WO2018105072A1 - Detection method and detection device - Google Patents

Detection method and detection device Download PDF

Info

Publication number
WO2018105072A1
WO2018105072A1 PCT/JP2016/086464 JP2016086464W WO2018105072A1 WO 2018105072 A1 WO2018105072 A1 WO 2018105072A1 JP 2016086464 W JP2016086464 W JP 2016086464W WO 2018105072 A1 WO2018105072 A1 WO 2018105072A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
substance
reaction
liquid
sample
Prior art date
Application number
PCT/JP2016/086464
Other languages
French (fr)
Japanese (ja)
Inventor
浩康 田中
勝田 宏
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2016/086464 priority Critical patent/WO2018105072A1/en
Publication of WO2018105072A1 publication Critical patent/WO2018105072A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a detection method and a detection apparatus for a detection target contained in a sample.
  • a method is known in which a target substance in a sample is detected using a biosensor having a detection element in which an antibody is bound to the surface (see, for example, Patent Document 1 or 2).
  • the conventional detection method and detection apparatus may not be able to accurately detect the detection target in the sample due to the influence of substances other than the detection target included in the sample. Further, for example, there is a possibility that the signal value of the detection target cannot be accurately detected due to the influence of viscosity and density.
  • a detection method is a detection method of a detection target contained in a sample, and the sample is supplied to the surface of the detection body in which a primary substance that reacts with the detection target is bound to the surface.
  • a first reaction step in which a primary reactant is formed on the surface of the detection body by a reaction between the detection object and the primary substance; and after the first reaction step, a first liquid is placed on the surface of the detection body.
  • the signal amplification process of changing the surface state of the detection body by a reaction involving the primary reactant formed in the first reaction process Measure the second signal value based on the surface condition of the detection object It comprises a second measurement step of, a.
  • a detection apparatus is a detection apparatus for detecting a detection target contained in a sample, and the sample is combined with the surface of a detection body as a primary substance that reacts with the detection target.
  • a first reaction unit that supplies and forms a primary reactant on the surface of the detection body by a reaction between the detection object and the primary substance, and a first supply unit that supplies a first liquid to the surface of the detection body
  • a first measurement unit that measures a first signal value based on a surface state of the detection body after the first liquid liquid is supplied to the surface of the detection body by the first supply unit, and a signal amplification substance Based on the surface state of the detection body to which the signal amplification substance is supplied, and a signal amplification unit that changes the surface state of the detection body by a reaction involving the primary reactant.
  • a second measuring unit for measuring a second signal value Provided.
  • the detection method and the detection apparatus it is possible to reduce the influence of substances other than the detection target contained in the sample by having the above-described configuration. It becomes possible to detect the detection target contained therein more accurately. In addition, since it is possible to reduce the influence of the viscosity and density generated by the sample, it is possible to detect the detection target contained in the sample more accurately.
  • FIG. 1 is a perspective view of a biosensor device 200 according to an embodiment of the present invention. It is a disassembled perspective view of the biosensor apparatus 200 which concerns on embodiment of this invention. It is a top view of the detection element 3 which concerns on embodiment of this invention. It is a schematic diagram of a signal value acquired by a detection method according to an embodiment of the present invention. It is a figure which shows the experimental data regarding the detection method which concerns on embodiment of this invention.
  • FIG. 10 is a plan view showing a part of the sample liquid sensor of FIG. 9.
  • (A) And (b) is a perspective view which shows the sample liquid sensor apparatus which attached the sample liquid sensor to the reader
  • FIG. 13 is a schematic cross-sectional view of the sample liquid sensor device of FIG. 12 including the sample liquid sensor shown by the cross section along line AA of FIG. It is a block diagram which shows the structure of the signal processing system of a sample liquid sensor.
  • FIG. 16 is an explanatory diagram showing steps (1) to (5) shown in FIG. (A) shows the phase ⁇ ref of the SAW in the reference SAW element when the detection target in the sample liquid is contained at a higher concentration than the measurement of FIG.
  • FIG. 15B is a block diagram showing an arrangement example of the reference SAW element and the detection SAW element in the sample liquid sensor
  • FIG. 6C is a graph showing another example of the SAW phase ⁇ test in the SAW element for use
  • FIG. 8C is a graph showing the phase difference ⁇ ( ⁇ ref ⁇ test) between ⁇ ref and ⁇ test shown in FIG.
  • (A), (b) is a block diagram which shows the example which has arrange
  • FIG. 1 is a flowchart showing a detection method according to the first embodiment of the present invention.
  • the detection method according to the first embodiment of the present invention is a detection method of a detection target contained in a sample, A preparation step A1 for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target; A first reaction step in which a sample is supplied to the surface of a detection body in which a primary substance that reacts with a detection target is bonded to the surface, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance.
  • a first supply step A3 for supplying the first liquid to the surface of the detection body; After the first supply step A3, a first measurement step A4 for measuring a first signal value based on the surface state of the detection body; After the first measurement step A4, the signal amplification substance is supplied to the surface of the detection body, and the signal changes the surface state of the detection body by the reaction involving the primary reactant formed in the first reaction step A2.
  • preparatory process A1 and 1st detection process A7 are not an essential process, and may be provided with either process or both processes.
  • the preparation step A1 is a step of preparing a primary substance that binds to the surface of the detection body and reacts with the detection target.
  • the first reaction step A2 is performed by a detection body to which a primary substance is bound, a supply path for supplying a sample to the detection body, a pump for flowing the sample into the supply path, and the like, but the configuration is not limited.
  • 1st supply process A3 is implemented by the supply path for supplying a 1st liquid, a pump, etc.
  • a structure is not limited and may be implemented similarly to 1st reaction process A2.
  • 1st measurement process A4 may be implemented by the apparatus etc.
  • the signal amplification step A5 is performed by the detection body of the first reaction step A2, the supply path for supplying the signal amplification substance to the detection body, a pump, and the like, but the configuration is not limited, and the reaction unit 20 You may combine.
  • the second measurement step A6 may be performed by an apparatus including an element that inputs a signal to the detection body and acquires a predetermined signal value based on the signal output from the detection body, but the configuration is not limited.
  • the first measurement step A4 may be performed in the same manner.
  • the first detection step A7 may be performed by an arithmetic device including an arithmetic element that obtains a detection value from the first signal value and the second signal value, but the configuration is not limited.
  • sample may be, for example, a biological sample itself including blood, urine, saliva, sputum, or the like, or a biological sample diluted with a buffer solution or the like. .
  • a sample other than a biological sample may be used.
  • the detection value is obtained from the first signal value and the second signal value, thereby reducing the influence of contaminants or the difference in viscosity and density between samples. Can do. This is because the detection value obtained from the first signal value and the second signal value is not affected by the amount of contaminants remaining on the surface of the detection body. In this way, by reducing the influence of contaminants (residues) between the samples, it becomes possible to detect the detection target contained in the samples more accurately.
  • Preparatory process A1 of this embodiment prepares the primary substance which is couple
  • the “detection target” includes, for example, an antigen, an antibody and the like, but is not limited thereto.
  • the detection target may be described as an antigen.
  • the “detector” includes, for example, an element that outputs a signal value such as a surface acoustic wave element, a QCM (Quartz Crystal Microbalance), an SPR (Surface Plasmon Resonance), and an FET (Field Effect Transistor). However, it is not limited to these.
  • the sample is supplied to the surface of the detection body in which the primary substance that reacts with the detection target is bound to the surface, and the primary reactant is detected by the reaction between the detection target and the primary substance. It is formed on the surface of the body.
  • the “primary substance” is not particularly limited as long as it is a substance that specifically reacts with the detection target.
  • the detection target is an antigen
  • it binds to the antigen.
  • an antigen that binds to the antibody when the detection target is an antibody when the detection target is an antibody.
  • the “primary reactant” refers to, for example, a capture body in which a primary substance captures a detection target, a complex in which the detection target and the primary substance are bound, and a part of the primary substance is a detection target.
  • a primary reactant is formed by combining a detection target and a part of the primary substance and dissociating a part from the primary substance. Is also possible.
  • the first liquid is supplied to the surface of the detection body.
  • the “first liquid” may be, for example, a buffer solution.
  • Buffers include, for example, phosphate buffer, citrate buffer, borate buffer, HEPES (4- (2-hydroxyethyl) -1-piperidineethanesulfonic acid) buffer, tris (hydroxymethyl) aminomethane)
  • a buffer solution, a MOPS (3-morpholinopropanesulfonic acid) buffer solution, and the like are included, but are not limited thereto, and a known buffer solution may be used as appropriate.
  • the buffer may contain sodium chloride, potassium chloride, magnesium chloride, zinc chloride, and EDTA (ethylenediamine tetraacetic acid), and if necessary, Tween 20 (registered trademark), Triton X-100 (registered trademark), A surfactant such as Brij35 (registered trademark) may be further included.
  • a blocking substance may be mixed in the buffer solution as necessary. Examples of the blocking substance include BSA (bovine serum albumin), casein, polyethylene glycol, MPC (phosphorylcholine methacrylate) polymer, betaine polymer, HEMA (hydroxyethyl methacrylic acid) polymer, and the like. These points are the same in the second liquid and the third liquid described later.
  • the first measurement step A4 of the present embodiment measures a signal value based on the surface state of the detection body.
  • the first measurement step A4 After the time when the signal value is stabilized due to the fluctuation of the signal value based on the surface state of the detection body due to the supply of the first liquid to the surface of the detection body in the first supply step A3. Will be implemented. For a while after the first liquid starts to be supplied, impurities are not sufficiently removed from the surface of the detection body, and the signal value based on the surface state of the detection body varies. If the contaminants are all removed from the surface of the detection body or are removed to the extent that the acquired signal value is not affected by supplying the first liquid, the signal value based on the surface state of the detection body has a small fluctuation. It will be in a stable state.
  • the stable state is a state in which the fluctuation of the signal value is small.
  • the signal value is continuously obtained from the first supply step A3, and the inflection point in the signal value change curve is determined and determined. What is necessary is to measure after the inflection point.
  • a surface acoustic wave element may be formed on the surface of the detection body, and the value of the phase characteristic of the surface acoustic wave element may be used as the signal value based on the surface state of the detection body.
  • the signal value based on the surface state of the detection body is measured by a method selected from a QCM (Quartz Crystal Microbalance) sensor, an SPR (Surface Plasma Resonance) sensor, and an FET (Field Effect Transistor) sensor. It may be a value.
  • QCM Quadrat Crystal Microbalance
  • SPR Surface Plasma Resonance
  • FET Field Effect Transistor
  • a signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by a reaction involving the primary reactant formed in the first reaction step A2. is there.
  • the “signal amplification substance” is not particularly limited as long as it is a substance that changes the surface state of the detection body.
  • the labeled substance that specifically reacts with the primary reactant is used.
  • Secondary antibodies, labeled peptides, labeled ligands, labeled aptamers and the like are included.
  • the label is not particularly limited as long as it changes the surface state of the detection body, but includes a protein such as streptavidin, biotin, an enzyme, a fluorescent substance, and nanoparticles such as metal particles.
  • the “reaction involving the primary reactant formed in the first reaction step” is particularly limited as long as the surface state of the detection body changes depending on the amount of the primary reactant.
  • the binding reaction between the primary reactant formed in the first reaction step A2 and the signal amplification substance, the enzyme reaction between the primary reactant formed in the first reaction step A2 and the signal amplification substance Including the reduction reaction between the primary reactant formed in the reaction step A2 and the signal amplification substance, the primary substance and the signal amplification substance may directly react with each other, and the primary substance and the signal amplification substance may react with each other. You may react indirectly through a substance.
  • an additional reaction step of supplying at least one additional reactant to the surface of the detection body may be further provided between the first measurement step A4 and the signal amplification step A5.
  • the at least one additional reactant may include a plurality of additional reactants, and the additional reactants may be supplied one by one.
  • the signal amplification substance may not specifically react with the primary reactant, for example, streptavidin, 3,3′diaminobenzidine, 3-amino-9-ethylcarbazole , 4-chloro-1-naphthol, and substrates such as 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, and combinations of chloroauric acid and hydroxylamine hydrochloride, and silver nitrate and iron sulfate
  • a metal ion and a reducing agent such as a combination of
  • the “additional reactant” includes, for example, biotin, streptavidin, biotin-labeled antibody, peroxidase-labeled antibody, enzyme-labeled antibody such as alkaline phosphatase-labeled antibody, and nanoparticle-labeled antibody such as metal particle-labeled antibody, Peroxidase labeled streptavidin, and enzyme labeled streptavidin such as alkaline phosphatase labeled streptavidin, and nanoparticle labeled streptavidin such as metal particle labeled streptavidin and the like.
  • the additional reactant should be selected according to the selected signal amplification substance.
  • the additional reaction substance is a biotin-labeled antibody.
  • the additional reaction substance is a biotin-labeled secondary antibody and peroxidase-labeled streptavidin.
  • the signal amplification material is 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium
  • the additional reactants are a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin.
  • the signal amplification material is chloroauric acid and hydroxylamine hydrochloride
  • the additional reactants are biotin-labeled secondary antibody and Au particle-labeled streptavidin.
  • the additional reactant may be repeatedly supplied to further amplify the change in the surface state of the detection body.
  • the signal amplification substance is streptavidin and the additional reaction substance is a biotin-labeled antibody
  • the biotin-labeled secondary antibody is supplied first, the second is supplied with streptavidin, The biotin-labeled antibody is supplied to 3, the streptavidin is supplied to the fourth, the biotin-labeled antibody is supplied to the fifth, and then the streptavidin is supplied in the signal amplification step A5.
  • a precursor reaction step of supplying at least one precursor reactant to the surface of the detector may be further provided between the first reaction step A2 and the first supply step A3.
  • the at least one precursor reactant may include a plurality of precursor reactants, and the precursor reactants may be supplied one by one.
  • the signal amplification substance may not specifically react with the primary reactant, for example, streptavidin, 3,3′diaminobenzidine, 3-amino-9-ethylcarbazole , 4-chloro-1-naphthol, and substrates such as 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, and combinations of chloroauric acid and hydroxylamine hydrochloride, and silver nitrate and iron sulfate
  • the primary reactant for example, streptavidin, 3,3′diaminobenzidine, 3-amino-9-ethylcarbazole , 4-chloro-1-naphthol, and substrates such as 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, and combinations of chloroauric acid and hydroxylamine hydrochloride, and silver nitrate and iron sulfate
  • the “precursor reactant” means, for example, biotin, streptavidin, biotin-labeled antibody, peroxidase-labeled antibody, enzyme-labeled antibody such as alkaline phosphatase-labeled antibody, nanoparticle-labeled antibody such as metal particle-labeled antibody, Peroxidase labeled streptavidin, and enzyme labeled streptavidin such as alkaline phosphatase labeled streptavidin, and nanoparticle labeled streptavidin such as metal particle labeled streptavidin and the like.
  • the precursor reactant should be selected according to the signal amplification material selected.
  • the precursor reaction substance is a biotin-labeled antibody.
  • the precursor reaction substance is a biotin-labeled secondary antibody and peroxidase-labeled streptavidin.
  • the signal amplification material is 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium
  • the additional reactants are a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin.
  • the signal amplification substance is chloroauric acid and hydroxylamine hydrochloride
  • the precursor reaction substances are biotin-labeled secondary antibody and Au particle-labeled streptavidin.
  • the precursor reactant may be repeatedly supplied to further amplify the change in the surface state of the detector.
  • the signal amplification substance is streptavidin and the precursor reaction substance is a biotin-labeled antibody
  • a biotin-labeled secondary antibody is first supplied, and secondly streptavidin is supplied.
  • 3 is supplied with a biotin-labeled antibody
  • fourth is supplied with streptavidin
  • fifth is supplied with a biotin-labeled antibody
  • streptavidin Is supplied after passing through the first supply step A3 and the first measurement step A2, in the signal amplification step A5, streptavidin Is supplied.
  • the signal amplification substance, the additional reaction substance, and the precursor reaction substance may be diluted with a buffer solution or the like.
  • the buffer for diluting the signal amplification substance, the additional reactant, and the precursor reactant (hereinafter also referred to as “reaction liquid”) is selected according to their properties, and the concentration, composition, pH, etc. It may be optimized.
  • the signal amplification substance can be combined with the detection target substance among the primary reactants.
  • a second supply step of supplying the second liquid to the surface of the detection body may be further provided after the signal amplification step A5 and before the second measurement step A6.
  • the signal amplification substance that did not react with the primary reactant from the second signal value by removing the signal amplification substance that did not react with the primary reactant in the signal amplification step A5 from the surface of the detector. Can be reduced, and the accuracy of the signal value related to the detection target measured in the second measurement step A6 can be improved.
  • the “second liquid” may be, for example, a buffer solution.
  • the first liquid and the second liquid can be the same type of liquid.
  • the first liquid and the reaction liquid used in the subsequent reaction process, and the second liquid and the reaction liquid used in the subsequent reaction process may be the same type of liquid.
  • the concentration, pH, composition, etc. of the first liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the first supply step A3.
  • the concentration, pH, composition, etc. of the second liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the second supply step.
  • the first liquid may be the same type of liquid as the reaction liquid or may be a different type of liquid.
  • the second liquid may be the same type of liquid as the reaction liquid or a different type of liquid.
  • first liquid and the second liquid and the reaction liquid used in the subsequent reaction step are the same type of liquid, fluctuations in the signal value when the liquid is switched can be reduced and acquired. Variations in signal values can be suppressed.
  • the same type of liquid means that, for example, in a buffer solution, the same compound type such as a phosphate compound having a buffering action is used, and the same amount of liquid is the same type of liquid. That's it.
  • the second measurement step A6 of the present embodiment measures a signal value based on the surface state of the detection body.
  • This step may be performed in the same manner as the first measurement step A4 described above.
  • a detection value is obtained from the first signal value and the second signal value.
  • the second signal value may be larger than the first signal value.
  • the magnitude of the signal value may be determined by, for example, the absolute value of the difference from the signal value before the first reaction step A2.
  • a sample that further includes a contaminant made of a substance different from the detection target may be used.
  • the first reaction step A2 a contaminant different from the detection target adheres to the surface of the detection body, and then the first liquid is supplied to the surface of the detection body in the first supply step A3. In some cases, it cannot be completely removed from the surface of the body and remains. Therefore, the first signal value is affected by a different contaminant from the detection target remaining on the surface of the detection body.
  • the signal value derived from the foreign substance remaining on the surface of the detection body is obtained by obtaining the detection value from the first signal value and the second signal value. Can be removed from the second signal value, the more accurate signal value of the detection target can be measured.
  • a second reaction step may be provided as one aspect of the signal amplification step A5.
  • a secondary substance that reacts with the primary reactant is supplied to the surface of the detector, and a secondary reactant is formed on the surface of the detector by the reaction between the primary reactant and the secondary substance.
  • the second reaction step is performed by the detection body of the first reaction step, a supply path for supplying a secondary substance to the detection body, a pump, and the like, but the configuration is not limited and is the same as the first reaction step May be implemented.
  • the “secondary substance” is not particularly limited as long as it is a substance that specifically reacts with the primary reactant, and includes, for example, a secondary antibody and the like. An aspect may be sufficient.
  • the secondary substance for example, a labeled secondary antibody labeled with biotin, enzyme, nanoparticles, metal nanoparticles or the like can be used. Since the signal value derived from the secondary substance can be amplified by using the labeled secondary antibody in which the secondary substance is labeled, the detection target can be detected with higher sensitivity.
  • the “secondary reactant” means, for example, a capturing body in which the primary reactant captures the secondary substance, a complex of the primary reactant and the secondary substance, and the like, and is not limited thereto.
  • complex of an antigen, a primary antibody, and a secondary antibody is included.
  • the molecular weight of the secondary reactant may be larger than the molecular weight of the primary reactant. According to this, a detection target can be detected with high sensitivity by obtaining a large signal value in a second measurement step A6 described later.
  • the second reaction step it is also possible to form a secondary reactant by binding a secondary substance to a detection target among primary reactants.
  • the detection target is an antigen
  • a surface acoustic wave element is used as a detection body
  • a primary antibody is used as a primary substance
  • a first liquid is used.
  • a buffered solution is used and a labeled secondary antibody is used as a secondary substance is shown below.
  • one example of the first embodiment is a method for detecting an antigen contained in a sample, A preparation step for preparing a primary antibody against an antigen, which is bound to the surface of the surface acoustic wave device; A sample is supplied to the surface of the surface acoustic wave device and reacted with a primary antibody against the antigen to form a primary complex of the antigen and the primary antibody contained in the sample on the surface of the surface acoustic wave device.
  • a reaction process A first supply step of supplying a buffer solution to the surface of the surface acoustic wave device after the first reaction step; A first measurement step of measuring a first signal value based on the surface state of the surface acoustic wave device after the first supply step; After the first measurement step, a labeled secondary antibody against the antigen is supplied to the surface of the surface acoustic wave device, and the secondary complex of the primary complex and the labeled secondary antibody is transferred to the surface of the surface acoustic wave device.
  • the detection method may include a first signal value measured in the first measurement process and a first detection process for obtaining a detection value from the second signal value measured in the second measurement process.
  • FIG. 2 is a flowchart showing a detection method according to the second embodiment of the present invention.
  • the detection method according to the second embodiment of the present invention is a detection method of a detection target contained in a sample, A preparation step B1 for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target; A first reaction step B2 in which a sample is supplied to the surface of a detection body to which a primary substance that reacts with a detection target is bound, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance; , After the first reaction step B2, a first supply step B3 for supplying the first liquid to the surface of the detection body; After the first supply step B3, a first measurement step B4 for measuring a signal value based on the surface state of the detection body; After the first measurement step B4, a secondary substance that reacts with the primary reactant is supplied to the surface of the detector, and a secondary reactant is formed
  • a second reaction step B5 After the second reaction step B5, a tertiary substance that reacts with the secondary reactant is supplied to the surface of the detector, and a tertiary reactant is formed on the surface of the detector by the reaction between the secondary reactant and the tertiary substance.
  • the preparation step B1 and the second detection step B8 are not essential steps, and may include either or both steps.
  • the first reaction step B2, the first supply step B3, and the first measurement step B4 are the same as those in the first embodiment, and thus description thereof is omitted.
  • 2nd reaction process B5 is implemented by the detection body of 1st reaction process B2, and the supply path for supplying a secondary substance to this detection body, a pump, etc.
  • the third reaction step B6 is performed by the detection body of the second reaction step B5, a supply path for supplying a tertiary substance to the detection body, a pump, and the like, but the configuration is not limited.
  • the third measurement step B7 may be performed by an apparatus including an element that inputs a signal to the detection body and acquires a predetermined signal value based on the signal output from the detection body, but the configuration is not limited.
  • the first measurement step B4 may be performed in the same manner.
  • the second detection step B8 may be performed by an arithmetic unit including an arithmetic element that obtains a detection value from the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7.
  • the configuration is not limited.
  • the second reaction step B5 is performed as one aspect of the additional reaction step
  • the third reaction step B6 is performed as one aspect of the signal amplification step.
  • a tertiary substance that reacts with the secondary reactant is supplied to the surface of the detector, and a tertiary reactant is formed on the surface of the detector by the reaction between the secondary reactant and the tertiary substance. .
  • the signal value derived from the secondary substance can be amplified by using the tertiary substance, the detection target contained in the sample can be detected with higher sensitivity.
  • the “tertiary substance” is not particularly limited as long as it is a substance that specifically reacts with the secondary substance.
  • the “tertiary substance” is a labeled secondary antibody in which the secondary substance is labeled with biotin.
  • a label detection reagent such as streptavidin that reacts specifically with the label is included.
  • the first liquid is supplied to the surface of the detection body in the first supply step B3.
  • the signal value measured in the first measurement step B4 is affected by the contaminants remaining on the surface of the detection body. Therefore, in order to reduce the influence of impurities remaining on the surface of the detection body, a detection value is obtained from the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7.
  • the signal value derived from the impurities remaining on the surface of the detection body can be reduced from the signal value measured in the third measurement step B7. This is because the difference between the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7 is not substantially affected by the amount of contaminants remaining on the surface of the detection body. It is.
  • the first liquid is supplied to the surface of the detection body in the first supply step B3.
  • the contaminants different from the detection target cannot be completely removed from the surface of the detection object, and in each sample, a different amount of contamination remains on the surface of the detection object. There may be differences in values.
  • the contaminants remaining on the surface do not substantially affect the difference between the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7.
  • the secondary substance can be labeled with biotin, and the tertiary substance can contain streptavidin.
  • the detection target can be detected with higher sensitivity.
  • the secondary material that has not reacted with the primary reactant in the second reaction step B5 can be removed, and therefore the influence of the secondary material that has not reacted with the primary reactant is determined after the third reaction step B6.
  • the accuracy of the signal value measured in the third measurement step B7 can be improved.
  • an intermediate measurement step for measuring a signal value based on the surface state of the detection body may be further provided between the second reaction step B5 and the second supply step.
  • the secondary substance that did not react with the primary reactant in the second reaction step B5 can be removed, so that the influence of the secondary substance that did not react with the primary reactant can be eliminated, and the intermediate measurement step It is possible to improve the accuracy of the signal value measured by.
  • a third detection step for obtaining a detection value from the signal value measured in the intermediate measurement step and the signal value measured in the third measurement step B7 may be further provided. Thereby, the signal value generated by the third reaction step B6 can be measured.
  • a third supply step for supplying the third liquid to the surface of the detection body may be further provided between the third reaction step B6 and the third measurement step B7.
  • the tertiary substance that did not react with the secondary reactant in the third reaction step B6 can be removed, so that the influence of the tertiary substance that did not react with the secondary reactant is measured in the third measurement step B7.
  • the signal value measured in the third measurement step B7 can be improved.
  • the “third liquid” may be, for example, a buffer solution.
  • the buffer solution include, but are not limited to, a phosphate buffer solution and the like.
  • the first liquid, the second liquid, and the third liquid can be the same type of liquid.
  • the first liquid, the reaction liquid used in the subsequent reaction process, the second liquid, the reaction liquid used in the subsequent reaction process, and the third liquid, and the reaction liquid used in the subsequent reaction process Can be the same type of liquid.
  • the concentration, pH, composition, and the like of the first liquid may be optimized in order to promote the removal of impurities from the surface of the detection body in the first supply step B3.
  • the concentration, pH, composition, etc. of the second liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the second supply step.
  • the concentration, pH, composition, etc. of the third liquid may be optimized in order to promote the removal of contaminants from the surface of the detection body in the third supply step.
  • the first liquid may be the same type of liquid as the reaction liquid or a different type of liquid.
  • the second liquid may be the same type of liquid as the reaction liquid or may be a different type of liquid.
  • the third liquid may be the same type of liquid as the reaction liquid or a different type of liquid.
  • first liquid, the second liquid, the third liquid, and the reaction liquid used in the subsequent reaction step are the same type of liquid, it is possible to reduce fluctuations in the signal value when the liquid is switched. And variation in signal values to be acquired can be suppressed.
  • the detection target is an antigen
  • the surface acoustic wave is used as the detection body.
  • An example using a device, using a primary antibody as a primary substance, using a buffer solution as a first liquid, using a labeled secondary antibody as a secondary substance, and using a labeled detection reagent as a tertiary substance is shown below.
  • one example of the third embodiment is a method for detecting an antigen contained in a sample, A preparation step for preparing a primary antibody against an antigen, which is bound to the surface of the surface acoustic wave device; A sample is supplied to the surface of the surface acoustic wave device and reacted with a primary antibody against the antigen to form a primary complex of the antigen and the primary antibody contained in the sample on the surface of the surface acoustic wave device.
  • a reaction process A first supply step of supplying a buffer solution to the surface of the surface acoustic wave device after the first reaction step; A first measurement step of measuring a signal value based on the surface state of the surface acoustic wave device after the first supply step; After the first measurement step, a labeled secondary antibody against the antigen is supplied to the surface of the surface acoustic wave device, and the secondary complex of the primary complex and the labeled secondary antibody is transferred to the surface of the surface acoustic wave device.
  • a third measurement step of measuring a signal value based on the surface state of the surface acoustic wave device may include a second detection step of obtaining a detection value from the signal value measured in the third measurement step from the signal value measured in the first measurement step.
  • the detection method according to the third embodiment of the present invention is a detection method of a detection target contained in a sample, A preparation step for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target; A first reaction step in which a sample is supplied to the surface of a detection body in which a primary substance that reacts with a detection target is bonded to the surface, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance.
  • a first supply step for supplying the first liquid to the surface of the detection body after the first reaction step; After the first supply step, the signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by the reaction involving the primary reactant formed in the first reaction step.
  • the preparation step, the first reaction step, and the first supply step are the same as those in the first embodiment, and thus description thereof is omitted.
  • the signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by the reaction involving the primary reactant formed in the first reaction step. It is a step of acquiring a first signal value and subsequently acquiring a second signal value while changing.
  • a signal amplification substance is used as in the first embodiment.
  • the first liquid is supplied to the surface of the detection body, impurities are removed, and the signal value based on the surface state of the detection body is stabilized, and then the signal amplification substance is supplied to the surface of the detection body. .
  • the surface state of the detection body starts to change due to the reaction between the primary reactant formed on the surface of the detection body and the signal amplification substance.
  • a first signal value based on the surface state of the detection body is obtained after a predetermined time has elapsed since the signal amplification substance was supplied to the surface of the detection body. After a predetermined time has elapsed since the first signal value was acquired, a second signal value based on the surface state of the detection body is acquired.
  • the first signal value may be acquired after a predetermined time has elapsed since the signal amplification substance was supplied to the surface of the detection body, and may be acquired, for example, after 1 second to 30 seconds.
  • the second signal value may be acquired after a predetermined time has elapsed since the first signal value was acquired. For example, the second signal value is acquired after 1 to 10 minutes.
  • the second signal value may be acquired in a state in which the change in the surface state of the detection body due to the signal amplification substance has converged.
  • the second signal value it is also possible to acquire the second signal value by determining in advance the time from when the first signal value is acquired until the second signal value is acquired. According to this, the second signal value increases as the amount of the detection target contained in the sample increases, and the detection target contained in the sample can be detected with high accuracy in a short time.
  • the detected value can be a difference value obtained by subtracting the first signal value from the second signal value.
  • the second signal value that is the end point of the measurement is determined in advance, and the time from when the first signal value is acquired until the second signal value reaches a predetermined value is used as the detection value. It is also possible to detect the detection target contained in the sample by measuring. According to this, as the amount of the detection target contained in the sample increases, the time until the second signal value reaches a predetermined value is shortened, and the detection target contained in the sample can be accurately detected in a short time. Can be detected.
  • the slope (differential value depending on time) of the change (increase) of the signal value may be calculated as the detected value from the first signal value and the second signal value. According to this, as the amount of the detection target contained in the sample increases, the inclination becomes steeper, and the detection value can be obtained with high accuracy in a short time. The time for calculating the differential value can be shorter than the time for obtaining the difference value.
  • FIG. 3 is a block diagram illustrating an example of a detection device.
  • the detection apparatus 100 is used for measuring a signal value in a sample liquid sensor including a supply unit 10 that supplies various liquids and a reaction unit 20 that performs not only a reaction for signal amplification but also a precursor reaction and an additional reaction.
  • the measurement unit 30 is configured by connecting a detection unit 40 that is a calculation device for calculation, and a display unit 50 that is a display for displaying detection results.
  • each supply process such as the first supply process and the second supply process described above is performed by repeatedly using one supply unit 10.
  • each reaction step such as the first reaction step and the second reaction step described above is performed by repeatedly using one reaction unit 20, and each measurement step described above uses one measurement unit 30 repeatedly.
  • each above-mentioned detection process is each implemented by using one detection part 40 repeatedly.
  • the display unit 50 is not an essential component, and may be configured so that the detection result can be output from the detection unit 40 to the outside.
  • the electrical connection between the measurement unit 30 and the detection unit 40 and between the detection unit 40 and the display unit 50 may be wired connection using a signal cable or the like.
  • the wireless connection used may be used.
  • FIG. 4 is a perspective view of the sample liquid sensor 200
  • FIG. 5 is an exploded perspective view of the sample liquid sensor 200
  • FIG. 6 is a plan view of the detection element 3.
  • the sample liquid sensor 200 includes a substrate 1, a flow path structure 2, and a detection element 3. As shown in FIG. 4, the flow path structure 2 is disposed on the substrate 1 via the detection element 3 and the support member 4.
  • the channel structure 2 has an inlet 14 that is an inlet for a liquid sample on one end side in the longitudinal direction, and a channel that communicates with the inlet 14 is formed therein.
  • substrate 1 is flat form, for example, is a resin substrate, a ceramic substrate, etc., and has provided the wiring conductor etc. in the surface layer or the inner layer.
  • the detection element 3 is mounted on one end side of the upper surface of the substrate 1. Terminals 6 electrically connected to the detection element 3 are provided on both sides of the detection element 3. The terminal 6 is connected to a device, an arithmetic device, or the like.
  • the detection element 3 is a surface acoustic wave element, and includes a piezoelectric substrate 7, a first IDT (Inter Digital Transducer) electrode 8, a second IDT electrode 9, and a detection unit 13.
  • the piezoelectric substrate 7 is made of a single crystal substrate having piezoelectricity such as lithium tantalate.
  • the first IDT electrode 8 has a pair of comb electrodes. Each comb electrode has two bus bars facing each other and a plurality of electrode fingers extending from each bus bar to the other bus bar side. The pair of comb electrodes are arranged such that a plurality of electrode fingers mesh with each other.
  • the second IDT electrode 9 is configured in the same manner as the first IDT electrode 8.
  • the first IDT electrode 8 and the second IDT electrode 9 constitute a transversal IDT electrode.
  • the first IDT electrode 8 is for generating a predetermined surface acoustic wave
  • the second IDT electrode 9 is for receiving the SAW generated by the first IDT electrode 8.
  • the first IDT electrode 8 and the second IDT electrode 9 are made of, for example, aluminum or an alloy of aluminum and copper.
  • the detection unit 13 is provided between the first IDT electrode 8 and the second IDT electrode 9.
  • the detection unit 13 has a two-layer structure of, for example, chromium and gold formed on chromium.
  • a primary substance that reacts with the detection target is bonded to the surface of the metal film of the detection unit 13.
  • the detection target in the sample reacts with the primary substance to form a primary reactant.
  • the detection element 3 is provided with two sets.
  • one detection unit 13 can measure a sample
  • the other detection unit 13 can measure a reference value.
  • the other detection unit 13 is not coupled with a primary substance that reacts with the detection target.
  • a signal having a predetermined voltage is applied to the first IDT electrode 8 from the outside.
  • the surface of the piezoelectric substrate 7 is excited, and SAW having a predetermined frequency is generated.
  • Part of the generated SAW propagates toward the detection unit 13, passes through the detection unit 13, and is received by the second IDT electrode 9.
  • a primary reaction product is formed according to the amount of the detection target, and the mass of the detection unit 13 is increased by the amount of the primary reaction product.
  • a voltage corresponding to the change is generated in the second IDT electrode 9. The difference between the phase of the signal applied to the first IDT electrode 8 and the phase of the signal output from the second IDT electrode 9 is measured as a phase change.
  • a support member 4 is further mounted on the upper surface of the substrate 1, and the support member 4 supports the flow path structure 2.
  • the flow path structure 2 is arranged so as to cover at least a part of the detection element 3.
  • the flow path structure 2 includes, for example, a first adhesive layer 19, a first hydrophilic sheet 22, a second adhesive layer 23, and a second hydrophilic sheet 24.
  • the first adhesive layer 19 is a frame having a through hole 19h, and a part of the detection element 3 is exposed through the through hole 19h.
  • a first hydrophilic sheet 22 is laminated on the first adhesive layer 19.
  • the first hydrophilic sheet 22 has a through hole 22h similar to the through hole 19h, and the first adhesive layer 19 and the first hydrophilic sheet 22 are laminated so that the through holes communicate with each other.
  • a second adhesive layer 23 is laminated on the first hydrophilic sheet 22.
  • the second adhesive layer 23 has a through hole 23h extending in the longitudinal direction constituting the flow path. One end of the through hole 23h extends to a position overlapping the through hole 22h.
  • a second hydrophilic sheet 24 is laminated on the second adhesive layer 23. Near the both ends of the second hydrophilic sheet 24, an inflow port 14 and an exhaust port 18 each including a through hole are provided. The inflow port 14 and the exhaust port 18 are formed at a position overlapping the through hole 23h.
  • the schematic diagram shown in FIG. 7 shows that a precursor reaction step is performed using a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin as precursor reactants, and 5-bromo-4-chloro-3-indolyl as a signal amplification substance. It is an example of the signal value which performed the signal amplification process using the phosphate / nitro blue tetrazolium, and acquired the signal value in the SAW element.
  • the steps performed in the schematic diagram shown in FIG. 7 are described below. First, the 1st reaction process and the 1st supply process were performed, and the primary reactant was formed. Next, the first precursor reaction step was performed to react the biotin-labeled secondary antibody with the primary reactant. After the first precursor reaction step, a second supply step of supplying 10 mM PBS (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 0.005% Tween 20 (registered trademark), pH 7.4) is performed, and is free. The biotin-labeled secondary antibody was removed.
  • 10 mM PBS 10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 0.005% Tween 20 (registered trademark), pH 7.4
  • a second precursor reaction step was performed to react with alkaline phosphatase-labeled streptavidin.
  • a third supply step of supplying 10 mM PBS (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 0.005% Tween 20 (registered trademark), pH 7.4) is performed, and free. Alkaline phosphatase labeled streptavidin was removed.
  • the first measurement step was performed to obtain the first signal value.
  • a signal amplification step was performed, and 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium was reacted.
  • a second measurement step was performed to obtain a second signal value. Finally, the detection value was obtained by subtracting the first signal value from the second signal value.
  • biological samples A and B As biological samples, two different types of samples (biological samples A and B) each containing the same amount of antigen were prepared. That is, the biological sample A and the biological sample B have different viscosities and contained substances, but contain the same amount of antigen.
  • a surface acoustic wave element As the detection body, a surface acoustic wave element (SAW element) is used, and an antibody that is a primary substance (hereinafter simply referred to as “antibody”) is prepared in advance on the surface of the SAW element.
  • the antibody is a substance that binds to the detection target.
  • Example 1 first, as a first reaction step, a biological sample is supplied to the surface of the SAW element, and a primary reaction in which an antigen as an object to be detected (hereinafter simply referred to as “antigen”) reacts with an antibody. Formed.
  • antigen as an object to be detected
  • the buffer solution 10 mM PBS as the first liquid (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 1 mM MgCl 2 , 0.005% Tween 20 (registered trademark), pH 7.4) was supplied to the surface of the SAW element.
  • the phase change between the input signal and the output signal was obtained as a signal value in the SAW element.
  • a biotin-modified secondary antibody is supplied to the surface of the SAW element as a signal amplification substance, and the primary reaction product obtained by reacting the primary reactant with the biotin-modified secondary antibody and the biotin-modified secondary antibody. A complex with the antibody was formed.
  • the phase change between the input signal and the output signal was obtained as a signal value in the SAW element.
  • the detection value was obtained by subtracting the first signal value measured in the first measurement step from the second signal value measured in the second measurement step.
  • Example 1 As shown in FIG. 8, in Example 1, the detected value of biological sample A and the detected value of biological sample B each containing the same amount of antigen were equivalent.
  • the influence due to the difference between the biological samples is reduced, and it is possible to accurately detect the detection target (antigen) contained in each biological sample. I found out.
  • the value of the phase change measured in the second measurement step was acquired as the detection value without performing the first measurement step as described above.
  • the detection value of the biological sample A and the detection value of the biological sample B each containing the same amount of antigen are different, and the detection target included in each biological sample due to the influence of the difference between the biological samples. It was found that the product (antigen) could not be detected accurately (see FIG. 8).
  • Example 2 without using a biological sample, the same amount of antigen as in Example 1 was added to a buffer solution of 10 mM PBS (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, The detection value obtained in the same manner as in Example 1 was obtained by using a sample diluted with 1 mM MgCl 2 , 0.005% Tween 20 (registered trademark), pH 7.4) as a sample. It was equivalent to 1. This also proved that the detection target (antigen) contained in the biological sample can be detected accurately in Example 1.
  • FIG. 9 shows a sample liquid sensor 303 according to this embodiment.
  • the sample liquid sensor 303 includes a base 343 and a cover 345 superimposed thereon, and a flow path 335 is formed between the base 343 and the cover 345.
  • a sensor chip 332 (corresponding to the detection element 3 described above) is formed on the top surface of the base 343 at the tip of the flow path 335, and an external terminal for transmitting data from the sensor chip 332 on the bottom of the base 343. 331 is formed.
  • the shape of the sample fluid sensor 303 is generally plate-shaped as a whole, and for example, its planar shape is a rectangle.
  • the flow path 335 is formed, for example, so as to extend linearly in the longitudinal direction of the sample liquid sensor 303 (x direction, a direction from a portion exposed from the reader 305 to a portion sandwiched by the reader 305). Both ends of the flow path 335 communicate with the outside of the sample liquid sensor 303. One end is an inflow port 339 for taking in the sample liquid, and the other end is an exhaust port 341 for exhausting the flow path 335 when the sample liquid flows into the flow path 335.
  • the inflow port 339 and the exhaust port 341 are preferably open on the upper surface of the sample liquid sensor 303.
  • the flow path 335 is configured to guide the sample liquid dropped onto the inflow port 339 (in contact with the inflow port 339) toward the exhaust port 341 by a capillary phenomenon.
  • the height (thickness, z direction) of the flow path 335 is set to be relatively low, and the wettability of at least one of the bottom surface and the ceiling surface is set to be relatively high.
  • the height of the flow path 335 in the z direction is not particularly limited, but is 50 ⁇ m to 0.5 mm, preferably about 50 ⁇ m, from the viewpoint of reducing the amount of the sample liquid. Note that when the diluted sample solution such as blood is used as the sample solution, the amount of the sample solution is not necessarily reduced.
  • the contact angle (wetting property) of the sample liquid (which may be represented by water) on the bottom surface and the ceiling surface of the flow path 335 is less than 90 °, and preferably less than 60 °.
  • the base 343 has an insulating property.
  • resin or ceramic can be used.
  • the base 343 may be a multi-layer board such as having a ground layer as a shield inside.
  • the planar shape of the base 343 is the same as the planar shape of the entire sample liquid sensor 303, for example.
  • the planar shape of the outer shape of the cover 345 is, for example, generally the same as the planar shape of the entire specimen liquid sensor 303.
  • a groove for forming the flow path 335 is formed between the cover 345 and the base 343.
  • the cover 345 is formed with the above-described inflow port 339 and exhaust port 341 so as to penetrate the cover 345 vertically.
  • the cover 345 is bonded to the base 343 with an adhesive, for example.
  • the cover 345 is made of an insulating material such as resin or ceramic. Note that the entire cover 345 may be integrally formed of the same material.
  • the cover 345 may be configured by stacking a plurality of layered members made of the same material or different materials.
  • the cover 345 may be configured by a layered member in which a slit to be the flow path 335 is formed, and a layered member that is superimposed on the layered member and forms the ceiling surface of the flow path 335.
  • At least one of the base 343 and the cover 345 is made of a highly hydrophilic material or subjected to a hydrophilic treatment so that the wettability of the inner surface of the flow path 335 is increased at least in a region constituting the flow path 335.
  • a hydrophilic film is attached.
  • the base 343 may be attached with a hydrophilic film in a region overlapping with the flow path 335.
  • the hydrophilic film may be regarded as a part of the base 343.
  • the cover 345 is configured by stacking layered members as described above, the upper layered member closing the slit may be configured by a hydrophilic film.
  • the sample liquid sensor 303 as a whole preferably does not have flexibility.
  • at least one of the base 343 and the cover 345 may not have flexibility.
  • FIG. 10 is a plan view showing the sensor chip 332 of the sample liquid sensor 303 with the cover 345 removed from the sample liquid sensor 303.
  • the sample liquid sensor 303 has a sensor chip 332 for detecting a detection target included in the sample liquid passing through the flow path 335 mounted on the upper surface of the base 343.
  • the sensor chip 332 is a sensor unit that substantially converts a signal according to the sample liquid, and the base 343 and the cover 345 function as a package that contributes to an improvement in the handleability of the sensor chip 332 and the like.
  • at least one of the lower surface of the cover 345 and the upper surface of the base 343 is formed with a recess for housing the sensor chip 332.
  • the sensor chip 332 includes a piezoelectric substrate 353 and at least two SAW elements 350A and 350B located on the upper surface of the piezoelectric substrate 353 along the flow direction of the specimen liquid.
  • the SAW elements 350A and 350B include a first IDT electrode 355A that generates a surface acoustic wave (SAW) on the main surface of the piezoelectric substrate 353, a second IDT electrode 355B that is positioned in the SAW propagation path, and that receives the SAW.
  • a plurality of chip pads 357 provided for input of an electrical signal to the 1 IDT electrode 355A or output of an electrical signal from the second IDT electrode 355B, and a sensitive unit 359 for changing the SAW according to the property or component of the sample liquid have.
  • the sensitive part 359 for example, an insulating film (an oxide film, a nitride film, etc.) can be used in addition to a metal film described later.
  • the piezoelectric substrate 353 is made of, for example, a single crystal substrate having piezoelectricity such as lithium tantalate (LiTaO 3 ) single crystal, lithium niobate (LiNbO 3 ) single crystal, or quartz.
  • the planar shape and various dimensions of the piezoelectric substrate 353 may be set as appropriate.
  • the thickness of the piezoelectric substrate 353 is 0.3 mm to 1.0 mm.
  • the piezoelectric substrate 353 is disposed so that its main surface is parallel to the base 343.
  • the first IDT electrode 355A and the second IDT electrode 355B include a conductor layer positioned on the upper surface of the piezoelectric substrate 353.
  • the first IDT electrode 355A and the second IDT electrode 355B are opposed to each other with the flow path 335 interposed therebetween.
  • Each IDT electrode 355 has a pair of comb electrodes.
  • Each comb electrode has a bus bar and a plurality of electrode fingers extending from the bus bar. The pair of comb electrodes are arranged so that the plurality of electrode fingers mesh with each other.
  • the first IDT electrode 355A and the second IDT electrode 355B are spaced apart from each other in the SAW propagation direction, and constitute a transversal IDT electrode.
  • the frequency characteristics can be designed using parameters such as the number of electrode fingers of the IDT electrode 355, the distance between adjacent electrode fingers, and the cross width of the electrode fingers.
  • parameters such as the number of electrode fingers of the IDT electrode 355, the distance between adjacent electrode fingers, and the cross width of the electrode fingers.
  • the SAW excited by the IDT electrode 355 there are Rayleigh waves, Love waves, leaky waves, and the like, and any of them may be used.
  • the sensor chip 332 uses a love wave, for example.
  • an elastic member for suppressing SAW reflection may be provided outside the first IDT electrode 355A and the second IDT electrode 355B.
  • the SAW frequency can be set, for example, within a range of several megahertz (MHz) to several gigahertz (GHz). Especially, if it is several hundred MHz to 2 GHz, it is practical, and downsizing of the piezoelectric substrate 353 and thus downsizing of the sensor chip 332 can be realized.
  • the chip pad 357 is connected to the IDT electrode 355 via the chip wiring 356.
  • the chip pad 357 and the chip wiring 356 are made of a conductor layer located on the upper surface of the piezoelectric substrate 353, for example, like the IDT electrode 355.
  • the chip pad 357 connected to the first IDT electrode 355A is located on the opposite side of the first IDT electrode 355A from the second IDT electrode 355B, and the chip pad 357 connected to the second IDT electrode 355B is the first IDT of the second IDT electrode 355B. It is located on the side opposite to the electrode 355A.
  • the chip pad 357 is opposed to the first IDT electrode 355A and the second IDT electrode 355 in the opposing direction (y (Direction), the IDT electrode 355 overlaps.
  • the IDT electrode 355, the chip wiring 356, and the chip pad 357 are made of, for example, gold, aluminum, an alloy of aluminum and copper, or the like. These electrodes may have a multilayer structure. In the case of a multilayer structure, for example, the first layer is made of titanium or chromium, and the second layer is made of aluminum or an aluminum alloy. These thicknesses are, for example, 100 nm to 300 nm.
  • the upper surface of the piezoelectric substrate 353 is covered with a protective film (not shown) from above the IDT electrode 355 and the chip wiring 356.
  • the protective film contributes to suppressing oxidation of the IDT electrode 355 and the chip wiring 356.
  • the protective film is made of silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, silicon, or the like.
  • silicon dioxide (SiO 2 ) is used as a protective film.
  • the protective film is formed over the entire upper surface of the piezoelectric substrate 353 so that the chip pad 357 is exposed.
  • the thickness of the protective film (height from the upper surface of the piezoelectric substrate 353) is, for example, 200 nm to 10 ⁇ m, which is larger than the thickness of the IDT electrode 355.
  • the sensitive part 359 is located between the first IDT electrode 355A and the second IDT electrode 355B on the piezoelectric substrate 353 or the protective film.
  • the sensitive part 359 is located in the flow path 335.
  • a metal film having a two-layer structure of titanium and gold formed on titanium or chromium and gold formed on chromium can be given.
  • one SAW element 350A does not have a specific binding substance that binds to the detection target contained in the sample liquid on the surface of the sensitive portion 359, and the other SAW element 350B is specific. Has a binding substance.
  • the SAW element 350A having no specific binding substance may be referred to as a reference SAW element 350A
  • the SAW element 350B having a specific binding substance may be referred to as a detection SAW element 350B.
  • both SAW element 350A and the detection SAW element 350B may have a specific binding substance.
  • the density of specific binding substances in both SAW elements 350A and 350B is made different.
  • the density of the specific binding substance in the reference SAW element 50A may be set lower than the density of the specific binding substance in the detection SAW element 350B.
  • the two SAW elements 350A and 350B have the formula: t ⁇ V ⁇ L (where t is the data read interval time from the two SAW elements 350A and 350B, V is the flow rate of the sample liquid, L is the two SAW elements 350A, A distance of 350 B). That is, the above formula means that the distance through which the sample liquid flows between the first data reading and the second data reading is smaller than the distance between the SAW elements 350A and 350B, for example. As a result, it is possible to measure the detection target contained in the sample liquid described later.
  • the detection SAW element 350B and the reference SAW element 350A may have different densities of specific binding substances. Specifically, the density of the specific binding substance in the reference SAW element 350A may be lower than that of the detection SAW element 350B.
  • Specific binding substances include aptamers consisting of nucleic acids and peptides. The aptamer is immobilized on the surface of the sensitive part 359.
  • the sample liquid comes into contact with the sensitive part 359 to which the aptamer is immobilized, a specific target substance in the sample liquid is combined with an aptamer corresponding to the target substance, and the weight of the sensitive part 359 changes.
  • the phase characteristics of the SAW propagating from the first IDT electrode 355A to the second IDT electrode 355B change. Therefore, the properties or components of the sample liquid can be examined based on the change in the phase characteristics and the like.
  • the SAW element including the combination of the first IDT electrode 355A, the second IDT electrode 355B, and the sensitive portion 359 may be provided in an appropriate number in the flow channel direction of the flow channel 335 (the flow direction of the sample liquid).
  • a method of mounting the sensor chip 332 on the base 343 may be appropriate.
  • the mounting method of the sensor chip 332 is surface mounting using the bonding wire 365.
  • the sensor chip mounting method is not limited to surface mounting using wire bonding. For example, flip chip mounting using bumps may be used, or lead insertion mounting in which leads are inserted into a substrate may be used.
  • IDT electrodes 355 are connected to a chip pad 357 via a chip wiring 356, and the chip pad 357 is connected to an external terminal 331 by a bonding wire 365. .
  • FIG. 11A is a perspective view showing the sample liquid sensor device 301 (hereinafter simply referred to as “device 301”) in a closed state.
  • FIG. 11B is a perspective view showing a part of the apparatus 301 in an open state and a state before the sample liquid sensor is attached.
  • FIG. 12 is a perspective view showing the device 301 in a closed state.
  • the apparatus 301 includes a reader 305 to / from which the sample liquid sensor 303 is attached / detached.
  • the reader 305 includes a first part 307 (for example, a fixing portion) and a second part 309 (for example, a fixed part) that are connected so as to be capable of transition (relatively movable) between the open state illustrated in FIG. 11 and the closed state illustrated in FIG. A movable part) and a connection component 302 including a connection terminal 321, a positioning pin 323, and a terminal holding member 329 (contact unit) located on the upper surface of the first portion 307.
  • Both the first part 307 and the second part 309 constitute the outer shape of the reader 305.
  • connection terminal 321 located on the upper surface of the first part 7 is closed by the external terminal 331 of the sample liquid sensor 303 that is detachably sandwiched between the upper surface of the first part 307 and the lower surface of the second part 309. Connected in state.
  • the reader 305 inputs an electrical signal from the connection terminal 321 to the external terminal 331 and receives an electrical signal output from the sample liquid sensor 303.
  • the sample liquid sensor 303 that has aspirated and accommodated the sample liquid changes the input electric signal according to the property or component of the sample liquid and outputs it.
  • the external terminal 331 is connected to the lower surface side of the sample liquid sensor 303 so as to come into contact with the connection terminal 321 on the first part 307 when the sample liquid sensor 303 is sandwiched between the readers 305. It is provided on the first part 307 side).
  • the number and arrangement of the external terminals 331 are, for example, the external terminals 331 arranged along the flow path 335 at both ends in the width direction of the flow path 335 in the present embodiment. It is set appropriately according to the internal circuit configuration and the like.
  • the second part 309 In the open state, the second part 309 is farther from the first part 307 than in the closed state (FIG. 11A), and in the closed state, the second part 309 overlaps the upper surface of the first part 307 and faces the first part 307 ( FIG. 12). Therefore, when the reader 305 is opened, the surfaces of the first part 307 and the second part 309 facing each other are exposed to the outside. By placing the specimen liquid sensor 303 on the exposed upper surface of the first part 307 and displacing (moving) the second part 309 to make it close, the specimen liquid sensor 303 has the first part 307 and the second part. 309 and is attached to the reader 305. Further, when removing the sample liquid sensor 303 from the reader 305, the above procedure may be reversed.
  • the transition method (opening / closing mechanism) between the closed state and the open state of the first part 307 and the second part 309 is connected so as to be rotatable around the rotation axis, so-called It may be foldable.
  • a first convex portion 309 a is formed at one end of the first portion 307 so as to protrude in the direction (z direction) facing the second portion 309 in the closed state.
  • a notch 309b in which the first convex portion 309a is accommodated is formed at one end of the second portion 309.
  • a pair of second convex portions 309c constituting the notch 309b is formed at one end of the second portion 309.
  • a hinge member (not shown) is inserted in the y direction through the first convex portion 309a and the second convex portion 309c, so that the first portion 307 and the second portion 309 are rotated about the rotation axis parallel to the y direction. They are connected to each other in a rotatable manner.
  • an opening / closing mechanism a known cellular phone or a notebook personal computer opening / closing mechanism may be used.
  • the opening / closing mechanism of the first part 307 and the second part 309 is not limited to the case where one end is connected or fixed using a hinge member or the like as described above, and the two parts that exist independently are fitted.
  • a method of matching may be used. According to this, for example, after the sample liquid sensor 303 is placed on the upper surface of the first part 307, the second part 308 is fitted to the first part 307 from above to be in a closed state. . In addition, in a state where the upper surface of the first part 307 and the lower surface of the second part 308 are fitted to each other, the specimen liquid sensor 303 can be inserted between the two so as to be in a closed state. is there.
  • the shape and material of the first part 307 and the second part 309 are not particularly limited, but are preferably small and lightweight so that the user can carry them.
  • the first part 307 and the second part 309 are made of a resin such as polyethylene terephthalate (PET). It is good to be.
  • the first part 307 includes a connection component 302 for electrically connecting the sample liquid sensor 303 for positioning and fixing the sample liquid sensor 303 and the reader 305. You may have.
  • the positioning pin 323 protrudes from the upper surface of the first part 307.
  • the positioning pin 323 is provided in the first part 307 as the connection component 302, but may be integrally formed with the first part 307, for example.
  • the present invention is not particularly limited thereto, and the number, arrangement position, cross-sectional shape, diameter, and height of the positioning pins 323 are as follows. May be set appropriately.
  • the specimen fluid sensor 303 has a positioning hole 303h into which the positioning pin 323 is fitted. Then, the specimen liquid sensor 303 is fitted in the positioning hole 303h with the positioning pin 323, whereby the specimen liquid sensor 303 is moved in the direction along the xy plane (the plane direction along the facing surface of the first part 307 and the second part 309 in the closed state). Positioning with respect to one part 307 is performed.
  • the specimen liquid sensor 303 may be provided with a downward positioning pin, and a positioning hole may be provided on the opposing surface of the first part 307.
  • the terminal holding member 329 has a plurality of connection terminals 321 at the upper part and a circuit terminal 322 connected to the circuit board 328 at the lower part. Note that the terminal holding member 329 is fixed to the upper surface of the first portion 307 with a screw 333 as shown in FIG.
  • the terminal holding member 329 is, for example, generally formed in a plate shape.
  • the wiring of the terminal holding member 329 is connected by a connector and a signal line made of an FPC (flexible wiring board) or the like disposed inside the first part 307 through an opening formed in the first part 307, for example. Yes.
  • the first portion 307 further includes a circuit board 328 below the terminal holding member 329.
  • the circuit board 328 and the terminal holding member 329 are connected by a circuit terminal 322.
  • the circuit board 328 detects the sample liquid data and transmits / receives the data to / from an external device or the like regarding the detection of the sample liquid data.
  • the terminal holding member 329 is fixed to the upper surface of the first portion 307 by a screw 333 and is exposed to the outside when the reader 305 is open.
  • the reader 305 has a temperature adjustment unit 325 on the lower surface of the second portion 309 that can perform at least one of heating and cooling of the sample liquid sensor 303.
  • the temperature adjusting unit 325 is a member including a thermoelectric conversion element such as a Peltier element.
  • the Peltier element includes, for example, a semiconductor, electrodes disposed on both sides thereof, and heat dissipating plates disposed on both sides thereof.
  • the temperature adjustment unit 325 may include a display unit 326 on the upper surface (the surface opposite to the surface facing the first region 307) in the second region 309 (FIG. 12). It is preferable that the display unit 326 is adjacent to the temperature adjusting unit 325 so as to be able to exchange heat, and is attached to the surface of the second portion 309 so that the user can visually recognize it.
  • An example of the display unit 326 is a liquid crystal display unit.
  • the display unit 326 displays data detected by the sample liquid sensor 303 from the sample liquid.
  • the display unit 326 can cool heat generated by the operation of the display unit 326 adjacent to the cooling surface side of the temperature adjustment unit 325.
  • FIG. 14 is a block diagram showing the configuration of the signal processing system of the apparatus 301.
  • the device 301 (reader 305) is used by being connected to a personal computer (PC) 101, for example.
  • the reader 305 is appropriately provided with a connector conforming to a predetermined standard for connection with the PC 101.
  • the PC 101 is connected to interfaces such as the display unit 103 and the operation unit 105, for example.
  • the display unit 103 and the operation unit 105 may constitute a touch panel.
  • the PC 101 displays information prompting the user's operation on the display unit 103 and outputs a control signal to the reader 305 based on the user's operation on the operation unit 105.
  • the reader 305 inputs an electrical signal to the sample liquid sensor 303 in accordance with a control signal from the PC 101. Further, the reader 305 performs appropriate processing such as amplification, filtering, or AD (analog / digital) conversion on the electrical signal output from the sample liquid sensor 303 and outputs the processed electrical signal to the PC 101.
  • the PC 101 causes the display unit 103 to display information on the properties or components of the sample liquid based on the electrical signal from the reader.
  • the reader 305 includes at least a transmission circuit 373 that generates an electrical signal input to the first IDT electrode 355A, a reception circuit 375 that receives an electrical signal output from the second IDT electrode 355B, and the temperature adjustment unit 325 described above. It has a temperature sensor 377, a control unit 379 that performs these controls, and a power supply unit 381 that supplies these electric power.
  • the transmission circuit 373 is configured by, for example, an IC and includes a high frequency circuit. Then, the transmission circuit 373 generates an AC signal having a frequency and voltage corresponding to the signal from the control unit 379 and inputs the AC signal to the first IDT electrode 355A.
  • the receiving circuit 375 is configured by, for example, an IC (integrated circuit) or the like, and includes an amplifier circuit, a filter, or an AD conversion circuit. Then, the reception circuit 375 performs an appropriate process on the electrical signal output from the second IDT electrode 355B and outputs it to the control unit 379.
  • IC integrated circuit
  • the control unit 379 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Then, based on the control signal from the PC 101, the transmission circuit 373 and the reception circuit 375 are driven. In addition, the control unit 379 performs feedback control of the temperature adjustment unit 325 so that the temperature detected by the temperature sensor 377 configured by a resistance type contact temperature sensor such as a thermistor converges to a predetermined target value. Do.
  • the target value is input from the PC 101, for example.
  • the power supply unit 381 includes an inverter or a converter, converts the power from the commercial power supply or the PC 101 into an appropriate voltage, and transmits a transmission circuit 373, a reception circuit 375, a temperature adjustment unit 325, a temperature sensor 377, and a control unit 379. To supply.
  • a temperature sensor 377 may be provided.
  • This temperature sensor 377 is constituted by a contact type temperature sensor such as a thermistor, for example, and is provided in the vicinity of the position where the sample liquid sensor 303 is placed, and controls an electric signal according to the ambient temperature. Output to the unit 379.
  • the external terminal 331 is provided on the lower surface side (the first part 307 side) of the sample liquid sensor 303, but the present invention is not limited to such a correspondence.
  • An external terminal may be formed on the upper surface side (the second part 309 side) of the sample liquid sensor 303 so as to contact a connection terminal provided on the lower surface of the second part 309. Further, an external terminal may be formed on the side surface of the sample liquid sensor 303 so as to come into contact with a connection terminal provided in the first part 307 or the second part 309.
  • FIG. 15A shows that in the embodiment shown in FIG. 10, the sample liquid flows in the direction indicated by the arrow in the order of the reference SAW element 350A and the detection SAW element 350B.
  • the reference SAW element 350A and the detection SAW element 350B have the formula: t ⁇ V ⁇ L (where t is the data reading interval time from both SAW elements, V is the flow rate of the sample liquid, and L is both SAW elements) As described above.
  • the data reading interval time t from both the SAW elements 350 ⁇ / b> A and 350 ⁇ / b> B can be set by the control unit 379 in the reader 305 by operating the operation unit 105.
  • the flow rate V of the sample liquid is adjusted by adjusting the height (thickness, z direction) in the flow path 335 or the like. Can be adjusted.
  • the position where the flow velocity V of the sample liquid is measured may be, for example, within the region indicated by the symbol D in FIG. That is, it is in the region from the upstream end of the reference SAW element 350A where the sample liquid reaches first to the downstream end of the next detection SAW element 350B.
  • the flow velocity V is measured by, for example, a method of measuring the distance that the sample liquid flows within a predetermined time by photographing with a high-speed camera, a method of measuring and obtaining the time that the sample liquid flows through the predetermined distance, and the detection SAW element 350B.
  • a method for obtaining the flow rate flowing out from the downstream side of the gas by dividing the flow rate by the cross-sectional area of the flow path is exemplified, and the measurement method is not particularly limited.
  • the distance L between the two SAW elements 350A and 350B is one end of one SAW element 350A and one end positioned on the upstream side of the flow of the sample liquid, and the other SAW element 350B. It is the distance to one end which is also located on the upstream side.
  • the one ends of the SAW elements 350A and 350B are, for example, one end (upstream end) of the sensitive part 359 and the IDT electrode 355 (first IDT electrode) in the SAW elements 350A and 350B shown in FIG. 355A and the second IDT electrode 355B) may be a portion on the upstream side of one end (upstream end).
  • FIG. 15A shows an example of the change over time of the phase ⁇ ref of the reference SAW element 350A and the phase ⁇ test of the detection SAW element 350B
  • FIG. 15C shows the positions of ⁇ ref and ⁇ test. The change over time of the phase difference ⁇ ( ⁇ ref ⁇ test) is shown.
  • steps (1) to (5) shown in FIG. Note that the regions represented by the steps (1) to (5) are schematically indicated by arrows in FIG.
  • Stage (2) A state in which the sample liquid reaches the upstream end of the reference SAW element 350A and then reaches the downstream end of the reference SAW element 350A.
  • ⁇ ref changes to a negative value
  • ⁇ test does not change. . Therefore, the phase difference ⁇ changes to minus.
  • Stage (3) A state in which the sample liquid passes through the reference SAW element 350A and passes through the gap C between the reference SAW element 350A and the detection SAW element 350B.
  • the sample liquid has not reached the detection SAW element 350B, and the mass of the sample liquid added to the reference SAW element 350A has reached the maximum (the entire upper surface of the reference SAW element 350A is the sample surface). It is covered with liquid), and there is no change in ⁇ ref. Accordingly, in the time region between the time point (A) when the mass addition of the sample liquid to the reference SAW element 350A reaches the maximum (A) and the time point (B) when the mass of the sample liquid is added to the detection SAW element 350B.
  • the phase difference ⁇ is a minimum value P (extreme value).
  • Stage (4) A state in which the sample liquid reaches the upstream end of the detection SAW element 350B and then reaches the downstream end of the detection SAW element 350B.
  • ⁇ ref since the mass addition of the sample liquid to the reference SAW element 350A reaches the maximum due to the continuous inflow of the sample liquid, ⁇ ref does not substantially change.
  • ⁇ test since the mass of the sample liquid is added to the detection SAW element 350B, ⁇ test changes to minus. Therefore, the phase difference ⁇ changes to the plus side.
  • the phase difference ⁇ becomes zero.
  • Stage (5) As in the above stage (4), the mass addition due to the inflow of the sample liquid into the detection SAW element 350B has reached a maximum, and the detection target (receptor) in the sample liquid And a specific binding substance are bound to each other.
  • the phase ⁇ test in the detection SAW element 350B changes to a negative value larger than the phase ⁇ ref in the reference SAW element 350A. Therefore, the phase difference ⁇ changes to plus. It should be noted that even after mass addition due to the inflow of the sample liquid into the detection SAW element 350B reaches the maximum, the sample liquid may flow continuously or intermittently and flow out from the downstream end of the detection SAW element 350B. .
  • the flow of the sample liquid may be stopped when the addition of mass due to the flow of the sample liquid into the detection SAW element 350B reaches the maximum.
  • the phase difference ⁇ in step (5) continues to change while the binding reaction continues between the detection target (receptor) in the sample liquid and the specific binding substance in the detection SAW element 350B. Thereafter, when the above-described binding reaction in the detection SAW element 350B reaches saturation, the phase difference ⁇ becomes a constant value.
  • the concentration of the detection target in the sample liquid which is the above-described receptor, is proportional to the amount of binding of the detection target to the specific binding substance possessed by the detection SAW element 350B, and thus the negative change amount of ⁇ test.
  • the concentration is higher than the concentration of the detection target in the sample liquid shown in FIGS. 15B and 15C, or when the density of the specific binding substance is high, FIG. As shown in b), the negative change in ⁇ test in step (5) is larger than the negative change in ⁇ test shown in FIG.
  • the phase difference ⁇ has a minimum value P (extreme value) at a certain time.
  • P extreme value
  • this minimum value P is the time when the sample liquid reaches the detection SAW element 350B and the mass of the sample liquid is added to the detection SAW element 350B. Is shown.
  • the concentration of the detection target in the sample liquid can be determined by the amount of binding of the detection target to the specific binding substance of the detection SAW element 350B. This amount of coupling can be determined from the amount of change in the phase difference ⁇ within a certain time, the slope of the phase difference ⁇ over a certain time, and the like. Therefore, the point in time when the mass of the sample liquid is added to the detection SAW element 350B, that is, the minimum value P of the phase difference ⁇ or the later can be set as the starting point for measuring the detection target.
  • the value after the minimum value P can be appropriately selected according to the movement of the output signal.
  • the time after the minimum value P and when the value returns to a value close to the initial value before the introduction of the sample liquid may be used.
  • the measurement of the detection target is preferably started from the point in time when the sample liquid flows into the downstream SAW element (detection SAW element 350B in this embodiment), and according to this, the upstream SAW element (this embodiment)
  • the detection SAW element 350B on the downstream side it is possible to accurately measure a signal change based on the binding reaction that occurs between the detection target in the sample liquid and the specific binding substance.
  • both the SAW elements 350A and 350B may have a relationship of the formula: t ⁇ V ⁇ L. .
  • both SAW elements 350A and 350B do not have the relationship of the formula: t ⁇ V ⁇ L, an extreme value (maximum value or minimum value) cannot appear or is difficult. There is.
  • the amount of change in the phase difference ⁇ within a certain time period or the phase difference ⁇ at a certain time is measured.
  • a slope or the like is measured, and a calibration curve is created with the amount of change or slope as the horizontal axis and the vertical axis as the concentration to be detected.
  • the amount of change in the phase difference ⁇ , the slope of the phase difference ⁇ at a certain time, and the like can be measured, and the concentration and the like of the detection target can be measured from the calibration curve.
  • any time point of the minimum value P having such a constant time region may be set as the starting point. This is because there is only a time lag between the case where the starting point is the right end of the fixed time region and the case where the starting point is the left end.
  • (1) to (5) indicate the stages shown in FIG.
  • the sample liquid flows in the order of the detection SAW element 350B and the reference SAW element 350A.
  • the number of SAW elements is not limited to two, that is, the reference SAW element 350A and the detection SAW element 350B, and three or more reference SAW elements and the detection SAW elements are arranged in the flow direction of the sample liquid. It may be. Specifically, for example, three or more SAW elements have at least one SAW element having a specific binding substance that binds to a detection target contained in the sample liquid, and have no specific binding substance or specific binding. And at least one other SAW element whose material is less than the at least one SAW element described above. As described above, the three or more SAW elements may have different types of specific binding substances. In addition, among the three or more SAW elements, SAW elements having specific binding substances may have different specific binding substances or may have different specific binding substances.
  • the same detection target may be measured.
  • a plurality of SAW elements may measure the same detection target, or may measure different detection targets.
  • RS RS, human metaneum, adeno, influenza, etc. are mentioned as different detection targets, and a plurality of detection targets (viruses) including these can be measured simultaneously.
  • FIG. 19A and 19B show an example of the arrangement of three or more such SAW elements.
  • a reference SAW element 501A that does not have a specific binding substance and detection SAW elements 501B and 502B are arranged in this order in the flow direction of the sample liquid indicated by an arrow.
  • the two detection SAW elements 501B and 502B may have different or the same specific binding substance densities.
  • the detection SAW elements 501B and 502B may have different specific binding substances.
  • the reference SAW element 501A, the detection SAW element 501B, the reference SAW element 502A, and the detection SAW element 502B are arranged in this order in the flow direction of the sample liquid indicated by the arrow. These reference SAW elements and detection SAW elements may have different detection targets or may be the same.
  • the reference SAW element for measuring the detection target and the detection SAW element may have a relationship of the above formula: t ⁇ V ⁇ L.
  • the distance L between adjacent SAW elements may be the same or different.
  • the reference SAW element 501A and the detection SAW element 501B are adjacent to each other, while the reference SAW element 501A and the detection SAW element 502B are adjacent to each other. And have no relationship.
  • the relationship is set so as to have the relationship of the above formula: t ⁇ V ⁇ L, as described above, the extreme value or the subsequent value is used as the signal starting point from the sample liquid sensor, and the subsequent change with time
  • measurement concentration measurement, etc.
  • the plurality of SAW elements may be set so as to have the relationship of the above formula: t ⁇ V ⁇ L.
  • the reference SAW element and the detection SAW element have the relationship of the above formula. Therefore, the extreme value (maximum value or minimum value) appears in the difference between the phase ⁇ ref of the surface acoustic wave in the reference SAW element and the phase ⁇ test of the surface acoustic wave in the detection SAW element, that is, the change over time of the phase difference ⁇ . To do. This extreme value represents a point in time when the sample liquid flowing through one SAW element reaches the other SAW element.
  • measurement of the detection target contained in the sample liquid is performed by measuring the detection target using the extreme value or subsequent time as a signal starting point from the sample liquid sensor and using the change over time of the extreme value or subsequent time. Etc.) is easy and accurate.
  • FIG. 20 shows a sample liquid sensor according to still another embodiment of the present invention.
  • the sample liquid sensor 330 includes a frame body 370 in which the sensor chip 332 ′ surrounds the reference SAW element 350′A and the detection SAW element 350′B.
  • the sample liquid sensor 330 is formed between the base 343 and the cover 345 in the above-described embodiment, and does not have a flow path 335 that allows the sample liquid to flow between them using a capillary phenomenon.
  • a frame body 370 for preventing the sample liquid from flowing out is provided on the sensor chip 332 ′.
  • the frame body 370 is not particularly limited as long as it is a member that can prevent the flow of the sample liquid, and examples thereof include a resin material.
  • the specimen liquid is dropped at a dropping position 340 shown in FIG. 20, for example. Then, it may flow from the dropping position 340 toward the reference SAW element 350′A and the detection SAW element 350′B, and flow into both SAW elements 350′A and 350′B in this order.
  • a method of providing an inclination to the sensor chip 332 ′ or using the surface tension of the surface of the sensor chip 332 ′ can be employed.
  • the inflow of the sample liquid may be in the order of the detection SAW element 350′B and the reference SAW element 350′A in the same manner as in the above-described embodiment.
  • the sample liquid may be sequentially introduced into three or more SAW elements. Since others are the same as that of the above-mentioned embodiment, detailed description is abbreviate
  • the temperature adjustment unit 325 is provided in the second part 309 of the reader 305, but may be provided in the first part 307.
  • the temperature adjustment unit 325 ′ may be provided in a region between the pair of connection terminals 321 and 321 rows on the upper surface of the first portion 307. According to this, an electric circuit can be made into a simple structure in the 2nd site
  • the sample liquid sensor 303 ′ may be mounted inside the reader 305 so that it is not exposed to the outside when the reader 305 is closed. According to this, it is possible to reduce the influence of the external environment such as electromagnetic waves during measurement.
  • a porous member is disposed in a part or all of the flow path 335. May be. This makes it possible to control the flow rate of the sample liquid flowing through the flow path 335.
  • it can form so that a porous member and the SAW element 350 may contact
  • FIGS. 9 to 22 and the description thereof are embodiments corresponding to the following aspects of the sample liquid measurement method, sample liquid sensor, and sample liquid sensor device.
  • the piezoelectric substrate has a plurality of SAW elements positioned along the flow direction of the specimen liquid on the upper surface of the piezoelectric substrate, and among the plurality of SAW elements, the reference SAW element and the detection SAW element have the formula: a step of preparing a sensor chip having a relationship of t ⁇ V ⁇ L (where t is a data reading interval time from both SAW elements, V is a flow rate of the sample liquid, and L is a distance between both SAW elements) , The step of flowing the sample liquid sequentially from one side of either the reference SAW element or the detection SAW element, the phase ⁇ ref of the surface acoustic wave in the reference SAW element, and the surface acoustic wave in the detection SAW element Calculating a change with time of the phase difference ⁇ , which is a difference in the phase ⁇ test, and measuring a detection target starting from an extreme value or a time point after that of the change with time of the phase difference ⁇ . Measurement method of body
  • the detection SAW element has a specific binding substance that specifically binds to a detection target contained in a sample liquid, and the reference SAW element does not have the specific binding substance or The method for measuring a sample liquid according to aspect 1, wherein the density of the specific binding substance is lower than that of the detection SAW element.
  • Aspect 3 The method for measuring a sample liquid according to Aspect 1 or 2, further comprising a step of measuring a change with time of the phase ⁇ ref and a step of measuring a change with time of the phase ⁇ test.
  • Each of the reference SAW element and the detection SAW element includes a first IDT electrode electrode, a second IDT electrode electrode positioned in a propagation path of the surface acoustic wave excited by the first IDT electrode electrode, A sensitive portion positioned between the first IDT electrode electrode and the second IDT electrode electrode, and the sample liquid is supplied to the sensitive portion of the reference SAW element and the sensitive portion of the detection SAW element.
  • the method for measuring a sample liquid according to any one of aspects 1 to 4, wherein the sample liquid is flowed.
  • the sensor chip further includes a flow path in which the sample liquid flows and the reference SAW element and the detection SAW element are positioned in the flow direction, and the reference SAW among the flow paths. 6.
  • the method for measuring a sample liquid according to any one of aspects 1 to 5, further comprising a step of causing the sample liquid to flow from an upstream side of any of the element and the detection SAW element.
  • the sensor chip further includes a frame body that surrounds the reference SAW element and the detection SAW element, and from one side of the reference SAW element and the detection SAW element inside the frame body. 6.
  • the method for measuring a sample liquid according to any one of aspects 1 to 5, further comprising a step of allowing the sample liquid to flow toward the other side.
  • a plurality of SAW elements, and two SAW elements of the plurality of SAW elements are expressed by the formula: t ⁇ V ⁇ L (where t is determined from the two SAW elements) Data reading interval time, V is the flow rate of the sample liquid, and L is the distance between the two SAW elements.)
  • Each of the plurality of SAW elements includes a first IDT electrode electrode, a second IDT electrode electrode positioned in a propagation path of the surface acoustic wave excited by the first IDT electrode electrode, the first IDT electrode electrode,
  • one SAW element further has a specific binding substance that binds to a detection target contained in the sample liquid, and the other SAW element has the specific binding substance.
  • Each of the two SAW elements further includes a specific binding substance that binds to a detection target contained in the sample liquid, and one SAW element and the other SAW element are formed of the specific binding substance.
  • the sensor chip further includes a cover that covers the base, and the flow path of the specimen liquid is located between the base and the cover that covers the base.
  • the specimen liquid sensor according to any one of the above.
  • the sensor chip further includes a frame that is positioned on the upper surface of the piezoelectric substrate and surrounds the two sensitive parts of the two SAW elements, and the flow path of the sample liquid is the 14.
  • the specimen liquid sensor according to any one of aspects 9 to 13, which is located inside.
  • the plurality of SAW elements have three or more SAW elements positioned at equal intervals, and SAW elements adjacent to or not adjacent to each other among the three or more SAW elements are respectively
  • the plurality of SAW elements include three or more SAW elements positioned at different intervals, and the SAW elements adjacent to or not adjacent to each other among the three or more SAW elements are respectively
  • At least one SAW element has a specific binding substance that binds to a detection target contained in the sample liquid, and the other at least one SAW element includes the above-mentioned 20.
  • the three or more SAW elements include a first SAW element having the specific binding substance and a second SAW element having the specific binding substance, and the specific binding substance of the first SAW element and the The specimen liquid sensor according to aspect 20 or 21, which is different from the specific binding substance of the second SAW element.
  • a specimen liquid sensor device comprising: the specimen liquid sensor according to any one of aspects 9 to 22; and a reader to which the specimen liquid sensor is detachably attached.
  • the present invention is not limited to the above-described embodiment, and the same effect can be obtained even if the detection target is a different type of antigen.

