WO2018102935A1 - 柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法 - Google Patents
柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法 Download PDFInfo
- Publication number
- WO2018102935A1 WO2018102935A1 PCT/CN2016/000717 CN2016000717W WO2018102935A1 WO 2018102935 A1 WO2018102935 A1 WO 2018102935A1 CN 2016000717 W CN2016000717 W CN 2016000717W WO 2018102935 A1 WO2018102935 A1 WO 2018102935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control system
- valve
- flexible
- current
- threshold
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/06—Details with automatic reconnection
- H02H3/07—Details with automatic reconnection and with permanent disconnection after a predetermined number of reconnection cycles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- the invention belongs to the technical field of power electronic control, and in particular relates to a method for over-time tripping of a number of times of re-locking after a temporary blocking of a flexible DC control system.
- MMC modular multi-level converter
- the flexible DC transmission system generally adopts a modular multi-level converter as a primary device, and the MMC is composed of 6 bridge arms (hereinafter referred to as a converter valve bridge arm), each of which has a reactor L and N sub-modules. (SM) is made in series.
- the MMC circuit is highly modular and can meet different power and voltage level requirements by increasing or decreasing the number of sub-modules connected to the converter, facilitating integrated design, shortening project cycles and saving costs.
- the connection to the variable network side is faulty, which is easy to cause replacement.
- the flow bridge arm current is overcurrent.
- the industry generally adopts the bridge arm over-current to directly block the converter valve and trip, and isolates the converter valve and the AC system to protect the converter valve equipment. This way reduces the crossing of the flexible DC transmission technology in response to the failure of the AC system. Rate, not fully utilizing MMC-based flexible DC transmission technology.
- the object of the present invention is to provide a method for over-limit tripping of a flexible DC control system after temporary locking, which can improve the fault traversing function based on the MMC flexible direct current transmission technology and reliably protect the converter valve device.
- a flexible DC control system temporarily unlocks and then unlocks the number of over-limit tripping methods, and the flexible direct current transmission system is implemented based on a modular multi-level converter;
- the valve control system determines whether the bridge arm current is greater than the protection value of the converter valve device. If it is greater than, the valve control system is temporarily locked and the pole control is notified. The system is locked. When the valve control system and the pole control system are locked, the bridge arm current is gradually attenuated to less than the protection valve equipment protection setting. The temporary locking state of the valve control system disappears, and the valve control system is allowed to delay after the valve control system is unlocked. After setting the time, unlock again, change The flow valve provides reactive power to the AC system;
- the valve control system and the pole control system repeatedly repeat the temporary locking and unlocking process.
- the pole control system realizes the latching trip function.
- a flexible DC control system temporarily unlocks and then unlocks the number of over-limit tripping methods.
- the flexible DC transmission system is implemented based on a modular multi-level converter.
- the valve control system triggers temporary locking, and the valve control system is locked to notify the pole control system to lock; when the connection variable network side fault disappears or the bridge arm current is less than the set value
- Step 1 Determine whether the converter valve is in the unlocked state, if yes, proceed to step (2), otherwise repeat step 1;
- Step 2 Collect the AC voltage on the connected variable network side
- Step 3 judging whether the change of the AC voltage on the connected network side exceeds the set AC voltage threshold range or the change rate is higher than the set change rate threshold, if yes, proceed to step (4), otherwise return to step 2;
- Step 4 The valve control system collects the current of the converter valve bridge arm in real time and determines whether the current of the converter valve bridge arm is greater than the protection value of the converter valve device. If yes, the valve control system is time-locked and informs the pole control system to block. Go to step 4, otherwise return to step 2;
- Step 5 The valve control system collects the current current of the converter valve arm in real time, determines whether the current of the converter valve arm is attenuated and returns to the protection valve device protection setting range. If yes, proceed to step 6; otherwise, repeat the steps. 5;
- Step 6 The temporary locking signal of the valve control system disappears, the valve control system is unlocked and the remote control system is notified to delay the set time T to unlock;
- Step 7 Counting the number of times the flexible DC control system completes the temporary blocking and unlocking cycles during the fault of the connected network side failure. If the number of times exceeds the set limit, the process proceeds to step 8, otherwise returns to step 1;
- Step 8 The latching trip function is realized by the pole control system, and the circuit breakers on both sides are jumped off.
- the invention further includes the following preferred solutions:
- the AC voltage threshold ranges from 0.8 Upu to 1.2 pUu; the AC voltage variation threshold is 0.01 Upu/5 ms-0.05 Upu/5 ms, where 1 Upu represents the AC voltage rating.
- step 4 the overcurrent threshold of the bridge arm current overcurrent protection value of the converter valve device ranges from 1.15 Ipu to 1.5 Ipu, where 1 Ipu represents the rated operating current of the IGBT.
- step 5 the value of the recovery threshold of the bridge arm current recovery threshold of the converter valve device is 30A-100A.
- step 6 the set time T is 15 ms.
- step 7 during the one-time connection change to the network side failure period, the flexible DC control system completes the temporary locking and the set limit of the number of unlock cycles is 2 to 5 times.
- the fault traversing success rate of the MMC converter valve based on the fault of the connected AC system is improved, and the availability of the converter valve is improved.
- FIG. 1 is a schematic structural view of a device of a flexible direct current transmission system according to the present invention
- FIG. 2 is a flow chart of a method for exceeding the number of times of re-unlocking after the temporary locking of the compliance controller of the present invention
- Figure 3 is a diagram showing the corresponding connection relationship of the monitoring system, the pole control system, the protection system, and the valve control system.
- the DC control protection system and the converter valve are the core equipment for AC/DC conversion. Similar to conventional DC, the DC control protection system controls the converter valve through a valve control system.
- the flexible DC transmission system is a complex multi-input and multi-output system.
- the control protection system is divided into three layers according to the layered design principle: monitoring layer, pole control system and pole protection layer, I/O.
- the layer including the valve control system, see Figure 3
- the pole control system and the protection system are fiber point-to-point connections
- the pole control system and the valve control system are fiber point-to-point connections
- the valve control system drives the SM of the converter valve.
- Monitoring layer realizes the control of start and stop, sequence control of the DC unit in the station, control, monitoring, measurement, alarm, recording, remote transmission, and parameter/setting setting of all circuit breakers and isolation switches of the station. Control and protection devices of different levels are connected in a unified manner through a redundant computer network.
- the pole control system that is, the inverter control, mainly completes the functions of active power control, reactive power control, DC voltage control, inner loop current control, modulation voltage production and the like.
- Valve control system mainly complete the bridge arm circulation suppression control, MMC module trigger, the lowest level approach control.
- MMC Modular Multilevel Converter
- the description of the embodiment of the present invention is based on the topology structure of the main circuit using the connecting transformer and the modular multilevel converter (see FIG. 1), and the flexible direct current transmission system includes the connecting transformer 1, the charging resistor 2, the bridge arm reactor 3, Cascaded MMC sub-modules 4, which rely on A/B/C three-phase cable connections to form an electrical connection system.
- the operating parameters include the connection variable grid side voltage 5, the connection variable valve side current 6, the starting loop current 7, the switching valve upper arm current 8, the converter valve lower arm current 9, the positive current 10, and the negative current 11.
- a method for unlocking the trip after the temporary locking of the compliance control system is as shown in FIG. 2, and includes the following steps:
- Step 1 Whether the converter valve is in the unlocked state, if it has been unlocked, then proceeds to step (2), otherwise loop judgment step 1;
- Step 2 The pole control system collects the voltage of the connected variable network side in real time
- Step 3 The pole control system judges whether the AC voltage on the connected variable network side exceeds the set AC voltage threshold range or the change rate is higher than the set change rate threshold. If yes, the process proceeds to step (4), otherwise returns to the second (2) step;
- the AC voltage threshold ranges from 0.8Upu to 1.2pUu; the AC voltage variation threshold is 0.01Upu/5ms-0.05Upu/5ms, where 1Upu represents the AC voltage rating.
- Step 4 The valve control system collects the current of the converter valve bridge arm in real time, and determines whether the current of the converter valve bridge arm is too much for the protection value of the converter valve device. If yes, the valve control system temporarily locks and informs the pole control system. Block, go to step (5); otherwise return to step (2).
- the overcurrent threshold of the bridge arm current overcurrent protection value ranges from 1.15Ipu to 1.5Ipu, where 1Ipu represents the rated operating current of the IGBT. If it is greater than then, the valve control system determines to initiate temporary blocking.
- Step 5 The valve control system collects the current of the converter valve bridge arm in real time, and judges that the current of the converter valve bridge arm is attenuated to the converter valve device to restore the set value. If yes, go to step (6); otherwise, return to step (2). .
- the value of the current recovery threshold of the bridge arm current recovery threshold of the converter valve device is 30A-60A.
- Step 6 The pole control system records the number of temporary blocking signals transmitted by the valve control system, and blocks the converter valve, and simultaneously delays the T time to issue an unlock command again, and proceeds to step (7).
- the set time T is 15 ms.
- Step 7 In the case of a continuous AC system failure, the pole control system determines that the number of temporary locks triggered by the valve control system exceeds n times, then proceeds to step (8); otherwise, returns to step (1).
- the flexible DC control system completes the temporary blocking, and the setting limit of the number of unlock cycles n is 2 to 5 times.
- Step 8 The pole control system trips the circuit breaker to isolate the AC system from the MMC.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
Claims (7)
- 一种柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,柔性直流输电系统基于模块化多电平换流器实现;其特征在于:当极控系统判断联接变网侧交流系统发生短路故障后,由阀控系统判断桥臂电流是否大于换流阀设备保护定值,若大于,则触发阀控系统暂时性闭锁,并通知极控系统闭锁,当阀控系统和极控系统闭锁后,桥臂电流逐渐衰减到小于换流阀设备保护定值时,阀控系统暂时性闭锁状态消失,阀控系统解锁后允许极控系统延时设定时间后再次解锁,通过换流阀为交流系统提供无功。当联接变网侧发生交流系统故障导致阀控系统和极控系统重复发生暂时性闭锁和解锁流程,阀控系统和极控系统解闭锁次数超限时,极控系统实现闭锁跳闸功能。
- 一种柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,柔性直流输电系统是基于模块化多电平换流器实现,联接变网侧发生交流系统故障时,当换流阀桥臂电流大于设定的过流阈值即换流阀设备保护定值,阀控系统触发暂时性闭锁,阀控系统闭锁后通知极控系统闭锁;当联接变网侧故障消失或桥臂电流小于设定的过流阈值时,阀控系统和极控系统先后解除闭锁;其特征在于,所述柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法包括以下步骤:步骤1:判断换流阀是否在解锁状态,如果是则进入第(2)步,否则重复步骤1;步骤2:采集联接变网侧交流电压;步骤3:判断联接变网侧交流电压变化量是否超出设定的交流电压阈值范围或变化率高于设定的变化率阈值,如果是则进入第(4)步,否则返回步骤2;步骤4:阀控系统实时采集换流阀桥臂电流并判断换流阀桥臂电流是否大于换流阀设备保护定值,如果是,则阀控系统时性闭锁,并通知极控系统闭锁,进入步骤4,否则返回步骤2;步骤5:阀控系统实时采集当前的换流阀桥臂电流,判断换流阀桥臂电流是否衰减以至返回换流阀设备保护定值范围内,如果是,则进入步骤6;否则,重复步骤5;步骤6:阀控系统暂时性闭锁信号消失,阀控系统解锁并通知极控系统延时设定时间T后进行解锁;步骤7:统计该次联接变网侧故障期间,导致柔性直流控制系统完成暂时性闭锁、解锁循环的次数,如果次数超过设定限值则进入步骤8,否则返回步骤1;步骤8:通过极控系统实现闭锁跳闸功能,跳开联接变两侧断路器。
- 根据权利要求2所述的柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,其特征在于:在步骤3中,交流电压阈值范围为0.8Upu-1.2Upu;交流电压变化量阈值为0.01Upu/5ms-0.05Upu/5ms,其中1Upu表示交流电压额定值。
- 根据权利要求2所述的柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,其特征在于:在步骤4中,换流阀设备桥臂电流过流保护定值即过流阈值的取值范围为1.15Ipu-1.5Ipu,其中1Ipu表示IGBT额定工作电流。
- 根据权利要求2所述的柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,其特征在于:在步骤5中,换流阀设备桥臂电流恢复定值即恢复阈值的取值范围为30A-60A。
- 根据权利要求2所述的柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,其特征在于:在步骤6中,所述设定时间T为15ms。
- 根据权利要求2所述的柔性直流控制系统暂时闭锁后再次解锁次数超限跳闸方法,其特征在于:在步骤7中,一次联接变网侧故障期间,导致柔性直流控制系统完成暂时性闭锁、解锁循环次数的设定限值为2~5次。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1719220.4A GB2566123B (en) | 2016-12-07 | 2016-12-28 | Tripping method applicable to situation that number of unlocking times exceeds limit since flexible DC control system has been temporarily locked |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611114463.6 | 2016-12-07 | ||
CN201611114463.6A CN106505512B (zh) | 2016-12-07 | 2016-12-07 | 柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018102935A1 true WO2018102935A1 (zh) | 2018-06-14 |
Family
ID=58329762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/000717 WO2018102935A1 (zh) | 2016-12-07 | 2016-12-28 | 柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106505512B (zh) |
WO (1) | WO2018102935A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111276997A (zh) * | 2020-04-13 | 2020-06-12 | 国网福建省电力有限公司 | 一种柔性直流输电系统交流故障限流方法 |
CN111697542A (zh) * | 2020-05-14 | 2020-09-22 | 南方电网科学研究院有限责任公司 | 一种柔性直流阀组同步暂时性闭锁的控制系统及其方法 |
CN115144700A (zh) * | 2022-07-26 | 2022-10-04 | 广东电网有限责任公司 | 一种基于注入信号幅值的新能源并网系统故障保护方法 |
WO2024087164A1 (zh) * | 2022-10-28 | 2024-05-02 | 宁德时代未来能源(上海)研究院有限公司 | 储能阀的过流保护方法、系统、计算机设备和存储介质 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107490749B (zh) * | 2017-09-14 | 2019-08-02 | 南方电网科学研究院有限责任公司 | 特高压柔性直流输电系统启动回路的故障检测方法和装置 |
CN108429279B (zh) * | 2018-05-18 | 2021-01-19 | 南方电网科学研究院有限责任公司 | 一种柔性直流输电系统的无流保护方法和系统 |
CN109286171B (zh) * | 2018-11-14 | 2020-02-07 | 南京国电南自轨道交通工程有限公司 | 针对直流牵引馈线保护装置的闭锁断路器重复跳合闸方法 |
CN109541348B (zh) * | 2018-11-26 | 2021-09-03 | 许继集团有限公司 | 一种换流阀子模块控制器及驱动故障判别方法 |
CN110994661A (zh) * | 2019-11-12 | 2020-04-10 | 许继电气股份有限公司 | 海上风电柔性直流换流站紧凑化控制保护配置方法和系统 |
CN111049098B (zh) * | 2019-12-04 | 2021-10-01 | 南方电网电力科技股份有限公司 | 一种短路故障保护装置及方法 |
CN111262223B (zh) * | 2020-03-19 | 2021-04-20 | 中国南方电网有限责任公司超高压输电公司柳州局 | 一种柔性直流串联双阀组暂时性闭锁保护配置方法及系统 |
CN111769549B (zh) * | 2020-06-17 | 2023-12-15 | 中国南方电网有限责任公司 | 一种适用于特高压三端混合直流的紧急功率分配方法 |
CN112086993B (zh) * | 2020-09-10 | 2022-01-14 | 南京南瑞继保电气有限公司 | 柔性直流输电线路放电方法及装置、存储介质 |
CN112310946B (zh) * | 2020-10-22 | 2022-07-12 | 许继集团有限公司 | 一种柔性直流换流阀子模块及其控制方法 |
CN113176459B (zh) * | 2021-04-01 | 2022-10-28 | 南方电网科学研究院有限责任公司 | 一种柔性直流换流阀功率模块启动试验方法及其电路 |
CN114460397B (zh) * | 2021-12-31 | 2024-06-25 | 国网江苏省电力有限公司电力科学研究院 | 一种适用于电压源换流器的空载加压试验系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008157695A2 (en) * | 2007-06-20 | 2008-12-24 | S & C Electric Co. | Fault protection device with ground trip delay and method |
CN102299506A (zh) * | 2011-08-24 | 2011-12-28 | 中国电力科学研究院 | 一种模块化多电平换流器的保护系统及其保护方法 |
CN104269890A (zh) * | 2014-09-26 | 2015-01-07 | 华北电力大学 | 特高压直流分层接入方式的控制方法和系统 |
CN104393613A (zh) * | 2014-11-05 | 2015-03-04 | 南京南瑞继保电气有限公司 | 直流故障处理方法及装置 |
CN104865462A (zh) * | 2015-04-10 | 2015-08-26 | 南京南瑞继保电气有限公司 | 一种故障处理方法及装置 |
CN105576688A (zh) * | 2015-12-28 | 2016-05-11 | 国网辽宁省电力有限公司电力科学研究院 | 一种柔性直流输电系统的控制保护方法 |
CN105680421A (zh) * | 2014-11-17 | 2016-06-15 | 南京南瑞继保电气有限公司 | 一种模块化多电平换流器保护方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104659749B (zh) * | 2015-02-26 | 2017-12-22 | 南京南瑞继保电气有限公司 | 过流保护方法 |
-
2016
- 2016-12-07 CN CN201611114463.6A patent/CN106505512B/zh active Active
- 2016-12-28 WO PCT/CN2016/000717 patent/WO2018102935A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008157695A2 (en) * | 2007-06-20 | 2008-12-24 | S & C Electric Co. | Fault protection device with ground trip delay and method |
CN102299506A (zh) * | 2011-08-24 | 2011-12-28 | 中国电力科学研究院 | 一种模块化多电平换流器的保护系统及其保护方法 |
CN104269890A (zh) * | 2014-09-26 | 2015-01-07 | 华北电力大学 | 特高压直流分层接入方式的控制方法和系统 |
CN104393613A (zh) * | 2014-11-05 | 2015-03-04 | 南京南瑞继保电气有限公司 | 直流故障处理方法及装置 |
CN105680421A (zh) * | 2014-11-17 | 2016-06-15 | 南京南瑞继保电气有限公司 | 一种模块化多电平换流器保护方法 |
CN104865462A (zh) * | 2015-04-10 | 2015-08-26 | 南京南瑞继保电气有限公司 | 一种故障处理方法及装置 |
CN105576688A (zh) * | 2015-12-28 | 2016-05-11 | 国网辽宁省电力有限公司电力科学研究院 | 一种柔性直流输电系统的控制保护方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111276997A (zh) * | 2020-04-13 | 2020-06-12 | 国网福建省电力有限公司 | 一种柔性直流输电系统交流故障限流方法 |
CN111697542A (zh) * | 2020-05-14 | 2020-09-22 | 南方电网科学研究院有限责任公司 | 一种柔性直流阀组同步暂时性闭锁的控制系统及其方法 |
CN111697542B (zh) * | 2020-05-14 | 2022-09-16 | 南方电网科学研究院有限责任公司 | 一种柔性直流阀组同步暂时性闭锁的控制系统及其方法 |
CN115144700A (zh) * | 2022-07-26 | 2022-10-04 | 广东电网有限责任公司 | 一种基于注入信号幅值的新能源并网系统故障保护方法 |
WO2024087164A1 (zh) * | 2022-10-28 | 2024-05-02 | 宁德时代未来能源(上海)研究院有限公司 | 储能阀的过流保护方法、系统、计算机设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106505512B (zh) | 2019-01-08 |
CN106505512A (zh) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018102935A1 (zh) | 柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法 | |
Cwikowski et al. | Operating DC circuit breakers with MMC | |
EP3024109B1 (en) | Valve base control device and method for modular multi-level convertor | |
Hajian et al. | DC transmission grid with low-speed protection using mechanical DC circuit breakers | |
RU2674167C2 (ru) | Способ переключения с пассивного секционирования на подключение к энергосистеме | |
CN106026157B (zh) | 柔性直流输电换流阀子模块故障预测方法与装置 | |
CN102299506B (zh) | 一种模块化多电平换流器的保护系统及其保护方法 | |
WO2021196563A1 (zh) | 一种电阻型子模块混合mmc及其直流故障处理策略 | |
KR102082105B1 (ko) | 컨버터 기반 dc 배전 시스템들에서의 폴트 보호 | |
CN107947340B (zh) | 一种电源快速切换系统及其切换方法 | |
CN111224569B (zh) | 一种低全桥比例子模块混合型mmc及其直流故障处理策略 | |
CN110011282B (zh) | 一种直流短路故障性质判断方法及直流系统重合闸方法 | |
CN209046537U (zh) | 一种数据链冗余配置的柔性直流阀级控制器 | |
CN113241844B (zh) | 一种10kV母线的分段备自投方法及设备 | |
CN107370393A (zh) | 一种模块化多电平换流器子模块拓扑结构及其保护方法 | |
CN109787206A (zh) | 一种适用于多端直流和直流电网的阻容型限流式直流断路器拓扑 | |
CN110165697A (zh) | 多端柔性直流配电系统一键启停方法及装置 | |
CN103762612B (zh) | 使用隔离开关带电接入多端柔性直流输电系统的方法 | |
CN101951023B (zh) | 高压直流换流站的开关锁定方法 | |
CN108469557B (zh) | 基于换流器差动保护的高压直流输电换流器故障定位方法 | |
CN204205577U (zh) | 一种直流配电网全固态直流断路器 | |
CN107070251B (zh) | 一种铁路净化电源装置的协同控制系统及方法 | |
CN109347077B (zh) | 一种电流双向高压直流输电网用故障电流控制器 | |
Lin et al. | Design of 500kv hybrid hvdc circuit breaker control and protection system | |
CN112968432B (zh) | 一种负压耦合式高压直流断路器的控保系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 201719220 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20161228 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1719220.4 Country of ref document: GB |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923160 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16923160 Country of ref document: EP Kind code of ref document: A1 |