやMPUなど)がプログラムを読み出すことにより実行されてもよい。また、本発明は、システム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
The present invention supplies software (program) that realizes the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed. The present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.
この出願は、2016年12月5日に出願された日本国特許出願第2016-235548と、2017年8月28日に出願された日本国特許出願第2017-163469からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
This application claims priority from Japanese Patent Application No. 2016-235548 filed on December 5, 2016 and Japanese Patent Application No. 2017-163469 filed on August 28, 2017. The contents of which are incorporated herein by reference.
Claims (24)
- 放射線により放射線画像を撮影する放射線撮影装置であって、
所定の条件に基づいて事前確率を決定する決定手段と、
前記放射線画像から測定される画素値を取得する取得手段と、
前記事前確率及び前記画素値に基づいて、前記放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する算出手段と、
を備えることを特徴とする放射線撮影装置。 A radiographic apparatus that captures radiographic images by radiation,
Determining means for determining a prior probability based on a predetermined condition;
Obtaining means for obtaining a pixel value measured from the radiation image;
Calculating means for calculating at least one of an average energy and an average number of photons of the radiation based on the prior probability and the pixel value;
A radiation imaging apparatus comprising: - 前記決定手段は、ベイズの定理の確率分布及び前記事前確率を決定し、
前記算出手段は、前記ベイズの定理の確率分布及び前記事前確率により、前記放射線の前記平均エネルギー及び前記平均フォトン数の少なくとも1つを算出することを特徴とする請求項1に記載の放射線撮影装置。 The determining means determines a probability distribution of Bayes' theorem and the prior probability,
2. The radiography according to claim 1, wherein the calculating unit calculates at least one of the average energy and the average number of photons of the radiation based on a probability distribution of the Bayes' theorem and the prior probability. apparatus. - 前記確率分布は、前記放射線のフォトン数に関する確率分布であることを特徴とする請求項2に記載の放射線撮影装置。 3. The radiation imaging apparatus according to claim 2, wherein the probability distribution is a probability distribution related to the number of photons of the radiation.
- 前記事前確率は、前記放射線画像の平均画素値の算出に用いられる第1のパラメタ及び前記放射線の平均エネルギーの算出に用いられる第2のパラメタを変数とすることを特徴とする請求項1乃至3の何れか1項に記載の放射線撮影装置。 2. The prior probability includes a first parameter used for calculating an average pixel value of the radiation image and a second parameter used for calculating an average energy of the radiation as variables. 4. The radiographic apparatus according to any one of 3 above.
- 前記確率分布は、前記放射線画像の平均画素値の算出に用いられる第1のパラメタ及び前記放射線の平均エネルギーの算出に用いられる第2のパラメタを変数とすることを特徴とする請求項2又は3に記載の放射線撮影装置。 The probability distribution uses a first parameter used for calculating an average pixel value of the radiation image and a second parameter used for calculating an average energy of the radiation as variables. The radiation imaging apparatus described in 1.
- 前記第1のパラメタは、前記放射線画像の所定の画素における時間平均の平均画素値及び前記放射線画像の複数の画素の空間平均の平均画素値の少なくとも1つであることを特徴とする請求項4又は5に記載の放射線撮影装置。 5. The first parameter is at least one of a temporal average average pixel value of predetermined pixels of the radiographic image and a spatial average average pixel value of a plurality of pixels of the radiographic image. Or the radiography apparatus of 5.
- 前記第2のパラメタは、前記平均エネルギーを変数とする関数、前記放射線画像の画素値の分散、及び前記放射線画像の画素値の標準偏差の少なくとも1つであることを特徴とする請求項4又は5に記載の放射線撮影装置。 The second parameter is at least one of a function having the average energy as a variable, a variance of pixel values of the radiation image, and a standard deviation of pixel values of the radiation image. 5. The radiographic apparatus according to 5.
- 前記確率分布は、ポアソン分布及び正規分布の少なくとも1つであることを特徴とする請求項2乃至7の何れか1項に記載の放射線撮影装置。 The radiographic apparatus according to any one of claims 2 to 7, wherein the probability distribution is at least one of a Poisson distribution and a normal distribution.