Abstract

The present invention provides a detection method for a subject to be detected, said subject being contained in a sample. The present invention also provides a detection device for detecting a subject to be detected, said subject being contained in a sample. The detection method is provided with a first detection step for obtaining a detection value on the basis of a first signal value measured in a first measurement step, and a second signal value measured in a second measurement step. Furthermore, the detection device is provided with a first detection unit that obtains a detection value on the basis of a first signal value measured by a first measurement unit, and a second signal value measured by a second measurement unit.

Description

検出方法、および検出装置Detection method and detection apparatus
 本発明は、試料中に含まれる検出対象物の検出方法および検出装置に関するものである。 The present invention relates to a detection method and a detection apparatus for a detection target contained in a sample.
 抗体を表面に結合させた検出素子を備えるバイオセンサを用いて、試料中の標的物質を検出する方法が知られている(例えば、特許文献1または2参照)。 A method is known in which a target substance in a sample is detected using a biosensor having a detection element in which an antibody is bound to the surface (see, for example, Patent Document 1 or 2).
特許第2625577号公報Japanese Patent No. 2625577 特開2001-13142号公報JP 2001-13142 A
 しかしながら、従来の検出方法および検出装置では、試料に含まれる検出対象物以外の物質の影響を受けることによって、試料中の検出対象物を正確に検出できないおそれがあった。また、例えば、粘度および密度などの影響を受けることによって、検出対象物の信号値を正確に検出できないおそれがあった。 However, the conventional detection method and detection apparatus may not be able to accurately detect the detection target in the sample due to the influence of substances other than the detection target included in the sample. Further, for example, there is a possibility that the signal value of the detection target cannot be accurately detected due to the influence of viscosity and density.
 そのため、試料中に含まれる検出対象物以外の物質の影響、および試料間の粘度差および密度差の影響、を低減することによって、試料中の検出対象物をより正確に検出することができる検出方法および検出装置が求められている。 Therefore, detection that can detect the detection target in the sample more accurately by reducing the influence of substances other than the detection target contained in the sample and the influence of the difference in viscosity and density between samples. There is a need for methods and detection devices.
 本発明の実施形態に係る検出方法は、試料中に含まれる検出対象物の検出方法であって、試料を、前記検出対象物と反応する一次物質を表面に結合した前記検出体の表面に供給し、前記検出対象物と前記一次物質との反応によって一次反応物を前記検出体の表面上に形成させる第1反応工程と、前記第1反応工程の後、第1液体を前記検出体の表面に供給する第1供給工程と、前記第1供給工程の後、前記検出体の表面状態に基づく第1信号値を測定する第1測定工程と、前記第1測定工程の後、信号増幅用物質を前記検出体の表面に供給し、前記第1反応工程で形成された前記一次反応物が関与する反応によって前記検出体の表面状態を変化させる信号増幅工程と、前記信号増幅工程の後、前記検出体の表面状態に基づく第2信号値を測定する第2測定工程と、を備える。 A detection method according to an embodiment of the present invention is a detection method of a detection target contained in a sample, and the sample is supplied to the surface of the detection body in which a primary substance that reacts with the detection target is bound to the surface. A first reaction step in which a primary reactant is formed on the surface of the detection body by a reaction between the detection object and the primary substance; and after the first reaction step, a first liquid is placed on the surface of the detection body. A first supply step for supplying to the substrate, a first measurement step for measuring a first signal value based on a surface state of the detection body after the first supply step, and a substance for signal amplification after the first measurement step To the surface of the detection body, and after the signal amplification process, the signal amplification process of changing the surface state of the detection body by a reaction involving the primary reactant formed in the first reaction process, Measure the second signal value based on the surface condition of the detection object It comprises a second measurement step of, a.
 本発明の実施形態に係る検出装置は、試料中に含まれる検出対象物を検出するための検出装置であって、試料を、検出体の表面に結合され前記検出対象物と反応する一次物質に供給し、前記検出対象物と前記一次物質との反応によって一次反応物を前記検出体の表面上に形成させる第1反応部と、第1液体を前記検出体の表面に供給する第1供給部と、前記第1供給部によって前記第1液体液が前記検出体の表面に供給された後、前記検出体の表面状態に基づく第1信号値を測定する第1測定部と、信号増幅用物質を前記検出体の表面に供給し、前記一次反応物が関与する反応によって前記検出体の表面状態を変化させる信号増幅部と、前記信号増幅用物質が供給された前記検出体の表面状態に基づく第2信号値を測定する第2測定部と、を備える。 A detection apparatus according to an embodiment of the present invention is a detection apparatus for detecting a detection target contained in a sample, and the sample is combined with the surface of a detection body as a primary substance that reacts with the detection target. A first reaction unit that supplies and forms a primary reactant on the surface of the detection body by a reaction between the detection object and the primary substance, and a first supply unit that supplies a first liquid to the surface of the detection body A first measurement unit that measures a first signal value based on a surface state of the detection body after the first liquid liquid is supplied to the surface of the detection body by the first supply unit, and a signal amplification substance Based on the surface state of the detection body to which the signal amplification substance is supplied, and a signal amplification unit that changes the surface state of the detection body by a reaction involving the primary reactant. A second measuring unit for measuring a second signal value; Provided.
 本発明の実施形態に係る検出方法および検出装置によれば、上述のような構成を有することによって、試料中に含まれる検出対象物以外の物質の影響を低減することが可能となるので、試料中に含まれる検出対象物をより正確に検出することが可能となる。また、試料によって生じる粘度および密度の影響を低減することが可能であるため、試料中に含まれる検出対象物をより正確に検出することが可能となる。 According to the detection method and the detection apparatus according to the embodiment of the present invention, it is possible to reduce the influence of substances other than the detection target contained in the sample by having the above-described configuration. It becomes possible to detect the detection target contained therein more accurately. In addition, since it is possible to reduce the influence of the viscosity and density generated by the sample, it is possible to detect the detection target contained in the sample more accurately.
本発明の実施形態に係る検出方法のフローチャートを示す図である。It is a figure which shows the flowchart of the detection method which concerns on embodiment of this invention. 本発明の実施形態に係る検出方法のフローチャートを示す図である。It is a figure which shows the flowchart of the detection method which concerns on embodiment of this invention. 本発明の実施形態に係る検出装置を示すブロック図である。It is a block diagram which shows the detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバイオセンサ装置200の斜視図である。1 is a perspective view of a biosensor device 200 according to an embodiment of the present invention. 本発明の実施形態に係るバイオセンサ装置200の分解斜視図である。It is a disassembled perspective view of the biosensor apparatus 200 which concerns on embodiment of this invention. 本発明の実施形態に係る検出素子3の平面図である。It is a top view of the detection element 3 which concerns on embodiment of this invention. 本発明の実施形態に係る検出方法で取得される信号値の模式図である。It is a schematic diagram of a signal value acquired by a detection method according to an embodiment of the present invention. 本発明の実施形態に係る検出方法に関する実験データを示す図である。It is a figure which shows the experimental data regarding the detection method which concerns on embodiment of this invention. 本発明の他の実施形態に係る検体液センサの斜視図である。It is a perspective view of the sample liquid sensor which concerns on other embodiment of this invention. 図9の検体液センサの一部を示す平面図である。FIG. 10 is a plan view showing a part of the sample liquid sensor of FIG. 9. (a)および(b)は検体液センサをリーダへ取り付けた検体液センサ装置を示す斜視図である。(A) And (b) is a perspective view which shows the sample liquid sensor apparatus which attached the sample liquid sensor to the reader | leader. 図11の検体液センサ装置の閉状態を示す斜視図である。It is a perspective view which shows the closed state of the sample liquid sensor apparatus of FIG. 図9のA-A線断面で示す検体液センサを含む、図12の検体液センサ装置の概略断面図である。FIG. 13 is a schematic cross-sectional view of the sample liquid sensor device of FIG. 12 including the sample liquid sensor shown by the cross section along line AA of FIG. 検体液センサの信号処理系の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing system of a sample liquid sensor. (a)は検体液センサにおける参照用SAW素子および検出用SAW素子の配置例を示すブロック図、(b)は、(a)の配置例において、参照用SAW素子におけるSAWの位相θrefと、検出用SAW素子におけるSAWの位相θtestとの一例を示すグラフ、(c)は(b)に示すθrefとθtestとの位相差Δθ(θref-θtest)を示すグラフである。(A) is a block diagram showing an arrangement example of the reference SAW element and the detection SAW element in the sample liquid sensor, and (b) is a diagram illustrating the SAW phase θref in the reference SAW element and the detection in the arrangement example of (a). FIG. 7C is a graph showing an example of the SAW phase θtest in the SAW element for use, and FIG. 8C is a graph showing the phase difference Δθ (θref−θtest) between θref and θtest shown in FIG. 図15(b)に示す(1)~(5)の段階を示す説明図である。FIG. 16 is an explanatory diagram showing steps (1) to (5) shown in FIG. (a)は検体液中の検出対象が図15(b)の測定よりも高濃度で含有されていた場合および特異的結合物質の密度が高い場合等における、参照用SAW素子におけるSAWの位相θrefと、検出用SAW素子におけるSAWの位相θtestとを示すグラフ、(b)は(a)に示すθrefとθtestとの位相差Δθ(θref-θtest)を示すグラフである。(A) shows the phase θref of the SAW in the reference SAW element when the detection target in the sample liquid is contained at a higher concentration than the measurement of FIG. 15B and when the density of the specific binding substance is high. And (b) is a graph showing the phase difference Δθ (θref−θtest) between θref and θtest shown in (a). (a)は検体液センサにおける参照用SAW素子および検出用SAW素子の配置例を示すブロック図、(b)は、(a)の配置例において、参照用SAW素子におけるSAWの位相θrefと、検出用SAW素子におけるSAWの位相θtestとの他の例を示すグラフ、(c)は(b)に示すθrefとθtestとの位相差Δθ(θref-θtest)を示すグラフである。(A) is a block diagram showing an arrangement example of the reference SAW element and the detection SAW element in the sample liquid sensor, and (b) is a diagram illustrating the SAW phase θref in the reference SAW element and the detection in the arrangement example of (a). FIG. 6C is a graph showing another example of the SAW phase θtest in the SAW element for use, and FIG. 8C is a graph showing the phase difference Δθ (θref−θtest) between θref and θtest shown in FIG. (a)、(b)は、それぞれ3つ以上のSAW素子を配置した例を示すブロック図である。(A), (b) is a block diagram which shows the example which has arrange | positioned three or more SAW elements, respectively. 本発明のさらに他の実施形態に係る検体液センサの要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the sample liquid sensor which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る検体液センサを示す概略断面図である。It is a schematic sectional drawing which shows the sample liquid sensor which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る検体液センサ装置を示す斜視図である。It is a perspective view which shows the sample liquid sensor apparatus which concerns on other embodiment of this invention.
<検出方法>
 (第1実施形態)
 図1は、本発明の第1実施形態の検出方法を示すフローチャートである。
 本発明の第1実施形態に係る検出方法は、試料中に含まれる検出対象物の検出方法であって、
 検出体の表面に結合しており、検出対象物と反応する一次物質を準備する準備工程A1と、
 試料を、検出対象物と反応する一次物質を表面に結合した検出体の表面に供給し、検出対象物と一次物質との反応によって一次反応物を検出体の表面上に形成させる第1反応工程A2と、
 第1反応工程A2の後、第1液体を検出体の表面に供給する第1供給工程A3と、
 第1供給工程A3の後、検出体の表面状態に基づく第1信号値を測定する第1測定工程A4と、
 第1測定工程A4の後、信号増幅用物質を検出体の表面に供給し、前記第1反応工程A2で形成された前記一次反応物が関与する反応によって前記検出体の表面状態を変化させる信号増幅工程A5と、
 信号増幅工程A5の後、検出体の表面状態に基づく第2信号値を測定する第2測定工程A6と、
 第1信号値と第2信号値とから検出値を得る第1検出工程A7と、を備える。
 なお、準備工程A1および第1検出工程A7は、必須の工程ではなく、いずれかの工程または両方の工程を備えていてもよい。
<Detection method>
(First embodiment)
FIG. 1 is a flowchart showing a detection method according to the first embodiment of the present invention.
The detection method according to the first embodiment of the present invention is a detection method of a detection target contained in a sample,
A preparation step A1 for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target;
A first reaction step in which a sample is supplied to the surface of a detection body in which a primary substance that reacts with a detection target is bonded to the surface, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance. A2 and
After the first reaction step A2, a first supply step A3 for supplying the first liquid to the surface of the detection body;
After the first supply step A3, a first measurement step A4 for measuring a first signal value based on the surface state of the detection body;
After the first measurement step A4, the signal amplification substance is supplied to the surface of the detection body, and the signal changes the surface state of the detection body by the reaction involving the primary reactant formed in the first reaction step A2. Amplification step A5;
After the signal amplification step A5, a second measurement step A6 for measuring a second signal value based on the surface state of the detection body;
A first detection step A7 for obtaining a detection value from the first signal value and the second signal value.
In addition, preparatory process A1 and 1st detection process A7 are not an essential process, and may be provided with either process or both processes.
 準備工程A1は、検出体の表面に結合しており、検出対象物と反応する一次物質を準備する工程である。
 第1反応工程A2は、一次物質が結合された検出体と、この検出体に試料を供給するための供給路、試料を供給路内に流すポンプなどによって実施されるが、構成は限定されない。
 第1供給工程A3は、第1液体を供給するための供給路、ポンプなどによって実施されるが、構成は限定されず、第1反応工程A2と同様に実施されてもよい。
 第1測定工程A4は、検出体に信号を入力し、検出体から出力される信号に基づいて予め定める信号値を取得する素子を含む装置などによって実施されてもよいが、構成は限定されない。
 信号増幅工程A5は、第1反応工程A2の検出体と、この検出体に信号増幅用物質を供給するための供給路、ポンプなどによって実施されるが、構成は限定されず、反応部20と兼用されてもよい。
 第2測定工程A6は、検出体に信号を入力し、検出体から出力される信号に基づいて予め定める信号値を取得する素子を含む装置などで実施されてもよいが、構成は限定されず、第1測定工程A4と同様に実施されてもよい。
 第1検出工程A7は、第1信号値と第2信号値とから検出値を得る演算素子を含む演算装置などによって実施されてもよいが、構成は限定されない。
The preparation step A1 is a step of preparing a primary substance that binds to the surface of the detection body and reacts with the detection target.
The first reaction step A2 is performed by a detection body to which a primary substance is bound, a supply path for supplying a sample to the detection body, a pump for flowing the sample into the supply path, and the like, but the configuration is not limited.
Although 1st supply process A3 is implemented by the supply path for supplying a 1st liquid, a pump, etc., a structure is not limited and may be implemented similarly to 1st reaction process A2.
Although 1st measurement process A4 may be implemented by the apparatus etc. which input the signal into a detection body and acquire the signal value predetermined based on the signal output from a detection body, etc., a structure is not limited.
The signal amplification step A5 is performed by the detection body of the first reaction step A2, the supply path for supplying the signal amplification substance to the detection body, a pump, and the like, but the configuration is not limited, and the reaction unit 20 You may combine.
The second measurement step A6 may be performed by an apparatus including an element that inputs a signal to the detection body and acquires a predetermined signal value based on the signal output from the detection body, but the configuration is not limited. The first measurement step A4 may be performed in the same manner.
The first detection step A7 may be performed by an arithmetic device including an arithmetic element that obtains a detection value from the first signal value and the second signal value, but the configuration is not limited.
 ここで、本明細書において、「試料」とは、たとえば、血液、尿、唾液、痰などを含む生体試料そのものであってもよく、生体試料を緩衝液などによって希釈したものであってもよい。なお、生体試料以外の試料であってもよい。 Here, in this specification, the “sample” may be, for example, a biological sample itself including blood, urine, saliva, sputum, or the like, or a biological sample diluted with a buffer solution or the like. . A sample other than a biological sample may be used.
 ここで、複数の試料について、各試料中にそれぞれ同量含まれている検出対象物を検出する場合において、第1供給工程A3において第1液体を検出体の表面に供給しても、試料に含まれており且つ検出対象物とは異なる物質である夾雑物を検出体の表面から完全に除去することができずに、各検出対象物に対する信号値に差が生じる可能性がある。しかしながら、本実施形態の検出方法によれば、第1信号値と第2信号値とから検出値を得ることで、各試料間における夾雑物の影響あるいは粘度差および密度差の影響を低減することができる。これは、第1信号値と第2信号値とから得られる検出値が、検出体の表面に残存する夾雑物の量による影響を受けないことによるものである。このように、各試料間における夾雑物(残渣)の影響を低減することにより、試料中に含まれる検出対象物をより正確に検出することが可能となる。 Here, when detecting the detection target contained in each sample in the same amount for a plurality of samples, even if the first liquid is supplied to the surface of the detection body in the first supply step A3, A contaminant that is contained and is different from the detection object cannot be completely removed from the surface of the detection object, and there is a possibility that a difference occurs in the signal value for each detection object. However, according to the detection method of the present embodiment, the detection value is obtained from the first signal value and the second signal value, thereby reducing the influence of contaminants or the difference in viscosity and density between samples. Can do. This is because the detection value obtained from the first signal value and the second signal value is not affected by the amount of contaminants remaining on the surface of the detection body. In this way, by reducing the influence of contaminants (residues) between the samples, it becomes possible to detect the detection target contained in the samples more accurately.
 以下、本実施形態の検出方法について順に説明を行なう。
 本実施形態の準備工程A1は、検出体の表面に結合しており、検出対象物と反応する一次物質を準備するものである。
Hereinafter, the detection method of this embodiment will be described in order.
Preparatory process A1 of this embodiment prepares the primary substance which is couple | bonded with the surface of a detection body and reacts with a detection target object.
 本明細書において、「検出対象物」とは、たとえば、抗原、抗体などを含み、これらに限定されない。なお、以下において、検出対象物を抗原として記載することがある。 In the present specification, the “detection target” includes, for example, an antigen, an antibody and the like, but is not limited thereto. Hereinafter, the detection target may be described as an antigen.
 本明細書において、「検出体」とは、たとえば、表面弾性波素子、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、およびFET(Field Effect Transistor)などの信号値を出力する素子を含み、これらに限定されない。 In this specification, the “detector” includes, for example, an element that outputs a signal value such as a surface acoustic wave element, a QCM (Quartz Crystal Microbalance), an SPR (Surface Plasmon Resonance), and an FET (Field Effect Transistor). However, it is not limited to these.
 本実施形態の第1反応工程A2は、試料を、検出対象物と反応する一次物質を表面に結合した検出体の表面に供給し、検出対象物と一次物質との反応によって一次反応物を検出体の表面上に形成させるものである。 In the first reaction step A2 of the present embodiment, the sample is supplied to the surface of the detection body in which the primary substance that reacts with the detection target is bound to the surface, and the primary reactant is detected by the reaction between the detection target and the primary substance. It is formed on the surface of the body.
 本明細書において、「一次物質」とは、検出対象物と特異的に反応する物質であれば特に限定されるものではないが、たとえば、検出対象物が抗原の場合であれば当該抗原と結合する抗体、検出対象物が抗体の場合であれば当該抗体に結合する抗原などを含む。 In the present specification, the “primary substance” is not particularly limited as long as it is a substance that specifically reacts with the detection target. For example, when the detection target is an antigen, it binds to the antigen. And an antigen that binds to the antibody when the detection target is an antibody.
 本明細書において、「一次反応物」とは、たとえば、一次物質が検出対象物を捕捉した捕捉体、検出対象物と一次物質とが結合した複合体、一次物質の一部が検出対象物と結合して一次物質から上記一部が解離した解離体などを意味し、これらに限定されるものではないが、抗原と抗体とが反応して得られる複合体などを含む。 In this specification, the “primary reactant” refers to, for example, a capture body in which a primary substance captures a detection target, a complex in which the detection target and the primary substance are bound, and a part of the primary substance is a detection target. This means a dissociated body in which the above-mentioned part is dissociated from the primary substance and includes, but is not limited to, a complex obtained by reacting an antigen and an antibody.
 なお、変形例として、上述したように、第1反応工程A2において、検出対象物と一次物質の一部とを結合させるとともに一次物質から一部を解離させることによって、一次反応物を形成することも可能である。 As a modification, as described above, in the first reaction step A2, a primary reactant is formed by combining a detection target and a part of the primary substance and dissociating a part from the primary substance. Is also possible.
 本実施形態の第1供給工程A3は、第1液体を検出体の表面に供給するものである。 In the first supply step A3 of the present embodiment, the first liquid is supplied to the surface of the detection body.
 本明細書において、「第1液体」とは、たとえば、緩衝液などであってもよい。緩衝液は、たとえば、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、HEPES(4-(2-ヒドロキシエチル)-1-ピペリジンエタンスルホン酸)緩衝液、トリス(ヒドロキシメチル)アミノメタン)緩衝液、およびMOPS(3-モルホリノプロパンスルホン酸)緩衝液などを含み、これらに限定されず緩衝液として周知のものを適宜用いればよい。また、緩衝液は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化亜鉛、およびEDTA(エチレンジアミンン四酢酸)を含んでもよく、必要に応じて、Tween20(登録商標)、TritonX-100(登録商標)、Brij35(登録商標)などの界面活性剤をさらに含んでもよい。さらに、緩衝液には、必要に応じてブロッキング物質が混合されてもよい。ブロッキング物質は、たとえば、BSA(ウシ血清アルブミン)、カゼイン、ポリエチレングリコール、MPC(メタクリル酸ホスホリルコリン)ポリマー、ベタインポリマー、HEMA(ヒドロキシエチルメタクリル酸)ポリマーなどが挙げられる。これらの点は、後述する第2液体および第3液体においても同様である。 In the present specification, the “first liquid” may be, for example, a buffer solution. Buffers include, for example, phosphate buffer, citrate buffer, borate buffer, HEPES (4- (2-hydroxyethyl) -1-piperidineethanesulfonic acid) buffer, tris (hydroxymethyl) aminomethane) A buffer solution, a MOPS (3-morpholinopropanesulfonic acid) buffer solution, and the like are included, but are not limited thereto, and a known buffer solution may be used as appropriate. The buffer may contain sodium chloride, potassium chloride, magnesium chloride, zinc chloride, and EDTA (ethylenediamine tetraacetic acid), and if necessary, Tween 20 (registered trademark), Triton X-100 (registered trademark), A surfactant such as Brij35 (registered trademark) may be further included. Furthermore, a blocking substance may be mixed in the buffer solution as necessary. Examples of the blocking substance include BSA (bovine serum albumin), casein, polyethylene glycol, MPC (phosphorylcholine methacrylate) polymer, betaine polymer, HEMA (hydroxyethyl methacrylic acid) polymer, and the like. These points are the same in the second liquid and the third liquid described later.
 本実施形態の第1測定工程A4は、検出体の表面状態に基づく信号値を測定するものである。 The first measurement step A4 of the present embodiment measures a signal value based on the surface state of the detection body.
 第1測定工程A4は、第1供給工程A3において第1液体が検出体の表面に供給されたことによる、検出体の表面状態に基づく信号値の変動がおさまり、当該信号値が安定した時点以降で実施される。第1液体を供給し始めてからしばらくの間は、夾雑物が検出体の表面上から十分に除去されておらず、検出体の表面状態に基づく信号値は、変動する。第1液体を供給することによって、夾雑物が検出体の表面上から全てあるいは、取得する信号値に影響が無い程度に除去されれば、検出体の表面状態に基づく信号値は、変動が小さな安定した状態となる。信号値が安定した状態で第1測定工程A4を実施することで、夾雑物の影響を除き、ばらつきが低減されたベースの信号値を取得することが可能となり、このようなベースとなる信号値を用いることで、後述の検出工程において、検出対象物のより正確な信号値を測定することが可能となる。なお、以下の実施形態でも同様のタイミングで信号値を取得することができる。 In the first measurement step A4, after the time when the signal value is stabilized due to the fluctuation of the signal value based on the surface state of the detection body due to the supply of the first liquid to the surface of the detection body in the first supply step A3. Will be implemented. For a while after the first liquid starts to be supplied, impurities are not sufficiently removed from the surface of the detection body, and the signal value based on the surface state of the detection body varies. If the contaminants are all removed from the surface of the detection body or are removed to the extent that the acquired signal value is not affected by supplying the first liquid, the signal value based on the surface state of the detection body has a small fluctuation. It will be in a stable state. By performing the first measurement step A4 in a state where the signal value is stable, it becomes possible to obtain a base signal value with reduced variations, excluding the influence of impurities, and such a base signal value By using, it becomes possible to measure a more accurate signal value of the detection target in the detection step described later. In the following embodiments, signal values can be acquired at the same timing.
 ここで、安定した状態とは、信号値の変動が小さい状態であり、例えば、第1供給工程A3から連続的に信号値を取得し、信号値の変化曲線における変曲点を決定し、決定した変曲点以降で測定すればよい。 Here, the stable state is a state in which the fluctuation of the signal value is small. For example, the signal value is continuously obtained from the first supply step A3, and the inflection point in the signal value change curve is determined and determined. What is necessary is to measure after the inflection point.
 本実施形態において、検出体の表面に表面弾性波素子を形成し、検出体の表面状態に基づく信号値として、表面弾性波素子の位相特性の値を用いてもよい。 In this embodiment, a surface acoustic wave element may be formed on the surface of the detection body, and the value of the phase characteristic of the surface acoustic wave element may be used as the signal value based on the surface state of the detection body.
 また、本実施形態において、検出体の表面状態に基づく信号値は、QCM(Quartz Crystal Microbalance)センサ、SPR(Surface Plasmon Resonance)センサおよびFET(Field Effect Transistor)センサから選択された方法によって測定された値であってもよい。 Further, in the present embodiment, the signal value based on the surface state of the detection body is measured by a method selected from a QCM (Quartz Crystal Microbalance) sensor, an SPR (Surface Plasma Resonance) sensor, and an FET (Field Effect Transistor) sensor. It may be a value.
 本実施形態の信号増幅工程A5は、信号増幅用物質を検出体の表面に供給し、第1反応工程A2で形成された一次反応物が関与する反応によって検出体の表面状態を変化させるものである。 In the signal amplification step A5 of the present embodiment, a signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by a reaction involving the primary reactant formed in the first reaction step A2. is there.
 本明細書において、「信号増幅用物質」とは、検出体の表面状態を変化させる物質であれば特に限定されるものではないが、たとえば、一次反応物に特異的に反応する、標識化二次抗体、標識化ペプチド、標識化リガンド、および標識化アプタマーなどを含む。標識は、検出体の表面状態を変化させるものであれば、特に限定されるものではないが、ストレプトアビジンなどのタンパク質、ビオチン、酵素、蛍光物質、および金属粒子などのナノ粒子などを含む。 In the present specification, the “signal amplification substance” is not particularly limited as long as it is a substance that changes the surface state of the detection body. For example, the labeled substance that specifically reacts with the primary reactant is used. Secondary antibodies, labeled peptides, labeled ligands, labeled aptamers and the like are included. The label is not particularly limited as long as it changes the surface state of the detection body, but includes a protein such as streptavidin, biotin, an enzyme, a fluorescent substance, and nanoparticles such as metal particles.
 本明細書において、「第1反応工程で形成された一次反応物が関与する反応」とは、一次反応物の量に応じて検出体の表面状態が変化する反応であれば特に限定されるものではないが、第1反応工程A2で形成された一次反応物と信号増幅用物質との結合反応、第1反応工程A2で形成された一次反応物と信号増幅用物質との酵素反応、第1反応工程A2で形成された一次反応物と信号増幅用物質との還元反応などを含み、一次物質と信号増幅用物質とが直接反応してもよく、一次物質と信号増幅用物質とが他の物質を介して間接的に反応してもよい。 In the present specification, the “reaction involving the primary reactant formed in the first reaction step” is particularly limited as long as the surface state of the detection body changes depending on the amount of the primary reactant. However, the binding reaction between the primary reactant formed in the first reaction step A2 and the signal amplification substance, the enzyme reaction between the primary reactant formed in the first reaction step A2 and the signal amplification substance, Including the reduction reaction between the primary reactant formed in the reaction step A2 and the signal amplification substance, the primary substance and the signal amplification substance may directly react with each other, and the primary substance and the signal amplification substance may react with each other. You may react indirectly through a substance.
 本実施形態において、第1測定工程A4と信号増幅工程A5との間に、少なくとも1種の追加反応物質を前記検出体の表面に供給する追加反応工程をさらに備えてもよい。また、少なくとも1種の追加反応物質は複数種の追加反応物質を有し、当該追加反応物質は1種ずつ供給されてもよい。 In the present embodiment, an additional reaction step of supplying at least one additional reactant to the surface of the detection body may be further provided between the first measurement step A4 and the signal amplification step A5. The at least one additional reactant may include a plurality of additional reactants, and the additional reactants may be supplied one by one.
 追加反応工程が実施される場合、信号増幅物質は、一次反応物に特異的に反応するものでなくてもよく、たとえば、ストレプトアビジン、3,3’ジアミノベンジジン、3-アミノ-9-エチルカルバゾール、4-クロロ-1-ナフトール、および5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムなどの基質、ならびに塩化金酸とヒドロキシルアミン塩酸塩との組み合わせ、および硝酸銀と硫酸鉄との組み合わせなどの金属イオンと還元剤との組み合わせなどを含んでもよい。 When an additional reaction step is performed, the signal amplification substance may not specifically react with the primary reactant, for example, streptavidin, 3,3′diaminobenzidine, 3-amino-9-ethylcarbazole , 4-chloro-1-naphthol, and substrates such as 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, and combinations of chloroauric acid and hydroxylamine hydrochloride, and silver nitrate and iron sulfate A combination of a metal ion and a reducing agent such as a combination of
 本明細書において、「追加反応物質」とは、たとえば、ビオチン、ストレプトアビジン、ビオチン標識抗体、ペルオキシダーゼ標識抗体、およびアルカリホスファターゼ標識抗体などの酵素標識抗体、金属粒子標識抗体などのナノ粒子標識抗体、ペルオキシダーゼ標識ストレプトアビジン、およびアルカリホスファターゼ標識ストレプトアビジンなどの酵素標識ストレプトアビジン、ならびに金属粒子標識ストレプトアビジンなどのナノ粒子標識ストレプトアビジンなどを含む。 In the present specification, the “additional reactant” includes, for example, biotin, streptavidin, biotin-labeled antibody, peroxidase-labeled antibody, enzyme-labeled antibody such as alkaline phosphatase-labeled antibody, and nanoparticle-labeled antibody such as metal particle-labeled antibody, Peroxidase labeled streptavidin, and enzyme labeled streptavidin such as alkaline phosphatase labeled streptavidin, and nanoparticle labeled streptavidin such as metal particle labeled streptavidin and the like.
 追加反応物質は、選択される信号増幅用物質に応じて選択されるべきである。たとえば、信号増幅用物質がストレプトアビジンである場合、追加反応物質は、ビオチン標識抗体である。たとえば、信号増幅用物質が3,3’ジアミノベンジジンである場合、追加反応物質は、ビオチン標識二次抗体、およびペルオキシダーゼ標識ストレプトアビジンである。たとえば、信号増幅用物質が5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムである場合、追加反応物質は、ビオチン標識二次抗体、およびアルカリホスファターゼ標識ストレプトアビジンである。たとえば、信号増幅用物質が塩化金酸およびヒドロキシルアミン塩酸塩である場合、追加反応物質は、ビオチン標識二次抗体、およびAu粒子標識ストレプトアビジンである。 The additional reactant should be selected according to the selected signal amplification substance. For example, when the signal amplification substance is streptavidin, the additional reaction substance is a biotin-labeled antibody. For example, when the signal amplification substance is 3,3 'diaminobenzidine, the additional reaction substance is a biotin-labeled secondary antibody and peroxidase-labeled streptavidin. For example, if the signal amplification material is 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, the additional reactants are a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin. For example, if the signal amplification material is chloroauric acid and hydroxylamine hydrochloride, the additional reactants are biotin-labeled secondary antibody and Au particle-labeled streptavidin.
 追加反応工程において、追加反応物質は、検出体の表面状態の変化をさらに増幅させるために繰り返し供給されてもよい。たとえば、信号増幅用物質がストレプトアビジンであり、追加反応物質がビオチン標識抗体である場合、追加反応工程において、第1にビオチン標識二次抗体が供給され、第2にストレプトアビジンが供給され、第3にビオチン標識抗体が供給され、第4にストレプトアビジンが供給され、第5にビオチン標識抗体が供給され、続いて信号増幅工程A5においてストレプトアビジンが供給される。 In the additional reaction step, the additional reactant may be repeatedly supplied to further amplify the change in the surface state of the detection body. For example, when the signal amplification substance is streptavidin and the additional reaction substance is a biotin-labeled antibody, in the additional reaction step, the biotin-labeled secondary antibody is supplied first, the second is supplied with streptavidin, The biotin-labeled antibody is supplied to 3, the streptavidin is supplied to the fourth, the biotin-labeled antibody is supplied to the fifth, and then the streptavidin is supplied in the signal amplification step A5.
 本実施形態において、第1反応工程A2と第1供給工程A3との間に、少なくとも1種の前駆反応物質を前記検出体の表面に供給する前駆反応工程をさらに備えてもよい。また、少なくとも1種の前駆反応物質は複数種の前駆反応物質を有し、当該前駆反応物質は1種ずつ供給されてもよい。 In the present embodiment, a precursor reaction step of supplying at least one precursor reactant to the surface of the detector may be further provided between the first reaction step A2 and the first supply step A3. The at least one precursor reactant may include a plurality of precursor reactants, and the precursor reactants may be supplied one by one.
 前駆反応工程が実施される場合、信号増幅物質は、一次反応物に特異的に反応するものでなくてもよく、たとえば、ストレプトアビジン、3,3’ジアミノベンジジン、3-アミノ-9-エチルカルバゾール、4-クロロ-1-ナフトール、および5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムなどの基質、ならびに塩化金酸とヒドロキシルアミン塩酸塩との組み合わせ、および硝酸銀と硫酸鉄との組み合わせなどの金属イオンと還元剤との組み合わせなどを含んでもよい。 When the precursor reaction step is performed, the signal amplification substance may not specifically react with the primary reactant, for example, streptavidin, 3,3′diaminobenzidine, 3-amino-9-ethylcarbazole , 4-chloro-1-naphthol, and substrates such as 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, and combinations of chloroauric acid and hydroxylamine hydrochloride, and silver nitrate and iron sulfate A combination of a metal ion and a reducing agent such as a combination of
 本明細書において、「前駆反応物質」とは、たとえば、ビオチン、ストレプトアビジン、ビオチン標識抗体、ペルオキシダーゼ標識抗体、およびアルカリホスファターゼ標識抗体などの酵素標識抗体、金属粒子標識抗体などのナノ粒子標識抗体、ペルオキシダーゼ標識ストレプトアビジン、およびアルカリホスファターゼ標識ストレプトアビジンなどの酵素標識ストレプトアビジン、ならびに金属粒子標識ストレプトアビジンなどのナノ粒子標識ストレプトアビジンなどを含む。 In the present specification, the “precursor reactant” means, for example, biotin, streptavidin, biotin-labeled antibody, peroxidase-labeled antibody, enzyme-labeled antibody such as alkaline phosphatase-labeled antibody, nanoparticle-labeled antibody such as metal particle-labeled antibody, Peroxidase labeled streptavidin, and enzyme labeled streptavidin such as alkaline phosphatase labeled streptavidin, and nanoparticle labeled streptavidin such as metal particle labeled streptavidin and the like.
 前駆反応物質は、選択される信号増幅用物質に応じて選択されるべきである。たとえば、信号増幅用物質がストレプトアビジンである場合、前駆反応物質は、ビオチン標識抗体である。たとえば、信号増幅用物質が3,3’ジアミノベンジジンである場合、前駆反応物質は、ビオチン標識二次抗体、およびペルオキシダーゼ標識ストレプトアビジンである。たとえば、信号増幅用物質が5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムである場合、追加反応物質は、ビオチン標識二次抗体、およびアルカリホスファターゼ標識ストレプトアビジンである。たとえば、信号増幅用物質が塩化金酸およびヒドロキシルアミン塩酸塩である場合、前駆反応物質は、ビオチン標識二次抗体、およびAu粒子標識ストレプトアビジンである。 The precursor reactant should be selected according to the signal amplification material selected. For example, when the signal amplification substance is streptavidin, the precursor reaction substance is a biotin-labeled antibody. For example, when the signal amplification substance is 3,3 'diaminobenzidine, the precursor reaction substance is a biotin-labeled secondary antibody and peroxidase-labeled streptavidin. For example, if the signal amplification material is 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium, the additional reactants are a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin. For example, when the signal amplification substance is chloroauric acid and hydroxylamine hydrochloride, the precursor reaction substances are biotin-labeled secondary antibody and Au particle-labeled streptavidin.
