WO2018103392A1 - 一种量子点显示面板、背光模组及液晶显示装置 - Google Patents

一种量子点显示面板、背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2018103392A1
WO2018103392A1 PCT/CN2017/100727 CN2017100727W WO2018103392A1 WO 2018103392 A1 WO2018103392 A1 WO 2018103392A1 CN 2017100727 W CN2017100727 W CN 2017100727W WO 2018103392 A1 WO2018103392 A1 WO 2018103392A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary color
light
pixel
quantum dot
liquid crystal
Prior art date
Application number
PCT/CN2017/100727
Other languages
English (en)
French (fr)
Inventor
李富琳
朱荣贵
刘振国
宋志成
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611110740.6A external-priority patent/CN106526965A/zh
Priority claimed from CN201611110739.3A external-priority patent/CN106773287A/zh
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2018103392A1 publication Critical patent/WO2018103392A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell

Definitions

  • the present application relates to the field of display technologies, and in particular, to a quantum dot display panel.
  • the application also relates to a backlight module and a liquid crystal display device.
  • a liquid crystal display is a display device for image display, and includes a liquid crystal panel composed of a certain number of pixels placed in front of a light source or a reflecting surface.
  • FIG. 1 it is a schematic structural diagram of a common liquid crystal panel in the industry.
  • a common liquid crystal panel includes a color filter, and sub-pixels of the filter are respectively provided with three kinds of pigments for absorption, for example, a red sub-pixel setting.
  • the red pigment is transparent to the red band and has absorption characteristics for the remaining bands.
  • the green pigment set by the green sub-pixel is transparent to the green band, and has absorption characteristics for the remaining bands.
  • the blue sub-pixel is set blue.
  • the pigment is permeable to the blue light band and has absorption properties to the remaining bands.
  • a white backlight is generally used, and then a color filter is used to filter out the spectrum of the red, green, and blue bands in the backlight spectrum, because the color filter in a single sub-pixel in the filter passes only a certain band. The light in the other bands is filtered out, resulting in more energy loss.
  • the current quantum dot liquid crystal backlighting scheme in the industry is a scheme for generating white light by the blue light-emitting quantum dot material, so that the color gamut can reach 100% NTSC or more.
  • the solution encloses the quantum dot material in the diaphragm as a diaphragm in the module, placed above the diffuser plate, below all the diaphragms.
  • Some embodiments of the present application provide a quantum dot display panel for use in a backlight module including a backlight for generating an outgoing light, the panel including a color conversion layer, a dichroic filter material layer, and Liquid crystal material encapsulation layer, wherein:
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer, and the emitted light is incident through the liquid crystal material encapsulation layer and the dichroic filter material layer.
  • the color conversion layer On the color conversion layer;
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the backward light in the excitation light is reflected by the dichroic filter material layer and then exits from the color conversion layer.
  • Some embodiments of the present application further provide a backlight module, the backlight module includes a backlight and a quantum dot display panel, the backlight is used to generate an outgoing light, and the panel includes a color conversion layer and a dichroic filter. a layer of light material and a layer of liquid crystal material, wherein:
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer, and the emitted light is incident through the liquid crystal material encapsulation layer and the dichroic filter material layer.
  • the color conversion layer On the color conversion layer;
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the backward light in the excitation light is reflected by the dichroic filter material layer and then exits from the color conversion layer.
  • Some embodiments of the present application further provide a liquid crystal display device, including a backlight module and a circuit board for driving the backlight module, the backlight module including a backlight and a quantum dot display panel, wherein the backlight is used to generate The light is emitted, and the panel includes a color conversion layer, a dichroic filter material layer, and a liquid crystal material encapsulation layer, wherein:
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer, and the emitted light is incident through the liquid crystal material encapsulation layer and the dichroic filter material layer.
  • the color conversion layer On the color conversion layer;
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the backward light in the excitation light is reflected by the dichroic filter material layer and then exits from the color conversion layer.
  • FIG. 1 is a schematic structural view of a liquid crystal panel in the related art
  • FIG. 2 is a schematic diagram of a quantum dot technology in the related art
  • 3 is a scattered light in various directions when a fluorescent particle has a diameter of 20 nm in the related art
  • FIG. 4 is a schematic view showing the operation of a color conversion layer including quantum dots in the related art
  • FIG. 5 is a schematic structural diagram of a quantum dot display panel according to some embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of a quantum dot display panel according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a backlight according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of a spectral curve of an LED of a backlight according to some embodiments of the present application.
  • FIG. 9 is a schematic diagram showing a reflectance curve of a second primary color light transmission region of a dichroic filter material layer according to some embodiments of the present application.
  • FIG. 10 is a schematic diagram showing a reflectance curve of a first primary color light transmission region of a dichroic filter material layer according to some embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of a backlight module according to some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of another backlight module according to some embodiments of the present application.
  • the quantum dot material has a small particle size and reaches the nanometer level (for example, the commonly used red (wavelength 630 nm) and green (wavelength 530 nm) quantum dot materials have a particle diameter of about 3 to 7 nm), the quantum dot excitation efficiency is relatively high. Up to 90% or more, an improvement in the related art is to place quantum dots in the panel to replace the color filters of the panel.
  • FIG. 2 it is a schematic diagram of a quantum dot technology in the related art, wherein 1 is a blue light emitted by a light source, 2 is a pixel unit, and three to three red, green, and blue color conversion layers are respectively from left to right.
  • the sub-pixels, 3 are light rays emitted from the pixel unit 2, and sequentially correspond to red, green, and blue light from left to right.
  • the backlight adopts a blue backlight, red quantum dots are arranged in the red sub-pixels, green quantum dots are arranged in the green sub-pixels, and the blue sub-pixels are transparent materials to directly transmit the backlight, thereby greatly improving the light-emitting efficiency of the liquid crystal module.
  • the inventors found that, as shown in Fig. 3, when the quantum dot diameter is 20 nm, the ratio of forward light to backward light is relatively close in the scattered light in all directions.
  • the red (wavelength 630 nm) and green (wavelength 530 nm) quantum dot materials have a particle diameter of 3 to 7 nm, and this part produces more backward astigmatism, which is nearly half.
  • FIG. 4 A schematic diagram of the operation of the color conversion layer composed of these quantum dots is shown in FIG. 4, wherein 411 is a red sub-pixel including a red quantum dot in the color conversion layer, and 412 is a green sub-pixel including a green quantum dot in the color conversion layer. 413 is the blue sub-pixel in the color conversion layer. 43 is a liquid crystal molecule, 40 is the blue light transmitted from the light source, the upward arrow in 411 refers to the forward light in the excitation light, the downward arrow refers to the backward light in the excitation light, and the blue light reaches the color conversion layer.
  • the light generated by the blue light-excited quantum dots has a backward light, and this part of the light is scattered back into the interior of the backlight module, which cannot be utilized, resulting in a problem of reduced light-emitting efficiency.
  • the red sub-pixel and the green sub-pixel in the above related art have a problem that the light-emitting rate is lowered due to the generation of the backward light when the red and green quantum dot materials are excited.
  • the present application proposes a quantum dot display panel in which a dichroic filter material layer is disposed under the color conversion layer, and the backward light of the excitation light generated by the color conversion layer can be reflected by the dichroic filter material layer. , thereby reducing the loss of light energy, significantly improving the light extraction efficiency.
  • the quantum dot display panel includes a color conversion layer, a dichroic filter material layer, and a liquid crystal material encapsulation layer in the backlight module including the backlight, wherein the backlight emits the emitted light.
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the color conversion layer is composed of sub-pixels including a plurality of color conversion particles, and when a light source is irradiated onto the color conversion layer, the color conversion particles in the sub-pixels are irradiated by the light source. It will stimulate the scattered light in all directions. Taking the blue light excitation as an example, when the color conversion particle is a green quantum dot, the green excitation light in each direction will be excited. When the color conversion particle is a red quantum dot, it will be excited. Red excitation light in all directions.
  • Each color sub-pixel and a bracket are also disposed on the color conversion layer, and, in a preferred embodiment of the present application, the bracket may be disposed between sub-pixels of the packaged quantum dot material of each color, and each sub-pixel passes through The water oxygen material is encapsulated on the support.
  • the light source in the present application is generated by a backlight, and the function of the backlight is that the vector sub-dot display panel provides the emitted light for exciting the quantum dots.
  • the backlight The LED chip corresponding to the first primary color and the phosphor are included.
  • the light of the first primary color is generated by the LED chip after being energized, and is generally blue light, and of course other colors.
  • the phosphor is set separately for the LED chip, specifically KSF red phosphor, and the KSF red phosphor can convert a part of the blue light into red light. It may also be a phosphor added to excite a narrow bandwidth of blue light.
  • the backlight may be a single color LED light source, or a combination of an LED light source and a quantum tube; depending on the light source use scene, the backlight is not placed in the backlight module. The same is true, for example, placed on the side of the light guide plate or placed under the reflective sheet, which are all within the scope of protection of the present application.
  • the color conversion layer includes: a red sub-pixel 5.10, a green sub-pixel 5.11, and a blue sub-pixel 5.12.
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer;
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer for the purpose of generating a backward direction of the quantum dots in the pixels in the color conversion layer while the transmitted light source emits the light.