- 前記算出手段は、前記画素値が測定された場合に前記第1のパラメタ及び第2のパラメタがそれぞれ第1の値及び第2の値となる事象の確率が最大となるように、前記確率分布と前記事前確率の前記第1のパラメタ及び前記第2のパラメタの解である前記第1の値及び前記第2の値とを算出することを特徴とする請求項4乃至8の何れか1項に記載の放射線撮影装置。 The calculation means is configured so that when the pixel value is measured, the probability distribution is such that a probability of an event in which the first parameter and the second parameter are the first value and the second value, respectively, is maximized. And calculating the first value and the second value which are solutions of the first parameter and the second parameter of the prior probability. The radiographic apparatus according to the item.
- 前記決定手段は、前記放射線画像における注目画素の周囲の画素情報に基づいて事前確率を決定することを特徴とする請求項1に記載の放射線撮影装置。 2. The radiation imaging apparatus according to claim 1, wherein the determining unit determines a prior probability based on pixel information around a pixel of interest in the radiation image.
- 前記決定手段は、前記放射線画像における組織の境界を抽出する境界抽出部を有し、前記境界抽出部で抽出された組織の境界に基づいて事前確率を決定することを特徴とする請求項10に記載の放射線撮影装置。 The said determination means has a boundary extraction part which extracts the boundary of the structure | tissue in the said radiographic image, The prior probability is determined based on the boundary of the structure | tissue extracted by the said boundary extraction part. The radiation imaging apparatus described.
- 前記注目画素が組織の境界である場合、前記画素情報の強度は前記注目画素に基づいて設定され、前記注目画素が組織の境界でない場合、前記画素情報の強度は前記注目画素の周囲の画素情報に基づいて設定されることを特徴とする請求項8に記載の装置。 When the pixel of interest is a tissue boundary, the intensity of the pixel information is set based on the pixel of interest, and when the pixel of interest is not a tissue boundary, the intensity of the pixel information is pixel information around the pixel of interest. The apparatus according to claim 8, wherein the apparatus is set based on:
- 前記事前確率は、前記放射線の最小エネルギーと最大エネルギーにそれぞれ対応する第1のパラメタ間及び前記第2のパラメタ間の少なくとも1つで、最大となることを特徴とする請求項4乃至12の何れか1項に記載の放射線撮影装置。 13. The prior probability is a maximum between at least one of the first parameters corresponding to the minimum energy and the maximum energy of the radiation and between the second parameters, respectively. The radiation imaging apparatus according to any one of the above.
- 前記事前確率は、前記放射線の最小エネルギーに対応する前記第1のパラメタ間及び前記第2のパラメタ間の少なくとも1つ以外の範囲で、0となることを特徴とする請求項13に記載の放射線撮影装置。 14. The prior probability is 0 in a range other than at least one between the first parameters and the second parameters corresponding to the minimum energy of the radiation. Radiography equipment.
- 前記事前確率は、撮影される被写体の撮影部位を透過した前記放射線のエネルギーに対応する前記第1のパラメタ及び前記第2のパラメタの少なくとも1つで、最大となることを特徴とする請求項4乃至14の何れか1項に記載の放射線撮影装置。 The prior probability is a maximum in at least one of the first parameter and the second parameter corresponding to the energy of the radiation that has passed through the imaging region of the subject to be imaged. The radiation imaging apparatus according to any one of 4 to 14.
- 前記事前確率は、撮影される被写体の放射線吸収量に応じた前記第1のパラメタ及び前記第2のパラメタの少なくとも1つで、最大となることを特徴とする請求項4乃至14の何れか1項に記載の放射線撮影装置。 15. The prior probability is a maximum in at least one of the first parameter and the second parameter corresponding to a radiation absorption amount of a subject to be photographed. The radiation imaging apparatus according to item 1.
- 前記事前確率は、撮影される被写体に注入される造影剤を透過した前記放射線のエネルギーに対応する第1のパラメタ及び前記第2のパラメタの少なくとも1つで、最大となることを特徴とする請求項4乃至14の何れか1項に記載の放射線撮影装置。 The prior probability is maximized by at least one of the first parameter and the second parameter corresponding to the energy of the radiation transmitted through the contrast agent injected into the subject to be imaged. The radiation imaging apparatus according to any one of claims 4 to 14.