 前駆反応工程において、前駆反応物質は、検出体の表面状態の変化をさらに増幅させるために繰り返し供給されてもよい。たとえば、信号増幅用物質がストレプトアビジンであり、前駆反応物質がビオチン標識抗体である場合、前駆反応工程において、第1にビオチン標識二次抗体が供給され、第2にストレプトアビジンが供給され、第3にビオチン標識抗体が供給され、第4にストレプトアビジンが供給され、第5にビオチン標識抗体が供給され、第1供給工程A3および第1測定工程A2を経た後、信号増幅工程A5においてストレプトアビジンが供給される。 In the precursor reaction step, the precursor reactant may be repeatedly supplied to further amplify the change in the surface state of the detector. For example, when the signal amplification substance is streptavidin and the precursor reaction substance is a biotin-labeled antibody, in the precursor reaction step, a biotin-labeled secondary antibody is first supplied, and secondly streptavidin is supplied. 3 is supplied with a biotin-labeled antibody, fourth is supplied with streptavidin, fifth is supplied with a biotin-labeled antibody, and after passing through the first supply step A3 and the first measurement step A2, in the signal amplification step A5, streptavidin Is supplied.
なお、信号増幅用物質、追加反応物質、前駆反応物質は緩衝液などによって希釈したものであってもよい。信号増幅用物質、追加反応物質、および前駆反応物質が希釈される緩衝液(以下では、「反応用液体」ともいう)は、それらの性質に応じて選択され、濃度、組成、およびpHなどを最適化されてもよい。 The signal amplification substance, the additional reaction substance, and the precursor reaction substance may be diluted with a buffer solution or the like. The buffer for diluting the signal amplification substance, the additional reactant, and the precursor reactant (hereinafter also referred to as “reaction liquid”) is selected according to their properties, and the concentration, composition, pH, etc. It may be optimized.
 なお、信号増幅工程A5において、信号増幅用物質を、一次反応物のうち検出対象物と結合させることも可能である。 In the signal amplification step A5, the signal amplification substance can be combined with the detection target substance among the primary reactants.
 なお、本実施形態において、信号増幅工程A5の後であって第2測定工程A6の前において、第2液体を検出体の表面に供給する第2供給工程をさらに備えてもよい。
 これによれば、信号増幅工程A5において一次反応物と反応しなかった信号増幅用物質を検出体の表面から除去することによって、第2信号値から一次反応物に反応しなかった信号増幅用物質の影響を低減することができ、第2測定工程A6で測定される検出対象物に関する信号値の正確性を向上することができる。
In the present embodiment, a second supply step of supplying the second liquid to the surface of the detection body may be further provided after the signal amplification step A5 and before the second measurement step A6.
According to this, the signal amplification substance that did not react with the primary reactant from the second signal value by removing the signal amplification substance that did not react with the primary reactant in the signal amplification step A5 from the surface of the detector. Can be reduced, and the accuracy of the signal value related to the detection target measured in the second measurement step A6 can be improved.
 なお、本明細書において、「第2液体」とは、たとえば、緩衝液などであってもよい。 In the present specification, the “second liquid” may be, for example, a buffer solution.
 本実施形態において、第1液体と第2液体とを同一種類の液体とすることができる。また、第1液体とその後の反応工程で用いられる反応用液体、および第2液体とその後の反応工程で用いられる反応用液体とを同一種類の液体とすることもできる。検出対象物に応じて、第1供給工程A3において夾雑物を検出体の表面から除去することを促進するために第1液体の濃度、pH、および組成などを最適化してもよい。検出対象物に応じて、第2供給工程において夾雑物を検出体の表面から除去することを促進するために第2液体の濃度、pH、および組成などを最適化してもよい。 In the present embodiment, the first liquid and the second liquid can be the same type of liquid. Also, the first liquid and the reaction liquid used in the subsequent reaction process, and the second liquid and the reaction liquid used in the subsequent reaction process may be the same type of liquid. Depending on the object to be detected, the concentration, pH, composition, etc. of the first liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the first supply step A3. Depending on the detection object, the concentration, pH, composition, etc. of the second liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the second supply step.
 第1液体は、反応用液体と、同一種類の液体であってもよく、異なる種類の液体であってもよい。第2液体は、反応用液体と、同一種類の液体であってもよく、異なる種類の液体であってもよい。第1液体および第2液体と、反応用液体とを異なる種類の液体とすることによって、第1物質による夾雑物の除去を最適化することが可能となるとともに、信号増幅用物質、追加反応物質、および前駆反応物質による反応を最適化することが可能となる。 The first liquid may be the same type of liquid as the reaction liquid or may be a different type of liquid. The second liquid may be the same type of liquid as the reaction liquid or a different type of liquid. By making the first liquid and the second liquid different from the reaction liquid, it is possible to optimize the removal of contaminants by the first substance, as well as the signal amplification substance and the additional reaction substance. , And reactions with precursor reactants can be optimized.
 第1液体および第2液体と、その後の反応工程で用いられる反応用液体とが、同一種類の液体であれば、液体が切り替わるときに信号値が変動することを低減させることができ、取得する信号値のばらつきを抑制することができる。 If the first liquid and the second liquid and the reaction liquid used in the subsequent reaction step are the same type of liquid, fluctuations in the signal value when the liquid is switched can be reduced and acquired. Variations in signal values can be suppressed.
 ここで、同一種類の液体とは、例えば、緩衝液においては、含有される緩衝作用を有するリン酸化合物などの化合物種が同一であって、その含有量が同一量の液体を同一種類の液体という。 Here, the same type of liquid means that, for example, in a buffer solution, the same compound type such as a phosphate compound having a buffering action is used, and the same amount of liquid is the same type of liquid. That's it.
 本実施形態の第2測定工程A6は、検出体の表面状態に基づく信号値を測定するものである。 The second measurement step A6 of the present embodiment measures a signal value based on the surface state of the detection body.
 本工程は、上述の第1測定工程A4と同様に行なえばよい。 This step may be performed in the same manner as the first measurement step A4 described above.
 本実施形態の第1検出工程A7は、第1信号値と第2信号値とから検出値を得るものである。 In the first detection step A7 of the present embodiment, a detection value is obtained from the first signal value and the second signal value.
 本実施形態において、第2信号値は、第1信号値よりも大きくてもよい。ここで、信号値の大小は、たとえば第1反応工程A2前の信号値との差分の絶対値にて判断すればよい。 In the present embodiment, the second signal value may be larger than the first signal value. Here, the magnitude of the signal value may be determined by, for example, the absolute value of the difference from the signal value before the first reaction step A2.
 なお、本実施形態において、試料として、検出対象物とは異なる物質からなる夾雑物をさらに含むものを用いても良い。 In the present embodiment, a sample that further includes a contaminant made of a substance different from the detection target may be used.
 この場合には、第1反応工程A2において検出体の表面に検出対象物とは異なる夾雑物が付着し、その後、第1供給工程A3において第1液体を検出体の表面に供給することによって検出体の表面から完全に除去することができずに残存する場合がある。それ故、第1信号値は、検出体の表面に残存している検出対象物とは異なる夾雑物の影響を受ける。 In this case, in the first reaction step A2, a contaminant different from the detection target adheres to the surface of the detection body, and then the first liquid is supplied to the surface of the detection body in the first supply step A3. In some cases, it cannot be completely removed from the surface of the body and remains. Therefore, the first signal value is affected by a different contaminant from the detection target remaining on the surface of the detection body.
 その場合において、この夾雑物の残渣による影響を低減するために、第1信号値と第2信号値から検出値を得ることによって、検出体の表面に残存している夾雑物に由来する信号値を、第2信号値から除去することができることから、検出対象物のより正確な信号値を測定することが可能となる。 In that case, in order to reduce the influence of the residue of this foreign substance, the signal value derived from the foreign substance remaining on the surface of the detection body is obtained by obtaining the detection value from the first signal value and the second signal value. Can be removed from the second signal value, the more accurate signal value of the detection target can be measured.
 本発明の一実施形態において、信号増幅工程A5の一態様として第2反応工程を備えてもよい。第2反応工程において、一次反応物と反応する二次物質が検出体の表面に供給され、一次反応物と二次物質との反応によって二次反応物が検出体の表面上に形成される。 In one embodiment of the present invention, a second reaction step may be provided as one aspect of the signal amplification step A5. In the second reaction step, a secondary substance that reacts with the primary reactant is supplied to the surface of the detector, and a secondary reactant is formed on the surface of the detector by the reaction between the primary reactant and the secondary substance.
 第2反応工程は、第1反応工程の検出体と、この検出体に二次物質を供給するための供給路、ポンプなどによって実施されるが、構成は限定されず、第1反応工程と同様に実施されてもよい。 The second reaction step is performed by the detection body of the first reaction step, a supply path for supplying a secondary substance to the detection body, a pump, and the like, but the configuration is not limited and is the same as the first reaction step May be implemented.
 本明細書において、「二次物質」とは、一次反応物に特異的に反応する物質であれば特に限定されるものではないが、たとえば、二次抗体などを含み、信号増幅用物質の一態様であってもよい。 In the present specification, the “secondary substance” is not particularly limited as long as it is a substance that specifically reacts with the primary reactant, and includes, for example, a secondary antibody and the like. An aspect may be sufficient.
 なお、二次物質は、たとえば、ビオチン、酵素、ナノ粒子、金属ナノ粒子などで標識された標識化二次抗体を用いることができる。二次物質に標識を付した標識化二次抗体を用いることによって、二次物質に由来する信号値を増幅させることができるので、検出対象物をより高感度に検出することができる。 As the secondary substance, for example, a labeled secondary antibody labeled with biotin, enzyme, nanoparticles, metal nanoparticles or the like can be used. Since the signal value derived from the secondary substance can be amplified by using the labeled secondary antibody in which the secondary substance is labeled, the detection target can be detected with higher sensitivity.
 本明細書において、「二次反応物」とは、たとえば、一次反応物が二次物質を捕捉した捕捉体、一次反応物と二次物質との複合体などを意味し、これらに限定されるものではないが、抗原と一次抗体と二次抗体との複合体などを含む。 In this specification, the “secondary reactant” means, for example, a capturing body in which the primary reactant captures the secondary substance, a complex of the primary reactant and the secondary substance, and the like, and is not limited thereto. Although it is not a thing, the composite_body | complex of an antigen, a primary antibody, and a secondary antibody is included.
 なお、二次反応物の分子量は、一次反応物の分子量よりも大きくてもよい。これによれば、後述する第2測定工程A6において大きな信号値を得ることによって、検出対象物を高感度に検出することができる。 Note that the molecular weight of the secondary reactant may be larger than the molecular weight of the primary reactant. According to this, a detection target can be detected with high sensitivity by obtaining a large signal value in a second measurement step A6 described later.
 なお、第2反応工程において、二次物質を、一次反応物のうち検出対象物と結合させて二次反応物を形成することも可能である。 In the second reaction step, it is also possible to form a secondary reactant by binding a secondary substance to a detection target among primary reactants.
 信号増幅工程A5の一態様として第2反応工程を実施する一実施例として、検出対象物が抗原であり、検出体として表面弾性波素子を用い、一次物質として一次抗体を用い、第1液体として緩衝液を用い、二次物質として標識化二次抗体を用いた例を以下に示す。
 すなわち、第1実施形態の一実施例は、試料中に含まれる抗原の検出方法であって、
 表面弾性波素子の表面に結合しており、抗原に対する一次抗体を準備する準備工程と、
 試料を表面弾性波素子の表面に供給し、前記抗原に対する一次抗体に反応させ、前記試料中に含まれる抗原と前記一次抗体との一次複合体を表面弾性波素子の表面上に形成させる第1反応工程と、
 第1反応工程の後、緩衝液を表面弾性波素子の表面に供給する第1供給工程と、
 第1供給工程の後、表面弾性波素子の表面状態に基づく第1信号値を測定する第1測定工程と、
 第1測定工程の後、前記抗原に対する標識化二次抗体を表面弾性波素子の表面に供給し、前記一次複合体と前記標識化二次抗体との二次複合体を表面弾性波素子の表面上に形成させる第2反応工程と、
 第2反応工程の後、表面弾性波素子の表面状態に基づく第2信号値を測定する第2測定工程と、
 第1測定工程で測定された第1信号値と第2測定工程で測定された第2信号値から検出値を得る第1検出工程と、を備える検出方法であってもよい。
As an embodiment for carrying out the second reaction step as one aspect of the signal amplification step A5, the detection target is an antigen, a surface acoustic wave element is used as a detection body, a primary antibody is used as a primary substance, and a first liquid is used. An example in which a buffered solution is used and a labeled secondary antibody is used as a secondary substance is shown below.
That is, one example of the first embodiment is a method for detecting an antigen contained in a sample,
A preparation step for preparing a primary antibody against an antigen, which is bound to the surface of the surface acoustic wave device;
A sample is supplied to the surface of the surface acoustic wave device and reacted with a primary antibody against the antigen to form a primary complex of the antigen and the primary antibody contained in the sample on the surface of the surface acoustic wave device. A reaction process;
A first supply step of supplying a buffer solution to the surface of the surface acoustic wave device after the first reaction step;
A first measurement step of measuring a first signal value based on the surface state of the surface acoustic wave device after the first supply step;
After the first measurement step, a labeled secondary antibody against the antigen is supplied to the surface of the surface acoustic wave device, and the secondary complex of the primary complex and the labeled secondary antibody is transferred to the surface of the surface acoustic wave device. A second reaction step to be formed on;
A second measurement step of measuring a second signal value based on the surface state of the surface acoustic wave device after the second reaction step;
The detection method may include a first signal value measured in the first measurement process and a first detection process for obtaining a detection value from the second signal value measured in the second measurement process.
 (第2実施形態)
 図2は、本発明の第2実施形態の検出方法を示すフローチャートである。
 本発明の第2実施形態に係る検出方法は、試料中に含まれる検出対象物の検出方法であって、
 検出体の表面に結合しており、検出対象物と反応する一次物質を準備する準備工程B1と、
 試料を、検出対象物と反応する一次物質を結合した検出体の表面に供給し、検出対象物と一次物質との反応によって一次反応物を検出体の表面上に形成させる第1反応工程B2と、
 第1反応工程B2の後、第1液体を検出体の表面に供給する第1供給工程B3と、
 第1供給工程B3の後、検出体の表面状態に基づく信号値を測定する第1測定工程B4と、
 第1測定工程B4の後、一次反応物と反応する二次物質を検出体の表面に供給し、一次反応物と二次物質との反応によって二次反応物を検出体の表面上に形成させる第2反応工程B5と、
 第2反応工程B5の後、二次反応物と反応する三次物質を検出体の表面に供給し、二次反応物と三次物質との反応によって三次反応物を検出体の表面上に形成させる第3反応工程B6と、
 第3反応工程B6の後、検出体の表面状態に基づく信号値を測定する第3測定工程B7と、
 第1測定工程B4で測定された信号値を第3測定工程B7で測定された信号値から減算して検出値を得る第2検出工程B8と、を備える。
 なお、準備工程B1および第2検出工程B8は、必須の工程ではなく、いずれかの工程または両方の工程を備えていてもよい。
(Second Embodiment)
FIG. 2 is a flowchart showing a detection method according to the second embodiment of the present invention.
The detection method according to the second embodiment of the present invention is a detection method of a detection target contained in a sample,
A preparation step B1 for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target;
A first reaction step B2 in which a sample is supplied to the surface of a detection body to which a primary substance that reacts with a detection target is bound, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance; ,
After the first reaction step B2, a first supply step B3 for supplying the first liquid to the surface of the detection body;
After the first supply step B3, a first measurement step B4 for measuring a signal value based on the surface state of the detection body;
After the first measurement step B4, a secondary substance that reacts with the primary reactant is supplied to the surface of the detector, and a secondary reactant is formed on the surface of the detector by the reaction between the primary reactant and the secondary substance. A second reaction step B5;
After the second reaction step B5, a tertiary substance that reacts with the secondary reactant is supplied to the surface of the detector, and a tertiary reactant is formed on the surface of the detector by the reaction between the secondary reactant and the tertiary substance. 3 reaction steps B6,
After the third reaction step B6, a third measurement step B7 for measuring a signal value based on the surface state of the detection body;
A second detection step B8 for obtaining a detection value by subtracting the signal value measured in the first measurement step B4 from the signal value measured in the third measurement step B7.
Note that the preparation step B1 and the second detection step B8 are not essential steps, and may include either or both steps.
 本実施形態において、第1反応工程B2、第1供給工程B3、および第1測定工程B4は、それぞれ第1実施形態と同様であるので説明は省略する。 In the present embodiment, the first reaction step B2, the first supply step B3, and the first measurement step B4 are the same as those in the first embodiment, and thus description thereof is omitted.
 第2反応工程B5は、第1反応工程B2の検出体と、この検出体に二次物質を供給するための供給路、ポンプなどによって実施されるが、構成は限定されない。
 第3反応工程B6は、第2反応工程B5の検出体と、この検出体に三次物質を供給するための供給路、ポンプなどによって実施されるが、構成は限定されない。
 第3測定工程B7は、検出体に信号を入力し、検出体から出力される信号に基づいて予め定める信号値を取得する素子を含む装置などによって実施されてもよいが、構成は限定されず、第1測定工程B4と同様に実施されてもよい。
 第2検出工程B8は、第1測定工程B4で測定された信号値と第3測定工程B7で測定された信号値とから検出値を得る演算素子を含む演算装置などで実施されてもよいが、構成は限定されない。
Although 2nd reaction process B5 is implemented by the detection body of 1st reaction process B2, and the supply path for supplying a secondary substance to this detection body, a pump, etc., a structure is not limited.
The third reaction step B6 is performed by the detection body of the second reaction step B5, a supply path for supplying a tertiary substance to the detection body, a pump, and the like, but the configuration is not limited.
The third measurement step B7 may be performed by an apparatus including an element that inputs a signal to the detection body and acquires a predetermined signal value based on the signal output from the detection body, but the configuration is not limited. The first measurement step B4 may be performed in the same manner.
The second detection step B8 may be performed by an arithmetic unit including an arithmetic element that obtains a detection value from the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7. The configuration is not limited.
 本実施形態では、追加反応工程の一態様として第2反応工程B5が実施され、第2反応工程B5の後、信号増幅工程の一態様として第3反応工程B6が実施される。第3反応工程B6においては、二次反応物と反応する三次物質が検出体の表面に供給され、二次反応物と三次物質との反応によって三次反応物が検出体の表面上に形成される。これによれば、三次物質を用いることによって、二次物質に由来する信号値を増幅することができるので、試料中に含まれる検出対象物をより高感度に検出することができる。 In the present embodiment, the second reaction step B5 is performed as one aspect of the additional reaction step, and after the second reaction step B5, the third reaction step B6 is performed as one aspect of the signal amplification step. In the third reaction step B6, a tertiary substance that reacts with the secondary reactant is supplied to the surface of the detector, and a tertiary reactant is formed on the surface of the detector by the reaction between the secondary reactant and the tertiary substance. . According to this, since the signal value derived from the secondary substance can be amplified by using the tertiary substance, the detection target contained in the sample can be detected with higher sensitivity.
 本明細書において、「三次物質」とは、二次物質に特異的に反応する物質であれば特に限定されるものでないが、たとえば、二次物質がビオチンで標識化された標識二次抗体である場合には、標識に特異的に反応するストレプトアビジンなどの標識検出試薬を含む。 In the present specification, the “tertiary substance” is not particularly limited as long as it is a substance that specifically reacts with the secondary substance. For example, the “tertiary substance” is a labeled secondary antibody in which the secondary substance is labeled with biotin. In some cases, a label detection reagent such as streptavidin that reacts specifically with the label is included.
 ここで、上述の例のように、試料に、検出対象物とは異なる物質からなる夾雑物をさらに含む場合においては、第1供給工程B3において第1液体を検出体の表面に供給することによって検出体の表面から夾雑物を完全に除去することができない場合には、第1測定工程B4で測定された信号値は、検出体の表面に残存している夾雑物に影響を受ける。そこで、検出体の表面に残存している夾雑物による影響を低減するために、第1測定工程B4で測定された信号値と第3測定工程B7で測定された信号値から検出値を得ることで、検出体の表面に残存している夾雑物に由来する信号値を、第3測定工程B7で測定された信号値から低減することができる。なぜなら、第1測定工程B4で測定された信号値と第3測定工程B7で測定された信号値との差は、検出体の表面に残存する夾雑物の量に影響を実質的に受けないからである。 Here, as in the above-described example, when the sample further includes a contaminant made of a substance different from the detection target, the first liquid is supplied to the surface of the detection body in the first supply step B3. When the contaminants cannot be completely removed from the surface of the detection body, the signal value measured in the first measurement step B4 is affected by the contaminants remaining on the surface of the detection body. Therefore, in order to reduce the influence of impurities remaining on the surface of the detection body, a detection value is obtained from the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7. Thus, the signal value derived from the impurities remaining on the surface of the detection body can be reduced from the signal value measured in the third measurement step B7. This is because the difference between the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7 is not substantially affected by the amount of contaminants remaining on the surface of the detection body. It is.
 また、複数の試料について各試料中の検出対象物を検出する場合においては、複数の試料の間で粘度や密度が異なるときは、第1供給工程B3において第1液体を検出体の表面に供給しても、検出対象物とは異なる夾雑物を検出体の表面から完全に除去することができず、各試料において検出体の表面に異なる量の夾雑物が残存し、各試料の間で信号値に差が生じることがある。しかしながら、表面に残存している夾雑物は、第1測定工程B4で測定された信号値と第3測定工程B7で測定された信号値との差には実質的に影響を与えないので、第1測定工程B4で測定された信号値と第3測定工程B7で測定された信号値とから検出値を得ることによって、各試料間における夾雑物の残渣の影響を低減することができる。 In addition, when detecting a detection object in each sample for a plurality of samples, if the viscosity or density differs among the plurality of samples, the first liquid is supplied to the surface of the detection body in the first supply step B3. However, the contaminants different from the detection target cannot be completely removed from the surface of the detection object, and in each sample, a different amount of contamination remains on the surface of the detection object. There may be differences in values. However, the contaminants remaining on the surface do not substantially affect the difference between the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7. By obtaining a detection value from the signal value measured in the first measurement step B4 and the signal value measured in the third measurement step B7, it is possible to reduce the influence of contaminant residues between the samples.
 このように、各試料間における夾雑物の残渣の影響を低減することにより、試料中に含まれる検出対象物をより正確に検出することが可能となる。 Thus, by reducing the influence of the residue of impurities between the samples, it becomes possible to detect the detection target contained in the sample more accurately.
 なお、本実施形態において、二次物質がビオチンで標識されており、三次物質がストレプトアビジンを含むようにすることができる。これによって、二次物質に由来する信号値を増幅することができるので、検出対象物をより高感度に検出することができる。 In this embodiment, the secondary substance can be labeled with biotin, and the tertiary substance can contain streptavidin. Thereby, since the signal value derived from the secondary substance can be amplified, the detection target can be detected with higher sensitivity.
 なお、本実施形態において、第2反応工程B5と第3反応工程B6との間に、第2液体を検出体の表面に供給する第2供給工程をさらに備えるようにしてもよい。これによって、第2反応工程B5において一次反応物に反応しなかった二次物質を除去することができるので、一次反応物に反応しなかった二次物質の影響を第3反応工程B6以降の工程から除くことができ、第3測定工程B7で測定される信号値の正確性を向上することができる。 In addition, in this embodiment, you may make it further provide the 2nd supply process which supplies a 2nd liquid to the surface of a detection body between 2nd reaction process B5 and 3rd reaction process B6. As a result, the secondary material that has not reacted with the primary reactant in the second reaction step B5 can be removed, and therefore the influence of the secondary material that has not reacted with the primary reactant is determined after the third reaction step B6. And the accuracy of the signal value measured in the third measurement step B7 can be improved.
 また、本実施形態において、第2反応工程B5と第2供給工程との間に、検出体の表面状態に基づく信号値を測定する中間測定工程をさらに備えるようにしてもよい。これによって、第2反応工程B5において一次反応物に反応しなかった二次物質を除去することができるので、一次反応物に反応しなかった二次物質の影響を除くことができ、中間測定工程で測定される信号値の正確性を向上することができる。 In this embodiment, an intermediate measurement step for measuring a signal value based on the surface state of the detection body may be further provided between the second reaction step B5 and the second supply step. As a result, the secondary substance that did not react with the primary reactant in the second reaction step B5 can be removed, so that the influence of the secondary substance that did not react with the primary reactant can be eliminated, and the intermediate measurement step It is possible to improve the accuracy of the signal value measured by.
 なお、本実施形態において、中間測定工程で測定された信号値と第3測定工程B7で測定された信号値とから検出値を得る第3検出工程をさらに備えるようにしてもよい。これによって、第3反応工程B6によって生じた信号値を測定することができる。 In the present embodiment, a third detection step for obtaining a detection value from the signal value measured in the intermediate measurement step and the signal value measured in the third measurement step B7 may be further provided. Thereby, the signal value generated by the third reaction step B6 can be measured.
 また、本実施形態において、第3反応工程B6と第3測定工程B7との間に、第3液体を検出体の表面に供給する第3供給工程をさらに備えるようにしてもよい。これによって、第3反応工程B6において二次反応物に反応しなかった三次物質を除去することができるので、二次反応物に反応しなかった三次物質の影響を第3測定工程B7で測定される信号値から除去することができ、第3測定工程B7で測定される信号値の正確性を向上することができる。 In the present embodiment, a third supply step for supplying the third liquid to the surface of the detection body may be further provided between the third reaction step B6 and the third measurement step B7. As a result, the tertiary substance that did not react with the secondary reactant in the third reaction step B6 can be removed, so that the influence of the tertiary substance that did not react with the secondary reactant is measured in the third measurement step B7. The signal value measured in the third measurement step B7 can be improved.
 本明細書において、「第3液体」とは、たとえば、緩衝液などであってもよい。緩衝液は、たとえば、リン酸緩衝液などを含み、これらに限定されない。 In the present specification, the “third liquid” may be, for example, a buffer solution. Examples of the buffer solution include, but are not limited to, a phosphate buffer solution and the like.
 なお、本実施形態において、第1液体と第2液体と第3液体とを同一種類の液体とすることができる。また、第1液体と、その後の反応工程で用いられる反応用液体、第2液体と、その後の反応工程で用いられる反応用液体、および第3液体と、その後の反応工程で用いられる反応用液体とを同一種類の液体とすることもできる。検出対象物に応じて、第1供給工程B3において夾雑物を検出体の表面から除去することを促進するために、第1液体の濃度、pH、および組成などを最適化してもよい。検出対象物に応じて、第2供給工程において夾雑物を検出体の表面から除去することを促進するために第2液体の濃度、pH、および組成などを最適化してもよい。検出対象物に応じて、第3供給工程において夾雑物を検出体の表面から除去することを促進するために第3液体の濃度、pH、および組成などを最適化してもよい。 In the present embodiment, the first liquid, the second liquid, and the third liquid can be the same type of liquid. The first liquid, the reaction liquid used in the subsequent reaction process, the second liquid, the reaction liquid used in the subsequent reaction process, and the third liquid, and the reaction liquid used in the subsequent reaction process Can be the same type of liquid. Depending on the detection target, the concentration, pH, composition, and the like of the first liquid may be optimized in order to promote the removal of impurities from the surface of the detection body in the first supply step B3. Depending on the detection object, the concentration, pH, composition, etc. of the second liquid may be optimized in order to facilitate the removal of contaminants from the surface of the detection body in the second supply step. Depending on the object to be detected, the concentration, pH, composition, etc. of the third liquid may be optimized in order to promote the removal of contaminants from the surface of the detection body in the third supply step.
 第1液体は、反応用液体と同一種類の液体であってもよく、異なる種類の液体であってもよい。第2液体は、反応用液体と同一種類の液体であってもよく、異なる種類の液体であってもよい。第3液体は、反応用液体と同一種類の液体であってもよく、異なる種類の液体であってもよい。第1液体、第2液体、および第3液体と、反応用液体とを異なる種類の液体とすることによって、夾雑物の除去を最適化することが可能となるとともに、信号増幅用物質、追加反応物質、および前駆反応物質による反応を最適化することが可能となる。 The first liquid may be the same type of liquid as the reaction liquid or a different type of liquid. The second liquid may be the same type of liquid as the reaction liquid or may be a different type of liquid. The third liquid may be the same type of liquid as the reaction liquid or a different type of liquid. By making the first liquid, the second liquid, the third liquid, and the reaction liquid different types of liquids, it is possible to optimize the removal of contaminants, and the signal amplification substance and the additional reaction It is possible to optimize the reaction by the substance and the precursor reactant.
 第1液体、第2液体および第3液体と、その後の反応工程で用いられる反応用液体とが、同一種類の液体であれば、液体が切り替わるときに信号値が変動することを低減させることができ、取得する信号値のばらつきを抑制することができる。 If the first liquid, the second liquid, the third liquid, and the reaction liquid used in the subsequent reaction step are the same type of liquid, it is possible to reduce fluctuations in the signal value when the liquid is switched. And variation in signal values to be acquired can be suppressed.
 追加反応工程の一態様として第2反応工程B5を実施し、信号増幅工程の一態様として第3反応工程B6を実施する一実施例として、検出対象物が抗原であり、検出体として表面弾性波素子を用い、一次物質として一次抗体を用い、第1液体として緩衝液を用い、二次物質として標識化二次抗体を用い、三次物質として標識検出試薬を用いた例を以下に示す。
 すなわち、第3実施形態の一実施例は、試料中に含まれる抗原の検出方法であって、
 表面弾性波素子の表面に結合しており、抗原に対する一次抗体を準備する準備工程と、
 試料を表面弾性波素子の表面に供給し、前記抗原に対する一次抗体に反応させ、前記試料中に含まれる抗原と前記一次抗体との一次複合体を表面弾性波素子の表面上に形成させる第1反応工程と、
 第1反応工程の後、緩衝液を表面弾性波素子の表面に供給する第1供給工程と、
 第1供給工程の後、表面弾性波素子の表面状態に基づく信号値を測定する第1測定工程と、
 第1測定工程の後、前記抗原に対する標識化二次抗体を表面弾性波素子の表面に供給し、前記一次複合体と前記標識化二次抗体との二次複合体を表面弾性波素子の表面上に形成させる第2反応工程と、
 第2反応工程の後、前記標識化二次抗体に対する標識検出試薬を表面弾性波素子の表面に供給し、前記二次複合体と前記標識検出試薬との三次複合体を形成させる第3反応工程と、
 第3反応工程の後、表面弾性波素子の表面状態に基づく信号値を測定する第3測定工程と、
 第1測定工程で測定された信号値を第3測定工程で測定された信号値から検出値を得る第2検出工程と、を備える検出方法であってもよい。
As an example of performing the second reaction step B5 as one aspect of the additional reaction step and performing the third reaction step B6 as one aspect of the signal amplification step, the detection target is an antigen, and the surface acoustic wave is used as the detection body. An example using a device, using a primary antibody as a primary substance, using a buffer solution as a first liquid, using a labeled secondary antibody as a secondary substance, and using a labeled detection reagent as a tertiary substance is shown below.
That is, one example of the third embodiment is a method for detecting an antigen contained in a sample,
A preparation step for preparing a primary antibody against an antigen, which is bound to the surface of the surface acoustic wave device;
A sample is supplied to the surface of the surface acoustic wave device and reacted with a primary antibody against the antigen to form a primary complex of the antigen and the primary antibody contained in the sample on the surface of the surface acoustic wave device. A reaction process;
A first supply step of supplying a buffer solution to the surface of the surface acoustic wave device after the first reaction step;
A first measurement step of measuring a signal value based on the surface state of the surface acoustic wave device after the first supply step;
After the first measurement step, a labeled secondary antibody against the antigen is supplied to the surface of the surface acoustic wave device, and the secondary complex of the primary complex and the labeled secondary antibody is transferred to the surface of the surface acoustic wave device. A second reaction step to be formed on;
After the second reaction step, a third reaction step of supplying a labeled detection reagent for the labeled secondary antibody to the surface of the surface acoustic wave device to form a tertiary complex of the secondary complex and the labeled detection reagent. When,
After the third reaction step, a third measurement step of measuring a signal value based on the surface state of the surface acoustic wave device;
The detection method may include a second detection step of obtaining a detection value from the signal value measured in the third measurement step from the signal value measured in the first measurement step.
 (第3実施形態)
 本発明の第3実施形態に係る検出方法は、試料中に含まれる検出対象物の検出方法であって、
 検出体の表面に結合しており、検出対象物と反応する一次物質を準備する準備工程と、
 試料を、検出対象物と反応する一次物質を表面に結合した検出体の表面に供給し、検出対象物と一次物質との反応によって一次反応物を検出体の表面上に形成させる第1反応工程と、
 第1反応工程の後、第1液体を検出体の表面に供給する第1供給工程と、
 第1供給工程の後、信号増幅用物質を検出体の表面に供給し、前記第1反応工程で形成された前記一次反応物が関与する反応によって前記検出体の表面状態が変化している間に、第1信号値を取得し、続いて第2信号値を取得する信号取得工程と、
 第1信号値と第2信号値とから検出値を算出する算出工程と、を備える。
(Third embodiment)
The detection method according to the third embodiment of the present invention is a detection method of a detection target contained in a sample,
A preparation step for preparing a primary substance that is bound to the surface of the detection body and reacts with the detection target;
A first reaction step in which a sample is supplied to the surface of a detection body in which a primary substance that reacts with a detection target is bonded to the surface, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance. When,
A first supply step for supplying the first liquid to the surface of the detection body after the first reaction step;
After the first supply step, the signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by the reaction involving the primary reactant formed in the first reaction step. A signal acquisition step of acquiring a first signal value and subsequently acquiring a second signal value;
A calculation step of calculating a detection value from the first signal value and the second signal value.
 本実施形態において、準備工程、第1反応工程、および第1供給工程は、それぞれ第1実施形態と同様であるので説明は省略する。 In the present embodiment, the preparation step, the first reaction step, and the first supply step are the same as those in the first embodiment, and thus description thereof is omitted.
 信号取得工程は、第1供給工程の後、信号増幅用物質を検出体の表面に供給し、前記第1反応工程で形成された前記一次反応物が関与する反応によって前記検出体の表面状態が変化している間に、第1信号値を取得し、続いて第2信号値を取得する工程である。信号取得工程において、第1実施形態と同様に信号増幅用物質が用いられる。第1供給工程において第1液体が検出体の表面に供給され、夾雑物が除去され、検出体の表面状態に基づく信号値が安定した後、信号増幅用物質が検出体の表面に供給される。信号増幅用物質が検出体の表面に供給されれば、検出体の表面に形成された一次反応物と信号増幅用物質との反応によって、検出体の表面状態が変化し始める。信号増幅用物質が、検出体の表面に供給されてから所定時間経過後、検出体の表面状態に基づく第1信号値を取得する。第1信号値が取得されてから所定時間経過後、検出体の表面状態に基づく第2信号値を取得する。 In the signal acquisition step, after the first supply step, the signal amplification substance is supplied to the surface of the detection body, and the surface state of the detection body is changed by the reaction involving the primary reactant formed in the first reaction step. It is a step of acquiring a first signal value and subsequently acquiring a second signal value while changing. In the signal acquisition step, a signal amplification substance is used as in the first embodiment. In the first supply step, the first liquid is supplied to the surface of the detection body, impurities are removed, and the signal value based on the surface state of the detection body is stabilized, and then the signal amplification substance is supplied to the surface of the detection body. . When the signal amplification substance is supplied to the surface of the detection body, the surface state of the detection body starts to change due to the reaction between the primary reactant formed on the surface of the detection body and the signal amplification substance. A first signal value based on the surface state of the detection body is obtained after a predetermined time has elapsed since the signal amplification substance was supplied to the surface of the detection body. After a predetermined time has elapsed since the first signal value was acquired, a second signal value based on the surface state of the detection body is acquired.