  • the light reflection improves the light extraction efficiency of the entire backlight module, that is, the present application sets the dichroic filter material layer under the color conversion layer, that is, the dichroic filter material layer is disposed at the position of the backward excitation light.
  • the backscattered excitation light reaches the layer of the dichroic filter material, it is re-reflected back into the light-emitting direction of the backlight module, so that most of the light will be scattered forward and fully utilized. Increase the light output rate of the backlight module.
  • a dichroic region is disposed on the dichroic filter material layer, and the color region may be light of a specific wavelength band (a band of backlight, or a partial band of a backlight), and light of another specific band is performed.
  • the dichroic region may be disposed at a position where the back light is present, and the entire dichroic filter material layer may be set to a dichroic region according to an actual situation to achieve the opposite direction. The effect of the post-scattering excitation light is all emitted, and the specific reflection process will be elaborated later.
  • a dichroic region is disposed at a position where the back light is present, and a transmissive region may be disposed on the dichroic filter material layer except the dichroic region.
  • the transmissive region may transmit only blue light, or may transmit all the light as an implementation manner.
  • a transmissive region may be disposed at a position corresponding to the transparent pixel on the color conversion layer, and the transmissive region has an effect of enhancing the emitted light, for example, providing an anti-reflection film.
  • the emitted light can be enhanced and emitted while passing through the transmissive region, and the specific embodiment will be elaborated in the following description. This will not be repeated here.
  • liquid crystal encapsulating material layer is disposed under the dichroic filter material layer and located on the path of the outgoing light to the color conversion layer;
  • the present application also needs to provide a liquid crystal encapsulating material layer under the dichroic filter material layer.
  • the liquid crystal material The encapsulating layer is composed of an upper polarizing plate, a transparent electrode, a liquid crystal encapsulating layer, a liquid crystal cell including a liquid crystal, a lower glass substrate, and a lower polarizing plate.
  • the liquid crystal encapsulating layer is disposed between the liquid crystal cells.
  • a transparent electrode is disposed on both sides of the liquid crystal cell; the upper surface of the liquid crystal cell is a side facing the dichroic filter material layer, the lower surface of the liquid crystal cell is provided with a lower glass substrate, and the lower glass substrate is provided with a lower polarizing plate opposite to the other side of the liquid crystal cell . Therefore, the display control of different pixels in the color conversion layer can be realized by the light transmission of the liquid crystal cell.
  • the dichroic region has high transparency for a wavelength band of a first primary color specified in advance, and has high reflection characteristics for a wavelength band of a color other than the first primary color, The excitation light scattered toward the direction of the dichroic filter material layer is reflected toward the color conversion layer.
  • the transmission region may be provided with a blue antireflection film.
  • the present application has a high transmittance in a wavelength band of a specified first primary color in a dichroic filter material layer, and a high reflection characteristic in a wavelength band other than the specified first primary color.
  • This characteristic those skilled in the art can understand that in this area, only a certain color has high permeability, and other colors have high reflectivity, for example, when the first primary color is blue, in the dichroic color.
  • the filter material layer is highly transparent to blue, and the colors other than blue are highly reflected back, so that when the light emitted by the backlight reaches the layer of the dichroic filter material, Because the dichroic filter material layer has high permeability only to blue light, the blue light passes through smoothly, and the blue light passes through the dichroic filter material layer to reach the color conversion layer, in the sub-pixel Under the action of color-converting particles, the blue light will be excited by the excitation light of the corresponding color in each direction (for example, the blue light will be excited by the green quantum dots in all directions). Line), wherein the excitation light of the corresponding color in the backward direction reaches the layer of the dichroic filter material, is reflected forward by the dichroic filter material layer through the highly reflective property, and is reused, thereby improving Light extraction efficiency.
  • the dichroic region has high reflectivity for the band of the specified color, and has high transmission characteristics for other bands except the specified band to reflect the light of the specified color in the outgoing ray .
  • the backlight produces only first primary color light, the backlight comprising an LED chip corresponding to the first primary color.
  • the backlight generates only the first primary color light and the second primary color light
  • the backlight source includes an LED chip corresponding to the first primary color and a phosphor corresponding to the second primary color, specifically, The light of the first primary color is generated by the LED chip after being energized, and the light of the second primary color is converted by the phosphor after absorbing the light of the first primary color, that is, the emission source in the present application comprises the first primary color and the second primary color.
  • the dichroic region transmits the light of the second primary color and reflects other light
  • the light of the second primary color can be smoothly transmitted, and the first primary color The light rays are all reflected back.
  • the second primary color is the same as the color set by the color conversion particles in the color conversion unit or the corresponding sub-pixel is transparent, the second primary color does not generate after reaching the color conversion layer. Excuse the light, but directly through the color The layer is scattered forward.
  • a dichroic region transmitting red light is disposed at a position corresponding to the red sub-pixel, then red light is transmitted, and blue light is reflected; in blue and/or The position corresponding to the green sub-pixel is provided with a dichroic region that transmits blue light, then the blue light is transmitted and the red light is reflected.
  • scattering particles may also be disposed in the sub-pixels corresponding to the first primary color and the second primary color to increase the angle of the scattered light.
  • the dichroic region and the transmissive region are divided according to the distribution of sub-pixels of the encapsulated quantum dot material, and the situation is as follows:
  • the dichroic filter material layer may be entirely dichroic, transmitting the first primary light, and reflecting other colors than the first primary light.
  • the color conversion layer includes a second primary color sub-pixel encapsulated with a second primary color quantum dot, and a third primary color sub-pixel encapsulated with a third primary color quantum dot, and a first primary color sub-pixel.
  • the dichroic filter material layer includes a dichroic region disposed opposite to the second primary color sub-pixel and the third primary color sub-pixel, and a transmissive region disposed opposite to the first primary color sub-pixel, The color-directed region transmits only the first primary color light, and reflects the backward light in the excitation light of the second primary color sub-pixel and the third primary color sub-pixel, and the transmission region transmits the first primary color light.
  • the first primary color is blue
  • the second primary color is red
  • the third primary color is green
  • the transmissive region is provided with a blue anti-reflection coating.
  • the blue sub-pixels are provided with a transparent material: or the blue sub-pixels are provided with a transparent material containing scattering particles.
  • a bracket is disposed between the first primary color sub-pixel, the second primary color sub-pixel, and the third primary color sub-pixel, and the first primary color sub-pixel, the second primary color sub-pixel, and the third primary color sub-pixel are encapsulated on the bracket by a water-oxygen barrier material.
  • the color conversion layer comprises a first primary color sub-pixel, a second primary color sub-pixel, and a third primary color encapsulated a third primary color sub-pixel of the quantum dot
  • the dichroic filter material layer includes a first dichroic region for transmitting the second primary color light and a third primary color sub-pixel and the second opposite to the second primary color sub-pixel a second dichroic region for transmitting the first primary color light oppositely disposed by a primary color sub-pixel, wherein the first dichroic region transmits only the second primary color light and reflects other light, and the second dichroic region transmits only the first A primary light reflects other rays.
  • the first dichroic filter material layer may include a first primary color light transmissive region disposed opposite to the first primary color subpixel, and the second primary color subpixel may be opposite to the second primary color subpixel for transmitting the second primary color.
  • the light third dichroic region is disposed opposite to the third primary color sub-pixel for transmitting a fourth dichroic region of the first primary color light.
  • the fourth dichroic region transmits the first primary color light and reflects the other colored light; the third dichroic region transmits the second primary color light and reflects the other colored light, and the transmissive region transmits only the first primary color light or transmits all the light. .
  • the first primary color is blue
  • the second primary color is red
  • the third primary color is green
  • the wavelength of the first primary color light is less than the third primary color light, and the wavelength of the third primary color light is less than the second base Shade.
  • the emitted light is different in consideration of different backlight sources, so that the dichroic region and the transmissive region in the dichroic filter layer are set according to different outgoing rays and the position of the sub-pixels in the color conversion layer. .
  • the present application mainly provides a dichroic filter material layer between the color conversion layer and the liquid crystal material encapsulation layer, and the backward light of the excitation light generated by the color conversion layer can be The dichroic filter material layer is reflected, so that the loss of light energy and the light extraction efficiency can be reduced on the basis of using a backlight that reduces the amount of quantum dot material used.
  • the transmissive region is disposed at a position of a packaged quantum dot material sub-pixel having a particle diameter smaller than a preset threshold in the color conversion layer, and the preset threshold may be according to an outgoing light of the backlight.
  • the transmissive area can also be disposed on the entire dichroic filter material layer according to actual needs, and these changes are all within the protection scope of the present application.
  • the present application further provides a backlight module, which includes a light guide plate, a backlight, and a quantum dot display panel.
  • the backlight is used to generate outgoing light
  • the quantum dot display panel includes a color conversion layer and a dichroic color.
  • a filter material layer and a liquid crystal material encapsulation layer wherein:
