WO2018103563A1 - Lithium metal negative electrode utilized in lithium battery - Google Patents

Lithium metal negative electrode utilized in lithium battery Download PDF

Info

Publication number
WO2018103563A1
WO2018103563A1 PCT/CN2017/113586 CN2017113586W WO2018103563A1 WO 2018103563 A1 WO2018103563 A1 WO 2018103563A1 CN 2017113586 W CN2017113586 W CN 2017113586W WO 2018103563 A1 WO2018103563 A1 WO 2018103563A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
metal
battery
carbonate
Prior art date
Application number
PCT/CN2017/113586
Other languages
French (fr)
Chinese (zh)
Inventor
张强
程新兵
闫崇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018103563A1 publication Critical patent/WO2018103563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a lithium metal negative electrode utilized in a lithium battery. A solid electrolyte protective layer is disposed at a surface of the lithium metal negative electrode. The invention provides, by performing an electrochemical process on a lithium negative electrode, an efficient and stable solid electrolyte interface at a surface of a lithium plate. In a process of repeated deposition and deintercalation of lithium ions, the solid electrolyte protective layer can inhibit formation of a crystal dendrite to enhance safety performance of the battery, and isolate an electrolyte solution from metal lithium to protect the metal lithium from being corroded by the electrolyte solution. By selecting an electroplating method and a type of an electrolyte solution, the embodiment can be employed to implement effective protection of the lithium metal negative electrode, increasing a cycle life of the lithium battery. In comparison to an unprocessed lithium negative electrode, the lithium metal negative electrode protected by the solid electrolyte layer can effectively inhibit formation of crystal dendrite-like lithium deposition, reducing side effects of the electrolyte solution and the metal lithium, and increasing cycle efficiency and cycle stability of the battery, thereby extending the cycle life of the lithium battery employing metal lithium as the negative electrode.

