WO2018101705A1 - High-temperature regenerator - Google Patents

High-temperature regenerator Download PDF

Info

Publication number
WO2018101705A1
WO2018101705A1 PCT/KR2017/013699 KR2017013699W WO2018101705A1 WO 2018101705 A1 WO2018101705 A1 WO 2018101705A1 KR 2017013699 W KR2017013699 W KR 2017013699W WO 2018101705 A1 WO2018101705 A1 WO 2018101705A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
unit
combustion gas
temperature regenerator
high temperature
Prior art date
Application number
PCT/KR2017/013699
Other languages
French (fr)
Korean (ko)
Inventor
이흥주
조용선
조현욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201780034606.9A priority Critical patent/CN109312966A/en
Publication of WO2018101705A1 publication Critical patent/WO2018101705A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/02Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a liquid, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a high temperature regenerator, and more particularly, to a high temperature regenerator which is installed in an absorption chiller and separates a refrigerant from an absorption liquid by using a combustion gas generated in a burner.
  • Absorption chillers are appliances capable of cooling or heating, including evaporators, absorbers, condensers and regenerators.
  • Absorption-type refrigerators may use a process in which the refrigerant is absorbed and regenerated in the absorbent liquid in the absorber and the regenerator without using mechanical compression in the refrigerant, and the refrigerant may repeat the absorption, regeneration, condensation and evaporation processes.
  • Absorption refrigeration is a cycle that absorbs, regenerates, condenses, and evaporates a refrigerant (ie, water) using an absorbent liquid (for example, an aqueous lithium bromide (LiBr) solution) mainly using a gas or fuel such as LPG or LNG as a heat source.
  • a refrigerant ie, water
  • an absorbent liquid for example, an aqueous lithium bromide (LiBr) solution
  • the evaporator can produce cold water, or the condenser can produce hot water.
  • absorption refrigerators examples include Korean Patent Application Publication No. KR 10-2013-0089503 A (published Aug. 12, 2013), and Japanese Patent Application Laid-open No. Hei 5-256536 A (published Oct. 5, 1993). .
  • the high temperature regenerator according to the prior art has a problem that the plate heat exchanger is difficult to manufacture the plate heat exchanger because the plate heat exchanger continuously bends the thin plate to form bellows fins.
  • An object of the present invention is to provide a high temperature regenerator having a plate heat exchanger that is easy to manufacture and highly reliable.
  • An outer cell according to an embodiment of the present invention; An inner cell disposed inside the outer cell; A rare solution supply pipe for supplying a rare solution into the outer cell; A burner for generating combustion gas into the inner cell; A plate heat exchanger disposed between the outer cell and the inner cell to exchange heat between the rare solution and the combustion gas; And an exhaust duct for guiding the combustion gas passing through the plate heat exchanger, wherein the plate heat exchanger includes a plurality of unit heat transfer units stacked in a direction orthogonal to the flow direction of the combustion gas.
  • An inner passage through which the combustion gas passes is formed in a horizontal direction between a pair of heat transfer bodies connected to each other and joined at the other end, and the heat transfer body is formed with a joint body joined to another adjacent unit heat transfer unit. Between the unit heat transfer units adjacent to each other among the unit heat transfer units, a rare solution space in which the rare solution inside the outer cell is accommodated is opened in the vertical direction.
  • Each of the pair of heat transfer bodies includes a heat transfer plate portion; A one end connection portion bent at one end of the heat transfer plate portion and connected to another heat transfer body; The other end portion is bent at the other end of the heat transfer plate portion and bonded to the other heat transfer body, and the inner passage is formed between the one end connection portion and the other end junction.
  • the heat transfer plate portion is formed with an uneven portion slidably contacting the heat transfer plate of the other heat transfer body.
  • It includes a sealing member in close contact with the outermost unit heat transfer unit of the plurality of unit heat transfer unit, the sealing member is formed with a avoiding hole to avoid the uneven portion formed in the outermost unit heat transfer unit.
  • the joint body includes a protrusion projecting toward the heat transfer plate portion of the other unit heat transfer unit adjacent to the heat transfer plate portion, and an outer junction portion protruding from the protrusion and bonded to the other heat transfer unit adjacent to the heat transfer plate portion.
  • the outer joining portion is bent and joined in the opposite direction of the rare solution space at the protruding portion.
  • the rare solution space is formed by heat transfer bodies facing each other of adjacent unit heat transfer units and junction bodies protruding from the heat transfer bodies.
  • the high temperature regenerator includes a pair of upper supporters fitted to both upper sides of the plurality of unit heat transfer units; And a pair of lower supporters fitted to both lower sides of the plurality of unit heat transfer units.
  • the high temperature regenerator further includes a side body disposed next to the plate heat exchanger, and the side body has a combustion gas hole through which the combustion gas passing through the inner passage flows to flow into the exhaust duct.
  • the junction body is inserted into the combustion gas hole.
  • the junction body has a height in contact with the side body.
  • the exhaust duct includes a lower exhaust duct portion positioned next to the plate heat exchanger, and an upper exhaust duct portion protruding from the lower exhaust duct portion.
  • the lower exhaust duct part may be opened and closed and a duct door facing one surface of the plate heat exchanger is installed.
  • the inner passage opens toward the duct door.
  • the outer shell may include a shell body having a first shell body portion rounded at a lower portion thereof and an upper surface thereof open and a second shell body portion having a higher height than an upper portion of the first shell body portion; A lower first side body covering one end of the first shell body part; An upper first side body covering one end of the second rest body part; A second side body larger than each of the lower first side body and the upper first side body and covering the other end of the second shell body portion on an opposite side of the lower first side body and the upper first side body; A top cover disposed on an upper portion of the first shell body portion to close an upper portion of the lower first side body and a lower portion of the upper first side body.
  • the exhaust duct is disposed above the top cover.
  • the upper first side body is provided with a combustion gas hole for guiding the combustion gas passing through the inner passage into the exhaust duct.
  • FIG. 1 is a view showing the configuration of an example of an absorption type refrigerator having a high temperature regenerator according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a high temperature regenerator according to an embodiment of the present invention.
  • FIG. 3 is a partially cutaway perspective view of the inside of the high temperature regenerator according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line A-A shown in FIG.
  • FIG. 5 is a perspective view of a high temperature regenerator according to an embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of the high temperature regenerator shown in FIG. 5;
  • FIG. 7 is an exploded perspective view of a plurality of unit heat transfer units shown in FIG. 6 before being stacked;
  • FIG. 8 is a perspective view before the pair of heat transfer bodies shown in FIG. 7 are bonded.
  • FIG. 1 is a view showing a configuration of an example of an absorption type refrigerator having a high temperature regenerator according to an embodiment of the present invention.
  • the high temperature regenerator 20 of the present embodiment may be applied to a dual effect absorption refrigerator.
  • the absorption chiller to which the high temperature regenerator 20 is applied may include an absorber 10, a high temperature regenerator 20, a low temperature regenerator 30, a condenser 40, and an evaporator 50.
  • the absorption chiller may further include a low temperature heat exchanger 60 and a high temperature heat exchanger 70.
  • the absorber 10 absorbs the gaseous refrigerant evaporated by the evaporator 50 into the absorbent liquid, and an absorption region 11 in which the gaseous refrigerant is absorbed by the absorbent liquid may be formed therein.
  • the absorber 10 may include an absorbing liquid spraying unit 12 for spraying the absorbing liquid into the absorbing region 11.
  • the absorber 10 may include a coolant pipe 13 through which coolant passes. At least a portion of the cooling water pipe 13 may be located in the absorption region 11.
  • the gaseous refrigerant moved from the evaporation region 51 of the evaporator 50 to the absorption region 11 may be absorbed by the absorbent liquid injected from the absorbent liquid injection unit 12, and heat generated when the gaseous refrigerant is absorbed into the absorbent liquid may be absorbed. It may be delivered to the coolant pipe 13 of the absorber 10.
  • the absorbent liquid sprayed through the absorbent liquid sprayer 12 may be a concentrated liquid separated from the refrigerant in the low temperature regenerator 30, and the concentrated liquid sprayed from the absorbent liquid sprayer 12 to the absorbent region 11 may be an absorbent region 11. ) Can be converted into a rare solution as gaseous refrigerant is absorbed.
  • the rare solution of the absorber 10 may flow into the high temperature regenerator 20 and be separated from the refrigerant in the high temperature regenerator 20.
  • the absorber 10 may be connected to a rare solution pipe 14 for guiding the rare solution in which the refrigerant is absorbed.
  • the rare solution pipe 14 may pass through the absorbent liquid flowing from the absorber 10 toward the high temperature regenerator 20.
  • the rare solution pipe 14 may be provided with a pump 15 for pumping the rare solution.
  • the rare solution pipe 14 may be connected to the first passage 61 to be described later of the low temperature heat exchanger 60 to guide the rare solution to the first passage 61 of the low temperature heat exchanger 60.
  • the rare solution pipe 14 is connected to the rare solution supply pipe 220 which will be described later, and of course, the rare solution can be guided to the rare solution supply pipe 220.
  • the high temperature regenerator 20 may include an outer shell 200 forming an appearance.
  • the high temperature regenerator 20 may include a rare solution supply pipe 220 for supplying a rare solution flowing in the absorber 10 to the inside of the outer shell 200.
  • the high temperature regenerator 20 may include a burner 230 generating a combustion gas for heating the absorption liquid.
  • the rare solution flowing in the absorber 10 (that is, the absorbent liquid containing a relatively large amount of refrigerant) may be heated by the combustion gas generated in the burner 230, and the refrigerant absorbed in the absorber liquid absorbs heat of the combustion gas. Can be separated from the absorbent liquid.
  • the absorbent liquid in which the refrigerant vapor is separated may be converted into an intermediate absorbent liquid (ie, an intermediate solution).
  • the high temperature regenerator 20 may include a heat exchanger for exchanging the rare solution and the combustion gas, and the heat exchanger 240 is a plate heat exchanger 240 in which the absorbent liquid and the combustion gas are heat-exchanged by a plate-shaped heat transfer body. It can be composed of).
  • the high temperature regenerator 20 may further include an exhaust duct 250 for guiding the combustion gas to the outside of the high temperature regenerator 20.
  • the high temperature regenerator 20 may be connected to a refrigerant vapor engine 21 for guiding the gaseous refrigerant separated from the absorbing liquid to the low temperature regenerator 30.
  • the high temperature regenerator 20 may be connected to the intermediate solution pipe 22 through which the intermediate solution separated from the gas phase refrigerant is guided.
  • the intermediate solution pipe 22 may pass through the absorbent liquid flowing from the high temperature regenerator 20 toward the low temperature regenerator 30.
  • the intermediate solution pipe 22 may be connected to the fourth channel 72 described later of the high temperature heat exchanger 70 to guide the intermediate solution to the fourth channel 72 of the high temperature heat exchanger 70.
  • the intermediate solution pipe 22 may be connected to the absorption liquid injection unit 33 of the low temperature regenerator 30 to guide the intermediate solution to the absorption liquid injection unit 33 described later.
  • the low temperature regenerator 30 may have a regeneration space 31 formed therein.
  • the low temperature regenerator 30 may include a vapor coolant tube 32 through which at least a portion of the low temperature regenerator 30 is located in the regeneration space 31 and through which the gaseous phase refrigerant flowing from the high temperature regenerator 20 passes.
  • the low temperature regenerator 30 may include an absorption liquid injection unit 33 for spraying the intermediate solution flowing in the high temperature regenerator 20 to the regeneration space 31.
  • the low temperature regenerator 30 may be connected to a rich solution pipe 34 for guiding the concentrated solution separated from the refrigerant in the regeneration space 31.
  • the concentrated solution pipe 34 may guide the absorption liquid flowing from the low temperature regenerator 30 to the absorber 10.
  • the rich solution pipe 34 may be connected to a second flow path 62 to be described later of the low temperature heat exchanger 60 to guide the rich solution to the second flow path 62 of the low temperature heat exchanger 60.
  • the concentrated solution pipe 34 may be connected to the absorbent liquid injection unit 12 of the absorber 10 to guide the concentrated solution of the low temperature regenerator 3 to the absorbent liquid injection unit 12 of the absorber 10.
  • the low temperature regenerator 30 may be connected to a condenser connection pipe 35 for guiding the refrigerant passing through the steam refrigerant pipe 32 to the condensation region 41 of the condenser 40.
  • the condenser 40 may have a condensation region 41 in which a refrigerant is condensed.
  • the condenser 40 includes a cooling water pipe 42 at least partially disposed in the condensation region 41 and in which the refrigerant moved from the low temperature regenerator 30 exchanges heat with the cooling water.
  • the cooling water pipe 42 of the condenser 40 may be connected to the cooling water pipe 13 and the cooling water pipe connecting pipe 43 of the absorber 10, and the cooling water may be connected to the cooling water pipe 13 and the cooling water pipe of the absorber 10.
  • the connection pipe 43 and the cooling water pipe 42 of the condenser 40 may pass sequentially.
  • the condenser 40 may be connected to the evaporator connecting pipe 44 for guiding the refrigerant condensed in the condensation space 41 to the evaporation region 51 of the evaporator 50.
  • the evaporator 50 may have an evaporation region 51 in which the refrigerant flowing in the condenser 40 is evaporated.
  • the evaporator 50 may include a cold water pipe 53 through which at least a portion of the evaporator 50 is disposed in the evaporation region 51 and through which the cold water that exchanges heat with the refrigerant in the evaporation region 51 passes.
  • the low temperature heat exchanger 60 may include a first passage 61 through which the rare solution flowed from the absorber 10 passes, and a second passage 62 through which the agricultural solution flowed from the low temperature regenerator 30 passes. have.
  • the rare solution passing through the first passage 61 and the concentrated solution passing through the second passage 82 may be heat-exchanged with each other in the low temperature heat exchanger 60.
  • the low temperature heat exchanger 60 may be connected to a heat exchanger connection pipe 63 for guiding the refrigerant passing through the first flow path 61 to the third flow path 71 to be described later of the high temperature heat exchanger 70.
  • the low temperature heat exchanger 60 may be connected to the absorber connecting pipe 64 for guiding the concentrated solution passing through the second flow path 62 to the absorbent liquid injection part 12 of the absorber 10.
  • the high temperature heat exchanger (70) is a third passage (71) through which the rare solution flowing in the first passage (61) of the low temperature heat exchanger (60) passes, and the intermediate solution flowing in the high temperature regenerator (20). It may include four euros (72).
  • the rare solution passing through the third passage 71 and the intermediate solution passing through the fourth passage 72 may be heat-exchanged with each other in the high temperature heat exchanger 70.
  • the high temperature heat exchanger 70 may be connected to a high temperature regenerator connecting pipe 73 for guiding the rare solution having passed through the third flow path 71 to the rare solution supply pipe 220 of the high temperature regenerator 20.
  • the high temperature heat exchanger 70 may be connected to a low temperature regenerator connecting pipe 74 for guiding the intermediate solution passed through the fourth flow path 72 to the absorption liquid injection unit 33 of the low temperature regenerator 30.
  • FIG. 2 is a perspective view showing a high temperature regenerator according to an embodiment of the present invention
  • Figure 3 is a partially cutaway perspective view showing the inside of the high temperature regenerator according to an embodiment of the present invention
  • Figure 4 is a line AA shown in FIG. It is a cross section.
  • the high temperature regenerator 20 includes an outer cell 200; An inner shell 210, a rare solution supply pipe 220, a burner 230 (see FIG. 1); And a plate heat exchanger 240 and an exhaust duct 250.
  • the outer shell 200 may form an appearance of the high temperature regenerator 20.
  • the outer shell 200 may be composed of a combination of a plurality of members.
  • the outer shell 220 may have a space 202 in which the absorbent liquid may be contained.
  • the outer shell 220 may be mounted on at least one support leg 203 and 204.
  • the outer shell 200 includes a shell body 205 having a space 202 formed therein, at least one first side body 206 and 207 blocking one end of the shell body 205, and a shell body 205. It may include a second side body 208 to block the other end of the.
