WO2018103539A1 - 蒸气热泵及低压蒸气补焓增压利用的方法 - Google Patents

蒸气热泵及低压蒸气补焓增压利用的方法 Download PDF

Info

Publication number
WO2018103539A1
WO2018103539A1 PCT/CN2017/112817 CN2017112817W WO2018103539A1 WO 2018103539 A1 WO2018103539 A1 WO 2018103539A1 CN 2017112817 W CN2017112817 W CN 2017112817W WO 2018103539 A1 WO2018103539 A1 WO 2018103539A1
Authority
WO
WIPO (PCT)
Prior art keywords
tornado
superheated
spray
steam
vapor
Prior art date
Application number
PCT/CN2017/112817
Other languages
English (en)
French (fr)
Inventor
李赛
傅皓
傅朝清
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to EP17878307.2A priority Critical patent/EP3546826B1/en
Publication of WO2018103539A1 publication Critical patent/WO2018103539A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/005Steam superheating characterised by heating method the heat being supplied by steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/42Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow characterised by the input flow of inducing fluid medium being radial or tangential to output flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps

Definitions

  • the invention relates to the field of steam heat pumps, in particular to a steam heat pump and a method for utilizing low pressure steam to make up pressure.
  • the temperature of the secondary vapor generated by evaporation is always lower than the liquid temperature due to the boiling point appreciation, which poses a technical problem for the energy-saving utilization of the secondary vapor.
  • the multi-effect evaporator uses the latent heat of vaporization of the raw steam multiple times.
  • the raw steam enters the system in a vapor state and flows out of the system in a vapor state.
  • the steam enthalpy difference between the inlet and outlet system is very small, for example, 1.0 MPa (G), 185 ° C saturated steam enters the evaporation system, and after multi-effect evaporation and 45 ° C secondary steam discharge system, the enthalpy difference is less than 250 kJ / kg, steam generation
  • the heat utilization rate is less than 9%.
  • the secondary steam (waste steam) of the discharge system is required to ensure the evaporation degree of the vacuum, and a large amount of circulating water is needed to condense it, and other energy consumption, the second thermal rate of thermodynamics is lower.
  • MVR mechanical vapor recompression
  • MVR is an energy-saving technology that reuses the energy of the secondary steam generated by itself to reduce the demand for external energy.
  • the working process is to compress the low-temperature steam (secondary steam) through the compressor, and increase the temperature and pressure.
  • the enthalpy is increased and then condensed into the evaporator to take full advantage of the latent heat of the steam.
  • steam is not needed in the whole evaporation process; thus, the secondary steam that was originally discarded is fully utilized, the latent heat is recovered, and the thermal efficiency is improved, and the economy is equivalent to the 20 effect of multi-effect evaporation.
  • MVR's one-time investment is greater than multi-effect evaporation, generally more than 1.5 times multi-effect evaporation.
  • multi-effect evaporation has no special equipment, and the construction period is short.
  • MVR has a special production cycle due to the special compressor equipment, and the construction period is three times that of multi-effect evaporation.
  • water vapor is difficult to compress, it is ultimately in an overheated state, in which more than 80% of the energy is consumed by the warming, and less than 20% of the energy is used for the pressurization. Therefore, adiabatic compression of saturated steam is a very energy intensive process.
  • the temperature difference between the two single-stage compressors (series) of MVR is only 16 °C (ie, single-stage temperature rise of 8 °C), and the scope of use is limited.
  • the steam jet heat pump utilizes high-pressure raw steam to expand the supersonic flow in the Laval nozzle (nozzle) of the steam injector, convert the pressure energy and phase change energy into the kinetic energy of the jet, and eject the secondary steam or low-pressure steam.
  • the use of supercharging, the superimposed mixed steam pressure is lower than the raw steam pressure; since the ejector coefficient generally does not exceed 1, the secondary steam or low pressure steam utilization rate is very low, and the energy consumption is high, so far the application is rare.
  • the technical problem to be solved by the present invention is to provide a steam heat pump capable of efficiently utilizing low pressure steam and low pressure steaming.
  • the method of using gas to compensate for supercharged pressure is to provide a steam heat pump capable of efficiently utilizing low pressure steam and low pressure steaming.
  • the technical solution adopted by the present invention to solve the technical problem thereof is as follows:
  • the present invention provides a method for utilizing low pressure steam replenishing pressurization, comprising the following steps:
  • step 2) Using high-temperature heat energy to saturate the vapor, when the material heater condenses on the material itself, the volume is sharply reduced, and the strong suction force is generated.
  • the superheated vapor obtained in the step 1) is sucked and pressurized, so that the superheated vapor forms a pressurized increase.
  • the saturated vapor that is, the high temperature heat energy saturates the vapor, and then passes through the material heater to heat the material for utilization or recycling.
  • the low-pressure steam-filling method is based on the principle of natural tornado formation and strong suction;
  • the artificial tornado method is adopted to make the low-pressure steam form a tornado vortex for liquid pressure boosting, or to perform superheated liquid pressurization;
  • the material heater is an evaporator, and the low-pressure vapor is a secondary vapor; and the following steps are included:
  • the method for utilizing the low pressure steam replenishing pressurization adopts a steam heat pump including a material heater and a superheated liquid supercharger; the superheated liquid supercharger has a low pressure steam inlet and a pressurized saturated steam Export;
  • the material heater has a saturated vapor inlet connected to a saturated vapor outlet of the superheated spray booster;
  • step 1) the low pressure steam is heated and superheated into superheated steam through the superheated spray supercharger, and the temperature is higher than the target pressure high temperature hot energy saturated vapor temperature;
  • step 2) a condensate is sprayed into the superheated spray booster; thereby causing the superheated steam to form a saturated vapor of increased pressure; and then passing the saturated vapor into the material heater to heat the material to achieve utilization or Recycling.
  • the method for utilizing the low-pressure steam-filling pressurization adopts a steam heat pump as a tornado steam heat pump, and the tornado steam heat pump includes a material heater and an integrated tornado superheated liquid supercharger;
  • the superheated spray booster has a low pressure steam inlet and a pressurized saturated vapor outlet;
  • the material heater has a saturated vapor inlet connected to the saturated vapor outlet of the tornado superheated liquid supercharger;
  • the low-pressure steam is passed through the integrated tornado superheated liquid supercharger to make the low-pressure steam heated and superheated into superheated steam, and the temperature is higher than the target pressure high-temperature heat energy saturated vapor temperature;
  • step 2) the saturated suction generated by the saturated steam in the material heater is used to heat the material, and the superheated steam generated by the step 1) is accelerated by the tornado in the integrated tornado superheated liquid supercharger.
  • the suction is further strengthened; the condensate is sprayed into the integrated tornado superheated liquid supercharger, so that the condensate absorbs a part of the superheated steam to become a supercharged saturated steam, that is, a high temperature thermal energy saturated vapor.
  • the high temperature hot energy saturated steam is introduced into the material heater to heat the material for utilization or recycling.
  • the low pressure steam replenishing method comprises the use of a superheater and a liquid supercharger;
  • the superheater has a low pressure steam inlet and a superheated steam outlet, the spray
  • the liquid booster has a superheated vapor inlet and a pressurized saturated vapor outlet;
  • the superheated vapor outlet of the superheater is in communication with a superheated vapor inlet of the spray booster;
  • the saturated vapor outlet of the spray booster is in communication with a saturated vapor inlet of the material heater;
  • step 1) the low pressure steam is heated and superheated by the superheater to become superheated steam, and the superheated steam temperature is higher than the target pressure high temperature hot energy saturated vapor temperature;
  • step 2) a condensate is sprayed into the spray booster; thereby causing the superheated steam to form a saturated vapor of increasing pressure; and then passing the saturated vapor into the material heater to heat the material to achieve utilization or Recycling.
  • the method for utilizing the low-pressure steam to compensate for supercharging the superheated liquid supercharger comprising a superheater and a liquid supercharger; the superheater adopting a tornado capable of causing a vapor to form a tornado vortex a superheater, wherein the spray booster employs a tornado spray supercharger capable of causing a vapor to form a tornado vortex; the torsion superheater is provided with a heater for heating the vapor;
  • step 1) the low pressure steam is sent to the tornado superheater; the low pressure vapor is formed into a tornado vortex through the tornado superheater;
  • the low-pressure steam in the tornado superheater is heated by the heater on the torus superheater, so that the temperature of the superheated steam discharged from the tornado superheater reaches a temperature higher than the target pressure high-temperature thermal energy saturated vapor temperature;
  • step 2) the superheated steam obtained by heating in step 1) is sucked into the tornado spray supercharger to perform liquid pressure boosting by using the strong suction generated by the saturated steam in the material heater to heat the material;
  • the supercharger causes the superheated vapor to form a tornado vortex; the suction is further strengthened; at the same time, the condensate is sprayed into the tornado spray supercharger through the nozzle assembly, and the nozzle assembly is sprayed into the condensate and the tornado
  • the tornado vortex in the spray supercharger rotates in the opposite direction; the superheated steam and the condensate are thoroughly mixed, so that the superheated steam forms a saturated steam of increased pressure; the obtained saturated vapor is fed into the material heater to carry out the material Heating, utilization or recycling.
  • the low pressure vapor is a low temperature thermal energy saturated vapor relative to the supercharged high temperature thermal energy saturated vapor.
  • the material of the present invention also includes an evaporation solution, and the solvent of the evaporation solution may be either water or an organic solvent.
  • the method of the present invention is realized based on the principle that the enthalpy difference of saturated steam at different temperatures is small, for example, since the enthalpy difference of saturated steam at 100 ° C and 120 ° C is only 29 kJ / kg, It is only necessary to supplement the temperature of 100kC secondary steam to 29kJ/kg and pressurize it to achieve 120 °C saturation. Replenishing water vapor There are many ways to do it, such as:
  • MVR mechanical compression of water vapor
  • MVR existing steam mechanical recompression technology
  • the method for utilizing the low pressure steam tonic pressurization according to the present invention has the characteristics of one-to-one correspondence of temperature, pressure and heat enthalpy according to the saturated steam; that is, after the heat enthalpy value is given, the pressure and temperature of the vapor are determined.
  • the low-pressure steam or the secondary steam is heated and superheated to obtain superheated steam, but the steam cannot be pressurized.
  • both thermal energy and pressure energy are energy. Under certain conditions, thermal energy can be converted into pressure energy; spray pressurization is an excellent choice.
  • the method for utilizing the low-pressure steam-filling pressurization according to the present invention has the powerful suction force which is rapidly reduced by the self-condensing volume when the material is heated by the saturated steam, thereby realizing the superheating of the low-pressure steam to pressurize the spray pressurization;
  • the low-pressure vapor forms a supercharged saturated vapor, that is, a saturated vapor of high-temperature heat energy, and realizes the use of low-pressure steam.
  • the artificial tornado method is used to form an artificial tornado in the corresponding equipment, thereby enhancing the vapor condensation suction pressure of the low-pressure steam to enhance the thermal efficiency and compression ratio; due to the low pressure vapor and the pressurized saturated vapor enthalpy difference Small, superheating is less, and the liquid pressure is high. Therefore, the method for utilizing the low-pressure steam-filling pressurization according to the present invention can effectively reduce energy consumption and save cost compared with the conventional method.
  • the present invention also provides a vapor heat pump which is not a separate device but a device system comprising a material heater and a saturated vapor which causes the low pressure vapor to be superheated by heating and the liquid pressure is pressurized to form a boosting increment.
  • a superheated spray booster the material heater having a saturated vapor inlet having a saturated vapor outlet, a low pressure vapor inlet, and a condensate inlet; a saturated vapor inlet and superheat of the material heater
  • the saturated vapor inlet of the spray booster is in communication.
  • the superheated spray supercharger is a tornado superheated spray supercharger
  • the tornado superheated spray supercharger comprises a tornado superheated spray supercharged vortex generating section, and a tornado superheated sprayed liquid is added.
  • the tornado superheated liquid jet supercharging vortex generating section has a drum type or a cylindrical inner cavity;
  • the tornado superheated spray supercharging acceleration superheating section has a conical inner cavity;
  • the tornado superheated liquid jet supercharging high speed mixing section has a cylindrical inner cavity;
  • the tornado superheated liquid jet pressurized diffusing section has a cone Inner cavity
  • the end of the conical inner cavity of the superheated spray supercharging acceleration superheating section is in communication with the inner cavity of the tornado superheated liquid pressurized vortex generating section, and the tornado superheated liquid pressurization accelerates overheating.
  • the smaller diameter end of the conical inner cavity of the segment is communicated with the smaller diameter end of the conical inner cavity of the tornado superheated liquid pressurized supercontracting section through the cylindrical inner cavity of the torn superheated spray pressurized high-speed mixing section;
  • the tornado superheated spray supercharge vortex generating section is provided with a low pressure steam inlet pipe; the center line of the low pressure steam inlet pipe and the toroidal or cylindrical inner cylinder of the tornado superheated spray supercharged vortex generating section
  • the center line of the cavity is vertical;
  • the low-pressure steam inlet pipe is in communication with the drum-shaped or cylindrical inner cavity of the tornado superheated spray pressurized vortex generating section, and the inner wall of the low-pressure steam inlet pipe and the tornado superheated liquid are pressurized
  • the inner wall of the vortex generating section is tangent;
  • a tornado nozzle assembly is disposed on the tornado superheated spray supercharge vortex generating section, and the tornado nozzle assembly is in communication with a toroidal or cylindrical inner cavity of the tornado superheated spray supercharged vortex generating section;
  • the tornado nozzle assembly and the tornado superheated spray supercharging acceleration superheating section are respectively located on two opposite sides of the tornado superheated spray supercharged vortex generating section;
  • the center line of the drum type or the cylindrical inner cavity of the tornado superheated spray supercharged vortex generating section, the center line of the conical inner cavity of the tornado superheated spray supercharging acceleration superheat section, the tornado superheated liquid spray The center line of the inner cavity of the pressurized high-speed mixing section, the center line of the conical inner cavity of the torn superheated spray pressurization and expansion section, and the injection center line of the tornado nozzle assembly are collinear;
  • a second heater is disposed on an outer circumferential surface of the superheated spray supercharging acceleration superheating section; the tornado superheated liquid pressurized boosting section is in communication with a saturated vapor inlet of the material heater.
  • the material heater adopts an evaporator
  • the superheated liquid supercharger includes a superheater and a liquid pressure booster
  • the superheater has a secondary vapor inlet tube and a superheated vapor outlet;
  • the evaporator includes a heating chamber and an evaporation chamber;
  • the evaporator has a secondary vapor outlet in communication with the evaporation chamber and a saturated vapor inlet in communication with the heating chamber;
  • the spray booster has a superheated steam inlet and a saturated vapor outlet;
  • the secondary vapor inlet pipe of the superheater is in communication with a secondary vapor outlet of the evaporator heating chamber, the superheated steam outlet of the superheater and the liquid pressurized
  • the superheated vapor inlet of the device is in communication;
  • the saturated vapor outlet of the spray booster is in communication with a saturated vapor inlet of the heating chamber;
  • the spray booster is provided with a nozzle assembly;
  • the nozzle assembly has a spray port located at The spray injector is sprayed in the same direction as the saturated vapor outlet of the spray booster.
  • the superheater includes a tornado superheater and a heater;
  • the tornado superheater includes a tornado vortex generating section, a tornado acceleration section, a high speed section, and a diffuser superheating section;
  • the tornado vortex occurs
  • the segment has a drum-shaped or cylindrical inner cavity;
  • the tornado acceleration section has a conical inner cavity;
  • the high-speed section has a cylindrical inner cavity;
  • the expanded-pressure superheated section has a conical inner cavity;
  • the larger diameter end of the conical inner cavity of the tornado acceleration section is in communication with the inner cavity of the tornado vortex generating section, and the smaller end of the conical inner diameter of the tornado acceleration section passes through the cylindrical shape of the high speed section.
  • the inner cavity is connected to the end of the conical inner cavity of the diffuser superheating section having a smaller diameter;
  • the center line of the drum-shaped or cylindrical inner cavity of the tornado vortex generating section, the center line of the conical inner cavity of the tornado acceleration section, the center line of the cylindrical inner cavity of the high-speed section, and the expansion and overheating section of the high-speed section is collinear;
  • the tornado vortex generating section is provided with a low pressure steam inlet pipe; the center line of the low pressure steam inlet pipe is perpendicular to the center line of the drum type or the cylindrical cavity of the tornado vortex generating section; the low pressure steam
  • the inlet pipe is in communication with the drum-shaped or cylindrical inner cavity of the tornado vortex generating section, and the inner wall of the low-pressure steam inlet pipe is tangent to the inner wall of the tornado vortex generating section; the heater is disposed at the high speed section and the diffusing pressure Overheated section.
  • the spray supercharger adopts a tornado spray supercharger;
  • the tornado spray supercharger includes a tornado spray supercharged vortex generating section, a tornado spray supercharged acceleration section, and a high speed a mixing section and a diffusing section;
  • the tornado spray supercharge vortex generating section has a drum type or a cylindrical inner cavity;
  • the tornado spray pressurization acceleration section has a conical inner cavity;
  • the high speed mixing section Having a cylindrical inner cavity;
  • the diffusing section has a conical inner cavity;
  • the larger diameter end of the conical inner cavity of the tornado spray pressurization acceleration section is in communication with the inner cavity of the tornado spray pressurization vortex generating section, and the tornado spray pressurization acceleration section has a conical shape
  • the smaller end of the cavity is communicated with the smaller diameter end of the conical inner cavity of the diffuser section through the cylindrical inner cavity of the high speed mixing section;
  • the tornado spray pressurization vortex generating section is provided with a superheated steam inlet pipe; the center line of the superheated steam inlet pipe and the toroidal or cylindrical cavity of the tornado spray pressurization vortex generating section The center line is vertical; the superheated steam inlet pipe is in communication with the drum-shaped or cylindrical inner cavity of the tornado spray pressurization section, and the inner wall of the superheated steam inlet pipe and the tornado The inner wall of the spray plenum vortex generating section is tangent;
  • the nozzle assembly is disposed on the tornado spray supercharge vortex generating section and is in communication with a toroidal or cylindrical inner cavity of the tornado spray supercharging vortex generating section; the nozzle assembly and the tornado spray
  • the supercharging acceleration sections are respectively located on two opposite sides of the tornado spray supercharge vortex generating section;
  • the center line of the drum type or the cylindrical inner cavity of the tornado spray supercharge vortex generating section, the center line of the conical inner cavity of the tornado spray pressurization acceleration section, and the cylindrical inner cavity of the high speed mixing section are collinear;
  • the outlet of the expanding and superheating section of the tornado superheater is in communication with the superheated steam inlet pipe of the tornado spray supercharger; the diffusing section of the tornado spray supercharger is connected to the saturated vapor inlet of the evaporator heating chamber .
  • cylindrical inner cavity of the high-speed mixing section has an aspect ratio of 1 to 4:1; and the conical inner cavity of the diffusing section has a taper of 6 to 10 degrees.
  • a condensate drain tank and a condensate pump are also included;
  • the material heater 1 has a condensate outlet connected to the inlet of the condensate drain tank, and the condensate outlet of the condensate drain tank is in communication with the condensate pump inlet, and the condensate pump outlet is connected to the tornado nozzle assembly or the nozzle assembly to The thermal energy of the condensate is utilized.
  • a first temperature control circuit is further included;
  • a regulating valve is disposed on a communication pipe between the nozzle assembly of the liquid jet supercharger or the tornado spray supercharger and the condensate pump;
  • the outlet of the spray supercharger or the tornado spray supercharger is provided with a temperature sensor, and the first temperature control loop detects the outlet vapor of the spray supercharger or the tornado spray supercharger through the temperature sensor.
  • the temperature controls the opening of the regulating valve to regulate the flow of the condensate to achieve a stable saturation temperature.