Description

一种锂电池的金属锂负极Metal lithium negative electrode of lithium battery 技术领域Technical field
本发明涉及一种金属锂负极,属于以金属锂为负极的金属锂电池技术领域。The invention relates to a metal lithium negative electrode, belonging to the technical field of metal lithium batteries using metal lithium as a negative electrode.
背景技术Background technique
能源与人民的生活息息相关,而电池的出现让能源的利用更加方便和快捷。上世纪九十年代,索尼公司开发了可安全利用的石墨负极,带来了锂离子电池在个人电子设备等领域的规模应用。但是,随着高端电子设备和电动汽车的需求增加,基于传统氧化物正极和石墨负极的锂离子电池逐渐难以满足需求,发展更高能量密度的储能系统已经迫在眉睫。在已知电极材料中,锂金属负极以3860mAh·g-1的高容量和最负的电势(-3.040V vs.标准氢电极)而成为储能界的“圣杯”,受到研究人员的关注(Energy Environ.Sci.2014,7,513)。以金属锂为负极的锂硫电池(2600Wh/kg)和锂空电池(3500Wh/kg)以其极高的能量密度,而被视为下一代储能电池的重要选择。Energy is closely related to people's lives, and the emergence of batteries makes energy use more convenient and faster. In the 1990s, Sony developed a graphite anode that can be safely utilized, bringing the scale of lithium-ion batteries in the field of personal electronic devices. However, with the increasing demand for high-end electronic equipment and electric vehicles, lithium-ion batteries based on conventional oxide cathodes and graphite anodes are gradually difficult to meet demand, and it is urgent to develop energy storage systems with higher energy density. Among the known electrode materials, the lithium metal anode has become the "Holy Grail" of the energy storage industry with a high capacity of 3860 mAh·g -1 and a negative potential (-3.040 V vs. standard hydrogen electrode), which has attracted the attention of researchers ( Energy Environ. Sci. 2014, 7, 513). Lithium-sulfur batteries (2600Wh/kg) and lithium-air batteries (3500Wh/kg) with lithium metal as the negative electrode are regarded as an important choice for next-generation energy storage batteries due to their extremely high energy density.
金属锂电池优势明显,但是在实际应用中却遇到了负极枝晶生长的问题。当金属锂作为二次电池负极时,金属锂可逆沉积,造成枝晶生长。枝晶刺穿隔膜,造成电池短路,容易带来安全事故。抑制枝晶生长是实现高能量密度锂金属电池(如锂硫电池、锂氧电池等)规模应用的关键。为了抑制枝晶生长,提高锂金属电池的安全性、利用率和循环寿命,在过去的半个世纪里,科学家提出多种解决方案。Lynden A.Archer教授使用LiF作为电解液添加剂(Nature Materials 2014,13,961)。锂离子在LiF表面的表面能大而扩散能小,使得锂离子在LiF周围更容易扩散成均匀的锂离子,从而实现锂离子的均匀分布。Lu等将铜纳米线作为金属锂的集流体,可以降低负极的电流密度,从而延长Sand’s time,抑制枝晶生长(Nano Letters 2016,16,4431)。赵辰孜等使用多硫化物和硝酸锂的复合电解液添加剂实现了负极表面固态电解质界面膜的稳定性,从而抑制枝晶的生长,提高电池的安全性能(公开号:CN 201610252402)。这些方法提供许多抑制枝晶的新思路,但是在应用过程中却受到很多条件的限制,比如某种添加剂只能应用在某种特定的溶剂中,三维纳米骨架会带来较多的副反应等等。如何对金属锂进行定向改造,获得可抑制枝晶生长的、可应用在多种电解液和电池系统的锂金属负极将具有巨大意义。因此对目前的锂片进行处理,使其能够具备抑制枝晶生长的能力,将会实现同一种锂片在不同电池和电解液系统的应用,实现以金属锂为负极的金属锂电池的实际应用。The metal lithium battery has obvious advantages, but in practical applications, it has encountered the problem of dendritic growth of the negative electrode. When metallic lithium is used as a negative electrode of a secondary battery, metallic lithium is reversibly deposited, causing dendrite growth. The dendrite pierces the diaphragm, causing a short circuit in the battery, which is likely to cause a safety accident. Inhibiting dendrite growth is the key to achieving high-energy-density lithium metal batteries (such as lithium-sulfur batteries, lithium-oxygen batteries, etc.). In order to suppress dendrite growth and improve the safety, utilization and cycle life of lithium metal batteries, scientists have proposed various solutions in the past half century. Professor Lynden A. Archer uses LiF as an electrolyte additive (Nature Materials 2014, 13, 961). The surface energy of lithium ions on the surface of LiF is large and the diffusion energy is small, so that lithium ions are more easily diffused into uniform lithium ions around LiF, thereby achieving uniform distribution of lithium ions. Lu et al. used copper nanowires as a current collector of metallic lithium to reduce the current density of the negative electrode, thereby extending the sand's time and inhibiting dendrite growth (Nano Letters 2016, 16, 4431). Zhao Chenxi et al. used a composite electrolyte additive of polysulfide and lithium nitrate to achieve the stability of the solid electrolyte interface film on the surface of the negative electrode, thereby inhibiting the growth of dendrites and improving the safety performance of the battery (publication number: CN 201610252402). These methods provide many new ideas for inhibiting dendrites, but they are limited by many conditions in the application process. For example, an additive can only be applied to a specific solvent, and the three-dimensional nano-framework will bring more side reactions. Wait. How to directionalally modify metallic lithium to obtain a lithium metal negative electrode that can inhibit dendrite growth and can be applied to various electrolytes and battery systems will be of great significance. Therefore, the current lithium sheet is processed to enable it to inhibit the growth of dendrites, and the application of the same lithium sheet in different battery and electrolyte systems can be realized, and the practical application of the metal lithium battery with lithium metal as the negative electrode is realized. .
发明内容Summary of the invention
本发明的目的在于改变目前金属锂电池负极循环寿命低的问题,通过对常规的锂片负极进行电化学预处理,在锂片表面引入一层高效的固态电解质界面膜,从而抑制金属锂负极的枝晶生长,减少电解液和金属锂的副反应,提高电池的利用率和循环寿命。The object of the invention is to change the current low cycle life of the negative electrode of the metal lithium battery, and to introduce a high-efficiency solid electrolyte interface film on the surface of the lithium plate by electrochemical pretreatment of the conventional lithium plate negative electrode, thereby suppressing the metal lithium negative electrode. Dendritic growth reduces side reactions of electrolyte and lithium metal, improving battery utilization and cycle life.
本发明的技术方案是:一种锂电池的金属锂负极,其特征在于:该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用以下电镀方法制备: The technical solution of the present invention is: a lithium metal negative electrode of a lithium battery, characterized in that: the surface of the metal lithium negative electrode comprises a solid electrolyte protective layer, and the solid electrolyte protective layer is prepared by the following electroplating method:
1)配制锂盐与有机溶剂的混合溶液作为电解质溶液,其锂盐的摩尔浓度为0.1~10mol/L;1) preparing a mixed solution of a lithium salt and an organic solvent as an electrolyte solution, the molar concentration of the lithium salt is 0.1 to 10 mol / L;