  • the shell body 205 may include a plurality of shell body portions 205A and 205B having different heights at the top.
  • the first shell body portion 205A which is one of the plurality of shell body portions, may be rounded at a lower portion thereof and open at an upper surface thereof.
  • the second shell body portion 205B which is another one of the plurality of shell body portions, may have a higher height at an upper end than the first shell body portion 205A.
  • the lower and upper portions of the second shell body portion 205B may be rounded.
  • the first side bodies 206 and 207 may include a lower first side body 206 covering one end of the first shell body 205A, and an upper first covering the one end of the second shell body 205B. Side body 207;
  • the second side body 208 may be formed larger than each of the lower first side body 206 and the upper first side body 207.
  • the second side body 208 may cover the other end of the second shell body portion 205B opposite the first side body 206 and 207.
  • the outer shell 200 may further include a top cover 209 disposed on the first shell body 205A.
  • the top cover 209 may block between an upper portion of the lower first side body 206 and a lower portion of the upper first side body 207.
  • An exhaust duct accommodating space may be formed at the upper side of the upper first side body 207 and on the upper cover 209 to accommodate the exhaust duct 250.
  • the inner shell 210 may be disposed in the outer cell 200.
  • the inner shell 210 may be disposed long in the horizontal direction in the outer shell 200.
  • the inner shell 210 may have a passage 212 through which combustion gas passes.
  • a space in which the absorbent liquid is filled may be formed between the outer surface of the inner shell 210 and the inner surface of the outer shell 200.
  • Inner shell 210 may be formed with a combustion gas inlet 213 through which combustion gas is introduced.
  • the inner cell 210 extends to protrude upward from a portion of the first inner shell portion 210A disposed below the plate heat exchanger 240 and a portion of the first inner shell portion 210A, so that the inner portion of the plate heat exchanger 240 It may include a second inner shell portion 210B disposed next to.
  • the first inner shell portion 210A may be disposed to be elongated in the horizontal direction at an inner lower portion of the outer shell 200.
  • the combustion gas inlet 213 may be formed at one side of the first inner shell portion 210A, and the second inner shell portion 210B may be upward from the opposite side of the combustion gas inlet 213 of the first inner shell portion 210A. It may protrude.
  • the bottom surface of the second inner shell portion 210B may be opened to communicate with the first inner shell portion 210A.
  • the second inner shell portion 210B may have a shape in which front, rear, and top surfaces are blocked.
  • an opening through which the combustion gas flows to the plate heat exchanger 230 may be formed on one surface of the second inner shell part 210B that is closer to the plate heat exchanger 230.
  • the second inner shell portion 210B may have a shape in which an opposite surface of the surface on which the opening is formed is blocked.
  • the combustion gas generated by the burner 230 may be introduced into the first inner shell portion 210A through the combustion gas inlet 213, and the combustion gas may be introduced into the second inner shell portion 210A in the first inner shell portion 210A. After flowing into the inside of the 210B, it may be introduced into the plate heat exchanger (230).
  • the rare solution supply pipe 220 may supply a rare solution into the outer cell 200.
  • the rare solution supply pipe 220 may be disposed above the inner shell 200 to inject the rare solution into the outer shell 200.
  • At least a portion of the rare solution supply pipe 220 may be disposed above the plate heat exchanger 250, and the rare solution injected from the rare solution supply pipe 220 may fall toward the upper surface of the plate heat exchanger 250. .
  • the rare solution supply pipe 220 may be disposed to extend from the upper side of the second inner shell portion 220 to the upper side of the plate heat exchanger 250.
  • the rare solution supply pipe 220 may be formed with a plurality of absorption liquid supply holes. The plurality of absorption liquid supply holes may be spaced apart from each other in the longitudinal direction of the rare solution supply pipe 220.
  • the burner 230 may generate combustion gas into the inner cell 210.
  • the plate heat exchanger 240 may be disposed between the outer cell 200 and the inner cell 210 to exchange heat between the rare solution and the combustion gas.
  • the plate heat exchanger 240 may be disposed to be positioned above the first inner shell portion 210A of the inner shell 210.
  • the plate heat exchanger 240 may be disposed between the portion of the inner shell 210 and the exhaust duct 250.
  • the plate heat exchanger 240 may be disposed to be positioned between the second inner shell portion 210B and the exhaust duct 250 in the horizontal direction.
  • the plate heat exchanger 240 may be formed with an inner passage through which the exhaust gas flowing from the inner shell 210 passes in the horizontal direction.
  • the plate heat exchanger 240 may be formed such that the rare solution space in which the rare solution in the outer shell 200 is accommodated is opened in the vertical direction.
  • the exhaust duct 250 may guide the combustion gas passed through the plate heat exchanger 240.
  • the exhaust duct 250 may be disposed to be next to the plate heat exchanger 240.
  • the exhaust duct 250 guides the combustion gas flowing out of the plate heat exchanger 240, and includes a lower exhaust duct unit 252 positioned next to the plate heat exchanger 240 and a lower exhaust duct unit 252. It may include a protruding upper exhaust duct portion 254.
  • the plate heat exchanger 240 may be disposed between the lower exhaust duct portion 252 and the second inner shell portion 220B, and the combustion gas flowing from the second inner shell portion 210B to the plate heat exchanger 240 may be After passing through the plate heat exchanger 240 may flow to the lower exhaust duct 252, the combustion gas flowing into the lower exhaust duct 252 may be exhausted to the outside through the upper exhaust duct 254. have.
  • the exhaust duct 250 may be disposed above the top cover 209, and the high temperature regenerator may be compact.
  • the lower exhaust duct part 252 may be provided with an openable duct door 256.
  • the duct door 256 may be disposed to rotate or slide in the lower exhaust duct 252, and the inside of the lower exhaust duct 252 may be opened when the duct door 256 is opened.
  • the duct door 256 may be disposed to face one surface of the plate heat exchanger 240 in the lower exhaust duct 252. When the duct door 256 is opened, the plate heat exchanger 240 can be seen from the outside through the lower exhaust duct 252.
  • FIG. 5 is a perspective view of a high temperature regenerator according to an embodiment of the present invention
  • FIG. 6 is an exploded perspective view of the high temperature regenerator shown in FIG. 5
  • FIG. 7 is an exploded view of a plurality of unit heat transfer units shown in FIG. 8 is a perspective view before the pair of heat transfer bodies shown in FIG. 7 are joined.
  • the plate heat exchanger 240 includes a plurality of unit heat transfer units 301 to 308 stacked in a direction Y orthogonal to the flow direction X of the combustion gas.
  • Each of the plurality of unit heat transfer units 301 to 308 may have an inner passage 340 through which combustion gas passes.
  • the inner passage 340 may be open in the horizontal direction to each of the unit heat transfer units (301 to 308).
  • the plate heat exchanger 240 may include a plurality of inner passages 340.
  • the combustion gas flowing from the inner shell 210 to the plate heat exchanger 240 may pass through the plurality of inner passages 340 while being heat-exchanged with each of the plurality of unit heat transfer units 301 to 308.
  • Each of the plurality of unit heat transfer units 301 to 308 may have an inner passage 340 through which combustion gas passes between the pair of heat transfer bodies 320 and 330.
  • the inner passage 340 may be formed long in the horizontal direction between the pair of heat transfer bodies 320 and 330.
  • the pair of heat transfer bodies 320 and 330 may be connected to one end 310 and the other end 312.
  • the unit heat transfer units 301 to 308 may be prepared by molding a pair of heat transfer bodies 320 and 330 into one body, as shown in FIG. 8, and as shown in FIGS. 6 and 7.
  • the pair of heat transfer bodies 320 and 330 may be bent to face each other.
  • the other ends 312 that are spaced apart from each other may be in contact with each other, as shown in FIGS. 6 and 7, and the pair of heat transfer bodies 320 and 330 in which the other ends 312 are in contact with each other.
  • Inner passage 340 may be formed between the ().
  • the pair of heat transfer bodies 320 and 330 may be manufactured such that one end 310 is connected by a folding line, and the other end 312 is in a separated state, as shown in FIG. As shown in FIG. 7, they may be contacted.
  • Each of the pair of heat transfer bodies 320 and 330 constituting the unit heat transfer unit includes a heat transfer plate portion 324 having an uneven portion 323 formed therein; One end connecting portion 326 is bent at one end of the heat transfer plate 324 and connected to the other heat transfer body, and the other end junction 328 is bent at the other end of the heat transfer plate 324 and bonded to the other heat transfer body.
  • the uneven portion 323 may be slidably contacted with the heat transfer plate portion 324 of another adjacent heat transfer body.
  • the inner passage 340 may be formed between the connection portion 326 and the other end junction 328.
  • the other end junctions 328 of each of the pair of heat transfer bodies 320 and 330 may be bonded to each other by a method such as brazing bonding.
  • a plurality of unit heat transfer units 301 to 308 are stacked, the plurality of unit heat transfer units 301 to 308 may be bonded to each other.
  • the stacking of the plurality of unit heat transfer units 301 to 308 may mean that the plurality of unit heat transfer units 301 to 308 are arranged in a horizontal direction, and the plurality of unit heat transfer units 301 to 308 may be adjacent to each other.
  • the unit may be in contact with the heat transfer unit in the horizontal direction.
  • the inner passage 340 may be formed long in the horizontal direction between the pair of heat transfer bodies 320 and 330.
  • the plurality of unit heat transfer units 301 to 308 may be stacked in a direction orthogonal to the opening direction of the inner passage 340.
  • the plurality of unit heat transfer units 301 to 308 may be disposed to be in contact with the other unit heat transfer units in the left-right direction.
  • the plurality of unit heat transfer units 301 to 308 may be disposed to contact the other unit heat transfer units in the front-rear direction.
  • Each of the plurality of unit heat transfer units 301 to 308 may be joined to be in contact with another adjacent unit heat transfer unit, and the plurality of unit heat transfer units 301 to 308 may be spaced apart from each other in the outer shell 200. It can be firmly supported.
  • the plurality of unit heat transfer units 301 to 308 may be integrated with other adjacent unit heat transfer units so that the whole of the plurality of unit heat transfer units 301 to 308 may be integrated, and the inside of the outer shell 200 in an integrated state. Can be mounted.
  • one of the plurality of unit heat transfer unit (301 to 308) between the pair of other unit heat transfer unit (301) (303) may be joined to each of a pair of adjacent unit heat transfer units 301 and 303.
  • the outermost unit heat transfer unit of the plurality of unit heat transfer units 301 to 308 may be joined to one other unit heat transfer unit, and the plurality of unit heat transfer units located between the outermost unit heat transfer units may be adjacent to a pair of unit heat transfer units. Can be joined with the unit respectively.
  • the heat transfer bodies 320 and 330 may be formed with a bonding body 322 to be bonded to another heat transfer unit adjacent to each other.
  • the bonding body 322 may be formed in each of the plurality of unit heat transfer units 301 to 308.
  • a rare solution space 350 may be formed between the adjacent unit heat transfer units of the plurality of unit heat transfer units 301 to 308 to accommodate the rare solution inside the outer cell 200.
  • the rare solution space 350 may be opened in the vertical direction Z between unit heat transfer units adjacent to each other.
  • Bonding body 322 is a protrusion 322A protruding toward the heat transfer plate portion of the other heat transfer unit adjacent to the heat transfer plate portion, and the outer junction portion 322B is bent in the opposite direction of the solution space 350 in the protrusion 322A and bonded It may include.
  • the outer junction 322B of each of the plurality of unit heat transfer units 301 to 308 may be joined by a method such as brazing bonding.
  • the rare solution space 350 may be formed by heat transfer bodies facing each other of unit heat transfer units adjacent to each other, and a bonding body 322 protruding from the heat transfer bodies.
  • the high temperature regenerator 20 may further include at least one unit heat transfer unit supporter 351, 352, 353, and 354 fitted to the plurality of unit heat transfer units 301 to 308.
  • the high temperature regenerator may include a plurality of unit heat transfer unit supporters 351, 352, 353, and 354, and each of the plurality of unit heat transfer unit supporters 351, 352, 353, and 354 may include a plurality of unit heat transfer units. It may be fitted with each of the heat transfer units (301 to 308).
  • the unit heat transfer unit supporters 351, 352, 353, and 354 are preferably fitted at positions that do not disturb the flow of the combustion gas or the absorbent liquid.
  • fitting grooves 355 into which a part of the bonding body 322 formed in each of the unit heat transfer units 301 to 308 are inserted may be inserted.
  • the unit heat transfer unit supporters 351, 352, 353, and 354 are fitted with the plurality of unit heat transfer units 301 to 308, the plurality of unit heat transfer units 301 to 308 are the unit heat transfer unit supporters 351. (352) (353) 354 can be fixed to each other.
  • the plurality of unit heat transfer unit supporters 351, 352, 353, and 354 may include a pair of upper supporters 351 and 352 fitted to upper sides of the plurality of unit heat transfer units 301 to 308.
  • a pair of lower supporters 353 and 354 fitted to both lower sides of the unit heat transfer units 301 to 308 may be included.
  • each of the upper supporters 351 and 352 and the lower supporters 353 and 354 is less than 1/2 of the height of the unit heat transfer units 301 to 308.
  • the high temperature regenerator may further include a pair of sealing members 360 and 362 in close contact with the outermost unit heat transfer unit among the plurality of unit heat transfer units 301 to 308.
  • the plurality of unit heat transfer units 301 to 308 may be in close contact with each other in the stacking direction by a pair of sealing members 360 and 362.
  • Each of the pair of sealing members 360 and 362 may have a avoidance hole 363 that avoids the uneven portion 323 formed in the outermost unit heat transfer unit.
  • the side gas may include a combustion gas hole through which the combustion gas passing through the inner passage 340 of the unit heat transfer units 301 to 308 passes. 207a) may be formed.
  • the upper first side body 207 may be disposed in the plate heat exchanger 240, and the combustion gas passing through the inner passage 340 of the unit heat transfer units 301 to 308 may be disposed in the upper first side body 207.
  • the combustion gas hole 207a flowing into the exhaust duct 250 may be formed.
  • junction body 322 protruding to each of the plurality of unit heat transfer units 301 to 308 may be inserted into the combustion gas hole 207a.
  • the junction body 322 may be fitted in contact with the side body 207 on which the combustion gas hole 207a is formed.
  • the bonding body 322 When the height of the bonding body 322 is the same as the height of the combustion gas hole 207a, the bonding body 322 may be inserted into the combustion gas hole 207a, each of the upper and lower ends of the bonding body 322 is upper
  • the first side body 207 may be in contact with each other, and each of the plurality of unit heat transfer units 301 to 308 may be inserted into and fixed to the upper first side body 207.
  • reference numeral 260 illustrated in FIG. 5 is an inner side body positioned opposite to the upper first side body 207.
  • the inner side body 260 may be provided with a combustion gas hole 260a through which the combustion gas of the inner shell 210 flows to the inner passage 340 of the unit heat transfer units 301 to 308.
  • the inner side body 260 may be fixed to the inner shell 210 shown in FIG. 3.
  • the high temperature regenerator 20 of the present embodiment may be capable of chemical cleaning of the plate heat exchanger (240).
  • the worker may inject chemical into the exhaust duct 250 after opening the duct door 256.
  • the chemical may be introduced into the inner passage 340 of the plate heat exchanger 240 through the exhaust duct 250, and a pair of heat transfer bodies 320 and 330 facing each other while passing through the inner passage 340. Foreign matter attached to each surface may be removed and may flow to the inner shell 210 together with the foreign matter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The present embodiment comprises: an outer cell; an inner cell disposed inside the outer cell; a dilute solution supply pipe for supplying a dilute solution into the outer cell; a burner for generating combustion gas inside the inner cell; a plate-type heat exchanger disposed between the outer cell and the inner cell so as to exchange heat between the dilute solution and the combustion gas; and an exhaust duct for guiding the combustion gas having passed through the plate-type heat exchanger, wherein the plate-type heat exchanger includes a plurality of heat transfer units stacked in the direction orthogonal to the flow direction of the combustion gas, the heat transfer unit has an inner passage, through which the combustion gas passes, formed to be long in the horizontal direction between a pair of heat transfer bodies of which one end of each is connected and the other ends of each are joined, the heat transfer body has a joining body joined to the other adjacent heat transfer unit, and a dilute solution space for accommodating the inner dilute solution of the outer cell is opened in the vertical direction between the heat transfer units, which are adjacent to each other, among the plurality of heat transfer units, and the present invention has simpler manufacturing than when thin sheets are continuously folded and bent, and has high reliability.