  • the heater 6 is provided with a second temperature adjustment circuit, the outlet of the superheater or the tornado superheater is provided with a second temperature sensor; and the second temperature adjustment circuit detects the overheating by the second temperature sensor The temperature of the superheated steam at the outlet of the tornado superheater is used to adjust the amount of heating of the heater.
  • a regulating valve is disposed on a communication pipe between the torn nozzle assembly of the superheated spray supercharger or the tornado superheated liquid supercharger and the condensate pump; and the second heater is provided with a temperature regulator ;
  • the superheated spray supercharger outlet is provided with an automatic temperature selective adjustment loop; the superheated spray supercharger outlet is provided with a saturated vapor temperature sensor, and the saturated vapor temperature sensor is connected with an automatic temperature selective adjustment loop.
  • the opening of the regulating valve and the temperature regulator are controlled by the automatic temperature selective control loop.
  • the steam heat pump of the present invention in particular, the superheated liquid supercharger in the steam heat pump adopts an integrated tornado superheated liquid supercharger, or the superheated liquid supercharger adopts a tornado superheater and a tornado spray Compared with the prior art, the liquid supercharger combination has the following advantages:
  • the steam heat pump according to the present invention utilizes vapor condensation of high-temperature heat energy, and the volume is sharply reduced, generating a strong suction force and further enhancing the suction force by means of an artificial tornado (sipper effect in daily life) , using a tornado superheater with a unique tornado structure, a tornado spray supercharger; or an integrated tornado superheated liquid supercharger for heating low pressure steam or secondary steam to superheat and supercharge
  • the theoretical thermal efficiency of the tornado steam heat pump is more than 90%. It is made into a green energy source with low-carbon technology. In addition to the start of the vehicle, no steam is needed in the whole process. In the case of a vacuum device, even steam is not required to start the steam. . No need to produce steam, which means that the energy generated by steam generation, such as medium and oil, is saved, and no energy is generated to generate carbon dioxide and other harmful gases. At the same time, there is no discharge of waste residue or waste liquid; It plays an excellent role in solving the major issues of today's green, low-carbon economy (carbon dioxide reduction) and circular economy.
  • the steam heat pump of the present invention in particular the tornado steam heat pump, has a simple structure, low material requirements, is easy to manufacture, and has low manufacturing cost, so the investment is not only lower than the steam mechanical recompression technology, referred to as MVR for short, and even more efficient than multi-effect evaporation. Lower.
  • the construction cycle is not only shorter than the MVR, but even shorter than the multi-effect evaporation.
  • the steam heat pump according to the present invention in particular, a tornado steam heat pump, relies on pressurized saturated steam to heat the material itself to condense, and does not discharge the secondary vapor of the system in a multi-effect evaporation, so that a large amount of circulating water is not required for the secondary vapor. Condensation.
  • the steam heat pump of the present invention in particular the tornado steam heat pump, has no rotating parts, so it is noise-free and has no pollution to the environment.
  • FIG. 1 is a schematic view showing the structure of a device system when a vapor heat pump includes a material heater and a superheated liquid jet supercharger according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a device system when a vapor heat pump includes a material heater as an evaporator and a superheated liquid supercharger according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of an integrated tornado superheated liquid supercharger according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of a device system when a steam heat pump includes a material heater, a superheater, and a liquid jet booster according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing the structure of a device for a steam heat pump including a material heater, a superheater, and a liquid jet booster in which the material heater is an evaporator;
  • Figure 6 is a perspective view of a tornado superheater in an embodiment of the present invention.
  • Figure 7 is a front elevational view of a tornado superheater in accordance with an embodiment of the present invention.
  • Figure 8 is a cross-sectional view of a tornado superheater in accordance with an embodiment of the present invention.
  • Figure 9 is a cross-sectional view taken along line A-A of Figure 7;
  • Figure 10 is a perspective view of a tornado spray supercharger in accordance with an embodiment of the present invention.
  • Figure 11 is a front elevational view of a tornado spray supercharger in accordance with an embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a tornado spray supercharger in accordance with an embodiment of the present invention.
  • Figure 13 is a cross-sectional view taken along line A-A of Figure 11;
  • dry saturated steam with superheat of 0 (usually called saturated steam or saturated steam) has the characteristics of one-to-one correspondence of temperature, pressure and heat. In other words, given the thermal enthalpy, the pressure and temperature of the saturated water vapor are determined.
  • the state parameters of saturated water vapor and water (condensation) on the saturation line are summarized in Table 1;
  • the enthalpy of superheated steam increases with the increase of the added heat, superheat or superheated steam temperature. This is the way and principle of overheating.
  • the formula shows that the superheated steam can not be pressurized.
  • heat and pressure The force energy is a kind of energy. Under certain conditions, the heat energy can be converted into pressure energy, and the liquid pressure is pressurized, which is a good choice. Generally, it should exceed the target pressure high temperature heat energy vapor saturation temperature, and it can easily exceed the compensation requirement; the principle of superheated steam rises with the hot air balloon.
  • the present invention employs liquid jet pressurization, which is different from adiabatic compression, which ultimately must be in an overheated state, in which more than 80% of the energy is consumed by the warming, and less than 20% of the energy is used for the pressurization; Isothermal compression, although the energy consumption is lower than the adiabatic compression, but the isothermal compression gas has a need to release the heat to the outside world, that is, the cooling water or air is required to take the compression tropical, so the depreciation of the representative energy is reduced.
  • the characteristic of the liquid pressurization is that the pressurized steam is supercharged or compressed, instead of superheated steam, and at the same time, it does not release heat to the outside to reduce the enthalpy; instead, the outside world supplies heat to the system, that is, the liquid spray.
  • the heat, the liquid absorbed by the spray liquid is higher than the saturated saturated vapor temperature, and becomes the saturated vapor of the increase; in short, the spray pressurization is the saturated steam which turns the superheated steam into a boosting increment. Low consumption and large boost ratio.
  • the invention uses the artificial tornado method to form an artificial tornado in related equipment, and further enhances the strong suction force caused by the sharp shrinkage of the vapor condensation volume, thereby improving the thermal efficiency and the compression ratio.
  • the technical solution provided by the invention is: a steam heat pump and a method for utilizing low pressure steam to compensate for pressure
  • the method for utilizing the low pressure steam tonic pressurization according to the present invention comprises the following steps:
  • the material heater 1 When the material heater 1 is used to heat the material by the high temperature heat energy saturated steam, the saturated vapor condensation volume is sharply reduced, and the strong suction force is generated, and the superheated steam obtained in the step 1) is sucked and pressurized by the liquid to superheat.
  • the vapor forms a saturated vapor of increasing pressure, that is, a high temperature thermal energy saturated vapor, and then is heated by a material heater to realize utilization or recycling.
  • the low-pressure steam in step 1) may be a secondary vapor generated in the evaporator, or may be a work Industry-owned steam, waste heat boiler steam, etc.
  • the low-pressure steam is heated to make the low-pressure steam become superheated steam, and the superheated steam temperature is higher than the target pressure high-temperature heat energy saturated vapor temperature; the specific low-pressure steam heated superheated steam temperature is higher than the target pressure high-temperature heat energy saturated vapor temperature 2 ⁇ 30 ° C.
  • the heating may be directly performed, or the low-pressure steam may be formed into a tornado by the artificial tornado principle, and then heated by the peripheral heater.
  • the material heater 1 described in the step 2) refers to a device for heating the material by steam; the material heater may be an evaporator, a heat exchanger or a heater.
  • the saturated vapor condensation volume can be sharply reduced, and the strong suction force generated can be sucked into the superheated steam obtained in step 1) and sprayed and pressurized; or the saturated suction condensation volume can be used to reduce the strong suction force.
  • the superheated vapor is vortexed into a tornado and then sprayed and pressurized.
  • the material heater 1 is an evaporator, and the following steps are included:
  • various methods such as heating or low-pressure steam can be used for heating the low-pressure steam, for example, a heater can be used in the process of heating the low-pressure steam, or a heat exchanger can be used.
  • a device such as a diffuser or a supercharger can be directly used in the process of pressurizing the low-pressure steam.
  • a preferred method is the method for utilizing the low pressure steam replenishing pressurization, using a steam heat pump comprising a material heater 1 and a superheated liquid supercharger 2; the superheated liquid supercharger 2 has a saturated vapor outlet and a low pressure vapor inlet;
  • the material heater 1 has a saturated vapor inlet connected to the saturated vapor outlet of the superheated spray booster 2;
  • step 1) the superheated steam booster 2 is brought to a temperature greater than the target pressure high temperature thermal energy saturated vapor temperature
  • step 2) a condensate is sprayed into the superheated liquid supercharger 2, and the speed of the condensate is 3-16 m/s; thereby causing the superheated vapor to become a saturated vapor of a pressurized increase; then the saturated vapor is then The material is heated into the material heater 1 to improve the thermal efficiency and the pressure ratio to achieve utilization or recycling.
  • the superheated liquid supercharger 2 may adopt an integrated combination of a common heater and a diffuser, or may be separately connected by a common heater and a diffuser. combination;
  • an integrated superheated liquid supercharger is used; further, in order to improve the efficiency of superheated liquid pressurization of low pressure steam, the superheated liquid supercharger 2 is capable of overheating the steam. Integral tornado superheated liquid supercharger with spray pressurization;
  • step 1) the secondary vapor formed in the evaporation chamber is heated and superheated by the integrated tornado superheated liquid supercharger.
  • step 2) the secondary vapor formed in the evaporation chamber is heated and superheated by the integrated tornado superheated liquid supercharger.
  • step 2) the strong suction generated by the sharply shrinking volume when the evaporation solution is condensed by the saturated steam in the heating chamber of the evaporator is used, so that the superheated steam passing through the step 1) is formed into a tornado in the integrated tornado superheated liquid supercharger. Acceleration, the suction is further strengthened, and the center speed of the tornado vortex reaches 200 m/s or more; at the same time, the speed of the tornado nozzle assembly 206 is injected into the tornado superheated liquid supercharger at a speed of 3-16 m/s.
  • Condensate, and the direction of the torn nozzle assembly 206 being sprayed into the condensate is opposite to that of the tornado vortex in the tornado superheated spray supercharger; the superheated vapor and the condensate are thoroughly mixed to form a supercharged increment Saturated steam; the obtained saturated steam is sent to the heating chamber of the evaporator to heat the material to achieve recycling.
  • the superheated liquid supercharger 2 includes a superheater 21 and a spray booster 22; the superheater 21 has a low pressure vapor inlet and a superheated vapor outlet, the spray booster 22 having a superheated vapor inlet and a saturated vapor outlet;
  • the superheated vapor outlet of the superheater 21 is in communication with the superheated vapor inlet of the liquid fuel booster 22; the saturated vapor outlet of the liquid fuel booster 22 is in communication with the saturated vapor inlet of the material heater 1;
  • step 1) the low-pressure steam is changed into superheated steam by the superheater 21, and the temperature reaches a temperature higher than the target pressure high-temperature heat-saturated vapor temperature;
  • step 2) a condensate is sprayed into the spray booster 22, and the speed of the condensate is 3-16 m/s; thereby causing the superheated vapor to form a saturated steam of pressurized boost; then the saturated vapor is introduced
  • the material is heated in the material heater 1 to be utilized or recycled.
  • the superheated liquid supercharger 2 includes a superheater 21 and a spray booster 22; the superheater 21 is configured to enable vapor formation.
  • the spray supercharger 22 adopts a tornado spray supercharger capable of causing a vapor to form a tornado vortex;
  • the torsion superheater is provided with a heater for heating steam 6;
  • step 1) the low pressure steam is sent to the tornado superheater; the low pressure vapor is formed into a tornado vortex through the tornado superheater;
  • the low-pressure steam in the tornado superheater is heated by the heater 6 on the torus superheater, so that the temperature of the superheated steam discharged from the tornado superheater reaches a temperature higher than the target pressure high-temperature thermal energy saturated vapor temperature;
  • step 2) using the strong suction generated when the material is heated by the saturated steam in the material heater 1, the superheated steam obtained by the heating in step 1) is sucked into the tornado spray supercharger for liquid pressure boosting;
  • the liquid supercharger causes the superheated vapor to form a tornado vortex; the suction is further enhanced; at the same time, the condensate is injected into the tornado spray supercharger through the nozzle assembly 226, and the nozzle assembly 226 is sprayed into the condensate.
  • the superheated vapor and the condensate are thoroughly mixed, so that the superheated vapor forms a saturated steam of increased pressure; the obtained saturated vapor is sent to the material heater 1 The material is heated inside to achieve utilization or recycling.
  • the method for utilizing the low-pressure steam replenishing pressure adopts a steam heat pump, and the steam heat pump includes a material heater 1 and a superheated liquid supercharger 2, and the superheated liquid supercharger 2
  • the material heater 1 is an evaporator, the evaporator has an evaporation chamber 12 and a heating chamber 11; a secondary vapor outlet 18 of the evaporation chamber 12, a superheated liquid supercharger 2, and a heating chamber 11
  • the saturated steam inlets 15 are in turn connected.
  • the method for utilizing the low-pressure steam to compensate for pressure is a steam heat pump comprising a material heater 1, a superheated liquid supercharger 2, and the material heater 1 is an evaporator.
  • the superheated liquid supercharger 2 includes a superheater 21 and a spray booster 22; the evaporator has an evaporation chamber 12 and a heating chamber 11; a secondary vapor outlet 18 of the evaporation chamber 12, and a superheater 21
  • the spray supercharger 22 and the saturated steam inlet 15 of the heating chamber 11 are sequentially connected;
  • the superheated steam obtained by the heating in the step 1) is sucked into the spray booster 22 while being sprayed
  • the condensate is injected into the supercharger 22 to realize the pressurization of the spray; thereby causing the superheated steam to form a high-temperature heat energy saturated vapor of the pressure increase; and the saturated steam is introduced into the heating chamber 11 of the evaporator 1 to heat the evaporation solution. , to achieve recycling.
  • the superheater 21 employs a heat exchanger
  • the spray booster 22 employs a diffuser
  • the method for recycling the secondary steam supplementation of the present invention uses a steam heat pump as a tornado steam heat pump, including an evaporator 1, an integrated tornado superheated liquid supercharger (torn overheating, The liquid discharge pressurization is integrated into one, the evaporator 1 has an evaporation chamber 12 and a heating chamber 11; a secondary vapor outlet 18 of the evaporation chamber 12, a tornado superheated liquid supercharger 2, and a heating chamber 11
  • the saturated vapor inlets 15 are in turn connected; the tornado superheated spray booster enables the vapor to form a tornado vortex, ie a tornado.
  • the secondary vapor passing through the tornado superheated liquid supercharger is heated to change the secondary vapor into superheated steam, so that the superheated vapor temperature exceeds the target pressure saturated vapor temperature;
  • the volume of the evaporation is sharply reduced, and the suction force is further enhanced by the artificial tornado, and the superheated vapor obtained by the heating in the step 1) is in the tornado.
  • the spray pressurization is realized in the superheated spray booster; at the same time, the condensate is sprayed through the tornado nozzle assembly 206, and the torn nozzle assembly 206 is sprayed into the liquid and the tornado is superheated.
  • the vortex is reversed in the opposite direction; the superheated vapor is thoroughly mixed with the condensate, so that the condensate absorbs a part of the superheated vapor and becomes a supercharged high temperature heat energy. Saturated vapor.
  • the saturated vapor of the high-temperature heat energy is sent from the saturated vapor inlet 15 of the evaporator 1 to the evaporator 1 to heat the evaporation solution for recycling.
  • the overheated liquid supercharger in the tornado steam heat pump is an integrated tornado superheated liquid supercharger (torn superheating and liquid pressure supercharging are integrated).
  • the tornado superheated liquid supercharger has a toroidal or cylindrical inner cavity of a tornado superheated liquid pressurization vortex generating section 202, and a conical inner cavity of a tornado superheated liquid pressurization accelerates overheating Section 203, a tornado superheated jet pressurized high speed mixing section 204 having a cylindrical inner cavity and a tornado superheated liquid pressurized boosting section 205 having a conical inner cavity;
  • the end of the torn inner cavity of the tornado superheated spray supercharging acceleration superheating section 203 is connected to the inner cavity of the tornado superheated liquid pressurized vortex generating section 202, and the tornado superheated liquid pressurized
  • the smaller end of the conical inner cavity of the accelerated superheating section 203 is larger than the conical inner diameter of the cylindrical inner cavity of the tornado superheated liquid jet supercharging high speed mixing section 204 and the tornado superheated liquid pressurized superconducting section 205.
  • the small end is connected;
  • the tornado superheated spray supercharge vortex generating section 202 is provided with a low pressure steam inlet pipe 201; the center line of the secondary steam inlet pipe 201 and the toroidal superheated spray supercharged vortex generating section 202 of the drum type or The center line of the cylindrical inner cavity is vertical; the secondary vapor inlet pipe 201 is in communication with the toroidal or cylindrical inner cavity of the tornado superheated spray supercharged vortex generating section 202, and the secondary vapor inlet pipe 201 has an inner wall and The inner wall of the tornado superheated spray supercharged vortex generating section 202 is tangent;
  • the tornado nozzle assembly 206 is disposed on the tornado superheated spray boosting vortex generating section 202 and is in communication with the toroidal or cylindrical inner cavity of the tornado superheated liquid pressurized vortex generating section 202; the tornado nozzle assembly 206 and the tornado superheated spray supercharging acceleration superheating section 203 are respectively located on two opposite sides of the tornado superheated spray boosting vortex generating section 202;
  • the center line of the toroidal or cylindrical inner cavity of the tornado superheated spray supercharged vortex generating section 202, the center line of the conical inner cavity of the tornado superheated spray supercharging acceleration superheating section 203, and the tornado overheating The center line of the cylindrical inner cavity of the spray pressurized high speed mixing section 204, the center line of the conical inner cavity of the torn superheated spray pressurized diffusing section 205, and the injection center line of the tornado nozzle assembly 206 are collinear;
  • a second heater 207 is disposed on an outer circumferential surface of the tornado superheated liquid pressurization acceleration superheating section 203; the tornado superheated liquid pressurized boosting section 205 and the saturated vapor inlet of the material heater 1 Connected.
  • step 1) the secondary vapor is heated and superheated in the tornado superheated spray supercharged superheat section 203.
  • step 2) a condensate is sprayed into the tornado superheated liquid supercharger; the secondary vapor is thoroughly mixed with the condensate.
  • the method for utilizing the low-pressure steam-filling pressurization of the present invention uses a steam heat pump as a tornado steam heat pump, and the tornado steam heat pump includes a material heater 1, a superheater 21, and a liquid pressure booster.
  • the material heater 1 employs an evaporator, the superheater 21 employs a tornado superheater, and the spray supercharger 22 employs a tornado spray supercharger;
  • the evaporator has an evaporation chamber 12 and a heating chamber 11; a secondary vapor outlet 18 of the evaporation chamber 12, a tornado superheater, a tornado spray supercharger, and a saturated vapor inlet 15 of the heating chamber 11 are sequentially connected;
  • the tornado superheater enables vapor formation
  • the tornado vortex, the tornado spray supercharger enables the vapor to form a tornado vortex;
  • the tornado superheater is provided with a heater 6 for heating the vapor.
  • the heater 6 on the torus superheater is activated to heat the secondary steam in the tornado superheater, so that the superheated steam temperature of the tornado superheater exceeds the target pressure saturated vapor temperature;
  • the volume is sharply reduced, and the suction force is further enhanced by the artificial tornado, and the superheated vapor obtained by the heating in the step 1) is sucked into the tornado.
  • the spray booster realizes the liquid pressurization; the tornado spray vortex makes the vapor form a tornado vortex; and the center speed of the tornado vortex reaches 200m/s or more, which is enough to match the strongest tornado in nature. And transcending; at the same time, the condensate is sprayed through the nozzle assembly 226, and the direction in which the over-nozzle assembly 226 is sprayed into the condensate is opposite to the tornado vortex in the tornado spray supercharger.