2)将锂片浸入到该电解质溶液中进行电镀,电镀过程的电流为1μA cm-2~100mA cm-2,待锂片表面电镀上一层固态电解质保护膜后,取出锂片,即作为金属锂负极。2) immersing the lithium sheet into the electrolyte solution for electroplating, the current of the electroplating process is 1 μA cm -2 to 100 mA cm -2 , and after the surface of the lithium sheet is plated with a solid electrolyte protective film, the lithium sheet is taken out, that is, as a metal Lithium negative electrode.
上述技术方案中,所述的电解质溶液还含有添加剂,该添加剂为硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫和二氧化碳中的一种或几种,添加剂的浓度在0.001~1mol L-1In the above technical solution, the electrolyte solution further contains an additive, which is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide. One or more of sulfur dioxide and carbon dioxide, the concentration of the additive is 0.001 to 1 mol L -1 .
上述技术方案中,所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂的一种或几种的组合。In the above technical solution, the lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium difluoroxaluminate and two (three) One or a combination of lithium fluoromethylsulfonyl).
上述技术方案中,所述的有机溶剂为碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种。In the above technical solution, the organic solvent is ethylene carbonate, propylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetic acid. One or more of ethyl ester, acrylonitrile, methyl formate, methacrylate, tetrahydrofuran, sulfolane, 1,3-dioxolane and tetraethylene glycol dimethyl ether.
所述的电镀处理时间为1s~1000h,处理次数是1-1000次。电镀获得的锂片表面的固态电解质保护膜的厚度为2nm~200um。The plating treatment time is 1 s to 1000 h, and the number of treatments is 1-1000 times. The thickness of the solid electrolyte protective film on the surface of the lithium sheet obtained by electroplating is 2 nm to 200 μm.
本发明相比现有技术,具有如下优点及突出性效果:本发明采用电镀的方法对锂片紧凑化学预处理,使锂电极表面含有一层稳定的固态电解质保护层,不仅方法简单可行,且可有效抑制金属锂负极的枝晶生长,减少电解液和金属锂的副反应,显著提高了电池的利用率和循环寿命;实验研究表明,该金属锂负极在10~8000次电池循环中没有枝晶出现;该金属锂负极可以将该锂电池负极的利用率提高至80~99.9999%。Compared with the prior art, the invention has the following advantages and outstanding effects: the invention adopts a plating method to compact chemical pretreatment of the lithium sheet, and the surface of the lithium electrode contains a stable solid electrolyte protective layer, which is not only simple and feasible, but also It can effectively inhibit the dendrite growth of the lithium metal anode, reduce the side reaction of the electrolyte and the metal lithium, and significantly improve the utilization rate and cycle life of the battery; experimental research shows that the metal lithium anode has no branches in the 10 to 8000 battery cycle. The crystal appears; the metal lithium negative electrode can increase the utilization rate of the lithium battery negative electrode to 80 to 99.9999%.
具体实施方式:detailed description:
本发明提供的一种锂电池的金属锂负极,该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用电镀方法制备。用于电镀的电解质溶液包含一定浓度的锂盐和有机溶剂。锂盐是六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂的一种或几种,锂盐摩尔浓度一般在是0.1~10mol L-1之间。有机溶剂采用碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种。该电解质溶液还可以含有添加剂,添加剂是硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫、二氧化碳等中的一种或几种,其摩尔浓度为0.001~1mol L-1。电镀过程的电流一般为1μA cm-2~100mA cm-2,处理时间是1s~1000h,处理次数是1-1000次,电镀获得的锂片表面的固态电解质保护膜的厚度优选为2nm~200um。The invention provides a metal lithium negative electrode of a lithium battery, wherein the metal lithium negative electrode surface comprises a solid electrolyte protective layer, and the solid electrolyte protective layer is prepared by an electroplating method. The electrolyte solution used for electroplating contains a certain concentration of a lithium salt and an organic solvent. The lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium difluoroxaluminate and lithium bis(trifluoromethylsulfonyl) One or more of them, the lithium salt molar concentration is generally between 0.1 and 10 mol L -1 . The organic solvent is ethylene carbonate, propylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, ethyl acetate, acrylonitrile, formic acid One or more of ester, methacrylate, tetrahydrofuran, sulfolane, 1,3-dioxolane and tetraethylene glycol dimethyl ether. The electrolyte solution may further contain an additive, and the additive is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide, sulfur dioxide, carbon dioxide, and the like. One or more of them have a molar concentration of 0.001 to 1 mol L -1 . The current in the electroplating process is generally 1 μA cm -2 to 100 mA cm -2 , the treatment time is 1 s to 1000 h, and the number of treatments is 1-1000 times. The thickness of the solid electrolyte protective film on the surface of the lithium sheet obtained by electroplating is preferably 2 nm to 200 um.
从以下实施例可进一步理解本发明,但本发明不仅仅局限于以下实施例。The invention will be further understood from the following examples, but the invention is not limited to the following examples.
实施例1:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)-硝酸锂(0.001mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀1次,电流密度为1μA cm-2,时间为1000h,在锂片表面得到的保护膜厚度为200um,将锂片取出,与硫正极一起组装成锂硫电池,经过测试 发现,锂硫电池的库伦效率可以达到99%,循环寿命可以达到5000圈。Example 1: A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium nitrate (0.001 mol L -1 ) - 1,3- Oxolane/dimethoxyethane, electroplating once, current density is 1μA cm -2 , time is 1000h, the thickness of the protective film obtained on the surface of the lithium sheet is 200um, the lithium sheet is taken out, and assembled with the sulfur positive electrode Lithium-sulfur battery, after testing, found that the lithium-sulfur battery can achieve a coulombic efficiency of 99% and a cycle life of 5,000 cycles.
实施例2:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.01mol L-1)-碳酸乙烯酯/二乙基碳酸酯,电镀50次,电流密度为4mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为100um,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。Example 2: A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-fluoroethylene carbonate (0.01 mol L -1 ) - ethylene carbonate / two Ethyl carbonate, electroplating 50 times, current density is 4mA cm -2 , time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 100um, the lithium sheet is taken out, assembled into a lithium empty battery, after testing, it is found that lithium The battery has a Coulomb efficiency of 92% and a cycle life of 500 laps.