Description

고온재생기High Temperature Regenerator
본 발명은 고온재생기에 관한 것으로, 더욱 상세하게는 흡수식 냉동기에서 설치되고 버너에서 발생된 연소가스를 이용하여 흡수액에서 냉매를 분리하는 고온재생기에 관한 것이다.The present invention relates to a high temperature regenerator, and more particularly, to a high temperature regenerator which is installed in an absorption chiller and separates a refrigerant from an absorption liquid by using a combustion gas generated in a burner.
흡수식 냉동기는 증발기와 흡수기와 응축기와 재생기를 포함하여 냉방 또는 난방을 수행할 수 있는 기기이다.Absorption chillers are appliances capable of cooling or heating, including evaporators, absorbers, condensers and regenerators.
흡수식 냉동기는 냉매에 기계적인 압축을 이용하지 않고, 냉매가 흡수기와 재생기에서 흡수액에 흡수, 재생되는 과정을 이용할 수 있고, 냉매는 흡수, 재생, 응축, 증발 과정을 반복할 수 있다. Absorption-type refrigerators may use a process in which the refrigerant is absorbed and regenerated in the absorbent liquid in the absorber and the regenerator without using mechanical compression in the refrigerant, and the refrigerant may repeat the absorption, regeneration, condensation and evaporation processes.
흡수식 냉동기는, 주로 LPG, LNG 등과 같은 가스 또는 연료를 열원으로 하고 흡수액(예를 들어, 리튬브로마이드(LiBr) 수용액)을 이용하여 냉매(즉, 물)을 흡수, 재생, 응축, 증발하는 사이클을 수행할 수 있고, 증발기가 냉수를 생성하거나, 응축기가 온수를 생성할 수 있다.Absorption refrigeration is a cycle that absorbs, regenerates, condenses, and evaporates a refrigerant (ie, water) using an absorbent liquid (for example, an aqueous lithium bromide (LiBr) solution) mainly using a gas or fuel such as LPG or LNG as a heat source. The evaporator can produce cold water, or the condenser can produce hot water.
이러한 흡수식 냉동기의 예는 대한민국 공개특허공보 KR 10-2013-0089503 A (2013년08월12일 공개)와, 일본 공개특허공보 특개평5-256536 A (1993년10월05일 공개) 등이 있다. Examples of such absorption refrigerators include Korean Patent Application Publication No. KR 10-2013-0089503 A (published Aug. 12, 2013), and Japanese Patent Application Laid-open No. Hei 5-256536 A (published Oct. 5, 1993). .
종래 기술에 따른 고온재생기는 판형 열교환기가 얇은 판을 연속적으로 접어 구부려 자바라 핀을 형성하므로, 판형 열교환기의 제조가 어려운 문제점이 있다. The high temperature regenerator according to the prior art has a problem that the plate heat exchanger is difficult to manufacture the plate heat exchanger because the plate heat exchanger continuously bends the thin plate to form bellows fins.
본 발명은 제조가 용이하고 신뢰성이 높은 판형 열교환기를 갖는 고온재생기를 제공하는데 그 목적이 있다. An object of the present invention is to provide a high temperature regenerator having a plate heat exchanger that is easy to manufacture and highly reliable.
본 발명의 일 실시 예에 따른 아우터 셀과; 상기 아우터 셀 내부에 배치된 이너 셀과; 상기 아우터 셀의 내부로 희용액을 공급하는 희용액 공급관와; 상기 이너 셀 내부로 연소가스를 발생하는 버너와; 상기 아우터 셀과 이너 셀 사이에 배치되어 상기 희용액과 연소가스를 열교환하는 판형 열교환기와; 상기 판형 열교환기를 통과한 연소가스를 안내하는 배기 덕트를 포함하고, 상기 판형 열교환기는 상기 연소가스의 유동방향과 직교한 방향으로 적층된 다수의 단위 전열유닛을 포함하고, 상기 단위 전열유닛은 일단이 연결되고 타단이 접합된 한 쌍의 전열 바디 사이에 상기 연소가스가 통과하는 이너통로가 수평 방향으로 길게 형성되며, 상기 전열 바디에는 인접한 타 단위 전열유닛과 접합되는 접합 바디가 형성되고, 상기 다수의 단위 전열유닛 중 서로 인접한 단위 전열유닛의 사이에는 상기 아우터 셀 내부의 희용액이 수용되는 희용액공간이 수직방향으로 개방된다.An outer cell according to an embodiment of the present invention; An inner cell disposed inside the outer cell; A rare solution supply pipe for supplying a rare solution into the outer cell; A burner for generating combustion gas into the inner cell; A plate heat exchanger disposed between the outer cell and the inner cell to exchange heat between the rare solution and the combustion gas; And an exhaust duct for guiding the combustion gas passing through the plate heat exchanger, wherein the plate heat exchanger includes a plurality of unit heat transfer units stacked in a direction orthogonal to the flow direction of the combustion gas. An inner passage through which the combustion gas passes is formed in a horizontal direction between a pair of heat transfer bodies connected to each other and joined at the other end, and the heat transfer body is formed with a joint body joined to another adjacent unit heat transfer unit. Between the unit heat transfer units adjacent to each other among the unit heat transfer units, a rare solution space in which the rare solution inside the outer cell is accommodated is opened in the vertical direction.
상기 한 쌍의 전열 바디 각각은 전열판부와; 상기 전열판부의 일단에 절곡되고 타 전열바디와 연결되는 일단 연결부와; 상기 전열판부의 타단에 절곡되고 타 전열바디와 접합되는 타단 접합부를 포함하며, 상기 일단 연결부와 타단 접합부 사이에 상기 이너통로가 형성된다.Each of the pair of heat transfer bodies includes a heat transfer plate portion; A one end connection portion bent at one end of the heat transfer plate portion and connected to another heat transfer body; The other end portion is bent at the other end of the heat transfer plate portion and bonded to the other heat transfer body, and the inner passage is formed between the one end connection portion and the other end junction.
상기 전열판부에는 타 전열바디의 전열판과 슬라이드 가능하게 접촉되는 요철부가 형성된다.The heat transfer plate portion is formed with an uneven portion slidably contacting the heat transfer plate of the other heat transfer body.
상기 다수의 단위 전열유닛 중 최외곽 단위 전열유닛에 밀착되는 실링부재를 포함하고, 상기 실링부재에는 상기 최외곽 단위 전열유닛에 형성된 요철부를 회피하는 회피공이 형성된다.It includes a sealing member in close contact with the outermost unit heat transfer unit of the plurality of unit heat transfer unit, the sealing member is formed with a avoiding hole to avoid the uneven portion formed in the outermost unit heat transfer unit.
상기 접합 바디는 상기 전열판부에서 인접한 타 단위 전열유닛의 전열판부를 향해 돌출된 돌출부와, 상기 돌출부에서 돌출되고 인접한 타 단위 전열유닛과 접합되는 아우터 접합부를 포함한다.The joint body includes a protrusion projecting toward the heat transfer plate portion of the other unit heat transfer unit adjacent to the heat transfer plate portion, and an outer junction portion protruding from the protrusion and bonded to the other heat transfer unit adjacent to the heat transfer plate portion.
상기 아우터 접합부는 상기 돌출부에서 상기 희용액공간의 반대방향으로 절곡되어 접합된다.The outer joining portion is bent and joined in the opposite direction of the rare solution space at the protruding portion.
상기 희용액공간은 인접한 단위 전열유닛의 서로 마주보는 전열바디와 상기 전열바디에서 돌출된 접합바디에 의해 형성된다.The rare solution space is formed by heat transfer bodies facing each other of adjacent unit heat transfer units and junction bodies protruding from the heat transfer bodies.
고온재생기는 상기 다수의 단위 전열유닛의 상부 양측에 끼워지는 한 쌍의 어퍼 서포터와; 상기 다수의 단위 전열유닛의 하부 양측에 끼워지는 한 쌍의 로어 서포터를 포함한다. The high temperature regenerator includes a pair of upper supporters fitted to both upper sides of the plurality of unit heat transfer units; And a pair of lower supporters fitted to both lower sides of the plurality of unit heat transfer units.
고온재생기는 상기 판형 열교환기의 옆에 배치된 사이드 바디를 더 포함하고, 상기 사이드 바디는 상기 이너 통로를 통과한 연소가스가 상기 배기덕트 내부로 유동되기 위해 통과하는 연소가스 홀이 형성된다.The high temperature regenerator further includes a side body disposed next to the plate heat exchanger, and the side body has a combustion gas hole through which the combustion gas passing through the inner passage flows to flow into the exhaust duct.
상기 접합바디는 상기 연소가스 홀로 삽입된다.The junction body is inserted into the combustion gas hole.
상기 접합바디는 상기 사이드 바디와 접촉되는 높이를 갖는다.The junction body has a height in contact with the side body.
상기 배기 덕트는 상기 판형 열교환기의 옆에 위치하는 로어 배기 덕트부와, 상기 로어 배기 덕트부에서 돌출된 어퍼 배기 덕트부를 포함한다. 상기 로어 배기 덕트부에는 개폐 가능하고 상기 판형 열교환기의 일면을 마주보는 덕트 도어가 설치된다.The exhaust duct includes a lower exhaust duct portion positioned next to the plate heat exchanger, and an upper exhaust duct portion protruding from the lower exhaust duct portion. The lower exhaust duct part may be opened and closed and a duct door facing one surface of the plate heat exchanger is installed.
상기 이너통로는 상기 덕트 도어를 향해 개방된다.The inner passage opens toward the duct door.
상기 아우터 쉘은 하부가 라운드지고 상면이 개방된 제1 쉘 바디부와 제1 쉘 바디부 보다 상단의 높이가 높은 제2 쉘 바디부를 갖는 쉘 바디와; 상기 제1 쉘 바디부의 일측단을 덮는 로어 제1사이드 바디와; 상기 제2쉴 바디부의 일측단을 덮는 어퍼 제1사이드 바디와; 상기 로어 제1사이드 바디와 어퍼 제1사이드 바디 각각 보다 크고 상기 로어 제1사이드 바디와 어퍼 제1사이드 바디의 반대편에서 상기 제2 쉘 바디부의 타단을 덮는 제2사이드 바디와; 상기 제1 쉘 바디부의 상부에 배치되어 로어 제1사이드 바디의 상부와 어퍼 제1사이드 바디 하부 사이를 막는 탑 커버를 포함한다. 상기 배기덕트는 탑 커버 상측에 배치된다.The outer shell may include a shell body having a first shell body portion rounded at a lower portion thereof and an upper surface thereof open and a second shell body portion having a higher height than an upper portion of the first shell body portion; A lower first side body covering one end of the first shell body part; An upper first side body covering one end of the second rest body part; A second side body larger than each of the lower first side body and the upper first side body and covering the other end of the second shell body portion on an opposite side of the lower first side body and the upper first side body; A top cover disposed on an upper portion of the first shell body portion to close an upper portion of the lower first side body and a lower portion of the upper first side body. The exhaust duct is disposed above the top cover.
상기 어퍼 제1사이드 바디에는 상기 이너통로를 통과한 연소가스를 상기 배기덕트 내부로 안내하는 연소가스 홀이 형성된다.The upper first side body is provided with a combustion gas hole for guiding the combustion gas passing through the inner passage into the exhaust duct.
본 발명의 실시 예에 따르면, 얇은 판을 연속적으로 접어 구부리는 경우 보다 제조가 용이하고, 신뢰성이 높은 이점이 있다. According to an embodiment of the present invention, there is an advantage in that manufacturing is easier and more reliable than when bending a thin plate continuously.
또한, 배기 덕트를 통해 판형 열교환기를 세척하기 용이한 이점이 있다. In addition, there is an advantage that it is easy to clean the plate heat exchanger through the exhaust duct.
도 1은 본 발명의 실시 예에 따른 고온재생기가 적용된 흡수식 냉동기 일예의 구성이 도시된 도,1 is a view showing the configuration of an example of an absorption type refrigerator having a high temperature regenerator according to an embodiment of the present invention;
도 2는 본 발명의 실시 예에 따른 고온재생기가 도시된 사시도, 2 is a perspective view showing a high temperature regenerator according to an embodiment of the present invention;
도 3은 본 발명의 실시 예에 따른 고온재생기의 내부가 도시된 일부 절결 사시도,3 is a partially cutaway perspective view of the inside of the high temperature regenerator according to the embodiment of the present invention;
도 4는 도 2에 도시된 A-A선 단면도,4 is a cross-sectional view taken along the line A-A shown in FIG.
도 5는 본 발명의 실시 예에 따른 고온 재생기의 사시도,5 is a perspective view of a high temperature regenerator according to an embodiment of the present invention;
도 6은 도 5에 도시된 고온재생기의 분해 사시도, 6 is an exploded perspective view of the high temperature regenerator shown in FIG. 5;
도 7은 도 6에 도시된 다수의 단위 전열유닛이 적층되기 이전의 분해 사시도, 7 is an exploded perspective view of a plurality of unit heat transfer units shown in FIG. 6 before being stacked;
도 8은 도 7에 도시된 한 쌍의 전열 바디가 접합되기 이전의 사시도이다.FIG. 8 is a perspective view before the pair of heat transfer bodies shown in FIG. 7 are bonded.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 고온재생기가 적용된 흡수식 냉동기 일예의 구성이 도시된 도이다.1 is a view showing a configuration of an example of an absorption type refrigerator having a high temperature regenerator according to an embodiment of the present invention.
본 실시예의 고온재생기(20)는 이중효용 흡수식 냉동기에 적용될 수 있다.The high temperature regenerator 20 of the present embodiment may be applied to a dual effect absorption refrigerator.
고온재생기(20)가 적용된 흡수식 냉동기(이하, 흡수식 냉동기라 칭함)는 흡수기(10), 고온재생기(20), 저온재생기(30), 응축기(40) 및 증발기(50)를 포함할 수 있다. 흡수식 냉동기는 저온열교환기(60)와 고온열교환기(70)를 더 포함할 수 있다. The absorption chiller to which the high temperature regenerator 20 is applied (hereinafter, referred to as an absorption type refrigerator) may include an absorber 10, a high temperature regenerator 20, a low temperature regenerator 30, a condenser 40, and an evaporator 50. The absorption chiller may further include a low temperature heat exchanger 60 and a high temperature heat exchanger 70.
흡수기(10)는 증발기(50)에서 증발된 기상냉매를 흡수액에 흡수시키는 것으로, 기상냉매가 흡수액에 흡수되는 흡수영역(11)이 내부에 형성될 수 있다. 흡수기(10)는 흡수영역(11)으로 흡수액을 분사하는 흡수액분사부(12)를 포함할 수 있다. The absorber 10 absorbs the gaseous refrigerant evaporated by the evaporator 50 into the absorbent liquid, and an absorption region 11 in which the gaseous refrigerant is absorbed by the absorbent liquid may be formed therein. The absorber 10 may include an absorbing liquid spraying unit 12 for spraying the absorbing liquid into the absorbing region 11.
흡수기(10)는 냉각수가 통과하는 냉각수관(13)을 포함할 수 있다. 냉각수관(13)은 적어도 일부가 흡수영역(11)에 위치될 수 있다. The absorber 10 may include a coolant pipe 13 through which coolant passes. At least a portion of the cooling water pipe 13 may be located in the absorption region 11.
증발기(50)의 증발영역(51)에서 흡수영역(11)으로 이동된 기상냉매는 흡수액분사부(12)에서 분사된 흡수액에 흡수될 수 있고, 기상냉매가 흡수액에 흡수될 때 발생된 열은 흡수기(10)의 냉각수관(13)으로 전달될 수 있다. The gaseous refrigerant moved from the evaporation region 51 of the evaporator 50 to the absorption region 11 may be absorbed by the absorbent liquid injected from the absorbent liquid injection unit 12, and heat generated when the gaseous refrigerant is absorbed into the absorbent liquid may be absorbed. It may be delivered to the coolant pipe 13 of the absorber 10.
흡수액분사부(12)를 통해 분사되는 흡수액은 저온 재생기(30)에서 냉매와 분리된 농용액일 수 있고, 흡수액분사부(12)에서 흡수영역(11)으로 분사된 농용액은 흡수영역(11)에서 기상냉매가 흡수됨에 따라 희용액으로 바뀔 수 있다.The absorbent liquid sprayed through the absorbent liquid sprayer 12 may be a concentrated liquid separated from the refrigerant in the low temperature regenerator 30, and the concentrated liquid sprayed from the absorbent liquid sprayer 12 to the absorbent region 11 may be an absorbent region 11. ) Can be converted into a rare solution as gaseous refrigerant is absorbed.
흡수기(10)의 희용액은 고온재생기(20)로 유동되어 고온재생기(20)에서 냉매와 분리될 수 있다. The rare solution of the absorber 10 may flow into the high temperature regenerator 20 and be separated from the refrigerant in the high temperature regenerator 20.
흡수기(10)에는 냉매가 흡수된 희용액을 안내하는 희용액 배관(14)이 연결될 수 있다. 희용액 배관(14)은 흡수기(10)에서 고온재생기(20)을 향해 유동되는 흡수액이 통과할 수 있다. 희용액 배관(14)에는 희용액을 펌핑시키는 펌프(15)가 설치될 수 있다. The absorber 10 may be connected to a rare solution pipe 14 for guiding the rare solution in which the refrigerant is absorbed. The rare solution pipe 14 may pass through the absorbent liquid flowing from the absorber 10 toward the high temperature regenerator 20. The rare solution pipe 14 may be provided with a pump 15 for pumping the rare solution.
희용액 배관(14)은 저온열교환기(60)의 후술하는 제1유로(61)에 연결되어 저온열교환기(60)의 제1유로(61)로 희용액을 안내할 수 있다. 희용액 배관(14)은 후술하는 희용액 공급관(220)에 연결되어 희용액을 희용액 공급관(220)으로 안내하는 것도 가능함은 물론이다.The rare solution pipe 14 may be connected to the first passage 61 to be described later of the low temperature heat exchanger 60 to guide the rare solution to the first passage 61 of the low temperature heat exchanger 60. The rare solution pipe 14 is connected to the rare solution supply pipe 220 which will be described later, and of course, the rare solution can be guided to the rare solution supply pipe 220.
고온재생기(20)는 외관을 형성하는 아우터 쉘(200)을 포함할 수 있다. 고온재생기(20)는 흡수기(10)에서 유동된 희용액을 아우터 쉘(200)의 내부로 공급하는 희용액 공급관(220)을 포함할 수 있다. 고온재생기(20)는 흡수액을 가열하기 위한 연소가스를 발생하는 버너(230)을 포함할 수 있다. The high temperature regenerator 20 may include an outer shell 200 forming an appearance. The high temperature regenerator 20 may include a rare solution supply pipe 220 for supplying a rare solution flowing in the absorber 10 to the inside of the outer shell 200. The high temperature regenerator 20 may include a burner 230 generating a combustion gas for heating the absorption liquid.
흡수기(10)에서 유동된 희용액(즉, 냉매를 상대적으로 많이 포함하는 흡수액)은 버너(230)에서 발생된 연소가스에 의해 가열될 수 있고, 흡수액에 흡수되었던 냉매는 연소가스의 열을 흡열하여 흡수액으로부터 분리될 수 있다. 냉매증기가 분리된 흡수액은 중간 농도의 흡수액(즉, 중간용액)으로 변할 수 있다.The rare solution flowing in the absorber 10 (that is, the absorbent liquid containing a relatively large amount of refrigerant) may be heated by the combustion gas generated in the burner 230, and the refrigerant absorbed in the absorber liquid absorbs heat of the combustion gas. Can be separated from the absorbent liquid. The absorbent liquid in which the refrigerant vapor is separated may be converted into an intermediate absorbent liquid (ie, an intermediate solution).
고온재생기(20)는 희용액과 연소가스를 열교환하는 열교환기를 포함할 수 있고, 이러한 열교환기는 흡수액과 연소가스가 판 형상의 전열 바디에 의해 열교환되는 판형 열교환기(240, 도 3 내지 도 4 참조)로 구성될 수 있다. The high temperature regenerator 20 may include a heat exchanger for exchanging the rare solution and the combustion gas, and the heat exchanger 240 is a plate heat exchanger 240 in which the absorbent liquid and the combustion gas are heat-exchanged by a plate-shaped heat transfer body. It can be composed of).
한편, 고온재생기(20)는 연소가스를 고온재생기(20) 외부로 안내하는 배기 덕트(250)을 더 포함할 수 있다. On the other hand, the high temperature regenerator 20 may further include an exhaust duct 250 for guiding the combustion gas to the outside of the high temperature regenerator 20.
고온재생기(20)에는 흡수액과 분리된 기상냉매를 저온재생기(30)로 안내하는 냉매증기관(21)이 연결될 수 있다. The high temperature regenerator 20 may be connected to a refrigerant vapor engine 21 for guiding the gaseous refrigerant separated from the absorbing liquid to the low temperature regenerator 30.
고온재생기(20)에는 기상냉매와 분리된 중간용액이 안내되는 중간용액배관(22)이 연결될 수 있다. 중간용액배관(22)은 고온재생기(20)에서 저온재생기(30)을 향해 유동되는 흡수액이 통과할 수 있다. 중간용액배관(22)은 고온열교환기(70)의 후술하는 제4유로(72)에 연결되어 고온열교환기(70)의 제4유로(72)로 중간용액을 안내할 수 있다. 중간용액배관(22)은 저온재생기(30)의 흡수액분사부(33)에 연결되어 중간용액을 후술하는 흡수액분사부(33)로 안내하는 것도 가능하다.The high temperature regenerator 20 may be connected to the intermediate solution pipe 22 through which the intermediate solution separated from the gas phase refrigerant is guided. The intermediate solution pipe 22 may pass through the absorbent liquid flowing from the high temperature regenerator 20 toward the low temperature regenerator 30. The intermediate solution pipe 22 may be connected to the fourth channel 72 described later of the high temperature heat exchanger 70 to guide the intermediate solution to the fourth channel 72 of the high temperature heat exchanger 70. The intermediate solution pipe 22 may be connected to the absorption liquid injection unit 33 of the low temperature regenerator 30 to guide the intermediate solution to the absorption liquid injection unit 33 described later.
저온재생기(30)은 내부에 재생공간(31)이 형성될 수 있다. 저온재생기(30)는 적어도 일부가 재생공간(31)에 위치하고 고온재생기(20)에서 유동된 기상냉매가 통과하는 증기냉매관(32)를 포함할 수 있다. 저온재생기(30)는 고온재생기(20)에서 유동된 중간용액을 재생공간(31)으로 분사하는 흡수액분사부(33)를 포함할 수 있다.The low temperature regenerator 30 may have a regeneration space 31 formed therein. The low temperature regenerator 30 may include a vapor coolant tube 32 through which at least a portion of the low temperature regenerator 30 is located in the regeneration space 31 and through which the gaseous phase refrigerant flowing from the high temperature regenerator 20 passes. The low temperature regenerator 30 may include an absorption liquid injection unit 33 for spraying the intermediate solution flowing in the high temperature regenerator 20 to the regeneration space 31.
저온재생기(30)에는 재생공간(31)에서 냉매와 분리된 농용액을 안내하는 농후용액 배관(34)이 연결될 수 있다. 농후용액 배관(34)는 저온재생기(30)에서 흡수기(10)로 유동되는 흡수액을 안내할 수 있다. 농후용액 배관(34)는 저온 열교환기(60)의 후술하는 제2유로(62)에 연결되어 농후용액을 저온 열교환기(60)의 제2유로(62)로 안내할 수 있다. 농후용액 배관(34)은 흡수기(10)의 흡수액분사부(12)에 연결되어 저온재생기(3)의 농용액을 흡수기(10)의 흡수액분사부(12)로 안내하는 것도 가능하다.The low temperature regenerator 30 may be connected to a rich solution pipe 34 for guiding the concentrated solution separated from the refrigerant in the regeneration space 31. The concentrated solution pipe 34 may guide the absorption liquid flowing from the low temperature regenerator 30 to the absorber 10. The rich solution pipe 34 may be connected to a second flow path 62 to be described later of the low temperature heat exchanger 60 to guide the rich solution to the second flow path 62 of the low temperature heat exchanger 60. The concentrated solution pipe 34 may be connected to the absorbent liquid injection unit 12 of the absorber 10 to guide the concentrated solution of the low temperature regenerator 3 to the absorbent liquid injection unit 12 of the absorber 10.
저온재생기(30)에는 증기냉매관(32)을 통과한 냉매를 응축기(40)의 응축영역(41)로 안내하는 응축기 연결배관(35)이 연결될 수 있다. The low temperature regenerator 30 may be connected to a condenser connection pipe 35 for guiding the refrigerant passing through the steam refrigerant pipe 32 to the condensation region 41 of the condenser 40.
응축기(40)는 내부에 냉매가 응축되는 응축영역(41)이 형성될 수 있다. 응축기(40)는 적어도 일부가 응축영역(41)에 배치되고 저온재생기(30)에서 이동된 냉매가 냉각수와 열교환되는 냉각수관(42)을 포함한다. The condenser 40 may have a condensation region 41 in which a refrigerant is condensed. The condenser 40 includes a cooling water pipe 42 at least partially disposed in the condensation region 41 and in which the refrigerant moved from the low temperature regenerator 30 exchanges heat with the cooling water.
응축기(40)의 냉각수관(42)은 흡수기(10)의 냉각수관(13)과 냉각수관 연결배관(43)으로 연결될 수 있고, 냉각수는 흡수기(10)의 냉각수관(13)과, 냉각수관 연결배관(43)과, 응축기(40)의 냉각수관(42)를 순차적으로 통과할 수 있다. The cooling water pipe 42 of the condenser 40 may be connected to the cooling water pipe 13 and the cooling water pipe connecting pipe 43 of the absorber 10, and the cooling water may be connected to the cooling water pipe 13 and the cooling water pipe of the absorber 10. The connection pipe 43 and the cooling water pipe 42 of the condenser 40 may pass sequentially.
응축기(40)에는 응축공간(41)에서 응축된 냉매를 증발기(50)의 증발영역(51)으로 안내하는 증발기 연결배관(44)이 연결될 수 있다. The condenser 40 may be connected to the evaporator connecting pipe 44 for guiding the refrigerant condensed in the condensation space 41 to the evaporation region 51 of the evaporator 50.
증발기(50)는 내부에 응축기(40)에서 유동된 냉매가 증발되는 증발영역(51)이 형성될 수 있다. 증발기(50)는 적어도 일부가 증발영역(51)에 배치되고 증발영역(51)의 냉매와 열교환되는 냉수가 통과하는 냉수관(53)를 포함할 수 있다. The evaporator 50 may have an evaporation region 51 in which the refrigerant flowing in the condenser 40 is evaporated. The evaporator 50 may include a cold water pipe 53 through which at least a portion of the evaporator 50 is disposed in the evaporation region 51 and through which the cold water that exchanges heat with the refrigerant in the evaporation region 51 passes.
저온 열교환기(60)는 흡수기(10)에서 유동된 희용액이 통과하는 제1유로(61)와, 저온재생기(30)에서 유동된 농용액이 통과하는 제2유로(62)를 포함할 수 있다. 제1유로(61)을 통과하는 희용액과 제2유로(82)를 통과하는 농용액은 저온열교환기(60)에서 서로 열교환될 수 있다. The low temperature heat exchanger 60 may include a first passage 61 through which the rare solution flowed from the absorber 10 passes, and a second passage 62 through which the agricultural solution flowed from the low temperature regenerator 30 passes. have. The rare solution passing through the first passage 61 and the concentrated solution passing through the second passage 82 may be heat-exchanged with each other in the low temperature heat exchanger 60.
저온열교환기(60)에는 제1유로(61)를 통과한 냉매를 고온 열교환기(70)의 후술하는 제3유로(71)로 안내하는 열교환기 연결배관(63)이 연결될 수 있다. The low temperature heat exchanger 60 may be connected to a heat exchanger connection pipe 63 for guiding the refrigerant passing through the first flow path 61 to the third flow path 71 to be described later of the high temperature heat exchanger 70.
저온 열교환기(60)에는 제2유로(62)를 통과한 농용액을 흡수기(10)의 흡수액분사부(12)로 안내하는 흡수기 연결배관(64)이 연결될 수 있다. The low temperature heat exchanger 60 may be connected to the absorber connecting pipe 64 for guiding the concentrated solution passing through the second flow path 62 to the absorbent liquid injection part 12 of the absorber 10.
고온 열교환기(70)는 저온열교환기(60)의 제1유로(61)에서 유동된 희용액이 통과하는 제3유로(71)와, 고온재생기(20)에서 유동된 중간용액이 통과하는 제4유로(72)를 포함할 수 있다. 제3유로(71)를 통과하는 희용액과 제4유로(72)를 통과하는 중간용액은 고온열교환기(70)에서 서로 열교환될 수 있다. The high temperature heat exchanger (70) is a third passage (71) through which the rare solution flowing in the first passage (61) of the low temperature heat exchanger (60) passes, and the intermediate solution flowing in the high temperature regenerator (20). It may include four euros (72). The rare solution passing through the third passage 71 and the intermediate solution passing through the fourth passage 72 may be heat-exchanged with each other in the high temperature heat exchanger 70.
고온 열교환기(70)에는 제3유로(71)를 통과한 희용액을 고온재생기(20)의 희용액공급관(220)으로 안내하는 고온재생기 연결배관(73)이 연결될 수 있다. The high temperature heat exchanger 70 may be connected to a high temperature regenerator connecting pipe 73 for guiding the rare solution having passed through the third flow path 71 to the rare solution supply pipe 220 of the high temperature regenerator 20.
고온 열교환기(70)에는 제4유로(72)를 통과한 중간용액을 저온재생기(30)의 흡수액분사부(33)로 안내하는 저온 재생기 연결배관(74)이 연결될 수 있다. The high temperature heat exchanger 70 may be connected to a low temperature regenerator connecting pipe 74 for guiding the intermediate solution passed through the fourth flow path 72 to the absorption liquid injection unit 33 of the low temperature regenerator 30.
도 2는 본 발명의 실시 예에 따른 고온재생기가 도시된 사시도이고, 도 3은 본 발명의 실시 예에 따른 고온재생기의 내부가 도시된 일부 절결 사시도이며, 도 4는 도 2에 도시된 A-A선 단면도이다. 2 is a perspective view showing a high temperature regenerator according to an embodiment of the present invention, Figure 3 is a partially cutaway perspective view showing the inside of the high temperature regenerator according to an embodiment of the present invention, Figure 4 is a line AA shown in FIG. It is a cross section.
고온재생기(20)는 아우터 셀(200)과; 이너 쉘(210)과, 희용액 공급관(220)과, 버너(230, 도 1 참조)와; 판형 열교환기(240)와, 배기 덕트(250)을 포함한다.The high temperature regenerator 20 includes an outer cell 200; An inner shell 210, a rare solution supply pipe 220, a burner 230 (see FIG. 1); And a plate heat exchanger 240 and an exhaust duct 250.
아우터 쉘(200)는 고온재생기(20)의 외관을 형성할 수 있다. 아우터 쉘(200)은 복수개 부재의 결합체로 구성될 수 있다. 아우터 쉘(220)의 내부에는 흡수액이 담겨질 수 있는 공간(202)이 형성될 수 있다. 아우터 쉘(220)은 적어도 하나의 지지다리(203)(204)에 올려질 수 있다. The outer shell 200 may form an appearance of the high temperature regenerator 20. The outer shell 200 may be composed of a combination of a plurality of members. The outer shell 220 may have a space 202 in which the absorbent liquid may be contained. The outer shell 220 may be mounted on at least one support leg 203 and 204.
아우터 쉘(200)는 내부에 공간(202)이 형성된 쉘 바디(205)와, 쉘 바디(205)의 일단을 막는 적어도 하나의 제1사이드 바디(206)(207)과, 쉘 바디(205)의 타단을 막는 제2사이드 바디(208)을 포함할 수 있다. The outer shell 200 includes a shell body 205 having a space 202 formed therein, at least one first side body 206 and 207 blocking one end of the shell body 205, and a shell body 205. It may include a second side body 208 to block the other end of the.
쉘 바디(205)는 상단의 높이가 상이한 복수개의 쉘 바디부(205A)(205B)를 포함할 수 있다. The shell body 205 may include a plurality of shell body portions 205A and 205B having different heights at the top.
복수개의 쉘 바디부 중 어느 하나인 제1 쉘 바디부(205A)는 하부가 라운드지고 상면이 개방될 수 있다. The first shell body portion 205A, which is one of the plurality of shell body portions, may be rounded at a lower portion thereof and open at an upper surface thereof.
복수개의 쉘 바디부 중 다른 하나인 제2 쉘 바디부(205B)는 제 1 쉘 바디부(205A) 보다 상단의 높이가 높을 수 있다. 제2 쉘 바디부(205B)는 하부 및 상부가 라운드질 수 있다. The second shell body portion 205B, which is another one of the plurality of shell body portions, may have a higher height at an upper end than the first shell body portion 205A. The lower and upper portions of the second shell body portion 205B may be rounded.
제1사이드 바디(206)(207)은 제1 쉘 바디부(205A)의 일측단을 덮는 로어 제1사이드 바디(206)와, 제2 쉘 바디부(205B)의 일측단을 덮는 어퍼 제1사이드 바디(207)를 포함한다.The first side bodies 206 and 207 may include a lower first side body 206 covering one end of the first shell body 205A, and an upper first covering the one end of the second shell body 205B. Side body 207;
제2사이드 바디(208)는 로어 제1사이드 바디(206)와, 어퍼 제1사이드 바디(207) 각각 보다 크게 형성될 수 있다.The second side body 208 may be formed larger than each of the lower first side body 206 and the upper first side body 207.
제2사이드 바디(208)는 제1사이드 바디(206)(207)의 반대편에서 제2 쉘 바디부(205B)의 타단을 덮을 수 있다. The second side body 208 may cover the other end of the second shell body portion 205B opposite the first side body 206 and 207.
아우터 쉘(200)은 제1 쉘 바디부(205A)의 상부에 배치된 탑 커버(209)를 더 포함할 수 있다. 탑 커버(209)는 로어 제1사이드 바디(206)의 상부와 어퍼 제1사이드 바디(207) 하부 사이를 막을 수 있다. The outer shell 200 may further include a top cover 209 disposed on the first shell body 205A. The top cover 209 may block between an upper portion of the lower first side body 206 and a lower portion of the upper first side body 207.
어퍼 제1사이드 바디(207)의 옆이면서 탑 커버(209)의 상측에는 배기 덕트(250)이 수용될 수 있는 배기 덕트 수용공간이 형성될 수 있다. An exhaust duct accommodating space may be formed at the upper side of the upper first side body 207 and on the upper cover 209 to accommodate the exhaust duct 250.
이너 쉘(210)은 아우터 셀(200) 내부에 배치될 수 있다. 이너 쉘(210)은 아우터 쉘(200)의 내부에 수평 방향으로 길게 배치될 수 있다. 이너 쉘(210)은 내부에 연소가스가 통과하는 통로(212)가 형성될 수 있다. 이너 쉘(210)의 외면과 아우터 쉘(200)의 내면 사이에는 흡수액이 채워지는 공간이 형성될 수 있다.The inner shell 210 may be disposed in the outer cell 200. The inner shell 210 may be disposed long in the horizontal direction in the outer shell 200. The inner shell 210 may have a passage 212 through which combustion gas passes. A space in which the absorbent liquid is filled may be formed between the outer surface of the inner shell 210 and the inner surface of the outer shell 200.
이너 쉘(210)은 일측에 연소가스가 유입되는 연소가스 입구(213)이 형성될 수 있다. Inner shell 210 may be formed with a combustion gas inlet 213 through which combustion gas is introduced.
이너 셀(210)은 판형 열교환기(240)의 아래에 배치되는 제1이너 쉘부(210A)와, 제1이너 쉘부(210A)의 일부에서 상측 방향으로 돌출되게 연장되어 판형 열교환기(240)의 옆에 배치된 제2이너 쉘부(210B)를 포함할 수 있다. The inner cell 210 extends to protrude upward from a portion of the first inner shell portion 210A disposed below the plate heat exchanger 240 and a portion of the first inner shell portion 210A, so that the inner portion of the plate heat exchanger 240 It may include a second inner shell portion 210B disposed next to.
제1이너 쉘부(210A)는 아우터 쉘(200)의 내측 하부에 수평 방향으로 길게 배치될 수 있다. The first inner shell portion 210A may be disposed to be elongated in the horizontal direction at an inner lower portion of the outer shell 200.
연소가스 입구(213)은 제1이너쉘부(210A)의 일측에 형성될 수 있고, 제2이너 쉘부(210B)는 제1이너쉘부(210A) 중 연소가스 입구(213)의 반대편에서 상측 방향으로 돌출될 수 있다. The combustion gas inlet 213 may be formed at one side of the first inner shell portion 210A, and the second inner shell portion 210B may be upward from the opposite side of the combustion gas inlet 213 of the first inner shell portion 210A. It may protrude.
제2이너 쉘부(210B)는 저면이 개방되어 제1이너 쉘부(210A)와 통할 수 있다. 제2이너 쉘부(210B)는 전면과 후면과 상면 각각이 막힌 형상일 수 있다. 제2이너 쉘부(210B)는 좌측면과 우측면 중 판형 열교환기(230)과 더 근접한 일면에 연소가스가 판형 열교환기(230)로 유동되기 위해 통과하는 개구부가 형성될 수 있다. 그리고, 제2이너 쉘부(210B)는 좌측면과 우측면 중 개구부가 형성된 면의 반대면이 막힌 형상일 수 있다. The bottom surface of the second inner shell portion 210B may be opened to communicate with the first inner shell portion 210A. The second inner shell portion 210B may have a shape in which front, rear, and top surfaces are blocked. In the second inner shell part 210B, an opening through which the combustion gas flows to the plate heat exchanger 230 may be formed on one surface of the second inner shell part 210B that is closer to the plate heat exchanger 230. In addition, the second inner shell portion 210B may have a shape in which an opposite surface of the surface on which the opening is formed is blocked.
버너(230)에 의해 발생된 연소가스는 연소가스 입구(213)를 통해 제1이너 쉘부(210A)로 유입될 수 있고, 연소가스는 제1이너 쉘부(210A)의 내부에서 제2이너 쉘부(210B)의 내부로 유동된 후, 판형 열교환기(230)로 유입될 수 있다. The combustion gas generated by the burner 230 may be introduced into the first inner shell portion 210A through the combustion gas inlet 213, and the combustion gas may be introduced into the second inner shell portion 210A in the first inner shell portion 210A. After flowing into the inside of the 210B, it may be introduced into the plate heat exchanger (230).
희용액 공급관(220)은 아우터 셀(200)의 내부로 희용액을 공급할 수 있다. The rare solution supply pipe 220 may supply a rare solution into the outer cell 200.
희용액 공급관(220)은 아우터 쉘(200)의 내측 상부에 배치되어 아우터 쉘(200)의 내부로 희용액을 분사할 수 있다. The rare solution supply pipe 220 may be disposed above the inner shell 200 to inject the rare solution into the outer shell 200.
희용액 공급관(220)은 적어도 일부가 판형 열교환기(250)의 상측에 배치될 수 있고, 희용액 공급관(220)에서 분사된 희용액은 판형 열교환기(250)의 상면을 향해 낙하될 수 있다. 희용액 공급관(220)은 제2이너 쉘부(220)의 상측에서 판형 열교환기(250)의 상측까지 길게 배치될 수 있다. 희용액 공급관(220)에는 다수의 흡수액 공급홀이 형성될 수 있다. 다수의 흡수액 공급홀은 희용액 공급관(220)의 길이방향으로 서로 이격될 수 있다. At least a portion of the rare solution supply pipe 220 may be disposed above the plate heat exchanger 250, and the rare solution injected from the rare solution supply pipe 220 may fall toward the upper surface of the plate heat exchanger 250. . The rare solution supply pipe 220 may be disposed to extend from the upper side of the second inner shell portion 220 to the upper side of the plate heat exchanger 250. The rare solution supply pipe 220 may be formed with a plurality of absorption liquid supply holes. The plurality of absorption liquid supply holes may be spaced apart from each other in the longitudinal direction of the rare solution supply pipe 220.
버너(230, 도 1 참조)는 이너 셀(210)의 내부로 연소가스를 발생할 수 있다. The burner 230 (see FIG. 1) may generate combustion gas into the inner cell 210.
판형 열교환기(240)는 아우터 셀(200)과 이너 셀(210) 사이에 배치되어 희용액과 연소가스를 열교환할 수 있다. 판형 열교환기(240)는 이너 쉘(210)의 제1이너 쉘부(210A) 상측에 위치되게 배치될 수 있다. The plate heat exchanger 240 may be disposed between the outer cell 200 and the inner cell 210 to exchange heat between the rare solution and the combustion gas. The plate heat exchanger 240 may be disposed to be positioned above the first inner shell portion 210A of the inner shell 210.
판형 열교환기(240)는 이너 쉘(210)의 일부와 배기 덕트(250)의 사이에 배치될 수 있다. 판형 열교환기(240)는 수평 방향으로 제2이너 쉘부(210B)와 배기 덕트(250)의 사이에 위치되게 배치될 수 있다. The plate heat exchanger 240 may be disposed between the portion of the inner shell 210 and the exhaust duct 250. The plate heat exchanger 240 may be disposed to be positioned between the second inner shell portion 210B and the exhaust duct 250 in the horizontal direction.
판형 열교환기(240)는 이너 쉘(210)에서 유동된 배기가스가 수평방향으로 통과하는 이너통로가 형성될 수 있다. 그리고, 판형 열교환기(240)에는 아우터 쉘(200) 내부의 희용액이 수용되는 희용액공간이 수직방향으로 개방되게 형성될 수 있다. The plate heat exchanger 240 may be formed with an inner passage through which the exhaust gas flowing from the inner shell 210 passes in the horizontal direction. In addition, the plate heat exchanger 240 may be formed such that the rare solution space in which the rare solution in the outer shell 200 is accommodated is opened in the vertical direction.
배기 덕트(250)는 판형 열교환기(240)를 통과한 연소가스를 안내할 수 있다. 배기 덕트(250)는 판형 열교환기(240)의 옆에 위치되게 배치될 수 있다. The exhaust duct 250 may guide the combustion gas passed through the plate heat exchanger 240. The exhaust duct 250 may be disposed to be next to the plate heat exchanger 240.
배기 덕트(250)는 판형 열교환기(240)에서 유출된 연소가스를 안내하는 것으로서, 판형 열교환기(240)의 옆에 위치되는 로어 배기 덕트부(252)와, 로어 배기 덕트부(252)에서 돌출된 어퍼 배기 덕트부(254)를 포함할 수 있다. The exhaust duct 250 guides the combustion gas flowing out of the plate heat exchanger 240, and includes a lower exhaust duct unit 252 positioned next to the plate heat exchanger 240 and a lower exhaust duct unit 252. It may include a protruding upper exhaust duct portion 254.
판형 열교환기(240)는 로어 배기 덕트부(252)와 제2이너 쉘부(220B)의 사이에 배치될 수 있고, 제2 이너 쉘부(210B)에서 판형 열교환기(240)로 유동된 연소가스는 판형 열교환기(240)를 통과한 후 로어 배기 덕트부(252)로 유동될 수 있고, 로어 배기 덕트부(252)로 유동된 연소가스는 어퍼 배기 덕트부(254)를 통해 외부로 배기될 수 있다. The plate heat exchanger 240 may be disposed between the lower exhaust duct portion 252 and the second inner shell portion 220B, and the combustion gas flowing from the second inner shell portion 210B to the plate heat exchanger 240 may be After passing through the plate heat exchanger 240 may flow to the lower exhaust duct 252, the combustion gas flowing into the lower exhaust duct 252 may be exhausted to the outside through the upper exhaust duct 254. have.
배기 덕트(250)는 탑 커버(209)의 상측에 배치될 수 있고, 고온재생기는 컴팩트화될 수 있다. The exhaust duct 250 may be disposed above the top cover 209, and the high temperature regenerator may be compact.
로어 배기 덕트부(252)에는 개폐 가능한 덕트 도어(256)가 설치될 수 있다. 덕트 도어(256)는 로어 배기 덕트부(252)에 회전 또는 슬라이드되게 배치될 수 있고, 덕트 도어(256)의 개방시 로어 배기 덕트(252)의 내부는 개방될 수 있다.The lower exhaust duct part 252 may be provided with an openable duct door 256. The duct door 256 may be disposed to rotate or slide in the lower exhaust duct 252, and the inside of the lower exhaust duct 252 may be opened when the duct door 256 is opened.
덕트 도어(256)는 로어 배기 덕트부(252)에 판형 열교환기(240)의 일면을 마주보게 배치될 수 있다. 덕트 도어(256)를 개방했을 때, 판형 열교환기(240)는 로어 배기 덕트부(252)를 통해 외부에서 보일 수 있다. The duct door 256 may be disposed to face one surface of the plate heat exchanger 240 in the lower exhaust duct 252. When the duct door 256 is opened, the plate heat exchanger 240 can be seen from the outside through the lower exhaust duct 252.
도 5는 본 발명의 실시 예에 따른 고온 재생기의 사시도이고, 도 6는 도 5에 도시된 고온재생기의 분해 사시도이고, 도 7은 도 6에 도시된 다수의 단위 전열유닛이 적층되기 이전의 분해 사시도, 도 8은 도 7에 도시된 한 쌍의 전열 바디가 접합되기 이전의 사시도이다. 5 is a perspective view of a high temperature regenerator according to an embodiment of the present invention, FIG. 6 is an exploded perspective view of the high temperature regenerator shown in FIG. 5, and FIG. 7 is an exploded view of a plurality of unit heat transfer units shown in FIG. 8 is a perspective view before the pair of heat transfer bodies shown in FIG. 7 are joined.
판형 열교환기(240)는 연소가스의 유동방향(X)과 직교한 방향(Y)으로 적층된 다수의 단위 전열유닛(301 내지 308)을 포함한다. The plate heat exchanger 240 includes a plurality of unit heat transfer units 301 to 308 stacked in a direction Y orthogonal to the flow direction X of the combustion gas.
다수의 단위 전열유닛(301 내지 308) 각각은 연소가스가 통과하는 이너통로(340)를 갖을 수 있다.Each of the plurality of unit heat transfer units 301 to 308 may have an inner passage 340 through which combustion gas passes.
이너통로(340)는 단위 전열유닛(301 내지 308) 각각에 수평 방향으로 개방될 수 있다.  The inner passage 340 may be open in the horizontal direction to each of the unit heat transfer units (301 to 308).
판형 열교환기(240)는 이너통로를 갖는 단위 전열유닛의 복수개가 결합되어 구성되므로, 다수의 이너통로(340)를 포함할 수 있다. Since the plate heat exchanger 240 is configured by combining a plurality of unit heat transfer units having an inner passage, the plate heat exchanger 240 may include a plurality of inner passages 340.
이너 쉘(210)에서 판형 열교환기(240)로 유동된 연소가스는 다수의 단위 전열유닛(301 내지 308) 각각과 열교환되면서 다수의 이너통로(340)를 통과할 수 있다. The combustion gas flowing from the inner shell 210 to the plate heat exchanger 240 may pass through the plurality of inner passages 340 while being heat-exchanged with each of the plurality of unit heat transfer units 301 to 308.
다수의 단위 전열유닛(301 내지 308) 각각은 한 쌍의 전열 바디(320)(330) 사이에 연소가스가 통과하는 이너통로(340)가 형성될 수 있다. Each of the plurality of unit heat transfer units 301 to 308 may have an inner passage 340 through which combustion gas passes between the pair of heat transfer bodies 320 and 330.
이너통로(340)는 한 쌍의 전열 바디(320)(330) 사이에 수평 방향으로 길게 형성될 수 있다.The inner passage 340 may be formed long in the horizontal direction between the pair of heat transfer bodies 320 and 330.
한 쌍의 전열 바디(320)(330)는 일단(310)이 연결되고 타단(312)이 접합될 수 있다. 단위 전열유닛(301 내지 308)은 도 8에 도시된 바와 같이, 한 쌍의 전열 바디(320)(330)가 하나의 바디로 성형되어 준비될 수 있고, 도 6 및 도 7에 도시된 바와 같이, 한 쌍의 전열 바디(320)(330)가 서로 마주보게 절곡될 수 있다. The pair of heat transfer bodies 320 and 330 may be connected to one end 310 and the other end 312. The unit heat transfer units 301 to 308 may be prepared by molding a pair of heat transfer bodies 320 and 330 into one body, as shown in FIG. 8, and as shown in FIGS. 6 and 7. The pair of heat transfer bodies 320 and 330 may be bent to face each other.
도 8에 도시된 바와 같이, 서로 이격되어 있던 타단(312)은 도 6 및 도 7에 도시된 바와 같이, 접촉될 수 있고, 타단(312)이 접촉된 한 쌍의 전열 바디(320)(330)의 사이에는 이너통로(340)가 형성될 수 있다. As shown in FIG. 8, the other ends 312 that are spaced apart from each other may be in contact with each other, as shown in FIGS. 6 and 7, and the pair of heat transfer bodies 320 and 330 in which the other ends 312 are in contact with each other. Inner passage 340 may be formed between the ().
한 쌍의 전열 바디(320)(330)은 일단(310)이 접힘 라인에 의해 연결되게 제조될 수 있고, 타단(312)이 도 8에 도시된 바와 같이, 분리된 상태에 있다가 도 6 및 도 7에 도시된 바와 같이, 접촉될 수 있다. The pair of heat transfer bodies 320 and 330 may be manufactured such that one end 310 is connected by a folding line, and the other end 312 is in a separated state, as shown in FIG. As shown in FIG. 7, they may be contacted.
단위 전열유닛을 구성하는 한 쌍의 전열 바디(320)(330) 각각은 요철부(323)가 형성된 전열판부(324)와; 전열판부(324)의 일단에 절곡되고 타 전열바디와 연결되는 일단 연결부(326)와, 전열판부(324)의 타단에 절곡되고 타 전열바디와 접합되는 타단 접합부(328)를 포함한다. Each of the pair of heat transfer bodies 320 and 330 constituting the unit heat transfer unit includes a heat transfer plate portion 324 having an uneven portion 323 formed therein; One end connecting portion 326 is bent at one end of the heat transfer plate 324 and connected to the other heat transfer body, and the other end junction 328 is bent at the other end of the heat transfer plate 324 and bonded to the other heat transfer body.
요철부(323)는 인접한 타 전열바디의 전열판부(324)과 슬라이드 가능하게 접촉될 수 있다.The uneven portion 323 may be slidably contacted with the heat transfer plate portion 324 of another adjacent heat transfer body.
이너통로(340)는 일단 연결부(326)와 타단 접합부(328) 사이에 형성될 수 있다. The inner passage 340 may be formed between the connection portion 326 and the other end junction 328.
한 쌍의 전열 바디(320)(330) 각각의 타단 접합부(328)은 브레이징 접합 등의 공법으로 서로 접합될 수 있다. The other end junctions 328 of each of the pair of heat transfer bodies 320 and 330 may be bonded to each other by a method such as brazing bonding.
판형 열교환기(240)는 다수의 단위 전열유닛(301 내지 308)이 적층된 상태에서, 다수의 단위 전열유닛(301 내지 308)이 서로 접합될 수 있다. In the plate heat exchanger 240, a plurality of unit heat transfer units 301 to 308 are stacked, the plurality of unit heat transfer units 301 to 308 may be bonded to each other.
여기서, 다수의 단위 전열유닛(301 내지 308)의 적층은 다수의 단위 전열유닛(301 내지 308)이 수평 방향으로 배치되는 것을 의미할 수 있고, 다수의 단위 전열유닛(301 내지 308)은 인접한 타 단위 전열유닛과 수평방향으로 접촉될 수 있다. Here, the stacking of the plurality of unit heat transfer units 301 to 308 may mean that the plurality of unit heat transfer units 301 to 308 are arranged in a horizontal direction, and the plurality of unit heat transfer units 301 to 308 may be adjacent to each other. The unit may be in contact with the heat transfer unit in the horizontal direction.
이너통로(340)는 한 쌍의 전열 바디(320)(330) 사이에 수평 방향으로 길게 형성될 수 있다.The inner passage 340 may be formed long in the horizontal direction between the pair of heat transfer bodies 320 and 330.
다수의 단위 전열유닛(301 내지 308)은 이너통로(340)의 개방 방향과 직교한 방향으로 적층될 수 있다. 이너통로(340)가 전후 방향으로 개방될 경우, 다수의 단위 전열유닛(301 내지 308)은 인접한 타 단위 전열유닛과 좌우 방향으로 접촉되게 배치될 수 있다. 반대로, 이너통로(340)가 좌우 방향으로 개방될 경우, 다수의 단위 전열유닛(301 내지 308)은 인접한 타 단위 전열유닛과 전후 방향으로 접촉되게 배치될 수 있다.The plurality of unit heat transfer units 301 to 308 may be stacked in a direction orthogonal to the opening direction of the inner passage 340. When the inner passage 340 is opened in the front-rear direction, the plurality of unit heat transfer units 301 to 308 may be disposed to be in contact with the other unit heat transfer units in the left-right direction. On the contrary, when the inner passage 340 is opened in the left and right directions, the plurality of unit heat transfer units 301 to 308 may be disposed to contact the other unit heat transfer units in the front-rear direction.
다수의 단위 전열유닛(301 내지 308) 각각은 인접한 타 단위 전열유닛과 접촉되게 접합될 수 있고, 다수의 단위 전열유닛(301 내지 308)은 아우터 쉘(200) 내부에 서로 이격되게 배치된 경우 보다 견고하게 지지될 수 있다. Each of the plurality of unit heat transfer units 301 to 308 may be joined to be in contact with another adjacent unit heat transfer unit, and the plurality of unit heat transfer units 301 to 308 may be spaced apart from each other in the outer shell 200. It can be firmly supported.
다수의 단위 전열유닛(301 내지 308)은 인접한 타 단위 전열유닛과 접합되는 것에 의해, 다수의 단위 전열유닛(301 내지 308) 전체가 일체화될 수 있고, 일체화된 상태에서 아우터 쉘(200) 내부에 장착될 수 있다. The plurality of unit heat transfer units 301 to 308 may be integrated with other adjacent unit heat transfer units so that the whole of the plurality of unit heat transfer units 301 to 308 may be integrated, and the inside of the outer shell 200 in an integrated state. Can be mounted.
다수의 단위 전열유닛(301 내지 308)의 접합에 대해 좀 더 상세히 설명하면, 다수의 단위 전열유닛 (301 내지 308) 중 하나(302)는 한 쌍의 타 단위 전열유닛(301)(303) 사이에 배치될 수 있고, 이러한 단위 전열유닛(302)은 인접한 한 쌍의 타 단위전열유닛(301)(303) 각각과 접합될 수 있다. In more detail with respect to the bonding of the plurality of unit heat transfer unit (301 to 308), one of the plurality of unit heat transfer unit (301 to 308) between the pair of other unit heat transfer unit (301) (303) The unit heat transfer unit 302 may be joined to each of a pair of adjacent unit heat transfer units 301 and 303.
다수의 단위 전열유닛(301 내지 308) 중 최외곽 단위 전열유닛은 하나의 타 단위 전열유닛과 접합될 수 있고, 최외곽 단위 전열유닛 사이에 위치하는 다수의 단위 전열유닛들은 인접한 한 쌍의 단위 전열유닛과 각각 접합될 수 있다. The outermost unit heat transfer unit of the plurality of unit heat transfer units 301 to 308 may be joined to one other unit heat transfer unit, and the plurality of unit heat transfer units located between the outermost unit heat transfer units may be adjacent to a pair of unit heat transfer units. Can be joined with the unit respectively.
전열 바디(320)(330)에는 도 6에 도시된 바와 같이, 인접한 타 단위 전열유닛과 접합되는 접합 바디(322)가 형성될 수 있다. As illustrated in FIG. 6, the heat transfer bodies 320 and 330 may be formed with a bonding body 322 to be bonded to another heat transfer unit adjacent to each other.
접합 바디(322)는 다수의 단위 전열유닛(301 내지 308)의 각각에 형성될 수 있다.The bonding body 322 may be formed in each of the plurality of unit heat transfer units 301 to 308.
다수의 단위 전열유닛(301 내지 308) 중 서로 인접한 단위 전열유닛들의 사이에는 아우터 셀(200) 내부의 희용액이 수용되는 희용액공간(350)이 형성될 수 있다. 희용액공간(350)은 서로 인접한 단위 전열유닛들 사이에 수직방향(Z)으로 개방될 수 있다.A rare solution space 350 may be formed between the adjacent unit heat transfer units of the plurality of unit heat transfer units 301 to 308 to accommodate the rare solution inside the outer cell 200. The rare solution space 350 may be opened in the vertical direction Z between unit heat transfer units adjacent to each other.
접합 바디(322)는 전열판부에서 인접한 타 단위 전열유닛의 전열판부를 향해 돌출된 돌출부(322A)와, 돌출부(322A)에서 희용액공간(350)의 반대방향으로 절곡되어 접합되는 아우터 접합부(322B)를 포함할 수 있다. Bonding body 322 is a protrusion 322A protruding toward the heat transfer plate portion of the other heat transfer unit adjacent to the heat transfer plate portion, and the outer junction portion 322B is bent in the opposite direction of the solution space 350 in the protrusion 322A and bonded It may include.
다수의 단위 전열유닛(301 내지 308) 각각의 아우터 접합부(322B)는 브레이징 접합 등의 공법으로 접합될 수 있다. The outer junction 322B of each of the plurality of unit heat transfer units 301 to 308 may be joined by a method such as brazing bonding.
희용액공간(350)은 서로 인접한 단위 전열유닛들의 서로 마주보는 전열바디와, 이러한 전열바디에서 돌출된 접합바디(322)에 의해 형성될 수 있다. The rare solution space 350 may be formed by heat transfer bodies facing each other of unit heat transfer units adjacent to each other, and a bonding body 322 protruding from the heat transfer bodies.
고온재생기(20)는 다수의 단위 전열유닛(301 내지 308)에 끼워지는 적어도 하나의 단위 전열유닛 서포터(351)(352)(353)(354)를 더 포함할 수 있다. The high temperature regenerator 20 may further include at least one unit heat transfer unit supporter 351, 352, 353, and 354 fitted to the plurality of unit heat transfer units 301 to 308.
고온재생기는 다수의 단위 전열유닛 서포터(351)(352)(353)(354)을 포함할 수 있고, 다수의 단위 전열유닛 서포터(351)(352)(353)(354) 각각은 다수의 단위 전열유닛(301 내지 308)의 각각과 끼워질 수 있다. 단위 전열유닛 서포터(351)(352)(353)(354)는 연소가스나 흡수액의 유동을 방해하지 않는 위치에 끼워지는 것이 바람직하다. The high temperature regenerator may include a plurality of unit heat transfer unit supporters 351, 352, 353, and 354, and each of the plurality of unit heat transfer unit supporters 351, 352, 353, and 354 may include a plurality of unit heat transfer units. It may be fitted with each of the heat transfer units (301 to 308). The unit heat transfer unit supporters 351, 352, 353, and 354 are preferably fitted at positions that do not disturb the flow of the combustion gas or the absorbent liquid.
단위 전열유닛(351)(352)(353)(354)에는 단위 전열유닛(301 내지 308) 각각에 형성된 접합 바디(322)의 일부가 삽입되어 끼움되는 끼움홈(355)이 형성될 수 있다. In the unit heat transfer units 351, 352, 353, and 354, fitting grooves 355 into which a part of the bonding body 322 formed in each of the unit heat transfer units 301 to 308 are inserted may be inserted.
단위 전열유닛 서포터(351)(352)(353)(354)가 다수의 단위 전열유닛(301 내지 308)과 끼워졌을 때, 다수의 단위 전열유닛(301 내지 308)은 단위 전열유닛 서포터(351)(352)(353)(354)에 의해 상호 고정될 수 있다. When the unit heat transfer unit supporters 351, 352, 353, and 354 are fitted with the plurality of unit heat transfer units 301 to 308, the plurality of unit heat transfer units 301 to 308 are the unit heat transfer unit supporters 351. (352) (353) 354 can be fixed to each other.
다수의 단위 전열유닛 서포터(351)(352)(353)(354)는 다수의 단위 전열유닛(301 내지 308)의 상부 양측에 끼워지는 한 쌍의 어퍼 서포터(351)(352)와, 다수의 단위 전열유닛(301 내지 308)의 하부 양측에 끼워지는 한 쌍의 로어 서포터(353)(354)를 포함할 수 있다. The plurality of unit heat transfer unit supporters 351, 352, 353, and 354 may include a pair of upper supporters 351 and 352 fitted to upper sides of the plurality of unit heat transfer units 301 to 308. A pair of lower supporters 353 and 354 fitted to both lower sides of the unit heat transfer units 301 to 308 may be included.
어퍼 서포터(351)(352)와 로어 서포터(353)(354) 각각의 높이는 단위 전열유닛(301 내지 308) 높이의 1/2 미만이다.The height of each of the upper supporters 351 and 352 and the lower supporters 353 and 354 is less than 1/2 of the height of the unit heat transfer units 301 to 308.
한편, 고온재생기는 다수의 단위 전열유닛(301 내지 308) 중 최외곽 단위 전열유닛에 밀착되는 한 쌍의 실링부재(360)(362)를 더 포함할 수 있다. 다수의 단위 전열유닛(301 내지 308)은 한 쌍의 실링부재(360)(362)에 의해 그 적층 방향으로 서로 밀착될 수 있다. The high temperature regenerator may further include a pair of sealing members 360 and 362 in close contact with the outermost unit heat transfer unit among the plurality of unit heat transfer units 301 to 308. The plurality of unit heat transfer units 301 to 308 may be in close contact with each other in the stacking direction by a pair of sealing members 360 and 362.
한 쌍의 실링부재(360)(362)의 각각에는 최외곽 단위 전열유닛에 형성된 요철부(323)을 회피하는 회피공(363)이 형성될 수 있다. Each of the pair of sealing members 360 and 362 may have a avoidance hole 363 that avoids the uneven portion 323 formed in the outermost unit heat transfer unit.
한편, 판형 열교환기(240)의 옆에는 적어도 사이드 바디가 구비될 수 있고, 이러한 사이드 바디에는 단위 전열유닛(301 내지 308)의 이너통로(340)를 통과한 연소가스가 통과하는 연소가스 홀(207a)이 형성될 수 있다. Meanwhile, at least a side body may be provided beside the plate heat exchanger 240, and the side gas may include a combustion gas hole through which the combustion gas passing through the inner passage 340 of the unit heat transfer units 301 to 308 passes. 207a) may be formed.
판형 열교환기(240)에는 어퍼 제1사이드 바디(207)가 배치될 수 있고, 이러한 어퍼 제1사이드 바디(207)에는 단위 전열유닛(301 내지 308)의 이너통로(340)를 통과한 연소가스가 배기 덕트(250)의 내부로 유동되는 연소가스 홀(207a)이 형성될 수 있다. The upper first side body 207 may be disposed in the plate heat exchanger 240, and the combustion gas passing through the inner passage 340 of the unit heat transfer units 301 to 308 may be disposed in the upper first side body 207. The combustion gas hole 207a flowing into the exhaust duct 250 may be formed.
다수의 단위 전열유닛(301 내지 308)의 각각에 돌출된 접합바디(322)는 연소가스 홀(207a)로 삽입될 수 있다. 접합바디(322)는 연소가스 홀(207a)이 형성된 사이드 바디(207)과 접촉되어 끼워질 수 있다. The junction body 322 protruding to each of the plurality of unit heat transfer units 301 to 308 may be inserted into the combustion gas hole 207a. The junction body 322 may be fitted in contact with the side body 207 on which the combustion gas hole 207a is formed.
접합바디(322)의 높이가 연소가스 홀(207a)의 높이와 같을 경우, 접합바디(322)은 연소가스 홀(207a)로 삽입될 수 있고, 접합바디(322)의 상단 및 하단 각각은 어퍼 제1사이드 바디(207)에 접촉될 수 있으며, 다수의 단위 전열유닛(301 내지 308) 각각은 어퍼 제1사이드 바디(207)에 끼워져 고정될 수 있다. When the height of the bonding body 322 is the same as the height of the combustion gas hole 207a, the bonding body 322 may be inserted into the combustion gas hole 207a, each of the upper and lower ends of the bonding body 322 is upper The first side body 207 may be in contact with each other, and each of the plurality of unit heat transfer units 301 to 308 may be inserted into and fixed to the upper first side body 207.
그리고, 도 5에 도시된 도면부호 260은 어퍼 제1사이드 바디(207)의 반대편에 위치하는 이너 사이드 바디이다. In addition, reference numeral 260 illustrated in FIG. 5 is an inner side body positioned opposite to the upper first side body 207.
이너 사이드 바디(260)에는 이너 쉘(210)의 연소가스가 단위 전열유닛(301 내지 308)의 이너통로(340)로 유동되기 위해 통과하는 연소가스 홀(260a)이 형성될 수 있다. 이너 사이드 바디(260)는 도 3에 도시된 이너 쉘(210)에 고정될 수 있다. The inner side body 260 may be provided with a combustion gas hole 260a through which the combustion gas of the inner shell 210 flows to the inner passage 340 of the unit heat transfer units 301 to 308. The inner side body 260 may be fixed to the inner shell 210 shown in FIG. 3.
한편, 본 실시예의 고온재생기(20)는 판형 열교환기(240)의 화학적 세척이 가능할 수 있다. On the other hand, the high temperature regenerator 20 of the present embodiment may be capable of chemical cleaning of the plate heat exchanger (240).
작업자는 덕트 도어(256)을 개방한 후 배기 덕트(250) 내부로 화학약품을 투입할 수 있다. The worker may inject chemical into the exhaust duct 250 after opening the duct door 256.
화학약품은 배기 덕트(250)를 통과하여 판형 열교환기(240)의 이너통로(340)로 유입될 수 있고, 이너통로(340)를 통과하면서 서로 마주보는 한 쌍의 전열 바디(320)(330) 각각의 표면에 부착된 이물질을 제거할 수 있고, 이러한 이물질과 함께 이너 쉘(210)으로 유동될 수 있다. The chemical may be introduced into the inner passage 340 of the plate heat exchanger 240 through the exhaust duct 250, and a pair of heat transfer bodies 320 and 330 facing each other while passing through the inner passage 340. Foreign matter attached to each surface may be removed and may flow to the inner shell 210 together with the foreign matter.
이너 쉘(210)로 유동된 이물질과 화학약품은 이너 쉘(210)의 내부에서 연소가스 입구(213)를 통해 외부로 유출될 수 있다.Foreign substances and chemicals flowing into the inner shell 210 may flow out through the combustion gas inlet 213 in the inner shell 210.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (15)

  1. 아우터 셀과;An outer cell;
    상기 아우터 셀 내부에 배치된 이너 셀과;An inner cell disposed inside the outer cell;
    상기 아우터 셀의 내부로 희용액을 공급하는 희용액 공급관과;A rare solution supply pipe for supplying a rare solution into the outer cell;
    상기 이너 셀 내부로 연소가스를 발생하는 버너와;A burner for generating combustion gas into the inner cell;
    상기 아우터 셀과 이너 셀 사이에 배치되어 상기 희용액과 연소가스를 열교환하는 판형 열교환기와;A plate heat exchanger disposed between the outer cell and the inner cell to exchange heat between the rare solution and the combustion gas;
    상기 판형 열교환기를 통과한 연소가스를 안내하는 배기 덕트를 포함하고,An exhaust duct for guiding the combustion gas passing through the plate heat exchanger,
    상기 판형 열교환기는The plate heat exchanger
    상기 연소가스의 유동방향과 직교한 방향으로 적층된 다수의 단위 전열유닛을 포함하고,It includes a plurality of unit heat transfer units stacked in a direction orthogonal to the flow direction of the combustion gas,
    상기 단위 전열유닛은 일단이 연결되고 타단이 접합된 한 쌍의 전열 바디 사이에 상기 연소가스가 통과하는 이너통로가 수평 방향으로 길게 형성되며, The unit heat transfer unit has an inner passage through which the combustion gas passes between a pair of heat transfer bodies, one end of which is connected and the other end of which is formed, to be elongated in a horizontal direction,
    상기 전열 바디에는 인접한 타 단위 전열유닛과 접합되는 접합 바디가 형성되고,The heat transfer body is formed with a junction body bonded to the other unit heat transfer unit,
    상기 다수의 단위 전열유닛 중 서로 인접한 단위 전열유닛의 사이에는 상기 아우터 셀 내부의 희용액이 수용되는 희용액공간이 수직방향으로 개방된 고온재생기. A high temperature regenerator in which a rare solution space in which the rare solution is accommodated in the outer cell is opened between the unit heat transfer units adjacent to each other among the plurality of unit heat transfer units.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 한 쌍의 전열 바디 각각은 전열판부와;Each of the pair of heat transfer bodies includes a heat transfer plate portion;
    상기 전열판부의 일단에 절곡되고 타 전열바디와 연결되는 일단 연결부와;A one end connection portion bent at one end of the heat transfer plate portion and connected to another heat transfer body;
    상기 전열판부의 타단에 절곡되고 타 전열바디와 접합되는 타단 접합부를 포함하며,And the other end is bent at the other end of the heat transfer plate and bonded to the other heat transfer body,
    상기 일단 연결부와 타단 접합부 사이에 상기 이너통로가 형성된 고온재생기.And an inner passage formed between the one end connection portion and the other end connection portion.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 전열판부에는 타 전열바디의 전열판과 슬라이드 가능하게 접촉되는 요철부가 형성된 고온재생기.The heat transfer plate portion is a high temperature regenerator having a concave-convex portion slidably contacting the heat transfer plate of the other heat transfer body.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 다수의 단위 전열유닛 중 최외곽 단위 전열유닛에 밀착되는 실링부재를 포함하고, It includes a sealing member in close contact with the outermost unit heat transfer unit of the plurality of unit heat transfer unit,
    상기 실링부재에는 상기 최외곽 단위 전열유닛에 형성된 요철부를 회피하는 회피공이 형성된 고온재생기.The sealing member has a high temperature regenerator formed with a avoiding hole to avoid the uneven portion formed in the outermost unit heat transfer unit.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 접합 바디는 The joint body is
    상기 전열판부에서 인접한 타 단위 전열유닛의 전열판부를 향해 돌출된 돌출 부와,A protrusion protruding toward the heat transfer plate portion of another heat transfer unit adjacent to the heat transfer plate portion,
    상기 돌출부에서 돌출되고 인접한 타 단위 전열유닛과 접합되는 아우터 접합부를 포함하는 고온재생기.A high temperature regenerator including an outer joint that protrudes from the protrusion and is bonded to another unit heat transfer unit adjacent to the protrusion.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 아우터 접합부는 상기 돌출부에서 상기 희용액공간의 반대방향으로 절곡되어 접합되는 고온재생기.The outer junction portion is bent in the opposite direction of the rare solution space in the projecting portion is a high temperature regenerator.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 희용액공간은 인접한 단위 전열유닛의 서로 마주보는 전열바디와 상기 전열바디에서 돌출된 접합바디에 의해 형성된 고온재생기.The rare solution space is a high temperature regenerator formed by the heat transfer body facing each other of the adjacent unit heat transfer unit and the junction body protruding from the heat transfer body.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 다수의 단위 전열유닛의 상부 양측에 끼워지는 한 쌍의 어퍼 서포터와,A pair of upper supporters fitted to both upper sides of the plurality of unit heat transfer units;
    상기 다수의 단위 전열유닛의 하부 양측에 끼워지는 한 쌍의 로어 서포터를 포함하는 고온재생기.A high temperature regenerator comprising a pair of lower supporters fitted to both lower sides of the plurality of unit heat transfer units.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 판형 열교환기의 옆에 배치된 사이드 바디를 더 포함하고, Further comprising a side body disposed next to the plate heat exchanger,
    상기 사이드 바디는 상기 이너 통로를 통과한 연소가스가 상기 배기덕트 내부로 유동되기 위해 통과하는 연소가스 홀이 형성된 고온재생기.And the side body has a combustion gas hole through which the combustion gas passing through the inner passage passes to flow into the exhaust duct.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 접합바디는 상기 연소가스 홀로 삽입된 고온재생기. The junction body is a high temperature regenerator inserted into the combustion gas hole.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 접합바디는 상기 사이드 바디와 접촉되는 높이를 갖는 고온재생기. The junction body is a high temperature regenerator having a height in contact with the side body.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 배기 덕트는 상기 판형 열교환기의 옆에 위치하는 로어 배기 덕트부와, The exhaust duct is a lower exhaust duct portion located next to the plate heat exchanger,
    상기 로어 배기 덕트부에서 돌출된 어퍼 배기 덕트부를 포함하고, An upper exhaust duct portion protruding from the lower exhaust duct portion,
    상기 로어 배기 덕트부에는 개폐 가능하고 상기 판형 열교환기의 일면을 마주보는 덕트 도어가 설치된 고온재생기. The lower exhaust duct part can be opened and closed and a high temperature regenerator having a duct door facing one surface of the plate heat exchanger.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 이너통로는 상기 덕트 도어를 향해 개방된 고온재생기.And the inner passage is opened toward the duct door.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 아우터 쉘는 하부가 라운드지고 상면이 개방된 제1 쉘 바디부와 제1 쉘 바디부 보다 상단의 높이가 높은 제2 쉘 바디부를 갖는 쉘 바디와;The outer shell may include a shell body having a first shell body portion rounded at a lower portion thereof and an upper surface thereof open and a second shell body portion having a higher height than an upper portion of the first shell body portion;
    상기 제1 쉘 바디부의 일측단을 덮는 로어 제1사이드 바디와;A lower first side body covering one end of the first shell body part;
    상기 제2쉴 바디부의 일측단을 덮는 어퍼 제1사이드 바디와;An upper first side body covering one end of the second rest body part;
    상기 로어 제1사이드 바디와 어퍼 제1사이드 바디 각각 보다 크고 상기 로어 제1사이드 바디와 어퍼 제1사이드 바디의 반대편에서 상기 제2 쉘 바디부의 타단을 덮는 제2사이드 바디와;A second side body larger than each of the lower first side body and the upper first side body and covering the other end of the second shell body portion on an opposite side of the lower first side body and the upper first side body;
    상기 제1 쉘 바디부의 상부에 배치되어 로어 제1사이드 바디의 상부와 어퍼 제1사이드 바디 하부 사이를 막는 탑 커버를 포함하고, A top cover disposed on an upper portion of the first shell body portion to close an upper portion of the lower first side body and a lower portion of the upper first side body,
    상기 배기덕트는 탑 커버 상측에 배치된 고온재생기.The exhaust duct is a high temperature regenerator disposed above the top cover.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 어퍼 제1사이드 바디에는 상기 이너통로를 통과한 연소가스를 상기 배기덕트 내부로 안내하는 연소가스 홀이 형성된 고온재생기.And a combustion gas hole configured to guide the combustion gas passing through the inner passage into the exhaust duct in the upper first side body.
PCT/KR2017/013699 2016-11-29 2017-11-28 High-temperature regenerator WO2018101705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780034606.9A CN109312966A (en) 2016-11-29 2017-11-28 High-temp regenerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0160158 2016-11-29
KR1020160160158A KR102524261B1 (en) 2016-11-29 2016-11-29 Regenerator

Publications (1)

Publication Number Publication Date
WO2018101705A1 true WO2018101705A1 (en) 2018-06-07

Family

ID=62241637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013699 WO2018101705A1 (en) 2016-11-29 2017-11-28 High-temperature regenerator

Country Status (3)

Country Link
KR (1) KR102524261B1 (en)
CN (1) CN109312966A (en)
WO (1) WO2018101705A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611290A (en) * 1992-04-16 1994-01-21 Abb Lummus Heat Transfer Bv Plate type heat exchanger and manufacture thereof
JPH08271090A (en) * 1995-03-31 1996-10-18 Hitachi Ltd Absorption type water cooling/heating apparatus and manufacture of high-temperature regenerator and smoke tube
KR0131384Y1 (en) * 1996-04-12 1999-01-15 권영하 Small type absorptive cooling/heating water supplier
JP2006511786A (en) * 2002-10-31 2006-04-06 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
KR100723045B1 (en) * 2005-11-02 2007-05-30 엘에스전선 주식회사 high-temperature regenerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627381B2 (en) 1992-03-13 1997-07-02 矢崎総業株式会社 Absorption refrigerator
KR20130089503A (en) 2012-02-02 2013-08-12 엘지전자 주식회사 Low temperature generator and absorption type chiller-heater including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611290A (en) * 1992-04-16 1994-01-21 Abb Lummus Heat Transfer Bv Plate type heat exchanger and manufacture thereof
JPH08271090A (en) * 1995-03-31 1996-10-18 Hitachi Ltd Absorption type water cooling/heating apparatus and manufacture of high-temperature regenerator and smoke tube
KR0131384Y1 (en) * 1996-04-12 1999-01-15 권영하 Small type absorptive cooling/heating water supplier
JP2006511786A (en) * 2002-10-31 2006-04-06 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
KR100723045B1 (en) * 2005-11-02 2007-05-30 엘에스전선 주식회사 high-temperature regenerator

Also Published As

Publication number Publication date
CN109312966A (en) 2019-02-05
KR102524261B1 (en) 2023-04-24
KR20180060554A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2014058181A1 (en) Heat exchanger
WO2019212275A1 (en) Vehicle heat-management system
WO2011007960A2 (en) Refrigerator
WO2013162222A1 (en) Heat exchanger
WO2016010266A1 (en) Automobile exhaust heat storage device
WO2014104575A1 (en) Condensing boiler having plurality of latent heat exchange portions
US20070193060A1 (en) Infrared drier installation for passing web
WO2020204596A1 (en) Outdoor heat exchanger and air conditioner comprising same
EP2948723A1 (en) Heat exchanger equipped with cold reserving part and manufacturing method thereof
WO2017003075A1 (en) Outdoor heat exchanger
WO2018101705A1 (en) High-temperature regenerator
AU2018215766B2 (en) Refrigerator for vehicle and vehicle
WO2020004884A1 (en) Condenser
EP2941614A1 (en) Heat exchanger for an air conditioner and an air conditioner having the same
WO2017164465A1 (en) Evaporator and refrigerator having same
ITTO970661A1 (en) AIR-CONDITIONING UNIT OF THE AIR-COOLED ABSORPTION TYPE.
WO2010131877A2 (en) Air conditioner
WO2023068452A1 (en) Heat exchanger
WO2023106857A1 (en) Heat exchanger and bypass valve used in heat exchanger
WO2023149643A1 (en) Heat exchanger
CN218805082U (en) Fluid control device, thermal management system and vehicle
WO2023204473A1 (en) Manifold fluid module
WO2024014739A1 (en) Manifold fluid module
WO2023121344A1 (en) Heat exchanger
WO2021251769A1 (en) Thermoelectric cooling device and cold water generator having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875554

Country of ref document: EP

Kind code of ref document: A1