WO2018101489A2 - Organic electroluminescent element and electronic device - Google Patents

Organic electroluminescent element and electronic device Download PDF

Info

Publication number
WO2018101489A2
WO2018101489A2 PCT/JP2018/010873 JP2018010873W WO2018101489A2 WO 2018101489 A2 WO2018101489 A2 WO 2018101489A2 JP 2018010873 W JP2018010873 W JP 2018010873W WO 2018101489 A2 WO2018101489 A2 WO 2018101489A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
carbon atoms
general formula
light emitting
Prior art date
Application number
PCT/JP2018/010873
Other languages
French (fr)
Japanese (ja)
Other versions
WO2018101489A3 (en
Inventor
裕勝 伊藤
知浩 長尾
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to PCT/JP2018/010873 priority Critical patent/WO2018101489A2/en
Publication of WO2018101489A2 publication Critical patent/WO2018101489A2/en
Publication of WO2018101489A3 publication Critical patent/WO2018101489A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • an organic electroluminescence element hereinafter sometimes referred to as an organic EL element
  • holes from the anode and electrons from the cathode are injected into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
  • the organic EL element includes a light emitting layer between an anode and a cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. As an organic EL element having a laminated structure of a plurality of organic layers, for example, there are organic EL elements described in Patent Document 1 and Patent Document 2.
  • the following organic electroluminescence device is provided.
  • the organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
  • the hole transport region includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
  • Organic electroluminescence device is provided.
  • Ar 1 , Ar 2 and Ar 4 each independently represent a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms
  • Ar 3 represents a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms.
  • L 1 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
  • L 2 and L 3 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms
  • Ar 5 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
  • an electronic apparatus including the organic electroluminescence element is provided.
  • an organic electroluminescence element having light emission characteristics at a practical level
  • an electronic apparatus including the organic electroluminescence element
  • the organic electroluminescence device is The anode, A cathode, An organic layer disposed between the anode and the cathode, The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer, The hole transport region includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
  • Ar 1 , Ar 2 and Ar 4 each independently represent a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms
  • Ar 3 represents a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms.
  • Examples of the aryl group having 6 to 20 ring carbon atoms that is Ar 1 , Ar 2, and Ar 4 include a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, and a floranthenyl group.
  • Examples of the arylene group having 6 to 20 ring carbon atoms as Ar 4 include a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, and a floranthenylene group.
  • L 1 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
  • L 2 and L 3 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms
  • Ar 5 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
  • Examples of the arylene group having 6 to 20 carbon atoms which are L 1 , L 2 and L 3 include the same groups as those exemplified as the arylene group which is Ar 4 .
  • Examples of the aryl group having 6 to 20 ring carbon atoms as Ar 5 include the same groups as the arylene groups as Ar 1 , Ar 2 and Ar 4 .
  • a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, or a fluoranthenyl group can be mentioned.
  • “Substituent” in “substituted or unsubstituted” of each of Ar 1 to Ar 5 and L 1 to L 3 is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 ring carbon atoms Is mentioned.
  • Examples of the alkyl group having 1 to 10 carbon atoms as the “substituent” of each of Ar 1 to Ar 5 and L 1 to L 3 include a methyl group, an ethyl group, a propyl group, a t-butyl group, and an n- A butyl group etc. are mentioned.
  • Examples of the 6 to 20 aryl group as the “substituent” of each of Ar 1 to Ar 5 and L 1 to L 3 include a phenyl group, a biphenyl group, and a naphthyl group.
  • Ar 1 , Ar 2 and Ar 4 preferably each independently represent an unsubstituted aryl group having 6 to 20 ring carbon atoms.
  • Ar 3 preferably represents an unsubstituted arylene group having 6 to 20 ring carbon atoms.
  • L1 is preferably an unsubstituted arylene group having 6 to 20 carbon atoms.
  • L 2 and L 3 are preferably each independently a single bond or an unsubstituted aryl group having 6 to 20 ring carbon atoms.
  • Ar 5 is preferably an unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
  • the hydrogen atom includes light hydrogen (protium) and deuterium which are isotopes having different numbers of neutrons.
  • FIG. 1 shows an outline of an example of the layer configuration of the organic EL element.
  • the organic EL element 1 in FIG. 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit (organic layer) 10 includes at least one light emitting layer 5 and a hole transport region (hole injection layer, hole transport layer, etc.) 6 disposed between the anode 3 and the light emitting layer 5.
  • An electron transport region (electron injection layer, electron transport layer, etc.) 7 may be formed between the light emitting layer 5 and the cathode 4.
  • the organic EL device includes a compound represented by the general formula (1) and the general formula (2) in the hole transport region (hole injection layer, hole transport layer, and the like) 6. Including the compound represented.
  • FIG. 2 shows an outline of another example of the layer structure of the organic EL element.
  • the hole transport layer in the hole transport region 6 and the electron transport in the electron transport region 7 of the light emitting unit 10 of the organic EL element 1 in FIG. Each layer has a two-layer structure.
  • the hole transport region 6 includes a first hole transport layer (first layer) 6a on the anode 3 side and a second hole transport layer (second layer) 6b on the cathode 4 side.
  • the electron transport region 7 includes a first electron transport layer 7a on the anode side and a second hole transport layer 7b on the cathode side.
  • the other reference numerals are the same as those in FIG.
  • the first hole transport layer (first layer) 6a on the anode 3 side includes a compound represented by the general formula (1).
  • the second hole transport layer (second layer) 6b on the cathode 4 and light emitting layer 5 side preferably contains a compound represented by the general formula (2).
  • the organic EL device according to the present invention is not limited to the layer configuration of the organic EL devices 1 and 11 illustrated in FIGS. 1 and 2.
  • the hole transport region 6 is a stacked configuration of three or more layers.
  • the electron transport region 7 may also have a laminated structure of three or more layers.
  • the organic EL device may be, for example, a fluorescent or phosphorescent monochromatic light emitting device or a fluorescent / phosphorescent white light emitting device. Further, it may be a simple type having a single light emitting unit or a tandem type having two or more light emitting units.
  • the “light emitting unit” described in this specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
  • the “light emitting layer” described in the present specification is an organic layer having a light emitting function.
  • the light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be one layer or two or more layers.
  • the light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers. In this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer. You may have a layer between each light emitting layer.
  • the layer structure of the organic EL element according to one embodiment of the present invention is not limited to these.
  • the organic EL element has a hole injection layer and a hole transport layer
  • a hole injection layer is provided between the hole transport layer and the anode.
  • an organic EL element has an electron injection layer and an electron carrying layer
  • the electron injection layer is provided between the electron carrying layer and the cathode.
  • Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer, or may be composed of two or more layers.
  • the substrate 2 is used as a support for the organic EL element.
  • glass, quartz, plastic, or the like can be used as the substrate.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate made of polycarbonate or polyvinyl chloride.
  • anode As the anode 3, it is preferable to use, for example, a metal, an alloy, a conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more).
  • anode materials include indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and oxide containing zinc oxide. Indium, graphene, and the like can be given.
  • anode 3 gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride), and the like can be given.
  • the method for forming the anode 3 include sputtering, vacuum deposition, coating, ink jet, and spin coating.
  • the hole injection layer formed in contact with the anode 3 is a layer containing a substance having a high hole injection property and has a function of injecting holes from the anode into the organic layer.
  • substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. Materials, tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds, and the like.
  • the hole transport layers 6 a and 6 b are layers containing a substance having a high hole transport property and have a function of transporting holes from the anode 3 to the organic layer 10.
  • the substance having a high hole transporting property is preferably a substance having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
  • an aromatic amine compound, a carbazole derivative, an anthracene derivative, a polymer compound Etc As long as the hole transporting property is higher than the electron transporting property, substances other than these may be used for the hole transporting layers 6a and 6b.
  • the hole transport layers 6a and 6b and the hole transport region 6 may be a single layer or two or more layers may be laminated. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high hole transporting property on the side close to the light emitting layer.
  • the organic EL device includes a compound represented by the general formula (1) and the general formula (2) in the hole transport region (hole injection layer, hole transport layer, and the like) 6. Including the compound represented.
  • the first hole transport layer (first layer) 6a on the anode 3 side includes a compound represented by the general formula (1).