实施例3:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(5mol L-1)-碳酸亚乙烯酯(0.1mol L-1)-二甲基亚砜,电镀100次,电流密度为100mA cm-2,时间为1s,在锂片表面得到的保护膜厚度为50um,将锂片取出,与三元材料一起组装成电池,经过测试发现,该电池的库伦效率可以达到80%,循环寿命可以达到100圈。Example 3: A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bisfluoroxaluminate (5 mol L -1 ) - vinylene carbonate (0.1 mol L -1 ) - dimethyl sulfoxide, electroplating 100 The current density is 100 mA cm -2 for 1 s. The thickness of the protective film obtained on the surface of the lithium sheet is 50 um. The lithium sheet is taken out and assembled into a battery together with the ternary material. After testing, the coulombic efficiency of the battery can be found. Up to 80%, the cycle life can reach 100 laps.
实施例4:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(1mol L-1)-多硫化锂(0.5mol L-1)-四乙二醇二甲醚,电镀20次,电流密度为0.5mA cm-2,时间为0.5h,在锂片表面得到的保护膜厚度为10um,将锂片取出,与钴酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.9999%,循环寿命可以达到2000圈。Example 4: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (1 mol L -1 ) - lithium polysulfide (0.5 mol L -1 ) - tetraethylene glycol dimethyl ether, electroplated 20 times, current The density is 0.5 mA cm -2 , the time is 0.5 h, the thickness of the protective film obtained on the surface of the lithium sheet is 10 um, the lithium sheet is taken out, and assembled into a battery together with lithium cobaltate. After testing, the coulombic efficiency of the battery can be achieved. 99.9999%, cycle life can reach 2000 laps.
实施例5:将锂片置于电解槽中,采用的电解液为高氯酸锂(0.1mol L-1)-碳酸丙烯酯,电镀800次,电流密度为0.2mA cm-2,时间为1h,在锂片表面得到的保护膜厚度为5um,将锂片取出,与磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到90%,循环寿命可以达到5000圈。Example 5: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium perchlorate (0.1 mol L -1 )-propylene carbonate, electroplated 800 times, current density was 0.2 mA cm -2 , time was 1 h The protective film obtained on the surface of the lithium sheet has a thickness of 5 um, and the lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. After testing, the battery has a Coulomb efficiency of 90% and a cycle life of 5,000 cycles.
实施例6:将锂片置于电解槽中,采用的电解液为六氟砷酸锂(2.5mol L-1)-四氢呋喃,电镀10次,电流密度为8mA cm-2,时间为30s,在锂片表面得到的保护膜厚度为1um,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。Example 6: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluoroarsenate (2.5 mol L -1 )-tetrahydrofuran, electroplated 10 times, current density was 8 mA cm -2 , time was 30 s, The thickness of the protective film obtained on the surface of the lithium sheet is 1 um. The lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 laps.
实施例7:将锂片置于电解槽中,采用的电解液为二氟草酸硼酸锂(2.5mol L-1)-亚硫酸丙烯酯(1mol L-1)-碳酸乙烯酯/二乙基碳酸酯/甲乙基碳酸酯,电镀400次,电流密度为100μA cm-2,时间为30s,在锂片表面得到的保护膜厚度为20um,将锂片取出,与锰酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.5%,循环寿命可以达到1500圈。Example 7: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluorooxalate borate (2.5 mol L -1 ) - propylene sulfite (1 mol L -1 ) - ethylene carbonate / diethyl carbonate Ester/methyl ethyl carbonate, electroplated 400 times, current density is 100μA cm -2 , time is 30s, the thickness of the protective film obtained on the surface of the lithium sheet is 20um, the lithium sheet is taken out, and assembled into a battery together with lithium manganate. The test found that the battery has a Coulomb efficiency of 99.5% and a cycle life of 1500 cycles.
实施例8:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.5mol L-1)-二甲基碳酸酯/二乙基碳酸酯,电镀50次,电流密度为40mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为500nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。Example 8: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-fluoroethylene carbonate (0.5 mol L -1 )-dimethyl carbonate /Diethyl carbonate, electroplating 50 times, current density is 40mA cm -2 , time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 500nm, the lithium sheet is taken out, assembled into a lithium battery, after testing, Lithium batteries have a Coulombic efficiency of 92% and a cycle life of 500 laps.
实施例9:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-碳酸乙烯酯/乙酸乙酯,电镀50次,电流密度为0.1mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为100nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到97%,循环寿命可以达到500圈。Example 9: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-ethylene carbonate/ethyl acetate, electroplated 50 times, and a current density of 0.1 mA cm. -2 , the time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 100nm, the lithium sheet is taken out and assembled into a lithium empty battery. After testing, the coulombic efficiency of the lithium empty battery can reach 97%, and the cycle life can reach 500. ring.
实施例10:将锂片置于电解槽中,采用的电解液为高氯酸锂(0.1mol L-1)-丙烯腈,电镀800次,电流密度为5mA cm-2,时间为1h,在锂片表面得到的保护膜厚度为50nm,将锂片取出,与 磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到85%,循环寿命可以达到5000圈。Example 10: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium perchlorate (0.1 mol L -1 )-acrylonitrile, electroplated 800 times, current density was 5 mA cm -2 , time was 1 h, The protective film obtained on the surface of the lithium sheet has a thickness of 50 nm. The lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. After testing, the battery has a coulombic efficiency of 85% and a cycle life of 5,000 cycles.
实施例11:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(2.5mol L-1)-甲酸甲酯,电镀10次,电流密度为8A cm-2,时间为30s,在锂片表面得到的保护膜厚度为10nm,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。Example 11: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (2.5 mol L -1 )-methyl formate, electroplated 10 times, current density was 8 A cm -2 , time was 30 s, in lithium tablets The surface of the protective film has a thickness of 10 nm. The lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 cycles.