 本実施形態において、第1信号値は、信号増幅用物質が検出体の表面に供給されてから所定時間経過後に取得されればよく、例えば1秒~30秒後に取得されてもよい。第2信号値は、第1信号値が取得されてから所定時間経過後に取得されればよく、例えば1分~10分後に取得される。第2信号値は、信号増幅用物質による検出体の表面状態の変化が収束した状態で取得すればよい。 In the present embodiment, the first signal value may be acquired after a predetermined time has elapsed since the signal amplification substance was supplied to the surface of the detection body, and may be acquired, for example, after 1 second to 30 seconds. The second signal value may be acquired after a predetermined time has elapsed since the first signal value was acquired. For example, the second signal value is acquired after 1 to 10 minutes. The second signal value may be acquired in a state in which the change in the surface state of the detection body due to the signal amplification substance has converged.
 本実施形態において、第1信号値が取得されてから第2信号値が取得されるまでの時間を予め決定して、第2信号値を取得することも可能である。これによれば、試料に含まれる検出対象物の量が多いほど第2信号値が高くなり、試料に含まれる検出対象物を短時間で高精度に検出することが可能となる。検出値は、第2信号値から第1信号値を減算した差分値とすることができる。 In the present embodiment, it is also possible to acquire the second signal value by determining in advance the time from when the first signal value is acquired until the second signal value is acquired. According to this, the second signal value increases as the amount of the detection target contained in the sample increases, and the detection target contained in the sample can be detected with high accuracy in a short time. The detected value can be a difference value obtained by subtracting the first signal value from the second signal value.
 本実施形態において、測定の終点となる第2信号値を予め決定しておき、第1信号値を取得してから、第2信号値が予め決定された値に達するまでの時間を検出値として測定することによって、試料に含まれる検出対象物を検出することも可能である。これによれば、試料に含まれる検出対象物の量が多いほど、第2信号値が予め決定された値に達するまでの時間が短くなり、試料に含まれる検出対象物を短時間で高精度に検出することが可能となる。 In the present embodiment, the second signal value that is the end point of the measurement is determined in advance, and the time from when the first signal value is acquired until the second signal value reaches a predetermined value is used as the detection value. It is also possible to detect the detection target contained in the sample by measuring. According to this, as the amount of the detection target contained in the sample increases, the time until the second signal value reaches a predetermined value is shortened, and the detection target contained in the sample can be accurately detected in a short time. Can be detected.
 本実施形態において、第1信号値と、第2信号値とから、検出値として信号値の変化(増加)の傾き(時間による微分値)を算出してもよい。これによれば、試料に含まれる検出対象物の量が多いほど、傾きが急になり、検出値を短時間で高精度に得ることが可能となる。微分値を算出するための時間は、上記の差分値を得るための時間に比べて短い時間とすることができる。 In the present embodiment, the slope (differential value depending on time) of the change (increase) of the signal value may be calculated as the detected value from the first signal value and the second signal value. According to this, as the amount of the detection target contained in the sample increases, the inclination becomes steeper, and the detection value can be obtained with high accuracy in a short time. The time for calculating the differential value can be shorter than the time for obtaining the difference value.
<検出装置>
 次に検出装置100の一例を示す。図3は、検出装置の一例を示すブロック図である。検出装置100は、各種の液体を供給する供給部10と信号増幅のための反応だけでなく、前駆反応および追加反応も行う反応部20とを備える検体液センサに、信号値を測定するための測定部30と、演算のための演算装置である検出部40と、検出結果を表示するためのディスプレイである表示部50とを接続して構成される。
<Detection device>
Next, an example of the detection apparatus 100 is shown. FIG. 3 is a block diagram illustrating an example of a detection device. The detection apparatus 100 is used for measuring a signal value in a sample liquid sensor including a supply unit 10 that supplies various liquids and a reaction unit 20 that performs not only a reaction for signal amplification but also a precursor reaction and an additional reaction. The measurement unit 30 is configured by connecting a detection unit 40 that is a calculation device for calculation, and a display unit 50 that is a display for displaying detection results.
 本実施形態の検出装置100においては、前述の第1供給工程、第2供給工程などの各供給工程は、1つの供給部10を繰り返し使用することで実施される。同じく前述の第1反応工程、第2反応工程などの各反応工程は、も、1つの反応部20を繰り返し使用することで実施され、前述の各測定工程は、1つの測定部30を繰り返し使用し、前述の各検出工程は、1つの検出部40を繰り返し使用することでそれぞれ実施される。表示部50は、本実施形態では、必須構成ではなく、検出部40から外部に検出結果を出力できるように構成していればよい。また、測定部30と検出部40との間、検出部40と表示部50との間などの、電気的な接続については、信号ケーブルなどを用いた有線接続であってもよく、アンテナなどを用いた無線接続であってもよい。 In the detection apparatus 100 of the present embodiment, each supply process such as the first supply process and the second supply process described above is performed by repeatedly using one supply unit 10. Similarly, each reaction step such as the first reaction step and the second reaction step described above is performed by repeatedly using one reaction unit 20, and each measurement step described above uses one measurement unit 30 repeatedly. And each above-mentioned detection process is each implemented by using one detection part 40 repeatedly. In this embodiment, the display unit 50 is not an essential component, and may be configured so that the detection result can be output from the detection unit 40 to the outside. The electrical connection between the measurement unit 30 and the detection unit 40 and between the detection unit 40 and the display unit 50 may be wired connection using a signal cable or the like. The wireless connection used may be used.
 図4は、検体液センサ200の斜視図であり、図5は、検体液センサ200の分解斜視図であり、図6は、検出素子3の平面図である。 4 is a perspective view of the sample liquid sensor 200, FIG. 5 is an exploded perspective view of the sample liquid sensor 200, and FIG. 6 is a plan view of the detection element 3. FIG.
 検体液センサ200は、基板1、流路構成体2および検出素子3からなる。流路構成体2は、図4に示すように検出素子3および支持部材4を介して基板1の上に配置されている。流路構成体2は、長手方向の一方の端部側に液体状の試料の入口である流入口14を有し、流入口14と連通する流路が内部に形成されている。基板1は平板状であり、例えば、樹脂基板、セラミックス基板などであり、表層または内層に配線導体などを設けている。 The sample liquid sensor 200 includes a substrate 1, a flow path structure 2, and a detection element 3. As shown in FIG. 4, the flow path structure 2 is disposed on the substrate 1 via the detection element 3 and the support member 4. The channel structure 2 has an inlet 14 that is an inlet for a liquid sample on one end side in the longitudinal direction, and a channel that communicates with the inlet 14 is formed therein. The board | substrate 1 is flat form, for example, is a resin substrate, a ceramic substrate, etc., and has provided the wiring conductor etc. in the surface layer or the inner layer.
 基板1の上面の一方の端部側には検出素子3が実装されている。検出素子3の両側には、検出素子3に電気的に接続された端子6が設けられている。端子6には、装置、演算装置などが接続される。 The detection element 3 is mounted on one end side of the upper surface of the substrate 1. Terminals 6 electrically connected to the detection element 3 are provided on both sides of the detection element 3. The terminal 6 is connected to a device, an arithmetic device, or the like.
 検出素子3は、弾性表面波素子であり、圧電基板7、第1IDT(Inter Digital Transducer)電極8、第2IDT電極9および検出部13からなる。圧電基板7は、タンタル酸リチウムなどの圧電性を有する単結晶の基板からなる。第1IDT電極8は、一対の櫛歯電極を有する。各櫛歯電極は互いに対向する2本のバスバーおよび各バスバーから他のバスバー側へ延びる複数の電極指を有する。一対の櫛歯電極は、複数の電極指が互いに噛み合うように配置されている。第2IDT電極9も第1IDT電極8と同様に構成されている。第1IDT電極8および第2IDT電極9は、トランスバーサル型のIDT電極を構成している。 The detection element 3 is a surface acoustic wave element, and includes a piezoelectric substrate 7, a first IDT (Inter Digital Transducer) electrode 8, a second IDT electrode 9, and a detection unit 13. The piezoelectric substrate 7 is made of a single crystal substrate having piezoelectricity such as lithium tantalate. The first IDT electrode 8 has a pair of comb electrodes. Each comb electrode has two bus bars facing each other and a plurality of electrode fingers extending from each bus bar to the other bus bar side. The pair of comb electrodes are arranged such that a plurality of electrode fingers mesh with each other. The second IDT electrode 9 is configured in the same manner as the first IDT electrode 8. The first IDT electrode 8 and the second IDT electrode 9 constitute a transversal IDT electrode.
 第1IDT電極8は、所定の弾性表面波を発生させるためのものであり、第2IDT電極9は、第1IDT電極8で発生したSAWを受信するためのものである。第1IDT電極8および第2IDT電極9は、例えばアルミニウム、アルミニウムと銅との合金などからなる。 The first IDT electrode 8 is for generating a predetermined surface acoustic wave, and the second IDT electrode 9 is for receiving the SAW generated by the first IDT electrode 8. The first IDT electrode 8 and the second IDT electrode 9 are made of, for example, aluminum or an alloy of aluminum and copper.
 検出部13は、第1IDT電極8と第2IDT電極9との間に設けられている。検出部13は、例えばクロムおよびクロム上に成膜された金の2層構造となっている。検出部13の金属膜の表面には、検出対象物と反応する一次物質が結合されている。試料が検出部に供給されると、試料中の検出対象物が一次物質と反応して一次反応物が形成される。 The detection unit 13 is provided between the first IDT electrode 8 and the second IDT electrode 9. The detection unit 13 has a two-layer structure of, for example, chromium and gold formed on chromium. A primary substance that reacts with the detection target is bonded to the surface of the metal film of the detection unit 13. When the sample is supplied to the detection unit, the detection target in the sample reacts with the primary substance to form a primary reactant.
 第1IDT電極8と第2IDT電極9と検出部13を1組とすると、検出素子3には、2組設けられている。たとえば、一方の検出部13では、試料を測定し、他方の検出部13では、リファレンス値を測定することができる。たとえば、他方の検出部13は、検出対象物と反応する一次物質が結合されていない。 Suppose that the first IDT electrode 8, the second IDT electrode 9, and the detection unit 13 are one set, the detection element 3 is provided with two sets. For example, one detection unit 13 can measure a sample, and the other detection unit 13 can measure a reference value. For example, the other detection unit 13 is not coupled with a primary substance that reacts with the detection target.
 このようなSAWを利用した検出素子3では、まず、第1IDT電極8に外部から所定電圧の信号を印加する。第1IDT電極8において、圧電基板7の表面が励振され、所定の周波数のSAWが発生する。発生したSAWの一部が検出部13に向かって伝搬し、検出部13を通過して第2IDT電極9によって受信される。検出部13では、検出対象物の量に応じて一次反応物が形成され、一次反応物の分だけ検出部13の質量が増加する。質量の増加に伴い検出部13を通過するSAWの位相が変化すると、変化に応じた電圧が第2IDT電極9に生じる。第1IDT電極8に印加された信号の位相と、第2IDT電極9から出力される信号の位相との違いを位相変化として測定する。 In the detection element 3 using such SAW, first, a signal having a predetermined voltage is applied to the first IDT electrode 8 from the outside. In the first IDT electrode 8, the surface of the piezoelectric substrate 7 is excited, and SAW having a predetermined frequency is generated. Part of the generated SAW propagates toward the detection unit 13, passes through the detection unit 13, and is received by the second IDT electrode 9. In the detection unit 13, a primary reaction product is formed according to the amount of the detection target, and the mass of the detection unit 13 is increased by the amount of the primary reaction product. When the phase of the SAW passing through the detection unit 13 changes as the mass increases, a voltage corresponding to the change is generated in the second IDT electrode 9. The difference between the phase of the signal applied to the first IDT electrode 8 and the phase of the signal output from the second IDT electrode 9 is measured as a phase change.
 基板1の上面には、さらに支持部材4が搭載され、支持部材4は、流路構成体2を支持している。流路構成体2は、検出素子3の少なくとも一部を覆うようにして配置される。流路構成体2は、たとえば、第1接着層19、第1親水性シート22、第2接着層23および第2親水性シート24から構成される。 A support member 4 is further mounted on the upper surface of the substrate 1, and the support member 4 supports the flow path structure 2. The flow path structure 2 is arranged so as to cover at least a part of the detection element 3. The flow path structure 2 includes, for example, a first adhesive layer 19, a first hydrophilic sheet 22, a second adhesive layer 23, and a second hydrophilic sheet 24.
 第1接着層19は、貫通孔19hを有する枠体であり、検出素子3の一部が貫通孔19hによって露出している。第1接着層19の上には第1親水性シート22が積層される。第1親水性シート22は、貫通孔19hと同様の貫通孔22hを有しており、貫通孔同士が連通するように第1接着層19と第1親水性シート22とが積層される。第1親水性シート22の上には第2接着層23が積層される。第2接着層23には、流路を構成する長手方向に延びる貫通孔23hを有する。貫通孔23hの一方端部は、貫通孔22hと重なる位置にまで延びている。第2接着層23の上には第2親水性シート24が積層される。第2親水性シート24の両端部寄りには、貫通孔からなる流入口14および排気口18が設けられている。流入口14および排気口18は、貫通孔23hと重なる位置に形成されている。 The first adhesive layer 19 is a frame having a through hole 19h, and a part of the detection element 3 is exposed through the through hole 19h. A first hydrophilic sheet 22 is laminated on the first adhesive layer 19. The first hydrophilic sheet 22 has a through hole 22h similar to the through hole 19h, and the first adhesive layer 19 and the first hydrophilic sheet 22 are laminated so that the through holes communicate with each other. A second adhesive layer 23 is laminated on the first hydrophilic sheet 22. The second adhesive layer 23 has a through hole 23h extending in the longitudinal direction constituting the flow path. One end of the through hole 23h extends to a position overlapping the through hole 22h. A second hydrophilic sheet 24 is laminated on the second adhesive layer 23. Near the both ends of the second hydrophilic sheet 24, an inflow port 14 and an exhaust port 18 each including a through hole are provided. The inflow port 14 and the exhaust port 18 are formed at a position overlapping the through hole 23h.
 図7に示した模式図は、ビオチン標識二次抗体、およびアルカリホスファターゼ標識ストレプトアビジンを前駆反応物質として用いて前駆反応工程を行い、信号増幅物質として5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムを用いて信号増幅工程を行い、SAW素子において信号値を取得した信号値の一例である。 The schematic diagram shown in FIG. 7 shows that a precursor reaction step is performed using a biotin-labeled secondary antibody and alkaline phosphatase-labeled streptavidin as precursor reactants, and 5-bromo-4-chloro-3-indolyl as a signal amplification substance. It is an example of the signal value which performed the signal amplification process using the phosphate / nitro blue tetrazolium, and acquired the signal value in the SAW element.
 図7に示した模式図において実施された工程を以下に述べる。まず、第1反応工程、および第1供給工程を行い、一次反応物を形成した。次に、第1前駆反応工程を行い、ビオチン標識二次抗体を一次反応物に反応させた。第1前駆反応工程の後、10mM PBS(10mM Phosphate,137mM Sodium Chloride, 2.7mM Potassium Chloride,0.005% Tween20(登録商標), pH7.4)を供給する第2供給工程を行い、遊離のビオチン標識二次抗体を除去した。第2供給工程の後、第2前駆反応工程を行い、アルカリホスファターゼ標識ストレプトアビジンを反応させた。第2前駆反応工程の後、10mM PBS(10mM Phosphate,137mM Sodium Chloride, 2.7mM Potassium Chloride,0.005% Tween20(登録商標), pH7.4)を供給する第3供給工程を行い、遊離のアルカリホスファターゼ標識ストレプトアビジンを取り除いた。第3供給工程の後、第1測定工程を行い、第1信号値を取得した。第1測定工程の後、信号増幅工程を行い、5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウムを反応させた。信号増幅工程の後、第2測定工程を行い、第2信号値を取得した。最後に、第1信号値を第2信号値から減算して検出値を得た。 The steps performed in the schematic diagram shown in FIG. 7 are described below. First, the 1st reaction process and the 1st supply process were performed, and the primary reactant was formed. Next, the first precursor reaction step was performed to react the biotin-labeled secondary antibody with the primary reactant. After the first precursor reaction step, a second supply step of supplying 10 mM PBS (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 0.005% Tween 20 (registered trademark), pH 7.4) is performed, and is free. The biotin-labeled secondary antibody was removed. After the second supply step, a second precursor reaction step was performed to react with alkaline phosphatase-labeled streptavidin. After the second precursor reaction step, a third supply step of supplying 10 mM PBS (10 mM Phosphate, 137 mM Sodium Chloride, 2.7 mM Potassium Chloride, 0.005% Tween 20 (registered trademark), pH 7.4) is performed, and free. Alkaline phosphatase labeled streptavidin was removed. After the third supply step, the first measurement step was performed to obtain the first signal value. After the first measurement step, a signal amplification step was performed, and 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium was reacted. After the signal amplification step, a second measurement step was performed to obtain a second signal value. Finally, the detection value was obtained by subtracting the first signal value from the second signal value.
 以下、上述した実施形態に係る検出方法の実施例について説明する。
 本実施例では、生体試料を用い、生体試料に含まれる検出対象物を検出した。
Hereinafter, examples of the detection method according to the above-described embodiment will be described.
In this example, a biological sample was used to detect a detection target contained in the biological sample.
 生体試料として、異なる2種類の試料にそれぞれ同量の抗原を含むもの(生体試料A,B)を用意した。すなわち、生体試料Aと生体試料Bとでは、粘度や含まれる物質が異なるが、抗原は同量含まれている。 As biological samples, two different types of samples (biological samples A and B) each containing the same amount of antigen were prepared. That is, the biological sample A and the biological sample B have different viscosities and contained substances, but contain the same amount of antigen.
 検出体は、弾性表面波素子(SAW素子)を用い、SAW素子の表面に予め一次物質である抗体(以下、単に「抗体」という。)を結合させたものを用意した。ここで、抗体は、検出対象物に結合する物質である。 As the detection body, a surface acoustic wave element (SAW element) is used, and an antibody that is a primary substance (hereinafter simply referred to as “antibody”) is prepared in advance on the surface of the SAW element. Here, the antibody is a substance that binds to the detection target.
 実施例1として、まず、第1反応工程として、生体試料をSAW素子の表面に供給し、検出対象物である抗原(以下、単に「抗原」という。)と抗体とが反応してなる一次反応物を形成した。 As Example 1, first, as a first reaction step, a biological sample is supplied to the surface of the SAW element, and a primary reaction in which an antigen as an object to be detected (hereinafter simply referred to as “antigen”) reacts with an antibody. Formed.
 次に、第1供給工程で、第1液体としての緩衝液10mM PBS
(10mM Phosphate,
137mM Sodium Chloride, 
2.7mM Potassium Chloride,
1mM MgCl,0.005% Tween20(登録商標), pH7.4)を、SAW素子の表面に供給した。
Next, in the first supply step, the buffer solution 10 mM PBS as the first liquid
(10 mM Phosphate,
137 mM Sodium Chloride,
2.7 mM Potassium Chloride,
1 mM MgCl 2 , 0.005% Tween 20 (registered trademark), pH 7.4) was supplied to the surface of the SAW element.
 次に、第1測定工程で、SAW素子において、入力信号と出力信号との位相変化を信号値として取得した。 Next, in the first measurement step, the phase change between the input signal and the output signal was obtained as a signal value in the SAW element.
 次に、信号増幅工程では、信号増幅用物質としてビオチン修飾二次抗体をSAW素子の表面に供給し、一次反応物とビオチン修飾二次抗体とが反応してなる一次反応物とビオチン修飾二次抗体との複合体を形成した。 Next, in the signal amplification step, a biotin-modified secondary antibody is supplied to the surface of the SAW element as a signal amplification substance, and the primary reaction product obtained by reacting the primary reactant with the biotin-modified secondary antibody and the biotin-modified secondary antibody. A complex with the antibody was formed.
 次に、第2測定工程で、SAW素子において、入力信号と出力信号との位相変化を信号値として取得した。 Next, in the second measurement step, the phase change between the input signal and the output signal was obtained as a signal value in the SAW element.
 次に、第1検出工程では、第1測定工程で測定された第1信号値を、第2測定工程で測定された第2信号値から減算して検出値を得た。 Next, in the first detection step, the detection value was obtained by subtracting the first signal value measured in the first measurement step from the second signal value measured in the second measurement step.
 以上のようにして得られた、各生体試料についての信号値を、図8のようにグラフとして示している。 The signal values for each biological sample obtained as described above are shown as a graph in FIG.
 図8に示すように、実施例1では、それぞれ同量の抗原を含む生体試料Aの検出値と生体試料Bの検出値とが同等であった。 As shown in FIG. 8, in Example 1, the detected value of biological sample A and the detected value of biological sample B each containing the same amount of antigen were equivalent.
 このことから、本発明の実施形態に係る検出方法によれば、生体試料間の差異による影響が低減され、それぞれの生体試料に含まれる検出対象物(抗原)を正確に検出することが可能であることが分かった。 From this, according to the detection method according to the embodiment of the present invention, the influence due to the difference between the biological samples is reduced, and it is possible to accurately detect the detection target (antigen) contained in each biological sample. I found out.
 一方、比較例として、上述のような第1測定工程を実施することなく、第2測定工程で測定された位相変化の値を検出値として取得した。 On the other hand, as a comparative example, the value of the phase change measured in the second measurement step was acquired as the detection value without performing the first measurement step as described above.
 このような比較例では、それぞれ同量の抗原を含む生体試料Aの検出値と生体試料Bの検出値とが異なっており、生体試料間の差異の影響によってそれぞれの生体試料に含まれる検出対象物(抗原)を正確に検出することができないことが分かった(図8参照)。 In such a comparative example, the detection value of the biological sample A and the detection value of the biological sample B each containing the same amount of antigen are different, and the detection target included in each biological sample due to the influence of the difference between the biological samples. It was found that the product (antigen) could not be detected accurately (see FIG. 8).
 なお、実施例2として、生体試料を用いず、実施例1と同量の抗原を、緩衝液
10mM PBS(10mM Phosphate,
137mM Sodium Chloride, 
2.7mM Potassium Chloride,
1mM MgCl,0.005% Tween20(登録商標), pH7.4)を用いて希釈した得られたものを試料として使用し、実施例1と同様の方法にて得られた検出値は実施例1と同等であった。
 このことからも、実施例1において、生体試料に含まれる検出対象物(抗原)を正確に検出できることが証明された。
In Example 2, without using a biological sample, the same amount of antigen as in Example 1 was added to a buffer solution of 10 mM PBS (10 mM Phosphate,
137 mM Sodium Chloride,
2.7 mM Potassium Chloride,
The detection value obtained in the same manner as in Example 1 was obtained by using a sample diluted with 1 mM MgCl 2 , 0.005% Tween 20 (registered trademark), pH 7.4) as a sample. It was equivalent to 1.
This also proved that the detection target (antigen) contained in the biological sample can be detected accurately in Example 1.
 次に、前述の各反応工程のうち、試料を供給する第1反応工程を除く反応工程において、第1信号値を測定する具体的な方法の例について説明する。なお、後述の検体液の測定方法に記載された本方法は、センサチップが、検体液の流れ方向に沿って複数のSAW素子が位置している構成の場合に用いればよい。 Next, an example of a specific method for measuring the first signal value in the reaction steps other than the first reaction step for supplying the sample among the above-described reaction steps will be described. Note that the present method described in the specimen liquid measurement method described later may be used when the sensor chip has a configuration in which a plurality of SAW elements are positioned along the flow direction of the specimen liquid.
<検体液センサ>
 図9に本実施形態に係る検体液センサ303を示す。この検体液センサ303は、基体343とその上に重ね合わせたカバー345とを有し、基体343とカバー345との間には、流路335が形成される。また、基体343の上面で流路335の先端部にはセンサチップ332(上記の検出素子3に相当)が形成され、基体343の下面にはセンサチップ332からのデータを送信するための外部端子331が形成される。検体液センサ303の形状は、全体として概ね板状に構成されており、例えば、その平面形状は長方形である。
<Sample fluid sensor>
FIG. 9 shows a sample liquid sensor 303 according to this embodiment. The sample liquid sensor 303 includes a base 343 and a cover 345 superimposed thereon, and a flow path 335 is formed between the base 343 and the cover 345. In addition, a sensor chip 332 (corresponding to the detection element 3 described above) is formed on the top surface of the base 343 at the tip of the flow path 335, and an external terminal for transmitting data from the sensor chip 332 on the bottom of the base 343. 331 is formed. The shape of the sample fluid sensor 303 is generally plate-shaped as a whole, and for example, its planar shape is a rectangle.
 流路335は、例えば、検体液センサ303の長手方向(x方向、リーダ305から露出する部分からリーダ305に挟まれる部分への方向)に直線状に延びるように形成されている。流路335の両端は、検体液センサ303の外部に通じている。その一端は、検体液を取り込むための流入口339であり、他端は、検体液が流路335に流れ込んだときに流路335の排気を行うための排気口341である。なお、流入口339および排気口341は、検体液センサ303の上面に開口しているのがよい。 The flow path 335 is formed, for example, so as to extend linearly in the longitudinal direction of the sample liquid sensor 303 (x direction, a direction from a portion exposed from the reader 305 to a portion sandwiched by the reader 305). Both ends of the flow path 335 communicate with the outside of the sample liquid sensor 303. One end is an inflow port 339 for taking in the sample liquid, and the other end is an exhaust port 341 for exhausting the flow path 335 when the sample liquid flows into the flow path 335. The inflow port 339 and the exhaust port 341 are preferably open on the upper surface of the sample liquid sensor 303.
 流路335は、流入口339に滴下された(流入口339に接触した)検体液を毛細管現象によって排気口341側へ導くように構成されている。流路335は、例えば、その高さ(厚み、z方向)が比較的低く設定されるとともに、底面および天井面の少なくとも一方の濡れ性が比較的高く設定されている。 The flow path 335 is configured to guide the sample liquid dropped onto the inflow port 339 (in contact with the inflow port 339) toward the exhaust port 341 by a capillary phenomenon. For example, the height (thickness, z direction) of the flow path 335 is set to be relatively low, and the wettability of at least one of the bottom surface and the ceiling surface is set to be relatively high.
 流路335のz方向の高さは、特に制限されないが、検体液の量を少なくする観点から50μm~0.5mmであり、好ましくは50μm程度である。なお、検体液として、血液等の原液を希釈したものが用いられる場合においては、必ずしも検体液の量が少なくされる必要はない。また、流路335の底面および天井面における検体液(水に代表されてもよい。)の接触角(濡れ性)は、90°未満であり、好ましくは60°未満である。 The height of the flow path 335 in the z direction is not particularly limited, but is 50 μm to 0.5 mm, preferably about 50 μm, from the viewpoint of reducing the amount of the sample liquid. Note that when the diluted sample solution such as blood is used as the sample solution, the amount of the sample solution is not necessarily reduced. In addition, the contact angle (wetting property) of the sample liquid (which may be represented by water) on the bottom surface and the ceiling surface of the flow path 335 is less than 90 °, and preferably less than 60 °.
 本実施形態において、基体343は、絶縁性を有する。基体343の材料としては、例えば、樹脂またはセラミックを用いることができる。また、基体343は、シールドとしてのグランド層を内部に有するなど、多層板であってもよい。なお、基体343の平面形状は、例えば、検体液センサ303全体の平面形状と同様である。 In the present embodiment, the base 343 has an insulating property. As a material of the base 343, for example, resin or ceramic can be used. In addition, the base 343 may be a multi-layer board such as having a ground layer as a shield inside. The planar shape of the base 343 is the same as the planar shape of the entire sample liquid sensor 303, for example.
 カバー345の外形の平面形状は、例えば、概ね、検体液センサ303全体の平面形状と同様である。カバー345の下面には、カバー345と基体343との間に流路335を構成するための溝が形成されている。また、カバー345には、既述の流入口339および排気口341がカバー345を上下に貫通するように形成されている。カバー345は、例えば、接着剤によって基体343と貼り合わされている。カバー345は、例えば、樹脂またはセラミック等の絶縁性材料によって構成されている。なお、カバー345は、その全体が同一材料によって一体形成されてよい。また、カバー345は、同一材料または互いに異なる材料からなる複数の層状部材が重ねられて構成されてもよい。例えば、カバー345は、流路335となるスリットが形成された層状部材と、その上に重ねられ、流路335の天井面を構成する層状部材とから構成されてもよい。 The planar shape of the outer shape of the cover 345 is, for example, generally the same as the planar shape of the entire specimen liquid sensor 303. On the lower surface of the cover 345, a groove for forming the flow path 335 is formed between the cover 345 and the base 343. The cover 345 is formed with the above-described inflow port 339 and exhaust port 341 so as to penetrate the cover 345 vertically. The cover 345 is bonded to the base 343 with an adhesive, for example. The cover 345 is made of an insulating material such as resin or ceramic. Note that the entire cover 345 may be integrally formed of the same material. Further, the cover 345 may be configured by stacking a plurality of layered members made of the same material or different materials. For example, the cover 345 may be configured by a layered member in which a slit to be the flow path 335 is formed, and a layered member that is superimposed on the layered member and forms the ceiling surface of the flow path 335.
 基体343およびカバー345の少なくとも一方は、少なくとも流路335を構成する領域において、流路335の内面の濡れ性が高くなるように、親水性が高い材料から構成されるか、親水性処理が施されるか、親水性フィルムが貼りつけられることが好ましい。例えば、基体343は、流路335と重なる領域において、親水性フィルムが貼られてよい。なお、この場合、親水性フィルムは、基体343の一部と捉えられてもよい。また、例えば、カバー345は、上述のように、層状部材が重ねられて構成される場合において、スリットを塞ぐ上層の層状部材が親水性フィルムによって構成されてもよい。 At least one of the base 343 and the cover 345 is made of a highly hydrophilic material or subjected to a hydrophilic treatment so that the wettability of the inner surface of the flow path 335 is increased at least in a region constituting the flow path 335. It is preferable that a hydrophilic film is attached. For example, the base 343 may be attached with a hydrophilic film in a region overlapping with the flow path 335. In this case, the hydrophilic film may be regarded as a part of the base 343. Further, for example, in the case where the cover 345 is configured by stacking layered members as described above, the upper layered member closing the slit may be configured by a hydrophilic film.
 検体液センサ303全体としては、可撓性を有さないのが好ましく、例えば、基体343およびカバー345の少なくとも一方は、可撓性を有していないのがよい。 The sample liquid sensor 303 as a whole preferably does not have flexibility. For example, at least one of the base 343 and the cover 345 may not have flexibility.
 図10は、検体液センサ303からカバー345を取り外した、検体液センサ303のセンサチップ332を示す平面図である。 FIG. 10 is a plan view showing the sensor chip 332 of the sample liquid sensor 303 with the cover 345 removed from the sample liquid sensor 303.
 検体液センサ303は、流路335を通る検体液に含まれる検出対象を検出するセンサチップ332を基体343の上面に実装している。センサチップ332は、検体液に応じた信号の変換を実質的に行うセンサ部であり、基体343およびカバー345は、センサチップ332の取り扱い性の向上等に寄与するパッケージとして機能する。特に図示しないが、カバー345の下面および基体343の上面の少なくとも一方には、センサチップ332を収容するための凹部が構成されている。 The sample liquid sensor 303 has a sensor chip 332 for detecting a detection target included in the sample liquid passing through the flow path 335 mounted on the upper surface of the base 343. The sensor chip 332 is a sensor unit that substantially converts a signal according to the sample liquid, and the base 343 and the cover 345 function as a package that contributes to an improvement in the handleability of the sensor chip 332 and the like. Although not particularly illustrated, at least one of the lower surface of the cover 345 and the upper surface of the base 343 is formed with a recess for housing the sensor chip 332.
 センサチップ332は、圧電基板353と、圧電基板353の上面において検体液の流れ方向に沿って位置している少なくとも2つのSAW素子350A,350Bと、を有する。SAW素子350A,350Bは、圧電基板353の主面に弾性表面波(SAW)を発生させる第1IDT電極355Aと、そのSAWの伝搬路に位置しSAWを受信するための第2IDT電極355Bと、第1IDT電極355Aへの電気信号の入力または第2IDT電極355Bからの電気信号の出力に供される複数のチップパッド357と、検体液の性質または成分に応じてSAWを変化させるための感応部359とを有している。感応部359としては、例えば後述する金属膜のほか、絶縁膜(酸化膜、窒化膜など)が使用可能である。 The sensor chip 332 includes a piezoelectric substrate 353 and at least two SAW elements 350A and 350B located on the upper surface of the piezoelectric substrate 353 along the flow direction of the specimen liquid. The SAW elements 350A and 350B include a first IDT electrode 355A that generates a surface acoustic wave (SAW) on the main surface of the piezoelectric substrate 353, a second IDT electrode 355B that is positioned in the SAW propagation path, and that receives the SAW. A plurality of chip pads 357 provided for input of an electrical signal to the 1 IDT electrode 355A or output of an electrical signal from the second IDT electrode 355B, and a sensitive unit 359 for changing the SAW according to the property or component of the sample liquid have. As the sensitive part 359, for example, an insulating film (an oxide film, a nitride film, etc.) can be used in addition to a metal film described later.
 圧電基板353は、例えば、タンタル酸リチウム(LiTaO)単結晶,ニオブ酸リチウム(LiNbO)単結晶、水晶などの圧電性を有する単結晶の基板からなる。圧電基板353の平面形状および各種寸法は適宜に設定されてよい。一例として、圧電基板353の厚みは、0.3mm~1.0mmである。圧電基板353は、主面を基体343に平行にするように配置されている。 The piezoelectric substrate 353 is made of, for example, a single crystal substrate having piezoelectricity such as lithium tantalate (LiTaO 3 ) single crystal, lithium niobate (LiNbO 3 ) single crystal, or quartz. The planar shape and various dimensions of the piezoelectric substrate 353 may be set as appropriate. As an example, the thickness of the piezoelectric substrate 353 is 0.3 mm to 1.0 mm. The piezoelectric substrate 353 is disposed so that its main surface is parallel to the base 343.
 第1IDT電極355Aおよび第2IDT電極355B(以下、単に「IDT電極」といい、両者を区別しないことがある。)は、圧電基板353の上面に位置する導体層からなる。第1IDT電極355Aおよび第2IDT電極355Bは、流路335を挟んで対向している。各IDT電極355は、一対の櫛歯電極を有している。各櫛歯電極は、バスバーおよびバスバーから延びる複数の電極指を有している。そして、一対の櫛歯電極は、複数の電極指が互いに噛み合うように配置されている。第1IDT電極355Aおよび第2IDT電極355Bは、SAWの伝搬方向において互いに離隔して配置され、トランスバーサル型のIDT電極を構成している。 The first IDT electrode 355A and the second IDT electrode 355B (hereinafter simply referred to as “IDT electrode”, which may not be distinguished from each other) include a conductor layer positioned on the upper surface of the piezoelectric substrate 353. The first IDT electrode 355A and the second IDT electrode 355B are opposed to each other with the flow path 335 interposed therebetween. Each IDT electrode 355 has a pair of comb electrodes. Each comb electrode has a bus bar and a plurality of electrode fingers extending from the bus bar. The pair of comb electrodes are arranged so that the plurality of electrode fingers mesh with each other. The first IDT electrode 355A and the second IDT electrode 355B are spaced apart from each other in the SAW propagation direction, and constitute a transversal IDT electrode.
 IDT電極355の電極指の本数、隣接する電極指同士の距離、電極指の交差幅などをパラメータとして周波数特性を設計することができる。IDT電極355によって励振されるSAWとしては、レイリー波、ラブ波、リーキー波などが存在し、いずれが利用されてもよい。センサチップ332は、例えば、ラブ波を利用している。 It is possible to design the frequency characteristics using parameters such as the number of electrode fingers of the IDT electrode 355, the distance between adjacent electrode fingers, and the cross width of the electrode fingers. As the SAW excited by the IDT electrode 355, there are Rayleigh waves, Love waves, leaky waves, and the like, and any of them may be used. The sensor chip 332 uses a love wave, for example.
 SAWの伝搬方向(y方向)において第1IDT電極355Aおよび第2IDT電極355Bの外側にSAWの反射抑制のための弾性部材を設けてもよい。SAWの周波数は、例えば、数メガヘルツ(MHz)から数ギガヘルツ(GHz)の範囲内において設定可能である。なかでも、数百MHzから2GHzとすれば、実用的であり、かつ圧電基板353の小型化ひいてはセンサチップ332の小型化を実現することができる。 In the SAW propagation direction (y direction), an elastic member for suppressing SAW reflection may be provided outside the first IDT electrode 355A and the second IDT electrode 355B. The SAW frequency can be set, for example, within a range of several megahertz (MHz) to several gigahertz (GHz). Especially, if it is several hundred MHz to 2 GHz, it is practical, and downsizing of the piezoelectric substrate 353 and thus downsizing of the sensor chip 332 can be realized.
 チップパッド357は、チップ配線356を介してIDT電極355と接続されている。チップパッド357およびチップ配線356は、例えば、IDT電極355と同様に、圧電基板353の上面に位置する導体層からなる。第1IDT電極355Aに接続されたチップパッド357は、第1IDT電極355Aの第2IDT電極355Bとは反対側に位置し、第2IDT電極355Bに接続されたチップパッド357は、第2IDT電極355Bの第1IDT電極355Aとは反対側に位置している。なお、各チップパッド357の面積を広く確保しつつ、複数のチップパッド357のx方向の配列範囲を小さくする観点から、チップパッド357は、第1IDT電極355Aおよび第2IDT電極355の対向方向(y方向)に見て、IDT電極355と重なっている。 The chip pad 357 is connected to the IDT electrode 355 via the chip wiring 356. The chip pad 357 and the chip wiring 356 are made of a conductor layer located on the upper surface of the piezoelectric substrate 353, for example, like the IDT electrode 355. The chip pad 357 connected to the first IDT electrode 355A is located on the opposite side of the first IDT electrode 355A from the second IDT electrode 355B, and the chip pad 357 connected to the second IDT electrode 355B is the first IDT of the second IDT electrode 355B. It is located on the side opposite to the electrode 355A. From the viewpoint of reducing the arrangement range of the plurality of chip pads 357 in the x direction while ensuring a large area of each chip pad 357, the chip pad 357 is opposed to the first IDT electrode 355A and the second IDT electrode 355 in the opposing direction (y (Direction), the IDT electrode 355 overlaps.
