WO2018103519A1 - 旋转扫描三维成像系统和方法 - Google Patents

旋转扫描三维成像系统和方法 Download PDF

Info

Publication number
WO2018103519A1
WO2018103519A1 PCT/CN2017/111237 CN2017111237W WO2018103519A1 WO 2018103519 A1 WO2018103519 A1 WO 2018103519A1 CN 2017111237 W CN2017111237 W CN 2017111237W WO 2018103519 A1 WO2018103519 A1 WO 2018103519A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
antenna element
transmitting
trigger
Prior art date
Application number
PCT/CN2017/111237
Other languages
English (en)
French (fr)
Inventor
祁春超
王爱先
陈寒江
阮嘉祺
刘俊成
肖千
陈伟
赵术开
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 华讯方舟科技有限公司
Priority to US16/467,662 priority Critical patent/US11531097B2/en
Publication of WO2018103519A1 publication Critical patent/WO2018103519A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to the field of scanning imaging, and more particularly to a rotational scanning three-dimensional imaging system and method.
  • microwave three-dimensional imaging technology based on microwave imaging has many unique advantages, and therefore becomes an important development direction of close-range three-dimensional imaging technology.
  • the field of microwave three-dimensional imaging drives mechanical movement of antenna elements to achieve omnidirectional scanning of the object under test.
  • the antenna array element Since the antenna array element has a non-uniform speed during the mechanical movement, in general, when the antenna element is moved to the corresponding scanning point by the timing method, the scanning detection is turned on. However, due to factors such as aging of the device, the antenna element cannot accurately move to the scanning point for transmitting and receiving microwave signals, which may result in unclear three-dimensional imaging and affect the detection effect.
  • a rotational scan three-dimensional imaging system and method with clear imaging and good detection results are provided.
  • a rotary scanning three-dimensional imaging system comprising:
  • Transmitting and receiving antenna elements are disposed on the cylindrical side surface for transmitting a microwave detecting signal to the object to be measured located in the cylindrical frame, and receiving an echo signal reflected from the object to be measured;
  • a signal transceiving module connected to the transceiver antenna element for generating and transmitting the antenna
  • the array element transmits the microwave detection signal and processes the echo signal
  • a rotation control module coupled to the transceiver antenna element, for controlling the rotation of the transceiver antenna element along the cylindrical side, so that the transceiver antenna element emits microwave detection from a plurality of angles to the object to be measured signal;
  • a positioning trigger is connected to the transceiver antenna element, and the positioning trigger is fixedly disposed on the cylindrical frame, and is configured to trigger when the transmitting and receiving antenna element moves to a position of the positioning trigger
  • the signal transceiver module is connected to the transceiver antenna element, and the positioning trigger is fixedly disposed on the cylindrical frame, and is configured to trigger when the transmitting and receiving antenna element moves to a position of the positioning trigger.
  • a rotary scanning three-dimensional imaging method includes:
  • Processing receives an echo signal reflected from the object to be measured by the transceiver antenna element.
  • FIG. 1 is a schematic structural view of a three-dimensional imaging system for rotational scanning in an embodiment
  • FIG. 2 is a block diagram showing the system structure of a three-dimensional imaging system for rotational scanning in an embodiment
  • FIG. 3 is a flow chart of a three-dimensional imaging method of rotational scanning in an embodiment
  • FIG. 4 is a flow chart of a three-dimensional imaging method of rotational scanning in another embodiment.
  • FIG. 1 is a schematic structural diagram of a three-dimensional imaging system for rotational scanning according to an embodiment
  • FIG. 2 is a block diagram of a system structure of a three-dimensional imaging system for rotational scanning according to an embodiment.
  • the rotational scanning three-dimensional imaging system includes a cylindrical frame 10, a transmitting and receiving antenna element 11, a signal transceiving module 12, a rotation control module 13, and a positioning trigger 31.
  • the cylindrical frame 10 includes a cylindrical side which is a hollow structure.
  • the cylindrical frame 10 can be a cylindrical frame.
  • the transmitting and receiving antenna element 11 is disposed on the cylindrical side surface for transmitting a microwave detecting signal to the object 20 to be measured located in the cylindrical frame 10, and receiving an echo signal reflected from the object 20 to be measured.
  • the antenna elements of the transmitting and receiving antenna elements 11 are arranged longitudinally on the side of the cylindrical frame 10.
  • the transceiver antenna element 11 can be a linear transceiver antenna array or a planar transceiver antenna array, and realize one-dimensional or two-dimensional scanning of the object 20 to be tested, respectively.
  • the utility model comprises a transmitting antenna array element and a receiving antenna array element, and the two are arranged side by side to facilitate sending and receiving signals and ensuring signal transmission and reception quality.