实施例12:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(1mol L-1)–甲基丙烯酸酯,电镀20次,电流密度为0.5A cm-2,时间为0.5h,在锂片表面得到的保护膜厚度为5nm,将锂片取出,与钴酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.996%,循环寿命可以达到2000圈。Example 12: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (1 mol L -1 ) - methacrylate, electroplated 20 times, current density was 0.5 A cm -2 , time was 0.5 h, The thickness of the protective film obtained on the surface of the lithium sheet is 5 nm. The lithium sheet is taken out and assembled into a battery together with lithium cobaltate. After testing, the battery has a Coulomb efficiency of 99.996% and a cycle life of 2000 cycles.
实施例13:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(2.5mol L-1)-环丁砜,电镀10次,电流密度为3mA cm-2,时间为30s,在锂片表面得到的保护膜厚度为2nm,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。Example 13: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium bis(dicarboxylate) borate (2.5 mol L -1 )-sulfolane, electroplated 10 times, current density was 3 mA cm -2 , time was 30 s, The protective film obtained on the surface of the lithium sheet has a thickness of 2 nm. The lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 cycles.
实施例14:将锂片置于电解槽中,采用的电解液为六氟硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.005mol L-1)-二甲基碳酸酯/二乙基碳酸酯,电镀50次,电流密度为4mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为20nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。Example 14: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium hexafluoroborate (0.1 mol L -1 ) - fluoroethylene carbonate (0.005 mol L -1 ) - dimethyl carbonate / two Ethyl carbonate, electroplating 50 times, current density 4 mA cm -2 , time 10 h, the thickness of the protective film obtained on the surface of the lithium sheet is 20 nm, the lithium sheet is taken out, assembled into a lithium empty battery, after testing, it is found that lithium empty The battery has a Coulomb efficiency of 92% and a cycle life of 500 laps.
实施例15:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)-碳酸锂(0.05mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀1000次,电流密度为40μA cm-2,时间为1h,在锂片表面得到的保护膜厚度为60nm,将锂片取出,与硫正极一起组装成锂硫电池,经过测试发现,锂硫电池的库伦效率可以达到99%,循环寿命可以达到5000圈。Example 15: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium carbonate (0.05 mol L -1 ) - 1,3- Oxolane/dimethoxyethane, electroplated 1000 times, current density is 40μA cm -2 , time is 1h, the thickness of the protective film obtained on the surface of the lithium sheet is 60nm, the lithium sheet is taken out, and assembled with the sulfur positive electrode Lithium-sulfur battery, after testing, found that the lithium-sulfur battery can achieve a coulombic efficiency of 99% and a cycle life of 5,000 cycles.
实施例16:将锂片置于电解槽中,采用的电解液为二氟草酸硼酸锂(2.5mol L-1)-亚硫酸乙烯酯(0.5mol L-1)-碳酸乙烯酯,电镀400次,电流密度为10mA cm-2,时间为15min,在锂片表面得到的保护膜厚度为200nm,将锂片取出,与锰酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.9%,循环寿命可以达到1500圈。Example 16: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluorooxalate borate (2.5 mol L -1 ) - vinyl sulfite (0.5 mol L -1 ) - ethylene carbonate, electroplating 400 times The current density is 10 mA cm -2 for 15 min. The thickness of the protective film obtained on the surface of the lithium sheet is 200 nm. The lithium sheet is taken out and assembled into a battery together with lithium manganate. After testing, the coulombic efficiency of the battery can be achieved. 99.9%, cycle life can reach 1500 laps.
实施例17:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)–氟化锂(0.8mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀300次,电流密度为300μA cm-2,时间为10h,在锂片表面得到的保护膜厚度为800nm,将锂片取出,与硫正极一起组装成锂硫电池,经过测试发现,锂硫电池的库伦效率可以达到99.91%,循环寿命可以达到5000圈。Example 17: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium fluoride (0.8 mol L -1 ) - 1,3- Dioxolane/dimethoxyethane, electroplating 300 times, current density 300μA cm -2 , time 10h, protective film thickness on the surface of lithium sheet is 800nm, lithium sheet is taken out, assembled with sulfur positive electrode Lithium-sulfur battery has been tested and found that the lithium-sulfur battery can achieve a coulombic efficiency of 99.91% and a cycle life of 5000 cycles.
实施例18:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(5mol L-1)-碳酸亚乙烯酯,并向电解槽中冲入二氧化硫,电镀10次,电流密度为0.1mA cm-2,时间为5h,在锂片表面得到的保护膜厚度为50nm,将锂片取出,与三元材料一起组装成电池,经过测试发现,该电池的库伦效率可以达到80%,循环寿命可以达到100圈。Example 18: A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium bisfluoroxaluminate (5 mol L -1 )-vinylene carbonate, and sulfur dioxide was flushed into the electrolytic cell, electroplating 10 times, current density is a 0.1mA cm -2, time was 5h, the film thickness of the protective sheet on the surface of the lithium obtained was 50 nm, the lithium sheet removed, together with the ternary material is assembled into a battery, tested and found coulombic efficiency of the battery can reach 80% The cycle life can reach 100 laps.
实施例19:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(1mol L-1)-碳酸乙烯 酯/乙酸乙酯,并向电解槽中冲入二氧化硫,电镀50次,电流密度为40mA cm-2,时间为10s,在锂片表面得到的保护膜厚度为40μm,将锂片取出,与硫正极一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.95%,循环寿命可以达到10圈。Example 19: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (1 mol L -1 )-ethylene carbonate/ethyl acetate and flushed into an electrolytic cell. Sulfur dioxide, electroplating 50 times, current density is 40mA cm -2 , time is 10s, the thickness of the protective film obtained on the surface of the lithium sheet is 40μm, the lithium sheet is taken out, and assembled with the sulfur positive electrode into a battery, after testing, the battery is found Coulomb efficiency can reach 99.95%, cycle life can reach 10 laps.
实施例20:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(4mol L-1)-1,3-二氧戊环/二甲氧基乙烷,并向电解槽中冲入二氧化碳,电镀2次,电流密度为0.8mA cm-2,时间为4.5h,在锂片表面得到的保护膜厚度为15μm,将锂片取出,与磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到89.9%,循环寿命可以达到8000圈。 Example 20: A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluoroxaluminate (4 mol L -1 )-1,3-dioxolane/dimethoxyethane and directed to an electrolytic cell. The carbon dioxide is poured into the carbon dioxide, electroplated twice, the current density is 0.8 mA cm -2 , the time is 4.5 h, and the thickness of the protective film obtained on the surface of the lithium sheet is 15 μm. The lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. The test found that the battery can achieve a coulombic efficiency of 89.9% and a cycle life of 8,000 cycles.