 IDT電極355、チップ配線356およびチップパッド357は、例えば、金、アルミニウム、アルミニウムと銅との合金などからなる。またこれらの電極は、多層構造としてもよい。多層構造とする場合は、例えば、1層目がチタンまたはクロムからなり、2層目がアルミニウムまたはアルミニウム合金からなる。これらの厚みは、例えば、100nm~300nmである。 The IDT electrode 355, the chip wiring 356, and the chip pad 357 are made of, for example, gold, aluminum, an alloy of aluminum and copper, or the like. These electrodes may have a multilayer structure. In the case of a multilayer structure, for example, the first layer is made of titanium or chromium, and the second layer is made of aluminum or an aluminum alloy. These thicknesses are, for example, 100 nm to 300 nm.
 圧電基板353の上面は、IDT電極355およびチップ配線356の上から、不図示の保護膜によって覆われている。保護膜は、IDT電極355およびチップ配線356の酸化抑制等に寄与するものである。保護膜は、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン、窒化珪素、またはシリコンなどからなる。検体液センサ303では、保護膜として二酸化珪素(SiO)を使用している。保護膜は、例えば、チップパッド357を露出させるようにして、圧電基板353の上面全体にわたって形成されている。保護膜の厚み(圧電基板353の上面からの高さ)は、例えば、IDT電極355の厚みよりも厚く、200nm~10μmである。 The upper surface of the piezoelectric substrate 353 is covered with a protective film (not shown) from above the IDT electrode 355 and the chip wiring 356. The protective film contributes to suppressing oxidation of the IDT electrode 355 and the chip wiring 356. The protective film is made of silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, silicon, or the like. In the sample liquid sensor 303, silicon dioxide (SiO 2 ) is used as a protective film. For example, the protective film is formed over the entire upper surface of the piezoelectric substrate 353 so that the chip pad 357 is exposed. The thickness of the protective film (height from the upper surface of the piezoelectric substrate 353) is, for example, 200 nm to 10 μm, which is larger than the thickness of the IDT electrode 355.
 感応部359は、圧電基板353上あるいは保護膜上において、第1IDT電極355Aと第2IDT電極355Bとの間に位置している。また感応部359は、流路335内に位置している。感応部359としては、例えば、チタンおよびチタン上に成膜された金、またはクロムおよびクロム上に成膜された金の2層構造となった金属膜が挙げられる。 The sensitive part 359 is located between the first IDT electrode 355A and the second IDT electrode 355B on the piezoelectric substrate 353 or the protective film. The sensitive part 359 is located in the flow path 335. As the sensitive part 359, for example, a metal film having a two-layer structure of titanium and gold formed on titanium or chromium and gold formed on chromium can be given.
 2つのSAW素子350A,350Bのうち、一方のSAW素子350Aは、検体液に含まれる検出対象と結合する特異的結合物質を感応部359の表面に有さず、他方のSAW素子350Bは特異的結合物質を有する。以下、特異的結合物質を有さないSAW素子350Aを、参照用SAW素子350Aといい、特異的結合物質を有するSAW素子350Bを、検出用SAW素子350Bということがある。両者を比較することによって、後述するように、検体液と特異的結合物質との結合によるSAWの変化を測定することができる。また、SAW素子毎に、感応部359の金属膜に異なる種類の特異的結合物質を固定化させ、検体液について異なる性質または成分を測定してもよい。参照用SAW素子350Aと検出用SAW素子350Bとは、共に特異的結合物質を有していてもよい。その場合には、両SAW素子350A、350Bにおける特異的結合物質の密度を異ならせるようにする。具体的には、参照用SAW素子50Aにおける特異的結合物質の密度が、検出用SAW素子350Bにおける特異的結合物質の密度よりも低くなるようにすればよい。 Of the two SAW elements 350A and 350B, one SAW element 350A does not have a specific binding substance that binds to the detection target contained in the sample liquid on the surface of the sensitive portion 359, and the other SAW element 350B is specific. Has a binding substance. Hereinafter, the SAW element 350A having no specific binding substance may be referred to as a reference SAW element 350A, and the SAW element 350B having a specific binding substance may be referred to as a detection SAW element 350B. By comparing the two, the change in SAW due to the binding between the sample liquid and the specific binding substance can be measured as described later. Further, for each SAW element, different types of specific binding substances may be immobilized on the metal film of the sensitive portion 359, and different properties or components may be measured for the sample liquid. Both the reference SAW element 350A and the detection SAW element 350B may have a specific binding substance. In that case, the density of specific binding substances in both SAW elements 350A and 350B is made different. Specifically, the density of the specific binding substance in the reference SAW element 50A may be set lower than the density of the specific binding substance in the detection SAW element 350B.
 2つのSAW素子350A,350Bは、式:t・V<L(但し、tは2つのSAW素子350A,350Bからのデータ読取り間隔時間、Vは検体液の流速、Lは2つのSAW素子350A,350Bの距離である。)の関係を有する。すなわち、上記式は、例えば、1回目のデータ読取りから2回目のデータ読取りまでの間に検体液が流れる距離が、SAW素子350A,350B間の距離より小さいことを意味している。これにより、後述する検体液に含まれる検出対象の測定が可能になる。 The two SAW elements 350A and 350B have the formula: t · V <L (where t is the data read interval time from the two SAW elements 350A and 350B, V is the flow rate of the sample liquid, L is the two SAW elements 350A, A distance of 350 B). That is, the above formula means that the distance through which the sample liquid flows between the first data reading and the second data reading is smaller than the distance between the SAW elements 350A and 350B, for example. As a result, it is possible to measure the detection target contained in the sample liquid described later.
 検出用SAW素子350Bと参照用SAW素子350Aは、特異的結合物質の密度が異なっていてもよい。具体的には、参照用SAW素子350Aにおける特異的結合物質の密度が、検出用SAW素子350Bのそれよりも低いものであってもよい。特異的結合物質は、核酸やペプチドからなるアプタマーを含む。アプタマーは、感応部359の表面に固定化されている。 The detection SAW element 350B and the reference SAW element 350A may have different densities of specific binding substances. Specifically, the density of the specific binding substance in the reference SAW element 350A may be lower than that of the detection SAW element 350B. Specific binding substances include aptamers consisting of nucleic acids and peptides. The aptamer is immobilized on the surface of the sensitive part 359.
 アプタマーが固定化された感応部359に検体液が接触すると、検体液中の特定の標的物質がその標的物質に対応するアプタマーと結合し、感応部359の重さが変化する。その結果、第1IDT電極355Aから第2IDT電極355Bへ伝搬するSAWの位相特性などが変化する。従って、その位相特性などの変化に基づいて、検体液の性質または成分を調べることができる。 When the sample liquid comes into contact with the sensitive part 359 to which the aptamer is immobilized, a specific target substance in the sample liquid is combined with an aptamer corresponding to the target substance, and the weight of the sensitive part 359 changes. As a result, the phase characteristics of the SAW propagating from the first IDT electrode 355A to the second IDT electrode 355B change. Therefore, the properties or components of the sample liquid can be examined based on the change in the phase characteristics and the like.
 第1IDT電極355A、第2IDT電極355Bおよび感応部359の組み合わせからなるSAW素子は、流路335の流路方向(検体液の流れ方向)において適宜な数で設けられてよい。センサチップ332を基体343に実装する方式は、適宜なものとされてよい。本実施形態では、センサチップ332の実装方式は、ボンディングワイヤ365を用いた表面実装とされている。なお、検体液センサがセンサチップを有する場合において、センサチップの実装方式はワイヤボンディングを用いた表面実装に限定されない。例えば、バンプを用いるフリップチップ実装であってもよいし、リードを基板に挿入するリード挿入実装であってもよい。 The SAW element including the combination of the first IDT electrode 355A, the second IDT electrode 355B, and the sensitive portion 359 may be provided in an appropriate number in the flow channel direction of the flow channel 335 (the flow direction of the sample liquid). A method of mounting the sensor chip 332 on the base 343 may be appropriate. In the present embodiment, the mounting method of the sensor chip 332 is surface mounting using the bonding wire 365. When the sample liquid sensor has a sensor chip, the sensor chip mounting method is not limited to surface mounting using wire bonding. For example, flip chip mounting using bumps may be used, or lead insertion mounting in which leads are inserted into a substrate may be used.
 センサチップ332は、IDT電極355(第1IDT電極355Aおよび第2IDT電極355B)がチップ配線356を介してチップパッド357と接続され、このチップパッド357がボンディングワイヤ365によって外部端子331と接続されている。 In the sensor chip 332, IDT electrodes 355 (first IDT electrode 355A and second IDT electrode 355B) are connected to a chip pad 357 via a chip wiring 356, and the chip pad 357 is connected to an external terminal 331 by a bonding wire 365. .
<検体液センサ装置>
次に、図11(a)、(b)、図12、図13に基づいて、検体液センサ303を装着した検体液センサ装置301について説明する。図11(a)は、検体液センサ装置301(以下、単に「装置301」ということがある。)を閉状態で示す斜視図である。図11(b)は、装置301の一部を開状態かつ検体液センサの装着前の状態で示す斜視図である。図12は、装置301を閉状態で示す斜視図である。
<Sample fluid sensor device>
Next, the sample liquid sensor device 301 equipped with the sample liquid sensor 303 will be described with reference to FIGS. FIG. 11A is a perspective view showing the sample liquid sensor device 301 (hereinafter simply referred to as “device 301”) in a closed state. FIG. 11B is a perspective view showing a part of the apparatus 301 in an open state and a state before the sample liquid sensor is attached. FIG. 12 is a perspective view showing the device 301 in a closed state.
 装置301は、検体液センサ303が着脱されるリーダ305を備えている。リーダ305は、図11に示す開状態と図12に示す閉状態との間で遷移可能(相対移動可能)に連結された第1部位307(例えば、固定部)と第2部位309(例えば、可動部)と、第1部位307の上面に位置する接続端子321、位置決めピン323および端子保持部材329(コンタクトユニット)からなる接続部品302とを有している。第1部位307と第2部位309はいずれもリーダ305の外形を構成する。 The apparatus 301 includes a reader 305 to / from which the sample liquid sensor 303 is attached / detached. The reader 305 includes a first part 307 (for example, a fixing portion) and a second part 309 (for example, a fixed part) that are connected so as to be capable of transition (relatively movable) between the open state illustrated in FIG. 11 and the closed state illustrated in FIG. A movable part) and a connection component 302 including a connection terminal 321, a positioning pin 323, and a terminal holding member 329 (contact unit) located on the upper surface of the first portion 307. Both the first part 307 and the second part 309 constitute the outer shape of the reader 305.
 リーダ305は、第1部位307の上面と第2部位309の下面との間に着脱可能に挟まれる検体液センサ303の外部端子331に、第1部位7の上面に位置する接続端子321が閉状態で接続される。そして、リーダ305は、接続端子321から外部端子331に電気信号を入力するとともに、検体液センサ303から出力される電気信号を受け取る。この時、検体液を吸引および収容した検体液センサ303は、入力された電気信号をその検体液の性質または成分に応じて変化させて出力する。 In the reader 305, the connection terminal 321 located on the upper surface of the first part 7 is closed by the external terminal 331 of the sample liquid sensor 303 that is detachably sandwiched between the upper surface of the first part 307 and the lower surface of the second part 309. Connected in state. The reader 305 inputs an electrical signal from the connection terminal 321 to the external terminal 331 and receives an electrical signal output from the sample liquid sensor 303. At this time, the sample liquid sensor 303 that has aspirated and accommodated the sample liquid changes the input electric signal according to the property or component of the sample liquid and outputs it.
 外部端子331は、図9および図10に示すように、検体液センサ303がリーダ305に挟まれた時に第1部位307上の接続端子321と接触するように、検体液センサ303の下面側(第1部位307側)に設けられている。外部端子331の数および配列は、例えば本実施形態では外部端子331が流路335の幅方向の両端部に流路335に沿って配列されているが、これに制限されず、検体液センサ303内部の回路構成等に応じて適宜に設定される。 As shown in FIGS. 9 and 10, the external terminal 331 is connected to the lower surface side of the sample liquid sensor 303 so as to come into contact with the connection terminal 321 on the first part 307 when the sample liquid sensor 303 is sandwiched between the readers 305. It is provided on the first part 307 side). The number and arrangement of the external terminals 331 are, for example, the external terminals 331 arranged along the flow path 335 at both ends in the width direction of the flow path 335 in the present embodiment. It is set appropriately according to the internal circuit configuration and the like.
 第2部位309は、開状態では、閉状態よりも第1部位307から離れ(図11(a))、閉状態では、第1部位307の上面上に重なって第1部位307と対向する(図12)。したがって、リーダ305が開状態となると、第1部位307および第2部位309の互いに対向していた面は外部に露出する。露出した第1部位307の上面に検体液センサ303を載置し、第2部位309を変位(移動)させて閉状態とすることによって、検体液センサ303は、第1部位307と第2部位309との間に挟まれ、リーダ305に装着される。また、検体液センサ303をリーダ305から外す場合には上述の手順を逆に行なえばよい。 In the open state, the second part 309 is farther from the first part 307 than in the closed state (FIG. 11A), and in the closed state, the second part 309 overlaps the upper surface of the first part 307 and faces the first part 307 ( FIG. 12). Therefore, when the reader 305 is opened, the surfaces of the first part 307 and the second part 309 facing each other are exposed to the outside. By placing the specimen liquid sensor 303 on the exposed upper surface of the first part 307 and displacing (moving) the second part 309 to make it close, the specimen liquid sensor 303 has the first part 307 and the second part. 309 and is attached to the reader 305. Further, when removing the sample liquid sensor 303 from the reader 305, the above procedure may be reversed.
 図11および図12に示すように、第1部位307と第2部位309との閉状態と開状態との間の遷移の方式(開閉機構)は回転軸回りに回転可能に連結される、いわゆる折り畳み式であってもよい。例えば、図12に示すように、第1部位307の一端には、閉状態において第2部位309に対向する方向(z方向)に突出する第1凸部309aが形成されている。一方、第2部位309の一端には、第1凸部309aが収容される切り欠き309bが形成されている。換言すれば、第2部位309の一端には、切り欠き309bを構成する一対の第2凸部309cが形成されている。そして、第1凸部309aおよび第2凸部309cに不図示のヒンジ部材がy方向に挿通されることによって、第1部位307と第2部位309とは、y方向に平行な回転軸回りに互いに回転可能に連結されている。このような開閉機構には、公知の携帯電話機もしくはノート型パーソナルコンピュータの開閉機構を利用してよい。なお、第1部位307および第2部位309の開閉機構は、上述のように一端同士がヒンジ部材などを用いて連結あるいは固定されている場合に限られず、別々に独立して存在する両者を嵌め合わせる方式であってもよい。これによれば、例えば、第1部位307の上面に検体液センサ303を載置した後に、第2部位308を第1部位307に対して上方から嵌め合わせることによって、閉状態とすることができる。また、第1部位307の上面と第2部位308の下面とが対向するような状態で嵌め合わせた状態で、両者の間に検体液センサ303を挿入することによって閉状態とすることも可能である。 As shown in FIGS. 11 and 12, the transition method (opening / closing mechanism) between the closed state and the open state of the first part 307 and the second part 309 is connected so as to be rotatable around the rotation axis, so-called It may be foldable. For example, as shown in FIG. 12, a first convex portion 309 a is formed at one end of the first portion 307 so as to protrude in the direction (z direction) facing the second portion 309 in the closed state. On the other hand, a notch 309b in which the first convex portion 309a is accommodated is formed at one end of the second portion 309. In other words, a pair of second convex portions 309c constituting the notch 309b is formed at one end of the second portion 309. A hinge member (not shown) is inserted in the y direction through the first convex portion 309a and the second convex portion 309c, so that the first portion 307 and the second portion 309 are rotated about the rotation axis parallel to the y direction. They are connected to each other in a rotatable manner. As such an opening / closing mechanism, a known cellular phone or a notebook personal computer opening / closing mechanism may be used. Note that the opening / closing mechanism of the first part 307 and the second part 309 is not limited to the case where one end is connected or fixed using a hinge member or the like as described above, and the two parts that exist independently are fitted. A method of matching may be used. According to this, for example, after the sample liquid sensor 303 is placed on the upper surface of the first part 307, the second part 308 is fitted to the first part 307 from above to be in a closed state. . In addition, in a state where the upper surface of the first part 307 and the lower surface of the second part 308 are fitted to each other, the specimen liquid sensor 303 can be inserted between the two so as to be in a closed state. is there.
 第1部位307および第2部位309の形状や材質は特に制限されないが、使用者が持ち運びできるように小型で軽量であるのが好ましく、例えば、ポリエチレンテレフタラート(PET)などの樹脂によって構成されているのがよい。 The shape and material of the first part 307 and the second part 309 are not particularly limited, but are preferably small and lightweight so that the user can carry them. For example, the first part 307 and the second part 309 are made of a resin such as polyethylene terephthalate (PET). It is good to be.
 図11(b)に示すように、第1部位307は、検体液センサ303を位置決めし、かつ固定するための検体液センサ303とリーダ305とを電気的に接続するための接続部品302とを有していてもよい。 As shown in FIG. 11B, the first part 307 includes a connection component 302 for electrically connecting the sample liquid sensor 303 for positioning and fixing the sample liquid sensor 303 and the reader 305. You may have.
 位置決めピン323は、第1部位307の上面から突出している。この位置決めピン323は、接続部品302として第1部位307に設けられるが、例えば第1部位307と一体形成されていてもよい。本実施形態では、断面円形の位置決めピン323が2つ設けられている場合を例示しているが、特にこれに限定されず、位置決めピン323の数、配置位置、断面形状、直径および高さは、適宜に設定されてよい。 The positioning pin 323 protrudes from the upper surface of the first part 307. The positioning pin 323 is provided in the first part 307 as the connection component 302, but may be integrally formed with the first part 307, for example. In this embodiment, the case where two positioning pins 323 having a circular cross section are provided is illustrated, but the present invention is not particularly limited thereto, and the number, arrangement position, cross-sectional shape, diameter, and height of the positioning pins 323 are as follows. May be set appropriately.
 一方、検体液センサ303には、位置決めピン323が嵌合する位置決め孔303hが形成されている。そして、検体液センサ303は、位置決め孔303hに位置決めピン323が嵌合することによって、xy平面に沿う方向(閉状態における第1部位307および第2部位309の対向面に沿う平面方向)における第1部位307に対する位置決めがなされる。なお、他の例として、検体液センサ303に下向きの位置決めピンを設け、第1部位307の対向面に位置決め孔を設けるようにしてもよい。 On the other hand, the specimen fluid sensor 303 has a positioning hole 303h into which the positioning pin 323 is fitted. Then, the specimen liquid sensor 303 is fitted in the positioning hole 303h with the positioning pin 323, whereby the specimen liquid sensor 303 is moved in the direction along the xy plane (the plane direction along the facing surface of the first part 307 and the second part 309 in the closed state). Positioning with respect to one part 307 is performed. As another example, the specimen liquid sensor 303 may be provided with a downward positioning pin, and a positioning hole may be provided on the opposing surface of the first part 307.
 端子保持部材329は、図13に示すように、上部に複数の接続端子321を有し、下部に回路基板328と接続される回路端子322を有している。なお、端子保持部材329は、図11(b)に示すように、第1部位307の上面にねじ333によって固定されている。 As shown in FIG. 13, the terminal holding member 329 has a plurality of connection terminals 321 at the upper part and a circuit terminal 322 connected to the circuit board 328 at the lower part. Note that the terminal holding member 329 is fixed to the upper surface of the first portion 307 with a screw 333 as shown in FIG.
 端子保持部材329は、例えば、全体として概ね板状に形成されている。端子保持部材329の配線は、例えば、第1部位307に形成された開口を介して、第1部位307の内部に配置されたFPC(フレキシブル配線基板)等からなる信号線とコネクタによって接続されている。第1部位307は、端子保持部材329の下方に、図13に示すように、さらに回路基板328を有している。この回路基板328と端子保持部材329とは回路端子322で接続される。回路基板328は後述するように、検体液のデータの検出に関して、検体液のデータを検出し、外部装置等にこのデータを送受信するものである。 The terminal holding member 329 is, for example, generally formed in a plate shape. The wiring of the terminal holding member 329 is connected by a connector and a signal line made of an FPC (flexible wiring board) or the like disposed inside the first part 307 through an opening formed in the first part 307, for example. Yes. As shown in FIG. 13, the first portion 307 further includes a circuit board 328 below the terminal holding member 329. The circuit board 328 and the terminal holding member 329 are connected by a circuit terminal 322. As will be described later, the circuit board 328 detects the sample liquid data and transmits / receives the data to / from an external device or the like regarding the detection of the sample liquid data.
 端子保持部材329は、第1部位307の上面に対して、ねじ333によって固定されて、リーダ305の開状態では外部に露出している。 The terminal holding member 329 is fixed to the upper surface of the first portion 307 by a screw 333 and is exposed to the outside when the reader 305 is open.
 リーダ305は、図11(a)に示すように、検体液センサ303に対する加熱および冷却の少なくとも一方が可能な温度調整部325を第2部位309の下面に有する。この温度調整部325は、例えば、ペルチェ素子などの熱電変換素子を含む部材である。ペルチェ素子は、例えば、半導体と、その両側に配置された電極と、さらにその両側に配置された放熱板とを有している。 As shown in FIG. 11A, the reader 305 has a temperature adjustment unit 325 on the lower surface of the second portion 309 that can perform at least one of heating and cooling of the sample liquid sensor 303. The temperature adjusting unit 325 is a member including a thermoelectric conversion element such as a Peltier element. The Peltier element includes, for example, a semiconductor, electrodes disposed on both sides thereof, and heat dissipating plates disposed on both sides thereof.
 温度調整部325は、第2部位309において上面(第1部位307との対向面の反対面)に表示部326を有していても良い(図12)。この表示部326は、温度調整部325と熱の授受が可能なように隣接しており、かつ第2部位309の表面にて、使用者が視認できるように取り付けられるのが好ましい。この表示部326としては、例えば液晶表示部等が挙げられる。表示部326には、検体液から検体液センサ303で検出したデータが表示される。表示部326は、温度調整部325の冷却面側に隣接して、表示部326の稼働による発熱を冷却することができる。 The temperature adjustment unit 325 may include a display unit 326 on the upper surface (the surface opposite to the surface facing the first region 307) in the second region 309 (FIG. 12). It is preferable that the display unit 326 is adjacent to the temperature adjusting unit 325 so as to be able to exchange heat, and is attached to the surface of the second portion 309 so that the user can visually recognize it. An example of the display unit 326 is a liquid crystal display unit. The display unit 326 displays data detected by the sample liquid sensor 303 from the sample liquid. The display unit 326 can cool heat generated by the operation of the display unit 326 adjacent to the cooling surface side of the temperature adjustment unit 325.
 図14は、装置301の信号処理系の構成を示すブロック図である。装置301(リーダ305)は、例えば、パーソナルコンピュータ(PC)101と接続されて使用される。なお、特に図示しないが、リーダ305には、PC101との接続のために、所定の規格に従ったコネクタが適宜に設けられている。PC101は、例えば、表示部103および操作部105等のインターフェースと接続されている。なお、表示部103および操作部105は、タッチパネルを構成していてもよい。 FIG. 14 is a block diagram showing the configuration of the signal processing system of the apparatus 301. The device 301 (reader 305) is used by being connected to a personal computer (PC) 101, for example. Although not particularly illustrated, the reader 305 is appropriately provided with a connector conforming to a predetermined standard for connection with the PC 101. The PC 101 is connected to interfaces such as the display unit 103 and the operation unit 105, for example. The display unit 103 and the operation unit 105 may constitute a touch panel.
 PC101は、例えば、ユーザの操作を促す情報を表示部103に表示させ、操作部105に対するユーザの操作に基づいてリーダ305に対して制御信号を出力する。リーダ305は、PC101からの制御信号に従って、検体液センサ303に電気信号を入力する。また、リーダ305は、検体液センサ303から出力された電気信号に対して、増幅、フィルタリング若しくはAD(アナログデジタル)変換等の適宜な処理を行い、その処理後の電気信号をPC101に出力する。PC101は、リーダからの電気信号に基づいて、検体液の性質または成分の情報を表示部103に表示させる。 For example, the PC 101 displays information prompting the user's operation on the display unit 103 and outputs a control signal to the reader 305 based on the user's operation on the operation unit 105. The reader 305 inputs an electrical signal to the sample liquid sensor 303 in accordance with a control signal from the PC 101. Further, the reader 305 performs appropriate processing such as amplification, filtering, or AD (analog / digital) conversion on the electrical signal output from the sample liquid sensor 303 and outputs the processed electrical signal to the PC 101. The PC 101 causes the display unit 103 to display information on the properties or components of the sample liquid based on the electrical signal from the reader.
 リーダ305は、少なくとも第1IDT電極355Aに入力される電気信号を生成する送信回路373と、第2IDT電極355Bから出力された電気信号を受信する受信回路375と、既述の温度調整部325と、温度センサ377と、これらの制御等を行う制御部379と、これら電力を供給する電源部381とを有している。 The reader 305 includes at least a transmission circuit 373 that generates an electrical signal input to the first IDT electrode 355A, a reception circuit 375 that receives an electrical signal output from the second IDT electrode 355B, and the temperature adjustment unit 325 described above. It has a temperature sensor 377, a control unit 379 that performs these controls, and a power supply unit 381 that supplies these electric power.
 送信回路373は、例えば、IC等によって構成され、高周波回路を含んでいる。そして、送信回路373は、制御部379からの信号に応じた周波数および電圧の交流信号を生成して第1IDT電極355Aに入力する。 The transmission circuit 373 is configured by, for example, an IC and includes a high frequency circuit. Then, the transmission circuit 373 generates an AC signal having a frequency and voltage corresponding to the signal from the control unit 379 and inputs the AC signal to the first IDT electrode 355A.
 受信回路375は、例えば、IC(集積回路)等によって構成され、増幅回路、フィルタもしくはAD変換回路を含んでいる。そして、受信回路375は、第2IDT電極355Bから出力された電気信号に適宜な処理を施して制御部379に出力する。 The receiving circuit 375 is configured by, for example, an IC (integrated circuit) or the like, and includes an amplifier circuit, a filter, or an AD conversion circuit. Then, the reception circuit 375 performs an appropriate process on the electrical signal output from the second IDT electrode 355B and outputs it to the control unit 379.
 制御部379は、CPU(中央演算ユニット)、ROM(リードオンリーメモリ)およびRAM(ランダムアクセスメモリ)等を含んで構成されている。そして、PC101からの制御信号に基づいて、送信回路373および受信回路375を駆動する。また、制御部379は、例えば、サーミスタなどの抵抗式等の接触式温度センサによって構成される温度センサ377の検出する温度が所定の目標値に収束するように、温度調整部325のフィードバック制御を行う。なお、目標値は、例えば、PC101から入力される。 The control unit 379 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Then, based on the control signal from the PC 101, the transmission circuit 373 and the reception circuit 375 are driven. In addition, the control unit 379 performs feedback control of the temperature adjustment unit 325 so that the temperature detected by the temperature sensor 377 configured by a resistance type contact temperature sensor such as a thermistor converges to a predetermined target value. Do. The target value is input from the PC 101, for example.
 電源部381は、インバータまたはコンバータを含んで構成され、商用電源またはPC101からの電力を適宜な電圧に変換して、送信回路373、受信回路375、温度調整部325、温度センサ377および制御部379に供給する。 The power supply unit 381 includes an inverter or a converter, converts the power from the commercial power supply or the PC 101 into an appropriate voltage, and transmits a transmission circuit 373, a reception circuit 375, a temperature adjustment unit 325, a temperature sensor 377, and a control unit 379. To supply.
 また、温度センサ377を設けても良い。この温度センサ377は、例えば、サーミスタなどの抵抗式等の接触式温度センサによって構成され、検体液センサ303が載置される位置の近傍に設けられて、周囲の温度に応じた電気信号を制御部379に出力する。 Further, a temperature sensor 377 may be provided. This temperature sensor 377 is constituted by a contact type temperature sensor such as a thermistor, for example, and is provided in the vicinity of the position where the sample liquid sensor 303 is placed, and controls an electric signal according to the ambient temperature. Output to the unit 379.
 なお、本実施形態において、外部端子331は、検体液センサ303の下面側(第1部位307側)に設けられているが、本発明はこのような対応に限定されるものではなく、例えば、外部端子を検体液センサ303の上面側(第2部位309側)に形成して、第2部位309下面に設けた接続端子と接触するようにしてもよい。また、外部端子を検体液センサ303の側面に形成して、第1部位307または第2部位309に設けられた接続端子と接触するようにしてもよい。 In the present embodiment, the external terminal 331 is provided on the lower surface side (the first part 307 side) of the sample liquid sensor 303, but the present invention is not limited to such a correspondence. An external terminal may be formed on the upper surface side (the second part 309 side) of the sample liquid sensor 303 so as to contact a connection terminal provided on the lower surface of the second part 309. Further, an external terminal may be formed on the side surface of the sample liquid sensor 303 so as to come into contact with a connection terminal provided in the first part 307 or the second part 309.
<検体液の測定方法>
 次に、上述の検体液センサ303を装着した装置301を使用して、検体液に含まれる特定の検出対象を測定する方法を説明する。
 図15(a)は、図10に示す実施形態において、検体液を、参照用SAW素子350Aおよび検出用SAW素子350Bの順に矢印で示す方向に流すことを示している。この場合、参照用SAW素子350Aおよび検出用SAW素子350Bは、式:t・V<L(但し、tは両SAW素子からのデータ読取り間隔時間、Vは検体液の流速、Lは両SAW素子の距離である。)の関係を有することは前述したとおりである。ここで、両SAW素子350A、350Bからのデータ読取り間隔時間tは、操作部105の操作によりリーダ305内の制御部379によって設定することができる。また、検体液は、基体343とカバー345との間を毛細管現象により流れるものであるから、検体液の流速Vは、流路335内の高さ(厚み、z方向)を調整するなどして調整することができる。検体液の流速Vを測定する位置は、例えば、図15(a)に符号Dで示す領域内とすればよい。すなわち、検体液が先に到達する参照用SAW素子350Aの上流端から、次の検出用SAW素子350Bの下流端までの領域内である。また、流速Vの測定には、例えば、高速カメラの撮影により検体液が所定時間内に流れる距離を測定する方法、検体液が所定距離を流れる時間を測定して求める方法、検出用SAW素子350Bの下流側から流れ出る流量を流路の断面積で除算することで求める方法などが挙げられ、特に測定方法が制限されるものではない。
<Measurement method of sample liquid>
Next, a method for measuring a specific detection target contained in the sample liquid using the apparatus 301 equipped with the above-described sample liquid sensor 303 will be described.
FIG. 15A shows that in the embodiment shown in FIG. 10, the sample liquid flows in the direction indicated by the arrow in the order of the reference SAW element 350A and the detection SAW element 350B. In this case, the reference SAW element 350A and the detection SAW element 350B have the formula: t · V <L (where t is the data reading interval time from both SAW elements, V is the flow rate of the sample liquid, and L is both SAW elements) As described above. Here, the data reading interval time t from both the SAW elements 350 </ b> A and 350 </ b> B can be set by the control unit 379 in the reader 305 by operating the operation unit 105. Further, since the sample liquid flows between the base 343 and the cover 345 by capillary action, the flow rate V of the sample liquid is adjusted by adjusting the height (thickness, z direction) in the flow path 335 or the like. Can be adjusted. The position where the flow velocity V of the sample liquid is measured may be, for example, within the region indicated by the symbol D in FIG. That is, it is in the region from the upstream end of the reference SAW element 350A where the sample liquid reaches first to the downstream end of the next detection SAW element 350B. The flow velocity V is measured by, for example, a method of measuring the distance that the sample liquid flows within a predetermined time by photographing with a high-speed camera, a method of measuring and obtaining the time that the sample liquid flows through the predetermined distance, and the detection SAW element 350B. A method for obtaining the flow rate flowing out from the downstream side of the gas by dividing the flow rate by the cross-sectional area of the flow path is exemplified, and the measurement method is not particularly limited.
 両SAW素子350A、350Bの距離Lは、図15(a)に示すように、一方のSAW素子350Aの端部であって検体液の流れの上流側に位置する一端から、他方のSAW素子350Bの端部であって同じく上流側に位置する一端までの距離をいう。ここで、SAW素子350A、350Bの一端とは、例えば、図10に示されるSAW素子350A、350Bにおいては、検体液が接触する感応部359の一端(上流端)およびIDT電極355(第1IDT電極355Aおよび第2IDT電極355B)の一端(上流端)のうちより上流側の部位とすればよい。 As shown in FIG. 15A, the distance L between the two SAW elements 350A and 350B is one end of one SAW element 350A and one end positioned on the upstream side of the flow of the sample liquid, and the other SAW element 350B. It is the distance to one end which is also located on the upstream side. Here, the one ends of the SAW elements 350A and 350B are, for example, one end (upstream end) of the sensitive part 359 and the IDT electrode 355 (first IDT electrode) in the SAW elements 350A and 350B shown in FIG. 355A and the second IDT electrode 355B) may be a portion on the upstream side of one end (upstream end).
 図15(a)に示すように、流路335内を流れる検体液がSAW素子350A、350Bの感応部359の表面に到達すると、感応部359に質量が付加される。その結果、第1IDT電極355Aから第2IDT電極355Bへ伝搬するSAWの位相θが遅れ、マイナスに変化する。図15(b)は、このような参照用SAW素子350Aの位相θref、および検出用SAW素子350Bの位相θtestの経時変化の一例を示しており、図15(c)はθrefとθtestとの位相差Δθ(θref-θtest)の経時変化を示している。以下、同図に示す(1)~(5)の段階ごとに説明する。なお、段階(1)~(5)で表される領域は、図16に概略的に矢印で示している。 As shown in FIG. 15A, when the sample liquid flowing in the flow path 335 reaches the surface of the sensitive part 359 of the SAW elements 350A and 350B, mass is added to the sensitive part 359. As a result, the phase θ of the SAW propagating from the first IDT electrode 355A to the second IDT electrode 355B is delayed and changes to minus. FIG. 15B shows an example of the change over time of the phase θref of the reference SAW element 350A and the phase θtest of the detection SAW element 350B, and FIG. 15C shows the positions of θref and θtest. The change over time of the phase difference Δθ (θref−θtest) is shown. Hereinafter, the steps (1) to (5) shown in FIG. Note that the regions represented by the steps (1) to (5) are schematically indicated by arrows in FIG.
・段階(1):参照用SAW素子350Aおよび検出用SAW素子350Bのいずれにも検体液が到達していない初期状態である。この段階では、SAW素子への質量付加がないので、θrefおよびθtestのいずれも変化なしである(θref=θtest=0)。従って、位相差Δθも変化なしである。 Stage (1): This is an initial state in which the sample liquid has not reached either the reference SAW element 350A or the detection SAW element 350B. At this stage, since no mass is added to the SAW element, neither θref nor θtest is changed (θref = θtest = 0). Therefore, the phase difference Δθ is not changed.
・段階(2):検体液が参照用SAW素子350Aの上流端に到達し、そこから参照用SAW素子350Aの下流端に到達するまでの状態である。この段階では、参照用SAW素子350Aに検体液の質量が付加されるので、θrefはマイナスに変化するが、検出用SAW素子350Bには検体液の質量が付加されないので、θtestは変化なしである。従って、位相差Δθはマイナスに変化する。 Stage (2): A state in which the sample liquid reaches the upstream end of the reference SAW element 350A and then reaches the downstream end of the reference SAW element 350A. At this stage, since the mass of the sample liquid is added to the reference SAW element 350A, θref changes to a negative value, but since the mass of the sample liquid is not added to the detection SAW element 350B, θtest does not change. . Therefore, the phase difference Δθ changes to minus.
・段階(3):検体液が参照用SAW素子350Aを通過し、参照用SAW素子350Aと検出用SAW素子350Bとの間隙Cを通過する状態である。この段階では、検体液は検出用SAW素子350Bに到達しておらず、かつ参照用SAW素子350Aに付加される検体液の質量は最大に達しており(参照用SAW素子350Aの上面全体が検体液で覆われており)、θrefに変化がない状態である。従って、参照用SAW素子350Aへの検体液の質量付加が最大に達した時点(A)と、検出用SAW素子350Bに検体液の質量が付加される時点(B)との間の時間領域において、位相差Δθは極小値P(極値)となる。 Stage (3): A state in which the sample liquid passes through the reference SAW element 350A and passes through the gap C between the reference SAW element 350A and the detection SAW element 350B. At this stage, the sample liquid has not reached the detection SAW element 350B, and the mass of the sample liquid added to the reference SAW element 350A has reached the maximum (the entire upper surface of the reference SAW element 350A is the sample surface). It is covered with liquid), and there is no change in θref. Accordingly, in the time region between the time point (A) when the mass addition of the sample liquid to the reference SAW element 350A reaches the maximum (A) and the time point (B) when the mass of the sample liquid is added to the detection SAW element 350B. The phase difference Δθ is a minimum value P (extreme value).