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer, and the emitted light is incident on the color conversion layer through the liquid crystal material encapsulation layer and the dichroic filter material layer;
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the backward light in the excitation light is reflected by the dichroic filter material layer and then exits from the color conversion layer.
  • 5.1 is a blue backlight module, and provides blue light for exciting the color conversion layer.
  • a blue LED having a peak wavelength of about 440 to 455 nm is selected as a backlight;
  • 5.2 is a lower polarizing plate of a quantum dot display panel;
  • 5.3 is a lower glass substrate of a quantum dot display panel;
  • 5.13 is an upper glass substrate, upper and lower glass
  • a color conversion layer, a dichroic filter material layer, and a liquid crystal material encapsulation layer are disposed in the middle of the substrate.
  • a lower polarizing plate 5.2 In the quantum dot display panel, from the bottom to the top are: a lower polarizing plate 5.2, a lower glass substrate 5.3, a liquid crystal material encapsulating layer, a dichroic filter material layer, a color conversion layer, and an upper glass substrate 5.13.
  • the color conversion layer includes: a red sub-pixel 5.10, a green sub-pixel 5.11, and a blue sub-pixel 5.12.
  • the liquid crystal material encapsulating layer comprises 5.4 as a transparent electrode; 5.5 as a transparent electrode (common negative electrode); 5.6 is a liquid crystal cell containing liquid crystal therein; 5.7 is a liquid crystal encapsulation layer holder between the liquid crystal cell and the liquid crystal cell; Divided into mutually isolated liquid crystal boxes, under the action of two electrodes above and below, the liquid crystal molecules in the liquid crystal cell will control the passage of light by adjusting the degree of distortion.
  • the dichroic filter material layer includes a dichroic region and a second opposite to the second primary color sub-pixel and the third sub-pixel
  • the backlight emitted by the blue backlight module 5.1 is blue light
  • the dichroic region of the 5.8 dichroic filter material layer since the dichroic region has high reflection characteristics for the remaining visible light except the blue light band, the backlight is The blue light can be directly transmitted.
  • the blue light After the blue light reaches the red sub-pixel and the green sub-pixel of the point light conversion layer, the excitation light that generates red light and green light is excited, and scattering occurs, part of forward scattering, which part can be directly utilized, and another part is backscattered, The red and green light reaching the dichroic region 5.8 is re-reflected and forwardly re-used, and is reused, thereby improving the light-emitting efficiency.
  • the blue-light transmitting region 5.9 is also disposed at a position corresponding to the blue pixel, and the region can transmit only blue light. It can also be transparent.
  • 5.10 is the red sub-pixel of the quantum dot display panel of the present application, and the red quantum dot material is disposed inside the quantum dot. The wavelength is generally selected between 620 and 650 nm; 5.11 is the green sub-pixel of the quantum dot display panel of the present application, and the green quantum dot material is disposed inside, and the wavelength of the quantum dot is generally selected between 520 and 550 nm; 5.12 is the quantum of the present application.
  • Point display panel blue sub-pixel the unit can be set without anything, so that the blue light filtered by the 5.9 transmission area is directly transmitted. In order to improve the light-emitting angle of the blue sub-pixel, it is considered to provide transparent material or scattering particles in the unit. The transparent material scatters the blue light passing through the unit, thereby increasing the viewing angle of the blue sub-pixel.
  • FIG. 6 a schematic structural diagram of a quantum dot display panel proposed by the present application, and 6.1 is a backlight module in which the emitted light is blue and red light, and an exemplary LED in the backlight module.
  • the light source is shown in Fig.
  • 7.1 is an LED chip, which is an electron emitting light, and emits blue light after being energized
  • 7.2 is a red phosphor, for example, a KSF phosphor having a narrow half-width and a high luminous efficiency is selected, and the red phosphor will be
  • the blue light emitted from the absorbing portion 7.1 is converted into red light; thus, the LED light source can emit red light and blue light
  • 7.3 is an LED bracket for supporting and protecting.
  • separate blue LEDs and independent red LEDs can also be used as backlights.
  • a blue LED with a blue peak wavelength of about 440-455 nm is selected as a backlight, and a red light preferentially selects a KSF phosphor, which can convert a part of the blue light into a red light, and the LED spectrum curve of the backlight module is as shown in FIG. 8;
  • 6.2 is the lower polarizer of the quantum dot display panel.
  • 6.3 is the lower glass substrate of the quantum dot display panel;
  • 6.13 is the upper glass substrate, and the upper and lower glass substrates are provided with a color conversion layer, a dichroic filter material layer, and a liquid crystal material encapsulation layer. .
  • the color conversion layer includes: a red sub-pixel 6.10, a green sub-pixel 6.11, a blue sub-pixel 6.12; a liquid crystal material encapsulation layer including 6.4 as a transparent electrode; 6.5 a transparent electrode (a transparent electrode 6.4 and a transparent electrode 6.5 a common negative electrode);
  • the box is filled with liquid crystal; 6.7 is a liquid crystal encapsulation support between the liquid crystal cell and the liquid crystal cell; the liquid crystal package supports the liquid crystal molecules into mutually isolated liquid crystal boxes, under the action of two electrodes on the upper and lower sides, in the liquid crystal box Liquid crystal molecules control the passage of light by adjusting the degree of distortion.
  • the dichroic filter material layer includes a fifth dichroic region and a sixth dichroic region, and the fifth dichroic region 6.8 shown in FIG. 6 is for transmitting red light and reflecting other rays, the sixth dichroic color.
  • Zone 6.9 transmits blue light and reflects other light.
  • 6.8 is the fifth dichroic region of the present application, and its spectral reflection characteristics are as shown in FIG. 9. Since the backlight emitted by the backlight module 6.1 is blue light and red light, the fifth direction of the 6.8 dichroic filter material layer is reached. In the color region, since the dichroic region has high transmission characteristics only for the red light band, the remaining bands can be directly reflected, so the blue light in the backlight is reflected, only the red light is transmitted, and the red light enters the red sub-pixel 6.10 And then exit to display the image;
  • 6.9 is a sixth dichroic region corresponding to the position of the blue sub-pixel and the green sub-pixel.
  • the reflectance curve of the filter layer of the region is as shown in FIG. 10, the blue light is transmitted, and the light of the remaining bands is directly reflected, and the blue light reaches.
  • the green quantum dots are excited to generate green light, and scattering occurs, part of the forward scattering, this part can be directly utilized, and the other part is backscattered, reaching the green light of the sixth dichroic region 6.9. Being re-reflected in the forward direction and being reused, thereby improving the light-emitting efficiency, and the sixth dichroic region is also disposed at a position corresponding to the blue sub-pixel;
  • the unit may not set anything, and the red light filtered out through the fifth dichroic region 6.8 is directly transmitted. In order to improve the light exit angle of the red sub-pixel, the unit may be considered.
  • the scattering particles are arranged to scatter red light passing through the unit, thereby increasing the viewing angle of the red sub-pixel.
  • 6.11 is a green sub-pixel of the quantum dot display panel of the present application, and a green quantum dot material is disposed inside.
  • the wavelength of the quantum dots is generally selected to be between 520 and 550 nm.
  • the unit 6.12 is a blue sub-pixel of the quantum dot display panel of the present application.
  • the unit may not set anything, so that the blue light filtered out after passing through the sixth dichroic region 6.9 is directly transmitted.
  • the unit is provided with a transparent material or a transparent material containing scattering particles to scatter blue light passing through the unit, thereby increasing the viewing angle of the blue pixel.
  • FIG. 11 is a schematic structural diagram of a side-lit backlight module according to some embodiments of the present application, which is a schematic diagram of a side-entry liquid crystal module of a quantum dot display panel according to the present application, wherein 11.1 is adopted.
  • the light source assembly of the LED shown in Fig. 7 only shows the spectrum of the outgoing light as shown in Fig. 8; or the LED which emits only blue light.
  • 11.2 is a light guide plate; 11.3 is a reflection sheet; 11.4 is an optical film combination, and 11.5 is a quantum dot display panel proposed by the present application.
  • the light source assembly 10.1 is disposed on one side of the light guide plate 10, the reflection sheet 11.3 is disposed on the bottom side of the light guide plate, and the optical film assembly 11.4 and the quantum dot display panel 11.5 are disposed on the upper side of the light guide plate, wherein the optical film assembly 11.4 is disposed at Between the light guide plate and the quantum dot display panel.
  • FIG. 12 is a schematic structural diagram of another backlight module according to a specific embodiment of the present application, which is a schematic diagram of a direct-lit type liquid crystal module of a quantum dot display panel according to the present application, wherein 12.1 adopts FIG. 7
  • the light source of the LED, the spectrum of the outgoing light is shown in Figure 8; or the LED that emits only blue light.
  • 12.2 is a diffusion plate; 12.3 is an optical film combination; 12.4 is a quantum dot display panel proposed by the present application.
  • the light source assembly is disposed facing the bottom side of the diffusion plate, and the upper side of the diffusion plate is provided with an optical film combination and a quantum dot display panel, wherein the optical film combination is disposed in the diffusion Between the plate and the quantum dot display panel.
  • Some embodiments of the present application further provide a liquid crystal display device, including a backlight module and a circuit board for driving the backlight module, the backlight module including a light guide plate, a backlight, and a quantum dot display panel, the backlight For generating emitted light, the panel includes a color conversion layer, a dichroic filter material layer, and a liquid crystal material encapsulation layer, wherein:
  • the dichroic filter material layer is disposed between the liquid crystal material encapsulation layer and the color conversion layer, and the emitted light is incident through the liquid crystal material encapsulation layer and the dichroic filter material layer.
  • the color conversion layer On the color conversion layer;
  • the color conversion layer is excited by the emitted light to generate excitation light
  • the backward light in the excitation light is reflected by the dichroic filter material layer and then exits from the color conversion layer.
  • the present application can be implemented by hardware, or by software plus a necessary general hardware platform.
  • the technical solution of the present application may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various implementation scenarios of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种量子点显示面板(11.5,12.4)、背光模组及液晶显示装置,量子点显示面板(11.5,12.4)包括颜色转换层、二向色滤光材料层以及液晶材料封装层,颜色转换层受出射光线激发产生激发光线,二向色滤光材料层设置在液晶材料封装层和颜色转换层之间,由颜色转换层产生的激发光线的后向光能够被二向色滤光材料层反射,从而能够在采用减少量子点材料使用量的背光源的基础上减少光能量的损失以及提高出光效率。