Claims (6)

  1. 一种锂电池的金属锂负极,其特征在于:该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用以下电镀方法制备:A lithium metal negative electrode of a lithium battery, characterized in that: the surface of the metal lithium negative electrode comprises a solid electrolyte protective layer, and the solid electrolyte protective layer is prepared by the following electroplating method:
    1)配制锂盐与有机溶剂的混合溶液作为电解质溶液,其锂盐的摩尔浓度为0.1~10mol/L;1) preparing a mixed solution of a lithium salt and an organic solvent as an electrolyte solution, the molar concentration of the lithium salt is 0.1 to 10 mol / L;
    2)将锂片浸入到该电解质溶液中进行电镀,电镀过程的电流为1μA cm-2~100mA cm-2,待锂片表面电镀上一层固态电解质保护膜后,取出锂片,即作为金属锂负极。2) immersing the lithium sheet into the electrolyte solution for electroplating, the current of the electroplating process is 1 μA cm -2 to 100 mA cm -2 , and after the surface of the lithium sheet is plated with a solid electrolyte protective film, the lithium sheet is taken out, that is, as a metal Lithium negative electrode.
  2. 按照权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述的电解质溶液含有添加剂,该添加剂为硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫和二氧化碳中的一种或几种,添加剂的摩尔浓度在0.001~1mol L-1The lithium metal negative electrode of a lithium battery according to claim 1, wherein the electrolyte solution contains an additive, and the additive is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate. One or more of ester, propylene sulfite, vinyl sulfite, lithium halide, sulfur dioxide and carbon dioxide, the molar concentration of the additive is from 0.001 to 1 mol L -1 .
  3. 根据权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂中的一种或几种的组合。The lithium metal negative electrode of a lithium battery according to claim 1, wherein the lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate) borate, A combination of one or more of lithium difluorooxalate borate, lithium difluoroxaluminate, and lithium bis(trifluoromethylsulfonyl).
  4. 根据权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述的有机溶剂为碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种的组合。The lithium metal negative electrode of a lithium battery according to claim 1, wherein the organic solvent is ethylene carbonate, propylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate. Ester, methyl ethyl carbonate, dimethoxyethane, ethyl acetate, acrylonitrile, methyl formate, methacrylate, tetrahydrofuran, sulfolane, 1,3-dioxolane and tetraethylene glycol dimethyl ether One or a combination of several.
  5. 按照权利要求1-4任一权利要求所述的一种锂电池的金属锂负极,其特征在于:电镀处理时间为1s~1000h,处理次数是1-1000次。A metal lithium negative electrode for a lithium battery according to any one of claims 1 to 4, characterized in that the plating treatment time is from 1 s to 1000 h, and the number of treatments is from 1 to 1000 times.
  6. 按照权利要求1-4任一权利要求所述的一种锂电池的金属锂负极,其特征在于:电镀获得的锂片表面的固态电解质保护膜的厚度为2nm~200um。 The lithium metal negative electrode of a lithium battery according to any one of claims 1 to 4, wherein the solid electrolyte protective film on the surface of the lithium sheet obtained by electroplating has a thickness of 2 nm to 200 μm.
PCT/CN2017/113586 2016-12-09 2017-11-29 Lithium metal negative electrode utilized in lithium battery WO2018103563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611129703.X 2016-12-09
CN201611129703.XA CN107068971A (en) 2016-12-09 2016-12-09 A kind of lithium anode of lithium battery