  • the signal transceiver module 12 is configured to send the microwave detection signal to the transceiver antenna element 11 and process the echo signal.
  • the signal transmitting and receiving module 12 After the signal transmitting and receiving module 12 generates the microwave detecting signal, the signal is transmitted to the transmitting antenna array element, and the transmitting antenna array element transmits the microwave detecting signal to the object 20 to be scanned, and is reflected by the measured object 20 to form an echo signal.
  • the receiving antenna element is received and sent to the signal transceiving module 12 for processing, thereby obtaining image information of the object 20 to be measured.
  • the rotation control module 13 is configured to control the rotation of the transceiver antenna element 11 along the cylindrical side to enable the transceiver antenna element 11 to transmit a microwave detection signal from the plurality of angles to the object 20 to be measured.
  • the transmitting and receiving antenna element 11 rotates along the side of the cylindrical frame 10, and emits a millimeter wave detection signal from the 360 degree to the object 20 in the cylindrical frame 10, and The echo signal reflected from the object 20 is received, thereby achieving three-dimensional scanning of the object 20 to be measured.
  • the rotation control module 13 can adjust the moving speed of the transmitting and receiving antenna elements 11 to improve the moving speed of the transmitting and receiving antenna elements 11 while ensuring the sharpness of the scanned imaging, thereby speeding up the imaging speed and improving the detection of the measured object 20. speed.
  • the positioning trigger 31 is fixedly disposed on the cylindrical frame 10 for triggering the signal transceiving module 12 when the transmitting and receiving antenna element 11 moves to the position of the positioning trigger 31.
  • An annular guide 30 is fixedly disposed on the lower edge of the cylindrical frame 10, and the annular guide 30 may also be disposed on the cylindrical side parallel to other positions of the lower edge.
  • a plurality of positioning triggers 31 are disposed on the annular guide 30, and the transmitting and receiving antenna elements 11 are rotationally moved along the annular guide 30 under the control of the rotation control module 13.
  • the signal transmitting and receiving module 12 When the transmitting and receiving antenna element 11 moves to the position of the positioning trigger 31, the signal transmitting and receiving module 12 is automatically triggered, and then the microwave detecting signal is sent to the transmitting and receiving antenna element 11, and the measured object 20 is scanned by the transmitting and receiving antenna element 11.
  • the fixed-point trigger scanning is implemented by the positioning trigger 31.
  • the transmitting and receiving antenna element 11 can transmit the microwave detecting signal at the preset scanning point 40, and the scanning point is accurately positioned, thereby ensuring the scanning quality and making the measured object 20 image clear. The detection effect is good.
  • One positioning trigger 31 corresponds to one scanning point 40, and the transmitting and receiving antenna element 11 scans the object 20 at the position of the positioning trigger 31, that is, the scanning point 40.
  • the positioning trigger 31 is a pressure sensor or a light sensor.
  • the rotational scanning three-dimensional imaging system further includes a scan control module 14 for controlling the transceiver antenna element 11 to scan the object 20 to be tested.
  • the scanning control module 14 sequentially turns on the antenna units in the transmitting and receiving antenna elements 11 according to the set timing, sequentially transmits the microwave detecting signals, and sequentially receives the echo signals, thereby realizing scanning of the object 20 at the current angle, that is, implementing the transmitting and receiving antennas.
  • the scanning angle of the transmitting and receiving antenna element 11 is changed, that is, the transmitting and receiving days are changed.
  • the position of the scanning point 40 of the line element 11 further realizes three-dimensional scanning imaging of the object 20 to be measured.
  • the method further includes an analog-to-digital conversion module 15 and a data processing module 16, the analog-to-digital conversion module 15 is connected to the signal transceiver module 12, and converts the echo signal into a digital signal, and the data processing The module 16 is connected to the analog to digital conversion module 15 to convert the digital signal into image data of the object 20 to be measured.
  • the data processing module 16 is further configured to set a frequency range and a frequency interval of the microwave sounding signal to improve image quality.
  • an image processing module 17 is further included, and the data processing module 16 is connected to generate a three-dimensional image of the measured object 20 according to the image data.
  • a display module 18 is further coupled to the image processing module 17 for displaying the three-dimensional image.
  • the scanned image of the object 20 to be tested is displayed for inspection by the examiner to detect the object 20 to be tested.
  • an annular guide 30 is disposed on the cylindrical frame 10, and a plurality of positioning triggers 31 are disposed on the annular guide 30, and when the transmitting and receiving antenna elements 11 are moved to the position of the positioning trigger 31,
  • the trigger signal transmitting and receiving module 12 sends a microwave detecting signal to the transmitting and receiving antenna element 11, and the transmitting and receiving antenna element 11 realizes scanning of the measured object 20 at the current angle under the control of the scanning control module 14.