Description

一种量子点显示面板、背光模组及液晶显示装置
本申请要求在2016年12月06日提交中国专利局、申请号为201611110739.3、发明名称为“一种封装量子点材料显示面板以及包含该面板的背光模组”以及2016年12月06日提交中国专利局、申请号为201611110740.6、发明名称为“一种封装量子点材料显示面板以及包含该面板的背光模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种量子点显示面板。本申请同时还涉及一种背光模组和一种液晶显示装置。
背景技术
液晶显示器是用于图像显示的显示设备,包括由一定数量的像素组成的液晶面板,液晶面板放置于光源或者反射面前方。
如图1所示,为目前行业内普通的液晶面板的结构示意图,普通液晶面板的包括滤光片(color filter),滤光片的子像素分别设置三种颜料进行吸收,例如红色子像素设置的红色颜料对红光波段具有透过性,对其余波段具有吸收特性,绿色子像素设置的绿色颜料对绿光波段具有透过性,对其余波段具有吸收特性,蓝色子像素设置的蓝色颜料对蓝光波段具有透过性,对其余波段具有吸收特性。在相关技术中,一般采用白色背光,然后彩色滤光片,将背光光谱中的红色、绿色和蓝色波段的光谱滤出,由于滤光片中单个子像素中滤色片只通过某个波段的光,其他波段的光被滤除,因而能量损失较多。
为了提高屏幕的色域,行业内目前量子点液晶模组背光方案是蓝光激发量子点材料产生白光的方案,这样色域可达100%NTSC以上。该方案将量子点材料封装在膜片中,作为模组中的一张膜片,放置在扩散板的上方,所有膜片的下方。
发明内容
本申请一些实施例提供了一种量子点显示面板,应用于包含背光源的背光模组中,所述背光源用于产生出射光线,该面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
所述颜色转换层受所述出射光线激发产生激发光线;
所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
本申请一些实施例还提供了一种背光模组,所述背光模组包括背光源和量子点显示面板,所述背光源用于产生出射光线,所述面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
所述颜色转换层受所述出射光线激发产生激发光线;
所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
本申请一些实施例还提供了一种液晶显示装置,包括背光模组和用于驱动背光模组的电路板,所述背光模组包括背光源和量子点显示面板,所述背光源用于产生出射光线,所述面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
所述颜色转换层受所述出射光线激发产生激发光线;
所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
附图说明
图1为相关技术中的液晶面板的结构示意图;
图2为相关技术中一种量子点技术示意图;
图3为相关技术中荧光粒子直径为20纳米时各方向的散射光;
图4为相关技术中包含量子点的颜色转换层的工作示意图;
图5为本申请一些实施例提出的一种量子点显示面板的结构示意图;
图6为本申请一些实施例提出的一种量子点显示面板的结构示意图;
图7为本申请一些实施例提出的一种背光源的结构示意图;
图8为本申请一些实施例提出的一种背光源的LED光谱曲线示意图;
图9为本申请一些实施例提出的二向色滤光材料层的第二基色光透射区域的反射率曲线示意图;
图10为本申请一些实施例提出的二向色滤光材料层的第一基色光透射区域的反射率曲线示意图;
图11为本申请一些实施例提出的一种背光模组的结构示意图;
图12为本申请一些实施例提出的另一种背光模组的结构示意图。
具体实施方式
由于量子点材料粒径较小,达到纳米级别(例如我们常用的红色(波长630nm)和绿色(波长530nm)量子点材料的粒子直径在3~7nm左右),因而量子点的激发效率比较高, 达到90%以上,因此相关技术中的一种改进方式是将量子点放在面板中,用以替代面板的滤色片。
如图2所示,为相关技术中一种量子点技术示意图,其中,1为光源发出的蓝色光线,2为像素单元,从左到右分别为红、绿、蓝的颜色转换层的三个子像素,3为从像素单元2发出的光线,从左到右依次对应红、绿、蓝光。背光采用蓝色背光,红色子像素内设置红色量子点,绿色子像素内设置绿色量子点,蓝色子像素为透明材料使背光直接透过,这样就大大提高了液晶模组的出光效率。
发明人在研究过程中发现:如图3所示,为量子点直径为20纳米时,在各方向的散射光上,前向光与后向光的比例已经比较接近。而在采用量子点技术的液晶背光模组中常用的红色(波长630nm)和绿色(波长530nm)量子点材料的粒子直径在3~7nm,这部分产生的后向散光较多,接近一半。
由这些量子点组成的颜色转换层的工作示意图如图4所示,其中,411是颜色转换层中包含红色量子点的红色子像素,412是颜色转换层中包含绿色量子点的绿色子像素,413的是颜色转换层中蓝色子像素。43是液晶分子,40是光源传过来的蓝光,411中向上的箭头指的是激发光中的前向光,向下的箭头指的是激发光中的后向光,蓝光到达颜色转换层的子像素时,蓝光激发量子点产生的光线有后向光,此部分光线向后散射进入背光模组内部,无法被利用,造成出光效率的降低的问题。
针对上述相关技术中红色子像素和绿色子像素在红色和绿色量子点材料受激发时因为产生后向光而导致出光率降低的问题。本申请提出了一种量子点显示面板,在颜色转换层的下方设置了一个二向色滤光材料层,由颜色转换层产生的激发光线的后向光能够被二向色滤光材料层反射,从而减少了光能量的损失,显著提高了出光效率。
在一些实施例中,该量子点显示面板用于包含背光源的背光模组中包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中,背光源发出出射光线。这些部件包括以下主要特征:
(1)所述颜色转换层受所述出射光线激发产生激发光线;
在本申请的技术方案中,颜色转换层是由包含多种颜色转换粒子的子像素组成的,当有光源照射到该颜色转换层上时,其子像素中的颜色转换粒子在光源的照射下会激发各个方向的散射光,以蓝光激发为例,当该颜色转换粒子为绿色量子点时,会激发出各个方向上的绿色激发光线,当该颜色转换粒子为红色量子点时,会激发出各个方向上的红色激发光线。
在该颜色转换层上还设置有各颜色子像素以及支架,并且,在本申请的优选实施例中,支架可以设置于各颜色的封装量子点材料的子像素之间,并且各子像素通过隔水氧材料封装在支架上。
需要注意的是,本申请中的光源是由背光源产生的,背光源的作用在于向量子点显示面板提供用于激发量子点的出射光线,当然,本申请中的一些实施例中,背光源包含对应于第一基色的LED芯片以及荧光粉,在本申请的一些实施例中,第一基色的光线是由LED芯片在通电后产生,且一般情况为蓝色光线,当然也可以是其他颜色的光线,具体情况需要根据实际的需要进行设置,荧光粉是为了配合LED芯片所单独设置的,具体可以为KSF红色荧光粉,且该KSF红色荧光粉可以将一部分蓝色光线转换成红色光线,也可以是为激发窄带宽的蓝光而添加的荧光粉。
进一步的,按照光源组件的不同,背光源既可以为单一颜色的LED光源,或者是由LED光源和量子管的组合;按照光源使用场景的不同,背光源在背光模组中的放置方式也不尽相同,例如放置在导光板的侧边或者在反射片的下方放置,这些都属于本申请的保护范围。
如图5所示,颜色转换层包括:红色子像素5.10、绿色子像素5.11、蓝色子像素5.12。
(2)所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间;