Publications (1)

Publication Number Publication Date
WO2018103563A1 true WO2018103563A1 (en) 2018-06-14

Family

ID=59619630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113586 WO2018103563A1 (en) 2016-12-09 2017-11-29 Lithium metal negative electrode utilized in lithium battery

Country Status (2)

Country Link
CN (1) CN107068971A (en)
WO (1) WO2018103563A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561915A4 (en) * 2016-12-23 2020-03-25 Posco Lithium metal anode, fabrication method thereof, and lithium secondary battery comprising same anode
CN113206293A (en) * 2021-04-14 2021-08-03 华中科技大学 Lithium metal battery electrolyte and preparation method and application thereof
CN113789074A (en) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof
CN114204102A (en) * 2021-10-29 2022-03-18 同济大学 Water-proof, air-proof, dendritic crystal-inhibiting all-solid-state lithium metal protective film and construction strategy thereof
CN114628709A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Split-phase electrolyte for lithium/carbon fluoride battery and application thereof
CN114628785A (en) * 2022-01-27 2022-06-14 华南理工大学 Double-functional lithium-sulfur battery electrolyte and preparation method and application thereof
CN114813616A (en) * 2022-06-29 2022-07-29 四川富临新能源科技有限公司 Device and method for detecting carbon content in lithium iron phosphate
CN114864913A (en) * 2022-06-15 2022-08-05 中原工学院 PEG-CeF 3 @ Zn corrosion-resistant composite metal cathode and preparation method and application thereof

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068971A (en) * 2016-12-09 2017-08-18 清华大学 A kind of lithium anode of lithium battery
CN107845757A (en) * 2017-10-12 2018-03-27 合肥国轩高科动力能源有限公司 A kind of electrodes of lithium-ion batteries of complex lithium film and barrier film and preparation method thereof
KR102258758B1 (en) 2017-12-14 2021-06-07 주식회사 엘지에너지솔루션 Continuous Manufacturing Method of Lithium Secondary Battery Forming Passive layer on the Surface of Lithium Metal Electrode and Lithium Secondary Battery prepared by the Same
CN108461715B (en) * 2018-03-16 2021-10-26 山东大学 Preparation method of solid-state battery lithium cathode
CN108321355A (en) * 2018-03-28 2018-07-24 中能中科(天津)新能源科技有限公司 Lithium an- ode prefabricated component and preparation method thereof, lithium an- ode and lithium metal secondary cell
PL3694042T3 (en) * 2018-05-10 2024-01-29 Lg Energy Solution, Ltd. Lithium metal secondary battery having improved safety and battery module including same
CN108565398A (en) * 2018-06-01 2018-09-21 哈尔滨工业大学 Cathode of lithium and preparation method thereof with inorganic protective coating
CN108987684B (en) * 2018-06-05 2021-07-16 燕山大学 Preparation method of metal lithium capable of being stably placed in air
CN109065832B (en) * 2018-06-25 2021-07-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Method for growing protective layer on surface of metal negative electrode of secondary lithium battery
CN108832131B (en) * 2018-06-28 2021-08-27 苏州清陶新能源科技有限公司 Preparation method of lithium metal negative electrode
CN110707287B (en) * 2018-07-09 2023-05-26 郑州宇通集团有限公司 Metal lithium negative electrode, preparation method thereof and lithium battery
CN110858650B (en) * 2018-08-22 2022-11-18 哈尔滨工业大学 Metal lithium cathode with preset stable protective film and preparation method thereof
CN109037764A (en) * 2018-08-29 2018-12-18 浙江工业大学 A kind of preparation method of the solid electrolyte of stable lithium an- ode
CN110880618B (en) * 2018-09-06 2021-10-15 中南大学 Lithium metal battery, negative electrode, electrolyte and preparation of lithium metal battery
CN109273761A (en) * 2018-09-17 2019-01-25 浙江大学 A method of solid electrolyte interface film is prepared on lithium metal surface
US10938028B2 (en) * 2018-10-19 2021-03-02 GM Global Technology Operations LLC Negative electrode for lithium secondary battery and method of manufacturing
CN109786692A (en) * 2018-12-25 2019-05-21 中国电子科技集团公司第十八研究所 Surface nitriding modification method of metal lithium electrode, obtained metal lithium cathode and application
CN109698396B (en) * 2019-01-09 2021-02-19 山东大学 Lithium-air battery based on lithium alloy negative electrode
CN109786708B (en) * 2019-01-18 2022-03-01 中国科学院宁波材料技术与工程研究所 Lithium metal negative electrode, preparation method thereof and lithium metal secondary battery
CN110048174B (en) * 2019-04-29 2020-09-22 中南大学 Gel battery electrolyte membrane and preparation method and application thereof
CN110299513B (en) * 2019-06-26 2020-12-08 中南大学 Preparation method of lithium-philic negative electrode, lithium-philic negative electrode and lithium battery
CN110444735A (en) * 2019-07-17 2019-11-12 湖南立方新能源科技有限责任公司 A kind of surface modifying method and lithium metal battery of lithium metal battery cathode
CN110391409A (en) * 2019-07-25 2019-10-29 昆山宝创新能源科技有限公司 Lithium cell cathode material and preparation method thereof and lithium battery
CN110718684B (en) * 2019-08-26 2021-07-06 浙江工业大学 Surface stabilization method for metal lithium
CN110534706B (en) * 2019-09-06 2021-06-25 燕山大学 Passivated lithium powder and preparation method and application thereof
CN111816843A (en) * 2020-06-30 2020-10-23 傲普(上海)新能源有限公司 Solid-state battery and manufacturing method thereof
CN112072076B (en) * 2020-07-22 2021-07-27 宁波大学 Modification method for surface of negative electrode of lithium metal battery
CN112687953B (en) * 2020-12-24 2022-04-01 中国电子新能源(武汉)研究院有限责任公司 Secondary battery electrolyte, preparation method thereof and battery
CN113224385A (en) * 2021-01-15 2021-08-06 中国科学院金属研究所 Composite additive for low-temperature battery electrolyte and application thereof
CN113461848B (en) * 2021-06-08 2022-07-29 杭州师范大学 Preparation and application of lithium polymethacrylsulfonate for lithium battery cathode protection
CN113481502B (en) * 2021-06-25 2023-01-06 天津中能锂业有限公司 Method for protecting the surface of a lithium metal strip, product and use thereof and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606188A (en) * 2004-03-19 2005-04-13 谷亦杰 Method for improving capacity of lithium ion battery
US20130045427A1 (en) * 2011-08-19 2013-02-21 Nanoteck Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
CN106159200A (en) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 A kind of lithium anode with protective coating and preparation thereof and application
CN107068971A (en) * 2016-12-09 2017-08-18 清华大学 A kind of lithium anode of lithium battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606188A (en) * 2004-03-19 2005-04-13 谷亦杰 Method for improving capacity of lithium ion battery
US20130045427A1 (en) * 2011-08-19 2013-02-21 Nanoteck Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
CN106159200A (en) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 A kind of lithium anode with protective coating and preparation thereof and application
CN107068971A (en) * 2016-12-09 2017-08-18 清华大学 A kind of lithium anode of lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561915A4 (en) * 2016-12-23 2020-03-25 Posco Lithium metal anode, fabrication method thereof, and lithium secondary battery comprising same anode
CN114628709A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Split-phase electrolyte for lithium/carbon fluoride battery and application thereof
CN113206293A (en) * 2021-04-14 2021-08-03 华中科技大学 Lithium metal battery electrolyte and preparation method and application thereof
CN113789074A (en) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof
CN113789074B (en) * 2021-07-28 2022-08-26 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof
CN114204102A (en) * 2021-10-29 2022-03-18 同济大学 Water-proof, air-proof, dendritic crystal-inhibiting all-solid-state lithium metal protective film and construction strategy thereof
CN114204102B (en) * 2021-10-29 2023-11-14 同济大学 Waterproof, air-insulating and dendrite-inhibiting all-solid-state lithium metal protection film and construction strategy thereof
CN114628785A (en) * 2022-01-27 2022-06-14 华南理工大学 Double-functional lithium-sulfur battery electrolyte and preparation method and application thereof
CN114864913A (en) * 2022-06-15 2022-08-05 中原工学院 PEG-CeF 3 @ Zn corrosion-resistant composite metal cathode and preparation method and application thereof
CN114864913B (en) * 2022-06-15 2023-12-22 中原工学院 PEG-CeF 3 Corrosion-resistant composite metal anode of @ Zn, and preparation method and application thereof
CN114813616A (en) * 2022-06-29 2022-07-29 四川富临新能源科技有限公司 Device and method for detecting carbon content in lithium iron phosphate