  • the superheated steam is passed through the tornado spray supercharger, so that the superheated steam and the condensate are sufficiently mixed, so that the condensate absorbs a part of the superheated vapor to become a supercharged high temperature hot energy saturated vapor.
  • the high temperature thermal energy saturated vapor is sent from the saturated vapor inlet 15 of the evaporator to the evaporator 1 to heat the evaporation solution for recycling.
  • the method for utilizing the low pressure steam tonic pressurization uses a steam heat pump as a tornado steam heat pump, comprising a material heater 1, a superheater 21, a spray booster 22, and the material heater 1 adopts an evaporator.
  • the superheater 21 adopts a tornado superheater
  • the spray supercharger 22 adopts a tornado spray supercharger;
  • the superheater 21 includes a tornado superheater and a heater 6; the tornado superheater includes a tornado vortex generating section 212, a tornado acceleration section 213, a high speed section 214, and a diffuser superheating section 215;
  • the vortex generating section 212 has a circular drum type or cylindrical inner cavity;
  • the tornado acceleration section 213 has a conical inner cavity;
  • the high speed section 214 has a cylindrical inner cavity;
  • the expanded pressure superheating section 215 has a conical inner shape a cavity having a smaller diameter of the conical inner cavity of the tornado acceleration section 213 is communicated with a smaller diameter end of the conical inner cavity of the diffuser superheating section 215 through a cylindrical inner cavity of the high speed section 214;
  • the spray supercharger 22 adopts a tornado spray supercharger;
  • the tornado spray supercharger comprises a tornado spray supercharged vortex generating section 222, a tornado spray supercharged acceleration section 223, and a high speed mixing section. 224 and a diffusing section 225;
  • the tornado spray supercharge vortex generating section 222 has a drum type or a cylindrical inner cavity;
  • the tornado spray pressurization acceleration section 223 has a conical inner cavity;
  • the high speed mixing section 224 has a cylindrical inner cavity;
  • the diffusing section 225 has a conical inner cavity; the larger diameter end of the conical inner cavity of the tornado spray supercharging acceleration section 223 and the tornado spray supercharge vortex occur
  • the inner cavity of the segment 222 is in communication, and the smaller end of the conical inner cavity of the tornado spray boosting section 223 passes through the cylindrical inner cavity of the high speed mixing section 224 and the conical inner diameter of the diffusing section 225.
  • the tornado spray supercharge vortex generating section 222 is provided with a superheated steam inlet pipe 221; a center line of the superheated steam inlet pipe 221 and a tornado spray supercharge vortex generating section 222
  • the center line of the drum-shaped or cylindrical inner cavity is vertical; the superheated steam inlet pipe 221 and the tornado vortex occur
  • the drum-shaped or cylindrical inner cavity of the segment 222 is in communication, and the superheated vapor inlet pipe 221 has an inner wall tangential to the inner wall of the tornado spray-charged vortex generating section 222; the nozzle assembly 226 is disposed in the tornado spray
  • the supercharged vortex generating section 222 is in communication with the toroidal or cylindrical inner cavity of the tornado spray supercharging vortex generating section 222; the nozzle assembly 226 and the tornado spray supercharging acceleration section 223 are respectively located in the tornado
  • the evaporator has an evaporation chamber 12 and a heating chamber 11; the secondary vapor outlet 18 of the evaporation chamber 12, the tornado superheater, the tornado spray supercharger, and the saturated vapor inlet 15 of the heating chamber 11 are in turn connected.
  • the heater 6 on the torus superheater is activated to heat the secondary steam in the tornado superheater, so that the superheated steam temperature of the tornado superheater exceeds the target pressure saturated vapor temperature;
  • the volume is sharply reduced, and the suction force is further enhanced by the artificial tornado, and the superheated vapor obtained by the heating in the step 1) is sucked into the tornado.
  • the spray booster realizes the liquid pressurization; the tornado spray vortex makes the vapor form a tornado vortex; and the center speed of the tornado vortex reaches 200m/s or more, which is enough to match the strongest tornado in nature.
  • the condensate is sprayed into the tornado spray supercharger through the nozzle assembly 226, and the direction of the sprayed liquid passing through the nozzle assembly 226 is opposite to that of the tornado vortex in the tornado spray supercharger. .
  • the superheated steam is passed through the tornado spray supercharger, so that the superheated steam and the condensate are sufficiently mixed, so that the condensate absorbs a part of the superheated vapor to become a supercharged high temperature hot energy saturated vapor.
  • the high temperature thermal energy saturated vapor is sent from the saturated vapor inlet 15 of the evaporator to the evaporator 1 to heat the evaporation solution for recycling.
  • the method, technology, system and adjustment method for using the artificial tornado (avoiding the destruction effect) in the device system of the tornado steam heat pump are: secondary vapor (low temperature steam) generated by evaporation of the evaporation chamber solution of the evaporator from the outlet 18
  • the secondary steam In order to build a good internal condition for the secondary steam to be heated and superheated; in the high speed section 214 and the diffuser superheating section 215, the secondary steam is heated and superheated by the heater 6, so that it becomes superheated steam and compensates, generally exceeding the target.
  • the saturation temperature of the pressure vapor can easily exceed the fill requirements.
  • the superheat of the superheated steam at the outlet of the revolving superheating section 215 of the tornado superheater is achieved by adjusting the heat supply of the heater 6; the rising principle of the superheated vapor is like the rise of the hot air balloon and the corresponding suction of the secondary vapor ( Or pumping).
  • the superheated steam at the outlet of the expanded superheating section 215, according to the nature of the superheated steam, can only be filled in the superheating process and cannot be boosted.
  • the superheated steam 215 outlet superheated steam enters the tornado spray supercharger according to its lift.
  • the superheated steam inlet pipe 221 tangentially flows into the tornado vortex generating section 222 to generate the initial tornado.
  • the tornado vortex occurs in the section: drum type Or cylindrical shell
  • the diameter of the body is required to meet the requirements of superheated steam and to meet the requirements of outlet pressurization.
  • the tornado vortex is accelerated in the tornado acceleration section 223, and the central wind speed is up to 200 m/s or more, which is a good internal condition for the supercharging of the superheated steam; the reverse coagulation is added to the nozzle assembly 226.
  • the liquid is mixed at high speed, and under the combined action of the flow area, the pressure expansion, the liquid pressure boosting, and the strong suction force of the vapor condensation volume, and the tornado is further strengthened, the supercharging increment is obtained by the high-temperature heat energy vapor outflow expansion.
  • the saturated vapor temperature is realized by controlling the flow rate of the condensate; because the liquid is pressurized, there is no conventional energy consumption of more than 80% for the temperature increase; the saturated vapor of the high temperature heat energy enters through the inlet pipe 15 of the evaporator.
  • the heating chamber of the evaporator 1 heats the solution to be evaporated, and the latent heat is released into a condensate, and the volume is sharply reduced to generate a strong suction force, which is also the power of the tornado steam heat pump.
  • the secondary vapor low temperature heat energy vapor
  • the secondary vapor is re-utilized by the tornado overheating and the liquid jet pressurization to become the high temperature hot energy saturated vapor.
  • the superheated liquid supercharger adopts an integrated tornado superheated liquid supercharger
  • a combined tornado superheated liquid supercharger is used.
  • the integrated tornado superheated liquid supercharger of the third embodiment is basically the same as the tornado spray supercharger of the fifth embodiment, and the integrated tornado superheated liquid supercharger of the third embodiment will be implemented.
  • the tornado superheater of the combined tornado superheated liquid supercharger of the fifth example is cancelled, and the second heater 207 is set in the tornado spray supercharging acceleration section 223 of the tornado spray supercharger to make the tornado
  • the spray booster becomes a one-piece tornado superheated liquid booster, and the rest remains unchanged.
  • the method, technique, system and adjustment method of using artificial tornado (avoiding the destruction effect) in the device system are different from the third embodiment in that the secondary vapor discharged from the secondary steam outlet 18 of the evaporation chamber 12 is cancelled.
  • the method for utilizing the low-pressure steam-filling pressurization of the present invention uses a tornado steam heat pump system, so in the process of superheating the secondary steam and supercharging the liquid to form a saturated vapor, by evaporation
  • the powerful suction formed by the self-condensation of the heated vapor inside the device provides the suction force for forming the tornado, and at the same time, the suction is further enhanced by the artificial tornado to heat the secondary steam, and the secondary pressure is used to realize the recycling of the secondary vapor;
  • the saturation of the saturated water vapor at the temperature is small, the heat of the supplement is small, the suction is large, and the spray pressure is high, so the energy consumption is low, energy saving and emission reduction.
  • the secondary steam is changed into low-pressure steam, and the evaporator is changed into a material heater, and the corresponding steam heat pump and the low-pressure steam supplemental pressure boosting method are also used.
  • the low pressure steam is used for superheating and the liquid pressure is pressurized, and the low pressure steam is introduced through the low pressure steam pipe 9.
  • the steam heat pump is a tornado steam heat pump, comprising a material heater 1 and a superheated liquid supercharger 2; the superheated liquid supercharger 2 includes a superheater 21 and a spray booster 22;
  • the tuner 21 adopts a tornado superheater.
  • the tornado superheater includes a tornado vortex generating section 212, a tornado acceleration section 213, a high speed section 214, and a diffuser superheating section 215;
  • the vortex generating section 212 has a circular drum type or cylindrical inner cavity;
  • the tornado acceleration section 213 has a conical inner cavity;
  • the high speed section 214 has a cylindrical inner cavity; and
  • the expanded pressure superheating section 215 has a conical inner cavity;
  • the larger diameter end of the conical inner cavity of the tornado acceleration section 213 is in communication with the inner cavity of the tornado vortex generating section 212, and the smaller end of the conical inner diameter of the tornado acceleration section 213 passes through the high speed section.
  • a cylindrical inner cavity of 214 is in communication with a smaller diameter end of the conical inner cavity of the diffuser superheating section 215;
  • the center line of the conical inner cavity of the superheating section 215 is collinear;
  • the tornado vortex generating section 212 is provided with a low pressure steam inlet pipe 211; the center line of the low pressure steam inlet pipe 211 is perpendicular to the center line of the drum type or cylindrical cavity of the tornado vortex generating section 212;
  • the secondary vapor inlet pipe 21 is in communication with the drum-shaped or cylindrical inner cavity of the tornado vortex generating section 212, and the low-pressure steam inlet pipe 211 has an inner wall tangential to the inner wall of the tornado vortex generating section 212;
  • the heater 6 is disposed on the high speed section 214 or the diffuser superheater 215, or the high speed section 214 and the diffuser superheater 215.
  • the aspect ratio of the cylindrical inner cavity of the high speed section 214 is set to be 1.5 to 4:1.
  • the taper of the conical inner cavity of the diffuser superheating section 215 is set to 2 to 8 degrees.
  • the low pressure vapor (low temperature steam) tangentially flows from the low pressure steam pipe into the tornado superheater low pressure steam inlet pipe 211 to flow into the tornado vortex generating section 212 to generate an initial tornado, and the tornado vortex is in the tornado acceleration section 213. Accelerated, the central wind speed can reach 100m/s or more, which is a good internal condition for heating and superheating the low-pressure steam; in the high-speed section 214 and the diffuser superheating section 215, the low-pressure steam is heated and superheated by the heater 6 to make it become overheated. Steam can be used to make up the sputum, which generally exceeds the saturation temperature of the target pressure vapor.
  • the superheat of the superheated steam at the outlet of the expansion superheating section 215 of the tornado superheater is achieved by adjusting the heat supply of the heater 6; the superheated vapor has the lift of the principle of the hot air balloon, and generates a corresponding suction force for the secondary vapor (or Pumping).
  • the superheated steam at the outlet of the superheating section 215 is expanded, and depending on the nature of the superheated steam, it can only be filled in the superheating process and cannot be boosted.
  • the steam heat pump is a tornado steam heat pump comprising a material heater 1 and a superheated liquid supercharger 2, the superheated liquid supercharger 2 including a superheater 21 and a liquid spray increase
  • the main equipment spray supercharger 22 adopts a tornado spray supercharger;
  • the tornado spray supercharger comprises a tornado spray supercharged vortex generating section 222, and a tornado spray supercharger
  • the tornado spray supercharge vortex generating section 222 has a drum type or a cylindrical inner cavity;
  • the tornado spray supercharging acceleration section 223 has a cone
  • the high speed mixing section 224 has a cylindrical inner cavity;
  • the diffusing section 225 has a conical inner cavity;
  • the larger end of the conical inner cavity of the tornado spray pressurization acceleration section 223 is in communication with the inner cavity of the tornado spray pressurization vortex generating section 222, and the tornado spray pressurization acceleration section 223
  • the smaller diameter end of the conical inner cavity is communicated with the smaller diameter end of the conical inner cavity of the diffuser section 225 through the cylindrical inner cavity of the high speed mixing section 224;
  • the tornado spray supercharge vortex generating section 222 is provided with a superheated steam inlet pipe 221; a center line of the superheated steam inlet pipe 221 and a drum type or cylinder of the tornado spray supercharge vortex generating section 222;
  • the center line of the shaped cavity is vertical;
  • the superheated vapor inlet pipe 31 is in communication with the drum-shaped or cylindrical inner cavity of the tornado vortex generating section 222, and the superheated steam inlet pipe 221 has an inner wall and a tornado spray pressurization
  • the inner wall of the vortex generating section 222 is tangent;
  • the nozzle assembly 226 is disposed on the tornado spray supercharge vortex generating section 222 and is in communication with a toroidal or cylindrical inner cavity of the tornado spray supercharge vortex generating section 222; the nozzle assembly 226 and The tornado spray boosting acceleration section 223 is respectively located on two opposite sides of the tornado spray supercharge vortex generating section 222;
  • the center line of the drum type or cylindrical cavity of the tornado spray supercharge vortex generating section 222, the center line of the conical inner cavity of the tornado spray pressurization acceleration section 223, and the cylinder of the high speed mixing section 224 The center line of the inner cavity, the center line of the conical inner cavity of the diffusing section 225, and the nozzle center line of the high speed mixing section 224 are collinear;
  • the outlet of the expanding and superheating section 215 of the tornado superheater is in communication with the superheated steam inlet pipe 221 of the tornado spray supercharger; the diffusing section 225 of the tornado spray supercharger and the material heater 1
  • the saturated vapor inlet is connected.
  • the cylindrical inner cavity of the high-speed mixing section 224 has an aspect ratio of 1 to 4:1; and the conical inner cavity of the diffusing section 225 has a taper of 6 to 10 degrees.
  • the outlet superheating section 215 exits the superheated steam according to its lift into the tornado spray supercharger.
  • the superheated steam inlet pipe 221 tangentially flows into the tornado vortex generating section 222 to generate an initial tornado, and the tornado vortex occurs in a segment:
  • the diameter of the drum or cylindrical shell is designed to meet the requirements of superheated steam entry and to meet the export pressurization requirements.
  • the tornado vortex is accelerated in the tornado acceleration section 223, and the central wind speed is up to 200 m/s or more, which is a good internal condition for supercharging the superheated steam; and the reverse condensing liquid is added through the nozzle assembly 226.
  • the pressure increase is obtained by the high-temperature heat energy vapor outflow expansion section 225.
  • the saturated vapor temperature is realized by controlling the flow rate of the condensate; because the liquid is pressurized, there is no conventional energy consumption of more than 80% for the temperature increase; the saturated steam of the high temperature heat energy is fed through the inlet of the material heater.
  • the material heater 1 heats the material, and the latent heat is released into a condensate, and the volume is sharply reduced to generate a strong suction force, which is also the power of the tornado steam heat pump.
  • the steam heat pump further includes a condensate drain tank 10, a condensate pump 3;
  • the condenser 1 has a condensate outlet 16 or a condensate outlet of the material heater that communicates with an inlet of the condensate drain tank 4, and the condensate drain tank 4 has a condensate outlet that communicates with the inlet of the condensate pump 3, and condenses
  • the outlet of the liquid pump 3 is in communication with a tornado nozzle assembly 206 or nozzle assembly 226.
  • the condensate in the condensate drain tank 10 is withdrawn and pressurized by the condensate pump 3, and then sprayed to the superheated spray booster 2 through the nozzle assembly 206 or the nozzle assembly 226, respectively, the tornado superheated spray booster, and the spray
  • the supercharger 22 and the tornado spray supercharger increase the superheated steam into a supercharged saturated vapor, thereby enabling utilization of the condensed liquid heat energy and saving cost.
  • the steam heat pump further includes a first temperature control circuit 7; the condensation a regulating valve 4 is disposed on the communication pipe between the pump 3 and the spray supercharger 22 or the nozzle assembly 226 of the tornado spray supercharger;
  • the spray booster 22, or the outlet of the tornado spray supercharger is provided with a temperature sensor, the first temperature control The circuit 7 detects the opening degree of the regulating valve 4 by the temperature sensor detecting the temperature of the outlet vapor of the liquid jet supercharger 22 or the tornado spray supercharger, thereby adjusting the flow rate of the condensate to achieve a stable saturation temperature.
  • the first temperature control loop 7 can adopt DCS centralized control.
  • the heater 6 is further provided with a second temperature adjustment circuit 8 which overheats the tornado 21
  • the outlet of the device is provided with a second temperature sensor; the second temperature regulating circuit 8 adjusts the heating amount of the heater by the temperature of the superheater 21 or the superheater outlet of the tornado superheater detected by the second temperature sensor.
  • the second temperature adjustment loop 8 can be centrally controlled by DCS.
  • the steam heat pump further includes the outlet of the superheated spray booster 2
  • An automatic temperature selective adjustment loop is provided.
  • the opening degree of the regulating valve 4 is controlled to adjust the liquid discharge amount to reach the saturation temperature; when the detection temperature is low, the heating amount of the heater is selected to be adjusted. To achieve the saturation temperature.
  • the temperature automatic selective regulation loop can be centrally controlled by DCS.
  • the steam heat pump described in the first embodiment to the tenth embodiment and the method for utilizing the low-pressure steam-filling pressurization, in particular, the more efficient tornado steam heat pump have the following advantages compared with the prior art:
  • the tornado steam heat pump system utilizes vapor condensation of high-temperature heat energy to sharply reduce the volume, generate strong suction force, and further enhance the suction force by means of artificial tornado (sipper effect in daily life), using artificial Tornado structure unique tornado superheater, tornado spray supercharger; or integrated tornado superheated spray supercharger, heating low pressure steam or secondary steaming overheating, spray pressurization to achieve low pressure steam Or the use of secondary steaming; because of the small difference in the saturated vapor of different temperatures, the small amount of heat is reduced, and the liquid pressure is high, which is not only lower than the energy consumption of multi-effect evaporation, steam jet heat pump, but even more than steam mechanical compression.
  • MVR energy consumption is still more than 2 times lower, the theoretical thermal efficiency of tornado steam heat pump is as high as 90%, using low-carbon technology, it has become a green energy; in addition to driving start, no steam is needed in the whole process; In the case of a vacuum device, no steam is generated even when starting the vehicle. No need to produce steam, which means that the energy generated by steam generation, such as medium and oil, is saved, and no energy is generated to generate carbon dioxide and other harmful gases. At the same time, there is no discharge of waste residue or waste liquid; It plays an excellent role in solving the major issues of today's green, low-carbon economy (carbon dioxide reduction) and circular economy.
  • carbon dioxide reduction carbon dioxide reduction
  • the tornado steam heat pump system of the present invention has a simple structure, low material requirements, is easy to manufacture, and has low manufacturing cost, so the investment is not only lower than the steam mechanical recompression technology, referred to as MVR for short, and even lower than multi-effect evaporation.
  • the construction cycle is not only shorter than the MVR, but even shorter than the multi-effect evaporation.
  • the tornado steam heat pump system of the present invention relies on pressurized saturated steam to heat the material itself to condense, and does not discharge the secondary vapor of the system in a multi-effect evaporation, so that a large amount of circulating water is not required to condense the secondary vapor.
  • the tornado steam heat pump system of the present invention has no rotating parts, so it is noise-free and has no pollution to the environment.
  • the steam heat pump according to the present invention and the method for utilizing low pressure steam to supplement the pressure, and the special steam in the tornado steam heat pump is a solvent vapor, which includes not only water vapor but also a bulky elemental substance, an organic solvent vapor, and the like.
  • the field of application is extremely wide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Air Humidification (AREA)