二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,是为了在透射光源出射光的同时将颜色转换层中像素内的量子点在受激产生的后向光反射,提高整个背光模组的出光效率,即,本申请通过在颜色转换层的下方设置二向色滤光材料层,也即在向后的激发光线的位置设置二向色滤光材料层,当向后散射的激发光线到达该二向色滤光材料层之后,又被重新反射回背光模组的出光方向上,这样,绝大多数的光线都会向正向散射,得到充分利用,以增加背光模组的出光率。
在该二向色滤光材料层上设置有二向色区域,向色区域可以是一个特定波段的光线透过(背光的波段,或背光的部分波段),并对另一特定波段的光线进行反射,当然,在具体实施方式中,可以在存在后向光的位置设置二向色区域,还可以根据实际情况将整个二向色滤光材料层都设置成二向色区域,以达到对向后散射的激发光线全部发射的作用,二具体的反射过程将在后续做详细阐述。
需要说明的是,在一些具体实施场景中,在存在后向光的位置设置二向色区域的同时还可以在二向色滤光材料层上除了二向色区域以外的地方设置透射区域,该透射区域可以仅透射蓝光,也可以透射所有的光线作为一种实现方式,可以在颜色转换层上的透明像素对应的位置设置透射区域,该透射区域具有增强出射光线的作用,例如设置增透膜,这样,当背光源的出射光线到达该二向色滤光材料层上时,在透过该透射区域的同时可以将出射光线增强射出,具体的实施方式将在后续的描述中详尽阐述,在此不再赘述。
(3)所述液晶封装材料层设置于所述二向色滤光材料层的下方,并位于所述出射光线射出至所述颜色转换层的路径上;
本申请还需要在二向色滤光材料层的下方设置液晶封装材料层,具体的,该液晶材料 封装层由上偏振片、透明电极、液晶封装层支架、包含液晶的液晶盒子、下玻璃基板以及下偏振片组成,在本申请一些实施方式中,液晶封装层支架设置于各液晶盒子之间,液晶盒子的两面均设置透明电极;液晶盒子的上表面是朝向二向色滤光材料层的一面,液晶盒子的下表面设置下玻璃基板,下玻璃基板相对于液晶盒子的另一面设置下偏振片。因此可以通过液晶盒子的透光与否来实现颜色转换层中不同像素的显示控制。
(4)在一些实施例中,所述二向色区域对于预先指定的第一基色的波段具有高透过性,以及对除所述第一基色以外的其他颜色的波段具有高反射特性,以将朝向所述二向色滤光材料层的方向散射的激励光线向所述颜色转换层的方向反射。透射区域可以设置有蓝光增透膜。
如上所述,本申请在二向色滤光材料层具有对指定的第一基色的波段具有高透过性,以及对除该指定的第一基色以外的其他颜色的波段具有高反射特性,利用该特性,本领域的技术人员可以理解,在该区域只对某一特定颜色具有高透过性,对其他颜色具有高反射性,例如,当第一基色为蓝色时,在该二向色滤光材料层就会针对蓝色具有高透过性,而除了蓝色以外的其他颜色均被高反射回去,这样,当背光源发射出的光线在到达该二向色滤光材料层后,因为该二向色滤光材料层仅对蓝色光线具有高透过性,因此,蓝色光线顺利透过,蓝色光线透过二向色滤光材料层到达颜色转换层,在子像素的颜色转换粒子的作用下,蓝色光线会被激发出各个方向的与子像素相对应颜色的激发光线(例如,蓝光在绿色量子点的作用下,会被激发出各个方向的绿色激发光线),其中向后方向上的相对应颜色的激发光线在到达二向色滤光材料层后,被二向色滤光材料层通过高反射性的特性向前反射,重新被利用,从而提高了出光效率。
(5)所述二向色区域对于所述指定颜色的波段具有高反射性,以及对除指定波段外的其他波段具有高透过特性,以将所述出射光线中所述指定颜色的光线反射。
在本申请提出的一些实施例中,背光源仅产生第一基色光,该背光源包含对应于第一基色的LED芯片。
在本申请所提出的一些实施方式中,背光源仅产生第一基色光和第二基色光,该背光源包含对应于第一基色的LED芯片以及对应于第二基色的荧光粉,具体的,第一基色的光线由LED芯片在通电后产生,第二基色的光线由荧光粉在吸收第一基色的光线后转化产生,即本申请中的射出光源包含第一基色和第二基色。
在二向色区域透射第二基色的光线,反射其他光线时,在射出光源到达二向色滤光材料层的二向色区域后,第二基色的光线可以顺利的透过,而第一基色的光线则被全部反射回去,如果该第二基色又与颜色转化单元中的颜色转换粒子设置的颜色相同或对应是子像素是透明的,则在第二基色到达颜色转换层后并不会产生激发光线,而是直接透过颜色转 换层向前散射。例如,在光源出射的光线包括红光和蓝光时,在红色子像素对应的位置设置有透射红光的二向色区域,那么红光会透射,而蓝光会被反射;在蓝色和/或绿色子像素对应的位置设置有透射蓝光的二向色区域,那么蓝光会被透射,红光会被反射。
在一些实施方式中,还可以在第一基色以及第二基色所对应的子像素中设有散射粒子,以提高散射光线的角度。
需要说明的是,在本申请一些实施方式中二向色区域以及透射区域是按照封装量子点材料的子像素的分布划分的,情况为:
(a)当出射光线仅包含第一基色的光线时,二向色滤光材料层可以整个都是二向色区域,透射第一基色光,并反射除第一基色光之外的其他颜色的光线。颜色转换层包括封装有第二基色量子点的第二基色子像素,和封装有第三基色量子点的第三基色子像素,和第一基色子像素。作为另一种实现方式,二向色滤光材料层上包括与第二基色子像素和第三基色子像素相对设置的二向色区域,以及和第一基色子像素相对设置的透射区域,二向色区域仅透射第一基色光,并反射第二基色子像素和第三基色子像素的激发光线中的后向光,透射区域透射第一基色光。
在一些实施例中,上述第一基色为蓝色,第二基色为红色,第三基色为绿色。
一些实施例中,透射区域设置有蓝光增透膜。蓝色子像素设置有透明材料:或蓝色子像素设置有含散射粒子的透明材料。
第一基色子像素、第二基色子像素、第三基色子像素之间设置有支架,第一基色子像素、第二基色子像素、第三基色子像素通过水氧阻隔材料封装在支架上。
(b)当出射光线包含第一基色的光线以及由第一基色的光线转化的第二基色的光线时,颜色转换层包括第一基色子像素,第二基色子像素,和封装有第三基色量子点的第三基色子像素,二向色滤光材料层上包括与第二基色子像素相对设置的用于透射第二基色光的第一二向色区域,和第三基色子像素及第一基色子像素相对设置的用于透射第一基色光的第二二向色区域,其中,第一二向色区域仅透射第二基色光并反射其他光线,第二二向色区域仅透射第一基色光并反射其他光线。
作为另一种实现方式,也可以是二向色滤光材料层上包括与第一基色子像素相对设置的第一基色光透射区域,与第二基色子像素相对设置的用于透射第二基色光第三二向色区域,和第三基色子像素相对设置的用于透射第一基色光的第四二向色区域。第四二向色区域透射第一基色光,并反射其他颜色的光线;第三二向色区域透射第二基色光,并反射其他颜色的光线,透射区域仅透射第一基色光或透射全部光线。
在一些实施例中,上述第一基色为蓝色,第二基色为红色,第三基色为绿色。
在一些实施例中,第一基色光的波长小于第三基色光,第三基色光的波长小于第二基 色光。
以上情况均是考虑到背光光源不同而导致出射光线不同,从而根据不同的出射光线以及颜色转换层中子像素的位置对二向色滤光材料层中的二向色区域以及透射区域进行设置的。
基于以上阐述的量子点显示面板可知,本申请主要是通过在颜色转换层和液晶材料封装层之间设置了二向色滤光材料层,由颜色转换层产生的激发光线的后向光能够被二向色滤光材料层反射,从而能够在采用减少量子点材料使用量的背光源的基础上减少光能量的损失以及提高出光效率。
需要说明的是,在本申请一些实施方式是将该透射区域设置于颜色转换层中粒径小于预设阈值的封装量子点材料子像素的位置,该预设阀值可以根据背光源的出射光线相对应设置,也可以根据实际的需要进行设置,当然,也可以根据实际需要将透射区域设置于整个二向色滤光材料层上,这些变化都在本申请的保护范围之内。
相应的,本申请还提出了一种背光模组,该背光模组包括导光板、背光源和量子点显示面板,背光源用于产生出射光线,量子点显示面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