Also Published As

Publication number Publication date
CN107068971A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018103563A1 (en) Lithium metal negative electrode utilized in lithium battery
CN107768741B (en) Eutectic electrolyte and application thereof in secondary zinc battery
WO2019174161A1 (en) Solid-state composite lithium metal negative electrode
JP5956175B2 (en) Magnesium secondary battery, method of using electrolyte in magnesium secondary battery, and electrolyte for magnesium secondary battery
CN110190243A (en) A kind of preparation and application of the lithium an- ode with composite membrane
CN109728291A (en) A kind of high specific energy lithium metal battery
CN108550858A (en) A kind of ormolu collector inhibiting Li dendrite
WO2017020860A1 (en) Battery, battery set and uninterruptable power source
JP6928093B2 (en) Lithium metal negative electrode, its manufacturing method and lithium secondary battery including it
CN111354939B (en) Porous silicon composite material and preparation method and application thereof
CN111342028B (en) Formation method of lithium ion battery with graphite-based cathode
WO2022267503A1 (en) Electrochemical apparatus and electronic apparatus
CN109546089B (en) Silicon-based thin film composite pole piece, preparation method thereof and lithium ion battery
CN210074037U (en) Composite pole piece and lithium ion battery
WO2020114050A1 (en) Lithium metal support, preparation method therefor and use thereof
CN108417843A (en) A kind of porous aluminum collector inhibiting sodium dendrite
Chang et al. Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode
CN102332570B (en) Method for manufacturing tin-stibium-nickel alloy cathode material of lithium ion battery
CN105870502A (en) Electrolyte additive and application thereof
Chen et al. Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries
CN109980158A (en) Long-cycle lithium secondary battery
Xie et al. Advancements in achieving high reversibility of zinc anode for alkaline zinc‐based batteries
CN102054981A (en) Anode material doped with hydrogen and carbon elements and preparation method thereof
CN108878890B (en) Lithium ion battery conductive film/metallic lithium/conductive substrate three-layer structure composite electrode and preparation method thereof
CN113314773A (en) Aqueous zinc ion battery electrolyte and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877871

Country of ref document: EP

Kind code of ref document: A1