  • the rotation control module 13 controls the rotation of the transmitting and receiving antenna elements 11 along the annular guide 30 to realize three-dimensional scanning of the object 20 to be measured.
  • the rotary scanning three-dimensional imaging system has precise scanning point positioning, fast scanning speed, clear imaging and good detection effect. The system can not only perform safety inspections in public places, such as airports, ports and stations, but also in important occasions such as contraband inspection, border inspection, tailoring and safety equipment manufacturing.
  • an embodiment of the present invention further provides a three-dimensional imaging method for rotational scanning, the method comprising:
  • Step 302 Receive an initialization signal.
  • Step 304 Control, according to the initialization signal, the transmitting and receiving antenna elements to perform rotational scanning on the measured object from a plurality of angles.
  • the rotation control module receives the initialization signal and controls the transceiver antenna element according to the initialization signal Rotate the object under test at multiple angles.
  • the transmitting and receiving antenna elements are disposed on the cylindrical side of the cylindrical frame, and the transmitting and receiving antenna elements are capable of transmitting a microwave detecting signal to the object to be measured located in the cylindrical frame, and receiving an echo signal reflected from the measured object.
  • the cylindrical frame is a hollow structure, and the cylindrical frame may be a cylindrical frame.
  • the antenna elements of the transceiver antenna elements are arranged longitudinally on the side of the cylindrical frame.
  • the transceiver antenna element may be a linear transceiver antenna array or a planar transceiver antenna array, and respectively realize one-dimensional or two-dimensional scanning of the object to be tested.
  • the utility model comprises a transmitting antenna array element and a receiving antenna array element, and the two are arranged side by side to facilitate sending and receiving signals and ensuring signal transmission and reception quality.
  • Step 306 Control the transmitting and receiving antenna elements to scan and rotate to the corresponding position to trigger the positioning trigger and generate a trigger signal.
  • the rotation control module controls the transmitting and receiving antenna elements to perform a rotational scanning motion along the side of the cylindrical frame.
  • a plurality of positioning triggers are arranged on the annular guide rail, and the transmitting and receiving antenna array elements are rotated along the annular guide rail under the control of the rotation control module.
  • the signal transmitting and receiving module is automatically triggered to generate a trigger signal.
  • a positioning trigger corresponds to a scanning point, and the transmitting and receiving antenna element scans the measured object at the position of the positioning trigger, that is, the scanning point.
  • the rotation control module can also adjust the movement speed of the transmitting and receiving antenna elements, and improve the moving speed of the transmitting and receiving antenna elements while ensuring the scanning imaging resolution, thereby speeding up the imaging speed and improving the detection of the measured object. speed.
  • Step 308 Control generating a microwave detection signal according to the trigger signal.
  • the signal transceiver module receives the trigger signal, and generates a microwave detection signal according to the trigger signal, and sends the microwave detection signal to the transceiver antenna array element.
  • Step 310 The microwave detection signal is transmitted to the object to be tested by the transceiver antenna element.
  • the signal transceiver module receives the trigger signal, and generates a microwave detection signal according to the trigger signal, and sends the microwave detection signal to the transmitting and receiving antenna array element, and the transmitting and receiving antenna element transmits the microwave detecting signal to the measured object to implement scanning of the measured object.
  • the fixed-point trigger scanning is realized by the positioning trigger, and the transmitting and receiving antenna element can realize the microwave detecting signal at the preset scanning point, and the scanning point is accurately positioned, thereby ensuring the scanning quality, and the image of the measured object is clear and the detection effect is good. .
  • Step 312 Processing, by the transceiver antenna element, receiving an echo signal reflected from the measured object.
  • the echo signal reflected from the object to be measured is received, and the received echo signal is subjected to data analysis processing to realize three-dimensional scanning of the object to be measured.
  • the method further includes: sequentially turning on each antenna unit in the transmitting and receiving antenna element according to the set timing, sequentially transmitting the microwave detecting signal, and sequentially receiving the echo signal, thereby realizing scanning of the measured object at the current angle, That is, the scanning of the transmitting and receiving antenna elements at the current scanning point is realized.
  • the scanning angle of the transmitting and receiving antenna elements is changed, that is, the scanning point position of the transmitting and receiving antenna elements is changed, thereby realizing the three-dimensional scanning imaging of the measured object.
  • the method further includes:
  • Step 402 Convert the received echo signal into a digital signal.
  • the analog to digital conversion module converts the echo signal into a digital signal.
  • Step 404 Generate image data of the measured object according to the digital signal.
  • the data processing module is coupled to the analog to digital conversion module to convert the digital signal into image data of the measured object.
  • Step 406 Generate and display a three-dimensional image of the measured object according to the image data.