二向色滤光材料层设置在液晶材料封装层和颜色转换层之间,出射光线透过液晶材料封装层和二向色滤光材料层入射到颜色转换层上;
颜色转换层受出射光线激发产生激发光线;
激发光线中的后向光被二向色滤光材料层反射后,从颜色转换层出射。
为了进一步阐述本申请的技术思想,现结合量子点材料显示面板的具体结构,对本申请的技术方案进行说明。
在一些实施例中,如图5所示,为本申请提出的一种量子点显示面板的结构示意图,5.1为蓝色背光模块,提供用于激发颜色转换层的蓝光。示例性的,选用峰值波长在440~455nm左右的蓝色LED作为背光源;5.2为量子点显示面板的下偏振片;5.3为量子点显示面板的下玻璃基板;5.13为上玻璃基板,上下玻璃基板中间设置有颜色转换层,二向色滤光材料层,液晶材料封装层。在量子点显示面板中,从下向上依次是:下偏振片5.2、下玻璃基板5.3、液晶材料封装层、二向色滤光材料层、颜色转换层、上玻璃基板5.13。
颜色转换层包括:红色子像素5.10、绿色子像素5.11、蓝色子像素5.12。
液晶材料封装层包括5.4为透明电极;5.5为透明电极(共负极);5.6为液晶盒子,里面装有液晶;5.7为液晶盒与液晶盒之间的液晶封装层支架;液晶封装支架将液晶分子划分成相互隔离的液晶盒子,在上下的两个电极的作用下,液晶盒子中的液晶分子会通过调整其扭曲程度来控制光线的通过。
二向色滤光材料层包括与第二基色子像素和第三子像素相对设置的二向色区域和第 一基色光透射区域,在图5所示,5.8为对应红色子像素及绿色子像素的二向色区域;5.9为对应蓝色子像素的透射区域。
由于蓝光背光模块5.1发出的背光为蓝光,在到达5.8二向色滤光材料层的二向色区域时,由于该二向色区域对除蓝光波段外的其余可见光具有高反射特性,因此背光中的蓝光可直接透过。蓝光到达点光转化层的红色子像素和绿色子像素后,激发产生红光和绿光的激发光,并发生散射,一部分前向散射,此部分可以被直接利用,而另一部分后向散射,到达二向色区域5.8的红光和绿光被重新反射正向出射,重新被利用,从而提高了出光效率,蓝光透射区域5.9同样设置在蓝色像素对应的位置,该区域可以仅透射蓝光,也可以是透明的。
量子点的半波宽越窄色纯度越高,因而尽可能的选择半波宽较窄的量子点,5.10为本申请量子点显示面板红色子像素,其内部设置了红色量子点材料,量子点的波长一般选在在620~650nm之间;5.11为本申请量子点显示面板绿色子像素,内部设置绿色量子点材料,量子点的波长一般选在在520~550nm之间;5.12为本申请量子点显示面板蓝色子像素,该单元可不设置东西,让通过5.9透射区域所滤出的蓝光直接透过,为了提高蓝色子像素的出光角度,可考虑在该单元设置透明材料或含有散射粒子的透明材料,使经过该单元的蓝光散射,从而提高蓝色子像素的可视角度。
在一些实施例中,如图6所示,为本申请提出的一种量子点显示面板的结构示意图,6.1为出射光为蓝色和红光的背光模块,示例性的,背光模块中的LED光源如图7所示,其中7.1为LED芯片,为电子发光,通电后出射蓝光;7.2为红色荧光粉,例如,选择半波宽较窄和发光效率较高的KSF荧光粉,红色荧光粉会吸收部分7.1出射的蓝光转化成红光;这样LED光源就能出射红光和蓝光,其中,7.3为LED支架,起到支撑和保护的作用。当然,也可以采用独立的蓝光LED和独立的红光LED作为背光源。选用蓝光峰值波长在440~455nm左右的蓝色LED作为背光源,红光优先选择KSF荧光粉,可以将一部分蓝色光线转化成红色光线,其背光模块中LED光谱曲线图如图8所示;
6.2为量子点显示面板的下偏振片.6.3为量子点显示面板的下玻璃基板;6.13为上玻璃基板,上下玻璃基板中间设置有颜色转换层,二向色滤光材料层,液晶材料封装层.
颜色转换层包括:红色子像素6.10、绿色子像素6.11、蓝色子像素6.12;液晶材料封装层包括6.4为透明电极;6.5为透明电极(透明电极6.4和透明电极6.5共负极);6.6为液晶盒子,里面装有液晶;6.7为液晶盒与液晶盒之间的液晶封装层支架;液晶封装支架将液晶分子划分成相互隔离的液晶盒子,在上下的两个电极的作用下,液晶盒子中的液晶分子会通过调整其扭曲程度来控制光线的通过。
二向色滤光材料层包括第五二向色区域和第六二向色区域,在图6所示的第五二向色区域6.8用于透射红光并反射其他光线,第六二向色区域6.9透射蓝光并反射其他光线。
6.8为本申请的第五二向色区域,其光谱反射特性如图9所示,由于背光模块6.1发出的背光为蓝光和红光,在到达6.8二向色滤光材料层的第五二向色区域时,由于该二向色区域只对红光波段具有高透过特性,其余波段可直接反射,因此背光中的蓝光被反射,只剩红光被透过,红光进入红色子像素6.10,而后出射,进行图像的显示;
6.9为蓝色子像素和绿色子像素位置对应的第六二向色区域,该区域的滤光层反射率曲线如图10所示,蓝光透过,其余波段的光直接被反射掉,蓝光到达绿色量子点光转化层后,激发绿色量子点产生绿光,并发生散射,一部分前向散射,此部分可以被直接利用,而另一部分后向散射,到达第六二向色区域6.9的绿光被重新反射正向出射,重新被利用,从而提高了出光效率,第六二向色区域同样设置在蓝色子像素对应的位置;
6.10为本申请量子点显示面板红色子像素,该单元可不设置东西,让通过第五二向色区域6.8滤出的红光直接透过,为了提高红色子像素的出光角度,可考虑在该单元设置散射粒子,使经过该单元的红光散射,从而提高红色子像素的可视角度。
6.11为本申请量子点显示面板绿色子像素,内部设置绿色量子点材料,量子点的半波宽越窄色纯度越高,因而尽可能的选择半波宽较窄的量子点,绿色子像素中的量子点的波长一般选在在520~550nm之间。
6.12为本申请量子点显示面板蓝色子像素,该单元可不设置东西,让通过第六二向色区域6.9后所滤出的蓝光直接透过,为了提高蓝色像素的出光角度,可考虑在该单元设置透明材料或含有散射粒子的透明材料,使经过该单元的蓝光散射,从而提高蓝色像素的可视角度。
如图11所示,为本申请一些实施方式中提出的一种侧入式背光模组的结构示意图,为应用本申请所阐述的量子点显示面板的侧入式液晶模组示意图,其中11.1采用图7所示LED的光源组件仅,出射光线的光谱如图8所示;或者采用仅出射蓝光的LED。11.2为导光板;11.3为反射片;11.4为光学膜片组合,11.5为本申请所提出的量子点显示面板。光源组件10.1设置在导光板10的一侧,反射片11.3设置在导光板的底侧,导光板的上侧设置有光学膜片组合11.4和量子点显示面板11.5,其中光学膜片组合11.4设置在导光板和量子点显示面板之间。
如图12所示,为本申请具体实施方式中提出的另一种背光模组的结构示意图,为应用本申请所阐述的量子点显示面板的直下式液晶模组示意图,其中12.1采用图7所示LED的光源,出射光线的光谱如图8所示;或者采用仅出射蓝光的LED。12.2为扩散板;12.3为光学膜片组合;12.4为本申请所提出的量子点显示面板。光源组件面向扩散板的底侧设置,扩散板的上侧设置有光学膜片组合和量子点显示面板,其中光学膜片组合设置在扩散 板和量子点显示面板之间。
本申请一些实施例还提供了一种液晶显示装置,包括背光模组和用于驱动背光模组的电路板,所述背光模组包括导光板、背光源和量子点显示面板,所述背光源用于产生出射光线,所述面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
所述颜色转换层受所述出射光线激发产生激发光线;
所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本申请所必须的。
以上公开的仅为本申请的几个具体实施场景,但是,本申请并非局限于此,任何本领域的技术人员能思之的变化都应落入本申请的保护范围。

Claims (19)

  1. 一种量子点显示面板,其特征在于,应用于包含背光源的背光模组中,所述背光源用于产生出射光线,该面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
    所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
    所述颜色转换层受所述出射光线激发产生激发光线;
    所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
  2. 如权利要求1所述的量子点显示面板,其特征在于,所述背光源仅产生第一基色光,所述二向色滤光材料层透射第一基色光,并反射除第一基色光之外的其他颜色的光线。
  3. 如权利要求2所述的量子点显示面板,其特征在于,所述第一基色为蓝色。
  4. 如权利要求1所述的量子点显示面板,其特征在于,所述背光源仅产生第一基色光,所述颜色转换层包括封装有第二基色量子点的第二基色子像素,和封装有第三基色量子点的第三基色子像素,和第一基色子像素;
    所述二向色滤光材料层上包括与所述第二基色子像素和所述第三基色子像素相对设置的二向色区域,以及和所述第一基色子像素相对设置的透射区域;
    所述二向色区域仅透射所述第一基色光,并反射第二基色子像素和所述第三基色子像素的激发光线中的后向光;所述透射区域透射所述第一基色光或所或透射所有光线。
  5. 如权利要求4所述的量子点显示面板,其特征在于,所述第一基色为蓝色,所述第二基色为红色,所述第三基色为绿色。
  6. 如权利要求5所述的量子点显示面板,其特征在于,所述透射区域设置有蓝光增透膜。
  7. 如权利要求4所述的量子点显示面板,其特征在于,所述第一基色子像素设置有透明材料;或,
    所述第一基色子像素设置有含散射粒子的透明材料。
  8. 如权利要求4所述的量子点显示面板,其特征在于,所述第一基色子像素、所述第二基色子像素、所述第三基色子像素之间设置有支架,所述第一基色子像素、所述第二基色子像素、所述第三基色子像素通过水氧阻隔材料封装在所述支架上。
  9. 如权利要求1所述的量子点显示面板,其特征在于,所述出射光线包括第一基色光和第二基色光;
    所述颜色转换层包括第一基色子像素,第二基色子像素,和封装有第三基色量子点的第三基色子像素;
    所述二向色滤光材料层上包括与所述第二基色子像素相对设置的第一二向色区域、和 所述第三基色子像素及所述第一基色子像素相对设置的第二二向色区域,所述第一二向色区域仅透射所述第二基色并反射第二基色光之外的光线,所述第二二向色区域仅透射所述第一基色光并反射第一基色光之外的光线。
  10. 如权利要求9所述的量子点显示面板,其特征在于,所述第一基色为蓝色,所述第二基色为红色,所述第三基色为绿色。
  11. 如权利要求1所述的量子点显示面板,其特征在于,
    所述出射光线包括第一基色光和第二基色光;
    所述颜色转换层包括第一基色子像素,第二基色子像素,和封装有第三基色量子点的第三基色子像素;
    所述二向色滤光材料层上包括与所述第二基色子像素相对设置的第三二向色区域、和所述第三基色子像素相对设置的第四二向色区域,及和所述第一基色子像素相对设置的透射区域,所述第三二向色区域仅透射所述第二基色并反射第二基色光之外的光线,所述第四二向色区域仅透射所述第一基色光并反射第一基色光之外的光线,所述透射区域透射蓝光或透射所有光线。
  12. 如权利要求11所述的量子点显示面板,其特征在于,所述第一基色子像素设置有透明材料;或,
    所述第一基色子像素设置有含散射粒子的透明材料。
  13. 如权利要求9所述的量子点显示面板,其特征在于,所述第二基色子像素设置有透明材料;或,
    所述第二基色子像素设置有含散射粒子的透明材料。
  14. 如权利要求9所述的量子点显示面板,其特征在于,所述第一基色子像素、所述第二基色子像素、所述第三基色子像素之间设置有支架,所述第一基色子像素、所述第二基色子像素、所述第三基色子像素通过水氧阻隔材料封装在所述支架之间。
  15. 如权利要求9所述的量子点显示面板,其特征在于,所述第一基色光的波长小于所述第三基色光,所述第三基色光的波长小于所述第二基色光。
  16. 如权利要求1所述的量子点显示面板,其特征在于,所述液晶材料封装层由上偏振片、透明电极、液晶封装层支架、包含液晶的液晶盒子、下玻璃基板以及下偏振片组成,其中:
    所述液晶封装层支架设置于各所述液晶盒子之间,所述液晶盒子的两面均设置所述透明电极;
    所述液晶盒子面向所述二向色滤光材料层的第一面设置所述上偏振片,所述上偏振片位于所述二向色滤光材料层和所述液晶盒子之间,所述液晶盒子与所述第一面相对的另一面设置所述下玻璃基板,所述下玻璃基板的背离所述液晶盒子的另一面设置所述下偏振 片。
  17. 如权利要求1所述的量子点显示面板,其特征在于,所述第一基色光的波长小于所述第三基色光,所述第三基色光的波长小于所述第二基色光。
  18. 一种背光模组,其特征在于,所述背光模组包括背光源和量子点显示面板,所述背光源用于产生出射光线,所述面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
    所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
    所述颜色转换层受所述出射光线激发产生激发光线;
    所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
  19. 一种液晶显示装置,其特征在于,包括背光模组和用于驱动背光模组的电路板,所述背光模组设置有背光源和量子点显示面板,所述背光源用于产生出射光线,所述面板包括颜色转换层、二向色滤光材料层以及液晶材料封装层,其中:
    所述二向色滤光材料层设置在所述液晶材料封装层和所述颜色转换层之间,所述出射光线透过所述液晶材料封装层和所述二向色滤光材料层入射到所述颜色转换层上;
    所述颜色转换层受所述出射光线激发产生激发光线;
    所述激发光线中的后向光被所述二向色滤光材料层反射后,从所述颜色转换层出射。
PCT/CN2017/100727 2016-12-06 2017-09-06 一种量子点显示面板、背光模组及液晶显示装置 WO2018103392A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611110740.6A CN106526965A (zh) 2016-12-06 2016-12-06 一种封装量子点材料显示面板以及包含该面板的背光模组
CN201611110739.3 2016-12-06
CN201611110739.3A CN106773287A (zh) 2016-12-06 2016-12-06 一种封装量子点材料显示面板以及包含该面板的背光模组
CN201611110740.6 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018103392A1 true WO2018103392A1 (zh) 2018-06-14

Family

ID=62490796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100727 WO2018103392A1 (zh) 2016-12-06 2017-09-06 一种量子点显示面板、背光模组及液晶显示装置

Country Status (1)

Country Link
WO (1) WO2018103392A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764265A (zh) * 2019-10-21 2021-05-07 夏普株式会社 背光源装置以及液晶显示装置
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN113534456A (zh) * 2020-04-22 2021-10-22 京东方科技集团股份有限公司 一种近眼显示设备和近眼显示装置
CN115218160A (zh) * 2018-12-14 2022-10-21 友达光电股份有限公司 背光模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147726A1 (ja) * 2011-04-25 2012-11-01 シャープ株式会社 液晶調光素子
CN105223724A (zh) * 2015-10-08 2016-01-06 深圳市华星光电技术有限公司 量子点液晶显示装置
US20160070137A1 (en) * 2012-06-15 2016-03-10 Apple Inc. Quantum Dot-Enhanced Display Having Dichroic Filter
CN105867026A (zh) * 2016-06-03 2016-08-17 青岛海信电器股份有限公司 量子点光源器件、背光模组及液晶显示装置
CN106526965A (zh) * 2016-12-06 2017-03-22 青岛海信电器股份有限公司 一种封装量子点材料显示面板以及包含该面板的背光模组
CN106773287A (zh) * 2016-12-06 2017-05-31 青岛海信电器股份有限公司 一种封装量子点材料显示面板以及包含该面板的背光模组
CN106918946A (zh) * 2017-03-16 2017-07-04 青岛海信电器股份有限公司 量子点液晶面板和液晶模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147726A1 (ja) * 2011-04-25 2012-11-01 シャープ株式会社 液晶調光素子
US20160070137A1 (en) * 2012-06-15 2016-03-10 Apple Inc. Quantum Dot-Enhanced Display Having Dichroic Filter
CN105223724A (zh) * 2015-10-08 2016-01-06 深圳市华星光电技术有限公司 量子点液晶显示装置
CN105867026A (zh) * 2016-06-03 2016-08-17 青岛海信电器股份有限公司 量子点光源器件、背光模组及液晶显示装置
CN106526965A (zh) * 2016-12-06 2017-03-22 青岛海信电器股份有限公司 一种封装量子点材料显示面板以及包含该面板的背光模组
CN106773287A (zh) * 2016-12-06 2017-05-31 青岛海信电器股份有限公司 一种封装量子点材料显示面板以及包含该面板的背光模组
CN106918946A (zh) * 2017-03-16 2017-07-04 青岛海信电器股份有限公司 量子点液晶面板和液晶模组

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218160A (zh) * 2018-12-14 2022-10-21 友达光电股份有限公司 背光模块
CN112764265A (zh) * 2019-10-21 2021-05-07 夏普株式会社 背光源装置以及液晶显示装置
CN112764265B (zh) * 2019-10-21 2023-11-03 夏普株式会社 背光源装置以及液晶显示装置
CN113534456A (zh) * 2020-04-22 2021-10-22 京东方科技集团股份有限公司 一种近眼显示设备和近眼显示装置
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN113437052B (zh) * 2021-05-06 2024-01-30 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法

Similar Documents

Publication Publication Date Title
US9893252B2 (en) White LED, backlight module and liquid crystal display device
KR102312196B1 (ko) 광발광 컬러 디스플레이
TWI533039B (zh) 顯示裝置
KR102068511B1 (ko) 퀀텀 닷 백라이트 모듈 및 디스플레이 장치
WO2018103392A1 (zh) 一种量子点显示面板、背光模组及液晶显示装置
US10048537B2 (en) Liquid crystal display apparatus
CN106501994B (zh) 一种量子点发光器件、背光模组及显示装置
JP2018509647A (ja) フォトルミネセンス・カラーディスプレイ
TW201900849A (zh) 彩色液晶顯示器及顯示器背光
TW201606401A (zh) 背光模組及顯示裝置
US11630258B2 (en) Color liquid crystal displays and display backlights
US20140168575A1 (en) Liquid crystal display
JP2012022028A (ja) 液晶ディスプレイ
US20180246267A1 (en) Backlight module, display device to which backlight module is applied, and method for manufacturing light guide plate
WO2016074267A1 (zh) 背光模块及液晶显示装置
US10591776B2 (en) Backlight module and a display device
CN106526965A (zh) 一种封装量子点材料显示面板以及包含该面板的背光模组
CN107703676A (zh) 一种光学膜组件、背光模组及显示设备
CN106773287A (zh) 一种封装量子点材料显示面板以及包含该面板的背光模组
US11349038B2 (en) Quantum dot complex and display apparatus including the same
WO2019100733A1 (zh) 白光发光二极管及背光模组
CN107703675A (zh) 一种光学膜组件、背光模组及显示设备
WO2019161596A1 (zh) 一种光学膜片、背光模组及显示装置
JP2016046266A (ja) 波長変換デバイス、照明ユニット、液晶モジュール及び照明方法
JP6452739B2 (ja) 液晶ディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879576

Country of ref document: EP

Kind code of ref document: A1