・段階(4):検体液が検出用SAW素子350Bの上流端に到達し、そこから検出用SAW素子350Bの下流端に到達するまでの状態である。この段階では、検体液の継続的な流入により参照用SAW素子350Aへの検体液の質量付加は最大に達しているので、θrefは実質的に変化しない。一方、検出用SAW素子350Bに検体液の質量が付加されるため、θtestはマイナスに変化する。従って、位相差Δθはプラス側に変化する。そして、さらに検体液の流入が進むことによって、検体液の質量の検出用SAW素子350Bへの付加が最大に達すると、位相差Δθは0になる。 Stage (4): A state in which the sample liquid reaches the upstream end of the detection SAW element 350B and then reaches the downstream end of the detection SAW element 350B. At this stage, since the mass addition of the sample liquid to the reference SAW element 350A reaches the maximum due to the continuous inflow of the sample liquid, θref does not substantially change. On the other hand, since the mass of the sample liquid is added to the detection SAW element 350B, θtest changes to minus. Therefore, the phase difference Δθ changes to the plus side. When the inflow of the sample liquid further proceeds and the addition of the mass of the sample liquid to the detection SAW element 350B reaches the maximum, the phase difference Δθ becomes zero.
・段階(5):上記段階(4)と同様、検出用SAW素子350Bへの検体液の流入による質量の付加が最大に達している状態であり、さらに、検体液中の検出対象(レセプター)と特異的結合物質との間で結合反応が行われる。この段階では、検体液の質量に加えて、レセプターの質量が付加されるため、検出用SAW素子350Bにおける位相θtestは、参照用SAW素子350Aにおける位相θrefよりも大きくマイナスに変化する。従って、位相差Δθはプラスに変化する。なお、検出用SAW素子350Bへの検体液の流入による質量の付加が最大に達した後も、検体液を継続的または断続的に流して検出用SAW素子350Bの下流端から流出させてもよい。あるいは、検出用SAW素子350Bへの検体液の流入による質量の付加が最大に達した時点で、検体液の流入を止めてもよい。いずれの場合も、検出用SAW素子350Bにおいて検体液中の検出対象(レセプター)と特異的結合物質との間で結合反応が継続する間は、段階(5)における位相差Δθは変化し続ける。その後、検出用SAW素子350Bにおける上述の結合反応が飽和に達した時点で、位相差Δθは一定値となる。 Stage (5): As in the above stage (4), the mass addition due to the inflow of the sample liquid into the detection SAW element 350B has reached a maximum, and the detection target (receptor) in the sample liquid And a specific binding substance are bound to each other. At this stage, since the mass of the receptor is added in addition to the mass of the specimen liquid, the phase θtest in the detection SAW element 350B changes to a negative value larger than the phase θref in the reference SAW element 350A. Therefore, the phase difference Δθ changes to plus. It should be noted that even after mass addition due to the inflow of the sample liquid into the detection SAW element 350B reaches the maximum, the sample liquid may flow continuously or intermittently and flow out from the downstream end of the detection SAW element 350B. . Alternatively, the flow of the sample liquid may be stopped when the addition of mass due to the flow of the sample liquid into the detection SAW element 350B reaches the maximum. In any case, the phase difference Δθ in step (5) continues to change while the binding reaction continues between the detection target (receptor) in the sample liquid and the specific binding substance in the detection SAW element 350B. Thereafter, when the above-described binding reaction in the detection SAW element 350B reaches saturation, the phase difference Δθ becomes a constant value.
 ここで、上述のレセプターである検体液中の検出対象の濃度は、検出用SAW素子350Bの有する特異的結合物質への検出対象の結合量、従ってθtestのマイナス変化量に比例する。例えば、図15(b)、(c)で示した検体液中の検出対象の濃度よりも高い濃度の場合や、特異的結合物質の密度が高い場合等においては、図17(a)、(b)に示すように、段階(5)におけるθtestのマイナス変化は、図15(b)に示すθtestのマイナス変化よりも大きくなる。 Here, the concentration of the detection target in the sample liquid, which is the above-described receptor, is proportional to the amount of binding of the detection target to the specific binding substance possessed by the detection SAW element 350B, and thus the negative change amount of θtest. For example, when the concentration is higher than the concentration of the detection target in the sample liquid shown in FIGS. 15B and 15C, or when the density of the specific binding substance is high, FIG. As shown in b), the negative change in θtest in step (5) is larger than the negative change in θtest shown in FIG.
 図15(c)、図17(b)に示すように、位相差Δθは、ある時間において極小値P(極値)を有する。この極小値Pは、図15(b)、図17(a)から明らかなように、検体液が検出用SAW素子350Bに到達し、検出用SAW素子350Bに検体液の質量が付加された時点を示している。 15 (c) and 17 (b), the phase difference Δθ has a minimum value P (extreme value) at a certain time. As is clear from FIGS. 15B and 17A, this minimum value P is the time when the sample liquid reaches the detection SAW element 350B and the mass of the sample liquid is added to the detection SAW element 350B. Is shown.
 検体液中の検出対象の濃度等は、検出用SAW素子350Bの特異的結合物質に対する検出対象の結合量で判定することができる。この結合量は、ある一定時間内での位相差Δθの変化量や、ある時間での位相差Δθの傾き等から判断できる。従って、検出用SAW素子350Bに検体液の質量が付加された時点、すなわち位相差Δθの極小値Pまたはそれ以降を、検出対象の測定を行なう起点とすることができる。ここで、極小値P以降とは、出力信号の動きに応じて適宜選択することができるが、極小値P以降であって検体液の導入前の初期値に近い値に戻った時点(例えば、位相差Δθがゼロに戻った時点)までの間とすればよいが、初期値に近い値に戻った時点以降を起点としてもよい。検出対象の測定は、下流側のSAW素子(本実施形態では検出用SAW素子350B)に検体液が流入した時点を起点にするのがよく、これによれば、上流側のSAW素子(本実施形態では参照用SAW素子350A)による信号の影響を実質的に受けることなく、下流側のSAW素子(本実施形態では検出用SAW素子350B)における信号変化そのものを正確に測定することが可能となる。すなわち、下流側の検出用SAW素子350Bにおいて、検体液中の検出対象と特異的結合物質との間で生じる結合反応に基づく信号変化を正確に測定することができる。 The concentration of the detection target in the sample liquid can be determined by the amount of binding of the detection target to the specific binding substance of the detection SAW element 350B. This amount of coupling can be determined from the amount of change in the phase difference Δθ within a certain time, the slope of the phase difference Δθ over a certain time, and the like. Therefore, the point in time when the mass of the sample liquid is added to the detection SAW element 350B, that is, the minimum value P of the phase difference Δθ or the later can be set as the starting point for measuring the detection target. Here, the value after the minimum value P can be appropriately selected according to the movement of the output signal. However, the time after the minimum value P and when the value returns to a value close to the initial value before the introduction of the sample liquid (for example, The time until the phase difference Δθ returns to zero) may be used. The measurement of the detection target is preferably started from the point in time when the sample liquid flows into the downstream SAW element (detection SAW element 350B in this embodiment), and according to this, the upstream SAW element (this embodiment) In the embodiment, it is possible to accurately measure the signal change itself in the downstream SAW element (the detection SAW element 350B in this embodiment) without being substantially affected by the signal from the reference SAW element 350A). . That is, in the detection SAW element 350B on the downstream side, it is possible to accurately measure a signal change based on the binding reaction that occurs between the detection target in the sample liquid and the specific binding substance.
 このように、位相差Δθの経時変化において、極値(極大値または極小値)を出現させるうえで、両SAW素子350A,350Bが式:t・V<Lの関係を有するようにすればよい。これに対して、両SAW素子350A,350Bが式:t・V<Lの関係を有さない場合は、極値(極大値または極小値)を出現させることが出来ないか、あるいは困難な場合がある。 As described above, in order to cause an extreme value (maximum value or minimum value) to appear in the temporal change of the phase difference Δθ, both the SAW elements 350A and 350B may have a relationship of the formula: t · V <L. . On the other hand, when both SAW elements 350A and 350B do not have the relationship of the formula: t · V <L, an extreme value (maximum value or minimum value) cannot appear or is difficult. There is.
 検出対象の濃度等を測定するには、例えば、既知濃度の検出対象を含む検体液を用いて、上述のある一定時間内での位相差Δθの変化量や、ある時間での位相差Δθの傾き等を測定し、この変化量または傾きを横軸とし、縦軸を検出対象の濃度とした検量線を作成する。つぎに、実際の検体液について、位相差Δθの変化量や、ある時間での位相差Δθの傾き等を測定し、検量線から検出対象の濃度等を測定することができる。 In order to measure the concentration or the like of the detection target, for example, by using a sample liquid containing the detection target of a known concentration, the amount of change in the phase difference Δθ within a certain time period or the phase difference Δθ at a certain time is measured. A slope or the like is measured, and a calibration curve is created with the amount of change or slope as the horizontal axis and the vertical axis as the concentration to be detected. Next, with respect to the actual sample liquid, the amount of change in the phase difference Δθ, the slope of the phase difference Δθ at a certain time, and the like can be measured, and the concentration and the like of the detection target can be measured from the calibration curve.
 なお、図15(b)では、参照用SAW素子350Aへの検体液の質量付加が最大に達した時点(A)と、検出用SAW素子350Bに検体液の質量が付加された時点(B)とが比較的近接している。一方、上記式で両SAW素子の距離Lが大きい場合(例えば、図18(a)に示すように、両SAW素子350A,350Bの間隔Cが大きい場合)、図18(b)に示すように、時点(A)に遅れて時点(B)が出現する場合がある。これは、検体液の流速Vが小さい場合にも起こり得る。このような場合、図18(c)に示すように、極小値Pは、一定の時間領域を有する。本実施形態では、このような一定の時間領域を有する極小値Pのいずれの時点を起点としてもよい。これは、一定時間領域の右端を起点とする場合と、左端を起点とする場合とでは、時間的なずれがあるにすぎないからである。なお、図18(b)、(c)において、(1)~(5)は、図16に示した段階を示している。 In FIG. 15B, when the mass addition of the sample liquid to the reference SAW element 350A reaches the maximum (A), and when the mass of the sample liquid is added to the detection SAW element 350B (B). And are relatively close. On the other hand, when the distance L between both SAW elements is large in the above equation (for example, when the distance C between both SAW elements 350A and 350B is large as shown in FIG. 18A), as shown in FIG. 18B. In some cases, time point (B) appears later than time point (A). This can also occur when the flow rate V of the sample liquid is small. In such a case, as shown in FIG. 18C, the minimum value P has a certain time region. In the present embodiment, any time point of the minimum value P having such a constant time region may be set as the starting point. This is because there is only a time lag between the case where the starting point is the right end of the fixed time region and the case where the starting point is the left end. In FIGS. 18B and 18C, (1) to (5) indicate the stages shown in FIG.
 なお、上述のように、検体液を、参照用SAW素子350Aおよび検出用SAW素子350Bの順に流すのに代えて、検出用SAW素子350Bおよび参照用SAW素子350Aの順に検体液が流れるように、参照用SAW素子350Aおよび検出用SAW素子350Bの配置を逆にしてもよい。このような配置の場合、θrefおよびθtestの測定値から位相差Δθ(=θref-θtest)の経時変化を算出すると、極小値ではなく、極大値(極値)が現れる。従って、この極大値またはそれ以降を検出対象の測定を行なう起点とすればよい。 As described above, instead of flowing the sample liquid in the order of the reference SAW element 350A and the detection SAW element 350B, the sample liquid flows in the order of the detection SAW element 350B and the reference SAW element 350A. The arrangement of the reference SAW element 350A and the detection SAW element 350B may be reversed. In such an arrangement, if the change over time of the phase difference Δθ (= θref−θtest) is calculated from the measured values of θref and θtest, a local maximum value (extreme value) appears instead of a local minimum value. Therefore, the maximum value or the subsequent value may be used as a starting point for measuring the detection target.
 また、SAW素子は、参照用SAW素子350Aおよび検出用SAW素子350Bの2つに限定されるものではなく、3つ以上の参照用SAW素子および検出用SAW素子が検体液の流れ方向に配置されていてもよい。具体的には、例えば、3つ以上のSAW素子は、検体液に含まれる検出対象と結合する特異的結合物質を有する少なくとも1つのSAW素子と、特異的結合物質を有さないあるいは特異的結合物質が上述の少なくとも1つのSAW素子よりも少ない他の少なくとも1つのSAW素子とを含んでいる。なお、上述と同様に、3つ以上のSAW素子は、互いに異なる種類の特異的結合物質を有するものであってもよい。また、3つ以上のSAW素子のうち、特異的結合物質を有するSAW素子は、互いに、特異的結合物質の密度が異なっていてもよく、異なる特異的結合物質を有するものであってもよい。ここで、複数のSAW素子において特異的結合物質の密度が異なる場合は、同一の検出対象を測定するものとすればよい。また、複数のSAW素子が異なる特異的結合物質を有する場合は、互いに、同一の検出対象を測定するものであってもよく、異なる検出対象を測定するものであってもよい。例えば、異なる検出対象としては、RS、ヒトメタニューム、アデノ、インフルエンザなどが挙げられ、これらを含む複数の検出対象(ウイルス)を同時に測定することができる。 The number of SAW elements is not limited to two, that is, the reference SAW element 350A and the detection SAW element 350B, and three or more reference SAW elements and the detection SAW elements are arranged in the flow direction of the sample liquid. It may be. Specifically, for example, three or more SAW elements have at least one SAW element having a specific binding substance that binds to a detection target contained in the sample liquid, and have no specific binding substance or specific binding. And at least one other SAW element whose material is less than the at least one SAW element described above. As described above, the three or more SAW elements may have different types of specific binding substances. In addition, among the three or more SAW elements, SAW elements having specific binding substances may have different specific binding substances or may have different specific binding substances. Here, when the density of specific binding substances is different among a plurality of SAW elements, the same detection target may be measured. Further, when a plurality of SAW elements have different specific binding substances, they may measure the same detection target, or may measure different detection targets. For example, RS, human metaneum, adeno, influenza, etc. are mentioned as different detection targets, and a plurality of detection targets (viruses) including these can be measured simultaneously.
 図19(a)、(b)は、そのような3つ以上のSAW素子の配置の一例を示している。図19(a)は、矢印で示す検体液の流れ方向に、特異的結合物質を有さない参照用SAW素子501Aと、検出用SAW素子501B、502Bとがこの順に配置されている。2つの検出用SAW素子501B、502Bは、特異的結合物質の密度が異なっていてもよく、同じであってもよい。また、検出用SAW素子501B、502Bは、互いに異なる特異的結合物質を有していてもよい。図19(b)は、矢印で示す検体液の流れ方向に、参照用SAW素子501A、検出用SAW素子501B、参照用SAW素子502A、および検出用SAW素子502Bがこの順に配置されている。これらの参照用SAW素子および検出用SAW素子は、検出対象を異にしてもよく、同一であってもよい。 19A and 19B show an example of the arrangement of three or more such SAW elements. In FIG. 19A, a reference SAW element 501A that does not have a specific binding substance and detection SAW elements 501B and 502B are arranged in this order in the flow direction of the sample liquid indicated by an arrow. The two detection SAW elements 501B and 502B may have different or the same specific binding substance densities. The detection SAW elements 501B and 502B may have different specific binding substances. In FIG. 19B, the reference SAW element 501A, the detection SAW element 501B, the reference SAW element 502A, and the detection SAW element 502B are arranged in this order in the flow direction of the sample liquid indicated by the arrow. These reference SAW elements and detection SAW elements may have different detection targets or may be the same.
 図19(a)、(b)に示すSAW素子の配置において、検出対象を測定するための参照用SAW素子と検出用SAW素子とは、上記式:t・V<Lの関係を有することが必要であり、当該関係を有する限りは、隣接するSAW素子の間隔Lは互いに同一であっても、異なっていてもよい。具体的には、例えば図19(a)では、参照用SAW素子501Aと検出用SAW素子501Bとが互いに隣接して位置し、一方、参照用SAW素子501Aと検出用SAW素子502Bとが互いに隣接して位置していない関係を有する。いずれの場合であっても、上記式:t・V<Lの関係を有するように設定すれば、上述のように、極値またはそれ以降を検体液センサからの信号起点とし、以降の経時変化を用いて検出対象の測定を行なうことにより、検体液に含まれる検出対象の測定(濃度測定等)が容易で正確なものとなる。また、複数のSAW素子は、異なる間隔で位置している3つ以上のSAW素子を有する場合も、同様に、上記式:t・V<Lの関係を有するように設定すればよい。 In the arrangement of the SAW elements shown in FIGS. 19A and 19B, the reference SAW element for measuring the detection target and the detection SAW element may have a relationship of the above formula: t · V <L. As long as it is necessary and has this relationship, the distance L between adjacent SAW elements may be the same or different. Specifically, for example, in FIG. 19A, the reference SAW element 501A and the detection SAW element 501B are adjacent to each other, while the reference SAW element 501A and the detection SAW element 502B are adjacent to each other. And have no relationship. In any case, if the relationship is set so as to have the relationship of the above formula: t · V <L, as described above, the extreme value or the subsequent value is used as the signal starting point from the sample liquid sensor, and the subsequent change with time By using this to measure the detection target, measurement (concentration measurement, etc.) of the detection target contained in the sample liquid becomes easy and accurate. Further, even when the plurality of SAW elements have three or more SAW elements positioned at different intervals, similarly, the plurality of SAW elements may be set so as to have the relationship of the above formula: t · V <L.
 以上のように、本実施形態に係る検体液の測定方法によれば、参照用SAW素子および検出用SAW素子は前記式の関係を有する。そのため、参照用SAW素子における弾性表面波の位相θrefと、検出用SAW素子における弾性表面波の位相θtestとの差、すなわち位相差Δθの経時変化において、極値(極大値または極小値)が出現する。この極値は一方のSAW素子を流れた検体液が他方のSAW素子に到達した時点を表している。従って、当該極値またはそれ以降を検体液センサからの信号起点とし、極値またはそれ以降の経時変化を用いて検出対象の測定を行なうことにより、検体液に含まれる検出対象の測定(濃度測定等)が容易で正確なものとなる。 As described above, according to the sample liquid measurement method according to the present embodiment, the reference SAW element and the detection SAW element have the relationship of the above formula. Therefore, the extreme value (maximum value or minimum value) appears in the difference between the phase θref of the surface acoustic wave in the reference SAW element and the phase θtest of the surface acoustic wave in the detection SAW element, that is, the change over time of the phase difference Δθ. To do. This extreme value represents a point in time when the sample liquid flowing through one SAW element reaches the other SAW element. Therefore, measurement of the detection target contained in the sample liquid (concentration measurement) is performed by measuring the detection target using the extreme value or subsequent time as a signal starting point from the sample liquid sensor and using the change over time of the extreme value or subsequent time. Etc.) is easy and accurate.
 本発明のさらに他の実施形態に係る検体液センサを図20に示す。この検体液センサ330は、センサチップ332´が参照用SAW素子350´Aおよび検出用SAW素子350´Bを囲う枠体370を有する。検体液センサ330は、前述の実施形態における、基体343とカバー345との間に形成され、それらの間を、毛細管現象を利用して検体液を流すような流路335を有しておらず、その代わりに、検体液が流れ出すのを阻止するための枠体370がセンサチップ332´に設けられる。枠体370としては、検体液の流れを阻止できる部材であれば特に制限されるものではなく、例えば樹脂材などが挙げられる。 FIG. 20 shows a sample liquid sensor according to still another embodiment of the present invention. The sample liquid sensor 330 includes a frame body 370 in which the sensor chip 332 ′ surrounds the reference SAW element 350′A and the detection SAW element 350′B. The sample liquid sensor 330 is formed between the base 343 and the cover 345 in the above-described embodiment, and does not have a flow path 335 that allows the sample liquid to flow between them using a capillary phenomenon. Instead, a frame body 370 for preventing the sample liquid from flowing out is provided on the sensor chip 332 ′. The frame body 370 is not particularly limited as long as it is a member that can prevent the flow of the sample liquid, and examples thereof include a resin material.
 検体液は、例えば、図20に示す滴下位置340に滴下される。そして、滴下位置340から参照用SAW素子350´Aおよび検出用SAW素子350´Bに向かって流れ、この順に両SAW素子350´A、350´Bに流入するようにすればよい。検体液を滴下位置340から上述のように流すためには、例えば、センサチップ332´に傾斜を設ける、センサチップ332´の表面の表面張力を利用する、などの方法を採用することができる。 The specimen liquid is dropped at a dropping position 340 shown in FIG. 20, for example. Then, it may flow from the dropping position 340 toward the reference SAW element 350′A and the detection SAW element 350′B, and flow into both SAW elements 350′A and 350′B in this order. In order to cause the sample liquid to flow from the dropping position 340 as described above, for example, a method of providing an inclination to the sensor chip 332 ′ or using the surface tension of the surface of the sensor chip 332 ′ can be employed.
 なお、検体液の流入は、上記とは逆に検出用SAW素子350´Bおよび参照用SAW素子350´Aの順であってもよいことは上述の実施形態と同様である。また、3つ以上のSAW素子に検体液を順に流入させてもよいことは上述の実施形態と同様である。その他は、上述の実施形態と同様であるので、詳細な説明を省略する。 Note that the inflow of the sample liquid may be in the order of the detection SAW element 350′B and the reference SAW element 350′A in the same manner as in the above-described embodiment. Similarly to the above-described embodiment, the sample liquid may be sequentially introduced into three or more SAW elements. Since others are the same as that of the above-mentioned embodiment, detailed description is abbreviate | omitted.
 本発明は、上記実施形態に限定されるものではなく、種々の変更や改善が可能である。例えば、上記実施形態では、温度調整部325はリーダ305の第2部位309に設けたが、第1部位307に設けてもよい。図21に示すように、第1部位307の上面にある一対の接続端子321、321列の間の領域に温度調整部325´を設けてもよい。これによれば、主要な構成要素をリーダ305の第1部位307に設けることで、リーダ305の第2部位309に電気回路を簡素な構成にすることができる。また、図22に示すように、検体液センサ303´をリーダ305の内部に搭載し、リーダ305の閉状態では外部に露出しないようにしてもよい。これによれば、測定時における電磁波などの外部環境の影響を低減することができる。また、上述の実施形態において、流路335の内部に特段の部材が存在しない構成について説明したが、これに代えて、流路335の内部の一部または全部に多孔質部材を配置するようにしてもよい。これによって、流路335の内部を流れる検体液の流速を制御することが可能となる。なお、流路335の内部の一部に多孔質部材を設ける場合は、例えば、多孔質部材とSAW素子350とが接するように形成することができる。 The present invention is not limited to the above embodiment, and various changes and improvements can be made. For example, in the above embodiment, the temperature adjustment unit 325 is provided in the second part 309 of the reader 305, but may be provided in the first part 307. As illustrated in FIG. 21, the temperature adjustment unit 325 ′ may be provided in a region between the pair of connection terminals 321 and 321 rows on the upper surface of the first portion 307. According to this, an electric circuit can be made into a simple structure in the 2nd site | part 309 of the reader | leader 305 by providing the main component in the 1st site | part 307 of the reader | leader 305. FIG. Further, as shown in FIG. 22, the sample liquid sensor 303 ′ may be mounted inside the reader 305 so that it is not exposed to the outside when the reader 305 is closed. According to this, it is possible to reduce the influence of the external environment such as electromagnetic waves during measurement. In the above-described embodiment, the configuration in which no special member is present in the flow path 335 has been described. Instead, a porous member is disposed in a part or all of the flow path 335. May be. This makes it possible to control the flow rate of the sample liquid flowing through the flow path 335. In addition, when providing a porous member in a part inside flow path 335, it can form so that a porous member and the SAW element 350 may contact | connect, for example.
 上記の図9~図22およびその説明で示される実施形態は、下記の検体液の測定方法、検体液センサおよび検体液センサ装置の各態様に対応する実施形態である。 The embodiments shown in FIGS. 9 to 22 and the description thereof are embodiments corresponding to the following aspects of the sample liquid measurement method, sample liquid sensor, and sample liquid sensor device.
(態様1)圧電基板の上面に、検体液の流れ方向に沿って位置している複数のSAW素子を有し、前記複数のSAW素子のうち参照用SAW素子および検出用SAW素子は、式:t・V<L(但し、tは両SAW素子からのデータ読取り間隔時間、Vは検体液の流速、Lは両SAW素子の距離である。)の関係を有する、センサチップを準備する工程と、前記検体液を、前記参照用SAW素子および前記検出用SAW素子のいずれか一方側から順に流す工程と、前記参照用SAW素子における弾性表面波の位相θrefおよび前記検出用SAW素子における弾性表面波の位相θtestの差である位相差Δθの経時変化を算出する工程と、前記位相差Δθの経時変化のうち極値またはそれ以降の時点を起点として検出対象の測定を行なう工程と、を備える、検体液の測定方法。 (Aspect 1) The piezoelectric substrate has a plurality of SAW elements positioned along the flow direction of the specimen liquid on the upper surface of the piezoelectric substrate, and among the plurality of SAW elements, the reference SAW element and the detection SAW element have the formula: a step of preparing a sensor chip having a relationship of t · V <L (where t is a data reading interval time from both SAW elements, V is a flow rate of the sample liquid, and L is a distance between both SAW elements) , The step of flowing the sample liquid sequentially from one side of either the reference SAW element or the detection SAW element, the phase θref of the surface acoustic wave in the reference SAW element, and the surface acoustic wave in the detection SAW element Calculating a change with time of the phase difference Δθ, which is a difference in the phase θtest, and measuring a detection target starting from an extreme value or a time point after that of the change with time of the phase difference Δθ. Measurement method of body fluids.
(態様2)前記検出用SAW素子が、検体液に含まれる検出対象と特異的に結合する特異的結合物質を有し、前記参照用SAW素子が、前記特異的結合物質を有さないあるいは前記特異的結合物質の密度が前記検出用SAW素子よりも少ない、態様1に記載の検体液の測定方法。 (Aspect 2) The detection SAW element has a specific binding substance that specifically binds to a detection target contained in a sample liquid, and the reference SAW element does not have the specific binding substance or The method for measuring a sample liquid according to aspect 1, wherein the density of the specific binding substance is lower than that of the detection SAW element.
(態様3)前記位相θrefの経時変化を測定する工程と、前記位相θtestの経時変化を測定する工程と、をさらに備える態様1または2に記載の検体液の測定方法。 (Aspect 3) The method for measuring a sample liquid according to Aspect 1 or 2, further comprising a step of measuring a change with time of the phase θref and a step of measuring a change with time of the phase θtest.
(態様4)前記検体液を、前記参照用SAW素子および前記検出用SAW素子の順に流す、態様1~3のいずれかに記載の検体液の測定方法。 (Aspect 4) The method for measuring a specimen liquid according to any one of aspects 1 to 3, wherein the specimen liquid is flowed in the order of the reference SAW element and the detection SAW element.
(態様5)前記参照用SAW素子および前記検出用SAW素子はそれぞれ、第1IDT電極電極と、前記第1IDT電極電極によって励振される弾性表面波の伝搬路に位置している第2IDT電極電極と、前記第1IDT電極電極と第2IDT電極電極との間に位置している感応部とを有し、前記検体液を、前記参照用SAW素子の前記感応部および前記検出用SAW素子の前記感応部に流す、態様1~4のいずれかに記載の検体液の測定方法。 (Aspect 5) Each of the reference SAW element and the detection SAW element includes a first IDT electrode electrode, a second IDT electrode electrode positioned in a propagation path of the surface acoustic wave excited by the first IDT electrode electrode, A sensitive portion positioned between the first IDT electrode electrode and the second IDT electrode electrode, and the sample liquid is supplied to the sensitive portion of the reference SAW element and the sensitive portion of the detection SAW element. The method for measuring a sample liquid according to any one of aspects 1 to 4, wherein the sample liquid is flowed.
(態様6)前記センサチップは、前記検体液が流れ、流れ方向に前記参照用SAW素子および前記検出用SAW素子が位置している流路をさらに有し、前記流路のうち前記参照用SAW素子および前記検出用SAW素子のいずれよりも上流側から前記検体液を流入させる工程をさらに備える、態様1~5のいずれかに記載の検体液の測定方法。 (Aspect 6) The sensor chip further includes a flow path in which the sample liquid flows and the reference SAW element and the detection SAW element are positioned in the flow direction, and the reference SAW among the flow paths. 6. The method for measuring a sample liquid according to any one of aspects 1 to 5, further comprising a step of causing the sample liquid to flow from an upstream side of any of the element and the detection SAW element.
(態様7)前記センサチップは、前記参照用SAW素子および前記検出用SAW素子を囲う枠体をさらに有し、前記枠体の内側において前記参照用SAW素子および前記検出用SAW素子の一方側から他方側に向けて前記検体液を流入させる工程をさらに備える、態様1~5のいずれかに記載の検体液の測定方法。 (Aspect 7) The sensor chip further includes a frame body that surrounds the reference SAW element and the detection SAW element, and from one side of the reference SAW element and the detection SAW element inside the frame body. 6. The method for measuring a sample liquid according to any one of aspects 1 to 5, further comprising a step of allowing the sample liquid to flow toward the other side.
(態様8)前記検出対象の測定が、前記位相差Δθが前記極値からゼロに戻るまでの時点を起点として行なわれる、態様1~7のいずれかに記載の検体液の測定方法。 (Aspect 8) The method for measuring a specimen liquid according to any one of aspects 1 to 7, wherein the measurement of the detection target is performed from a time point until the phase difference Δθ returns from the extreme value to zero.
(態様9)基体と、前記基体の上面に位置しているセンサチップと、を備え、前記センサチップは、前記基体の上面に位置している圧電基板と、前記圧電基板の上面において前記検体液の流れ方向に位置している、複数のSAW素子と、を有し、前記複数のSAW素子のうち2つのSAW素子は、式:t・V<L(但し、tは前記2つのSAW素子からのデータ読取り間隔時間、Vは検体液の流速、Lは前記2つのSAW素子の距離である。)の関係を有する、検体液センサ。 (Aspect 9) A substrate and a sensor chip positioned on the upper surface of the substrate, wherein the sensor chip is positioned on the upper surface of the substrate, and the specimen liquid is formed on the upper surface of the piezoelectric substrate. A plurality of SAW elements, and two SAW elements of the plurality of SAW elements are expressed by the formula: t · V <L (where t is determined from the two SAW elements) Data reading interval time, V is the flow rate of the sample liquid, and L is the distance between the two SAW elements.)
(態様10)前記複数のSAW素子はそれぞれ、第1IDT電極電極と、前記第1IDT電極電極によって励振される弾性表面波の伝搬路に位置している第2IDT電極電極と、前記第1IDT電極電極と第2IDT電極電極との間に位置し且つ検体液の流路内に位置する感応部とを有する、態様9に記載の検体液センサ。 (Aspect 10) Each of the plurality of SAW elements includes a first IDT electrode electrode, a second IDT electrode electrode positioned in a propagation path of the surface acoustic wave excited by the first IDT electrode electrode, the first IDT electrode electrode, The specimen liquid sensor according to aspect 9, further comprising: a sensitive portion located between the second IDT electrode and the specimen liquid flow path.
(態様11)前記2つのSAW素子のうち、一方のSAW素子は、前記検体液に含まれる検出対象と結合する特異的結合物質をさらに有し、他方のSAW素子は前記特異的結合物質を有さない、態様9または10に記載の検体液センサ。 (Aspect 11) Of the two SAW elements, one SAW element further has a specific binding substance that binds to a detection target contained in the sample liquid, and the other SAW element has the specific binding substance. The specimen liquid sensor according to aspect 9 or 10, wherein
(態様12)前記2つのSAW素子はそれぞれ、前記検体液に含まれる検出対象と結合する特異的結合物質をさらに有し、一方のSAW素子と他方のSAW素子とは、前記特異的結合物質の密度が異なる、態様9または10に記載の検体液センサ。 (Aspect 12) Each of the two SAW elements further includes a specific binding substance that binds to a detection target contained in the sample liquid, and one SAW element and the other SAW element are formed of the specific binding substance. The specimen liquid sensor according to aspect 9 or 10, wherein the densities are different.
(態様13)前記特異的結合物質は、アプタマーを含む、態様11または12に記載の検体液センサ。 (Aspect 13) The specimen fluid sensor according to aspect 11 or 12, wherein the specific binding substance includes an aptamer.
(態様14)前記センサチップは、前記基体を覆うカバーをさらに有し、前記検体液の流路は、前記基体と、前記基体を覆うカバーとの間に位置している、態様9~13のいずれかに記載の検体液センサ。 (Aspect 14) The sensor chip further includes a cover that covers the base, and the flow path of the specimen liquid is located between the base and the cover that covers the base. The specimen liquid sensor according to any one of the above.
(態様15)前記センサチップは、前記圧電基板の上面に位置し、前記2つのSAW素子が有する2つの感応部を囲む枠体をさらに有し、前記検体液の流路は、前記枠体の内側に位置している、態様9~13のいずれかに記載の検体液センサ。 (Aspect 15) The sensor chip further includes a frame that is positioned on the upper surface of the piezoelectric substrate and surrounds the two sensitive parts of the two SAW elements, and the flow path of the sample liquid is the 14. The specimen liquid sensor according to any one of aspects 9 to 13, which is located inside.
(態様16)前記2つのSAW素子は、互いに隣接して位置している、態様9~15のいずれかに記載の検体液センサ。 (Aspect 16) The sample liquid sensor according to any one of Aspects 9 to 15, wherein the two SAW elements are positioned adjacent to each other.
(態様17)前記2つのSAW素子は、互いに隣接して位置していない、態様9~15のいずれかに記載の検体液センサ。 (Aspect 17) The sample liquid sensor according to any one of aspects 9 to 15, wherein the two SAW elements are not positioned adjacent to each other.
(態様18)前記複数のSAW素子は、等間隔で位置している3つ以上のSAW素子を有し、前記3つ以上のSAW素子のうち隣接するか、または隣接しないSAW素子同士はそれぞれ、前記式:t・V<Lの関係を有する、態様9または10に記載の検体液センサ。 (Aspect 18) The plurality of SAW elements have three or more SAW elements positioned at equal intervals, and SAW elements adjacent to or not adjacent to each other among the three or more SAW elements are respectively The specimen liquid sensor according to aspect 9 or 10, wherein the formula: t · V <L.
(態様19)前記複数のSAW素子は、異なる間隔で位置している3つ以上のSAW素子を有し、前記3つ以上のSAW素子のうち隣接するか、または隣接しないSAW素子同士はそれぞれ、前記式:t・V<Lの関係を有する、態様9または10に記載の検体液センサ。 (Aspect 19) The plurality of SAW elements include three or more SAW elements positioned at different intervals, and the SAW elements adjacent to or not adjacent to each other among the three or more SAW elements are respectively The specimen liquid sensor according to aspect 9 or 10, wherein the formula: t · V <L.
(態様20)前記3つ以上のSAW素子のうち、少なくとも1つのSAW素子は、前記検体液に含まれる検出対象と結合する特異的結合物質を有し、他の少なくとも1つのSAW素子は、前記特異的結合物質を有さない、態様18または19に記載の検体液センサ。 (Aspect 20) Among the three or more SAW elements, at least one SAW element has a specific binding substance that binds to a detection target contained in the sample liquid, and the other at least one SAW element includes the above-mentioned 20. The analyte liquid sensor according to aspect 18 or 19, which does not have a specific binding substance.
(態様21)前記3つ以上のSAW素子のうち、2つのSAW素子は、前記検体液に含まれる検出対象と結合する特異的結合物質を有し、前記2つのSAW素子は、前記特異的結合物質の密度が異なる、態様18または19に記載の検体液センサ。 (Aspect 21) Of the three or more SAW elements, two SAW elements have a specific binding substance that binds to a detection target contained in the sample liquid, and the two SAW elements have the specific binding 20. The specimen liquid sensor according to aspect 18 or 19, wherein the substance density is different.
(態様22)前記3つ以上のSAW素子は、前記特異的結合物質を有する第1SAW素子および前記特異的結合物質を有する第2SAW素子を有し、前記第1SAW素子の前記特異的結合物質と前記第2SAW素子の前記特異的結合物質とは互いに異なる、態様20または21に記載の検体液センサ。
(態様23)態様9~22のいずれかに記載の検体液センサと、前記検体液センサを着脱可能に取り付けたリーダと、を備える、検体液センサ装置。
(Aspect 22) The three or more SAW elements include a first SAW element having the specific binding substance and a second SAW element having the specific binding substance, and the specific binding substance of the first SAW element and the The specimen liquid sensor according to aspect 20 or 21, which is different from the specific binding substance of the second SAW element.
(Aspect 23) A specimen liquid sensor device comprising: the specimen liquid sensor according to any one of aspects 9 to 22; and a reader to which the specimen liquid sensor is detachably attached.
 本発明は、上記の実施例に限定されず、検出対象物が異なる種類の抗原であっても、同様の効果を奏する。 The present invention is not limited to the above-described embodiment, and the same effect can be obtained even if the detection target is a different type of antigen.
 以上、本発明は、上述の各実施形態および各変形例などに示した構成だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良や変更ができることは言うまでもない。 As described above, the present invention is not limited to the configurations shown in the above-described embodiments and modifications, and it goes without saying that improvements and modifications can be made without departing from the scope of the present invention.
 1 基板
 2 流路構成体
 3 検出素子
 4 支持部材
 6 端子
 7 圧電基板
 8 第1IDT電極
 9 第2IDT電極
 10 供給部
 13 検出部
 14 流入口
 20 反応部
 30 測定部
 40 検出部
 50 表示部
 100 検出装置
 200 バイオセンサ装置
 301 検体液センサ装置
 302 接続部品
 303、330 検体液センサ
 305 リーダ
 307 第1部位
 309 第2部位
 321 接続端子
 323 位置決めピン
 325 温度調整部
 326 表示部
 329 端子保持部材
 331 外部端子
 332 センサチップ
 335 流路
 342 スルーホール
 343 基体
 349 導体
 350A、350´A 参照用SAW素子
 350B、350´B 検出用SAW素子
 370 枠体
 C 間隙
 L 距離
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Flow path structure 3 Detection element 4 Support member 6 Terminal 7 Piezoelectric board 8 1st IDT electrode 9 2nd IDT electrode 10 Supply part 13 Detection part 14 Inlet 20 Reaction part 30 Measurement part 40 Detection part 50 Display part 100 Detection apparatus DESCRIPTION OF SYMBOLS 200 Biosensor apparatus 301 Sample liquid sensor apparatus 302 Connection component 303,330 Sample liquid sensor 305 Reader 307 1st site | part 309 2nd site | part 321 Connection terminal 323 Positioning pin 325 Temperature adjustment part 326 Display part 329 Terminal holding member 331 External terminal 332 Sensor Chip 335 Channel 342 Through-hole 343 Base 349 Conductor 350A, 350'A Reference SAW element 350B, 350'B Detection SAW element 370 Frame C Gap L Distance