- 前記決定手段は、
前記放射線画像の第1の画素に、第1の前記事前確率を設定し、
前記放射線画像の第2の画素に、前記第1の事前確率と異なる第2の事前確率を設定し、
前記算出手段は、
前記第1の事前確率及び前記第1の画素の前記画素値に基づいて、前記第1の画素における前記放射線の前記平均エネルギー及び平均フォトン数の少なくとも1つを算出し、
前記第2の事前確率及び前記第2の画素の前記画素値に基づいて、前記第2の画素における前記放射線の前記平均エネルギー及び平均フォトン数の少なくとも1つを算出することを特徴とする請求項1乃至17の何れか1項に記載の放射線撮影装置。 The determining means includes
Setting the first prior probability to the first pixel of the radiation image;
Setting a second prior probability different from the first prior probability to the second pixel of the radiation image;
The calculating means includes
Calculating at least one of the average energy and the average photon number of the radiation in the first pixel based on the first prior probability and the pixel value of the first pixel;
The at least one of the average energy and the average number of photons of the radiation in the second pixel is calculated based on the second prior probability and the pixel value of the second pixel. The radiation imaging apparatus according to any one of 1 to 17. - 前記決定手段は、前記放射線を発生させる放射線発生手段に関する放射線発生情報、前記放射線を検出する放射線検出手段に関する放射線検出情報、撮影される被写体に関する被写体情報、撮影される前記被写体の撮影部位に関する撮影部位情報、前記被写体に注入される造影剤に関する造影剤情報、前記放射線撮影装置又は前記放射線発生手段を支持する支持手段に関する支持情報、及び前記被写体を配置する架台に関する架台情報の少なくとも1つに基づいて、前記事前確率を決定することを特徴とする請求項1乃至18の何れか1項に記載の放射線撮影装置。 The determination means includes radiation generation information relating to the radiation generation means for generating the radiation, radiation detection information relating to the radiation detection means for detecting the radiation, subject information relating to the subject to be photographed, and a photographing part relating to the photographing part of the subject to be photographed. Based on at least one of information, contrast agent information about a contrast agent injected into the subject, support information about a support means for supporting the radiation imaging apparatus or the radiation generating means, and gantry information about a gantry on which the subject is placed The radiographic apparatus according to any one of claims 1 to 18, wherein the prior probability is determined.
- 前記決定手段は、撮影された複数の前記放射線画像のうち、所定の時間以前に撮影された前記放射線画像を用いて、前記放射線発生情報、前記放射線検出情報、前記被写体情報、前記撮影部位情報、及び前記造影剤情報の少なくとも1つを取得することを特徴とする請求項19に記載の放射線撮影装置。 The determining means uses the radiation image captured before a predetermined time among the plurality of captured radiation images, the radiation generation information, the radiation detection information, the subject information, the imaging region information, The radiographic apparatus according to claim 19, wherein at least one of the contrast medium information is acquired.
- 前記放射線発生情報は、前記放射線発生手段の管電圧、前記放射線発生手段の管電流、前記放射線発生手段の放射線照射時間、前記放射線発生手段の放射線スペクトル、放射線フィルタの有無、及び前記放射線フィルタの特性の少なくとも1つを含むことを特徴とする請求項19又は20に記載の放射線撮影装置。 The radiation generation information includes a tube voltage of the radiation generation unit, a tube current of the radiation generation unit, a radiation irradiation time of the radiation generation unit, a radiation spectrum of the radiation generation unit, presence / absence of a radiation filter, and characteristics of the radiation filter 21. The radiographic apparatus according to claim 19 or 20, comprising at least one of the following.
- 放射線を発生させる放射線発生手段と、
放射線を検出する放射線検出手段と、
を備え、前記放射線により放射線画像を撮影する放射線撮影システムであって、
所定の条件に基づいて事前確率を決定する決定手段と、
前記放射線画像から測定される画素値を取得する取得手段と、
前記事前確率及び前記画素値に基づいて、前記放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する算出手段と、
を備えることを特徴とする放射線撮影システム。 Radiation generating means for generating radiation;
Radiation detection means for detecting radiation;
A radiation imaging system for capturing a radiation image with the radiation,
Determining means for determining a prior probability based on a predetermined condition;
Obtaining means for obtaining a pixel value measured from the radiation image;
Calculating means for calculating at least one of an average energy and an average number of photons of the radiation based on the prior probability and the pixel value;
A radiation imaging system comprising: - 放射線により放射線画像を撮影する放射線撮影方法であって、
所定の条件に基づいて事前確率を決定する工程と、
前記放射線画像から測定される画素値を取得する工程と、
前記事前確率及び前記画素値に基づいて、前記放射線の平均エネルギー及び平均フォトン数の少なくとも1つを算出する工程と、
を備えることを特徴とする放射線撮影方法。 A radiography method for taking a radiographic image with radiation,
Determining a prior probability based on a predetermined condition;
Obtaining a pixel value measured from the radiation image;
Calculating at least one of an average energy and an average number of photons of the radiation based on the prior probability and the pixel value;
A radiation imaging method comprising: - コンピュータを請求項1乃至21の何れか1項に記載の放射線撮影装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the radiation imaging apparatus according to any one of claims 1 to 21.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016235548A JP2020096646A (en) | 2016-12-05 | 2016-12-05 | Radiographic apparatus, radiographic system, radiographic method and program |
JP2016-235548 | 2016-12-05 | ||