  • the second hole transport layer (second layer) 6b on the cathode 4 and light emitting layer 5 side preferably contains a compound represented by the general formula (2).
  • the light emitting layer 5 is a layer containing a substance (dopant material) having high light emitting properties.
  • a substance (dopant material) having high light emitting properties.
  • various materials can be used.
  • a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), or the like can be used.
  • a fluorescent compound is a compound that can emit light from a singlet excited state, and a light-emitting layer containing the compound is called a fluorescent light-emitting layer.
  • a phosphorescent compound is a compound that can emit light from a triplet excited state, and a light-emitting layer containing the compound is called a phosphorescent light-emitting layer.
  • the light emitting layer 5 usually contains a dopant material and a host material for efficiently emitting light.
  • the dopant material may be referred to as a guest material, an emitter, or a light-emitting material depending on the literature.
  • the host material may be referred to as a matrix material depending on the literature.
  • One light emitting layer may contain two or more dopant materials and two or more host materials. Further, the light emitting layer may be two or more.
  • the host material combined with the fluorescent dopant is referred to as “fluorescent host”, and the host material combined with the phosphorescent dopant is referred to as “phosphorescent host”.
  • the fluorescent host and the phosphorescent host are not classified only by the molecular structure.
  • the phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the content of the dopant material in the light emitting layer 5 is not particularly limited, but is preferably 0.1 to 99% by mass, for example, from the viewpoint of sufficient light emission and concentration quenching, and 0.1 to 70%. More preferably, it is more preferably 0.1 to 30% by mass.
  • fluorescent dopant examples include condensed polycyclic aromatic derivatives, styrylamine derivatives, condensed ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives, and the like. Among these, condensed ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
  • the condensed ring amine derivative examples include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed.
  • the boron-containing compound include a pyromethene derivative and a triphenylborane derivative.
  • fluorescent dopants include the compounds shown below.
  • fluorescent host a compound having a singlet level higher than that of the fluorescent dopant is preferable, and examples thereof include a heterocyclic compound and a condensed aromatic compound.
  • condensed aromatic compound for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
  • fluorescent host examples include the compounds shown below.
  • phosphorescent dopants include phosphorescent heavy metal complexes and phosphorescent rare earth metal complexes.
  • heavy metal complexes include iridium complexes, osmium complexes, platinum complexes, and the like.
  • the heavy metal complex is preferably an orthometalated complex of a metal selected from iridium, osmium, and platinum.
  • rare earth metal complexes include terbium complexes and europium complexes.
  • phosphorescent host material As the phosphorescent host, a compound having a triplet level higher than that of the phosphorescent dopant is preferable, and examples thereof include metal complexes, heterocyclic compounds, and condensed aromatic compounds. Among these, for example, indole derivatives, carbazole derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, naphthalene derivatives, triphenylene derivatives, phenanthrene derivatives, fluoranthene derivatives, etc. preferable.
  • the electron transport layers 7a and 7b and the electron transport region 7 are layers containing a substance having a high electron transport property.
  • the substance having a high electron transporting property is preferably a substance having an electron mobility of 10 ⁇ 6 cm 2 / Vs or more.
  • the metal complex examples include an aluminum complex, a beryllium complex, and a zinc complex.
  • tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3) bis (10-hydroxybenzo [h] quinolinato) beryllium (Abbreviation: BeBq2)
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviation: BAlq
  • aromatic heterocyclic compound examples include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and the like.
  • imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives
  • azine derivatives such as pyrimidine derivatives and triazine derivatives
  • quinoline derivatives isoquinoline derivatives, phenanthroline derivatives, and the like.
  • examples thereof include compounds containing a nitrogen six-membered ring structure (including those having a phosphine oxide substituent in the heterocyclic ring).
  • aromatic heterocyclic compound used for the electron transport layer include the following compounds.
  • aromatic hydrocarbon compound examples include anthracene derivatives and fluoranthene derivatives.
  • the electron transport layer examples include metals such as alkali metals, magnesium, alkaline earth metals, alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolato lithium (abbreviation: Liq), A metal compound such as an alkaline earth metal compound may be contained.
  • a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content is not particularly limited, but 0 It is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
  • the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass. It is. Note that the layer on the light emitting layer side in the case where the electron transport layer is two or more layers can be formed of only these metal compounds.
  • the electron injection layer is a layer containing a substance having a high electron injection property, and has a function of efficiently injecting electrons from the cathode to the light emitting layer.
  • the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide, and the like can be given.
  • an alkali metal, magnesium, alkaline earth metal, or a compound containing these compounds, for example, an Alq containing magnesium, or the like can also be used in a substance having an electron transporting property.
  • a composite material including an organic compound and a donor compound can be used. Since an organic compound receives electrons from a donor compound, such a composite material is excellent in electron injecting property and electron transporting property.
  • a substance having excellent transportability of received electrons is preferable.
  • a metal complex or an aromatic heterocyclic compound which is the above-described substance having high electron transportability can be used.
  • the donor compound may be any substance that can donate electrons to an organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and specific examples include lithium oxide, calcium oxide, and barium oxide.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • the cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
  • the material of the cathode include alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, and the like Rare earth metals; alloys containing rare earth metals.
  • the cathode is usually formed by vacuum deposition or sputtering. Moreover, when using a silver paste etc., the apply
  • the cathode is formed using various conductive materials such as aluminum, silver, ITO, graphene, silicon or indium oxide-tin oxide containing silicon oxide regardless of the work function. Can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • the method for forming each layer of the organic EL element is not particularly limited unless otherwise specified.
  • a forming method a known method such as a dry film forming method or a wet film forming method can be used.
  • Specific examples of the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method.
  • Specific examples of the wet film forming method include various coating methods such as a spin coating method, a dipping method, a flow coating method, and an ink jet method.
  • the thickness of each layer of the organic EL element is not particularly limited unless otherwise specified. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance cannot be obtained. On the other hand, if the film thickness is too large, a high driving voltage is required, and the efficiency is lowered. From such a viewpoint, the film thickness is usually preferably from 0.1 nm to 10 ⁇ m, preferably from 5 nm to 10 ⁇ m, and more preferably from 10 nm to 0.2 ⁇ m.
  • An electronic device includes the above-described organic EL element according to one embodiment of the present invention.
  • Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting, a light emitting device for a vehicle lamp, and the like.
  • Example 1 A glass substrate with an ITO transparent electrode line of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, UV ozone cleaning was performed for 30 minutes.
  • the film thickness of the ITO transparent electrode was 130 nm.
  • the glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the compound HT1 and the compound HI are co-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a co-evaporated film layer (H-1 layer) having a thickness of 5 nm was formed.
  • the concentration of compound HI in the H-1 layer was 3% by weight.
  • the compound HT1 was vapor-deposited on this co-deposited film layer to form a 90-nm thick HT1 layer (H-2 layer).
  • a compound HT4 was vapor-deposited to form a 5 nm-thick HT4 layer (H-3 layer).
  • Compound BH as a host material and Compound BD1 as a light emitting dopant material (fluorescent dopant) were co-evaporated to form a light emitting layer having a thickness of 20 nm.
  • the concentration of Compound BD1 in the light emitting layer was 4% by mass.
  • the compound ET1 and the compound Liq were co-evaporated to form a 20 nm thick layer (E-1 layer).
  • the concentration of Compound Liq in this layer was 30% by weight. Further, a compound Liq was vapor-deposited on this layer at a film formation rate of 0.1 angstrom / min to form a Liq layer (E-2 layer) having a thickness of 1 nm. Metal Al was vapor-deposited on this layer, and a metal cathode was formed with a film thickness of 80 nm.
  • the organic EL element of Example 1 has the following layer structure.
  • ITO (130 nm) / HT1 + HI (5 nm) / HT1 (90 nm) / HT4 (5 nm) / BH: BD1 (20 nm) / ET1: Liq (20 nm) / Liq (1 nm) / Al (80 nm)
  • voltage was applied to the obtained organic EL device, it showed light emission characteristics at a practical level.
  • Examples 2 to 135 An organic EL device was produced in the same manner as in Example 1 except that the compounds shown in Tables 1 to 4 were used as materials for the hole transport region, the light emitting layer, and the electron transport region. When a voltage was applied to the obtained organic EL elements of Examples 2 to 135, all showed light emission characteristics at a practical level.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