  • the image processing module is connected to the data processing module, and generates a three-dimensional image of the measured object according to the image data.
  • a display module is coupled to the image processing module for displaying the three-dimensional image. The scanned image of the object to be tested is displayed for inspection by the inspector to detect the object to be tested.
  • the above-mentioned three-dimensional imaging method for rotating scanning receives an initialization signal, and controls the transmitting and receiving antenna elements to perform rotational scanning on the object to be measured from a plurality of angles according to the initialization signal; controlling the rotation and scanning of the transmitting and receiving antenna elements to a corresponding position to trigger a positioning trigger And generating a trigger signal; controlling the generation of the microwave detection signal according to the trigger signal, and transmitting the microwave detection signal to the object to be tested through the transceiver antenna element; and processing is reflected from the object to be measured through the receiving and receiving antenna element The echo signal.
  • the rotating scanning three-dimensional imaging method has precise scanning point positioning, fast scanning speed and clear imaging. The detection effect is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种旋转扫描三维成像系统和方法,系统包括:柱形框架(10),具有柱形侧面;收发天线阵元(11),设置在柱形侧面上,用于向位于柱形框架(10)内的被测对象(20)发射微波探测信号,并接收从被测对象(20)反射回来的回波信号;信号收发模块(12),用于产生并向收发天线阵元(11)发送微波探测信号,并对回波信号进行处理;旋转控制模块(13),用于控制收发天线阵元(11)沿柱形侧面旋转运动,以使收发天线阵元(11)从多个角度向被测对象(20)发射微波探测信号;定位触发器(31),固定设置在柱形框架(10)上,用于在收发天线阵元(11)运动到定位触发器(31)的位置时,触发信号收发模块(12)。

Description

旋转扫描三维成像系统和方法 技术领域
本发明涉及扫描成像领域,特别是涉及一种旋转扫描三维成像系统和方法。
背景技术
基于微波成像的三维成像技术与可见光、红外光及X射线等成像技术相比,具有许多独特的优势,因此,成为近景三维成像技术的重要发展方向。目前,微波三维成像领域通过带动天线阵元机械运动,以实现对被测对象的全方位扫描。
由于天线阵元在机械移动的过程中存在速度不均匀的情况,一般的,通过定时的方式控制天线阵元运动到相应的扫描点时,开启扫描检测。但是,由于设备老化等因素,天线阵元并不能准确地运动至扫描点进行微波信号的收发,可能会导致三维成像不清晰,影响检测效果。
发明内容
根据本申请的各种实施例,提供一种成像清晰,检测效果好的旋转扫描三维成像系统和方法。
一种旋转扫描三维成像系统,包括:
柱形框架,设置在所述柱形框架上的柱形侧面;
收发天线阵元,设置在所述柱形侧面上,用于向位于所述柱形框架内的被测对象发射微波探测信号,并接收从被测对象反射回来的回波信号;
信号收发模块,与所述收发天线阵元连接,用于产生并向所述收发天线 阵元发送所述微波探测信号,并对所述回波信号进行处理;
旋转控制模块,与所述收发天线阵元连接,用于控制所述收发天线阵元沿所述柱形侧面旋转运动,以使所述收发天线阵元从多个角度向被测对象发射微波探测信号;
定位触发器,与所述收发天线阵元连接,所述定位触发器固定设置在所述柱形框架上,用于在所述收发天线阵元运动到所述定位触发器的位置时,触发所述信号收发模块。
一种旋转扫描三维成像方法,包括:
接收初始化信号,并根据所述初始化信号控制收发天线阵元从多个角度对被测对象进行旋转扫描;
控制所述收发天线阵元旋转扫描到相应位置触发定位触发器并产生触发信号;
根据所述触发信号控制产生微波探测信号,并通过所述收发天线阵元向被测对象发射所述微波探测信号;
处理通过所述收发天线阵元接收从被测对象反射回来的回波信号。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中旋转扫描三维成像系统的结构示意图;
图2为一实施例中旋转扫描三维成像系统的系统结构框图;
图3为一实施例中旋转扫描三维成像方法的流程图;
图4为另一实施例中旋转扫描三维成像方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
参见图1和图2,图1为一实施例中旋转扫描三维成像系统的结构示意图,图2为一实施例中旋转扫描三维成像系统的系统结构框图。
在本实施例中,该旋转扫描三维成像系统,包括柱形框架10、收发天线阵元11、信号收发模块12、旋转控制模块13和定位触发器31。
该柱形框架10包括柱形侧面,其为中空结构。该柱形框架10可以为圆柱形框架。
收发天线阵元11设置在所述柱形侧面上,用于向位于所述柱形框架10内的被测对象20发射微波探测信号,并接收从被测对象20反射回来的回波信号。
该收发天线阵元11的各天线单元纵向排布的设置在柱形框架10的侧面。该收发天线阵元11可以为线性收发天线阵列或平面收发天线阵列,分别实现对被测对象20的一维或二维扫描。其包括发射天线阵元和接收天线阵元,二者并排设置,方便收发信号,保障信号收发质量。
信号收发模块12用于向所述收发天线阵元11发送所述微波探测信号,并对所述回波信号进行处理。
信号收发模块12产生微波探测信号之后,发送给发射天线阵元,发射天线阵元向被测对象20发射该微波探测信号,对其进行扫描,经被测对象20反射后形成回波信号,由接收天线阵元接收,并发送给信号收发模块12进行处理,进而得到被测对象20的图像信息。
旋转控制模块13用于控制所述收发天线阵元11沿所述柱形侧面旋转运动,以使所述收发天线阵元11从多个角度向被测对象20发射微波探测信号。
在旋转控制模块13的控制和驱动作用下,收发天线阵元11沿着柱形框架10的侧面作旋转运动,从360度向柱形框架10内的被测对象20发射毫米波探测信号,并接收从被测对象20反射回来的回波信号,进而实现对被测对象20的三维扫描。
该旋转控制模块13可以调节收发天线阵元11的运动速度,在保障扫描成像清晰度的情况下,提高收发天线阵元11的运动速度,可以加快成像速度,进而提高对被测对象20的检测速度。
定位触发器31固定设置在所述柱形框架10上,用于在所述收发天线阵元11运动到所述定位触发器31的位置时,触发所述信号收发模块12。
在该柱形框架10的下边沿上固定设置有环形导轨30,该环形导轨30也可以设置在柱形侧面上,平行于下边沿的其他位置。在该环形导轨30上设置有多个定位触发器31,收发天线阵元11在旋转控制模块13的控制下沿环形导轨30旋转运动。
当收发天线阵元11运动到定位触发器31的位置时,自动触发信号收发模块12,进而将微波探测信号发送给收发天线阵元11,由收发天线阵元11对被测对象20进行扫描。通过定位触发器31实现定点触发扫描,收发天线阵元11可以实现在预先设定的扫描点40处发射微波探测信号,扫描点定位精准,进而保障了扫描质量,使得被测对象20成像清晰,检测效果好。
其中,一个定位触发器31对应一个扫描点40,收发天线阵元11在该定位触发器31的位置,即该扫描点40处对被测对象20进行扫描。
在其中一个实施例中,所述定位触发器31为压力传感器或光传感器。
在其中一个实施例中,该旋转扫描三维成像系统还包括扫描控制模块14,用于控制所述收发天线阵元11对所述被测对象20进行扫描。
扫描控制模块14按照设定的时序依次开启上述收发天线阵元11中的各天线单元,依次发射微波探测信号并依次接收回波信号,实现被测对象20在当前角度的扫描,即实现收发天线阵元11在当前扫描点40处的扫描。在旋转控制模块13的带动下,改变收发天线阵元11的扫描角度,即改变收发天 线阵元11的扫描点40位置,进而实现对被测对象20的三维扫描成像。
在其中一个实施例中,还包括模数转换模块15和数据处理模块16,所述模数转换模块15连接所述信号收发模块12,将所述回波信号转换为数字信号,所述数据处理模块16连接所述模数转换模块15,将所述数字信号转换为所述被测对象20的图像数据。
该数据处理模块16还用于设置微波探测信号的频率范围和频率间隔,提高成像质量。
在其中一个实施例中,还包括图像处理模块17,连接所述数据处理模块16,用于根据所述图像数据生成所述被测对象20的三维图像。
在其中一个实施例中,还包括显示模块18,连接所述图像处理模块17,用于显示所述三维图像。
将被测对象20经扫描后的图像显示出来,供检测人员查看,以对被测对象20进行检测。
上述旋转扫描三维成像系统,在柱形框架10上设置环形导轨30,在该环形导轨30上设置多个定位触发器31,当收发天线阵元11运动至该定位触发器31的位置时,自动触发信号收发模块12发出微波探测信号给到收发天线阵元11,收发天线阵元11在扫描控制模块14的控制作用下实现对被测对象20在当前角度的扫描。旋转控制模块13控制该收发天线阵元11沿环形导轨30旋转运动,进而实现对被测对象20的三维扫描。该旋转扫描三维成像系统扫描点定位精准,扫描速度快,成像清晰,检测效果好。该系统不仅能够在公共场合,如机场、港口和车站等进行安全检测,还能用于违禁品检查、边境检查、量体裁衣和安全装备制造等重要场合中。
如图3所示,本发明实施例还提供一种旋转扫描三维成像方法,所述方法,包括:
步骤302:接收初始化信号。步骤304:根据所述初始化信号控制收发天线阵元从多个角度对被测对象进行旋转扫描。
旋转控制模块接收初始化信号,并根据初始化信号控制收发天线阵元从 多个角度对被测对象进行旋转扫描。其中,收发天线阵元设置在柱形框架的柱形侧面上,收发天线阵元能够向位于柱形框架内的被测对象发射微波探测信号,并接收从被测对象反射回来的回波信号。柱形框架为中空结构,该柱形框架可以为圆柱形框架。该收发天线阵元的各天线单元纵向排布的设置在柱形框架的侧面。该收发天线阵元可以为线性收发天线阵列或平面收发天线阵列,分别实现对被测对象的一维或二维扫描。其包括发射天线阵元和接收天线阵元,二者并排设置,方便收发信号,保障信号收发质量。
步骤306:控制所述收发天线阵元旋转扫描到相应位置触发定位触发器并产生触发信号。
旋转控制模块控制收发天线阵元沿着柱形框架的侧面作旋转扫描运动。其中,在该环形导轨上设置有多个定位触发器,收发天线阵元在旋转控制模块的控制下沿环形导轨旋转运动。当收发天线阵元运动到定位触发器的位置时,自动触发信号收发模块从而产生触发信号。一个定位触发器对应一个扫描点,收发天线阵元在该定位触发器的位置,即该扫描点处对被测对象进行扫描。
具体地,还可以通过旋转控制模块调节收发天线阵元的运动速度,在保障扫描成像清晰度的情况下,提高收发天线阵元的运动速度,可以加快成像速度,进而提高对被测对象的检测速度。
步骤308:根据所述触发信号控制产生微波探测信号。
信号收发模块接收触发信号,并根据触发信号产生微波探测信号,将微波探测信号发送给收发天线阵元。
步骤310:通过所述收发天线阵元向被测对象发射所述微波探测信号。
信号收发模块接收触发信号,并根据触发信号产生微波探测信号,将微波探测信号发送给收发天线阵元,由收发天线阵元向被测对象发射所述微波探测信号,实现对被测对象的扫描。通过定位触发器实现定点触发扫描,收发天线阵元可以实现在预先设定的扫描点处发射微波探测信号,其扫描点定位精准,进而保障了扫描质量,使得被测对象成像清晰,检测效果好。
步骤312:处理通过所述收发天线阵元接收从被测对象反射回来的回波信号。
接收从被测对象反射回来的回波信号,并对接收的回波信号进行数据分析处理,进而实现对被测对象的三维扫描。
在一个实施例中,该方法还包括:按照设定的时序依次开启收发天线阵元中的各天线单元,依次发射微波探测信号并依次接收回波信号,实现被测对象在当前角度的扫描,即实现收发天线阵元在当前扫描点处的扫描。在旋转控制模块的带动下,改变收发天线阵元的扫描角度,即改变收发天线阵元的扫描点位置,进而实现对被测对象的三维扫描成像。
在一个实施例中,处理通过所述收发天线阵元接收从被测对象反射回来的回波信号后,还包括:
步骤402:将所述接收的回波信号转换为数字信号。
模数转换模块将回波信号转换为数字信号。
步骤404:根据所述数字信号生成所述被测对象的图像数据。
数据处理模块连接所述模数转换模块,将所述数字信号转换为所述被测对象的图像数据。
步骤406:根据所述图像数据生成并显示所述被测对象的三维图像。
图像处理模块,连接数据处理模块,根据所述图像数据生成所述被测对象的三维图像。显示模块,连接图像处理模块,用于显示所述三维图像。将被测对象经扫描后的图像显示出来,供检测人员查看,以对被测对象进行检测。
上述旋转扫描三维成像方法,接收初始化信号,并根据所述初始化信号控制收发天线阵元从多个角度对被测对象进行旋转扫描;控制所述收发天线阵元旋转扫描到相应位置触发定位触发器并产生触发信号;根据所述触发信号控制产生微波探测信号,并通过所述收发天线阵元向被测对象发射所述微波探测信号;处理通过所述收发天线阵元接收从被测对象反射回来的回波信号。该旋转扫描三维成像方法的扫描点定位精准,扫描速度快,成像清晰, 检测效果好。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种旋转扫描三维成像系统,其特征在于,包括:
    柱形框架,包括柱形侧面;
    收发天线阵元,设置在所述柱形侧面上,用于向位于所述柱形框架内的被测对象发射微波探测信号,并接收从被测对象反射回来的回波信号;
    信号收发模块,与所述收发天线阵元连接,用于产生并向所述收发天线阵元发送所述微波探测信号,并对所述回波信号进行处理;
    旋转控制模块,与所述收发天线阵元连接,用于控制所述收发天线阵元沿所述柱形侧面旋转运动,以使所述收发天线阵元从多个角度向被测对象发射所述微波探测信号;及
    定位触发器,与所述信号收发模块连接,所述定位触发器固定设置在所述柱形框架上,用于在所述收发天线阵元运动到所述定位触发器的位置时,触发所述信号收发模块。
  2. 根据权利要求1所述的系统,其中,所述定位触发器为两个或两个以上。
  3. 根据权利要求1所述的系统,其中,所述定位触发器为压力传感器或光传感器。
  4. 根据权利要求1所述的系统,其中,所述柱形框架为圆柱形框架。
  5. 根据权利要求1所述的系统,其中,所述柱形框架沿旋转方向设置有环形导轨,所述收发天线阵元在所述旋转控制模块的控制下沿所述环形导轨旋转运动。
  6. 根据权利要求5所述的系统,其中,所述定位触发器固定设置在所述环形导轨上。
  7. 根据权利要求1所述的系统,其中,所述收发天线阵元包括多个天线单元,多个所述天线单元沿所述柱形框架的母线方向设置在所述柱形侧面上。
  8. 根据权利要求1所述的系统,其中,所述收发天线阵元为线性收发天线阵列或平面收发天线阵列。
  9. 根据权利要求7所述的系统,其中,还包括扫描控制模块,用于按照设定的时序依次控制所述收发天线阵元中的各个天线单元对所述被测对象进行扫描。
  10. 根据权利要求1所述的系统,其中,还包括模数转换模块和数据处理模块,所述模数转换模块连接所述信号收发模块,将所述回波信号转换为数字信号,所述数据处理模块连接所述模数转换模块,将所述数字信号转换为所述被测对象的图像数据。
  11. 根据权利要求10所述的系统,其中,还包括图像处理模块,连接所述数据处理模块,用于根据所述图像数据生成所述被测对象的三维图像。
  12. 根据权利要求11所述的系统,其中,还包括显示模块,连接所述图像处理模块,用于显示所述三维图像。
  13. 一种旋转扫描三维成像方法,包括:
    接收初始化信号;
    根据所述初始化信号控制收发天线阵元从多个角度对被测对象进行旋转扫描;
    控制所述收发天线阵元旋转扫描到相应位置触发定位触发器并产生触发信号;
    根据所述触发信号产生微波探测信号;
    通过所述收发天线阵元向被测对象发射所述微波探测信号;及
    处理通过所述收发天线阵元接收从所述被测对象反射回来的回波信号。
  14. 根据权利要求13所述的方法,进一步包括:
    将所述接收的回波信号转换为数字信号;
    根据所述数字信号生成所述被测对象的图像数据;
    根据所述图像数据生成并显示所述被测对象的三维图像。
PCT/CN2017/111237 2016-12-09 2017-11-16 旋转扫描三维成像系统和方法 WO2018103519A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/467,662 US11531097B2 (en) 2016-12-09 2017-11-16 Three-dimensional imaging system and method based on rotational scanning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611132424.9A CN106680814B (zh) 2016-12-09 2016-12-09 旋转扫描三维成像系统
CN201611132424.9 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018103519A1 true WO2018103519A1 (zh) 2018-06-14

Family

ID=58867973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111237 WO2018103519A1 (zh) 2016-12-09 2017-11-16 旋转扫描三维成像系统和方法

Country Status (3)

Country Link
US (1) US11531097B2 (zh)
CN (1) CN106680814B (zh)
WO (1) WO2018103519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378476A (zh) * 2022-08-22 2022-11-22 欧必翼太赫兹科技(北京)有限公司 用于阵列天线进行信号收发的方法及阵列天线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291740B (zh) 2016-09-07 2017-09-15 华讯方舟科技有限公司 功率调节方法、装置以及人体安检设备
CN106680814B (zh) 2016-12-09 2018-07-27 华讯方舟科技有限公司 旋转扫描三维成像系统
CN109061635B (zh) * 2018-06-08 2021-07-06 深圳市重投华讯太赫兹科技有限公司 旋转扫描系统
CN109085657A (zh) * 2018-08-14 2018-12-25 西安恒帆电子科技有限公司 一种无盲区毫米波主动安检系统
CN109581527B (zh) * 2018-12-21 2020-11-27 济南爱我本克网络科技有限公司 双臂式毫米波成像系统转动机构的驱动装置和方法
CN110916659B (zh) * 2019-12-05 2023-08-11 川北医学院附属医院 一种全息微波弹性成像方法及装置
CN111812642B (zh) * 2020-05-25 2022-11-11 北京理工大学 一种圆柱孔径mimo阵列天线、成像方法及补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054865A2 (en) * 2006-04-26 2008-05-08 L-3 Communications Security And Detection Systems, Inc. Multi-source surveillance systems
CN105759269A (zh) * 2016-04-25 2016-07-13 深圳市无牙太赫兹科技有限公司 三维全息成像的安检系统及方法
CN105938206A (zh) * 2016-07-06 2016-09-14 华讯方舟科技有限公司 毫米波安检仪调试系统及毫米波安检仪调试方法
CN106094734A (zh) * 2016-07-21 2016-11-09 华讯方舟科技有限公司 安检仪运动控制系统
CN106680814A (zh) * 2016-12-09 2017-05-17 华讯方舟科技有限公司 旋转扫描三维成像系统
CN206339649U (zh) * 2016-12-09 2017-07-18 华讯方舟科技有限公司 旋转扫描三维成像系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718785A (en) * 1971-11-02 1973-02-27 Int Standard Electric Corp Microswitch with improved flexible loop sensing means for detecting transient objects
US5501628A (en) * 1994-02-14 1996-03-26 Link Group International Cam-operated, synchronized marching soldier trackway
US7365672B2 (en) * 2001-03-16 2008-04-29 Battelle Memorial Institute Detection of a concealed object
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
CN103698762B (zh) * 2013-12-30 2016-11-23 北京无线电计量测试研究所 一种虚轴式毫米波人体安检系统
CN204228978U (zh) * 2014-11-07 2015-03-25 深圳市一体投资控股集团有限公司 一种三维成像装置
CN106556874B (zh) * 2016-10-31 2018-10-23 华讯方舟科技有限公司 一种近距离微波成像方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054865A2 (en) * 2006-04-26 2008-05-08 L-3 Communications Security And Detection Systems, Inc. Multi-source surveillance systems
CN105759269A (zh) * 2016-04-25 2016-07-13 深圳市无牙太赫兹科技有限公司 三维全息成像的安检系统及方法
CN105938206A (zh) * 2016-07-06 2016-09-14 华讯方舟科技有限公司 毫米波安检仪调试系统及毫米波安检仪调试方法
CN106094734A (zh) * 2016-07-21 2016-11-09 华讯方舟科技有限公司 安检仪运动控制系统
CN106680814A (zh) * 2016-12-09 2017-05-17 华讯方舟科技有限公司 旋转扫描三维成像系统
CN206339649U (zh) * 2016-12-09 2017-07-18 华讯方舟科技有限公司 旋转扫描三维成像系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378476A (zh) * 2022-08-22 2022-11-22 欧必翼太赫兹科技(北京)有限公司 用于阵列天线进行信号收发的方法及阵列天线
CN115378476B (zh) * 2022-08-22 2023-09-22 欧必翼太赫兹科技(北京)有限公司 用于阵列天线进行信号收发的方法及阵列天线

Also Published As

Publication number Publication date
CN106680814A (zh) 2017-05-17
CN106680814B (zh) 2018-07-27
US11531097B2 (en) 2022-12-20
US20190317208A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2018103519A1 (zh) 旋转扫描三维成像系统和方法
US20150048964A1 (en) Millimeter wave three dimensional holographic scan imaging apparatus and inspecting method thereof
CN109061635B (zh) 旋转扫描系统
JP2008241304A (ja) 物体検知装置
CN102626324A (zh) 超声波测量设备及其控制方法
CN108535550B (zh) 基于布鲁斯特角测量的太赫兹物质介电常数测量系统
CA3027437C (en) Three-dimensional imaging method and system
US8482602B2 (en) Non-destructive rotary imaging
US2433332A (en) System for locating obstacles
US20140290368A1 (en) Method and apparatus for remote position tracking of an industrial ultrasound imaging probe
JP4369915B2 (ja) 電磁波イメージングシステム
WO2020147438A1 (zh) 一种安检系统以及安检方法
US20150369909A1 (en) Image sensor for large area ultrasound mapping
CN211856905U (zh) 一种多功能主动式太赫兹成像系统装置
CN109171616A (zh) 获得被测物内部3d形状的系统及方法
CN206339649U (zh) 旋转扫描三维成像系统
CN109975802B (zh) 基于毫米波的反射变换成像系统及缺陷检测方法
CN211292584U (zh) 一种成像装置
WO2020191970A1 (zh) 一种基于原始数据的超声相控阵检测系统和方法
Furuhashi et al. Three-dimensional imaging sensor system using an ultrasonic array sensor and a camera
Nüßler et al. Terahertz imaging arrays for industrial inline measurements
CN109828030B (zh) 一种基于声场特征的反射体形貌提取系统和提取方法
RU2393501C1 (ru) Способ подповерхностного зондирования
KR102187094B1 (ko) 레이돔의 진단 시스템 및 방법
CN209102928U (zh) 一种安检仪及安检系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879003

Country of ref document: EP

Kind code of ref document: A1