Claims (17)

  1.  試料中に含まれる検出対象物の検出方法であって、
     試料を、前記検出対象物と反応する一次物質を表面に結合した検出体の表面に供給し、前記検出対象物と前記一次物質との反応によって一次反応物を前記検出体の表面上に形成させる第1反応工程と、
     前記第1反応工程の後、第1液体を前記検出体の表面に供給する第1供給工程と、
     前記第1供給工程の後、前記検出体の表面状態に基づく第1信号値を測定する第1測定工程と、
     前記第1測定工程の後、信号増幅用物質を前記検出体の表面に供給し、前記第1反応工程で形成された前記一次反応物が関与する反応によって前記検出体の表面状態を変化させる信号増幅工程と、
     前記信号増幅工程の後、前記検出体の表面状態に基づく第2信号値を測定する第2測定工程と、
    を備える、検出方法。
    A method for detecting a detection target contained in a sample,
    A sample is supplied to the surface of a detection body in which a primary substance that reacts with the detection target is bound to the surface, and a primary reaction product is formed on the surface of the detection body by a reaction between the detection target and the primary substance. A first reaction step;
    After the first reaction step, a first supply step of supplying a first liquid to the surface of the detection body;
    A first measurement step of measuring a first signal value based on a surface state of the detection body after the first supply step;
    After the first measuring step, a signal amplification substance is supplied to the surface of the detection body, and the signal changes the surface state of the detection body by a reaction involving the primary reactant formed in the first reaction step. An amplification process;
    A second measurement step of measuring a second signal value based on the surface state of the detection body after the signal amplification step;
    A detection method comprising:
  2.  前記信号増幅工程と前記第2測定工程との間に、第2液体を前記検出体の表面に供給する第2供給工程をさらに備える、請求項1に記載の検出方法。 The detection method according to claim 1, further comprising a second supply step of supplying a second liquid to a surface of the detection body between the signal amplification step and the second measurement step.
  3.  前記第1測定工程と前記信号増幅工程との間に、少なくとも1種の追加反応物質を前記検出体の表面に供給する追加反応工程をさらに備える、請求項1または2に記載の検出方法。 The detection method according to claim 1 or 2, further comprising an additional reaction step of supplying at least one additional reactive substance to the surface of the detection body between the first measurement step and the signal amplification step.
  4.  前記少なくとも1種の追加反応物質は複数種の追加反応物質を有し、前記追加反応物質を1種ずつ供給する、請求項3に記載の検出方法。 The detection method according to claim 3, wherein the at least one additional reactant includes a plurality of additional reactants, and the additional reactants are supplied one by one.
  5.  前記第1反応工程と前記第1供給工程との間に、少なくとも1種の前駆反応物質を前記検出体の表面に供給する前駆反応工程をさらに備える、請求項1または2に記載の検出方法。 The detection method according to claim 1 or 2, further comprising a precursor reaction step of supplying at least one precursor reactant to the surface of the detection body between the first reaction step and the first supply step.
  6.  前記少なくとも1種の前駆反応物質は複数種の前駆反応物質を有し、前記前駆反応物質を1種ずつ供給する、請求項5に記載の検出方法。 6. The detection method according to claim 5, wherein the at least one precursor reactant has a plurality of precursor reactants, and the precursor reactants are supplied one by one.
  7.  前記試料は、前記検出対象物とは異なる夾雑物をさらに含み、
     前記第1反応工程において前記検出体の表面に前記夾雑物を付着させ、前記第1供給工程の後に前記夾雑物は前記検出体の表面に残存している、請求項1~6のいずれかに記載の検出方法。
    The sample further includes a contaminant different from the detection object,
    The contaminant is attached to the surface of the detection body in the first reaction step, and the contaminant remains on the surface of the detection body after the first supply step. The detection method described.
  8.  前記試料は、生体試料である、請求項1~7のいずれかに記載の検出方法。 The detection method according to any one of claims 1 to 7, wherein the sample is a biological sample.
  9.  前記第1反応工程において、前記検出対象物と前記一次物質とを結合させて前記一次反応物を形成する、請求項1~8のいずれかに記載の検出方法。 The detection method according to any one of claims 1 to 8, wherein in the first reaction step, the detection target and the primary substance are combined to form the primary reaction product.
  10.  前記第1反応工程において、前記検出対象物と前記一次物質の一部とを結合させるとともに前記一次物質から前記一部を解離させることによって、前記一次反応物を形成する、請求項1~8のいずれかに記載の検出方法。 9. The primary reaction product according to claim 1, wherein, in the first reaction step, the primary reactant is formed by binding the detection target and a part of the primary substance and dissociating the part from the primary substance. The detection method according to any one of the above.
  11.  前記検出体の表面に表面弾性波素子が形成されており、
     前記検出体の表面状態に基づく信号値は、前記表面弾性波素子の位相特性の値である、請求項1~10のいずれかに記載の検出方法。
    A surface acoustic wave element is formed on the surface of the detection body,
    The detection method according to any one of claims 1 to 10, wherein the signal value based on the surface state of the detection body is a value of a phase characteristic of the surface acoustic wave element.
  12.  前記検出体の表面状態に基づく信号値は、QCM(Quartz Crystal Microbalance)センサ、SPR(Surface Plasmon Resonance)センサおよびFET(Field Effect Transistor)センサから選択された方法によって測定された値である、請求項1~10のいずれかに記載の検出方法。 The signal value based on the surface state of the detection object is a value measured by a method selected from a QCM (Quartz Crystal Microbalance) sensor, an SPR (Surface Plasmon Resonance) sensor, and an FET (Field Effect Transistor) sensor. The detection method according to any one of 1 to 10.
  13.  前記第2信号値は、前記第1信号値よりも大きい、請求項1~12のいずれかに記載の検出方法。 The detection method according to any one of claims 1 to 12, wherein the second signal value is larger than the first signal value.
  14.  前記第1液体は、緩衝液である、請求項1~13のいずれかに記載の検出方法。 The detection method according to any of claims 1 to 13, wherein the first liquid is a buffer solution.
  15.  前記第1液体と前記第2液体とは同一である、請求項2~14のいずれかに記載の検出方法。 The detection method according to any one of claims 2 to 14, wherein the first liquid and the second liquid are the same.
  16.  前記第1信号値と前記第2信号値とから検出値を得る第1検出工程をさらに備える、請求項2~15のいずれかに記載の検出方法。 16. The detection method according to claim 2, further comprising a first detection step of obtaining a detection value from the first signal value and the second signal value.
  17.  試料中に含まれる検出対象物を検出するための装置であって、
     試料を、検出体の表面に結合され前記検出対象物と反応する一次物質に供給し、前記検出対象物と前記一次物質との反応によって一次反応物を前記検出体の表面上に形成させる第1反応部と、
     第1液体を前記検出体の表面に供給する第1供給部と、
     前記第1供給部によって前記第1液体が前記検出体の表面に供給された後、前記検出体の表面状態に基づく第1信号値を測定する第1測定部と、
     信号増幅用物質を前記検出体の表面に供給し、前記一次反応物が関与する反応によって前記検出体の表面状態を変化させる信号増幅部と、
     前記信号増幅用物質が供給された前記検出体の表面状態に基づく第2信号値を測定する第2測定部と、を備える、装置。
    An apparatus for detecting a detection target contained in a sample,
    A sample is supplied to a primary substance that is coupled to the surface of a detection body and reacts with the detection object, and a first reactant is formed on the surface of the detection body by a reaction between the detection object and the primary substance. A reaction part;
    A first supply unit for supplying a first liquid to the surface of the detection body;
    A first measurement unit that measures a first signal value based on a surface state of the detection body after the first liquid is supplied to the surface of the detection body by the first supply unit;
    Supplying a signal amplification substance to the surface of the detection body, and a signal amplification section that changes the surface state of the detection body by a reaction involving the primary reactant;
    A second measurement unit that measures a second signal value based on a surface state of the detection body supplied with the signal amplification substance.
PCT/JP2016/086464 2016-12-07 2016-12-07 Detection method and detection device WO2018105072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086464 WO2018105072A1 (en) 2016-12-07 2016-12-07 Detection method and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086464 WO2018105072A1 (en) 2016-12-07 2016-12-07 Detection method and detection device