An organic electroluminescent element (1) provided with an anode (3), a cathode (4), and an organic layer (10) disposed between the anode (3) and the cathode (4), the organic layer (10) comprising an emissive layer (5) and a hole transport region (6) disposed between the anode (3) and the emissive layer (5), and the hole transport region (6) comprising a compound represented by general formula (1) and a compound represented by general formula (2).

Description

有機エレクトロルミネッセンス素子及び電子機器ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。 The present invention relates to an organic electroluminescence element and an electronic device.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ということがある)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。 When a voltage is applied to an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), holes from the anode and electrons from the cathode are injected into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
有機EL素子は、陽極と陰極の間に、発光層を含む。また、正孔注入層、正孔輸送層、電子注入層、電子輸送層等の有機層を含む積層構造を有する場合もある。複数の有機層の積層構造を有する有機EL素子としては、例えば、特許文献1や特許文献2に記載の有機EL素子がある。 The organic EL element includes a light emitting layer between an anode and a cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. As an organic EL element having a laminated structure of a plurality of organic layers, for example, there are organic EL elements described in Patent Document 1 and Patent Document 2.
特開2009-185024号公報JP 2009-185024 A 特開2009-267370号公報JP 2009-267370 A
 本発明の一態様によれば、以下の有機エレクトロルミネッセンス素子が提供される。
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記正孔輸送領域は、下記一般式(1)で表される化合物、及び、下記一般式(2)で表される化合物を含む、
有機エレクトロルミネッセンス素子。
According to one aspect of the present invention, the following organic electroluminescence device is provided.
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The hole transport region includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
Organic electroluminescence device.
Figure JPOXMLDOC01-appb-C000003
 一般式(1)
Figure JPOXMLDOC01-appb-C000003
General formula (1)
 [一般式(1)中、
Ar、Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表し、
Arは置換もしくは無置換の環形成炭素数6~20のアリーレン基を表す。]
[In general formula (1),
Ar 1 , Ar 2 and Ar 4 each independently represent a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms,
Ar 3 represents a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms. ]
Figure JPOXMLDOC01-appb-C000004
 一般式(2)
Figure JPOXMLDOC01-appb-C000004
General formula (2)
 [一般式(2)中、
 Lは、置換もしくは無置換の炭素数6~20のアリーレン基を表し、
 L及びLは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~20のアリーレン基を表し、
 Arは、置換もしくは無置換の環形成炭素数6~20のアリール基、又は無置換のジベンゾフラニル基を表す。]
[In general formula (2),
L 1 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms,
L 2 and L 3 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms,
Ar 5 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group. ]
 本発明の他の態様によれば、上記有機エレクトロルミネッセンス素子を備える電子機器が提供される。 According to another aspect of the present invention, an electronic apparatus including the organic electroluminescence element is provided.
 本発明の一態様によれば、実用レベルの発光特性を有する有機エレクトロルミネッセンス素子、及びそれを備えた電子機器を提供することが可能となる。 According to one embodiment of the present invention, it is possible to provide an organic electroluminescence element having light emission characteristics at a practical level, and an electronic apparatus including the organic electroluminescence element.
本発明の有機EL素子の一実施形態の概略構成を示す図である。It is a figure which shows schematic structure of one Embodiment of the organic EL element of this invention. 本発明の有機EL素子の別の実施形態の概略構成を示す図である。It is a figure which shows schematic structure of another embodiment of the organic EL element of this invention.
 本発明の一態様に係る有機エレクトロルミネッセンス素子は、
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記正孔輸送領域は、下記一般式(1)で表される化合物、及び、下記一般式(2)で表される化合物を含む。
The organic electroluminescence device according to one embodiment of the present invention is
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The hole transport region includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
 一般式(1)
[一般式(1)中の各基の定義は後述する。]
Figure JPOXMLDOC01-appb-C000005
General formula (1)
[Definition of each group in the general formula (1) will be described later. ]
Figure JPOXMLDOC01-appb-C000006
 一般式(2)
[一般式(2)中の各基の定義は後述する。]
Figure JPOXMLDOC01-appb-C000006
General formula (2)
[Definition of each group in the general formula (2) will be described later. ]
一般式(1)において、
Ar、Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表し、
Arは置換もしくは無置換の環形成炭素数6~20のアリーレン基を表す。
In general formula (1),
Ar 1 , Ar 2 and Ar 4 each independently represent a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms,
Ar 3 represents a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms.
Ar、Ar及びArである環形成炭素数6~20のアリール基としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、又はフロランテニル基が挙げられる。
Arである環形成炭素数6~20のアリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、又はフロランテニレン基が挙げられる
Examples of the aryl group having 6 to 20 ring carbon atoms that is Ar 1 , Ar 2, and Ar 4 include a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, and a floranthenyl group.
Examples of the arylene group having 6 to 20 ring carbon atoms as Ar 4 include a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, and a floranthenylene group.
  一般式(2)において、
 Lは、置換もしくは無置換の炭素数6~20のアリーレン基を表し、
 L及びLは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~20のアリーレン基を表し、
 Arは、置換もしくは無置換の環形成炭素数6~20のアリール基、又は無置換のジベンゾフラニル基を表す。
In general formula (2),
L 1 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms,
L 2 and L 3 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms,
Ar 5 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
、L及びLである炭素数6~20のアリーレン基としては、Arであるアリーレン基として挙げた基と同じ基が挙げられる。
Arである環形成炭素数6~20のアリール基としては、Ar、Ar及びArであるアリーレン基として挙げた基と同じ基が挙げられる。フェニル基、ビフェニル基、ナフチル基、フェナントリル基、又はフロランテニル基が挙げられる。
Examples of the arylene group having 6 to 20 carbon atoms which are L 1 , L 2 and L 3 include the same groups as those exemplified as the arylene group which is Ar 4 .
Examples of the aryl group having 6 to 20 ring carbon atoms as Ar 5 include the same groups as the arylene groups as Ar 1 , Ar 2 and Ar 4 . A phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, or a fluoranthenyl group can be mentioned.
Ar~Ar及びL~Lの各基の「置換もしくは無置換の」における「置換基」としては、炭素数1~10のアルキル基、又は環形成炭素数6~20のアリール基が挙げられる。
Ar~Ar及びL~Lの各基の「置換基」としての炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、t-ブチル基又はn-ブチル基等が挙げられる。
Ar~Ar及びL~Lの各基の「置換基」としての6~20のアリール基としては、例えば、フェニル基、ビフェニル基又はナフチル基が挙げられる。
“Substituent” in “substituted or unsubstituted” of each of Ar 1 to Ar 5 and L 1 to L 3 is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 ring carbon atoms Is mentioned.
Examples of the alkyl group having 1 to 10 carbon atoms as the “substituent” of each of Ar 1 to Ar 5 and L 1 to L 3 include a methyl group, an ethyl group, a propyl group, a t-butyl group, and an n- A butyl group etc. are mentioned.
Examples of the 6 to 20 aryl group as the “substituent” of each of Ar 1 to Ar 5 and L 1 to L 3 include a phenyl group, a biphenyl group, and a naphthyl group.
Ar、Ar及びArは、それぞれ独立に、無置換の環形成炭素数6~20のアリール基を表すことが好ましい。
Arは、無置換の環形成炭素数6~20のアリーレン基を表すことが好ましい。
Ar 1 , Ar 2 and Ar 4 preferably each independently represent an unsubstituted aryl group having 6 to 20 ring carbon atoms.
Ar 3 preferably represents an unsubstituted arylene group having 6 to 20 ring carbon atoms.
 L1は、無置換の炭素数6~20のアリーレン基であることが好ましい。
及びLは、それぞれ独立に、単結合、又は無置換の環形成炭素数6~20のアリール基であることが好ましい。
 Arは、無置換の環形成炭素数6~20のアリール基、又は無置換のジベンゾフラニル基であることが好ましい。
L1 is preferably an unsubstituted arylene group having 6 to 20 carbon atoms.
L 2 and L 3 are preferably each independently a single bond or an unsubstituted aryl group having 6 to 20 ring carbon atoms.
Ar 5 is preferably an unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
 一般式(1)で表される化合物の具体例としては、例えば、下記に示す化合物が挙げられる。 Specific examples of the compound represented by the general formula (1) include the compounds shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(2)で表される化合物の具体例としては、例えば、下記に示す化合物が挙げられる。 Specific examples of the compound represented by the general formula (2) include the compounds shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本明細書において、水素原子とは、中性子数が異なる同位体である軽水素(protium)、重水素(deuterium)を包含する。 In this specification, the hydrogen atom includes light hydrogen (protium) and deuterium which are isotopes having different numbers of neutrons.
 図1に、有機EL素子の層構成の一例の概略を示す。
図1の有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機層)10とを有する。発光ユニット(有機層)10は、少なくとも1つの発光層5と、陽極3と発光層5との間に配置された正孔輸送領域(正孔注入層、正孔輸送層等)6を有する。
 発光層5と陰極4との間に電子輸送領域(電子注入層、電子輸送層等)7を形成してもよい。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)をそれぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。
 本発明の一態様に係る有機EL素子は、正孔輸送領域(正孔注入層、正孔輸送層等)6に、一般式(1)で表される化合物、及び、一般式(2)で表される化合物を含む。
FIG. 1 shows an outline of an example of the layer configuration of the organic EL element.
The organic EL element 1 in FIG. 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4. The light emitting unit (organic layer) 10 includes at least one light emitting layer 5 and a hole transport region (hole injection layer, hole transport layer, etc.) 6 disposed between the anode 3 and the light emitting layer 5.
An electron transport region (electron injection layer, electron transport layer, etc.) 7 may be formed between the light emitting layer 5 and the cathode 4. Further, an electron blocking layer (not shown) may be provided on the light emitting layer 5 on the anode 3 side, and a hole blocking layer (not shown) may be provided on the light emitting layer 5 on the cathode 4 side. Thereby, electrons and holes can be confined in the light emitting layer 5 and the exciton generation efficiency in the light emitting layer 5 can be further increased.
The organic EL device according to one embodiment of the present invention includes a compound represented by the general formula (1) and the general formula (2) in the hole transport region (hole injection layer, hole transport layer, and the like) 6. Including the compound represented.
 図2に、有機EL素子の層構成の他の一例の概略を示す。図2に示す有機EL素子11では、発光ユニット(有機層)20において、図1の有機EL素子1の発光ユニット10の正孔輸送領域6の正孔輸送層、及び電子輸送領域7の電子輸送層を、それぞれ2層構造としている。正孔輸送領域6は、陽極3側の第1正孔輸送層(第1の層)6a、及び陰極4側の第2正孔輸送層(第2の層)6bを有している。電子輸送領域7は、陽極側の第1電子輸送層7a、及び陰極側の第2正孔輸送層7bを有している。なお、その他の符号については、図1と同じであるため、説明を省略する。 FIG. 2 shows an outline of another example of the layer structure of the organic EL element. In the organic EL element 11 shown in FIG. 2, in the light emitting unit (organic layer) 20, the hole transport layer in the hole transport region 6 and the electron transport in the electron transport region 7 of the light emitting unit 10 of the organic EL element 1 in FIG. Each layer has a two-layer structure. The hole transport region 6 includes a first hole transport layer (first layer) 6a on the anode 3 side and a second hole transport layer (second layer) 6b on the cathode 4 side. The electron transport region 7 includes a first electron transport layer 7a on the anode side and a second hole transport layer 7b on the cathode side. The other reference numerals are the same as those in FIG.
 本発明の一態様に係る有機EL素子において、正孔輸送領域6のうち、陽極3側の第1正孔輸送層(第1の層)6aが一般式(1)で表される化合物を含み、陰極4及び発光層5側の第2正孔輸送層(第2の層)6bが一般式(2)で表される化合物を含むことが好ましい。
 本発明に係る有機EL素子は、図1及び図2に図示した有機EL素子1、11の層構成に限定されるものではなく、例えば、正孔輸送領域6は3層以上の層の積層構成であってもよく、電子輸送領域7も3層以上の層の積層構成であってもよい。
In the organic EL device according to one embodiment of the present invention, in the hole transport region 6, the first hole transport layer (first layer) 6a on the anode 3 side includes a compound represented by the general formula (1). The second hole transport layer (second layer) 6b on the cathode 4 and light emitting layer 5 side preferably contains a compound represented by the general formula (2).
The organic EL device according to the present invention is not limited to the layer configuration of the organic EL devices 1 and 11 illustrated in FIGS. 1 and 2. For example, the hole transport region 6 is a stacked configuration of three or more layers. The electron transport region 7 may also have a laminated structure of three or more layers.
 本発明の一態様に係る有機EL素子は、例えば、蛍光又は燐光発光型の単色発光素子であってもよく、蛍光/燐光ハイブリッド型の白色発光素子であってもよい。また、単独の発光ユニットを有するシンプル型であってもよく、2以上の発光ユニットを有するタンデム型であってもよい。
 なお、本明細書に記載の「発光ユニット」とは、有機層を含み、該有機層のうちの少なくとも1層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位を言う。
 また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも2以上の層でもよい。
 発光ユニットは、燐光発光層や蛍光発光層を2以上有する積層型であってもよく、この場合、例えば、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐためのスペース層を各発光層の間に有していてもよい。
The organic EL device according to one embodiment of the present invention may be, for example, a fluorescent or phosphorescent monochromatic light emitting device or a fluorescent / phosphorescent white light emitting device. Further, it may be a simple type having a single light emitting unit or a tandem type having two or more light emitting units.
Note that the “light emitting unit” described in this specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
Further, the “light emitting layer” described in the present specification is an organic layer having a light emitting function. The light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be one layer or two or more layers.
The light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers. In this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer. You may have a layer between each light emitting layer.
 ただし、本発明の一態様に係る有機EL素子の層構成は、これらに限定されるものではない。例えば、有機EL素子が、正孔注入層及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が、電子注入層及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、1層で構成されていてもよく、2以上の層で構成されていてもよい。 However, the layer structure of the organic EL element according to one embodiment of the present invention is not limited to these. For example, when the organic EL element has a hole injection layer and a hole transport layer, it is preferable that a hole injection layer is provided between the hole transport layer and the anode. Moreover, when an organic EL element has an electron injection layer and an electron carrying layer, it is preferable that the electron injection layer is provided between the electron carrying layer and the cathode. Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer, or may be composed of two or more layers.
(基板)
基板2は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。
(substrate)
The substrate 2 is used as a support for the organic EL element. For example, glass, quartz, plastic, or the like can be used as the substrate. Further, a flexible substrate may be used. The flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate made of polycarbonate or polyvinyl chloride.
(陽極)
 陽極3としては、例えば、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の大きい(具体的には、4.0eV以上)ものを用いることが好ましい。陽極の材料の具体例としては、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有する酸化インジウム、グラフェン等が挙げられる。また、金、銀、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、及びこれらの金属の窒化物(例えば、窒化チタン)等が挙げられる。
陽極3の形成方法としては、スパッタリング法、真空蒸着法、塗布法、インクジェット法、スピンコート法等が挙げられる。
(anode)
As the anode 3, it is preferable to use, for example, a metal, an alloy, a conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specific examples of anode materials include indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and oxide containing zinc oxide. Indium, graphene, and the like can be given. In addition, gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride), and the like can be given.
Examples of the method for forming the anode 3 include sputtering, vacuum deposition, coating, ink jet, and spin coating.
(正孔注入層)
 陽極3に接して形成される正孔注入層は、正孔注入性の高い物質を含む層であり、陽極から有機層に正孔を注入する機能を有する。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、電子吸引性(アクセプター性)の化合物、高分子化合物等が挙げられる。
(Hole injection layer)
The hole injection layer formed in contact with the anode 3 is a layer containing a substance having a high hole injection property and has a function of injecting holes from the anode into the organic layer. Examples of substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. Materials, tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds, and the like.
(正孔輸送層)
 正孔輸送層6a、6bは、正孔輸送性の高い物質を含む層であり、陽極3から有機層10に正孔を輸送する機能を有する。
 正孔輸送性の高い物質としては、10-6cm2/(V・s)以上の正孔移動度を有する物質であることが好ましく、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体、高分子化合物等が挙げられる。
 電子輸送性よりも正孔輸送性の方が高い化合物であれば、正孔輸送層6a、6bに、これら以外の物質を用いてもよい。
(Hole transport layer)
The hole transport layers 6 a and 6 b are layers containing a substance having a high hole transport property and have a function of transporting holes from the anode 3 to the organic layer 10.
The substance having a high hole transporting property is preferably a substance having a hole mobility of 10 −6 cm 2 / (V · s) or more. For example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, a polymer compound Etc.
As long as the hole transporting property is higher than the electron transporting property, substances other than these may be used for the hole transporting layers 6a and 6b.
 正孔輸送層6a、6b及び正孔輸送領域6は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、正孔輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。 The hole transport layers 6a and 6b and the hole transport region 6 may be a single layer or two or more layers may be laminated. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high hole transporting property on the side close to the light emitting layer.
 本発明の一態様に係る有機EL素子は、正孔輸送領域(正孔注入層、正孔輸送層等)6に、一般式(1)で表される化合物、及び、一般式(2)で表される化合物を含む。
本発明の一態様に係る有機EL素子において、正孔輸送領域6のうち、陽極3側の第1正孔輸送層(第1の層)6aが一般式(1)で表される化合物を含み、陰極4及び発光層5側の第2正孔輸送層(第2の層)6bが一般式(2)で表される化合物を含むことが好ましい。
The organic EL device according to one embodiment of the present invention includes a compound represented by the general formula (1) and the general formula (2) in the hole transport region (hole injection layer, hole transport layer, and the like) 6. Including the compound represented.
In the organic EL device according to one embodiment of the present invention, in the hole transport region 6, the first hole transport layer (first layer) 6a on the anode 3 side includes a compound represented by the general formula (1). The second hole transport layer (second layer) 6b on the cathode 4 and light emitting layer 5 side preferably contains a compound represented by the general formula (2).
(発光層)
 発光層5は、発光性の高い物質(ドーパント材料)を含む層である。ドーパント材料としては、種々の材料を用いることができ、例えば、蛍光発光性化合物(蛍光ドーパント)、燐光発光性化合物(燐光ドーパント)等を用いることができる。蛍光発光性化合物とは、一重項励起状態から発光可能な化合物であり、これを含む発光層は蛍光発光層と呼ばれる。また、燐光発光性化合物とは、三重項励起状態から発光可能な化合物であり、これを含む発光層は、燐光発光層と呼ばれる。
(Light emitting layer)
The light emitting layer 5 is a layer containing a substance (dopant material) having high light emitting properties. As the dopant material, various materials can be used. For example, a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), or the like can be used. A fluorescent compound is a compound that can emit light from a singlet excited state, and a light-emitting layer containing the compound is called a fluorescent light-emitting layer. A phosphorescent compound is a compound that can emit light from a triplet excited state, and a light-emitting layer containing the compound is called a phosphorescent light-emitting layer.
 発光層5は、通常、ドーパント材料、及びこれを効率よく発光させるためのホスト材料を含有する。なお、ドーパント材料は、文献によっては、ゲスト材料、エミッター、又は発光材料と称する場合もある。また、ホスト材料は、文献によっては、マトリックス材料と称する場合もある。
 1つの発光層に、2以上のドーパント材料、及び2以上のホスト材料を含んでもよい。また、発光層が2以上であってもよい。
The light emitting layer 5 usually contains a dopant material and a host material for efficiently emitting light. Note that the dopant material may be referred to as a guest material, an emitter, or a light-emitting material depending on the literature. The host material may be referred to as a matrix material depending on the literature.
One light emitting layer may contain two or more dopant materials and two or more host materials. Further, the light emitting layer may be two or more.
 本明細書では、蛍光ドーパントと組み合わされたホスト材料を、「蛍光ホスト」と称し、燐光ドーパントと組み合わされたホスト材料を「燐光ホスト」と称する。なお、蛍光ホストと燐光ホストとは、分子構造のみで区分されるものではない。燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料であるが、蛍光発光層を形成する材料として利用できないことを意味するものではない。蛍光ホストについても同様である。 In this specification, the host material combined with the fluorescent dopant is referred to as “fluorescent host”, and the host material combined with the phosphorescent dopant is referred to as “phosphorescent host”. Note that the fluorescent host and the phosphorescent host are not classified only by the molecular structure. The phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
 発光層5におけるドーパント材料の含有量は、特に限定されるものではないが、十分な発光及び濃度消光の観点から、例えば、0.1~99質量%であることが好ましく、0.1~70質量%であることがより好ましく、0.1~30質量%であることがさらに好ましい。 The content of the dopant material in the light emitting layer 5 is not particularly limited, but is preferably 0.1 to 99% by mass, for example, from the viewpoint of sufficient light emission and concentration quenching, and 0.1 to 70%. More preferably, it is more preferably 0.1 to 30% by mass.
(蛍光ドーパント)
 蛍光ドーパントとしては、例えば、縮合多環芳香族誘導体、スチリルアミン誘導体、縮合環アミン誘導体、ホウ素含有化合物、ピロール誘導体、インドール誘導体、カルバゾール誘導体等が挙げられる。これらの中でも、縮合環アミン誘導体、ホウ素含有化合物、カルバゾール誘導体が好ましい。
 縮合環アミン誘導体としては、例えば、ジアミノピレン誘導体、ジアミノクリセン誘導体、ジアミノアントラセン誘導体、ジアミノフルオレン誘導体、ベンゾフロ骨格が1つ以上縮環したジアミノフルオレン誘導体等が挙げられる。
 ホウ素含有化合物としては、例えば、ピロメテン誘導体、トリフェニルボラン誘導体等が挙げられる。
(Fluorescent dopant)
Examples of the fluorescent dopant include condensed polycyclic aromatic derivatives, styrylamine derivatives, condensed ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives, and the like. Among these, condensed ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
Examples of the condensed ring amine derivative include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed.
Examples of the boron-containing compound include a pyromethene derivative and a triphenylborane derivative.
 蛍光ドーパントの具体例としては、例えば、下記に示す化合物が挙げられる。 Specific examples of fluorescent dopants include the compounds shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(蛍光ホスト)
 蛍光ホストとしては、蛍光ドーパントよりも高い一重項準位を有する化合物が好ましく、例えば、複素環化合物、縮合芳香族化合物等が挙げられる。縮合芳香族化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体等が好ましい。
(Fluorescent host)
As the fluorescent host, a compound having a singlet level higher than that of the fluorescent dopant is preferable, and examples thereof include a heterocyclic compound and a condensed aromatic compound. As the condensed aromatic compound, for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
 蛍光ホストの具体例としては、例えば、下記に示す化合物が挙げられる。 Specific examples of the fluorescent host include the compounds shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(燐光ドーパント)
 燐光ドーパントとしては、例えば、燐光発光性の重金属錯体、燐光発光性の希土類金属錯体が挙げられる。
 重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、白金錯体等が挙げられる。重金属錯体は、イリジウム、オスミウム、及び白金から選択される金属のオルトメタル化錯体が好ましい。
 希土類金属錯体としては、例えば、テルビウム錯体、ユーロピウム錯体等が挙げられる。
(Phosphorescent dopant)
Examples of phosphorescent dopants include phosphorescent heavy metal complexes and phosphorescent rare earth metal complexes.
Examples of heavy metal complexes include iridium complexes, osmium complexes, platinum complexes, and the like. The heavy metal complex is preferably an orthometalated complex of a metal selected from iridium, osmium, and platinum.
Examples of rare earth metal complexes include terbium complexes and europium complexes.
(燐光ホスト材料)
 燐光ホストとしては、燐光ドーパントよりも高い三重項準位を有する化合物が好ましく、例えば、金属錯体、複素環化合物、縮合芳香族化合物等が挙げられる。これらの中でも、例えば、インドール誘導体、カルバゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、イソキノリン誘導体、キナゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、ナフタレン誘導体、トリフェニレン誘導体、フェナントレン誘導体、フルオランテン誘導体等が好ましい。
(Phosphorescent host material)
As the phosphorescent host, a compound having a triplet level higher than that of the phosphorescent dopant is preferable, and examples thereof include metal complexes, heterocyclic compounds, and condensed aromatic compounds. Among these, for example, indole derivatives, carbazole derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, naphthalene derivatives, triphenylene derivatives, phenanthrene derivatives, fluoranthene derivatives, etc. preferable.
(電子輸送層)
 電子輸送層7a、7b及び電子輸送領域7は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、10-6cm/Vs以上の電子移動度を有する物質であることが好ましく、例えば、金属錯体、芳香族複素環化合物、芳香族炭化水素化合物、高分子化合物等が挙げられる。
(Electron transport layer)
The electron transport layers 7a and 7b and the electron transport region 7 are layers containing a substance having a high electron transport property. The substance having a high electron transporting property is preferably a substance having an electron mobility of 10 −6 cm 2 / Vs or more. For example, a metal complex, an aromatic heterocyclic compound, an aromatic hydrocarbon compound, a polymer compound Etc.
 金属錯体としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等が挙げられる。具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。 Examples of the metal complex include an aluminum complex, a beryllium complex, and a zinc complex. Specifically, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato) beryllium (Abbreviation: BeBq2), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq), bis [2- (2-Benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), and the like.
 芳香族複素環化合物としては、例えば、ベンズイミダゾール誘導体、イミダゾピリジン誘導体、ベンズイミダゾフェナントリジン誘導体等のイミダゾール誘導体;ピリミジン誘導体、トリアジン誘導体等のアジン誘導体;キノリン誘導体、イソキノリン誘導体、フェナントロリン誘導体等の含窒素六員環構造を含む化合物(複素環にホスフィンオキサイド系の置換基を有するものも含む。)等が挙げられる。 Examples of the aromatic heterocyclic compound include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and the like. Examples thereof include compounds containing a nitrogen six-membered ring structure (including those having a phosphine oxide substituent in the heterocyclic ring).
 電子輸送層に用いられる芳香族複素環化合物の具体例としては、例えば、下記に示す化合物が挙げられる。 Specific examples of the aromatic heterocyclic compound used for the electron transport layer include the following compounds.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 芳香族炭化水素化合物としては、例えば、アントラセン誘導体、フルオランテン誘導体等が挙げられる。 Examples of the aromatic hydrocarbon compound include anthracene derivatives and fluoranthene derivatives.
 電子輸送層には、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらのうちの2以上の金属を含む合金等の金属;8-キノリノラトリチウム(略称:Liq)等のアルカリ金属化合物、アルカリ土類金属化合物等の金属化合物が含まれていてもよい。
 アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらのうちの2以上の金属を含む合金等の金属が、電子輸送層に含まれる場合、その含有量は、特に限定されるものではないが、0.1~50質量%であることが好ましく、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%である。
 アルカリ金属化合物、又はアルカリ土類金属化合物等の金属化合物の金属化合物が電子輸送層に含まれる場合、その含有量は、1~99質量%であることが好ましく、より好ましくは10~90質量%である。なお、電子輸送層が2以上の層である場合の発光層側にある層は、これらの金属化合物のみで形成することもできる。
Examples of the electron transport layer include metals such as alkali metals, magnesium, alkaline earth metals, alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolato lithium (abbreviation: Liq), A metal compound such as an alkaline earth metal compound may be contained.
When a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content is not particularly limited, but 0 It is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
When a metal compound of a metal compound such as an alkali metal compound or an alkaline earth metal compound is contained in the electron transport layer, the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass. It is. Note that the layer on the light emitting layer side in the case where the electron transport layer is two or more layers can be formed of only these metal compounds.
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層であり、陰極から発光層へ効率よく電子注入する機能を有する。電子注入性の高い物質としては、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらの化合物等が挙げられる。具体的には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等が挙げられる。その他、電子輸送性を有する物質に、アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらの化合物を含有させたもの、例えば、Alqにマグネシウムを含有させたもの等を用いることもできる。
(Electron injection layer)
The electron injection layer is a layer containing a substance having a high electron injection property, and has a function of efficiently injecting electrons from the cathode to the light emitting layer. Examples of the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide, and the like can be given. In addition, an alkali metal, magnesium, alkaline earth metal, or a compound containing these compounds, for example, an Alq containing magnesium, or the like can also be used in a substance having an electron transporting property.
 また、電子注入層には、有機化合物及びドナー性の化合物を含む複合材料を用いることもできる。有機化合物がドナー性の化合物から電子を受け取るため、このような複合材料は電子注入性及び電子輸送性に優れている。
 有機化合物としては、受け取った電子の輸送性に優れた物質が好ましく、例えば、上述した電子輸送性の高い物質である金属錯体や芳香族複素環化合物等を用いることができる。
 ドナー性の化合物としては、有機化合物に電子を供与することができる物質であればよく、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、希土類金属等が挙げられる。具体的には、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、具体的には、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
For the electron injection layer, a composite material including an organic compound and a donor compound can be used. Since an organic compound receives electrons from a donor compound, such a composite material is excellent in electron injecting property and electron transporting property.
As the organic compound, a substance having excellent transportability of received electrons is preferable. For example, a metal complex or an aromatic heterocyclic compound which is the above-described substance having high electron transportability can be used.
The donor compound may be any substance that can donate electrons to an organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given. Alkali metal oxides and alkaline earth metal oxides are preferable, and specific examples include lithium oxide, calcium oxide, and barium oxide. A Lewis base such as magnesium oxide can also be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
(陰極)
 陰極は、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の小さい(具体的には、3.8eV以下)ものを用いることが好ましい。陰極の材料としては、例えば、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等が挙げられる。
 陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
(cathode)
The cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less). Examples of the material of the cathode include alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, and the like Rare earth metals; alloys containing rare earth metals.
The cathode is usually formed by vacuum deposition or sputtering. Moreover, when using a silver paste etc., the apply | coating method, the inkjet method, etc. can be used.
 また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。 When the electron injection layer is provided, the cathode is formed using various conductive materials such as aluminum, silver, ITO, graphene, silicon or indium oxide-tin oxide containing silicon oxide regardless of the work function. Can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
(層形成方法)
 有機EL素子の各層の形成方法は、別途の記載がない限り、特に限定されるものではない。形成方法としては、乾式成膜法、湿式成膜法等の公知の方法を用いることができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法の具体例としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等の各種塗布法が挙げられる。
(Layer formation method)
The method for forming each layer of the organic EL element is not particularly limited unless otherwise specified. As a forming method, a known method such as a dry film forming method or a wet film forming method can be used. Specific examples of the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method. Specific examples of the wet film forming method include various coating methods such as a spin coating method, a dipping method, a flow coating method, and an ink jet method.
(膜厚)
 有機EL素子の各層の膜厚は、別途の記載がない限り、特に限定されるものではない。膜厚が小さすぎると、ピンホール等の欠陥が生じやすく、十分な発光輝度が得られない。一方、膜厚が大きすぎると、高い駆動電圧が必要となり、効率が低下する。このような観点から、膜厚は、通常、0.1nm~10μmが好ましく、好ましくは5nm~10μmであり、さらに好ましくは10nm~0.2μmである。
(Film thickness)
The thickness of each layer of the organic EL element is not particularly limited unless otherwise specified. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance cannot be obtained. On the other hand, if the film thickness is too large, a high driving voltage is required, and the efficiency is lowered. From such a viewpoint, the film thickness is usually preferably from 0.1 nm to 10 μm, preferably from 5 nm to 10 μm, and more preferably from 10 nm to 0.2 μm.
[電子機器]
 本発明の一態様に係る電子機器は、上述した本発明の一態様に係る有機EL素子を備えている。電子機器の具体例としては、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、スマートフォン、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置等が挙げられる。
[Electronics]
An electronic device according to one embodiment of the present invention includes the above-described organic EL element according to one embodiment of the present invention. Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting, a light emitting device for a vehicle lamp, and the like.
 次に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the description of these examples.
 実施例で用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-I000013
 
 
 
The compounds used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-I000013


Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(実施例1)
 25mm×75mm×厚さ1.1mmのITO透明電極ライン付きガラス基板(ジオマ
ティック株式会社製)を、イソプロピルアルコール中で超音波洗浄を5分間行なった後、
UVオゾン洗浄を30分間行った。ITO透明電極の膜厚は130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、透明
電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT1と化合物HIを共蒸着し、膜厚5nmの共蒸着膜層(H-1層)を成膜した。H-1層における化合物HIの濃度は3重量%であった。
 次いで、この共蒸着膜層上に化合物HT1を蒸着し、膜厚90nmのHT1の層(H-2層)を成膜した。
 続いて、化合物HT4を蒸着し、膜厚5nmのHT4の層(H-3層)を成膜した。
 さらに、ホスト材料として化合物BHと、発光ドーパント材料(蛍光ドーパント)としての化合物BD1とを共蒸着し、膜厚20nmの発光層を成膜した。発光層おける化合物BD1の濃度は4質量%であった。
 この発光層上に、化合物ET1と化合物Liqとを共蒸着し、膜厚20nmの層(E-1層)を成膜した。この層における化合物Liqの濃度は30重量%であった。
 さらに、この層の上に化合物Liqを成膜速度0.1オングストローム/minで蒸着し、膜厚1nmのLiq層(E-2層)を形成した。この層上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成した。
 実施例1の有機EL素子は、次の層構成を有している。
 ITO(130nm)/HT1+HI(5nm)/HT1(90nm)/HT4(5nm)/BH:BD1(20nm)/ET1:Liq(20nm)/Liq(1nm)/Al(80nm)
得られた有機EL素子に電圧を印加したところ、実用レベルの発光特性を示した。
Example 1
A glass substrate with an ITO transparent electrode line of 25 mm × 75 mm × thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes,
UV ozone cleaning was performed for 30 minutes. The film thickness of the ITO transparent electrode was 130 nm.
The glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the compound HT1 and the compound HI are co-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a co-evaporated film layer (H-1 layer) having a thickness of 5 nm was formed. The concentration of compound HI in the H-1 layer was 3% by weight.
Next, the compound HT1 was vapor-deposited on this co-deposited film layer to form a 90-nm thick HT1 layer (H-2 layer).
Subsequently, a compound HT4 was vapor-deposited to form a 5 nm-thick HT4 layer (H-3 layer).
Further, Compound BH as a host material and Compound BD1 as a light emitting dopant material (fluorescent dopant) were co-evaporated to form a light emitting layer having a thickness of 20 nm. The concentration of Compound BD1 in the light emitting layer was 4% by mass.
On this light emitting layer, the compound ET1 and the compound Liq were co-evaporated to form a 20 nm thick layer (E-1 layer). The concentration of Compound Liq in this layer was 30% by weight.
Further, a compound Liq was vapor-deposited on this layer at a film formation rate of 0.1 angstrom / min to form a Liq layer (E-2 layer) having a thickness of 1 nm. Metal Al was vapor-deposited on this layer, and a metal cathode was formed with a film thickness of 80 nm.
The organic EL element of Example 1 has the following layer structure.
ITO (130 nm) / HT1 + HI (5 nm) / HT1 (90 nm) / HT4 (5 nm) / BH: BD1 (20 nm) / ET1: Liq (20 nm) / Liq (1 nm) / Al (80 nm)
When voltage was applied to the obtained organic EL device, it showed light emission characteristics at a practical level.
(実施例2~135)
正孔輸送領域、発光層、及び電子輸送領域の材料として、表1~表4に示す各化合物を用いた以外、実施例1と同様に、有機EL素子を作製した。
得られた実施例2~135有機EL素子に電圧を印加したところ、いずれも、実用レベルの発光特性を示した。
(Examples 2 to 135)
An organic EL device was produced in the same manner as in Example 1 except that the compounds shown in Tables 1 to 4 were used as materials for the hole transport region, the light emitting layer, and the electron transport region.
When a voltage was applied to the obtained organic EL elements of Examples 2 to 135, all showed light emission characteristics at a practical level.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 1、11・・有機EL素子、2・・基板、3・・陽極、4・・陰極、5・・発光層、6・・正孔輸送体域(正孔注入層、正孔輸送層等)、6a・・第1正孔輸送層、6b・・第2正孔輸送層、7・・電子輸送体域(電子注入層、電子輸送層等)、7a・・第1電子輸送層、7b・・第2電子輸送層、10、20・・発光ユニット(有機層) 1.11..Organic EL element 2..Substrate 3..Anode 4..Cathode 5..Light emitting layer 6..Hole transporter region (hole injection layer, hole transport layer, etc.) , 6a, first hole transport layer, 6b, second hole transport layer, 7. electron transport area (electron injection layer, electron transport layer, etc.), 7a, first electron transport layer, 7b,・ Second electron transport layer 10, 10, 20 ・ ・ Light emitting unit (organic layer)

Claims (7)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に配された有機層と、を備え、
    前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
    前記正孔輸送領域は、下記一般式(1)で表される化合物、及び、下記一般式(2)で表される化合物を含む、
    有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)
    [一般式(1)中、
    Ar、Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表し、
    Arは置換もしくは無置換の環形成炭素数6~20のアリーレン基を表す。]
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)
    [一般式(2)中、
     Lは、置換もしくは無置換の炭素数6~20のアリーレン基を表し、
     L及びLは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~20のアリーレン基を表し、
     Arは、置換もしくは無置換の環形成炭素数6~20のアリール基、又は無置換のジベンゾフラニル基を表す。]
    The anode,
    A cathode,
    An organic layer disposed between the anode and the cathode,
    The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
    The hole transport region includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
    Organic electroluminescence device.
    Figure JPOXMLDOC01-appb-C000001
    General formula (1)
    [In general formula (1),
    Ar 1 , Ar 2 and Ar 4 each independently represent a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms,
    Ar 3 represents a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000002
    General formula (2)
    [In general formula (2),
    L 1 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms,
    L 2 and L 3 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms,
    Ar 5 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group. ]
  2.  前記正孔輸送領域は、陽極側に配された第1の層、及び、発光層側に配された第2の層を含み、
     前記第1の層が、前記一般式(1)で表される化合物を含み、
     前記第2の層が、前記一般式(2)で表される化合物を含む、
    請求項1に記載の有機エレクトロルミネッセンス素子。
    The hole transport region includes a first layer disposed on the anode side, and a second layer disposed on the light emitting layer side,
    The first layer includes a compound represented by the general formula (1),
    The second layer includes a compound represented by the general formula (2).
    The organic electroluminescent element according to claim 1.
  3. Ar、Ar及びArは、それぞれ独立に、無置換の環形成炭素数6~20のアリール基を表し、
    Arは、無置換の環形成炭素数6~20のアリーレン基を表す、
    請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Ar 1 , Ar 2 and Ar 4 each independently represent an unsubstituted aryl group having 6 to 20 ring carbon atoms,
    Ar 3 represents an unsubstituted arylene group having 6 to 20 ring carbon atoms,
    The organic electroluminescent element according to claim 1 or 2.
  4.  Lは、無置換の炭素数6~20のアリーレン基を表し、
    及びLは、それぞれ独立に、単結合、又は無置換の環形成炭素数6~20のアリーレン基を表し、
     Arは、無置換の環形成炭素数6~20のアリール基、又は無置換のジベンゾフラニル基を表す、
     請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    L 1 represents an unsubstituted arylene group having 6 to 20 carbon atoms,
    L 2 and L 3 each independently represent a single bond or an unsubstituted arylene group having 6 to 20 ring carbon atoms,
    Ar 5 represents an unsubstituted aryl group having 6 to 20 ring carbon atoms or an unsubstituted dibenzofuranyl group.
    The organic electroluminescence device according to any one of claims 1 to 3.
  5. 前記発光層が、さらに蛍光性ドーパント及び燐光性ドーパントのいずれか一方又は両方を含む、請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to any one of claims 1 to 4, wherein the light emitting layer further contains one or both of a fluorescent dopant and a phosphorescent dopant.
  6. 前記有機層が、前記陰極と前記発光層との間に配された電子輸送領域を含む、請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein the organic layer includes an electron transporting region disposed between the cathode and the light emitting layer.
  7.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。 An electronic device comprising the organic electroluminescence element according to any one of claims 1 to 6.
PCT/JP2018/010873 2018-03-19 2018-03-19 Organic electroluminescent element and electronic device WO2018101489A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010873 WO2018101489A2 (en) 2018-03-19 2018-03-19 Organic electroluminescent element and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010873 WO2018101489A2 (en) 2018-03-19 2018-03-19 Organic electroluminescent element and electronic device

Publications (2)

Publication Number Publication Date
WO2018101489A2 true WO2018101489A2 (en) 2018-06-07
WO2018101489A3 WO2018101489A3 (en) 2018-08-09

Family

ID=62241735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010873 WO2018101489A2 (en) 2018-03-19 2018-03-19 Organic electroluminescent element and electronic device

Country Status (1)

Country Link
WO (1) WO2018101489A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114267A2 (en) * 2009-03-30 2010-10-07 덕산하이메탈(주) Organic electronic device, compounds for same, and terminal
KR102098061B1 (en) * 2012-03-19 2020-04-08 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
KR101497138B1 (en) * 2012-08-21 2015-02-27 제일모직 주식회사 Organic optoelectronic device and display including the same
KR101825542B1 (en) * 2014-08-26 2018-02-05 삼성에스디아이 주식회사 Organic optoelectric device and display device
JP2016058549A (en) * 2014-09-09 2016-04-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescent device
KR102342493B1 (en) * 2014-11-19 2021-12-23 덕산네오룩스 주식회사 Display device using a composition for organic electronic element, and an organic electronic element thereof

Also Published As

Publication number Publication date
WO2018101489A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN103907217B (en) Organic electroluminescent device
JP5662994B2 (en) Organic electroluminescence device
US9412964B2 (en) Organic electroluminescent element
WO2018139662A1 (en) Organic electroluminescent element and electronic device
CN106232772B (en) Multi-component host material and organic electroluminescent device comprising same
CN103797602B (en) Organic electroluminescent device
KR102160720B1 (en) Organic electrical field light-emitting element
JP5180369B2 (en) Organic electroluminescent device
JP4628435B2 (en) Organic electroluminescence device
JP2013157552A (en) Organic light emitting element
WO2007063796A1 (en) Organic electroluminescent device
JP2011222831A (en) Organic electroluminescent element
US20120168740A1 (en) Organic electroluminescence element
JP5669539B2 (en) Quinolino [3,2,1-kl] phenoxazine compound and organic light emitting device using the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP2005093425A (en) Light emitting device
US20120119196A1 (en) Organic electroluminescent element
WO2018101492A2 (en) Organic electroluminescent element and electronic device
WO2018101491A2 (en) Organic electroluminescent element and electronic device
JP6648418B2 (en) Organic electroluminescence device
WO2018101489A2 (en) Organic electroluminescent element and electronic device
WO2018101490A2 (en) Organic electroluminescent element and electronic device
JP7053487B2 (en) Organic electroluminescence element
KR20170109418A (en) Organic light emitting device
JP2009289716A (en) Organic electroluminescence element and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18727642

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18727642

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: JP