Abstract

一种高效的蒸气热泵及低压蒸气补焓增压利用的方法,其包括步骤,对低压蒸气进行加热变为过热蒸汽补焓,然后利用增压的饱和蒸气在物料加热器(1)加热物料本身冷凝时体积急剧缩小产生的强大吸力,吸过热蒸气进行喷液增压,使形成增压的饱和蒸汽利用。进一步,通过采用龙卷过热器(21)、龙卷喷液增压器(2),使蒸气在相应设备内形成人造龙卷风,从而增强蒸气冷凝吸力提高热效率及压缩比。

Description

蒸气热泵及低压蒸气补焓增压利用的方法 技术领域
本发明涉及蒸气热泵领域,尤其是一种蒸气热泵及低压蒸气补焓增压利用的方法。
背景技术
众所周知:低压蒸气或二次蒸气的利用,是当今绿色、低碳经济(二氧化碳减排)和循环经济的重大课题。
然而在蒸发的过程中,由于沸点升值,蒸发产生的二次蒸气温度始终低于液温,这就为二次蒸气的节能利用设置了技术难题。
现有技术中一般采用以下方法实现对蒸气的节能利用。
1、多效蒸发
以水蒸汽为例,从原理上讲,多效蒸发器是将生蒸汽的汽化潜热多次利用。但是,无论如何,生蒸汽是以汽态的方式进入系统,又以汽态的方式流出系统。进出系统的蒸汽焓差很小,例如以1.0MPa(G),185℃饱和水蒸汽进入蒸发系统,经多效蒸发又以45℃二次蒸汽排出系统其焓差小于250kJ/kg,生蒸汽的热利用率小于9%。非但如此,排出系统的二次蒸汽(废蒸汽)为保证其蒸发的真空度,还需要大量的循环水将其冷凝,再加上其它能耗,其热力学第二定率的热利用率更低。
2、蒸汽机械再压缩技术,简称MVR(mechanical vapor recompression)
MVR是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术,其工作过程是将低温位的蒸汽(二次蒸汽)经压缩机压缩,温度、压力提高,热焓增加,然后进入蒸发器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽;这样,原来要废弃的二次蒸汽就得到了充分的利用,回收了潜热,又提高了热效率,其经济性相当于多效蒸发的20效。但MVR一次性投资大于多效蒸发,一般为多效蒸发1.5倍以上。另外多效蒸发因没特殊设备,建设周期短,而MVR因压缩机设备特殊,生产周期较长,建设周期为多效蒸发的3倍之多。鉴于水蒸汽难于压缩的特点,其最终必然为过热状态,其中80%以上的能量消耗于增温,不足20%的能量用于增压。因此对饱和水蒸汽进行绝热压缩是非常耗能的过程。MVR二个单级压缩机(串联)温差才16℃(即单级升温8℃),使用范围受限。
3、蒸汽喷射热泵
蒸汽喷射热泵就是利用高压力的生蒸汽,在蒸汽喷射器的拉瓦尔喷嘴(喷管)膨胀产生超音速流,将压力能和相变能转换为射流的动能,引射二次蒸汽或低压蒸汽增压的利用,增压后混合蒸汽压力小于生蒸汽压力;由于引射系数一般不超过1,二次蒸汽或低压蒸汽利用率很低,能耗很高,至今应用很少。
发明内容
本发明所要解决的技术问题是提供一种能够高效利用低压蒸气的蒸气热泵及低压蒸 气补焓增压利用的方法。
本发明解决其技术问题所采用的技术方案是:本发明提供了一种低压蒸气补焓增压利用的方法,包括以下步骤:
1)通过对低压蒸气加热,使得低压蒸气成为过热蒸气,所述过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
2)利用高温位热能饱和蒸气在物料加热器对物料加热本身冷凝时体积急剧缩小,产生的强大吸力,吸入步骤1)中得到的过热蒸气进行喷液增压,使过热蒸气形成增压增量的饱和蒸气即高温位热能饱和蒸气,然后通入物料加热器对物料进行加热,实现利用或循环利用。
进一步的,低压蒸气补焓增压的方法,借鉴自然界龙卷风形成的原理和强大的吸力;采用人造龙卷风方法,使低压蒸气形成龙卷涡旋进行喷液增压,或者进行过热喷液增压;
包括以下步骤:
1)对低压蒸气进行加热过热或使得低压蒸气形成龙卷涡旋进行加热变为过热蒸气;使过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
2)利用高温位热能饱和蒸气在物料加热器加热物料本身冷凝时体积急剧缩小,产生的强大吸力,并用人造龙卷风的方式使得过热蒸气形成龙卷涡旋,进一步加强吸力,抽吸过热蒸气,并对其进行喷液增压,使其形成增压增量的饱和蒸气即高温位热能饱和蒸气,然后通入物料加热器对物料进行加热;以提高热效率、增压比实现利用或循环利用。
进一步的,所述低压蒸气补焓增压利用的方法中所述物料加热器为蒸发器,所述低压蒸气为二次蒸气;包括以下步骤:
1)对蒸发器的蒸发室内形成并排出的二次蒸气进行加热;使得加热得到的过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
2)利用蒸发器的加热室内高温位热能饱和蒸气加热物料时,高温位热能饱和蒸气冷凝体积急剧缩小,产生的强大吸力,吸入加热后的过热蒸气进行喷液增压,使过热蒸气形成增压增量的饱和蒸气,然后将饱和蒸气通入蒸发器的加热室内对物料进行加热,实现循环利用。
进一步的,所述的低压蒸气补焓增压利用的方法,采用蒸气热泵,蒸气热泵包括物料加热器、过热喷液增压器;过热喷液增压器具有低压蒸气入口以及增压的饱和蒸气出口;
所述物料加热器具有的饱和蒸气入口与过热喷液增压器具有的饱和蒸气出口连通;
在步骤1)中通过过热喷液增压器内使低压蒸气被加热过热变成过热蒸气,并使温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中向过热喷液增压器内喷入凝液;从而使得过热蒸气形成增压增量的饱和蒸气;然后将饱和蒸气通入到物料加热器内对物料进行加热,实现利用或循环利用。
进一步的,所述的低压蒸气补焓增压利用的方法,采用蒸气热泵为龙卷蒸气热泵,所述龙卷蒸气热泵包括物料加热器、一体式龙卷过热喷液增压器;一体龙卷过热喷液增压器具有低压蒸气入口以及增压的饱和蒸气出口;
物料加热器具有的饱和蒸气入口与龙卷过热喷液增压器具有的饱和蒸气出口连通;
在步骤1)中将低压蒸气经一体式龙卷过热喷液增压器内使低压蒸气被加热过热变成过热蒸气,并使温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中利用物料加热器内饱和蒸气加热物料被冷凝时体积急剧缩小产生的强大吸力,使得经过步骤1)的过热蒸汽在一体式龙卷过热喷液增压器内被形成龙卷风加速,使吸力得到进一步加强;通过向一体式龙卷过热喷液增压器内喷入凝液,从而使得凝液吸收部分过热蒸气的焓使变成增压增量的饱和蒸气即高温位热能饱和蒸气;将高温位热能饱和蒸气通入到物料加热器对物料进行加热,实现利用或循环利用。
进一步的,所述的低压蒸气补焓增压利用的方法,所述过热喷液增压器包括过热器以及喷液增压器;所述过热器具有低压蒸气入口和过热蒸气出口,所述喷液增压器具有过热蒸气入口和增压的饱和蒸气出口;
所述过热器的过热蒸气出口与喷液增压器的过热蒸气入口连通;所述喷液增压器的饱和蒸气出口与物料加热器的饱和蒸气入口连通;
在步骤1)中通过过热器使低压蒸气被加热过热变成过热蒸气,并使过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中向喷液增压器内喷入凝液,;从而使得过热蒸气形成增压增量的饱和蒸气;然后将饱和蒸气通入到物料加热器内对物料进行加热,实现利用或循环利用。
进一步的,所述的低压蒸气补焓增压利用的方法,所述过热喷液增压器包括过热器以及喷液增压器;所述过热器采用能够使得蒸气形成龙卷涡旋的龙卷过热器,所述喷液增压器采用能够使得蒸气形成龙卷涡旋的龙卷喷液增压器;所述龙卷过热器上设置有加热蒸气的加热器;
在步骤1)中将低压蒸气送入龙卷过热器;通过龙卷过热器使低压蒸气形成龙卷涡旋;
同时,通过龙卷过热器上的加热器对龙卷过热器内的低压蒸气进行加热,使得的排出龙卷过热器的过热蒸气的温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中利用物料加热器内饱和蒸气加热物料冷凝时产生的强大吸力,将经过步骤1)加热得到的过热蒸气吸入龙卷喷液增压器进行喷液增压;通过龙卷喷液增压器使得过热蒸气形成龙卷涡旋;使吸力得到进一步加强;同时通过喷嘴组件向龙卷喷液增压器内喷入凝液,并且使得喷嘴组件喷入凝液的旋向与龙卷喷液增压器内龙卷涡旋旋向相反;使得过热蒸气与凝液充分混合,使过热蒸气形成增压增量的饱和蒸气;将得到的饱和蒸气送入到物料加热器内对物料进行加热,实现利用或循环利用。
所述低压蒸气是相对于增压后高温位热能饱和蒸气而言的低温位热能饱和蒸气。
本发明所述的物料也包括蒸发溶液,所述蒸发溶液其溶剂既可以是水也可以是有机溶剂等。
以水蒸汽为例,本发明的方法是基于以下原理实现的:不同温度的饱和水蒸汽的焓差很小,例如:由于100℃与120℃饱和水蒸汽的焓差仅为29kJ/kg,因此只需对100℃二次水蒸汽补焓29kJ/kg并增压,即可实现将其变为120℃饱和状态。对水蒸汽进行补焓增压 可以采用多种方式,比如:
对水蒸汽进行机械压缩,即现有的蒸汽机械再压缩技术,简称MVR;由于水蒸汽难于压缩的特点,其最终必然为过热状态,其中80%以上的能量消耗于增温,不足20%的能量用于增压;因此能耗较高。
本发明所述低压蒸气补焓增压利用的方法,根据饱和蒸气具有温度、压力和热焓三者一一对应的特点;即,给定热焓值后,蒸气的压力和温度就确定了。然而对低压蒸气或二次蒸气进行加热过热补焓,能得到过热蒸气,却不能对蒸气进行增压。但热能和压力能均是能量的一种,在一定的条件下,可将热能转化为压力能;喷液增压就是一种绝佳的选择。
本发明所述的低压蒸气补焓增压利用的方法,由于利用了饱和蒸汽加热物料时,其自身冷凝体积急剧缩小产生的强大吸力,从而实现对低压蒸气的过热补焓喷液增压;使低压蒸气形成增压的饱和蒸气即高温位热能的饱和蒸气,实现低压蒸气的利用。特别是采用人造龙卷风方法使蒸气在相应设备内形成人造龙卷风,从而增强蒸气冷凝吸力的低压蒸气补焓增压利用的方法,进而提高热效率及压缩比;由于低压蒸气和增压的饱和蒸气焓差小,过热补焓少,喷液增压高,因此本发明所述的低压蒸气补焓增压利用的方法相对于传统方法,能够有效的降低能耗,节约成本。
本发明还提供了一种蒸气热泵,该热泵不是一个单独设备,而是一个装置系统,该蒸气热泵包括物料加热器以及使得低压蒸气经过加热过热以及喷液增压形成增压增量的饱和蒸气的过热喷液增压器;所述物料加热器具有饱和蒸气入口,所述过热喷液增压器具有饱和蒸气出口、低压蒸气入口以及凝液入口;所述物料加热器的饱和蒸气入口与过热喷液增压器的饱和蒸气入口连通。
具体的,所述过热喷液增压器为龙卷过热喷液增压器,所述龙卷过热喷液增压器包括龙卷过热喷液增压涡旋发生段、龙卷过热喷液增压加速过热段、龙卷过热喷液增压高速混合段和龙卷过热喷液增压扩压段;所述龙卷过热喷液增压涡旋发生段具有圆鼓型或者圆柱形内腔;所述龙卷过热喷液增压加速过热段具有圆锥形内腔;所述龙卷过热喷液增压高速混合段具有圆柱形内腔;所述龙卷过热喷液增压扩压段具有圆锥形内腔;
所述龙卷过热喷液增压加速过热段的圆锥形内腔直径较大的一端与龙卷过热喷液增压涡旋发生段的内腔连通,所述龙卷过热喷液增压加速过热段的圆锥形内腔直径较小的一端通过龙卷过热喷液增压高速混合段的圆柱形内腔与龙卷过热喷液增压扩压段的圆锥形内腔直径较小的一端连通;
所述龙卷过热喷液增压涡旋发生段上设置有低压蒸气进口管;所述低压蒸气进口管的中心线与龙卷过热喷液增压涡旋发生段的圆鼓型或者圆柱形内腔的中心线垂直;所述低压蒸气进口管与龙卷过热喷液增压涡旋发生段的圆鼓型或者圆柱形内腔连通,且低压蒸气进口管的内壁与龙卷过热喷液增压涡旋发生段的内壁相切;
在龙卷过热喷液增压涡旋发生段上设置有龙卷喷嘴组件,所述龙卷喷嘴组件与龙卷过热喷液增压涡旋发生段的圆鼓型或者圆柱形内腔连通;所述龙卷喷嘴组件与龙卷过热喷液增压加速过热段分别位于龙卷过热喷液增压涡旋发生段的两个对侧面上;
所述龙卷过热喷液增压涡旋发生段的圆鼓型或者圆柱形内腔的中心线、龙卷过热喷液增压加速过热段的圆锥形内腔的中心线、龙卷过热喷液增压高速混合段的内腔的中心线、龙卷过热喷液增压扩压段的圆锥形内腔的中心线以及龙卷喷嘴组件的喷射中心线共线;
所述龙卷过热喷液增压加速过热段的外圆周面上设置有第二加热器;所述龙卷过热喷液增压扩压段与所述物料加热器的饱和蒸气入口连通。
进一步的,所述物料加热器采用蒸发器,过热喷液增压器包括过热器以及喷液增压器;
所述过热器具有二次蒸气进口管以及过热蒸气出口;所述蒸发器包括加热室和蒸发室;所述蒸发器具有与蒸发室连通的二次蒸气出口以及与加热室连通的饱和蒸气入口;所述喷液增压器具有过热蒸气入口和饱和蒸气出口;所述过热器的二次蒸气进口管与蒸发器加热室二次蒸气出口连通,所述过热器的过热蒸气出口与喷液增压器的过热蒸气入口连通;所述喷液增压器的饱和蒸气出口与加热室的饱和蒸气入口连通;所述喷液增压器上设置有喷嘴组件;所述喷嘴组件具有的喷液口位于喷液增压器内;且喷嘴组件喷液口的喷射方向与喷液增压器的饱和蒸气出口的方向相同。
进一步的,所述过热器包括龙卷过热器以及加热器;所述龙卷过热器包括龙卷涡旋发生段、龙卷加速段、高速段和扩压过热段;所述龙卷涡旋发生段具有圆鼓型或者圆柱形内腔;所述龙卷加速段具有圆锥形内腔;所述高速段具有圆柱形内腔;所述扩压过热段具有圆锥形内腔;
所述龙卷加速段的圆锥形内腔直径较大的一端与龙卷涡旋发生段的内腔连通,所述龙卷加速段的圆锥形内腔直径较小的一端通过高速段的圆柱形内腔与扩压过热段的圆锥形内腔直径较小的一端连通;
所述龙卷涡旋发生段的圆鼓型或者圆柱形内腔的中心线、龙卷加速段的圆锥形内腔的中心线、高速段的圆柱形内腔的中心线以及扩压过热段的圆锥形内腔的中心线共线;
所述龙卷涡旋发生段上设置有低压蒸气进口管;所述低压蒸气进口管的中心线与龙卷涡旋发生段的圆鼓型或者圆柱形内腔的中心线垂直;所述低压蒸气进口管与龙卷涡旋发生段的圆鼓型或者圆柱形内腔连通,且低压蒸气进口管的内壁与龙卷涡旋发生段的内壁相切;所述加热器设置在高速段及扩压过热段上。
进一步的,所述喷液增压器采用龙卷喷液增压器;所述龙卷喷液增压器包括龙卷喷液增压涡旋发生段、龙卷喷液增压加速段、高速混合段和扩压段;所述龙卷喷液增压涡旋发生段具有圆鼓型或者圆柱形内腔;所述龙卷喷液增压加速段具有圆锥形内腔;所述高速混合段具有圆柱形内腔;所述扩压段具有圆锥形内腔;
所述龙卷喷液增压加速段的圆锥形内腔直径较大的一端与龙卷喷液增压涡旋发生段的内腔连通,所述龙卷喷液增压加速段的圆锥形内腔直径较小的一端通过高速混合段的圆柱形内腔与扩压段的圆锥形内腔直径较小的一端连通;
所述龙卷喷液增压涡旋发生段上设置有过热蒸气进口管;所述过热蒸气进口管的中心线与龙卷喷液增压涡旋发生段的圆鼓型或者圆柱形内腔的中心线垂直;所述过热蒸气进口管与龙卷喷液增压发生段的圆鼓型或者圆柱形内腔连通,且过热蒸气进口管的内壁与龙卷 喷液增压涡旋发生段的内壁相切;
所述喷嘴组件设置在龙卷喷液增压涡旋发生段上,且与龙卷喷液增压涡旋发生段的圆鼓型或者圆柱形内腔连通;所述喷嘴组件与龙卷喷液增压加速段分别位于龙卷喷液增压涡旋发生段的两个对侧面上;
所述龙卷喷液增压涡旋发生段的圆鼓型或者圆柱形内腔的中心线、龙卷喷液增压加速段的圆锥形内腔的中心线、高速混合段的圆柱形内腔的中心线、扩压段的圆锥形内腔的中心线以及喷嘴组件的喷射中心线共线;
所述龙卷过热器的扩压过热段的出口与龙卷喷液增压器的过热蒸气进口管连通;所述龙卷喷液增压器的扩压段与蒸发器加热室饱和蒸气入口连通。
进一步的,所述高速混合段的圆柱形内腔的长径比为1~4:1;所述扩压段的圆锥形内腔的锥度为6~10°。
进一步的,还包括凝液排放罐、凝液泵;
所述物料加热器1具有的凝液出口与凝液排放罐的入口连通,凝液排放罐的凝液出口与凝液泵进口连通,凝液泵出口与龙卷喷嘴组件或喷嘴组件连通,使凝液的热能得到利用。
进一步的,还包括第一温度控制回路;所述喷液增压器或龙卷喷液增压器的喷嘴组件与凝液泵之间的连通管道上设置有调节阀;
所述喷液增压器或龙卷喷液增压器的出口设置有温度传感器,所述第一温度控制回路通过温度传感器检测到喷液增压器或龙卷喷液增压器的出口蒸气的温度来控制调节阀的开度,从而调节凝液的流量,实现稳定饱和温度。
进一步的,所述加热器6设置有第二温度调节回路,所述过热器或龙卷过热器的出口设置有第二温度传感器;所述第二温度调节回路通过第二温度传感器检测到的过热器或龙卷过热器出口过热蒸气的温度来调节加热器的加热量。
进一步的,所述过热喷液增压器或龙卷过热喷液增压器的龙卷喷嘴组件与凝液泵之间的连通管道上设置有调节阀;第二加热器上设置有温度调节器;
所述过热喷液增压器出口设有温度自动选择性调节回路;所述过热喷液增压器出口设置有饱和蒸气温度传感器,所述饱和蒸气温度传感器与温度自动选择性调节回路连接,所述调节阀的开度以及温度调节器均通过温度自动选择性调节回路控制。
本发明所述的蒸气热泵,尤其是所述蒸气热泵中的过热喷液增压器采用一体式龙卷过热喷液增压器,或者过热喷液增压器采用龙卷过热器和龙卷喷液增压器组合方式时,与现有技术相比,具有以下优点:
1、本发明所述的蒸气热泵特别是龙卷蒸气热泵,利用高温位热能的蒸气冷凝,体积急剧缩小,产生强大的吸力并用人造龙卷风的方式使吸力得到进一步加强(日常生活中的吸管效应),用人造龙卷风结构独特的龙卷过热器、龙卷喷液增压器;或一体式的龙卷过热喷液增压器对低压蒸气或二次蒸汽进行加热过热补焓、喷液增压实现低压蒸气或二次蒸汽的利用;因不同温度的饱和蒸气的焓差很小,补焓热量小,喷液增压高,不仅比多效蒸发、蒸气喷射热泵的能耗低,甚至比蒸气机械再压缩技术,简称MVR的能耗还低2倍以上, 龙卷蒸气热泵理论热效率高达90%以上,用低碳技术,造就成了绿色能源;除开车启动外,整个过程中无需生蒸气;在配有真空装置的情况下,甚至开车启动也无需生蒸气。无需生蒸气这就意味着节约了生产生蒸气的能源,如媒、石油等,也就不产生能源燃烧生成二氧化碳及其它有害气体的排放,同时也就没有废渣、废液的排放;这将为解决当今绿色、低碳经济(二氧化碳减排)和循环经济的重大课题,发挥绝佳的作用。
2、本发明所述的蒸气热泵特别是龙卷蒸气热泵,结构简单、材料要求低,同时便于制造,制造成本低,因此投资不仅比蒸气机械再压缩技术,简称MVR低,甚至比多效蒸发更低。建设周期不仅比MVR短,甚至比多效蒸发还短。
3、本发明所述的蒸气热泵特别是龙卷蒸气热泵,依靠增压的饱和蒸气加热物料自身冷凝,没有多效蒸发中排出系统的二次蒸气,因此不需要大量的循环水将二次蒸气冷凝。
4、本发明所述的蒸气热泵特别是龙卷蒸气热泵,没有转动部件,因此无噪声,对环境无污染。
附图说明
图1是本发明实施例中蒸气热泵包括物料加热器、过热喷液增压器时的装置系统构成示意图;
图2是本发明实施例中蒸气热泵包括物料加热器为蒸发器、过热喷液增压器时的装置系统构成示意图;
图3是本发明实施例中一体式龙卷过热喷液增压器的结构示意图;
图4是本发明实施例中蒸气热泵包括物料加热器、过热器、喷液增压器时的装置系统构成示意图;
图5是本发明实施例中蒸气热泵包括物料加热器、过热器、喷液增压器,其中物料加热器为蒸发器时的装置系统构成示意图;
图6是本发明实施例中龙卷过热器的立体图;
图7是本发明实施例中龙卷过热器的主视图;
图8是本发明实施例中龙卷过热器的剖视图;
图9是图7中A-A剖视图;
图10是本发明实施例中龙卷喷液增压器的立体图;
图11是本发明实施例中龙卷喷液增压器的主视图;
图12是本发明实施例中龙卷喷液增压器的剖视图;
图13是图11中A-A剖视图;
图中标示:1-物料加热器,11-加热室,12-蒸发室,13-蒸发溶液入口,14-浓缩液出口,15-饱和蒸气入口,16-凝液出口,17-放空口,18-二次蒸气出口,19-闪蒸气入口,20-第二放空口,2-过热喷液增压器,202-龙卷过热喷液增压涡旋发生段,203-龙卷过热喷液增压加速过热段,204-龙卷过热喷液增压高速混合段,205-龙卷过热喷液增压扩压段,206-龙卷喷嘴组件,207-第二加热器,21-过热器,212-龙卷涡旋发生段,213-龙卷加速段,214-高速段,215-扩压过热段,22-喷液增压器,221-过热蒸气进口管,222-龙卷喷 液增压涡旋发生段,223-龙卷喷液增压加速段,224-高速混合段,225-扩压段,226-喷嘴组件,3-凝液泵,4-调节阀,5-温度自动选择性调节回路,6-加热器,7-第一温度控制回路,8-第二温度调节回路,9-低压蒸气管,10-凝液排放罐。
具体实施方式
以水蒸汽为例,干度X=1.00,过热度为0的干饱和水蒸汽(通常叫饱和水蒸汽或饱和蒸汽)具有温度、压力和热焓一一对应的特点。换句话说,给定热焓值后,饱和水蒸汽的压力和温度就确定了。现将饱和水蒸汽及饱和线上的水(凝液)的状态参数摘录如表1;
表1不同温度下饱和水蒸汽及水(凝液)的参数
Figure PCTCN2017112817-appb-000001
从表1可以看出,不同温度的饱和水蒸汽的焓差是很小的。因此若能将低压蒸汽或二次蒸汽补焓增压,使其利用就是一个绝佳选择。
例如由于100℃与120℃饱和水蒸汽的焓差仅为2706-2677=29kJ/kg,通过本发明所述的龙卷蒸汽热泵系统只需对100℃低压蒸汽或二次蒸汽补焓29kJ/kg,并将其增压变为120℃饱和状态即可实现其利用。
再则,补焓方式:可对低压蒸汽或二次蒸汽进行加热过热,使变为过热蒸汽而补焓,
其原理公式如下:
i”2=i”+q
=i”+Cpm△t
=i”+Cpm(t2–t)
式中:i”2-过热蒸汽焓,i”–低压蒸汽或二次蒸汽饱和焓,q–使1kg饱和蒸汽加热成一定过热度所补充的热量,Cpm-过热蒸汽的平均比热,△t-过热度,t2-过热蒸汽温度,t–低压蒸汽或二次蒸汽温度。
从原理公式可知:过热蒸汽的焓随补充的热量、过热度或过热蒸汽温度的增加而增加,这就是过热补焓的方式和原理;另从公式可知过热蒸汽补焓但却不能增压。然而热能和压 力能均是能量的一种,在一定的条件下,可以将热能转化为压力能,喷液增压,就是一种很好的选择。一般要超过目标压力高温位热能蒸气饱和温度,就能轻松超过补焓要求;过热蒸汽上升的原理同热气球上升。
重要的是,本发明采用喷液增压,这既不同于绝热压缩,其最终必然为过热状态,其中80%以上的能量消耗于增温,不足20%的能量用于增压;也不同于等温压缩,其虽然能耗比绝热压缩低,但等温压缩气体有个需要向外界放热过程,即需要用冷却水或空气把压缩热带走,所以代表能量的焓值有降低。喷液增压的特点是,增压或压缩后为增压的饱和蒸气,而不是过热蒸气,同时,也不向外界放热使焓值降低;而是外界向系统供热,就是喷液的热量,所喷液吸收高于增压的饱和蒸气温度的这部分焓,变成增量的饱和蒸气;总言之,喷液增压就是把过热蒸汽变为增压增量的饱和蒸气,能耗低,增压比大。
另一重要的依据是,利用高温位热能饱和蒸汽在物料加热器或蒸发器对物料进行加热时,饱和蒸汽冷凝体积急剧缩小,形成强大的吸力。
以1000kg,120℃,压力205.14kPa饱和蒸汽冷凝为例,查表1可得饱和水蒸汽和凝液的比容分别是υ″=0.8917m3/kg,υ′=0.0010603m3/kg;饱和蒸汽体积为v″=1000X0.8917=891.7m3,凝液的体积为v′=1000X0.0010603=1.06m3;体积急剧缩小达891.7/1.06=841倍之多;
以1000kg,60℃,压力20.58kPa饱和蒸汽冷凝为例,查表1可得饱和水蒸汽和凝液的比容分别是υ″=7.678m3/kg,υ′=0.0010171m3/kg;饱和蒸汽体积为v″=1000X7.678=7687m3,凝液的体积为v′=1000X0.0010171=1.0171m3;体积急剧缩小达7687/1.0171=7558倍之多。
同时,更重要的是,借鉴自然界龙卷风它曾轻而易举地把一个22万斤重的大储油桶“举”到15米高的高空,再甩到120米以外的地方;也曾出现龙卷风龙吸水高度达200多米,其位能接近20大气压。
因此,借鉴自然界龙卷风形成的原理和强大的吸力;本发明应用人造龙卷风方法在相关设备形成人造龙卷风,更进一步增强因蒸汽冷凝体积急剧缩小产生的强大的吸力,从而提高热效率及压缩比。
本发明提供的技术方案是:一种蒸气热泵及低压蒸气补焓增压利用的方法
下面结合附图和实施例对本发明进一步说明。
本发明所述的低压蒸气补焓增压利用的方法,包括以下步骤:
1)通过对低压蒸气加热,使得低压蒸气成为过热蒸气,所述过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
2)利用高温位热能饱和蒸气在物料加热器1对物料加热时,饱和蒸气冷凝体积急剧缩小,产生的强大吸力,吸入步骤1)中得到的过热蒸气并对其进行喷液增压,使得过热蒸气形成增压增量的饱和蒸气即高温位热能饱和蒸气,然后通入物料加热器对物料进行加热,实现利用或循环利用。
具体的,在步骤1)中所述低压蒸气,可以是蒸发器内产生的二次蒸气,也可以是工 业附产蒸气、废热锅炉蒸气等。
对低压蒸气进行加热,使得低压蒸气变成过热蒸气,过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;具体的低压蒸气加热后的过热蒸气温度高于目标压力高温位热能饱和蒸气温度2~30℃。
并且在步骤1)中对低压蒸气进行加热时,可以直接进行加热,也可以利用人造龙卷风原理通过将低压蒸气形成龙卷风,再通过外设加热器进行加热。
在步骤2)中所述的物料加热器1是指采用蒸气对物料进行加热的设备;物料加热器可以为蒸发器、换热器或者加热器等。同时在步骤2中可以利用饱和蒸气冷凝体积急剧缩小,产生的强大吸力,吸入步骤1)中得到的过热蒸气并对其进行喷液增压;也可利用饱和蒸气冷凝体积缩小产生的强大吸力,使过热蒸气形成龙卷涡旋,然后对其进行喷液增压。
具体的,当上述低压蒸气补焓增压利用的方法中,低压蒸气为二次蒸气时,所述物料加热器1为蒸发器,包括以下步骤:
1)对蒸发器的蒸发室12内形成并排出的二次蒸气进行加热;使得加热得到的过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
2)利用蒸发器的加热室11内高温位热能饱和蒸气加热物料时,高温位热能饱和蒸气冷凝产生的强大吸力,吸加热后的过热蒸气进行喷液增压,使过热蒸气变成高温位热能的饱和蒸气,然后将饱和蒸气通入蒸发器加热室11内对物料进行加热,实现循环利用;具体的物料为蒸发溶液。
在上述低压蒸气补焓增压利用的方法中,对实现低压蒸气的加热和喷液增压可以采用多种方式,如在对低压蒸气进行加热的过程中可以采用加热器,也可以采用换热器等;在对低压蒸气进行加压的过程中可以直接采用扩压器、增压器等。
一种优选方式为所述的低压蒸气补焓增压利用的方法,采用蒸气热泵,所述蒸气热泵包括物料加热器1、过热喷液增压器2;所述过热喷液增压器2具有饱和蒸气出口以及低压蒸气入口;
物料加热器1具有的饱和蒸气入口与过热喷液增压器2具有的饱和蒸气出口连通;
在步骤1)中通过过热喷液增压器2使得过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中向过热喷液增压器2内喷入凝液,并且使得凝液的速度为3-16m/s;从而使得过热蒸气变成增压增量的饱和蒸气;然后将饱和蒸气通入到物料加热器1内对物料进行加热,以提高热效率、增压比实现利用或循环利用。
在所述的二次蒸气补焓增压循环利用的方法中,过热喷液增压器2可以采用普通加热器和扩压器的一体组合方式,也可以采用普通加热器和扩压器分开连接组合;
如:为了便于安装,采用一体式过热喷液增压器;进一步的,为了提高对低压蒸气进行过热喷液增压的效率,所述过热喷液增压器2为能够对蒸汽进行过热补焓喷液增压的一体式龙卷过热喷液增压器;
在步骤1)中将蒸发室形成的二次蒸气经一体式龙卷过热喷液增压器,被加热过热得 到达到大于目标压力高温位热能的饱和蒸气温度的过热蒸气;
在步骤2)中利用蒸发器的加热室内饱和蒸气加热蒸发溶液被冷凝时体积急剧缩小产生的强大吸力,使得经过步骤1)的过热蒸汽在一体式龙卷过热喷液增压器内被形成龙卷风加速,使吸力得到进一步加强,并且使得龙卷涡旋的中心速度达到200m/s以上;同时通过龙卷喷嘴组件206向龙卷过热喷液增压器内喷入速度为3-16m/s的凝液,并且使得龙卷喷嘴组件206喷入凝液的旋向与龙卷过热喷液增压器内龙卷涡旋旋向相反;使得过热蒸气与凝液充分混合,形成增压增量的饱和蒸气;将得到的饱和蒸气送入到蒸发器的加热室内对物料进行加热,实现循环利用。
为了便于对低压蒸气加热过热和喷液增压的单独调节,优选的,所述过热喷液增压器2包括过热器21以及喷液增压器22;所述过热器21具有低压蒸气入口和过热蒸气出口,所述喷液增压器22具有过热蒸气入口和饱和蒸气出口;
所述过热器21的过热蒸气出口与喷液增压器22的过热蒸气入口连通;所述喷液增压器22的饱和蒸气出口与物料加热器1的饱和蒸气入口连通;
在步骤1)中通过过热器21使得低压蒸气变成过热蒸气,温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中向喷液增压器22内喷入凝液,并且使得凝液的速度为3-16m/s;从而使得过热蒸气形成增压增量的饱和蒸气;然后将饱和蒸气通入到物料加热器1内对物料进行加热,实现利用或循环利用。
为了提高对低压蒸气进行过热、喷液增压的效率,更进一步的,所述过热喷液增压器2包括过热器21以及喷液增压器22;所述过热器21采用能够使得蒸气形成龙卷涡旋的龙卷过热器,所述喷液增压器22采用能够使得蒸气形成龙卷涡旋的龙卷喷液增压器;所述龙卷过热器上设置有加热蒸气的加热器6;
在步骤1)中将低压蒸气送入龙卷过热器;通过龙卷过热器使低压蒸气形成龙卷涡旋;
同时,通过龙卷过热器上的加热器6对龙卷过热器内的低压蒸气进行加热,使得的排出龙卷过热器的过热蒸气的温度达到大于目标压力高温位热能饱和蒸气温度;
在步骤2)中利用物料加热器1内饱和蒸气加热物料冷凝时产生的强大吸力,将经过步骤1)加热得到的过热蒸气吸入龙卷喷液增压器进行喷液增压;通过龙卷喷液增压器使得过热蒸气形成龙卷涡旋;使吸力得到进一步加强;同时通过喷嘴组件226向龙卷喷液增压器内喷入凝液,并且使得喷嘴组件226喷入凝液的旋向与龙卷喷液增压器内龙卷涡旋旋向相反;使得过热蒸气与凝液充分混合,使过热蒸气形成增压增量的饱和蒸气;将得到的饱和蒸气送入到物料加热器1内对物料进行加热,实现利用或循环利用。
实施例一
如图2所示,所述低压蒸气补焓增压利用的方法,采用蒸气热泵,所述蒸气热泵,包括物料加热器1和过热喷液增压器2,所述过热喷液增压器2为一体式;所述物料加热器1为蒸发器,所述蒸发器具有蒸发室12和加热室11;所述蒸发室12的二次蒸气出口18、过热喷液增压器2、加热室11的饱和蒸汽入口15依次连通。
包括如下步骤:
1)将蒸发室12的二次蒸气出口18排出的二次蒸气,经一体式过热喷液增压器2,使得二次蒸气被加热过热变成其温度超过目标压力饱和蒸气温度的过热蒸气。
2)利用蒸发器的加热室11内饱和蒸气加热蒸发溶液被冷凝时体积急剧缩小产生的强大吸力,并向一体式的过热喷液增压器2内喷入凝液,而使得凝液吸收过热蒸气中多出高温位热能饱和蒸汽的热焓变成增压增量的高温位热能饱和蒸气;将高温位热能饱和蒸气通入到蒸发器的加热室对被蒸发溶液进行加热,实现循环利用。
实施例二
如图5所示,所述低压蒸气补焓增压利用的方法,采用蒸气热泵,所述蒸气热泵,包括物料加热器1、过热喷液增压器2,所述物料加热器1为蒸发器,所述过热喷液增压器2包括过热器21、喷液增压器22;所述蒸发器具有蒸发室12和加热室11;所述蒸发室12的二次蒸气出口18、过热器21、喷液增压器22、加热室11的饱和蒸汽入口15依次连通;
还包括以下步骤:
1)将蒸发室12的二次蒸气出口18排出的二次蒸气,通过过热器21使变成其温度超过目标压力饱和蒸气温度的过热蒸气;
2)利用蒸发器1的加热室11内饱和蒸气加热蒸发溶液时本身冷凝体积急剧缩小产生的强大吸力,将经过步骤1)加热得到的过热蒸汽吸入到喷液增压器22,同时向喷液增压器22内喷入凝液,实现喷液增压;从而使得过热蒸气形成增压增量的高温位热能饱和蒸气;将饱和蒸气通入到蒸发器1的加热室11对蒸发溶液进行加热,实现循环利用。
具体的,其中所述过热器21采用换热器,所述喷液增压器22采用扩压器。
实施例三
如图2所示,本发明所述二次蒸气补焓循环利用的方法,采用蒸气热泵为龙卷蒸气热泵,包括蒸发器1、一体式的龙卷过热喷液增压器(龙卷过热、喷液增压合为一体式),所述蒸发器1具有蒸发室12和加热室11;所述蒸发室12的二次蒸气出口18、龙卷过热喷液增压器2、加热室11的饱和蒸气入口15依次连通;所述龙卷过热喷液增压器能够使得蒸气形成龙卷涡旋即龙卷风。
包括以下步骤:
1)将蒸发室12的二次蒸气出口18排出的二次蒸气送入龙卷过热喷液增压器;通过龙卷过热喷液增压器使二次蒸气形成龙卷涡旋,使龙卷涡旋的中心风速达到200m/s以上;
同时,通过龙卷过热喷液增压器的二次蒸气被加热,使二次蒸气变为过热蒸气,使得过热蒸气温度超过目标压力饱和蒸气温度;
2)利用蒸发器1的加热室11内饱和蒸气加热蒸发溶液被冷凝时体积急剧缩小产生的强大吸力并用人造龙卷风的方式使吸力得到进一步加强,将经过步骤1)加热得到的过热蒸气在龙卷过热喷液增压器内实现喷液增压;同时通过龙卷喷嘴组件206喷入凝液,并且使得龙卷喷嘴组件206喷入液的旋向与龙卷过热喷液增压器内龙卷涡旋旋向相反;使得过热蒸气与凝液充分混合,从而使得凝液吸收部分过热蒸气的焓变成增压增量的高温位热能 饱和蒸气。将高温位热能的饱和蒸气由蒸发器1的饱和蒸气入口15送入到蒸发器1内对蒸发溶液进行加热,循环利用。
具体的,如图3所示,所述的龙卷蒸气热泵中所述过热喷液增压器为一体式的龙卷过热喷液增压器(龙卷过热、喷液增压合为一体式);所述龙卷过热喷液增压器具有圆鼓型或者圆柱形内腔的龙卷过热喷液增压涡旋发生段202、具有圆锥形内腔的龙卷过热喷液增压加速过热段203、具有圆柱形内腔的龙卷过热喷液增压高速混合段204和具有圆锥形内腔的龙卷过热喷液增压扩压段205;
所述龙卷过热喷液增压加速过热段203的圆锥形内腔直径较大的一端与龙卷过热喷液增压涡旋发生段202的内腔连通,所述龙卷过热喷液增压加速过热段203的圆锥形内腔直径较小的一端通过龙卷过热喷液增压高速混合段204的圆柱形内腔与龙卷过热喷液增压扩压段205的圆锥形内腔直径较小的一端连通;
所述龙卷过热喷液增压涡旋发生段202上设置有低压蒸气进口管201;二次蒸气进口管201的中心线与龙卷过热喷液增压涡旋发生段202的圆鼓型或者圆柱形内腔的中心线垂直;二次蒸气进口管201与龙卷过热喷液增压涡旋发生段202的圆鼓型或者圆柱形内腔连通,且二次蒸气进口管201具有的内壁与龙卷过热喷液增压涡旋发生段202的内壁相切;
龙卷喷嘴组件206设置在龙卷过热喷液增压涡旋发生段202上,且与龙卷过热喷液增压涡旋发生段202的圆鼓型或者圆柱形内腔连通;龙卷喷嘴组件206与龙卷过热喷液增压加速过热段203分别位于龙卷过热喷液增压涡旋发生段202的两个对侧面上;
所述龙卷过热喷液增压涡旋发生段202的圆鼓型或者圆柱形内腔的中心线、龙卷过热喷液增压加速过热段203的圆锥形内腔的中心线、龙卷过热喷液增压高速混合段204的圆柱形内腔的中心线、龙卷过热喷液增压扩压段205的圆锥形内腔的中心线以及龙卷喷嘴组件206的喷射中心线共线;
所述龙卷过热喷液增压加速过热段203的外圆周面上设置有第二加热器207;所述龙卷过热喷液增压扩压段205与所述物料加热器1的饱和蒸气入口连通。
在步骤1)中在龙卷过热喷液增压加速过热段203二次蒸气被加热过热。
在步骤2)中在龙卷过热喷液增压器内喷入凝液;使得二次蒸气与凝液充分混合。
实施例四
如图5所示,本发明所述低压蒸气补焓增压利用的方法,采用蒸气热泵为龙卷蒸气热泵,所述龙卷蒸气热泵,包括物料加热器1、过热器21、喷液增压器22,所述物料加热器1采用蒸发器,所述过热器21采用龙卷过热器,所述喷液增压器22采用龙卷喷液增压器;所述蒸发器具有蒸发室12和加热室11;所述蒸发室12的二次蒸气出口18、龙卷过热器、龙卷喷液增压器、加热室11的饱和蒸气入口15依次连通;所述龙卷过热器能够使得蒸气形成龙卷涡旋,所述龙卷喷液增压器能够使得蒸气形成龙卷涡旋;所述龙卷过热器上设置有加热蒸气的加热器6。
还包括以下步骤:
1)将蒸发室12的二次蒸气出口18排出的二次蒸气送入龙卷过热器;通过龙卷过热 器使得二次蒸气形成龙卷涡旋,使得龙卷涡旋的中心风速达到100m/s以上;
同时,启动龙卷过热器上的加热器6对龙卷过热器内的二次蒸气进行加热,使得排出龙卷过热器的过热蒸气温度超过目标压力饱和蒸气温度;
2)利用蒸发器1的加热室11内饱和蒸气加热蒸发溶液被冷凝时体积急剧缩小产生的强大吸力并用人造龙卷风的方式使吸力得到进一步加强,将经过步骤1)加热得到的过热蒸气吸入龙卷喷液增压器实现喷液增压;通过龙卷喷液增压器使得蒸气形成龙卷涡旋;并且使得龙卷涡旋的中心速度达到200m/s以上,这足以比肩自然界最强的龙卷风并超越;同时通过喷嘴组件226喷入凝液,并且使得过喷嘴组件226喷入凝液的旋向与龙卷喷液增压器内龙卷涡旋旋向相反。
将过热蒸气通过龙卷喷液增压器,使得过热蒸气与凝液充分混合,从而使得凝液吸收部分过热蒸气的焓变成增压增量的高温位热能饱和蒸气。将高温位热能饱和蒸气从蒸发器的饱和蒸气入口15送入到蒸发器1内对蒸发溶液进行加热,循环利用。
实施例五
本发明所述低压蒸气补焓增压利用的方法,采用蒸气热泵为龙卷蒸气热泵,包括物料加热器1、过热器21、喷液增压器22,所述物料加热器1采用蒸发器,所述过热器21采用龙卷过热器,所述喷液增压器22采用龙卷喷液增压器;
所述过热器21包括龙卷过热器以及加热器6;所述龙卷过热器包括龙卷涡旋发生段212、龙卷加速段213、高速段214和扩压过热段215;所述龙卷涡旋发生段212具有圆鼓型或者圆柱形内腔;所述龙卷加速段213具有圆锥形内腔;所述高速段214具有圆柱形内腔;所述扩压过热段215具有圆锥形内腔;所述龙卷加速段213的圆锥形内腔直径较小的一端通过高速段214的圆柱形内腔与扩压过热段215的圆锥形内腔直径较小的一端连通;所述龙卷涡旋发生段212的圆鼓型或者圆柱形内腔的中心线、龙卷加速段213的圆锥形内腔的中心线、高速段214的圆柱形内腔的中心线以及扩压过热段215的圆锥形内腔的中心线共线;所述龙卷涡旋发生段212上设置有二次蒸气进口管211;所述二次蒸气进口管211的中心线与龙卷涡旋发生段212的圆鼓型或者圆柱形内腔的中心线垂直;二次蒸气进口管211与龙卷涡旋发生段212的圆鼓型或者圆柱形内腔连通,且二次蒸气进口管211具有的内壁与龙卷涡旋发生段212的内壁相切;加热器6设置在高速段214及扩压过热段215上。
所述喷液增压器22采用龙卷喷液增压器;龙卷喷液增压器包括龙卷喷液增压涡旋发生段222、龙卷喷液增压加速段223、高速混合段224和扩压段225;龙卷喷液增压涡旋发生段222具有圆鼓型或者圆柱形内腔;所述龙卷喷液增压加速段223具有圆锥形内腔;所述高速混合段224具有圆柱形内腔;所述扩压段225具有圆锥形内腔;所述龙卷喷液增压加速段223的圆锥形内腔直径较大的一端与龙卷喷液增压涡旋发生段222的内腔连通,所述龙卷喷液增压加速段223的圆锥形内腔直径较小的一端通过高速混合段224的圆柱形内腔与扩压段225的圆锥形内腔直径较小的一端连通;所述龙卷喷液增压涡旋发生段222上设置有过热蒸气进口管221;所述过热蒸气进口管221的中心线与龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔的中心线垂直;所述过热蒸气进口管221与龙卷涡旋发生 段222的圆鼓型或者圆柱形内腔连通,且过热蒸气进口管221具有的内壁与龙卷喷液增压涡旋发生段222的内壁相切;所述喷嘴组件226设置在龙卷喷液增压涡旋发生段222上,且与龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔连通;喷嘴组件226与龙卷喷液增压加速段223分别位于龙卷喷液增压涡旋发生段222的两个对侧面上;所述龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔的中心线、龙卷喷液增压加速段223的圆锥形内腔的中心线、高速混合段224的圆柱形内腔的中心线、扩压段225的圆锥形内腔的中心线以及喷嘴组件226的喷射中心线共线;龙卷过热器的扩压过热段215的出口与龙卷喷液增压器的蒸气进口管221连通;龙卷喷液增压器的扩压段225与饱和蒸气入口15连通。
所述蒸发器具有蒸发室12和加热室11;所述蒸发室12的二次蒸气出口18、龙卷过热器、龙卷喷液增压器、加热室11的饱和蒸气入口15依次连通。
本实施例所述低压蒸气补焓增压利用的方法,包括以下步骤:
1)将蒸发室12的二次蒸气出口18排出的二次蒸气送入龙卷过热器;通过龙卷过热器使得二次蒸气形成龙卷涡旋,使得龙卷涡旋的中心风速达到100m/s以上;
同时,启动龙卷过热器上的加热器6对龙卷过热器内的二次蒸气进行加热,使得排出龙卷过热器的过热蒸气温度超过目标压力饱和蒸气温度;
2)利用蒸发器1的加热室11内饱和蒸气加热蒸发溶液被冷凝时体积急剧缩小产生的强大吸力并用人造龙卷风的方式使吸力得到进一步加强,将经过步骤1)加热得到的过热蒸气吸入龙卷喷液增压器实现喷液增压;通过龙卷喷液增压器使得蒸气形成龙卷涡旋;并且使得龙卷涡旋的中心速度达到200m/s以上,这足以比肩自然界最强的龙卷风并超越;同时通过喷嘴组件226在龙卷喷液增压器内喷入凝液,并且使得过喷嘴组件226喷入液的旋向与龙卷喷液增压器内龙卷涡旋旋向相反。
将过热蒸气通过龙卷喷液增压器,使得过热蒸气与凝液充分混合,从而使得凝液吸收部分过热蒸气的焓变成增压增量的高温位热能饱和蒸气。将高温位热能饱和蒸气从蒸发器的饱和蒸气入口15送入到蒸发器1内对蒸发溶液进行加热,循环利用。
所述的龙卷蒸气热泵的装置系统中运用人造龙卷风(避开破坏作用)的方式、技术、系统及调节方法是:蒸发器的蒸发室溶液蒸发产生的二次蒸气(低温位蒸气)从出口18排出进入龙卷过热器的二次蒸气进口管211切向流入龙卷涡旋发生段212产生初始龙卷风,其龙卷涡旋在龙卷加速段213被加速,中心风速可达100m/s以上,为对二次蒸气被加热过热构建良好的内在条件;在高速段214和扩压过热段215,由加热器6对二次蒸气加热过热,使其变成过热蒸气而补焓,一般超过目标压力蒸气的饱和温度,就能轻松超过补焓要求。龙卷过热器的扩压过热段215出口过热蒸气的过热度是通过调节加热器6的供热量来实现的;过热蒸气的上升原理如同热气球上升,同时对二次蒸气产生相应的吸力(或抽力)。扩压过热段215出口的过热蒸气,依据过热蒸气的性质,在过热过程中中只可补焓,不能升压。
扩压过热段215出口过热蒸气依其升力进入龙卷喷液增压器的过热蒸气进口管221切向流入龙卷涡旋发生段222产生初始龙卷风,龙卷涡旋发生段要求:圆鼓型或者圆柱形壳 体构的直径既要满足过热蒸气进入,又要满足出口增压的要求。其龙卷涡旋在龙卷加速段223被加速,中心风速可达200m/s以上,为对过热蒸气的喷液增压构建良好的内在条件;使之与经喷嘴组件226加入的反旋凝液高速剧烈混合,在流通面积、扩压、喷液增压、及蒸气冷凝体积急剧缩小所产生的强大吸力并被龙卷风进一步加强的共同作用下,增压增量得到高温位热能的蒸气流出扩压段225。其饱和蒸气温度是通过控制加凝液的流量来实现;因是喷液增压,不会出现常规80%以上的能量消耗于增温;高温位热能的饱和蒸气经蒸发器的进口管15进入蒸发器1加热室对要蒸发的溶液进行加热,而本身放出潜热变为凝液,体积急剧缩小产生强大的吸力,也是本龙卷蒸气热泵的动力所在。从而实现了二次蒸气(低温位热能蒸气)经龙卷过热、喷液增压变为高温位热能饱和蒸气的再利用。
综上所述在实施例三中过热喷液增压器采用一体式的龙卷过热喷液增压器,在实施例五中采用组合式的龙卷过热喷液增压器。
其中实施例三中的一体式的龙卷过热喷液增压器与实施例五中的龙卷喷液增压器结构基本相同,实施三中的一体式龙卷过热喷液增压器将实施例五组合式的龙卷过热喷液增压器的龙卷过热器取消,并且将第二加热器207设置在龙卷喷液增压器的龙卷喷液增压加速段223从而使得龙卷喷液增压器成为一体龙卷过热喷液增压器,其余不变。其装置系统中运用人造龙卷风(避开破坏作用)的方式、技术、系统及调节方法与实施例三不同的是:取消龙卷过热器,蒸发室12的二次蒸气出口18排出的二次蒸气直接送入龙卷过热喷液增压器;其龙卷过热喷液增压器出口饱和蒸气温度则要改为自动选择性调节回路,当温度高时是通过增加加凝液的流量或/并降低第二加热器207的加热量来实现达到目标压力饱和蒸气温度;温度低时则要减少所加凝液的流量或/并增加第二加热器207的加热量来实现目标压力饱和蒸气温度。
综上所述,本发明低压蒸气补焓增压利用的方法,由于采用龙卷蒸气热泵系统,因此在对二次蒸气进行过热补焓、喷液增压形成饱和蒸气的处理过程中,通过蒸发器内加热蒸气自身冷凝形成的强大吸力,提供形成龙卷风的吸力,同时通过人造龙卷风的方式进一步增强吸力对二次蒸气进行加热过热补焓、喷液增压实现二次蒸气的循环利用;因不同温度的饱和水蒸气的焓差很小,补焓热量小,吸力大,喷液增压高,因此能耗低,节能减排。
实施例六
在实施例一至五的基础上,如图1、图4所示将二次蒸气改为低压蒸气,蒸发器改为物料加热器,相应的蒸气热泵及低压蒸气补焓增压利用的方法同样用作低压蒸气的过热补焓、喷液增压利用,所述低压蒸气通过低压蒸气管9导入。
实施例七
所述的蒸气热泵为龙卷蒸气热泵,包括物料加热器1和过热喷液增压器2;所述过热喷液增压器2包括过热器21和喷液增压器22;其主要设备过热器21采用龙卷过热器,如图6至图9所示,龙卷过热器包括龙卷涡旋发生段212、龙卷加速段213、高速段214和扩压过热段215;所述龙卷涡旋发生段212具有圆鼓型或者圆柱形内腔;所述龙卷加速段213具有圆锥形内腔;高速段214具有圆柱形内腔;所述扩压过热段215具有圆锥形内腔;
所述龙卷加速段213的圆锥形内腔直径较大的一端与龙卷涡旋发生段212的内腔连通,所述龙卷加速段213的圆锥形内腔直径较小的一端通过高速段214的圆柱形内腔与扩压过热段215的圆锥形内腔直径较小的一端连通;
所述龙卷涡旋发生段212的圆鼓型或者圆柱形内腔的中心线、龙卷加速段213的圆锥形内腔的中心线、高速段214的圆柱形内腔的中心线以及扩压过热段215的圆锥形内腔的中心线共线;
所述龙卷涡旋发生段212上设置有低压蒸气进口管211;所述低压蒸气进口管211的中心线与龙卷涡旋发生段212的圆鼓型或者圆柱形内腔的中心线垂直;所述二次蒸气进口管21与龙卷涡旋发生段212的圆鼓型或者圆柱形内腔连通,且低压蒸气进口管211具有的内壁与龙卷涡旋发生段212的内壁相切;所述加热器6设置在高速段214或扩压过热管215上,或者高速段214和扩压过热管215。
具体的,所述高速段214的圆柱形内腔的长径比设置为1.5~4:1。所述扩压过热段215的圆锥形内腔的锥度设置为2~8°。
低压蒸气在龙卷过热器中进行加热的原理:
所述低压蒸气(低温位蒸气)从低压蒸气管进入龙卷过热器的低压蒸气进口管211切向流入龙卷涡旋发生段212产生初始龙卷风,其龙卷涡旋在龙卷加速段213被加速,中心风速可达100m/s以上,为对低压蒸气被加热过热构建良好的内在条件;在高速段214和扩压过热段215,由加热器6对低压蒸气加热过热,使其变成过热蒸气而补焓,一般超过目标压力蒸气的饱和温度,就能轻松超过补焓要求。龙卷过热器的扩压过热段215出口过热蒸气的过热度是通过调节加热器6的供热量来实现的;过热蒸气有如热气球原理的升力,同时对二次蒸气产生相应的吸力(或抽力)。扩压过热段215出口的过热蒸气,依据过热蒸气的性质,在过热过程中只可补焓,不能升压。
实施例八
如图10-13所示,所述的蒸气热泵为龙卷蒸气热泵,包括物料加热器1和过热喷液增压器2,所述过热喷液增压器2包括过热器21和喷液增压器22;其主要设备喷液增压器22采用龙卷喷液增压器;所述龙卷喷液增压器包括龙卷喷液增压涡旋发生段222、龙卷喷液增压加速段223、高速混合段224和扩压段225;所述龙卷喷液增压涡旋发生段222具有圆鼓型或者圆柱形内腔;所述龙卷喷液增压加速段223具有圆锥形内腔;所述高速混合段224具有圆柱形内腔;所述扩压段225具有圆锥形内腔;
所述龙卷喷液增压加速段223的圆锥形内腔直径较大的一端与龙卷喷液增压涡旋发生段222的内腔连通,所述龙卷喷液增压加速段223的圆锥形内腔直径较小的一端通过高速混合段224的圆柱形内腔与扩压段225的圆锥形内腔直径较小的一端连通;
所述龙卷喷液增压涡旋发生段222上设置有过热蒸气进口管221;所述过热蒸气进口管221的中心线与龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔的中心线垂直;所述过热蒸气进口管31与龙卷涡旋发生段222的圆鼓型或者圆柱形内腔连通,且过热蒸气进口管221具有的内壁与龙卷喷液增压涡旋发生段222的内壁相切;
所述喷嘴组件226设置在龙卷喷液增压涡旋发生段222上,且与龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔连通;所述喷嘴组件226与龙卷喷液增压加速段223分别位于龙卷喷液增压涡旋发生段222的两个对侧面上;
所述龙卷喷液增压涡旋发生段222的圆鼓型或者圆柱形内腔的中心线、龙卷喷液增压加速段223的圆锥形内腔的中心线、高速混合段224的圆柱形内腔的中心线、扩压段225的圆锥形内腔的中心线以及高速混合段224的喷口中心线共线;
所述龙卷过热器的扩压过热段215的出口与龙卷喷液增压器的过热蒸气进口管221连通;所述龙卷喷液增压器的扩压段225与物料加热器1的饱和蒸气入口连通。
具体的,所述高速混合段224的圆柱形内腔的长径比为1~4:1;所述扩压段225的圆锥形内腔的锥度为6~10°。
过热蒸汽在龙卷喷液增压器内实现喷液增压的原理:
所述扩压过热段215出口过热蒸气依其升力进入龙卷喷液增压器的过热蒸气进口管221切向流入龙卷涡旋发生段222产生初始龙卷风,龙卷涡旋发生段要求:圆鼓型或者圆柱形壳体构的直径概要满足过热蒸气进入,又要满足出口增压的要求。其龙卷涡旋在龙卷加速段223被加速,中心风速可达200m/s以上,为对过热蒸气的喷液增压构建良好的内在条件;使经喷嘴组件226加入的反旋凝液高速剧烈混合,在流通面积、扩压、喷液增压、及蒸气冷凝体积急剧缩小所产生的强大吸力并被龙卷风进一步加强的共同作用下,增压增量得到高温位热能的蒸气流出扩压段225。其饱和蒸气温度是通过控制加凝液的流量来实现;因是喷液增压,不会出现常规80%以上的能量消耗于增温;高温位热能的饱和蒸气经物料加热器的进口管进物料加热器1对物料进行加热,而本身放出潜热变为凝液,体积急剧缩小产生强大的吸力,也是本龙卷蒸气热泵的动力所在。从而实现了低压蒸气(物料加热器)经龙卷过热、喷液增压变为高温位热能饱和蒸气的利用。
实施例九
为了实现对凝液热能的利用,如图1、2、4、5所示,进一步的,所述的蒸气热泵,还包括凝液排放罐10、凝液泵3;
所述蒸发器1具有的凝液出口16或物料加热器的凝液出口与凝液排放罐4具有的入口连通,凝液排放罐4具有的凝液出口与凝液泵3的进口连通,凝液泵3的出口与龙卷喷嘴组件206或喷嘴组件226连通。
将凝液排放罐10内凝液通过凝液泵3抽出并增压,然后通过喷嘴组件206或喷嘴组件226分别喷射到过热喷液增压器2,龙卷过热喷液增压器,喷液增压器22,龙卷喷液增压器,使过热蒸气变为增压的饱和蒸气并增量,从而能够实现凝液热能利用,节约了成本。
实施例十
为了保证低压蒸气或二次蒸气过热补焓、喷液增压后形成增压的饱和蒸气,如图4、5所示,所述的蒸气热泵,还包括第一温度控制回路7;所述冷凝泵3与喷液增压器22或龙卷喷液增压器的喷嘴组件226之间的连通管道上设置有调节阀4;
所述喷液增压器22,或龙卷喷液增压器的出口设置有温度传感器,所述第一温度控制 回路7通过温度传感器检测到喷液增压器22或龙卷喷液增压器的出口蒸气的温度来控制调节阀4的开度,从而调节凝液的流量,实现稳定饱和温度。具体的,所述第一温度控制回路7可采用DCS集中控制。
为了便于调节低压蒸气或二次蒸气通过过热器21或龙卷过热器后被过热的温度,进一步的,所述加热器6设置有第二温度调节回路8,所述过热器21或龙卷过热器的出口设置有第二温度传感器;所述第二温度调节回路8通过第二温度传感器检测到的过热器21或龙卷过热器出口过热蒸气的温度来调节加热器的加热量。所述第二温度调节回路8可采用DCS集中控制。
为了保证低压蒸气或二次蒸气过热补焓、喷液增压后形成增压的饱和蒸气,如图1、2所示,所述的蒸气热泵,还包括所述过热喷液增压器2出口设有温度自动选择性调节回路。当过热喷液增压器2出口饱和蒸气温度传感器,检测温度高时是通过控控制调节阀4的开度以调节喷液量来达到饱和温度;检测温度低时则选择调节加热器的加热量来实现达到饱和温度。所述温度自动选择性调节回路可采用DCS集中控制。
综上所述,上述实施例一至实施例十中所述的蒸气热泵以及低压蒸气补焓增压利用的方法特别是效率更高的龙卷蒸气热泵与现有技术相比,具有以下优点:
1、本发明所述的龙卷蒸气热泵系统,利用高温位热能的蒸气冷凝,体积急剧缩小,产生强大的吸力并用人造龙卷风的方式使吸力得到进一步加强(日常生活中的吸管效应),用人造龙卷风结构独特的龙卷过热器、龙卷喷液增压器;或一体式的龙卷过热喷液增压器,对低压蒸气或二次蒸进行加热过热补焓、喷液增压实现低压蒸气或二次蒸的利用;因不同温度的饱和蒸气的焓差很小,补焓热量小,喷液增压高,不仅比多效蒸发、蒸气喷射热泵的能耗低,甚至比蒸气机械再压缩技术,简称MVR的能耗还低2倍以上,龙卷蒸气热泵理论热效率高达90%以上,用低碳技术,造就成了绿色能源;除开车启动外,整个过程中无需生蒸气;在配有真空装置的情况下,甚至开车启动也无需生蒸气。无需生蒸气这就意味着节约了生产生蒸气的能源,如媒、石油等,也就不产生能源燃烧生成二氧化碳及其它有害气体的排放,同时也就没有废渣、废液的排放;这将为解决当今绿色、低碳经济(二氧化碳减排)和循环经济的重大课题,发挥绝佳的作用。
2、本发明所述的龙卷蒸气热泵系统,结构简单、材料要求低,同时便于制造,制造成本低,因此投资不仅比蒸气机械再压缩技术,简称MVR低,甚至比多效蒸发更低。建设周期不仅比MVR短,甚至比多效蒸发还短。
3、本发明所述的龙卷蒸气热泵系统,依靠增压的饱和蒸气加热物料自身冷凝,没有多效蒸发中排出系统的二次蒸气,因此不需要大量的循环水将二次蒸气冷凝。
4、本发明所述的龙卷蒸气热泵系统,没有转动部件,因此无噪声,对环境无污染。
5、本发明所述的蒸气热泵以及低压蒸气补焓增压利用的方法、特别的龙卷蒸气热泵中蒸气就是溶剂蒸气,其不仅包括水蒸汽,而且更包括广袤的单质、有机溶剂蒸气等,应用领域极其广泛。

Claims (17)

  1. 低压蒸气补焓增压利用的方法,其特征在于,包括以下步骤:
    1)通过对低压蒸气加热,使得低压蒸气成为过热蒸气,所述过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
    2)利用高温位热能饱和蒸气在物料加热器(1)对物料加热时,饱和蒸气冷凝体积急剧缩小,产生强大的吸力,吸入步骤1)中得到的过热蒸气进行喷液增压,使得过热蒸气形成增压增量的饱和蒸气即高温位热能饱和蒸气,然后通入物料加热器对物料进行加热,实现利用或循环利用。
  2. 如权利要求1所述的低压蒸气补焓增压利用的方法,其特征在于:借鉴自然界龙卷风形成的原理和强大的吸力,采用人造龙卷风方法,使得低压蒸气形成龙卷涡旋进行喷液增压,或者进行过热喷液增压;
    包括以下步骤:
    1)对低压蒸气进行加热过热或使得低压蒸气形成龙卷涡旋进行加热变为过热蒸气;使过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
    2)利用高温位热能饱和蒸气在物料加热器(1)加热物料本身冷凝时体积急剧缩小,产生的强大吸力,并用人造龙卷风的方式使得过热蒸气形成龙卷涡旋,进一步加强吸力,抽吸过热蒸气,并对其进行喷液增压,使其形成增压增量的饱和蒸气即高温位热能饱和蒸气,然后通入物料加热器(1)对物料进行加热;以提高热效率、增压比实现利用或循环利用。
  3. 如权利要求1所述的低压蒸气补焓增压利用的方法,其特征在于:所述物料加热器1为蒸发器,所述低压蒸气为二次蒸气;包括以下步骤:
    1)对蒸发器的蒸发室(12)内形成并排出的二次蒸气进行加热;使得加热得到的过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
    2)利用蒸发器的加热室(11)内高温位热能饱和蒸气加热物料时,高温位热能饱和蒸气冷凝体积急剧缩小,产生的强大吸力,吸入加热后的过热蒸气进行喷液增压,使过热蒸气形成增压增量的饱和蒸气,然后将饱和蒸气通入蒸发器的加热室(11)内对物料进行加热,实现循环利用。
  4. 如权利要求1所述的低压蒸气补焓增压利用的方法,其特征在于:采用蒸气热泵,所述蒸气热泵包括物料加热器(1)、过热喷液增压器(2);所述过热喷液增压器(2)具有低压蒸气入口以及增压的饱和蒸气出口;
    所述物料加热器(1)具有的饱和蒸气入口与过热喷液增压器(2)具有的饱和蒸气出口连通;
    在步骤1)中通过过热喷液增压器(2)内使低压蒸气被加热过热变成过热蒸气,并使温度达到大于目标压力高温位热能饱和蒸气温度;
    在步骤2)中向过热喷液增压器(2)内喷入凝液;从而使得过热蒸气形成增压增量的 饱和蒸气;然后将饱和蒸气通入到物料加热器(1)内对物料进行加热,实现利用或循环利用。
  5. 如权利要求2所述的低压蒸气补焓增压利用的方法,其特征在于:采用蒸气热泵为龙卷蒸气热泵,所述龙卷蒸气热泵包括物料加热器(1)、一体式龙卷过热喷液增压器;一体式龙卷过热喷液增压器具有低压蒸气入口以及增压的饱和蒸气出口;
    所述物料加热器(1)具有的饱和蒸气入口与一体式龙卷过热喷液增压器具有的饱和蒸气出口连通;
    在步骤1)中在一体式龙卷过热喷液增压器内,将低压蒸气经一体式龙卷过热喷液增压器内使低压蒸气被加热过热变成过热蒸气,并使温度达到大于目标压力高温位热能饱和蒸气温度;
    在步骤2)中利用物料加热器(1)内饱和蒸气加热物料被冷凝时体积急剧缩小产生的强大吸力,使得经过步骤1)的过热蒸汽在一体式龙卷过热喷液增压器内被形成龙卷风加速,使吸力得到进一步加强;通过向一体式龙卷过热喷液增压器内喷入凝液,从而使得凝液吸收部分过热蒸气的焓使变成增压增量的饱和蒸气即高温位热能饱和蒸气;将高温位热能饱和蒸气通入到物料加热器(1)对物料进行加热,实现利用或循环利用。
  6. 如权利要求4所述的低压蒸气补焓增压利用的方法,其特征在于:所述过热喷液增压器(2)包括过热器(21)以及喷液增压器(22);所述过热器(21)具有低压蒸气入口和过热蒸气出口,所述喷液增压器(22)具有过热蒸气入口和增压的饱和蒸气出口;
    所述过热器(21)的过热蒸气出口与喷液增压器(22)的过热蒸气入口连通;所述喷液增压器(22)的饱和蒸气出口与物料加热器(1)的饱和蒸气入口连通;
    在步骤1)中通过过热器(21)使低压蒸气被加热过热变成过热蒸气,并使过热蒸气温度达到大于目标压力高温位热能饱和蒸气温度;
    在步骤2)中向喷液增压器(22)内喷入凝液,从而使得过热蒸气形成增压增量的饱和蒸气,然后将饱和蒸气通入到物料加热器(1)内对物料进行加热,实现利用或循环利用。
  7. 如权利要求6所述的低压蒸气补焓增压利用的方法,其特征在于:所述过热器(21)采用能够使得蒸气形成龙卷涡旋的龙卷过热器,所述喷液增压器(22)采用能够使得蒸气形成龙卷涡旋的龙卷喷液增压器;所述龙卷过热器上设置有加热蒸气的加热器(6);
    在步骤1)中将低压蒸气送入龙卷过热器,通过龙卷过热器使得低压蒸气形成龙卷涡旋;
    同时,通过龙卷过热器上的加热器(6)对龙卷过热器内的低压蒸气进行加热,使得排出龙卷过热器的过热蒸气的温度达到大于目标压力高温位热能饱和蒸气温度;
    在步骤2)中利用物料加热器(1)内饱和蒸气加热物料冷凝时产生的强大吸力,将经过步骤1)加热得到的过热蒸气吸入龙卷喷液增压器进行喷液增压;通过龙卷喷液增压器使得过热蒸气形成龙卷涡旋,使吸力得到进一步加强;同时通过喷嘴组件(226)向龙卷喷液增压器内喷入凝液,并且使得喷嘴组件(226)喷入凝液的旋向与龙卷喷液增压器内 龙卷涡旋旋向相反,使得过热蒸气与凝液充分混合,使过热蒸气形成增压增量的饱和蒸气;将得到的饱和蒸气送入到物料加热器(1)内对物料进行加热,实现利用或循环利用。
  8. 实现如权利要求1、2、3、4、5、6或7所述的低压蒸气补焓增压利用的方法所采用的蒸气热泵,其特征在于:包括物料加热器(1)以及使得低压蒸气经过加热过热以及喷液增压形成增压增量的饱和蒸气的过热喷液增压器(2);所述物料加热器(1)具有饱和蒸气入口,所述过热喷液增压器(2)具有饱和蒸气出口、低压蒸气入口以及凝液入口;所述物料加热器(1)的饱和蒸气入口与过热喷液增压器(2)的饱和蒸气出口连通。
  9. 如权利要求8所述的蒸气热泵,其特征在于:所述过热喷液增压器(2)采用龙卷过热喷液增压器,所述龙卷过热喷液增压器包括龙卷过热喷液增压涡旋发生段(202)、龙卷过热喷液增压加速过热段(203)、龙卷过热喷液增压高速混合段(204)和龙卷过热喷液增压扩压段(205);所述龙卷过热喷液增压涡旋发生段(202)具有圆鼓型或者圆柱形内腔;所述龙卷过热喷液增压加速过热段(203)具有圆锥形内腔;所述龙卷过热喷液增压高速混合段(204)具有圆柱形内腔;所述龙卷过热喷液增压扩压段(205)具有圆锥形内腔;
    所述龙卷过热喷液增压加速过热段(203)的圆锥形内腔直径较大的一端与龙卷过热喷液增压涡旋发生段(202)的内腔连通,所述龙卷过热喷液增压加速过热段(203)的圆锥形内腔直径较小的一端通过龙卷过热喷液增压高速混合段(204)的圆柱形内腔与龙卷过热喷液增压扩压段(205)的圆锥形内腔直径较小的一端连通;
    所述龙卷过热喷液增压涡旋发生段(202)上设置有低压蒸气进口管(201);所述低压蒸气进口管(201)的中心线与龙卷过热喷液增压涡旋发生段(202)的圆鼓型或者圆柱形内腔的中心线垂直;所述低压蒸气进口管(201)与龙卷过热喷液增压涡旋发生段(202)的圆鼓型或者圆柱形内腔连通,且低压蒸气进口管(201)的内壁与龙卷过热喷液增压涡旋发生段(202)的内壁相切;
    在龙卷过热喷液增压涡旋发生段(202)上设置有龙卷喷嘴组件(206),所述龙卷喷嘴组件(206)与龙卷过热喷液增压涡旋发生段(202)的圆鼓型或者圆柱形内腔连通;所述龙卷喷嘴组件(206)与龙卷过热喷液增压加速过热段(203)分别位于龙卷过热喷液增压涡旋发生段(202)的两个对侧面上;
    所述龙卷过热喷液增压涡旋发生段(202)的圆鼓型或者圆柱形内腔的中心线、龙卷过热喷液增压加速过热段(203)的圆锥形内腔的中心线、龙卷过热喷液增压高速混合段(204)的内腔的中心线、龙卷过热喷液增压扩压段(205)的圆锥形内腔的中心线以及龙卷喷嘴组件(206)的喷射中心线共线;
    所述龙卷过热喷液增压加速过热段(203)的外圆周面上设置有第二加热器(207);所述龙卷过热喷液增压扩压段(205)与所述物料加热器(1)的饱和蒸气入口连通。
  10. 如权利要求8所述的蒸气热泵,其特征在于:所述物料加热器(1)采用蒸发器,所述过热喷液增压器(2)包括过热器(21)以及喷液增压器(22);
    所述过热器(21)具有二次蒸气进口管(211)以及过热蒸气出口;所述蒸发器包括 加热室(11)和蒸发室(12);所述蒸发器(1)具有与蒸发室(12)连通的二次蒸气出口(18)以及与加热室(11)连通的饱和蒸气入口(15);所述喷液增压器(22)具有过热蒸气入口和饱和蒸气出口;所述过热器(21)的二次蒸气进口管(211)与蒸发器加热室(11)二次蒸气出口(18)连通,所述过热器(21)的过热蒸气出口与喷液增压器(22)的过热蒸气入口连通;所述喷液增压器(22)的饱和蒸气出口与加热室(11)的饱和蒸气入口(15)连通;所述喷液增压器(22)上设置有喷嘴组件(226);所述喷嘴组件(226)具有的喷液口位于喷液增压器(22)内;且喷嘴组件(226)喷液口的喷射方向与喷液增压器(22)的饱和蒸气出口的方向相同。
  11. 如权利要求10所述的蒸气热泵,其特征在于:所述过热器(21)包括龙卷过热器以及加热器(6);所述龙卷过热器包括龙卷涡旋发生段(212)、龙卷加速段(213)、高速段(214)和扩压过热段(215);所述龙卷涡旋发生段(212)具有圆鼓型或者圆柱形内腔;所述龙卷加速段(213)具有圆锥形内腔;所述高速段(214)具有圆柱形内腔;所述扩压过热段(215)具有圆锥形内腔;
    所述龙卷加速段(213)的圆锥形内腔直径较大的一端与龙卷涡旋发生段(212)的内腔连通,所述龙卷加速段(213)的圆锥形内腔直径较小的一端通过高速段(214)的圆柱形内腔与扩压过热段(215)的圆锥形内腔直径较小的一端连通;
    所述龙卷涡旋发生段(212)的圆鼓型或者圆柱形内腔的中心线、龙卷加速段(213)的圆锥形内腔的中心线、高速段(214)的圆柱形内腔的中心线以及扩压过热段(215)的圆锥形内腔的中心线共线;
    所述龙卷涡旋发生段(212)上设置有低压蒸气进口管(211);所述低压蒸气进口管(211)的中心线与龙卷涡旋发生段(212)的圆鼓型或者圆柱形内腔的中心线垂直;所述低压蒸气进口管(211)与龙卷涡旋发生段(212)的圆鼓型或者圆柱形内腔连通,且低压蒸气进口管(211)的内壁与龙卷涡旋发生段(212)的内壁相切;所述加热器(6)设置在高速段(214)及扩压过热段(215)上。
  12. 如权利要求10所述的蒸气热泵,其特征在于:所述喷液增压器(22)采用龙卷喷液增压器;所述龙卷喷液增压器包括龙卷喷液增压涡旋发生段(222)、龙卷喷液增压加速段(223)、高速混合段(224)和扩压段(225);所述龙卷喷液增压涡旋发生段(222)具有圆鼓型或者圆柱形内腔;所述龙卷喷液增压加速段(223)具有圆锥形内腔;所述高速混合段(224)具有圆柱形内腔;所述扩压段(225)具有圆锥形内腔;
    所述龙卷喷液增压加速段(223)的圆锥形内腔直径较大的一端与龙卷喷液增压涡旋发生段(222)的内腔连通,所述龙卷喷液增压加速段(223)的圆锥形内腔直径较小的一端通过高速混合段(224)的圆柱形内腔与扩压段(225)的圆锥形内腔直径较小的一端连通;
    所述龙卷喷液增压涡旋发生段(222)上设置有过热蒸气进口管(221);所述过热蒸气进口管(221)的中心线与龙卷喷液增压涡旋发生段(222)的圆鼓型或者圆柱形内腔的中心线垂直;所述过热蒸气进口管(221)与龙卷喷液增压发生段(222)的圆鼓型或者圆 柱形内腔连通,且过热蒸气进口管(221)的内壁与龙卷喷液增压涡旋发生段(222)的内壁相切;
    所述喷嘴组件(226)设置在龙卷喷液增压涡旋发生段(222)上,且与龙卷喷液增压涡旋发生段(222)的圆鼓型或者圆柱形内腔连通;所述喷嘴组件(226)与龙卷喷液增压加速段(223)分别位于龙卷喷液增压涡旋发生段(222)的两个对侧面上;
    所述龙卷喷液增压涡旋发生段(222)的圆鼓型或者圆柱形内腔的中心线、龙卷喷液增压加速段(223)的圆锥形内腔的中心线、高速混合段(224)的圆柱形内腔的中心线、扩压段(225)的圆锥形内腔的中心线以及喷嘴组件(226)的喷射中心线共线;
    所述龙卷过热器的扩压过热段(215)的出口与龙卷喷液增压器的过热蒸气进口管(221)连通;所述龙卷喷液增压器的扩压段(225)与蒸发器加热室(11)饱和蒸气入口(15)连通。
  13. 如权利要求12所述的蒸气热泵,其特征在于:所述高速混合段(224)的圆柱形内腔的长径比为1~4:1;所述扩压段(225)的圆锥形内腔的锥度为6~10°。
  14. 如权利要求8至13任意一项权利要求所述的蒸气热泵,其特征在于:还包括凝液排放罐(10)、凝液泵(3);
    所述物料加热器1具有的凝液出口与凝液排放罐(10)的入口连通,凝液排放罐(10)的凝液出口与凝液泵(3)进口连通,凝液泵(3)出口与龙卷喷嘴组件(206)或喷嘴组件(226)连通,使凝液的热能得到利用。
  15. 如权利要求10、11或12所述的蒸气热泵,其特征在于:还包括第一温度控制回路(7);所述喷液增压器或龙卷喷液增压器的喷嘴组件(226)与凝液泵(3)之间的连通管道上设置有调节阀(4);
    所述喷液增压器(22)或龙卷喷液增压器的出口设置有温度传感器,所述第一温度控制回路(7)通过温度传感器检测到喷液增压器(22)或龙卷喷液增压器的出口蒸气的温度来控制调节阀(4)的开度,从而调节凝液的流量,实现稳定饱和温度。
  16. 如权利要求10、11或12所述的蒸气热泵,其特征在于:所述加热器6设置有第二温度调节回路,所述过热器(21)或龙卷过热器的出口设置有第二温度传感器;所述第二温度调节回路通过第二温度传感器检测到的过热器(21)或龙卷过热器出口过热蒸气的温度来调节加热器的加热量。
  17. 如权利要求9所述的蒸气热泵,其特征在于:所述过热喷液增压器或龙卷过热喷液增压器的龙卷喷嘴组件(206)与凝液泵(3)之间的连通管道上设置有调节阀(4);第二加热器(207)上设置有温度调节器;
    所述过热喷液增压器(2)出口设有温度自动选择性调节回路(5);所述过热喷液增压器(2)出口设置有饱和蒸气温度传感器,所述饱和蒸气温度传感器与温度自动选择性调节回路连接,所述调节阀(4)的开度以及温度调节器均通过温度自动选择性调节回路(5)控制。
PCT/CN2017/112817 2016-12-05 2017-11-24 蒸气热泵及低压蒸气补焓增压利用的方法 WO2018103539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17878307.2A EP3546826B1 (en) 2016-12-05 2017-11-24 Vapor heat pump and method for utilizing low pressure vapor through supplementing enthalpy and pressure boost

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016111037282 2016-12-05
CN201611103728.2A CN106765049B (zh) 2016-12-05 2016-12-05 蒸气热泵及低压蒸气补焓增压利用的方法

Publications (1)

Publication Number Publication Date
WO2018103539A1 true WO2018103539A1 (zh) 2018-06-14

Family

ID=58874012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112817 WO2018103539A1 (zh) 2016-12-05 2017-11-24 蒸气热泵及低压蒸气补焓增压利用的方法

Country Status (3)

Country Link
EP (1) EP3546826B1 (zh)
CN (1) CN106765049B (zh)
WO (1) WO2018103539A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405432A (zh) * 2022-01-29 2022-04-29 山东科川节能环保科技有限公司 一种基于蒸汽的全工况精准智控装备
CN114804489A (zh) * 2022-04-25 2022-07-29 倍杰特集团股份有限公司 一种气化浓水的节能水处理系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765049B (zh) * 2016-12-05 2019-06-18 四川大学 蒸气热泵及低压蒸气补焓增压利用的方法
DE102021104052B3 (de) * 2021-02-19 2022-03-31 Fachhochschule Westküste Warmwasserspeicher-Beladungsverfahren an einem Fernwärmeanschluss und Warmwasser-Beladungsanordnung sowie Warmwasserbeladungs-Wärmepumpe
CN113266609B (zh) * 2021-06-02 2023-04-07 傅朝清 热液喷射多单元蒸气压缩装置及热泵
CN114151389B (zh) * 2021-12-07 2024-05-28 宁波金发新材料有限公司 一种低压蒸汽回收利用装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541418A1 (de) * 1985-11-23 1987-05-27 Steinmueller Gmbh L & C Rohrbuendel und waermetauschvorrichtung mit diesem rohrbuendel
WO2007144285A2 (de) * 2006-06-14 2007-12-21 Siemens Aktiengesellschaft Dampfkraftanlage
CN101432571A (zh) * 2006-04-25 2009-05-13 伊士曼化工公司 产生过热蒸汽的方法
CN202902754U (zh) * 2012-11-07 2013-04-24 石家庄工大化工设备有限公司 利用蒸汽喷射泵转化废热蒸汽的装置
CN106765049A (zh) * 2016-12-05 2017-05-31 四川大学 蒸气热泵及低压蒸气补焓增压利用的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212480A1 (de) * 2002-03-21 2003-10-02 Trupp Andreas Wärmepumpverfahren auf der Basis der Effekte der Siedepunkterhöhung bzw. Dampfdruckreduzierung
CN102705273A (zh) * 2012-06-05 2012-10-03 天津大学 吸入段机械加压引射回收废蒸汽的方法及装置
CN103908788B (zh) * 2012-12-31 2015-12-23 中国科学院理化技术研究所 一种mvr热泵蒸发系统
CN104399267B (zh) * 2014-12-01 2016-04-13 大连理工大学 一种闪蒸气波蒸汽再压缩连续蒸发系统
CN105523597B (zh) * 2015-12-11 2018-08-21 上海朴是环境科技股份有限公司 一种高效液媒热压蒸发净化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541418A1 (de) * 1985-11-23 1987-05-27 Steinmueller Gmbh L & C Rohrbuendel und waermetauschvorrichtung mit diesem rohrbuendel
CN101432571A (zh) * 2006-04-25 2009-05-13 伊士曼化工公司 产生过热蒸汽的方法
WO2007144285A2 (de) * 2006-06-14 2007-12-21 Siemens Aktiengesellschaft Dampfkraftanlage
CN202902754U (zh) * 2012-11-07 2013-04-24 石家庄工大化工设备有限公司 利用蒸汽喷射泵转化废热蒸汽的装置
CN106765049A (zh) * 2016-12-05 2017-05-31 四川大学 蒸气热泵及低压蒸气补焓增压利用的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405432A (zh) * 2022-01-29 2022-04-29 山东科川节能环保科技有限公司 一种基于蒸汽的全工况精准智控装备
CN114804489A (zh) * 2022-04-25 2022-07-29 倍杰特集团股份有限公司 一种气化浓水的节能水处理系统及方法

Also Published As

Publication number Publication date
CN106765049A (zh) 2017-05-31
EP3546826A1 (en) 2019-10-02
EP3546826B1 (en) 2021-04-28
CN106765049B (zh) 2019-06-18
EP3546826A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018103539A1 (zh) 蒸气热泵及低压蒸气补焓增压利用的方法
CN101464069B (zh) 热力喷射及涡流复合型空调机
CN101968299B (zh) 一种利用过热蒸汽干燥物料的方法
CN102797515A (zh) 热力过程采用喷射抽气节能方法
CN205330747U (zh) 一种乏汽机械压缩再利用的装置
CN110185511A (zh) 一种中低温余热驱动闪蒸-喷射-吸收复合循环冷热电联供系统
WO2015192648A1 (zh) 利用真空动力节能方法
CN100451487C (zh) 两级第一类吸收式热泵
WO2014063443A1 (zh) 自冷式热力做功方法
WO2018086238A1 (zh) 利用循环升压升温节能方法
CN106907204B (zh) 一种低温热源驱动的有机工质吸收式发电方法及其系统
CN109973166A (zh) 一种提高有机朗肯循环发电能力的系统及方法
CN109812866A (zh) 一种两级串联式乏汽余热回收供热系统
CN104578682B (zh) 一种可利用汽化潜热闭环磁流体发电方法及其循环发电系统
CN106196725B (zh) 超音速相变增焓—喷雾增压水蒸汽热泵
CN109000385A (zh) 一种多源高温热泵装置及工作方法
CN105241115A (zh) 蒸汽压缩-喷射耦合制冷循环装置及方法
CN106194298B (zh) 一种气-液喷射式orc系统
CN209237374U (zh) 一种直驱型热泵蒸发浓缩系统
CN207891190U (zh) 一种基于朗肯循环的超临界水氧化能量回收装置
CN105484810B (zh) 一种乏汽机械压缩再利用的装置和方法
CN106337789B (zh) 一种集光放大太阳能光热发电系统及发电方法
CN206387141U (zh) 一种组合型双级蒸汽热泵系统
CN106440487B (zh) 一种组合型双级蒸汽热泵系统
CN206035554U (zh) 一种气‑液喷射式orc系统

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878307

Country of ref document: EP

Effective date: 20190627