Publications (1)

Publication Number Publication Date
WO2018105072A1 true WO2018105072A1 (en) 2018-06-14

Family

ID=62490883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086464 WO2018105072A1 (en) 2016-12-07 2016-12-07 Detection method and detection device

Country Status (1)

Country Link
WO (1) WO2018105072A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090944A1 (en) * 2018-10-30 2020-05-07 京セラ株式会社 Measuring device and measuring method
JP2021004867A (en) * 2019-06-27 2021-01-14 日本無線株式会社 Drooping detector and drooping detection program of surface acoustic wave sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514224A (en) * 1999-11-12 2003-04-15 サーロメッド・インコーポレーテッド Biosensing using surface plasmon resonance
JP3930563B2 (en) * 1995-09-08 2007-06-13 バイアコア・アクチエボラーグ Surface plasmon resonance mass spectrometry
JP2008014936A (en) * 2006-06-08 2008-01-24 Canon Inc Measuring probe, and manufacturing method thereof
US20100117004A1 (en) * 2008-11-07 2010-05-13 Samsung Electronics Co., Ltd. Surface acoustic wave device and method for signal amplification of surface acoustic wave element
WO2016121864A1 (en) * 2015-01-30 2016-08-04 京セラ株式会社 Method for sensing detection target
JP2017009492A (en) * 2015-06-24 2017-01-12 日本無線株式会社 Surface acoustic wave sensor and detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930563B2 (en) * 1995-09-08 2007-06-13 バイアコア・アクチエボラーグ Surface plasmon resonance mass spectrometry
JP2003514224A (en) * 1999-11-12 2003-04-15 サーロメッド・インコーポレーテッド Biosensing using surface plasmon resonance
JP2008014936A (en) * 2006-06-08 2008-01-24 Canon Inc Measuring probe, and manufacturing method thereof
US20100117004A1 (en) * 2008-11-07 2010-05-13 Samsung Electronics Co., Ltd. Surface acoustic wave device and method for signal amplification of surface acoustic wave element
WO2016121864A1 (en) * 2015-01-30 2016-08-04 京セラ株式会社 Method for sensing detection target
JP2017009492A (en) * 2015-06-24 2017-01-12 日本無線株式会社 Surface acoustic wave sensor and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090944A1 (en) * 2018-10-30 2020-05-07 京セラ株式会社 Measuring device and measuring method
JPWO2020090944A1 (en) * 2018-10-30 2021-09-16 京セラ株式会社 Measuring device and measuring method
JP7319997B2 (en) 2018-10-30 2023-08-02 京セラ株式会社 Measuring device and method
JP2021004867A (en) * 2019-06-27 2021-01-14 日本無線株式会社 Drooping detector and drooping detection program of surface acoustic wave sensor
JP7239403B2 (en) 2019-06-27 2023-03-14 日本無線株式会社 CONCENTRATION DETECTION DEVICE AND CONCENTRATION DETECTION PROGRAM FOR SAW SENSOR

Similar Documents

Publication Publication Date Title
JP6594402B2 (en) Sample liquid measuring method and sample liquid sensor
JP6582046B2 (en) Detection method and detection apparatus
US10830768B2 (en) Sensor, detection method, detection system, and detection device
WO2018105072A1 (en) Detection method and detection device
CN110470731B (en) Sensor device
Choi et al. Increase in detection sensitivity of surface acoustic wave biosensor using triple transit echo wave
JP6128764B2 (en) Biosensor, detection method, detection system, and detection apparatus
US11435318B2 (en) Sample liquid sensor device
WO2016121864A1 (en) Method for sensing detection target
JP2018081112A (en) Sensor
US10731198B2 (en) Sensor, detection method, detection system, and detection device
Yatsuda et al. Immunosensor using 250MHz shear horizontal surface acoustic wave delay line
WO2019146662A1 (en) Measurement method and measurement device
JPWO2015145916A1 (en) RNA aptamer, sensor and detection method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP