WO2018103414A1 - 辐射探测装置、方法以及数据处理方法和处理器 - Google Patents

辐射探测装置、方法以及数据处理方法和处理器 Download PDF

Info

Publication number
WO2018103414A1
WO2018103414A1 PCT/CN2017/103011 CN2017103011W WO2018103414A1 WO 2018103414 A1 WO2018103414 A1 WO 2018103414A1 CN 2017103011 W CN2017103011 W CN 2017103011W WO 2018103414 A1 WO2018103414 A1 WO 2018103414A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
single photon
waveform data
imaging
photon signals
Prior art date
Application number
PCT/CN2017/103011
Other languages
English (en)
French (fr)
Inventor
李元景
赵自然
李荐民
李玉兰
朱维彬
邹湘
张清军
宗春光
赵晓琳
李树伟
王钧效
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to EP17878824.6A priority Critical patent/EP3553505A4/en
Priority to JP2019513913A priority patent/JP6954998B2/ja
Publication of WO2018103414A1 publication Critical patent/WO2018103414A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation

Definitions

  • the present invention relates to the field of radiation detection technology, and more particularly to a radiation detection apparatus, method, and data processing method and processor.
  • the detector receives more scattered X-rays, and even the scattered signal intensity may be greater than the transmitted signal intensity, and the interference is serious, which affects the material resolving power of the radiation detecting imaging system.
  • the detection effect is often ensured by increasing the incident ray energy or increasing the dose of the radiation.
  • a radiation detecting apparatus comprising: a radiation detector; a high speed ADC (Analog-to-Digital Converter) connected to the radiation detector; and, coupled to the high speed ADC a data processor; wherein the ray detector converts the optical signal generated by the transmission of the X-ray and the scintillator into an electrical signal; the high-speed ADC samples the waveform of the electrical signal, acquires the waveform data, and sends the waveform data to the data processor; the data processor is The waveform data determines the number of single photon signals, and the integrated signal and/or the count signal of the waveform data are used for imaging according to the number of single photon signals.
  • ADC Analog-to-Digital Converter
  • the ray detector comprises a SiPM (Silicon photomultiplier) ray detector.
  • the data processor determines, according to the number of single photon signals, that the integrated signal and/or the counting signal of the waveform data is used for imaging, and the data processor compares the number of single photon signals with a predetermined low threshold and a predetermined high threshold; If the number of photon signals is less than a predetermined low threshold, the integrated signal of the waveform data is used as an imaging signal to image according to the integrated signal; if the number of single photon signals is greater than a predetermined high threshold, the counting signal of the waveform data is used as an imaging signal, so as to Counting signal imaging; if the number of single photon signals is between a predetermined low threshold and a predetermined high threshold, the weighting values of the counting signal and the integrated signal are imaged as imaging signals.
  • the data processor determines the number of single photon signals according to the waveform data, including: the data processor according to the wave The shape data acquires a single photon signal identification parameter, and the single photon signal identification parameter includes a peak amplitude, a number of peaks, and/or an integrated area size; the data processor determines the number of single photon signals in the waveform data according to the single photon signal identification parameter.
  • the data processor sums the pulse waveform data signals that exceed the predetermined amplitude threshold to obtain an integrated signal of the waveform data.
  • the data processor determines a pulse number and a pulse amplitude for peaking the pulse waveform data signal exceeding a predetermined amplitude threshold to obtain a count signal of the waveform data.
  • the radiation detecting device further comprises: a fast amplifier that amplifies the electrical signal from the radiation detector and sends the signal to the high speed ADC.
  • the radiation detecting device further comprises: a temperature compensator that adjusts a working bias voltage of the radiation detector according to a temperature change of the radiation detector.
  • the data processor includes a counter, an integrator, a comparator, an adder, and a multiplier.
  • the data processor includes an FPGA (Field-Programmable Gate Array).
  • FPGA Field-Programmable Gate Array
  • Such a device can determine the number of single photon signals based on the waveform data, and determine the mass thickness of the measured object by the number of single photon signals. Since the integrated signal is strong when penetrating a substance having a small mass and a small thickness, when the material having a large thickness is penetrated, the signal integral characteristic is weak and the counting signal is strong, so that it is possible to judge the integrated signal, the count signal, or both of the waveform data. Combining imaging to improve the quality of radiation detection imaging of objects of different mass thicknesses and improve detection and recognition.
  • a radiation detecting method comprising: acquiring a transmitted X-ray by a ray detector and converting it into an electrical signal; performing waveform sampling on the electrical signal to acquire waveform data; and determining the number of single photon signals according to the waveform data The imaging is performed using the integrated signal and/or the count signal of the waveform data according to the number of single photon signals.
  • the ray detector comprises a SiPM ray detector.
  • determining, according to the number of single photon signals, the integrating signal and/or the counting signal using the waveform data for imaging comprises: comparing the number of single photon signals with a predetermined low threshold and a predetermined high threshold; if the number of single photon signals is less than a predetermined number When the threshold is low, the integrated signal of the waveform data is used as an imaging signal to image according to the integrated signal; if the number of single photon signals is greater than a predetermined high threshold, the counting signal of the waveform data is used as an imaging signal to image according to the counting signal; When the number of photon signals is between a predetermined low threshold and a predetermined high threshold, the counting signal and The weighted value of the integrated signal is imaged as an imaging signal.
  • determining the number of single photon signals according to the waveform data includes: acquiring single photon signal identification parameters according to the waveform data, and the single photon signal identification parameters include peak amplitude, number of peaks, and/or integrated area size; and identifying parameters according to the single photon signal Determine the number of single photon signals in the waveform data.
  • the method for detecting radiation further comprises: summing pulse waveform data signals exceeding a predetermined amplitude threshold to obtain an integrated signal of the waveform data; and determining a pulse number and a pulse amplitude for peaking a pulse waveform data signal exceeding a predetermined amplitude threshold; Obtain a count signal of the waveform data.
  • the radiation detecting method further comprises: amplifying the electrical signal from the radiation detector by a fast amplifier and transmitting the signal to the high speed ADC.
  • the radiation detecting method further comprises: adjusting a working bias voltage of the radiation detector by the temperature compensator according to the temperature change of the radiation detector.
  • the number of single photon signals can be determined according to the waveform data, the mass thickness of the measured object can be determined by the number of single photon signals, and then the integrated signal of the waveform data, the counting signal, or a combination of the two can be determined for imaging.
  • the imaging quality of the radiation detection of the measured object with different thicknesses is improved, and the detection degree of detection is improved.
  • a radiation detection data processor includes: a single photon signal number determining unit for determining a single photon signal number according to waveform data; and an imaging signal determining unit for using a single photon signal The number is determined by using the integrated signal and/or the count signal of the waveform data for imaging.
  • the imaging signal determining unit is configured to compare the number of single photon signals with a predetermined low threshold and a predetermined high threshold; if the number of single photon signals is less than a predetermined low threshold, the integrated signal of the waveform data is used as an imaging signal, so that Imaging according to the integrated signal; if the number of single photon signals is greater than a predetermined high threshold, the counting signal of the waveform data is used as an imaging signal to image according to the integrated signal; if the number of single photon signals is between a predetermined low threshold and a predetermined high threshold Then, the weighted values of the count signal and the integrated signal are imaged as an imaging signal.
  • Such a data processor can determine the number of single photon signals according to the waveform data, determine the mass thickness of the measured object by the number of single photon signals, and then determine the integrated signal, the counting signal using the waveform data, or combine the two to image, Thereby, the imaging quality of the radiation detection of the measured object with different thicknesses is improved, and the detection degree of detection is improved.
  • a radiation detection data processing method comprising: determining a number of single photon signals according to waveform data; determining an integrated signal and/or counting using waveform data according to the number of single photon signals; The signal is imaged.
  • determining, according to the number of single photon signals, the integrating signal and/or the counting signal using the waveform data for imaging comprises: comparing the number of single photon signals with a predetermined low threshold and a predetermined high threshold; if the number of single photon signals is less than a predetermined number When the threshold is low, the integrated signal of the waveform data is used as an imaging signal to image according to the integrated signal; if the number of single photon signals is greater than a predetermined high threshold, the counting signal of the waveform data is used as an imaging signal to image according to the integrated signal; When the number of photon signals is between a predetermined low threshold and a predetermined high threshold, the weighting values of the counting signal and the integrated signal are imaged as imaging signals.
  • determining the number of single photon signals according to the waveform data includes: acquiring single photon signal identification parameters according to the waveform data, and the single photon signal identification parameters include peak amplitude, number of peaks, and/or integrated area size; and identifying parameters according to the single photon signal Determine the number of single photon signals in the waveform data.
  • the number of single photon signals can be determined according to the waveform data, the mass thickness of the measured object can be determined by the number of single photon signals, and then the integrated signal of the waveform data, the counting signal, or a combination of the two can be determined for imaging.
  • the imaging quality of the radiation detection of the measured object with different thicknesses is improved, and the detection degree of detection is improved.
  • FIG. 1 is a schematic view of one embodiment of a radiation detecting device of the present invention.
  • FIG. 2 is a schematic diagram of one embodiment of a radiation detection data processor of the present invention.
  • Figure 3 is a schematic illustration of another embodiment of a radiation detecting device of the present invention.
  • FIG. 4 is a schematic diagram showing the circuit principle of still another embodiment of the radiation detecting apparatus of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario of still another embodiment of a radiation detecting apparatus according to the present invention.
  • FIG. 6 is a flow chart of one embodiment of a radiation detecting method of the present invention.
  • FIG. 7 is a flow chart of one embodiment of a method of processing radiation detection data of the present invention.
  • Figure 8 is a flow chart of another embodiment of the radiation detecting method of the present invention.
  • FIG. 1 A schematic diagram of one embodiment of a radiation detecting device of the present invention is shown in FIG.
  • the ray detector 101 converts the optical signal generated by the transmission of the X-ray and the scintillator into an electrical signal during the X-ray transmission detection process;
  • the high-speed ADC 102 samples the waveform of the electrical signal, acquires the waveform data and sends it to the data processor;
  • the device 103 determines the number of single photon signals based on the waveform data, determines an integrated signal using the waveform data, counts the signal, or performs image display using the weighted values of the two according to the number of single photon signals.
  • the data processor 103 may first acquire the integrated signal and the count signal according to the waveform data, and then determine the number of single photon signals according to the waveform data. Since X-rays penetrate small mass-thickness materials, the number of single-photon signals is small and the integrated signal is strong; when penetrating a substance with a large thickness, the number of single-photon signals is relatively large and the signal integral characteristics are weak, and the counting signal is strong. Therefore, according to the number of single photon signals, a strong signal corresponding to the mass thickness of the measured substance is selected for display.
  • the data processor 103 can be an FPGA, or can be configured by a counter, an integrator, a comparator, an adder, and a multiplier connection.
  • Such a device can determine the number of single photon signals according to the waveform data, determine the integrated signal of the waveform data by using the number of single photon signals, count the signals, or combine the two to image, thereby improving the measured objects of different mass thicknesses.
  • Radiation detects imaging quality and improves detection and recognition.
  • the single photon signal number determining unit 201 is capable of determining the number of single photon signals based on the waveform data.
  • the imaging signal determining unit 202 can determine the integrated signal, the counting signal, or both of the waveform data according to the number of single photon signals, for example, when the single photon characteristic signal is detected, the integrated signal is mainly used for imaging, and the detection is performed. When a single photon signal is used, the counting signal is mainly used for imaging.
  • Such a data processor can determine the number of single photon signals according to the waveform data, determine the mass thickness of the measured object by the number of single photon signals, and then determine the integrated signal, the counting signal using the waveform data, or combine the two to image, Thereby, the imaging quality of the radiation detection of the measured object with different thicknesses is improved, and the detection degree of detection is improved.
  • the imaging signal determining unit 202 can compare the number of single photon signals with a predetermined low threshold and a predetermined high threshold, and the predetermined high threshold and the predetermined low threshold can be configured and adjusted by the configuration personnel according to experience, actual application.
  • the mass of the object to be measured is small, and the integrated signal is strong.
  • the integrated signal of the waveform data can be used as an imaging signal, so that the imaging device can image according to the integrated signal.
  • the counting signal of the waveform data can be used as an imaging signal, so that the imaging device performs imaging according to the counting signal.
  • the weighting values of the counting signal and the integrated signal are imaged as imaging signals. In one embodiment, it can be based on the formula:
  • the imaging signal Z is determined.
  • X is the count signal
  • Y is the integral signal
  • A is the weight of the count signal
  • B is the weight of the integrated signal.
  • a and B may be fixed values according to experience, actual application configuration and adjustment, or may be a value that is in a certain operational relationship with the number of single photon signals, and A is positively correlated with the number of single photon signals.
  • B is negatively correlated with the number of single photon signals.
  • the imaging signal determining unit 202 can calculate A and B according to the number of single photon signals based on a predetermined strategy, and then calculate the imaging signal Z.
  • Such a data processor can quantitatively judge the number of single photon signals according to a predetermined low threshold and a predetermined high threshold, determine an imaging signal, thereby improving the accuracy of the determination, determining a signal most suitable for imaging, and optimizing the imaging effect.
  • the single photon signal number determining unit 201 can obtain a single photon signal identification parameter according to the waveform data, and the single photon signal identification parameter includes a peak amplitude, a number of peaks, an integrated area size, and the like; and the parameter is identified according to the single photon signal.
  • the number of single photon signals in the waveform data is determined. If the integrated area is smaller than the predetermined area threshold, the peak amplitude is less than the predetermined single photon amplitude threshold, etc., then a single photon signal is considered to occur.
  • Such a data processor can determine the number of single photon signals according to the waveform data, so as to determine the mass thickness of the measured object according to the number of single photon signals, thereby determining an integrated signal, a counting signal, or a combination of the two using waveform data.
  • the ray detector can include a SiPM ray detector.
  • the pure SiGe or lead tungstate scintillator can be used to couple the SiPM, and the plurality of scintillators are arranged in a line array or a face array, and a plurality of SiPMs arranged at equal intervals are coupled into the detector component.
  • the X-rays emitted from the X-ray generator pass through the object to be measured, and interact with the detector (pure cesium iodide or lead tungstate crystal array) to generate photons, which are absorbed by the SiPM and converted into electric charges.
  • the signal is imaged by processing the charge signal.
  • more denser SiPM components can be placed in predetermined sensitive regions, such as intermediate locations of the radiation detectors, thereby increasing the detection pixels of the sensitive regions, further improving imaging accuracy.
  • SiPM scintillator-coupled SiPM
  • X-ray detection imaging using SiPM's multiplication function can improve the signal-to-noise ratio in the image; SiPM has the ability to detect single photons, and the scattered signal is significantly different from the useful signal spectrum, so it can be more Good screening of single photon signals, which facilitates the selection of integral and counting signals for imaging, improves the anti-jamming capability of the radiation detecting device, improves the image clarity, and improves the material resolution of the system.
  • It can reduce the X-ray dose under the premise of ensuring the imaging effect, reduce the radiation protection requirements, improve the safety and achieve the energy-saving effect.
  • the data processor when a SiPM ray detector is employed, the data processor is also capable of calculating an integrated signal and a count signal based on the waveform data.
  • the predetermined amplitude threshold may be set, and the waveform data below the predetermined amplitude threshold may be regarded as the scattered signal data, and the influence of the scattered signal data needs to be excluded when generating the integrated signal and the count signal.
  • the data processor may sum the pulse waveform data signals exceeding the predetermined amplitude threshold to obtain an integrated signal of the waveform data; and find a pulse number and a pulse amplitude for the peak waveform data signal exceeding the predetermined amplitude threshold to obtain a count signal of the waveform data. .
  • the SiPM Since the X-ray penetrates the mass of the material and the thickness is hardened, the energy deposition of the useful signal is high, often greater than 1 MeV, and the energy of the scattered signal is lower, generally below 0.2 MeV.
  • the SiPM has the ability to detect single photons, so the data processing The device can identify the scattered signal data and exclude the scattered signal data when calculating the integrated signal and the counting signal, thereby improving the accuracy of imaging.
  • the data processor may first determine the number of single photon signals, determine the type of the imaging signal, and selectively generate the integrated signal and the counting signal, thereby reducing the amount of computation and storage of the data, and improving the processing efficiency.
  • the data processor can also be integrated into an integrated signal and a count signal, and then selected among the generated signals depending on the type of imaging signal.
  • the data processor may include an FPGA unit and a computer processing device, wherein the FPGA unit performs sampling data buffering, generates an integrated signal and a counting signal, and transmits the integrated signal, the counting signal, and the waveform data to the computer processing device; the computer processing device determines the waveform data according to the waveform data. The number of single photon signals, and then the imaging signal is selected or calculated in the integrated signal and the count signal according to the determined type of imaging signal.
  • Such a device can be improved on the basis of an existing FPGA unit, and data processing is realized by a computer processing device, which is easy to implement.
  • FIG. 302. A schematic diagram of another embodiment of the radiation detecting device of the present invention is shown in FIG.
  • the fast amplifier 304 is included between the radiation detector 301 and the high speed ADC 302.
  • the fast amplifier 304 can amplify the electrical signal from the radiation detector and send it to the high speed ADC, thereby ensuring that the high speed ADC can perform waveform sampling, improve the waveform data quality, and ensure the accuracy of the data processing of the data processor 303.
  • the radiation detector 301 can also be coupled to a temperature compensator 305.
  • the temperature compensator 305 can be implemented by an FPGA. Since the SiPM is temperature sensitive, the gain of the SiPM is also related to its bias voltage. The temperature compensator 305 can adjust the bias voltage according to the temperature change of the SiPM, thereby correcting the gain of the SiPM, maintaining the constant gain and improving the detection accuracy. .
  • FIG. 4 A schematic diagram of the circuit principle of still another embodiment of the radiation detecting device of the present invention is shown in FIG.
  • the radiation detecting device can be divided into a detector module 40 and a control module 41.
  • the timing and control circuit 42 controls the timing synchronization of the detector module 40 and the control module 41.
  • the timing control command can be generated by the FPGA device 404.
  • the detector module 40 includes a SiPM ray detector 401, a fast amplifier 402, a high speed ADC 403, and an FPGA device 404, which are connected to the interface circuit 411 of the control module 41 via an interface circuit 405.
  • the control, network transmission module 412 of the control module 41 can issue control commands to the detector module 40 through the timing and control circuit 42, and send the data acquired from the FPGA device 404 to the network, such as a Gigabit Ethernet or fiber network, to the network.
  • the computer 43 performs further data processing and display.
  • the FPGA device 404 can perform waveform data integration and counting operations only to obtain an integrated signal and a count signal, and send the integrated signal, the count signal and the waveform data to the computer 43, and the imaging signal is determined by the computer 43 and imaged, thereby reducing the requirements on the hardware circuit.
  • the hardware response speed is improved and easy to implement; the FPGA device 404 can also directly determine the imaging signal and send it to the computer 43, and the computer 43 only functions as a display.
  • Such a device achieves better device integration and is more suitable for mobile. Test environment and improved user friendliness.
  • FIG. 5 A schematic diagram of an application scenario of a further embodiment of the radiation detecting device of the present invention is shown in FIG.
  • the object to be measured 502 is located between the X-ray source 501 and the SiPM ray detector 503 to ensure that the SiPM ray detector 503 can better acquire the transmitted ray.
  • the X-rays generated by the X-ray source 501 are transmitted through the object 502 to be measured and reach the SiPM ray detector 503.
  • the SiPM ray detector 503 sends the detection result to the high speed ADC 504 for waveform sampling, and then sends it to the data processor 505 for processing.
  • the data processor 505 determines the number of single photon signals according to the waveform data, and determines the waveform data according to the number of single photon signals.
  • the integrated signal, the count signal, or the weighted value of both are used for imaging display.
  • Such a device can determine the number of single photon signals based on the waveform data, and thereby determine the product using the waveform data.
  • the signal is divided, the signal is counted, or the two are combined for imaging, thereby improving the quality of the radiation-detected imaging of the measured object of different mass thicknesses.
  • FIG. 1 A flow chart of one embodiment of the radiation detecting method of the present invention is shown in FIG.
  • step 601 the optical signal generated by the action of the transmitted X-rays and the scintillator is converted into an electrical signal during the X-ray transmission detection process.
  • step 602 waveform sampling is performed on the electrical signal to acquire waveform data.
  • step 603 the number of single photon signals is determined based on the waveform data.
  • an integrated signal using the waveform data, a count signal, or a weighted value of both is used to perform imaging display based on the number of single photon signals. Since the X-ray penetrates a substance with a small thickness and a small number of single photon signals and the integrated signal is strong; when a substance with a large thickness is penetrated, the number of single photon signals is large and the integrated signal is weak, and the counting signal is strong, so A strong signal corresponding to the mass thickness of the measured substance is selected according to the number of single photon signals for display.
  • the number of single photon signals can be determined according to the waveform data, and the integrated signal of the waveform data, the counting signal, or the combination of the two can be determined by the number of single photon signals, thereby improving the measurement of the thickness of different masses.
  • the radiation of the object detects the image quality and improves the detection sensitivity.
  • a flowchart of an embodiment of the method for processing the radiation detection data of the present invention may be performed by determining the number of single photon signals according to the waveform data, as shown in steps 603 and 604 of the embodiment of FIG. 6, and determining the number of single photon signals according to the number of single photon signals.
  • the integrated signal of the waveform data, the count signal, or both are imaged. For example, when the single photon signal is not detected, the integrated signal is mainly used for imaging, and when the single photon signal is detected, the counting signal is mainly used for imaging.
  • the number of single photon signals can be determined according to the waveform data, and the mass thickness of the measured object can be determined by the number of single photon signals, thereby determining the integrated signal, the counting signal, or both of the waveform data. Combining imaging to improve the quality of radiation detection imaging of objects of different mass thicknesses and improve detection and recognition.
  • FIG. 1 A flow chart of another embodiment of the radiation detection data processing method of the present invention is shown in FIG.
  • the number of single photon signals is determined based on the waveform data.
  • the single photon signal identification parameter may be acquired according to the waveform data, and the single photon signal identification parameter includes a peak amplitude, a peak number, an integrated area size, and the like; and the single photon signal in the waveform data is determined according to the single photon signal identification parameter. The number, if the integrated area is less than the predetermined area threshold, and the peak amplitude is less than the predetermined single photon amplitude threshold, then a single photon signal is considered to occur.
  • step 702 the number of single photon signals is compared to a predetermined low threshold and a predetermined high threshold. If the number of single photon signals is less than the predetermined low threshold, step 703 is performed; if the number of single photon signals is greater than the predetermined high threshold, step 704 is performed; if the number of single photon signals is between the predetermined low threshold and the predetermined high threshold, Then step 705 is performed.
  • step 703 the integrated signal of the waveform data is used as an imaging signal so that the imaging device performs imaging based on the integrated signal.
  • step 704 the count signal of the waveform data is taken as an imaging signal so that the imaging device performs imaging based on the count signal.
  • step 705 the weighted values of the count signal and the integrated signal are imaged as an imaging signal.
  • it can be based on the formula:
  • the imaging signal Z is determined.
  • X is the count signal
  • Y is the integral signal
  • A is the weight of the count signal
  • B is the weight of the integrated signal.
  • a and B may be fixed values according to experience, actual application configuration and adjustment, or may be a value that is in a certain operational relationship with the number of single photon signals, and A is positively correlated with the number of single photon signals.
  • B is negatively correlated with the number of single photon signals.
  • the imaging signal determining unit 202 can calculate A and B according to the number of single photon signals based on a predetermined strategy, and then calculate the imaging signal Z.
  • the number of single photon signals can be quantitatively determined according to a predetermined low threshold and a predetermined high threshold, and the imaging signal can be determined, thereby improving the accuracy of the determination, determining the signal most suitable for imaging, and optimizing the imaging effect.
  • the ray detector can include a SiPM ray detector.
  • the pure SiGe or lead tungstate scintillator can be used to couple the SiPM, and the plurality of scintillators are arranged in a line array or a face array, and a plurality of SiPMs arranged at equal intervals are coupled into the detector component.
  • more denser SiPM components can be placed in predetermined sensitive regions, such as intermediate locations of the radiation detectors, thereby increasing the detection pixels of the sensitive regions, further improving imaging accuracy.
  • SiPM Due to the extremely high sensitivity of SiPM, it has been rapidly applied in the field of single photon counting.
  • X-ray detection imaging using SiPM multiplication function can improve the signal-to-noise ratio in the image; SiPM has single photon detection capability, and the scattered signal and the useful signal energy spectrum are significantly different, so Better screening of single photon signals, which makes it easy to select integral and count signals for imaging, improve the clarity of the image, and improve the material resolution of the system.
  • X-ray dose reduces radiation protection requirements, improves safety and achieves energy-saving effects.
  • FIG. 1 A flow chart of another embodiment of the radiation detecting method of the present invention is shown in FIG.
  • step 801 the optical signal generated by the action of the transmitted X-rays and the scintillator is converted into an electrical signal during the X-ray transmission detection process.
  • step 802 the electrical signal is waveform sampled, the waveform data is acquired and sent to the data processor.
  • step 803 the pulse waveform data signals exceeding the predetermined amplitude threshold are summed to obtain an integrated signal of the waveform data.
  • step 804 the number of pulses and the pulse amplitude are determined by peaking the pulse waveform data signal exceeding the predetermined amplitude threshold to obtain a count signal of the waveform data.
  • step 805 the number of single photon signals is determined based on the waveform data.
  • step 806 an integrated signal using a waveform data, a count signal, or a weighted value of both is used to perform imaging display based on the number of single photon signals.
  • the SiPM Since the energy of the scattered signal is low, generally around 0.2 MeV, the SiPM has the ability to detect single photons.
  • the scattered signal data can be discriminated and excluded when calculating the integrated signal and the count signal, thereby improving the signal-to-noise ratio. Improve the penetration index of the system, thereby improving the accuracy of imaging.
  • the number of single photon signals can be determined first, the type of the imaging signal is determined, and the integrated signal and the counting signal are selectively generated, thereby reducing the amount of calculation and storage of the data, and improving the processing efficiency.
  • an integration signal and a count signal it is also possible to form an integration signal and a count signal, and then select among the generated signals according to the type of the imaging signal.
  • a processing method is more versatile, and the integrated signal and the counting signal can be generated by the FPGA unit, and the integrated signal, the counting signal, and the waveform data are sent to the computer processing device, and the computer processing device determines the number of single photon signals according to the waveform data. Further, selecting or calculating an imaging signal in the integrated signal and the counting signal according to the determined type of the imaging signal facilitates improvement on the basis of the existing FPGA unit, and realizes data processing by using a computer processing device, which is easy to implement.
  • the electrical signal from the ray detector can be amplified by a fast amplifier and then sent to a high speed ADC for waveform sampling, thereby ensuring that the high speed ADC can perform waveform sampling, improve waveform data quality, and ensure data processing. Accuracy and image quality.
  • the gain of the SiPM is also related to its bias voltage.
  • the temperature compensator can be used to adjust the operating bias voltage of the SiPM ray detector according to the temperature change of the SiPM, thereby realizing the gain of the SiPM. Correction, maintaining constant gain and improving detection accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种辐射探测装置、方法以及数据处理方法和处理器(103,303,505),涉及辐射探测技术领域。其中,一种辐射探测装置包括:射线探测器(101);与射线探测器(101)相连接的高速ADC(102,302,403,500);和与高速ADC(102,302,403,500)连接的数据处理器(103,303,505);其中,射线探测器(101)把透射X射线与闪烁体作用后产生的光信号转化为电信号;高速ADC(102,302,403,500)通过电信号波形采样获取波形数据;数据处理器(103,303,505)根据波形数据确定单光子信号个数,进而确定采用积分信号和/或计数信号进行成像。该装置能够利用探测器(101)的单光子探测能力根据波形数据确定单光子信号个数,进而判断采用波形数据的积分信号和/或计数信号进行成像,从而提高被测物体的辐射探测成像质量,提升系统的穿透力指标和物质分辨能力。

Description

辐射探测装置、方法以及数据处理方法和处理器 技术领域
本发明涉及辐射探测技术领域,特别是一种辐射探测装置、方法以及数据处理方法和处理器。
背景技术
在辐射探测成像系统的应用中,往往需要探测尺寸、物质种类有很大差距的物品。当被测物体的质量厚度较大时,探测器接收到的散射X射线较多,甚至散射信号强度可能会大于透射信号强度,干扰严重,影响辐射探测成像系统的物质分辨能力。
现有技术中往往通过提高入射射线能量或增大射线剂量的方式来保证探测效果。
发明内容
本发明的一个目的在于提出一种提高探测识别度的辐射探测方案。
根据本发明的一个方面,提出一种辐射探测装置,包括:射线探测器;与射线探测器相连接的高速ADC(Analog-to-Digital Converter,模数转化器);和,与高速ADC连接的数据处理器;其中,射线探测器把透射X射线与闪烁体作用后产生的光信号转化为电信号;高速ADC对电信号进行波形采样,获取波形数据并发送给数据处理器;数据处理器根据波形数据确定单光子信号个数,根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像。
可选地,射线探测器包括SiPM(Silicon photomultiplier,硅光电倍增管)射线探测器。
可选地,数据处理器根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像包括:数据处理器将单光子信号个数与预定低门限和预定高门限比较;若单光子信号个数小于预定低门限,则将波形数据的积分信号作为成像信号,以便根据积分信号成像;若单光子信号个数大于预定高门限,则将波形数据的计数信号作为成像信号,以便根据计数信号成像;若单光子信号个数介于预定低门限和预定高门限之间,则将计数信号和积分信号的加权值作为成像信号进行成像。
可选地,数据处理器根据波形数据确定单光子信号个数包括:数据处理器根据波 形数据获取单光子信号识别参数,单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;数据处理器根据单光子信号识别参数确定波形数据中的单光子信号个数。
可选地,数据处理器对超过预定幅度阈值的脉冲波形数据信号求和,获得波形数据的积分信号。
可选地,数据处理器对超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得波形数据的计数信号。
可选地,辐射探测装置还包括:将来自射线探测器的电信号进行放大处理后发送给高速ADC的快速放大器。
可选地,辐射探测装置还包括:根据射线探测器的温度变化调整射线探测器的工作偏置电压的温度补偿器。
可选地,数据处理器包括计数器、积分器、比较器、加法器和乘法器。
可选地,数据处理器包括FPGA(Field-Programmable Gate Array,现场可编程门阵列)。
这样的装置能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度。由于在穿透质量厚度小的物质时积分信号强,当穿透质量厚度大的物质时,信号积分特征弱,计数信号强,因此能够判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
根据本发明的另一个方面,提出一种辐射探测方法,包括:射线探测器获取透射X射线并转化为电信号;对电信号进行波形采样,获取波形数据;根据波形数据确定单光子信号个数;根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像。
可选地,射线探测器包括SiPM射线探测器。
可选地,根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像包括:将单光子信号个数与预定低门限和预定高门限比较;若单光子信号个数小于预定低门限,则将波形数据的积分信号作为成像信号,以便根据积分信号成像;若单光子信号个数大于预定高门限,则将波形数据的计数信号作为成像信号,以便根据计数信号成像;若单光子信号个数介于预定低门限和预定高门限之间,则将计数信号和 积分信号的加权值作为成像信号进行成像。
可选地,根据波形数据确定单光子信号个数包括:根据波形数据获取单光子信号识别参数,单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;根据单光子信号识别参数确定波形数据中的单光子信号个数。
可选地,辐射探测方法还包括:对超过预定幅度阈值的脉冲波形数据信号求和,获得波形数据的积分信号;对超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得波形数据的计数信号。
可选地,辐射探测方法还包括:通过快速放大器将来自射线探测器的电信号进行放大处理后发送给高速ADC。
可选地,辐射探测方法还包括:根据射线探测器的温度变化通过温度补偿器调整射线探测器的工作偏置电压。
通过这样的方法,能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度,进而判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
根据本发明的又一个方面,提出一种辐射探测数据处理器,包括:单光子信号个数确定单元,用于根据波形数据确定单光子信号个数;成像信号确定单元,用于根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像。
可选地,成像信号确定单元用于:将单光子信号个数与预定低门限和预定高门限比较;若单光子信号个数小于预定低门限,则将波形数据的积分信号作为成像信号,以便根据积分信号成像;若单光子信号个数大于预定高门限,则将波形数据的计数信号作为成像信号,以便根据积分信号成像;若单光子信号个数介于预定低门限和预定高门限之间,则将计数信号和积分信号的加权值作为成像信号进行成像。
这样的数据处理器能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度,进而判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
根据本发明的再一个方面,提出一种辐射探测数据处理方法,包括:根据波形数据确定单光子信号个数;根据单光子信号个数确定采用波形数据的积分信号和/或计数 信号进行成像。
可选地,根据单光子信号个数确定采用波形数据的积分信号和/或计数信号进行成像包括:将单光子信号个数与预定低门限和预定高门限比较;若单光子信号个数小于预定低门限,则将波形数据的积分信号作为成像信号,以便根据积分信号成像;若单光子信号个数大于预定高门限,则将波形数据的计数信号作为成像信号,以便根据积分信号成像;若单光子信号个数介于预定低门限和预定高门限之间,则将计数信号和积分信号的加权值作为成像信号进行成像。
可选地,根据波形数据确定单光子信号个数包括:根据波形数据获取单光子信号识别参数,单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;根据单光子信号识别参数确定波形数据中的单光子信号个数。
通过这样的方法,能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度,进而判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的辐射探测装置的一个实施例的示意图。
图2为本发明的辐射探测数据处理器的一个实施例的示意图。
图3为本发明的辐射探测装置的另一个实施例的示意图。
图4为本发明的辐射探测装置的又一个实施例的电路原理示意图。
图5为本发明的辐射探测装置的再一个实施例的应用场景示意图。
图6为本发明的辐射探测方法的一个实施例的流程图。
图7为本发明的辐射探测数据处理方法的一个实施例的流程图。
图8为本发明的辐射探测方法的另一个实施例的流程图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明的辐射探测装置的一个实施例的示意图如图1所示。射线探测器101在X射线透射探测过程中把透射X射线与闪烁体作用后产生的光信号转化为电信号;高速ADC102对电信号进行波形采样,获取波形数据并发送给数据处理器;数据处理器103根据波形数据确定单光子信号个数,根据单光子信号个数确定采用波形数据的积分信号、计数信号或用两者的加权值进行成像显示。在一个实施例中,数据处理器103可以先根据波形数据获取积分信号以及计数信号,再根据波形数据确定单光子信号个数。由于X射线穿透质量厚度较小的物质时单光子信号个数少且积分信号强;当穿透质量厚度较大的物质时单光子信号个数相对较多且信号积分特征弱,计数信号强,因此根据单光子信号个数选择与被测物质质量厚度对应的较强的信号进行显示。在一个实施例中,数据处理器103可以为FPGA,也可以由计数器、积分器、比较器、加法器、乘法器连接配置而成。
这样的装置能够根据波形数据确定单光子信号个数,通过单光子信号个数判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
本发明的辐射探测数据处理器的一个实施例的示意图如图2所示。其中,单光子信号个数确定单元201能够根据波形数据确定单光子信号个数。成像信号确定单元202能够根据单光子信号个数确定采用波形数据的积分信号、计数信号或兼顾两者进行成像,如在检测到单光子特征信号少时以积分信号为主进行成像,在检测到较多单光子信号时以计数信号为主进行成像。
这样的数据处理器能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度,进而判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
一个实施例中,成像信号确定单元202能够将单光子信号个数与预定低门限和预定高门限比较,预定高门限和预定低门限可以由配置人员根据经验、实际应用进行配置和调整。
若单光子信号个数小于预定低门限,则说明被测物体质量厚度较小,积分信号较强,可以将波形数据的积分信号作为成像信号,以便成像装置根据积分信号进行成像。
若单光子信号个数大于预定高门限,则说明被测物体质量厚度较大,计数信号较强,可以将波形数据的计数信号作为成像信号,以便成像装置根据计数信号进行成像。
若单光子信号个数介于预定低门限和预定高门限之间,则将计数信号和积分信号的加权值作为成像信号进行成像。在一个实施例中,可以根据公式:
Z=A*X+B*Y
确定成像信号Z。其中,X为计数信号,Y为积分信号,A为计数信号的权值,B为积分信号的权值。在一个实施例中,A、B可以是配置人员根据经验、实际应用配置和调整的定值,也可以是与单光子信号个数成一定运算关系的数值,A与单光子信号个数正相关,B与单光子信号个数负相关。成像信号确定单元202可以基于预定策略根据单光子信号个数计算得到A、B,进而计算得到成像信号Z。
这样的数据处理器能够根据预定低门限和预定高门限对单光子信号个数进行定量判断,确定成像信号,从而提高判断的准确度,确定最为适合用于成像的信号,优化成像效果。
在一个实施例中,单光子信号个数确定单元201可以根据波形数据获取单光子信号识别参数,单光子信号识别参数包括波峰幅度、波峰个数、积分面积大小等;再根据单光子信号识别参数确定波形数据中的单光子信号个数,如若积分面积小于预定面积阈值,波峰幅度小于预定单光子幅度阈值等时,则认为出现单光子信号。
这样的数据处理器能够根据波形数据确定单光子信号个数,以便根据单光子信号个数判断被测物体的质量厚度,进而确定采用波形数据的积分信号、计数信号或者将两者相结合进行成像。
在一个实施例中,射线探测器可以包括SiPM射线探测器。在一个实施例中,可以采用纯碘化铯或钨酸铅闪烁体耦合SiPM,多个闪烁体排列成线阵列或面阵列,与同等间距排列的多个SiPM耦合成探测器部件。在探测过程中,从X射线发生器发射出来的X射线通过被测物体后,与探测器(纯碘化铯或钨酸铅晶体阵列)相互作用产生光子,光子被SiPM吸收倍增后转换为电荷信号,通过处理该电荷信号进行成像。在一个实施例中,可以在射线探测器的中间位置等预定灵敏区域布置更多的、更密集的SiPM元件,从而增加灵敏区的探测像素,进一步提高成像的精准度。
在射线探测成像系统中,穿透力是衡量系统性能的重要指标,而光电器件和闪烁体是影响系统穿透力指标的重要因素之一。选择合适的光电器件和闪烁体对提高成像 系统的穿透力指标具有重要作用。目前传统的X射线探测器多采用“闪烁体耦合光电二极管”,但是传统的光电二极管不能甄别出散射X射线,无法降低散射对成像的影响,同时其测量范围较小。SiPM由于具有极高的灵敏度受到重视,已在单光子计数领域得到迅速应用。通过闪烁体耦合SiPM的方式,利用SiPM的倍增功能进行X射线探测成像能够提升图像中的信噪比;SiPM具备单光子的探测能力,散射信号与有用信号能谱具有显著的区别,因此能够更好的甄别出单光子信号,从而便于选择积分、计数信号进行成像,提高了辐射探测装置的抗干扰能力,提升图像的清晰程度,提高系统的物质分辨能力,同时,与现有技术相比,可以在保证成像效果的前提下降低X射线剂量,降低辐射防护要求,提高安全性且达到节能的效果。
在一个实施例中,采用SiPM射线探测器时,数据处理器还能够根据波形数据计算积分信号和计数信号。可以设置预定幅度阈值,低于预定幅度阈值的波形数据可以认为是散射信号数据,在生成积分信号和计数信号时,需要排除散射信号数据的影响。数据处理器可以对超过预定幅度阈值的脉冲波形数据信号求和,获得波形数据的积分信号;对超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得波形数据的计数信号。
由于X射线穿透较大物质质量厚度后,射线得到硬化,有用信号的能量沉积高,往往大于1MeV,散射信号能量较低,一般在0.2MeV以下,SiPM具备单光子的探测能力,因此数据处理器能够甄别出散射信号数据并在计算积分信号和计数信号时排除散射信号数据,从而提升成像的准确度。
在一个实施例中,数据处理器可以先确定单光子信号个数,确定成像信号的种类,进而选择性的生成积分信号、计数信号,从而减少数据的运算量和存储量,且提高处理效率。
在一个实施例中,数据处理器也可以先生成积分信号和计数信号,再根据成像信号的种类在已生成的信号中进行选择。数据处理器可以包括FPGA单元和计算机处理装置,由FPGA单元进行采样数据缓存,生成积分信号和计数信号,并将积分信号、计数信号以及波形数据发送给计算机处理装置;计算机处理装置根据波形数据确定单光子信号个数,进而根据确定的成像信号的种类在积分信号和计数信号中选择或计算成像信号。这样的装置能够在现有的FPGA单元基础上进行改进,利用计算机处理装置实现数据处理,易于实现。
本发明的辐射探测装置的另一个实施例的示意图如图3所示。其中,射线探测器301与高速ADC302之间包括快速放大器304。快速放大器304能够将来自射线探测器的电信号进行放大处理后发送给高速ADC,从而保证高速ADC能够进行波形采样,提高波形数据质量,保证数据处理器303的数据处理的准确度。在一个实施例中,射线探测器301还可以连接温度补偿器305。在一个实施例中,温度补偿器305可以通过FPGA实现。由于SiPM对温度敏感,SiPM的增益也与其偏置电压相关,温度补偿器305能够根据SiPM的温度变化调整其偏置电压,从而实现对SiPM的增益进行校正,维持增益恒定,提高探测的准确度。
本发明的辐射探测装置的又一个实施例的电路原理示意图如图4所示。其中,辐射探测装置可以分为探测器模块40和控制模块41,由时序、控制电路42控制探测器模块40和控制模块41的时序同步,时序控制指令可以由FPGA设备404产生。探测器模块40包括SiPM射线探测器401、快速放大器402、高速ADC403、FPGA设备404,通过接口电路405与控制模块41的接口电路411相连接。控制模块41的控制、网络传输模块412能够通过时序、控制电路42向探测器模块40下发控制指令,并将从FPGA设备404获取的数据通过网络,如千兆以太网或光纤网络,发送给计算机43进行进一步数据处理、显示。FPGA设备404可以只进行波形数据积分、计数操作,得到积分信号和计数信号,将积分信号、计数信号和波形数据发送给计算机43,由计算机43确定成像信号并成像,从而降低对硬件电路的要求,提高硬件反应速度且易于实现;FPGA设备404也可以直接确定成像信号并发送到计算机43,计算机43只起到显示器的作用,这样的装置达到了更好的设备集成效果,更加适用于可移动的测试环境,且提高了用户友好度。
本发明的辐射探测装置的再一个实施例的应用场景示意图如图5所示。其中,被测物体502位于X射线源501与SiPM射线探测器503之间,保证SiPM射线探测器503更好的获取透射射线。X射线源501产生的X射线透射穿过被测物体502,到达SiPM射线探测器503。SiPM射线探测器503将探测结果发送给高速ADC504进行波形采样后发送给数据处理器505进行处理,数据处理器505根据波形数据确定单光子信号个数,根据单光子信号个数确定采用波形数据的积分信号、计数信号或用两者的加权值进行成像显示。
这样的装置能够根据波形数据确定单光子信号个数,进而判断采用波形数据的积 分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量。
本发明的辐射探测方法的一个实施例的流程图如图6所示。
在步骤601中,在X射线透射探测过程中把透射X射线与闪烁体作用后产生的光信号转化为电信号。
在步骤602中,对电信号进行波形采样,获取波形数据。
在步骤603中,根据波形数据确定单光子信号个数。
在步骤604中,根据单光子信号个数确定采用波形数据的积分信号、计数信号或用两者的加权值进行成像显示。由于X射线穿透质量厚度较小的物质时单光子信号个数少且积分信号强;当穿透质量厚度较大的物质时单光子信号个数多且积分信号弱,计数信号强,因此可以根据单光子信号个数选择与被测物质质量厚度对应的较强的信号进行显示。
通过这样的方法,能够根据波形数据确定单光子信号个数,通过单光子信号个数判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
本发明的辐射探测数据处理方法的一个实施例的流程图可以如图6的实施例中步骤603、604所示,先根据波形数据确定单光子信号个数,再根据单光子信号个数确定采用波形数据的积分信号、计数信号或兼顾两者进行成像,如在未检测到单光子信号时以积分信号为主进行成像,在检测到单光子信号时以计数信号为主进行成像。
通过这样的辐射探测数据处理方法,能够根据波形数据确定单光子信号个数,通过单光子信号个数判断被测物体的质量厚度,进而判断采用波形数据的积分信号、计数信号或者将两者相结合进行成像,从而提高对不同质量厚度的被测物体的辐射探测成像质量,提高探测识别度。
本发明的辐射探测数据处理方法的另一个实施例的流程图如图7所示。
在步骤701中,根据波形数据确定单光子信号个数。在一个实施例中,可以根据波形数据获取单光子信号识别参数,单光子信号识别参数包括波峰幅度、波峰个数、积分面积大小等;再根据单光子信号识别参数确定波形数据中的单光子信号个数,如若积分面积小于预定面积阈值,波峰幅度小于预定单光子幅度阈值,则认为出现单光子信号。
在步骤702中,将单光子信号个数与预定低门限和预定高门限比较。若单光子信号个数小于预定低门限,则执行步骤703;若单光子信号个数大于预定高门限,则执行步骤704;若单光子信号个数介于预定低门限和预定高门限之间,则执行步骤705。
在步骤703中,将波形数据的积分信号作为成像信号,以便成像装置根据积分信号进行成像。
在步骤704中,将波形数据的计数信号作为成像信号,以便成像装置根据计数信号进行成像。
在步骤705中,将计数信号和积分信号的加权值作为成像信号进行成像。在一个实施例中,可以根据公式:
Z=A*X+B*Y
确定成像信号Z。其中,X为计数信号,Y为积分信号,A为计数信号的权值,B为积分信号的权值。在一个实施例中,A、B可以是配置人员根据经验、实际应用配置和调整的定值,也可以是与单光子信号个数成一定运算关系的数值,A与单光子信号个数正相关,B与单光子信号个数负相关。成像信号确定单元202可以基于预定策略根据单光子信号个数计算得到A、B,进而计算得到成像信号Z。
通过这样的方法,能够根据预定低门限和预定高门限对单光子信号个数进行定量判断,确定成像信号,从而提高判断的准确度,确定最为适合用于成像的信号,优化成像效果。
在一个实施例中,射线探测器可以包括SiPM射线探测器。在一个实施例中,可以采用纯碘化铯或钨酸铅闪烁体耦合SiPM,多个闪烁体排列成线阵列或面阵列,与同等间距排列的多个SiPM耦合成探测器部件。在一个实施例中,可以在射线探测器的中间位置等预定灵敏区域布置更多的、更密集的SiPM元件,从而增加灵敏区的探测像素,进一步提高成像的精准度。
由于SiPM的灵敏度极高,已在单光子计数领域得到迅速应用。通过闪烁体耦合SiPM的方式,利用SiPM的倍增功能进行X射线探测成像,能够提升图像中的信噪比;SiPM具备单光子的探测能力,散射信号与有用信号能谱具有显著的区别,因此能够更好的甄别出单光子信号,从而便于选择积分、计数信号进行成像,提升图像的清晰程度,提高系统的物质分辨能力,同时,与现有技术相比,可以在保证成像效果的前提下降低X射线剂量,降低辐射防护要求,提高安全性且达到节能的效果。
本发明的辐射探测方法的另一个实施例的流程图如图8所示。
在步骤801中,在X射线透射探测过程中把透射X射线与闪烁体作用后产生的光信号转化为电信号。
在步骤802中,对电信号进行波形采样,获取波形数据并发送给数据处理器。
在步骤803中,对超过预定幅度阈值的脉冲波形数据信号求和,获得波形数据的积分信号。
在步骤804中,对超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得波形数据的计数信号。
在步骤805中,根据波形数据确定单光子信号个数。
在步骤806中,根据单光子信号个数确定采用波形数据的积分信号、计数信号或用两者的加权值进行成像显示。
由于散射信号能量较低,一般在0.2MeV附近,SiPM具备单光子的探测能力,通过这样的方法,能够甄别出散射信号数据并在计算积分信号和计数信号时进行排除,提高了信噪比,提高了系统的穿透力指标,进而提升成像的准确度。
在一个实施例中,可以先确定单光子信号个数,确定成像信号的种类,进而选择性的生成积分信号、计数信号,从而减少数据的运算量和存储量,且提高处理效率。
在一个实施例中,还可以先生成积分信号和计数信号,再根据成像信号的种类在已生成的信号中进行选择。这样的处理方式更具有通用性,可以由FPGA单元生成积分信号和计数信号,并将积分信号、计数信号以及波形数据发送给计算机处理装置,由计算机处理装置根据波形数据确定单光子信号个数,进而根据确定的成像信号的种类在积分信号和计数信号中选择或计算成像信号,便于在现有的FPGA单元基础上进行改进,利用计算机处理装置实现数据处理,易于实现。
在一个实施例中,还可以先通过快速放大器将来自射线探测器的电信号进行放大处理后再发送给高速ADC进行波形采样,从而保证高速ADC能够进行波形采样,提高波形数据质量,保证数据处理的准确度和成像质量。
在一个实施例中,由于SiPM对温度敏感,SiPM的增益也与其偏置电压相关,可以利用温度补偿器根据SiPM的温度变化调整SiPM射线探测器的工作偏置电压,从而实现对SiPM的增益进行校正,维持增益恒定,提高探测的准确度。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽 管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (17)

  1. 一种辐射探测装置,其特征在于,包括:
    射线探测器;
    与所述射线探测器相连接的高速模数转化器ADC;和,
    与所述高速ADC连接的数据处理器;
    其中,所述射线探测器把透射X射线与闪烁体作用后产生的光信号转化为电信号;所述高速ADC对所述电信号进行波形采样,获取波形数据并发送给所述数据处理器;所述数据处理器根据所述波形数据确定单光子信号个数,根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像。
  2. 根据权利要求1所述的装置,其特征在于,所述数据处理器根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像包括:
    所述数据处理器将所述单光子信号个数与预定低门限和预定高门限比较;
    若所述单光子信号个数小于所述预定低门限,则将所述波形数据的所述积分信号作为成像信号,以便根据所述积分信号成像;
    若所述单光子信号个数大于所述预定高门限,则将所述波形数据的所述计数信号作为成像信号,以便根据所述计数信号成像;
    若所述单光子信号个数介于所述预定低门限和所述预定高门限之间,则将所述计数信号和所述积分信号的加权值作为成像信号进行成像。
  3. 根据权利要求1所述的装置,其特征在于,
    所述数据处理器根据所述波形数据确定单光子信号个数包括:
    所述数据处理器根据所述波形数据获取单光子信号识别参数,所述单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;
    所述数据处理器根据所述单光子信号识别参数确定所述波形数据中的所述单光子信号个数。
  4. 根据权利要求1所述的装置,其特征在于,
    所述数据处理器对超过预定幅度阈值的脉冲波形数据信号求和,获得所述波形数据的所述积分信号;和/或,
    所述数据处理器对所述超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得所述波形数据的所述计数信号。
  5. 根据权利要求1所述的装置,其特征在于,还包括:
    将来自所述射线探测器的所述电信号进行放大处理后发送给所述高速ADC的快速放大器;和/或,根据所述射线探测器的温度变化调整所述射线探测器的工作偏置电压的所述温度补偿器。
  6. 根据权利要求2所述的装置,其特征在于,
    所述数据处理器包括现场可编程门阵列FPGA。
  7. 一种辐射探测方法,其特征在于,包括:
    射线探测器把透射X射线与闪烁体作用后产生的光信号转化为电信号;
    对所述电信号进行波形采样,获取波形数据;
    根据所述波形数据确定单光子信号个数;
    根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像。
  8. 根据权利要求7所述的方法,其特征在于,
    所述根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像包括:
    将所述单光子信号个数与预定低门限和预定高门限比较;
    若所述单光子信号个数小于所述预定低门限,则将所述波形数据的所述积分信号作为成像信号,以便根据所述积分信号成像;
    若所述单光子信号个数大于所述预定高门限,则将所述波形数据的所述计数信号作为成像信号,以便根据所述计数信号成像;
    若所述单光子信号个数介于所述预定低门限和所述预定高门限之间,则将所述计 数信号和所述积分信号的加权值作为成像信号进行成像。
  9. 根据权利要求7所述的方法,其特征在于,
    所述根据波形数据确定单光子信号个数包括:
    根据所述波形数据获取单光子信号识别参数,所述单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;
    根据所述单光子信号识别参数确定所述波形数据中的所述单光子信号个数。
  10. 根据权利要求7所述的方法,其特征在于,还包括:
    对超过预定幅度阈值的脉冲波形数据信号求和,获得所述波形数据的所述积分信号;
    对所述超过预定幅度阈值的脉冲波形数据信号寻峰确定脉冲个数和脉冲幅度,获得所述波形数据的所述计数信号。
  11. 根据权利要求7所述的方法,其特征在于,还包括:
    通过快速放大器将来自所述射线探测器的所述电信号进行放大处理后发送给所述高速ADC。
  12. 根据权利要求7所述的方法,其特征在于,还包括:
    根据所述射线探测器的温度变化通过温度补偿器调整所述射线探测器的工作偏置电压。
  13. 一种辐射探测数据处理器,其特征在于,包括:
    单光子信号个数确定单元,用于根据所述波形数据确定单光子信号个数;
    成像信号确定单元,用于根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像。
  14. 根据权利要求13所述的装置,其特征在于,所述成像信号确定单元具体用于:
    将所述单光子信号个数与预定低门限和预定高门限比较;
    若所述单光子信号个数小于所述预定低门限,则将所述波形数据的所述积分信号作为成像信号,以便根据所述积分信号成像;
    若所述单光子信号个数大于所述预定高门限,则将所述波形数据的所述计数信号作为成像信号,以便根据所述计数信号成像;
    若所述单光子信号个数介于所述预定低门限和所述预定高门限之间,则将所述计数信号和所述积分信号的加权值作为成像信号进行成像。
  15. 一种辐射探测数据处理方法,其特征在于,包括:
    根据所述波形数据确定单光子信号个数;
    根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述单光子信号个数确定采用所述波形数据的积分信号和/或计数信号进行成像包括:
    将所述单光子信号个数与预定低门限和预定高门限比较;
    若所述单光子信号个数小于所述预定低门限,则将所述波形数据的所述积分信号作为成像信号,以便根据所述积分信号成像;
    若所述单光子信号个数大于所述预定高门限,则将所述波形数据的所述计数信号作为成像信号,以便根据所述计数信号成像;
    若所述单光子信号个数介于所述预定低门限和所述预定高门限之间,则将所述计数信号和所述积分信号的加权值作为成像信号进行成像。
  17. 根据权利要求15所述的方法,其特征在于,
    所述根据波形数据确定单光子信号个数包括:
    根据所述波形数据获取单光子信号识别参数,所述单光子信号识别参数包括波峰幅度、波峰个数和/或积分面积大小;
    根据所述单光子信号识别参数确定所述波形数据中的所述单光子信号个数。
PCT/CN2017/103011 2016-12-08 2017-09-22 辐射探测装置、方法以及数据处理方法和处理器 WO2018103414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17878824.6A EP3553505A4 (en) 2016-12-08 2017-09-22 RADIATION DETECTION APPARATUS AND METHOD, AND DATA PROCESSING METHOD AND PROCESSORS
JP2019513913A JP6954998B2 (ja) 2016-12-08 2017-09-22 放射線検出装置及び方法並びにデータ処理方法及び処理器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611143083.5 2016-12-08
CN201611143083.5A CN106596597B (zh) 2016-12-08 2016-12-08 辐射探测装置、方法以及数据处理方法和处理器

Publications (1)

Publication Number Publication Date
WO2018103414A1 true WO2018103414A1 (zh) 2018-06-14

Family

ID=58597696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103011 WO2018103414A1 (zh) 2016-12-08 2017-09-22 辐射探测装置、方法以及数据处理方法和处理器

Country Status (6)

Country Link
US (1) US10338236B2 (zh)
EP (1) EP3553505A4 (zh)
JP (1) JP6954998B2 (zh)
CN (1) CN106596597B (zh)
DE (1) DE102017122546A1 (zh)
WO (1) WO2018103414A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596597B (zh) 2016-12-08 2019-10-11 同方威视技术股份有限公司 辐射探测装置、方法以及数据处理方法和处理器
CN107340308A (zh) * 2017-07-26 2017-11-10 苏州曼德克光电有限公司 一种基于光子计数式的绿色通道检测系统及方法
CN107219548B (zh) * 2017-07-31 2023-10-27 四川省核地质调查研究所 一种便携式反康普顿探测仪
CN110187356B (zh) * 2019-06-14 2021-07-09 中国科学技术大学 远距离超分辨单光子成像重构方法
DE102019210421B4 (de) * 2019-07-15 2023-03-09 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zur Messung eines Lichtsignalparameters und nichtflüchtiges Speichermedium
CN110971796A (zh) * 2019-11-28 2020-04-07 南昌大学 一种基于SiPM的超快相机及其成像方法
CN111246190B (zh) * 2020-01-21 2021-12-07 北京中科核安科技有限公司 基于核辐射定位仪的图像处理方法、装置及电子设备
CN111638545B (zh) * 2020-04-27 2022-03-04 北京永新医疗设备有限公司 确定NaI能谱仪的能量计算积分点数的方法
CN113109858A (zh) * 2021-04-13 2021-07-13 中北大学 一种高度集成的γ辐照探测器
CN113848580A (zh) * 2021-09-26 2021-12-28 中国科学院高能物理研究所 一种X/γ射线辐射量探测系统及探测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226675A (ja) * 1985-03-30 1986-10-08 Toshiba Corp 放射線測定装置
CN101576514A (zh) * 2009-06-12 2009-11-11 北京紫方启研科技有限公司 基于高灵敏线阵列探测器的便携式x射线探测仪
CN101903799A (zh) * 2007-12-20 2010-12-01 皇家飞利浦电子股份有限公司 用于对信号计数或积分的辐射探测器
CN102793554A (zh) * 2011-05-24 2012-11-28 西门子公司 具有积分的和计数的探测器元件的计算机断层造影系统
CN104165639A (zh) * 2014-08-07 2014-11-26 中国科学院西安光学精密机械研究所 一种x射线脉冲探测器测试标定光源的方法及装置
CN106596597A (zh) * 2016-12-08 2017-04-26 同方威视技术股份有限公司 辐射探测装置、方法以及数据处理方法和处理器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106221A1 (de) * 2001-02-10 2002-08-14 Philips Corp Intellectual Pty Röntgendetektor mit großem Dynamikbereich
EP2376942B1 (en) * 2008-12-15 2013-03-27 Koninklijke Philips Electronics N.V. Temperature compensation circuit for silicon photomultipliers and other single photon counters
JP5616368B2 (ja) * 2009-03-06 2014-10-29 コーニンクレッカ フィリップス エヌ ヴェ 放射線検出器モジュール、当該モジュールを有するイメージング装置、放射線検出器アレイのドリフト補償方法、当該方法を実行するためのコンピュータ可読媒体
CN102395901B (zh) * 2009-04-16 2014-08-27 皇家飞利浦电子股份有限公司 光谱成像
US10463324B2 (en) * 2014-10-06 2019-11-05 Canon Medical Systems Corporation Photon-counting detector with count-rate dependent multiplexing
US9588239B2 (en) * 2015-04-22 2017-03-07 Analogic Corporation Data acquisition system of photon counting detector array
GB2558505B (en) * 2015-10-21 2021-05-12 Rapiscan Systems Inc High dynamic range radiographic imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226675A (ja) * 1985-03-30 1986-10-08 Toshiba Corp 放射線測定装置
CN101903799A (zh) * 2007-12-20 2010-12-01 皇家飞利浦电子股份有限公司 用于对信号计数或积分的辐射探测器
CN101576514A (zh) * 2009-06-12 2009-11-11 北京紫方启研科技有限公司 基于高灵敏线阵列探测器的便携式x射线探测仪
CN102793554A (zh) * 2011-05-24 2012-11-28 西门子公司 具有积分的和计数的探测器元件的计算机断层造影系统
CN104165639A (zh) * 2014-08-07 2014-11-26 中国科学院西安光学精密机械研究所 一种x射线脉冲探测器测试标定光源的方法及装置
CN106596597A (zh) * 2016-12-08 2017-04-26 同方威视技术股份有限公司 辐射探测装置、方法以及数据处理方法和处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553505A4 *

Also Published As

Publication number Publication date
US10338236B2 (en) 2019-07-02
US20180164449A1 (en) 2018-06-14
EP3553505A4 (en) 2020-09-02
CN106596597B (zh) 2019-10-11
JP2020501108A (ja) 2020-01-16
DE102017122546A1 (de) 2018-06-14
CN106596597A (zh) 2017-04-26
JP6954998B2 (ja) 2021-10-27
EP3553505A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2018103414A1 (zh) 辐射探测装置、方法以及数据处理方法和处理器
US11506803B2 (en) Method and device for processing nuclear energy spectrum
JP6257916B2 (ja) 光検出装置、放射線検出装置、放射線分析装置及び光検出方法
US20150309188A1 (en) Detector unit with pulse shaper
EP3637147B1 (en) Gain correction apparatus and method for scintillation detector
JP2010511169A (ja) 相関付けられた光子数及びエネルギー測定値を用いるスペクトルコンピュータ断層撮影
Abbene et al. Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors
US20160363672A1 (en) Performance Stabilization For Scintillator-Based Radiation Detectors
JP2004108796A (ja) 放射線測定装置
Zhong et al. A spectrometer with baseline correction and fast pulse pile-up rejection for prompt gamma neutron activation analysis technology
WO2018116584A1 (ja) 放射能分布測定装置及び方法
KR101808577B1 (ko) 중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템
WO2023284606A1 (zh) 辐射成像系统和方法
CN210665549U (zh) 一种乏燃料萃取液的铀浓度测量装置
Swiderski et al. Comparison of neutron detection efficiency of a He-3 counter and a Boron-10 loaded liquid scintillator
US20160209338A1 (en) Photon counting imaging modes
US11846737B2 (en) Data processing apparatus, data processing method, and non-transitory computer-readable storage medium for storing data processing program
CN111257919A (zh) 一种基于移动触发阈方法评价SiPM探测器的方法
JP2020091241A (ja) 中性子検出装置および中性子検出方法
US8558180B2 (en) X-ray detector with improved quantum efficiency
Zhong et al. Study on SiPM performance at low temperatures between-60 C and-20 C
US20240036219A1 (en) Electric circuitry for baseline extraction in a photon counting system
Wang et al. Imaging of muon track in CsI (Tl) crystal with single photon sensitive camera
US10338235B2 (en) Radiation detector
JPH07306267A (ja) 放射線測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878824

Country of ref document: EP

Effective date: 20190708