JP2017-163469 | 2017-08-28 | ||
JP2017163469 | 2017-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105493A1 true WO2018105493A1 (en) | 2018-06-14 |
Family
ID=62491043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043116 WO2018105493A1 (en) | 2016-12-05 | 2017-11-30 | Radiographic image capturing device, radiographic image capturing system, radiographic image capturing method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018105493A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241030A1 (en) * | 2019-05-30 | 2020-12-03 | キヤノン株式会社 | Image processing device, image processing method, and program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004508124A (en) * | 2000-09-14 | 2004-03-18 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray detector and method for tissue-specific imaging |
JP2009285356A (en) * | 2008-05-30 | 2009-12-10 | Institute Of National Colleges Of Technology Japan | Image capturing system for medical use, image processing apparatus, image processing method, and program |
JP2011024773A (en) * | 2009-07-24 | 2011-02-10 | National Institute Of Advanced Industrial Science & Technology | X-ray component measuring apparatus |
-
2017
- 2017-11-30 WO PCT/JP2017/043116 patent/WO2018105493A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004508124A (en) * | 2000-09-14 | 2004-03-18 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray detector and method for tissue-specific imaging |
JP2009285356A (en) * | 2008-05-30 | 2009-12-10 | Institute Of National Colleges Of Technology Japan | Image capturing system for medical use, image processing apparatus, image processing method, and program |
JP2011024773A (en) * | 2009-07-24 | 2011-02-10 | National Institute Of Advanced Industrial Science & Technology | X-ray component measuring apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241030A1 (en) * | 2019-05-30 | 2020-12-03 | キヤノン株式会社 | Image processing device, image processing method, and program |
US12112473B2 (en) | 2019-05-30 | 2024-10-08 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and non-transitory computer-readable storage medium that use a plurality of captured radiation images to obtain, by sequential approximation solution by iterative calculation, an output image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11327031B2 (en) | Photon counting X-ray CT apparatus | |
US10235766B2 (en) | Radiographic image analysis device and method, and storage medium having stored therein program | |
US10621756B2 (en) | Apparatus and method for correcting bias in low-count computed tomography projection data | |
US11328391B2 (en) | System and method for controlling noise in multi-energy computed tomography images based on spatio-spectral information | |
JP4170767B2 (en) | Image processing device | |
US9947101B2 (en) | Radiographic image analysis device and method, and recording medium having program recorded therein | |
US20130202079A1 (en) | System and Method for Controlling Radiation Dose for Radiological Applications | |
WO2015068388A1 (en) | Radiographic image processing device, method, and program | |
WO2015147324A1 (en) | Radiographic imaging device, radiographic imaging method, and radiographic imaging program | |
JP2008253758A (en) | Image acquisition and processing chain for dual-energy radiography using a portable flat panel detector | |
US8194824B2 (en) | Radiation imaging apparatus and method for driving the same | |
US10605933B2 (en) | X-ray spectral calibration technique for cone-beam CT | |
JP6305250B2 (en) | Image processing apparatus, treatment system, and image processing method | |
JP7093233B2 (en) | Radiography equipment, radiography methods and programs | |
US20150010224A1 (en) | Image processing device and image processing method | |
US20220028127A1 (en) | Energy weighting of photon counts for conventional imaging | |
US9595116B2 (en) | Body motion detection device and method | |
JP7221981B2 (en) | Image processing device, image processing method, and image processing program | |
JP6301439B2 (en) | Radiation image analysis apparatus and method, and program | |
JP2020096646A (en) | Radiographic apparatus, radiographic system, radiographic method and program | |
JP2011177396A (en) | X-ray ct apparatus | |
WO2018105493A1 (en) | Radiographic image capturing device, radiographic image capturing system, radiographic image capturing method, and program | |
Saunders Jr et al. | Impact of resolution and noise characteristics of digital radiographic detectors on the detectability of lung nodules | |
WO2021024715A1 (en) | Image processing device and method for controlling same, radiography device, and program | |
WO2021153592A1 (en) | Image processing device, radiography device, image processing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17878633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17878633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |