WO2018101462A1 - Pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program - Google Patents

Pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program Download PDF

Info

Publication number
WO2018101462A1
WO2018101462A1 PCT/JP2017/043282 JP2017043282W WO2018101462A1 WO 2018101462 A1 WO2018101462 A1 WO 2018101462A1 JP 2017043282 W JP2017043282 W JP 2017043282W WO 2018101462 A1 WO2018101462 A1 WO 2018101462A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
pregnancy
questionnaire
feature vector
pregnant
Prior art date
Application number
PCT/JP2017/043282
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 俊彦
遵介 中村
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2018101462A1 publication Critical patent/WO2018101462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a pregnancy period prediction device, a pregnancy period prediction method, and a pregnancy period prediction program.
  • Patent Document 1 describes the relationship between the interval between the menstrual date and the ovulation date and the average menstrual cycle estimated based on the data of a plurality of persons acquired in advance. An ovulation day prediction program for calculating predicted ovulation day data corresponding to a specific menstrual cycle is disclosed.
  • an object of the present invention is to provide a pregnancy period prediction device, a pregnancy period prediction method, and a pregnancy period prediction program that predict a period until pregnancy is considered in consideration of the personal circumstances of a user.
  • the pregnancy period prediction device calculates a plurality of feature vectors corresponding to each of a plurality of pregnant persons based on first questionnaire data including a result of a questionnaire conducted to a plurality of pregnant persons.
  • a predicting unit that calculates a predicted value.
  • the user can easily set the outlook for pregnancy.
  • a change calculation unit that calculates a change in a predicted value for a period until the user becomes pregnant, and a change in the predicted value calculated by the change calculation unit
  • a determination unit that determines one or more questionnaire items to be improved among the plurality of questionnaire items included in the questionnaire may be further provided so that the predicted value becomes shorter.
  • the first questionnaire data and the second questionnaire data include evaluation values respectively corresponding to a plurality of questionnaire items included in the questionnaire, and the determination unit includes a distribution of the evaluation values included in the first questionnaire data, Two or more questionnaire items to be improved may be determined based on the evaluation value included in the two questionnaire data.
  • the predicting unit is a cumulative distribution that indicates a probability that the user will become pregnant within an arbitrary period based on a period of time required for one or more pregnant persons corresponding to one or more similar vectors to become pregnant.
  • the function may be calculated, and the change calculation unit may calculate a change in the cumulative distribution function when the content of the second questionnaire data is changed.
  • the period until becoming pregnant can be stochastically shown, and the result when the effort goal is achieved can be quantitatively shown in the form of an increase in probability or a shortening of the period.
  • the extraction unit extracts one or a plurality of similar vectors similar to the user feature vector from the plurality of feature vectors based on a norm of a difference vector between the user feature vector and any one of the plurality of feature vectors. May be.
  • the dimension of each of the plurality of feature vectors and the dimension of the user feature vector may each be smaller than the number of items of the plurality of questionnaire items included in the questionnaire.
  • the plurality of feature vectors each include one or more elements related to objective information of a plurality of pregnant persons and one or more elements related to subjective information of the plurality of pregnant persons.
  • One or more elements related to the objective information of the user and one or more elements related to the subjective information of the user may be included.
  • the pregnancy period prediction method calculates a plurality of feature vectors corresponding to each of a plurality of pregnant persons based on first questionnaire data including a result of a questionnaire conducted to a plurality of pregnant persons.
  • the gestation period prediction program is based on first questionnaire data including a result of a questionnaire conducted on a plurality of pregnancy experienced persons, and a plurality of feature vectors corresponding to each of the plurality of pregnancy experienced persons.
  • a feature vector calculation unit that calculates a user feature vector, a user feature vector calculation unit that calculates a user feature vector corresponding to the user based on second questionnaire data including a result of a questionnaire conducted to the user, and a plurality of feature vectors.
  • the user becomes pregnant based on an extraction unit that extracts one or a plurality of similar vectors similar to the feature vector and a period of time required for one or more pregnant persons corresponding to the one or more similar vectors to become pregnant And function as a prediction unit that calculates a predicted value for the period up to.
  • FIG. 1 is a system configuration diagram of a pregnancy period prediction apparatus 10 according to an embodiment of the present invention.
  • the pregnancy period prediction device 10 according to the present embodiment is connected to the user terminal device 20 and the first questionnaire data database DB by a communication network NW.
  • the user terminal device 20 is a device used by a user of the pregnancy period prediction device 10, and is, for example, a personal computer or a smartphone.
  • the communication network NW is a network that connects the pregnancy period prediction device 10, the user terminal device 20, and the first questionnaire data database DB, and is, for example, the Internet.
  • the first questionnaire data database DB stores first questionnaire data including results obtained by conducting a questionnaire on a plurality of pregnant persons. The contents of the questionnaire and the contents of the first questionnaire data will be described in detail with reference to FIG.
  • a user who tries to become pregnant operates the user terminal device 20 to transmit his / her questionnaire response result to the pregnancy period prediction apparatus 10 via the communication network NW, and predicts the pregnancy period output from the pregnancy period prediction apparatus 10. The value is confirmed by the user
  • a person who has experienced pregnancy means a person who has experienced natural pregnancy in the past.
  • those who have experienced pregnancy may include those who have experienced pregnancy through artificial or in vitro insemination.
  • Those who desire natural pregnancy but have not become pregnant in natural pregnancy may be classified as having experienced pregnancy after an infinite period of time required to become pregnant.
  • FIG. 2 is a functional block diagram of the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • the pregnancy period prediction device 10 includes a feature vector calculation unit 11, a second questionnaire data acquisition unit 12, a user feature vector calculation unit 13, an extraction unit 14, a prediction unit 15, a change calculation unit 16, and a determination unit 17. And comprising.
  • the feature vector calculation unit 11 calculates a plurality of feature vectors corresponding to each of the plurality of pregnant pregnant persons based on the first questionnaire data including the result of the questionnaire conducted on the plurality of pregnant pregnant persons.
  • the feature vector calculation process will be described in detail with reference to FIG.
  • the second questionnaire data acquisition unit 12 acquires second questionnaire data including a result of questionnaire to the user from the user terminal device 20.
  • the questionnaire conducted with respect to the user includes the same content as the questionnaire conducted with respect to a plurality of pregnant persons, or at least includes the superimposed content.
  • the user feature vector calculation unit 13 calculates a user feature vector corresponding to the user based on the second questionnaire data including the result of conducting a questionnaire to the user. The user feature vector calculation process will be described in detail with reference to FIG.
  • the extraction unit 14 extracts one or a plurality of similar vectors similar to the user feature vector from the plurality of feature vectors.
  • the similar vector extraction process will be described in detail with reference to FIG.
  • the prediction unit 15 calculates a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant. More specifically, the predicting unit 15 calculates the probability that the user will become pregnant within an arbitrary period based on the period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant.
  • the cumulative distribution function shown is calculated. The cumulative distribution function calculation process will be described in detail with reference to FIG.
  • the period required for a person who has become pregnant to become pregnant means the period required for becoming pregnant after being aware of pregnancy.
  • awareness of pregnancy means conscious of basal body temperature and ovulation date and consciously trying to become pregnant.
  • the definition of each term is not intended to be limited to these, and any definition can be adopted as long as no contradiction arises.
  • the time required for pregnancy of a person who desires natural pregnancy but does not reach natural pregnancy may be added as infinite.
  • the change calculation unit 16 calculates the change in the predicted value of the period until the user becomes pregnant when the content of the second questionnaire data is changed.
  • the determining unit 17 determines one or more questionnaire items to be improved among a plurality of questionnaire items included in the questionnaire so that the predicted value is shortened based on the change in the predicted value calculated by the change calculating unit 16. To do.
  • the improvement item determination process will be described in detail with reference to FIG.
  • FIG. 3 is a diagram showing the contents of the first questionnaire data QD stored in the first questionnaire data database DB.
  • the 1st questionnaire data QD contains the information regarding the questionnaire result performed with respect to the pregnancy experienced person.
  • the first questionnaire data QD includes answer information corresponding to each of a plurality of questionnaire items included in the questionnaire.
  • the answer information may be represented by characters and symbols, but the first questionnaire data of this example includes evaluation values corresponding to a plurality of questionnaire items included in the questionnaire as the answer information.
  • the first questionnaire data QD may include information related to the period of time required for pregnant persons to become pregnant.
  • a plurality of questionnaire items included in the questionnaire are classified into physical information QD1, exercise category QD2, meal category QD3, couple category QD4, stress category QD5, and life category QD6.
  • the first questionnaire data QD includes three evaluation values for the physical information QD1, and includes 20 evaluation values for the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6.
  • the physical information QD1, the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 included in the first questionnaire data QD of this example are examples, and the first questionnaire data QD is other than these. Items may be included, or some of these may not be included.
  • a plurality of questionnaire items included in the first questionnaire data QD can be arbitrarily set.
  • the physical information QD1 includes evaluation values for height, weight, and age.
  • the height is “T [cm]”
  • the weight is “W [kg]”
  • the age is “A” ( A year old).
  • the body information QD1 is objective information regarding a person who has experienced pregnancy. Note that the weight and age in this example are values at the time of pregnancy, but if the values at the time of pregnancy are uncertain, values estimated by a pregnant person can also be used.
  • the first questionnaire data QD of this example the case where three items are included in the physical information QD1 is shown, but any number of items may be included in the physical information QD1.
  • the exercise category QD2 includes evaluation values of the first item to the twentieth item. In this example, the evaluation value of the first item is “a1” and the evaluation value of the twentieth item is “a20”. Note that the evaluation values of the second item to the nineteenth item are not shown.
  • the meal category QD3 includes evaluation values of the 21st item to the 40th item. In this example, the evaluation value of the 21st item is “a21”, and the evaluation value of the 40th item is “a40”.
  • the couple category QD4 includes evaluation values of the 41st item to the 60th item. In this example, the evaluation value of the 41st item is “a41”, and the evaluation value of the 60th item is “a60”.
  • the stress category QD5 includes evaluation values of the 61st item to the 80th item.
  • the evaluation value of the 61st item is “a61”, and the evaluation value of the 80th item is “a80”.
  • the life category QD6 includes evaluation values of the 81st item to the 100th item.
  • the evaluation value of the 81st item is “a81”, and the evaluation value of the 100th item is “a100”.
  • 20 categories are shown in each category of exercise category QD2, meal category QD3, couple category QD4, stress category QD5 and life category QD6.
  • An arbitrary number of items may be included, and the number of items included in each category may be different.
  • the evaluation values a1 to a100 are any integers from 1 to 5, respectively. That is, these evaluation values are values obtained by evaluating the habit and way of thinking of a person who has been pregnant for five levels with respect to the n-th question included in the questionnaire. For example, for a question of the nth item, an evaluation value of “5” is given if it is exactly the same, and an evaluation value of “4” is given if it is considered to be the same. If there is not, an evaluation value of “3” is given. If not, an evaluation value of “2” is given. If not, an evaluation value of “1” is given. .
  • the method of giving the evaluation value is arbitrary, and may be assigned when “1” is considered to be exactly as it is, and may be assigned when “5” is not considered at all. An integer may be used, or a real number from 0 to 1 may be used.
  • FIG. 4 is a flowchart showing a feature vector calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • the feature vector calculation unit 11 acquires first questionnaire data QD from the first questionnaire data database DB (S10). And an average and dispersion
  • the average height is a value obtained by dividing the total height of N people by N, and the variance of the height is The square of the difference between the height of each person and the average height is summed for all and divided by N.
  • the variance of the height a value (unbiased variance) obtained by summing up the square of the difference between the height of each person and the average height for all members and dividing by N ⁇ 1 may be used.
  • the average and variance are calculated as in the case of height.
  • the feature vector calculation unit 11 normalizes the evaluation value of the body information Q1 by subtracting the average from the evaluation value of each person and dividing by the square root of the variance, and obtains a three-dimensional vector w1 having elements relating to height, weight, and age. It calculates for every experienced person (S12). For example, if the average height is ⁇ height [cm], the variance of height is ⁇ 2 height [cm 2 ], and the height of a certain pregnant person is T [cm], the normalized height evaluation value is It is a dimensionless quantity of (T ⁇ height ) / ⁇ height .
  • the normalized weight evaluation value Is a dimensionless quantity of (W ⁇ weight ) / ⁇ weight .
  • the average of age is ⁇ age and the variance of age is ⁇ 2 age
  • the normalized evaluation value of age is (A ⁇ age ) / ⁇ age is there.
  • the feature vector calculation unit 11 calculates the average and variance of the sum of the evaluation values for each category included in the first questionnaire data (S13). For example, when the value (a1 + a2 +... + A19 + a20) obtained by adding the evaluation value a20 of the first item to the evaluation value a20 of the twentieth item included in the exercise category QD2 is expressed as ⁇ category1 , the average ⁇ category1 is the value of N pregnant women The total of ⁇ category1 is divided by N, and the variance ⁇ 2 category1 is a value obtained by summing the square of the difference between ⁇ category1 of each person and the average ⁇ category1 and dividing by N.
  • ⁇ 2 category 1 a value (unbiased variance) obtained by summing the squares of the differences between the ⁇ category 1 of each person and the average ⁇ category 1 for all and dividing by N ⁇ 1 may be used.
  • the average and variance are calculated in the same manner as the exercise category QD2.
  • the feature vector calculation unit 11 normalizes the evaluation value of each category by subtracting the average from the evaluation value of each person and dividing by the square root of the variance, and obtains a five-dimensional vector w2 having elements relating to each category for each person who has experienced pregnancy. Calculate (S14). For example, for a certain pregnancy experienced person, the value obtained by adding the evaluation value a20 of the first item to the evaluation value a20 of the twentieth item included in the exercise category QD2 is ⁇ category1 , the average of N people is ⁇ category1 , and the variance is ⁇ 2. In the case of category1 , the normalized evaluation value is ( ⁇ category1 ⁇ category1 ) / ⁇ category1 .
  • the value obtained by adding the evaluation value a40 of the 21st item to the evaluation value a40 of the 40th item included in the meal category QD3 is ⁇ category2
  • the average of N people is ⁇ category2
  • the variance is ⁇
  • the normalized evaluation value is ( ⁇ category 1 ⁇ category 1 ) / ⁇ category 1 .
  • the value obtained by adding the evaluation value a60 of the 41st item to the evaluation value a60 of the 60th item included in the marital category QD4 is ⁇ category3
  • the average of N people is ⁇ category3
  • the variance is ⁇
  • the normalized evaluation value is ( ⁇ category3 ⁇ category3 ) / ⁇ category3 .
  • the value obtained by adding the evaluation value a61 of the 61st item to the evaluation value a80 of the 80th item included in the stress category QD5 is ⁇ category4
  • the average of N people is ⁇ category4
  • the variance is ⁇
  • the normalized evaluation value is ( ⁇ category 4 ⁇ category 4 ) / ⁇ category 4
  • the value obtained by adding the evaluation value a100 of the 81st item to the evaluation value a100 of the 100th item included in the life category QD6 is ⁇ category5
  • the average of N people is ⁇ category5
  • the variance is ⁇ .
  • the normalized evaluation value is ( ⁇ category5 ⁇ category5 ) / ⁇ category5 .
  • the feature vector calculation unit 11 combines the three-dimensional vector w1 and the five-dimensional vector w2 calculated for each pregnancy experienced person, and calculates the eight-dimensional feature vector v for each pregnancy experienced person (S15). Specifically, an eight-dimensional feature vector v is calculated by the direct sum of the three-dimensional vector w1 and the five-dimensional vector w2.
  • the feature vector calculation unit 11 calculates the average and variance of the evaluation values for all the pregnant persons and calculates the feature vector v.
  • the feature vector calculation unit 11 includes a plurality of pregnancy persons. Classification may be made into groups, and the average or variance of evaluation values may be calculated for each group, and the feature vector v may be calculated for each group. For example, the feature vector calculation unit 11 classifies those who have experienced pregnancy into a first group whose period required to become pregnant is M months or less and a second group whose period required to become pregnant is longer than M months. Thus, the feature vector v may be calculated respectively.
  • FIG. 5 is a flowchart showing a user feature vector calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • the second questionnaire data acquisition unit 12 acquires second questionnaire data from the user terminal device 20 (S20).
  • the second questionnaire data is acquired by the user using the user terminal device 20 from the evaluation values related to the height, weight and age included in the physical information QD1, and from the first item to the 20th item included in the exercise category QD2.
  • the user feature vector calculator 13 calculates the average height and variance ⁇ 2 height of the height included in the body information QD1 of the first questionnaire data, the average ⁇ height and variance ⁇ 2 weight of the weight , the average age ⁇ age and variance of the age Reference is made to ⁇ 2 age (S21).
  • the user feature vector calculation unit 13 normalizes the evaluation value of the physical information Q1 by subtracting the reference average from the user evaluation value and dividing by the square root of the reference variance, and has a three-dimensional element having elements related to height, weight, and age Vector q1 is calculated (S22).
  • the three-dimensional vector q1 ((T user ⁇ height ) / ⁇ height , (W user ⁇ weight ) / ⁇ weight , (A user ⁇ age ) / ⁇ age ).
  • the user feature vector calculator 13 calculates the average ⁇ category1 and variance ⁇ 2 category1 of the total evaluation values included in the exercise category QD2 of the first questionnaire data, and the average ⁇ of the total evaluation values included in the meal category QD3. and Category2 and variance sigma 2 Category2, the mean mu Category3 and variance sigma 2 Category3 of the sum of evaluation values included in the couple category QD4, the mean mu Category4 and variance sigma 2 Category4 of the sum of evaluation values included in the stress category QD5, Reference is made to the average ⁇ category5 and the variance ⁇ 2 category5 of the sum of evaluation values included in the life category QD6 (S23).
  • the user feature vector calculation unit 13 normalizes the evaluation value of each category by subtracting the reference average from the evaluation value of the user and dividing by the square root of the reference variance, and calculates a five-dimensional vector q2 having elements relating to each category. (S24).
  • the sum of the evaluation value of the user of the motion category QD2 is the ⁇ category1 user, a sum ⁇ category2 user of the evaluation value of the meal category QD3, the sum of the evaluation value of the couple category QD4 is ⁇ category3 user, stress category QD5
  • the sum of the evaluation values of ⁇ category4 user and the sum of the evaluation values of life category QD6 is ⁇ category6 user
  • the user feature vector calculator 13 combines the three-dimensional vector q1 and the five-dimensional vector q2 calculated for the user to calculate an eight-dimensional user feature vector q (S25). Specifically, an 8-dimensional user feature vector q is calculated from the direct sum of the 3-dimensional vector q1 and the 5-dimensional vector q2.
  • each feature vector v corresponding to a plurality of pregnant persons and the dimension of a user feature vector corresponding to a user are smaller than the number of items of a plurality of questionnaire items included in each questionnaire.
  • the dimension of the feature vector v and the user feature vector q is 8 respectively, which is smaller than the number 103 of items of a plurality of questionnaire items included in the questionnaire.
  • the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 each include 20 questionnaire items.
  • the feature vector v and the user feature vector q are the exercise category QD2, the meal category QD3, and the couple category. It has one element each corresponding to QD4, stress category QD5, and life category QD6. In this way, by adopting representative values (total values in this example) for multiple evaluation values included in the same category, it is possible to reduce the impact of response blurring in the questionnaire, and to improve personal circumstances. I can catch it well.
  • the feature vector v corresponding to a plurality of pregnancy experienced persons includes one or more elements related to objective information of a plurality of pregnancy experienced persons and one or more elements related to subjective information of the plurality of pregnant experience persons.
  • the user feature vector q includes one or more elements related to the objective information of the user and one or more elements related to the subjective information of the user.
  • the feature vector v and the user feature vector q include three elements of the three-dimensional vector w1 or q1 corresponding to the body information QD1 as one or a plurality of elements related to objective information.
  • the feature vector v and the user feature vector q are five-dimensional vectors w2 or q2 corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 as one or more elements related to subjective information.
  • the five elements are included.
  • the feature vector v exemplified in this specification is an 8-dimensional vector v obtained by synthesizing the 3-dimensional vector w1 and the 5-dimensional vector w2.
  • the dimension of the feature vector v is not limited to 8, and the physical information QD1 is related to it.
  • the dimension of the vector w1 may be increased or decreased according to the number of items included in the physical information QD1, and the dimension of the vector w2 regarding each category may be increased or decreased according to the number of categories.
  • the user feature vector q exemplified in the present specification is an eight-dimensional vector q obtained by combining the three-dimensional vector q1 and the five-dimensional vector q2.
  • the dimension of the user feature vector q is not limited to eight,
  • the dimension of the vector q1 related to the information QD1 may be increased or decreased according to the number of items included in the physical information QD1, and the dimension of the vector q2 related to each category may be increased or decreased according to the number of categories.
  • the user feature vector calculation unit 13 calculates the first user feature vector using the average and variance of the evaluation values of the first group whose period required to become pregnant is M months or less, and was required before becoming pregnant.
  • the second user feature vector may be calculated using the average and variance of evaluation values of the second group whose period is longer than M months.
  • FIG. 6 is a flowchart showing similar vector extraction processing executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • the extraction unit 14 calculates a difference vector q ⁇ v between the user feature vector q and the feature vector v corresponding to a certain pregnancy experienced person (S30). Then, the norm
  • represents the norm of the vector.
  • the norm of the vector may be defined by the L 2 norm, that is, the square root of the sum of squares of each element of the vector, but the L p norm (p ⁇ 0) may be used, and a different weight for each element. A norm that gives may be used.
  • the extraction unit 14 calculates the norm
  • the vectors are extracted as similar vectors v1, v2,... VK (S32).
  • the value of K is an integer of 1 or more and is arbitrary, but may be determined so that the prediction accuracy of the predicted value of the period until pregnancy, which will be described in detail later, is increased.
  • the extraction unit 14 uses the top 20 to 40% feature vectors having a small norm of the difference vector from the user feature vector q as similar vectors. It may be extracted.
  • the group to which the user belongs can also be estimated using the similar vector extracted by the extraction unit 14.
  • the feature vector v is calculated on the basis of the average and variance of the evaluation values of all pregnant persons, and the pregnant person is required to become pregnant with the first group whose period required to become pregnant is M months or less. The second period is longer than M months.
  • the user feature vector q is calculated based on the average and variance of the evaluation values of the whole pregnancy experienced person, the similarity between the feature vector v belonging to the first group and the user feature vector q, and the feature vector belonging to the second group
  • the group having the highest similarity can be estimated as the group to which the user belongs.
  • the comparison of the degrees of similarity for example, by calculating the norm of the difference vector between the user feature vector q and the feature vector v, respectively, and the average value of the norm related to the first group and the average value of the norm related to the second group
  • a group having a small norm average value can be estimated as a group to which the user belongs.
  • a person who has experienced pregnancy is classified into a first group that has reached natural pregnancy and a second group that has not reached natural pregnancy but has become pregnant by artificial or in vitro insemination, and the user selects either group. Can also be estimated.
  • the group to which the user belongs can be estimated by the same method.
  • FIG. 7 is a flowchart showing a cumulative distribution function calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • the prediction unit 15 acquires a period required until K pregnant women corresponding to the similar vectors v1, v2,... VK become pregnant (S40).
  • the prediction unit 15 according to the present embodiment acquires a period required until the pregnant person becomes pregnant from the first questionnaire data database DB.
  • the prediction unit 15 generates a histogram of the period required for the K pregnant persons corresponding to the similar vector to become pregnant, and calculates the probability distribution of the pregnancy period from the histogram by kernel density estimation (S41).
  • the kernel function used for kernel density estimation may be a normal distribution, but other functions may be adopted.
  • the bandwidth used for kernel density estimation may be a width corresponding to several months.
  • the prediction unit 15 may calculate the probability distribution of the pregnancy period from a period required until K pregnant persons become pregnant by a method other than the kernel density estimation.
  • the prediction unit 15 calculates a cumulative distribution function indicating the probability that the user will become pregnant within an arbitrary period from the probability distribution of the pregnancy period (S42).
  • the prediction unit 15 can give the probability that the user will become pregnant within half a year, for example, by the calculated cumulative distribution function.
  • the prediction unit 15 can give a predicted value of a period until the user becomes pregnant, for example, by obtaining a period in which the pregnancy probability is 80% from the cumulative distribution function.
  • the prediction unit 15 can calculate a predicted value of a period until the user becomes pregnant based on the extracted pregnancy period of the experienced pregnancy person. Therefore, the period until becoming pregnant can be predicted in consideration of the user's personal circumstances.
  • the user can easily set the outlook for pregnancy. For example, the user may review lifestyle habits for pregnancy, use predicted values as a material for determining whether or not to see a specialist, or set a period of concentration on pregnancy based on predicted values be able to.
  • FIG. 8 is a diagram illustrating a pregnancy period prediction result output by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • a result display screen DP including a pregnancy period prediction result is displayed on the user terminal device 20 is shown.
  • the result display screen DP includes a prediction result DP1, an advice display DP2, and a first graph DP3.
  • the prediction result DP1 is a prediction result of the pregnancy period, the first message “the probability of becoming pregnant within 6 months is 10%”, the second message “the probability of becoming pregnant within one year is 45%”, and And a third message that “the probability of becoming pregnant within one year and six months is 90%”.
  • the first message, the second message, and the third message indicate the relationship between the period and the pregnancy probability calculated based on the cumulative distribution function calculated by the prediction unit 15.
  • the prediction result DP1 quantitatively shows the relationship between the period required to become pregnant and the pregnancy probability, and the user can make a prediction of pregnancy life with reference to the prediction result DP1.
  • the advice display DP2 is a button for displaying improvement points related to pregnancy.
  • the user can obtain advice on how much the pregnancy probability is improved by changing the user's lifestyle etc. by pressing the advice display DP2.
  • the contents of the advice will be described in detail with reference to FIG.
  • the first graph DP3 indicates the cumulative distribution function DF1 corresponding to the user, with the horizontal axis indicating the period and the vertical axis indicating the pregnancy probability. It can be seen from the first graph DP3 that the pregnancy probability within 6 months is 10%, the pregnancy probability within 1 year is 45%, and the pregnancy probability within 1 year 6 months is 90%. The first graph DP3 allows the user to visually grasp the relationship between the period and the pregnancy probability.
  • FIG. 9 is a flowchart showing improvement item determination processing executed by the pregnancy period prediction device 10 according to the embodiment of the present invention.
  • the change calculation unit 16 calculates a change in the cumulative distribution function when the content of the second questionnaire data is changed. Specifically, the change calculation unit 16 changes the five-dimensional vector q2 out of the three-dimensional vector q1 and the five-dimensional vector q2 constituting the user feature vector q to generate an eight-dimensional trial vector t (S50). That is, the change calculation unit 16 increases or decreases the elements of the user feature vector q corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 among the plurality of questionnaire items included in the questionnaire. To generate a trial vector t.
  • the change calculation part 16 may produce
  • increasing or decreasing the element of the user feature vector q corresponds to changing the contents of the second questionnaire data.
  • the change calculation unit 16 calculates a cumulative distribution function based on the 8-dimensional trial vector t (S51). More specifically, K similar vectors similar to the 8-dimensional trial vector t are extracted from a plurality of feature vectors v, and based on a period required for pregnancy of a pregnant person corresponding to the K similar vectors. A histogram is created, a probability distribution is calculated from the histogram by kernel density estimation, and a cumulative distribution function is calculated from the probability distribution.
  • the change calculation unit 16 calculates a cumulative distribution function for a plurality of trial vectors t, and the determination unit 17 selects a trial vector t that minimizes the predicted value of the pregnancy period (S52). For example, the change calculation unit 16 increases (or decreases) the elements of the user feature vector q corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6, respectively, and increases (or decreases) 5) are generated so that the sum of the amount) becomes a predetermined value, a cumulative distribution function is calculated, and the determination unit 17 has the highest probability of becoming pregnant within a predetermined period (for example, one year). A trial vector t may be selected.
  • the change calculation unit 16 increases two elements of the user feature vector q corresponding to two categories selected from the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 ( Or 10) to generate a trial distribution vector t so that the sum of the increase amounts (or decrease amounts) becomes a predetermined value, calculate a cumulative distribution function, and the determination unit 17 determines a predetermined period (for example, 1 The trial vector t having the highest probability of becoming pregnant within a year may be selected.
  • the determination unit 17 determines one or a plurality of questionnaire items to be improved in order to realize the selected trial vector t among a plurality of questionnaire items included in the questionnaire. For example, when the cumulative distribution function is best improved by the trial vector t in which the element of the user feature vector q corresponding to the meal category QD3 is changed, the determination unit 17 changes the 21st to 40th items included in the meal category QD3. Decide which of the items should be improved.
  • the determination unit 17 determines one or more questionnaire items to be improved based on the distribution of the evaluation values included in the first questionnaire data and the evaluation values included in the second questionnaire data (S53). Specifically, for each questionnaire item that is a candidate for improvement, the determination unit 17 determines the variance ⁇ 2 n of the evaluation values of the questionnaire items included in the first questionnaire data and the questionnaire items included in the second questionnaire data.
  • the one or more questionnaire items to be improved are determined in descending order of the value of (max ⁇ an) ⁇ n based on the evaluation points an and the maximum score max of the evaluation points.
  • the change calculation unit 16 generates a trial vector t for all combinations of changes (or representative combinations of changes) in which the total amount of change of the elements of the user feature vector q is a predetermined value, and calculates the cumulative distribution function. After calculating, the determination unit 17 may select the trial vector t that provides the shortest predicted value of the pregnancy period.
  • the number of all combinations of changes is the number of overlapping combinations that select p out of n , and is (n + p ⁇ 1) C p .
  • FIG. 10 is a diagram showing improvement advice output by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention.
  • a result display screen DP including improvement advice is displayed on the user terminal device 20 is shown.
  • the result display screen DP includes an advice DP4, an improvement example DP5, and a second graph DP6.
  • the advice DP4 is an improvement advice obtained based on the trial vector t in which the cumulative distribution function is most improved, and “the improvement in the diet category and the stress category increases the probability of becoming pregnant within one year by 5%.” Contains a message.
  • the determination unit 17 selects a trial vector t in which two elements of the user feature vector q corresponding to the meal category QD3 and the stress category QD5 are changed, and the cumulative distribution calculated based on the trial vector t. The case where the function indicates that the probability of becoming pregnant within one year increases by 5% is illustrated.
  • the pregnancy period prediction apparatus 10 selects a trial vector t in which one element of the user feature vector q corresponding to one category is changed, and shows a cumulative distribution function calculated based on the trial vector t.
  • a trial vector t in which three or more elements of the user feature vector q corresponding to three or more categories are changed is selected, and a cumulative distribution function calculated based on the trial vector t is shown.
  • the pregnancy period prediction apparatus 10 may calculate a cumulative distribution function for a plurality of trial vectors t generated by a plurality of methods, and may select a trial vector t having the highest pregnancy probability when compared in the same period.
  • the message indicates that the probability of becoming pregnant within one year increases, but the content of the message is not limited to this. For example, it may indicate that the period until a certain pregnancy probability is achieved is shortened, such as “the period during which the pregnancy probability is 50% is shortened from one year to one month”.
  • the improvement example DP5 shows an example of which of the questionnaire items included in the meal category QD3 and the stress category QD5 should be improved.
  • the first evaluation value “the evaluation value of the 30th item of the meal category is +1”.
  • An improvement example a second improvement example “the evaluation value of the 35th item of the meal category is +2”, and a third improvement example of “the evaluation value of the 70th item of the stress category is +1” are included.
  • advice DP4 when all the 1st improvement example, the 2nd improvement example, and the 3rd improvement example are achieved, it has shown that the raise of the pregnancy probability shown by advice DP4 is anticipated.
  • the first improvement example of “+1 for the evaluation value of the 30th item of the meal category” represents that the meal content should be reviewed so that the evaluation score of the 5-level evaluation of the 30th item is increased by one.
  • the second improvement example in which the evaluation value of the 35th item is +2 ” indicates that the meal contents should be reviewed so that the evaluation score of the 5-step evaluation of the 35th item is increased by two points.
  • the third improvement example of “+1 for the evaluation value of the 70th item in the stress category” indicates that the stress situation should be reviewed so that the evaluation score for the 5-level evaluation of the 70th item is increased by one.
  • the user characteristic vector q is changed to search for a direction in which the pregnancy probability is most improved, and should be improved in order to shorten the period until pregnancy.
  • the point can be clarified, and individual specific advice can be given to the user.
  • the pregnancy period prediction device 10 by calculating the cumulative probability distribution from the result of the questionnaire to the user, the period until pregnancy can be stochastically shown, and the effort target can be determined.
  • the outcome when achieved can be shown quantitatively in the form of increased probability or reduced duration. Thereby, the goal in pregnancy can be clarified, and the motivation to continue the pregnancy can be given by being aware of the expected result quantitatively.
  • the second graph DP6 shows the period on the horizontal axis, the pregnancy probability on the vertical axis, the cumulative distribution function DF1 corresponding to the user, the improved cumulative distribution function DF2 corresponding to the case where improvement advice is executed, Is shown. From the second graph DP6, it can be seen that the pregnancy probability within one year in the current state is 45%, but the pregnancy probability within one year after improvement is 50%. The second graph DP6 allows the user to visually grasp the effects when the lifestyle habits are reviewed according to the improvement advice.
  • the pregnancy period prediction device 10 stores the second questionnaire data including the result of the questionnaire for the user in the storage unit, and adds the questionnaire data regarding the user to the first questionnaire data database DB when the user becomes pregnant. May be. By accumulating questionnaire data, the data used for the prediction of pregnancy period becomes more abundant, and a more reliable prediction becomes possible.
  • various prediction devices based on basic data having a plurality of items can be configured.
  • a power demand prediction device for predicting power demand can be cited.
  • the power demand prediction apparatus calculates a plurality of feature vectors corresponding to the past date and time based on the environmental data regarding the past date and time.
  • the environmental data includes data such as weather, temperature, humidity, day of the week, and whether or not it falls on a public holiday.
  • the plurality of feature vectors are obtained by calculating the average and variance for each item included in the environmental data related to the past date and time, and dividing the difference between the value of each item and the average by the square root of variance.
  • Each dimension of the plurality of feature vectors may be equal to or less than the number of items included in the environment data.
  • the feature vector may be a four-dimensional vector.
  • the environment data includes N items
  • the feature vector may have N dimensions or less, and several items included in the environment data may be represented as one element of the feature vector.
  • the power demand prediction apparatus calculates a feature vector for the current day based on the environmental data for the current day.
  • the feature vector of the current day is obtained by dividing the difference between the value of each item and the average of the environmental data related to the past date and time by the square root of the variance of the environmental data related to the past date and time. You may calculate by calculating
  • the dimension of the feature vector of the day may be equal to or less than the number of items included in the environmental data.
  • the power demand prediction apparatus extracts one or a plurality of similar vectors similar to the current day feature vector from the plurality of feature vectors.
  • the power demand prediction apparatus may extract a similar vector based on a norm of a difference vector between the current day feature vector and any one of a plurality of feature vectors. Similar vector, similar to that described herein, seeking L 2 norm of the difference vector between any of the feature vectors and a plurality of feature vectors of the day, a plurality of feature vectors in the order value of the norm is small It may be K vectors extracted from the house. Incidentally, may be used norm other than L 2 norm may be used a method of measuring the distance between other vectors.
  • the power demand prediction apparatus calculates a predicted value of the power demand on the current day based on the actual power demand on one or more dates and times corresponding to one or more similar vectors.
  • the power demand prediction device generates a power demand histogram based on the actual power demand at one or more dates and times corresponding to one or more similar vectors, and calculates a probability distribution of the power demand from the histogram by kernel density estimation.
  • a cumulative distribution function indicating the probability that the power demand falls below an arbitrary value may be calculated.
  • Various parameters in the kernel density estimation can be arbitrarily selected as described in the present specification.
  • the power demand prediction device environmental data having a similar situation to that of the current day can be extracted from the past environmental data, and the power demand is predicted on the current day based on the actual power demand on the extracted date and time. A value can be calculated. Therefore, the power demand can be predicted in consideration of the environment of the day. Moreover, the power demand prediction apparatus can indicate the probability that the power demand on the current day falls below an arbitrary value, and can make a quantitative prediction regarding the power demand on the current day. For this reason, according to the power demand prediction apparatus, it is possible to obtain a quantitative estimate of how much power supply should be.
  • the power demand prediction device may calculate a change in the predicted value of the power demand for the day when the environmental data for the day changes. For example, with regard to data such as weather, temperature, and humidity included in environmental data, actual weather, temperature, and humidity data were obtained after calculating the predicted value of power demand for the day using values based on the weather forecast In this case, the predicted value of power demand can be updated sequentially. Specifically, in the same manner as described in the present specification, the power demand on the current day is calculated by calculating a trial vector in which the feature vector on the current day is changed and obtaining a cumulative distribution function of the power demand based on the trial vector. The change in the predicted value may be calculated.
  • the power demand prediction apparatus can have the same configuration as the configuration of the pregnancy period prediction apparatus 10 described in this specification. Moreover, the electric power demand prediction method and electric power demand prediction program which estimate electric power demand can also be comprised by deform
  • the prediction device calculates a predicted value at which a predetermined event will occur based on basic data having a plurality of items.
  • the prediction device calculates a plurality of feature vectors having elements corresponding to a plurality of items included in the acquired basic data based on the acquired basic data.
  • the plurality of feature vectors are obtained by calculating an average and a variance for each item included in the acquired basic data, and dividing the difference between the value of each item and the average by the square root of the variance. You may calculate by calculating
  • the dimension of the plurality of feature vectors may be less than or equal to the number of items included in each acquired basic data.
  • the prediction device calculates a new feature vector based on the new basic data.
  • the new feature vector corresponds to the user feature vector described in this specification, and the value obtained by dividing the difference between the value of each item and the average of the acquired basic data by the square root of the variance of the acquired basic data is obtained. It may be calculated.
  • the dimension of the new feature vector may be equal to or less than the number of items included in the new basic data.
  • the prediction device extracts one or a plurality of similar vectors similar to the new feature vector from the plurality of feature vectors.
  • the prediction device may extract a similar vector based on a norm of a difference vector between the new feature vector and any one of the plurality of feature vectors. Similar vector, similar to that described herein, seeking L 2 norm of the difference vector between any of the new feature vector and a plurality of feature vectors, among the plurality of feature vectors in the order value of the norm is small May be K vectors extracted from.
  • the prediction device calculates a predicted value of a new event based on the results of one or more events corresponding to one or more similar vectors.
  • the prediction device generates a histogram indicating the frequency of occurrence of a new event based on the performance of one or more events corresponding to one or more similar vectors, and obtains a probability distribution of occurrence of new events by kernel density estimation from the histogram.
  • a cumulative distribution function indicating the probability of occurrence of a new event may be calculated.
  • Various parameters in the kernel density estimation can be arbitrarily selected as described in the present specification. According to the prediction device, it is possible to extract data having a similar situation to the new basic data from the acquired basic data, and based on the results of the event corresponding to the extracted data, the predicted value of the new event is obtained. Can be calculated.
  • the prediction device may calculate a change in the predicted value of the new event when the new basic data changes.
  • the prediction device may calculate a change in the predicted value of the new event by calculating a trial vector obtained by changing the new feature vector and obtaining a cumulative distribution function of the event based on the trial vector.
  • the prediction device can have the same configuration as the configuration of the pregnancy period prediction device 10 described in this specification.
  • it is possible to configure a prediction method and a prediction program for calculating a predicted value at which a predetermined event occurs based on basic data having a plurality of items.
  • DESCRIPTION OF SYMBOLS 10 ... Pregnancy period prediction apparatus, 11 ... Feature vector calculation part, 12 ... 2nd questionnaire data acquisition part, 13 ... User feature vector calculation part, 14 ... Extraction part, 15 ... Prediction part, 16 ... Change calculation part, 17 ... Determination , 20 ... user terminal device, DB ... first questionnaire data database, DF1 ... cumulative distribution function, DF2 ... cumulative distribution function after improvement, DP ... result display screen, DP1 ... prediction result, DP2 ... advice display, DP3 ... first 1 graph, DP4 ... advice, DP5 ... improvement example, DP6 ... second graph, NW ... communication network, QD ... first questionnaire data, QD1 ... physical information, QD2 ... exercise category, QD3 ... meal category, QD4 ... couple category, QD5 ... stress category, QD6 ... life category.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Child & Adolescent Psychology (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

The purpose of the present invention is to provide a pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program, whereby a time period to a pregnancy is forecast with a user's individual situation being accounted for. Provided is a pregnancy time period forecasting device, comprising: a feature vector computation unit 11 which, on the basis of first survey data which includes results of a survey which is carried out on a plurality of persons who have experienced pregnancy, computes a plurality of feature vectors which correspond respectively to the plurality of persons who have experienced pregnancy; a user feature vector computation unit 13 which, on the basis of second survey data which includes results of a survey which is carried out on a user, computes a user feature vector which corresponds to the user; an extraction unit 14 which extracts, from the plurality of feature vectors, one or a plurality of similar vectors which are similar to the user feature vector; and a forecasting unit 15 which, on the basis of a time period which one or a plurality of the persons who have experienced pregnancy who correspond to the one or the plurality of similar vectors required to become pregnant, computes a forecast value of the time period until the user becomes pregnant.

Description

妊娠期間予測装置、妊娠期間予測方法及び妊娠期間予測プログラムPregnancy period prediction device, pregnancy period prediction method, and pregnancy period prediction program 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月1日に出願された日本出願番号特願2016-234468号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-234468 filed on Dec. 1, 2016, the contents of which are incorporated herein by reference.
 本発明は、妊娠期間予測装置、妊娠期間予測方法及び妊娠期間予測プログラムに関する。 The present invention relates to a pregnancy period prediction device, a pregnancy period prediction method, and a pregnancy period prediction program.
 近年、妊娠を望む者によって、妊娠するため積極的に活動するいわゆる「妊活」が行われている。妊活は、食事内容や生活習慣の見直し、運動習慣の形成等を含む場合がある。
 妊活において重要となる排卵日の予測に関して、特許文献1には、予め取得した複数人のデータに基づいて推定された、月経日と排卵日との間隔と平均月経周期との関係に対し、特定の月経周期に対応した予測排卵日データを算出する排卵日予測プログラムが開示されている。
In recent years, so-called “pregnancy activities” in which people who want to become pregnant actively work to become pregnant have been performed. Pregnancy may include review of meal contents and lifestyle, formation of exercise habits, and the like.
Regarding the prediction of the ovulation date that is important in pregnancy, Patent Document 1 describes the relationship between the interval between the menstrual date and the ovulation date and the average menstrual cycle estimated based on the data of a plurality of persons acquired in advance. An ovulation day prediction program for calculating predicted ovulation day data corresponding to a specific menstrual cycle is disclosed.
特許第5998307号Patent No. 5998307
 従来、妊娠確率は、食事内容や生活習慣、運動習慣の有無等に左右されると言われてきた。妊活を行う者は、従来知られた経験則に従い、食事内容や生活習慣の見直し、運動習慣の形成等を行う場合があった。 Conventionally, it has been said that the probability of pregnancy depends on the content of meals, lifestyle habits, and the existence of exercise habits. In some cases, a person who is pregnant is performing a review of meal contents and lifestyle, forming exercise habits, etc., according to a conventionally known rule of thumb.
 しかしながら、従来知られた経験則は、多くの者に成り立つと思われる一般論であり、個人の事情を反映したものではなかった。また、従来知られた経験則は、妊娠するまでに要する期間を短くすると思われる行動を定性的に示すものであり、妊娠するまでに要する期間を具体的ないし定量的に示さない場合があった。そのため、妊活を行う者は、妊活の見通しを立てることが難しい場合があった。 However, the conventionally known rule of thumb is a general theory that seems to hold many people and does not reflect the circumstances of individuals. In addition, conventionally known rules of thumb qualitatively indicate behavior that seems to shorten the time required to become pregnant, and may not specifically or quantitatively indicate the time required to become pregnant. . For this reason, it may be difficult for a person who is pregnant to establish a prospect of pregnancy.
 そこで、本発明は、妊娠するまでの期間を、ユーザの個人的事情を加味して予測する妊娠期間予測装置、妊娠期間予測方法及び妊娠期間予測プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a pregnancy period prediction device, a pregnancy period prediction method, and a pregnancy period prediction program that predict a period until pregnancy is considered in consideration of the personal circumstances of a user.
 本発明の一態様に係る妊娠期間予測装置は、複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出する特徴ベクトル算出部と、ユーザにアンケートを行った結果を含む第2アンケートデータに基づいて、ユーザに対応するユーザ特徴ベクトルを算出するユーザ特徴ベクトル算出部と、複数の特徴ベクトルから、ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する抽出部と、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出する予測部と、を備える。 The pregnancy period prediction device according to an aspect of the present invention calculates a plurality of feature vectors corresponding to each of a plurality of pregnant persons based on first questionnaire data including a result of a questionnaire conducted to a plurality of pregnant persons. A feature vector calculation unit, a user feature vector calculation unit that calculates a user feature vector corresponding to the user based on the second questionnaire data including a result of conducting a questionnaire to the user, and a plurality of feature vectors into a user feature vector A period until a user becomes pregnant based on an extraction unit that extracts one or more similar vectors and a period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant A predicting unit that calculates a predicted value.
 この態様によれば、複数の妊娠経験者の中から、ユーザと個人的状況が類似する妊娠経験者を抽出することができ、抽出された妊娠経験者の妊娠期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出することができる。そのため、妊娠するまでの期間を、ユーザの個人的事情を加味して予測することができる。ユーザは、定量的な予測値を得ることで、妊活の見通しを立てることが容易になる。 According to this aspect, it is possible to extract a pregnancy experienced person whose personal situation is similar to the user from a plurality of pregnancy experienced persons, and the user becomes pregnant based on the pregnancy period of the extracted pregnancy experienced person The predicted value for the period up to can be calculated. Therefore, the period until becoming pregnant can be predicted in consideration of the user's personal circumstances. By obtaining a quantitative prediction value, the user can easily set the outlook for pregnancy.
 上記態様において、第2アンケートデータの内容を変化させた場合における、ユーザが妊娠するまでの期間の予測値の変化を算出する変化算出部と、変化算出部により算出された予測値の変化に基づいて、予測値が短くなるように、アンケートに含まれる複数のアンケート項目のうち改善すべき1又は複数のアンケート項目を決定する決定部と、をさらに備えてもよい。 In the above aspect, when the content of the second questionnaire data is changed, a change calculation unit that calculates a change in a predicted value for a period until the user becomes pregnant, and a change in the predicted value calculated by the change calculation unit In addition, a determination unit that determines one or more questionnaire items to be improved among the plurality of questionnaire items included in the questionnaire may be further provided so that the predicted value becomes shorter.
 この態様によれば、妊娠するまでの期間を短くするために改善すべき点を明らかにすることができ、ユーザに対して個別具体的なアドバイスを行うことができる。 According to this aspect, it is possible to clarify the points to be improved in order to shorten the period until pregnancy, and it is possible to give specific specific advice to the user.
 上記態様において、第1アンケートデータ及び第2アンケートデータは、アンケートに含まれる複数のアンケート項目にそれぞれ対応する評価値を含み、決定部は、第1アンケートデータに含まれる評価値の分散と、第2アンケートデータに含まれる評価値とに基づいて、改善すべき1又は複数のアンケート項目を決定してもよい。 In the above aspect, the first questionnaire data and the second questionnaire data include evaluation values respectively corresponding to a plurality of questionnaire items included in the questionnaire, and the determination unit includes a distribution of the evaluation values included in the first questionnaire data, Two or more questionnaire items to be improved may be determined based on the evaluation value included in the two questionnaire data.
 この態様によれば、ユーザにとって改善が容易と思われる項目を個人的事情に鑑みて抽出でき、少ない努力で多くの成果が得られる努力目標を提示できる。 According to this aspect, it is possible to extract items that are considered easy to improve for the user in view of personal circumstances, and to present an effort goal that can produce many results with little effort.
 上記態様において、予測部は、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが任意の期間内に妊娠する確率を示す累積分布関数を算出し、変化算出部は、第2アンケートデータの内容を変化させた場合における、累積分布関数の変化を算出してもよい。 In the above aspect, the predicting unit is a cumulative distribution that indicates a probability that the user will become pregnant within an arbitrary period based on a period of time required for one or more pregnant persons corresponding to one or more similar vectors to become pregnant. The function may be calculated, and the change calculation unit may calculate a change in the cumulative distribution function when the content of the second questionnaire data is changed.
 この態様によれば、妊娠するまでの期間を確率的に示すことができ、努力目標を達成した場合の成果を、確率の上昇又は期間の短縮という形で定量的に示すことができる。 According to this aspect, the period until becoming pregnant can be stochastically shown, and the result when the effort goal is achieved can be quantitatively shown in the form of an increase in probability or a shortening of the period.
 上記態様において、抽出部は、ユーザ特徴ベクトルと複数の特徴ベクトルのうちいずれかとの差ベクトルのノルムに基づいて、複数の特徴ベクトルから、ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出してもよい。 In the above aspect, the extraction unit extracts one or a plurality of similar vectors similar to the user feature vector from the plurality of feature vectors based on a norm of a difference vector between the user feature vector and any one of the plurality of feature vectors. May be.
 この態様によれば、比較的負荷の軽い演算処理で、ユーザと個人的状況が類似する妊娠経験者を抽出することができる。 According to this aspect, it is possible to extract a pregnancy experienced person whose personal situation is similar to that of the user by an arithmetic processing with a relatively light load.
 上記態様において、複数の特徴ベクトルそれぞれの次元及びユーザ特徴ベクトルの次元は、それぞれアンケートに含まれる複数のアンケート項目の項目数より小さくてもよい。 In the above aspect, the dimension of each of the plurality of feature vectors and the dimension of the user feature vector may each be smaller than the number of items of the plurality of questionnaire items included in the questionnaire.
 この態様によれば、アンケートにおける回答のぶれの影響を少なくすることができ、個人的事情をより良く捉えることができる。 According to this aspect, it is possible to reduce the influence of the blurring of answers in the questionnaire, and to better capture the personal circumstances.
 上記態様において、複数の特徴ベクトルは、複数の妊娠経験者の客観情報に関する1又は複数の要素と、複数の妊娠経験者の主観情報に関する1又は複数の要素とをそれぞれ含み、ユーザ特徴ベクトルは、ユーザの客観情報に関する1又は複数の要素と、ユーザの主観情報に関する1又は複数の要素とを含んでもよい。 In the above aspect, the plurality of feature vectors each include one or more elements related to objective information of a plurality of pregnant persons and one or more elements related to subjective information of the plurality of pregnant persons. One or more elements related to the objective information of the user and one or more elements related to the subjective information of the user may be included.
 この態様によれば、妊娠経験者及びユーザの特徴を、客観的な観点と主観的な観点の両方から捉えることができ、個人的事情をより良く捉えることができる。 According to this aspect, it is possible to capture the features of pregnant persons and users from both an objective viewpoint and a subjective viewpoint, and it is possible to better understand personal circumstances.
 本発明の一態様に係る妊娠期間予測方法は、複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出するステップと、ユーザにアンケートを行った結果を含む第2アンケートデータに基づいて、ユーザに対応するユーザ特徴ベクトルを算出するステップと、複数の特徴ベクトルから、ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出するステップと、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出するステップと、を含む。 The pregnancy period prediction method according to an aspect of the present invention calculates a plurality of feature vectors corresponding to each of a plurality of pregnant persons based on first questionnaire data including a result of a questionnaire conducted to a plurality of pregnant persons. A step of calculating a user feature vector corresponding to the user based on second questionnaire data including a result of conducting a questionnaire to the user, and one or a plurality of similarities similar to the user feature vector from the plurality of feature vectors Extracting a vector; calculating a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant; and ,including.
 この態様によれば、複数の妊娠経験者の中から、ユーザと個人的状況が類似する妊娠経験者を抽出することができ、抽出された妊娠経験者の妊娠期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出することができる。そのため、妊娠するまでの期間を、ユーザの個人的事情を加味して予測することができる。 According to this aspect, it is possible to extract a pregnancy experienced person whose personal situation is similar to the user from a plurality of pregnancy experienced persons, and the user becomes pregnant based on the pregnancy period of the extracted pregnancy experienced person The predicted value for the period up to can be calculated. Therefore, the period until becoming pregnant can be predicted in consideration of the user's personal circumstances.
 本発明の一態様に係る妊娠期間予測プログラムは、コンピュータを、複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出する特徴ベクトル算出部と、ユーザにアンケートを行った結果を含む第2アンケートデータに基づいて、ユーザに対応するユーザ特徴ベクトルを算出するユーザ特徴ベクトル算出部と、複数の特徴ベクトルから、ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する抽出部と、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出する予測部と、として機能させる。 The gestation period prediction program according to one aspect of the present invention is based on first questionnaire data including a result of a questionnaire conducted on a plurality of pregnancy experienced persons, and a plurality of feature vectors corresponding to each of the plurality of pregnancy experienced persons. A feature vector calculation unit that calculates a user feature vector, a user feature vector calculation unit that calculates a user feature vector corresponding to the user based on second questionnaire data including a result of a questionnaire conducted to the user, and a plurality of feature vectors. The user becomes pregnant based on an extraction unit that extracts one or a plurality of similar vectors similar to the feature vector and a period of time required for one or more pregnant persons corresponding to the one or more similar vectors to become pregnant And function as a prediction unit that calculates a predicted value for the period up to.
 この態様によれば、複数の妊娠経験者の中から、ユーザと個人的状況が類似する妊娠経験者を抽出することができ、抽出された妊娠経験者の妊娠期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出することができる。そのため、妊娠するまでの期間を、ユーザの個人的事情を加味して予測することができる。 According to this aspect, it is possible to extract a pregnancy experienced person whose personal situation is similar to the user from a plurality of pregnancy experienced persons, and the user becomes pregnant based on the pregnancy period of the extracted pregnancy experienced person The predicted value for the period up to can be calculated. Therefore, the period until becoming pregnant can be predicted in consideration of the user's personal circumstances.
本発明の実施形態に係る妊娠期間予測装置のシステム構成図である。It is a system configuration diagram of a pregnancy period prediction device according to an embodiment of the present invention. 本発明の実施形態に係る妊娠期間予測装置の機能ブロック図である。It is a functional block diagram of the pregnancy period prediction apparatus concerning the embodiment of the present invention. 第1アンケートデータデータベースに格納される第1アンケートデータの内容を示す図である。It is a figure which shows the content of the 1st questionnaire data stored in a 1st questionnaire data database. 本発明の実施形態に係る妊娠期間予測装置により実行される特徴ベクトル算出処理を示すフローチャートである。It is a flowchart which shows the feature vector calculation process performed by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により実行されるユーザ特徴ベクトル算出処理を示すフローチャートである。It is a flowchart which shows the user feature vector calculation process performed by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により実行される類似ベクトル抽出処理を示すフローチャートである。It is a flowchart which shows the similar vector extraction process performed by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により実行される累積分布関数算出処理を示すフローチャートである。It is a flowchart which shows the cumulative distribution function calculation process performed by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により出力される妊娠期間予測結果を示す図である。It is a figure which shows the pregnancy period prediction result output by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により実行される改善項目決定処理を示すフローチャートである。It is a flowchart which shows the improvement item determination process performed by the pregnancy period prediction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る妊娠期間予測装置により出力される改善アドバイスを示す図である。It is a figure which shows the improvement advice output by the pregnancy period prediction apparatus which concerns on embodiment of this invention.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, what attached | subjected the same code | symbol has the same or similar structure.
 図1は、本発明の実施形態に係る妊娠期間予測装置10のシステム構成図である。本実施形態に係る妊娠期間予測装置10は、通信ネットワークNWによって、ユーザ端末装置20と、第1アンケートデータデータベースDBと、に接続される。ユーザ端末装置20は、妊娠期間予測装置10のユーザによって使用される装置であり、例えばパーソナルコンピュータやスマートフォンである。通信ネットワークNWは、妊娠期間予測装置10、ユーザ端末装置20及び第1アンケートデータデータベースDBを接続するネットワークであり、例えばインターネットである。第1アンケートデータデータベースDBは、複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータを格納する。アンケートの内容及び第1アンケートデータの内容については、図3を用いて詳細に説明する。妊活を試みるユーザは、ユーザ端末装置20を操作して、通信ネットワークNWを介して妊娠期間予測装置10に自身のアンケート回答結果を送信し、妊娠期間予測装置10から出力された妊娠期間の予測値をユーザ端末装置20によって確認する。 FIG. 1 is a system configuration diagram of a pregnancy period prediction apparatus 10 according to an embodiment of the present invention. The pregnancy period prediction device 10 according to the present embodiment is connected to the user terminal device 20 and the first questionnaire data database DB by a communication network NW. The user terminal device 20 is a device used by a user of the pregnancy period prediction device 10, and is, for example, a personal computer or a smartphone. The communication network NW is a network that connects the pregnancy period prediction device 10, the user terminal device 20, and the first questionnaire data database DB, and is, for example, the Internet. The first questionnaire data database DB stores first questionnaire data including results obtained by conducting a questionnaire on a plurality of pregnant persons. The contents of the questionnaire and the contents of the first questionnaire data will be described in detail with reference to FIG. A user who tries to become pregnant operates the user terminal device 20 to transmit his / her questionnaire response result to the pregnancy period prediction apparatus 10 via the communication network NW, and predicts the pregnancy period output from the pregnancy period prediction apparatus 10. The value is confirmed by the user terminal device 20.
 本明細書において、妊娠経験者とは、過去に自然妊娠を経験した者をいう。もっとも、妊娠経験者には、人工授精や体外授精によって妊娠を経験した者を含んでもよい。また、妊娠経験者を、自然妊娠経験者、人工授精による妊娠経験者又は体外授精による妊娠経験者に分類してもよい。自然妊娠を望んだものの、自然妊娠では妊娠しなかった者について、妊娠するまでに要した期間を無限大とした上で妊娠経験者に分類してもよい。 In this specification, a person who has experienced pregnancy means a person who has experienced natural pregnancy in the past. However, those who have experienced pregnancy may include those who have experienced pregnancy through artificial or in vitro insemination. Moreover, you may classify a pregnancy experience person into a natural pregnancy experience person, a pregnancy experience person by artificial insemination, or a pregnancy experience person by in vitro insemination. Those who desire natural pregnancy but have not become pregnant in natural pregnancy may be classified as having experienced pregnancy after an infinite period of time required to become pregnant.
 図2は、本発明の実施形態に係る妊娠期間予測装置10の機能ブロック図である。妊娠期間予測装置10は、特徴ベクトル算出部11と、第2アンケートデータ取得部12と、ユーザ特徴ベクトル算出部13と、抽出部14と、予測部15と、変化算出部16と、決定部17と、を備える。 FIG. 2 is a functional block diagram of the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. The pregnancy period prediction device 10 includes a feature vector calculation unit 11, a second questionnaire data acquisition unit 12, a user feature vector calculation unit 13, an extraction unit 14, a prediction unit 15, a change calculation unit 16, and a determination unit 17. And comprising.
 特徴ベクトル算出部11は、複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出する。特徴ベクトル算出処理については、図4を用いて詳細に説明する。 The feature vector calculation unit 11 calculates a plurality of feature vectors corresponding to each of the plurality of pregnant pregnant persons based on the first questionnaire data including the result of the questionnaire conducted on the plurality of pregnant pregnant persons. The feature vector calculation process will be described in detail with reference to FIG.
 第2アンケートデータ取得部12は、ユーザにアンケートを行った結果を含む第2アンケートデータをユーザ端末装置20より取得する。ここで、ユーザに対して行うアンケートは、複数の妊娠経験者に対して行ったアンケートと同じ内容であるか又は少なくとも重畳する内容を含む。ユーザ特徴ベクトル算出部13は、ユーザにアンケートを行った結果を含む第2アンケートデータに基づいて、ユーザに対応するユーザ特徴ベクトルを算出する。ユーザ特徴ベクトル算出処理については、図5を用いて詳細に説明する。 The second questionnaire data acquisition unit 12 acquires second questionnaire data including a result of questionnaire to the user from the user terminal device 20. Here, the questionnaire conducted with respect to the user includes the same content as the questionnaire conducted with respect to a plurality of pregnant persons, or at least includes the superimposed content. The user feature vector calculation unit 13 calculates a user feature vector corresponding to the user based on the second questionnaire data including the result of conducting a questionnaire to the user. The user feature vector calculation process will be described in detail with reference to FIG.
 抽出部14は、複数の特徴ベクトルから、ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する。類似ベクトル抽出処理については、図6を用いて詳細に説明する。 The extraction unit 14 extracts one or a plurality of similar vectors similar to the user feature vector from the plurality of feature vectors. The similar vector extraction process will be described in detail with reference to FIG.
 予測部15は、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出する。より具体的には、予測部15は、1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、ユーザが任意の期間内に妊娠する確率を示す累積分布関数を算出する。累積分布関数算出処理については、図7を用いて詳細に説明する。 The prediction unit 15 calculates a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant. More specifically, the predicting unit 15 calculates the probability that the user will become pregnant within an arbitrary period based on the period required until one or more pregnant persons corresponding to one or more similar vectors become pregnant. The cumulative distribution function shown is calculated. The cumulative distribution function calculation process will be described in detail with reference to FIG.
 本明細書において、妊娠経験者が妊娠するまでに要した期間とは、妊活を意識してから実際に妊娠するまでに要した期間をいう。また、妊活を意識とは、基礎体温や排卵日を意識して、積極的に妊娠しようと意識することをいう。しかし、各用語の定義をこれらに限定する趣旨ではなく、矛盾を生じない範囲で任意の定義を採用し得る。また、自然妊娠を望んだものの、自然妊娠に至らなかった者の妊娠までに要した時間を無限大として加えてもよい。 In this specification, the period required for a person who has become pregnant to become pregnant means the period required for becoming pregnant after being aware of pregnancy. In addition, awareness of pregnancy means conscious of basal body temperature and ovulation date and consciously trying to become pregnant. However, the definition of each term is not intended to be limited to these, and any definition can be adopted as long as no contradiction arises. Alternatively, the time required for pregnancy of a person who desires natural pregnancy but does not reach natural pregnancy may be added as infinite.
 変化算出部16は、第2アンケートデータの内容を変化させた場合における、ユーザが妊娠するまでの期間の予測値の変化を算出する。決定部17は、変化算出部16により算出された予測値の変化に基づいて、予測値が短くなるように、アンケートに含まれる複数のアンケート項目のうち改善すべき1又は複数のアンケート項目を決定する。改善項目決定処理については、図9を用いて詳細に説明する。 The change calculation unit 16 calculates the change in the predicted value of the period until the user becomes pregnant when the content of the second questionnaire data is changed. The determining unit 17 determines one or more questionnaire items to be improved among a plurality of questionnaire items included in the questionnaire so that the predicted value is shortened based on the change in the predicted value calculated by the change calculating unit 16. To do. The improvement item determination process will be described in detail with reference to FIG.
 図3は、第1アンケートデータデータベースDBに格納される第1アンケートデータQDの内容を示す図である。第1アンケートデータQDは、妊娠経験者に対して行ったアンケート結果に関する情報を含む。第1アンケートデータQDは、アンケートに含まれる複数のアンケート項目にそれぞれ対応する回答情報を含む。回答情報は、文字や記号で表されるものであってもよいが、本例の第1アンケートデータは、回答情報として、アンケートに含まれる複数のアンケート項目にそれぞれ対応する評価値を含む。なお、第1アンケートデータQDは、妊娠経験者が妊娠するまでに要した期間に関する情報を含んでもよい。 FIG. 3 is a diagram showing the contents of the first questionnaire data QD stored in the first questionnaire data database DB. The 1st questionnaire data QD contains the information regarding the questionnaire result performed with respect to the pregnancy experienced person. The first questionnaire data QD includes answer information corresponding to each of a plurality of questionnaire items included in the questionnaire. The answer information may be represented by characters and symbols, but the first questionnaire data of this example includes evaluation values corresponding to a plurality of questionnaire items included in the questionnaire as the answer information. Note that the first questionnaire data QD may include information related to the period of time required for pregnant persons to become pregnant.
 アンケートに含まれる複数のアンケート項目は、身体情報QD1と、運動カテゴリQD2と、食事カテゴリQD3と、夫婦カテゴリQD4と、ストレスカテゴリQD5と、生活カテゴリQD6と、に分類される。第1アンケートデータQDは、身体情報QD1について3つの評価値を含み、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6について、それぞれ20の評価値を含む。なお、本例の第1アンケートデータQDに含まれる身体情報QD1、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6は例示であり、第1アンケートデータQDはこれら以外の項目を含んでもよいし、これらのうち幾つかを含まなくてもよい。第1アンケートデータQDに含まれる複数のアンケート項目は、任意に設定することができる。 A plurality of questionnaire items included in the questionnaire are classified into physical information QD1, exercise category QD2, meal category QD3, couple category QD4, stress category QD5, and life category QD6. The first questionnaire data QD includes three evaluation values for the physical information QD1, and includes 20 evaluation values for the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6. The physical information QD1, the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 included in the first questionnaire data QD of this example are examples, and the first questionnaire data QD is other than these. Items may be included, or some of these may not be included. A plurality of questionnaire items included in the first questionnaire data QD can be arbitrarily set.
 身体情報QD1は、身長、体重及び年齢についての評価値を含み、本例の場合、身長が「T[cm]」であり、体重が「W[kg]」であり、年齢が「A」(A歳)である。身体情報QD1は、妊娠経験者に関する客観的な情報である。なお、本例における体重及び年齢は、妊娠した時点の値であるが、妊娠した時点の値が不確かである場合には、妊娠経験者が推測した値を用いることもでききる。また、本例の第1アンケートデータQDでは、身体情報QD1に3つの項目が含まれる場合を示したが、身体情報QD1には任意の数の項目が含まれてよい。 The physical information QD1 includes evaluation values for height, weight, and age. In this example, the height is “T [cm]”, the weight is “W [kg]”, and the age is “A” ( A year old). The body information QD1 is objective information regarding a person who has experienced pregnancy. Note that the weight and age in this example are values at the time of pregnancy, but if the values at the time of pregnancy are uncertain, values estimated by a pregnant person can also be used. In the first questionnaire data QD of this example, the case where three items are included in the physical information QD1 is shown, but any number of items may be included in the physical information QD1.
 運動カテゴリQD2は、第1項目から第20項目の評価値を含み、本例の場合、第1項目の評価値が「a1」であり、第20項目の評価値が「a20」である。なお、第2項目から第19項目の評価値については図示を省略している。食事カテゴリQD3は、第21項目から第40項目の評価値を含み、本例の場合、第21項目の評価値が「a21」であり、第40項目の評価値が「a40」である。夫婦カテゴリQD4は、第41項目から第60項目の評価値を含み、本例の場合、第41項目の評価値が「a41」であり、第60項目の評価値が「a60」である。ストレスカテゴリQD5は、第61項目から第80項目の評価値を含み、本例の場合、第61項目の評価値が「a61」であり、第80項目の評価値が「a80」である。生活カテゴリQD6は、第81項目から第100項目の評価値を含み、本例の場合、第81項目の評価値が「a81」であり、第100項目の評価値が「a100」である。なお、本例の第1アンケートデータQDでは、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6の各カテゴリにそれぞれ20の項目が含まれる場合を示したが、各カテゴリには任意の数の項目が含まれてよいし、カテゴリ毎に含まれる項目数が異なっていてもよい。 The exercise category QD2 includes evaluation values of the first item to the twentieth item. In this example, the evaluation value of the first item is “a1” and the evaluation value of the twentieth item is “a20”. Note that the evaluation values of the second item to the nineteenth item are not shown. The meal category QD3 includes evaluation values of the 21st item to the 40th item. In this example, the evaluation value of the 21st item is “a21”, and the evaluation value of the 40th item is “a40”. The couple category QD4 includes evaluation values of the 41st item to the 60th item. In this example, the evaluation value of the 41st item is “a41”, and the evaluation value of the 60th item is “a60”. The stress category QD5 includes evaluation values of the 61st item to the 80th item. In this example, the evaluation value of the 61st item is “a61”, and the evaluation value of the 80th item is “a80”. The life category QD6 includes evaluation values of the 81st item to the 100th item. In this example, the evaluation value of the 81st item is “a81”, and the evaluation value of the 100th item is “a100”. In the first questionnaire data QD of this example, 20 categories are shown in each category of exercise category QD2, meal category QD3, couple category QD4, stress category QD5 and life category QD6. An arbitrary number of items may be included, and the number of items included in each category may be different.
 本例では、評価値a1からa100は、それぞれ1から5のうちいずれかの整数である。すなわち、これらの評価値は、アンケートに含まれる第n項目の質問に対して、妊娠経験者が自分自身の習慣や考え方を5段階評価した値である。例えば、第n項目の質問に対して、全くその通りであると思う場合には「5」の評価値を与え、その通りであると思う場合には「4」の評価値を与え、どちらでもない場合には「3」の評価値を与え、そうではないと思う場合には「2」の評価値を与え、全くそうではないと思う場合には「1」の評価値を与えることとしてよい。なお、評価値の与え方は任意であり、「1」を全くその通りであると思う場合に割り当て、「5」を全くそうではないと思う場合に割り当ててもよいし、1から5以外の整数を用いてもよいし、0から1の実数を用いてもよい。 In this example, the evaluation values a1 to a100 are any integers from 1 to 5, respectively. That is, these evaluation values are values obtained by evaluating the habit and way of thinking of a person who has been pregnant for five levels with respect to the n-th question included in the questionnaire. For example, for a question of the nth item, an evaluation value of “5” is given if it is exactly the same, and an evaluation value of “4” is given if it is considered to be the same. If there is not, an evaluation value of “3” is given. If not, an evaluation value of “2” is given. If not, an evaluation value of “1” is given. . The method of giving the evaluation value is arbitrary, and may be assigned when “1” is considered to be exactly as it is, and may be assigned when “5” is not considered at all. An integer may be used, or a real number from 0 to 1 may be used.
 図4は、本発明の実施形態に係る妊娠期間予測装置10により実行される特徴ベクトル算出処理を示すフローチャートである。はじめに、特徴ベクトル算出部11は、第1アンケートデータデータベースDBより、第1アンケートデータQDを取得する(S10)。そして、身体情報QD1に含まれる評価値について、それぞれ平均と分散を算出する(S11)。第1アンケートデータデータベースDBにN人の妊娠経験者の第1アンケートデータQDが格納されている場合、身長の平均は、N人の身長の総和をNで割った値であり、身長の分散は、各人の身長と身長の平均との差の2乗を全員について総和し、Nで割った値である。なお、身長の分散として、各人の身長と身長の平均との差の2乗を全員について総和し、N-1で割った値(不偏分散)を用いてもよい。体重及び年齢についても、身長の場合と同様に平均と分散を算出する。 FIG. 4 is a flowchart showing a feature vector calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. First, the feature vector calculation unit 11 acquires first questionnaire data QD from the first questionnaire data database DB (S10). And an average and dispersion | distribution are each calculated about the evaluation value contained in the physical information QD1 (S11). When the first questionnaire data QD of N pregnant women is stored in the first questionnaire data database DB, the average height is a value obtained by dividing the total height of N people by N, and the variance of the height is The square of the difference between the height of each person and the average height is summed for all and divided by N. It should be noted that as the variance of the height, a value (unbiased variance) obtained by summing up the square of the difference between the height of each person and the average height for all members and dividing by N−1 may be used. For weight and age, the average and variance are calculated as in the case of height.
 特徴ベクトル算出部11は、各人の評価値から平均を引き、分散の平方根で割ることで、身体情報Q1の評価値を正規化し、身長、体重及び年齢に関する要素を有する3次元ベクトルw1を妊娠経験者毎に算出する(S12)。例えば、身長の平均がμheight[cm]、身長の分散がσ height[cm]である場合、ある妊娠経験者の身長がT[cm]の場合、正規化された身長の評価値は(T-μheight)/σheightという無次元量である。同様に、体重の平均がμweight[kg]、体重の分散がσ weight[kg]である場合、ある妊娠経験者の体重がW[kg]の場合、正規化された体重の評価値は(W-μweight)/σweightという無次元量である。また、年齢の平均がμage、年齢の分散がσ ageである場合、ある妊娠経験者の年齢がAの場合、正規化された年齢の評価値は(A-μage)/σageである。すなわち、身長T[cm]、体重W[kg]及び年齢Aである妊娠経験者に関する3次元ベクトルw1は、w1=((T-μheight)/σheight,(W-μweight)/σweight,(A-μage)/σage)である。 The feature vector calculation unit 11 normalizes the evaluation value of the body information Q1 by subtracting the average from the evaluation value of each person and dividing by the square root of the variance, and obtains a three-dimensional vector w1 having elements relating to height, weight, and age. It calculates for every experienced person (S12). For example, if the average height is μ height [cm], the variance of height is σ 2 height [cm 2 ], and the height of a certain pregnant person is T [cm], the normalized height evaluation value is It is a dimensionless quantity of (T−μ height ) / σ height . Similarly, when the weight average is μ weight [kg], the weight variance is σ 2 weight [kg 2 ], and the weight of a certain pregnant woman is W [kg], the normalized weight evaluation value Is a dimensionless quantity of (W−μ weight ) / σ weight . In addition, when the average of age is μ age and the variance of age is σ 2 age , when the age of a certain pregnant person is A, the normalized evaluation value of age is (A−μ age ) / σ age is there. That is, the three-dimensional vector w1 relating to a pregnant person having a height T [cm], a weight W [kg], and an age A is w1 = ((T−μ height ) / σ height , (W−μ weight ) / σ weight , (A−μ age ) / σ age ).
 特徴ベクトル算出部11は、第1アンケートデータに含まれるカテゴリ毎に、評価値の総和の平均と分散を算出する(S13)。例えば、運動カテゴリQD2に含まれる第1項目の評価値a1から第20項目の評価値a20を足した値(a1+a2+…+a19+a20)をαcategory1と表す場合、平均μcategory1は、妊娠経験者N人のαcategory1の総和をNで割った値であり、分散σ category1は、各人のαcategory1と平均μcategory1との差の2乗を全員について総和し、Nで割った値である。なお、分散σ category1として、各人のαcategory1と平均μcategory1との差の2乗を全員について総和し、N-1で割った値(不偏分散)を用いてもよい。食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6についても、運動カテゴリQD2と同様に平均と分散を算出する。 The feature vector calculation unit 11 calculates the average and variance of the sum of the evaluation values for each category included in the first questionnaire data (S13). For example, when the value (a1 + a2 +... + A19 + a20) obtained by adding the evaluation value a20 of the first item to the evaluation value a20 of the twentieth item included in the exercise category QD2 is expressed as α category1 , the average μ category1 is the value of N pregnant women The total of α category1 is divided by N, and the variance σ 2 category1 is a value obtained by summing the square of the difference between α category1 of each person and the average μ category1 and dividing by N. As the variance σ 2 category 1, a value (unbiased variance) obtained by summing the squares of the differences between the α category 1 of each person and the average μ category 1 for all and dividing by N−1 may be used. For the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6, the average and variance are calculated in the same manner as the exercise category QD2.
 特徴ベクトル算出部11は、各人の評価値から平均を引き、分散の平方根で割ることで、各カテゴリの評価値を正規化し、各カテゴリに関する要素を有する5次元ベクトルw2を妊娠経験者毎に算出する(S14)。例えば、ある妊娠経験者について、運動カテゴリQD2に含まれる第1項目の評価値a1から第20項目の評価値a20を足した値がαcategory1、N人の平均がμcategory1、その分散がσ category1である場合、正規化された評価値は(αcategory1-μcategory1)/σcategory1である。同様に、ある妊娠経験者について、食事カテゴリQD3に含まれる第21項目の評価値a21から第40項目の評価値a40を足した値がαcategory2、N人の平均がμcategory2、その分散がσ category2である場合、正規化された評価値は(αcategory1-μcategory1)/σcategory1である。同様に、ある妊娠経験者について、夫婦カテゴリQD4に含まれる第41項目の評価値a41から第60項目の評価値a60を足した値がαcategory3、N人の平均がμcategory3、その分散がσ category3である場合、正規化された評価値は(αcategory3-μcategory3)/σcategory3である。同様に、ある妊娠経験者について、ストレスカテゴリQD5に含まれる第61項目の評価値a61から第80項目の評価値a80を足した値がαcategory4、N人の平均がμcategory4、その分散がσ category4である場合、正規化された評価値は(αcategory4-μcategory4)/σcategory4である。同様に、ある妊娠経験者について、生活カテゴリQD6に含まれる第81項目の評価値a81から第100項目の評価値a100を足した値がαcategory5、N人の平均がμcategory5、その分散がσ category5である場合、正規化された評価値は(αcategory5-μcategory5)/σcategory5である。そして、ある妊娠経験者に関する5次元ベクトルw2は、w2=((αcategory1-μcategory1)/σcategory1,(αcategory2-μcategory2)/σcategory2,(αcategory3-μcategory3)/σcategory3,(αcategory4-μcategory4)/σcategory4,(αcategory5-μcategory5)/σcategory5)である。 The feature vector calculation unit 11 normalizes the evaluation value of each category by subtracting the average from the evaluation value of each person and dividing by the square root of the variance, and obtains a five-dimensional vector w2 having elements relating to each category for each person who has experienced pregnancy. Calculate (S14). For example, for a certain pregnancy experienced person, the value obtained by adding the evaluation value a20 of the first item to the evaluation value a20 of the twentieth item included in the exercise category QD2 is α category1 , the average of N people is μ category1 , and the variance is σ 2. In the case of category1 , the normalized evaluation value is (α category1 −μ category1 ) / σ category1 . Similarly, for a certain pregnant person, the value obtained by adding the evaluation value a40 of the 21st item to the evaluation value a40 of the 40th item included in the meal category QD3 is α category2 , the average of N people is μ category2 , and the variance is σ In the case of 2 category 2 , the normalized evaluation value is (α category 1 −μ category 1 ) / σ category 1 . Similarly, for a certain pregnant person, the value obtained by adding the evaluation value a60 of the 41st item to the evaluation value a60 of the 60th item included in the marital category QD4 is α category3 , the average of N people is μ category3 , and the variance is σ In the case of 2 category3 , the normalized evaluation value is (α category3 −μ category3 ) / σ category3 . Similarly, for a certain pregnant person, the value obtained by adding the evaluation value a61 of the 61st item to the evaluation value a80 of the 80th item included in the stress category QD5 is α category4 , the average of N people is μ category4 , and the variance is σ In the case of 2 category 4 , the normalized evaluation value is (α category 4 −μ category 4 ) / σ category 4 . Similarly, the value obtained by adding the evaluation value a100 of the 81st item to the evaluation value a100 of the 100th item included in the life category QD6 is α category5 , the average of N people is μ category5 , and the variance is σ. In the case of 2 category5 , the normalized evaluation value is (α category5 −μ category5 ) / σ category5 . Then, 5-dimensional vector w2 related pregnancies experienced person, w2 = ((α category1 -μ category1) / σ category1, (α category2 -μ category2) / σ category2, (α category3 -μ category3) / σ category3, ( α category4 −μ category4 ) / σ category4 , (α category5 −μ category5 ) / σ category5 ).
 特徴ベクトル算出部11は、妊娠経験者毎に算出した3次元ベクトルw1と5次元ベクトルw2を合成して、8次元の特徴ベクトルvを妊娠経験者毎に算出する(S15)。具体的には、3次元ベクトルw1と5次元ベクトルw2の直和により8次元の特徴ベクトルvを算出する。ある妊娠経験者について算出された身体情報QD1に関する3次元ベクトルがw1=((T-μheight)/σheight,(W-μweight)/σweight,(A-μage)/σage)であり、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6について算出された5次元ベクトルがw2=((αcategory1-μcategory1)/σcategory1,(αcategory2-μcategory2)/σcategory2,(αcategory3-μcategory3)/σcategory3,(αcategory4-μcategory4)/σcategory4,(αcategory5-μcategory5)/σcategory5)である場合、特徴ベクトルvは、v=((T-μheight)/σheight,(W-μweight)/σweight,(A-μage)/σage,(αcategory1-μcategory1)/σcategory1,(αcategory2-μcategory2)/σcategory2,(αcategory3-μcategory3)/σcategory3,(αcategory4-μcategory4)/σcategory4,(αcategory5-μcategory5)/σcategory5)である。 The feature vector calculation unit 11 combines the three-dimensional vector w1 and the five-dimensional vector w2 calculated for each pregnancy experienced person, and calculates the eight-dimensional feature vector v for each pregnancy experienced person (S15). Specifically, an eight-dimensional feature vector v is calculated by the direct sum of the three-dimensional vector w1 and the five-dimensional vector w2. The three-dimensional vector related to the physical information QD1 calculated for a certain pregnant person is w1 = ((T−μ height ) / σ height , (W−μ weight ) / σ weight , (A−μ age ) / σ age ) Yes, the five-dimensional vectors calculated for the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5 and the life category QD6 are w2 = ((α category1 −μ category1 ) / σ category1 , (α category2 −μ category2 ) / σ category2, (α category3 -μ category3) / σ category3, (α category4 -μ category4) / σ category4, (α category5 -μ cate gory5 ) / σ category5 ), the feature vector v is v = ((T−μ height ) / σ height , (W−μ weight ) / σ weight , (A−μ age ) / σ age , (α category1 -μ category1) / σ category1, (α category2 -μ category2) / σ category2, (α category3 -μ category3) / σ category3, (α category4 -μ category4) / σ category4, (α category5 -μ category5) / σ category5 ).
 なお、以上の説明において、特徴ベクトル算出部11は、妊娠経験者全体について評価値の平均や分散を算出し、特徴ベクトルvを算出したが、特徴ベクトル算出部11は、妊娠経験者を複数のグループに分類して、グループ毎に評価値の平均や分散を算出し、グループ毎に特徴ベクトルvを算出してもよい。例えば、特徴ベクトル算出部11は、妊娠経験者を、妊娠するまでに要した期間がMヶ月以下の第1グループと、妊娠するまでに要した期間がMヶ月より長い第2グループとに分類して、それぞれ特徴ベクトルvを算出してもよい。 In the above description, the feature vector calculation unit 11 calculates the average and variance of the evaluation values for all the pregnant persons and calculates the feature vector v. The feature vector calculation unit 11 includes a plurality of pregnancy persons. Classification may be made into groups, and the average or variance of evaluation values may be calculated for each group, and the feature vector v may be calculated for each group. For example, the feature vector calculation unit 11 classifies those who have experienced pregnancy into a first group whose period required to become pregnant is M months or less and a second group whose period required to become pregnant is longer than M months. Thus, the feature vector v may be calculated respectively.
 図5は、本発明の実施形態に係る妊娠期間予測装置10により実行されるユーザ特徴ベクトル算出処理を示すフローチャートである。はじめに、第2アンケートデータ取得部12は、ユーザ端末装置20より、第2アンケートデータを取得する(S20)。第2アンケートデータの取得は、ユーザが、ユーザ端末装置20を用いて、身体情報QD1に含まれる身長、体重及び年齢に関する評価値と、運動カテゴリQD2に含まれる第1項目から第20項目の5段階の評価値と、食事カテゴリQD3に含まれる第21項目から第40項目の5段階の評価値と、夫婦カテゴリQD4に含まれる第41項目から第60項目の5段階の評価値と、ストレスカテゴリQD5に含まれる第61項目から第80項目の5段階の評価値と、生活カテゴリQD6に含まれる第81項目から第100項目の5段階の評価値と、を含む。 FIG. 5 is a flowchart showing a user feature vector calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. First, the second questionnaire data acquisition unit 12 acquires second questionnaire data from the user terminal device 20 (S20). The second questionnaire data is acquired by the user using the user terminal device 20 from the evaluation values related to the height, weight and age included in the physical information QD1, and from the first item to the 20th item included in the exercise category QD2. Evaluation values of stages, evaluation values of 5 stages from 21st item to 40th item included in meal category QD3, evaluation values of 5 stages of 41st item to 60th item included in couple category QD4, and stress category 5 levels of evaluation values from 61st item to 80th item included in QD5 and 5 levels of evaluation values from 81st item to 100th item included in life category QD6 are included.
 ユーザ特徴ベクトル算出部13は、第1アンケートデータの身体情報QD1に含まれる身長の平均μheight及び分散σ heightと、体重の平均μheight及び分散σ weightと、年齢の平均μage及び分散σ ageと、を参照する(S21)。ユーザ特徴ベクトル算出部13は、ユーザの評価値から参照した平均を引き、参照した分散の平方根で割ることで、身体情報Q1の評価値を正規化し、身長、体重及び年齢に関する要素を有する3次元ベクトルq1を算出する(S22)。ユーザの身長がTuser、体重がWuser、年齢がAuserである場合、3次元ベクトルq1は、q1=((Tuser-μheight)/σheight,(Wuser-μweight)/σweight,(Auser-μage)/σage)である。 The user feature vector calculator 13 calculates the average height and variance σ 2 height of the height included in the body information QD1 of the first questionnaire data, the average µ height and variance σ 2 weight of the weight , the average age μ age and variance of the age Reference is made to σ 2 age (S21). The user feature vector calculation unit 13 normalizes the evaluation value of the physical information Q1 by subtracting the reference average from the user evaluation value and dividing by the square root of the reference variance, and has a three-dimensional element having elements related to height, weight, and age Vector q1 is calculated (S22). When the height of the user is T user , the weight is W user , and the age is A user , the three-dimensional vector q1 is q1 = ((T user −μ height ) / σ height , (W user −μ weight ) / σ weight , (A user −μ age ) / σ age ).
 次に、ユーザ特徴ベクトル算出部13は、第1アンケートデータの運動カテゴリQD2に含まれる評価値の総和の平均μcategory1及び分散σ category1と、食事カテゴリQD3に含まれる評価値の総和の平均μcategory2及び分散σ category2と、夫婦カテゴリQD4に含まれる評価値の総和の平均μcategory3及び分散σ category3と、ストレスカテゴリQD5に含まれる評価値の総和の平均μcategory4及び分散σ category4と、生活カテゴリQD6に含まれる評価値の総和の平均μcategory5及び分散σ category5と、を参照する(S23)。ユーザ特徴ベクトル算出部13は、ユーザの評価値から参照した平均を引き、参照した分散の平方根で割ることで、各カテゴリの評価値を正規化し、各カテゴリに関する要素を有する5次元ベクトルq2を算出する(S24)。ユーザの運動カテゴリQD2の評価値の総和がαcategory1 userであり、食事カテゴリQD3の評価値の総和がαcategory2 userであり、夫婦カテゴリQD4の評価値の総和がαcategory3 userであり、ストレスカテゴリQD5の評価値の総和がαcategory4 userであり、生活カテゴリQD6の評価値の総和がαcategory6 userである場合、5次元ベクトルq2は、q2=((αcategory1 user-μcategory1)/σcategory1,(αcategory2 user-μcategory2)/σcategory2,(αcategory3 user-μcategory3)/σcategory3,(αcategory4 user-μcategory4)/σcategory4,(αcategory5 user-μcategory5)/σcategory5)である。 Next, the user feature vector calculator 13 calculates the average μ category1 and variance σ 2 category1 of the total evaluation values included in the exercise category QD2 of the first questionnaire data, and the average μ of the total evaluation values included in the meal category QD3. and Category2 and variance sigma 2 Category2, the mean mu Category3 and variance sigma 2 Category3 of the sum of evaluation values included in the couple category QD4, the mean mu Category4 and variance sigma 2 Category4 of the sum of evaluation values included in the stress category QD5, Reference is made to the average μ category5 and the variance σ 2 category5 of the sum of evaluation values included in the life category QD6 (S23). The user feature vector calculation unit 13 normalizes the evaluation value of each category by subtracting the reference average from the evaluation value of the user and dividing by the square root of the reference variance, and calculates a five-dimensional vector q2 having elements relating to each category. (S24). The sum of the evaluation value of the user of the motion category QD2 is the α category1 user, a sum α category2 user of the evaluation value of the meal category QD3, the sum of the evaluation value of the couple category QD4 is α category3 user, stress category QD5 The sum of the evaluation values of α category4 user and the sum of the evaluation values of life category QD6 is α category6 user , the five-dimensional vector q2 is q2 = ((α category1 user −μ category1 ) / σ category1 , ( α category2 user -μ category2) / σ category2, (α category3 user -μ category3) / σ category3, (α category4 u er -μ category4) / σ category4, a (α category5 user -μ category5) / σ category5).
 ユーザ特徴ベクトル算出部13は、ユーザについて算出した3次元ベクトルq1と5次元ベクトルq2を合成して、8次元のユーザ特徴ベクトルqを算出する(S25)。具体的には、3次元ベクトルq1と5次元ベクトルq2の直和により8次元のユーザ特徴ベクトルqを算出する。ユーザ特徴ベクトルqは、q=((Tuser-μheight)/σheight,(Wuser-μweight)/σweight,(Auser-μage)/σage,(αcategory1 user-μcategory1)/σcategory1,(αcategory2 user-μcategory2)/σcategory2,(αcategory3 user-μcategory3)/σcategory3,(αcategory4 user-μcategory4)/σcategory4,(αcategory5 user-μcategory5)/σcategory5)である。 The user feature vector calculator 13 combines the three-dimensional vector q1 and the five-dimensional vector q2 calculated for the user to calculate an eight-dimensional user feature vector q (S25). Specifically, an 8-dimensional user feature vector q is calculated from the direct sum of the 3-dimensional vector q1 and the 5-dimensional vector q2. The user feature vector q is q = ((T user −μ height ) / σ height , (W user −μ weight ) / σ weight , (A user −μ age ) / σ age , (α category1 user −μ cate ) 1 / σ category1, (α category2 user -μ category2) / σ category2, (α category3 user -μ category3) / σ category3, (α category4 user -μ category4) / σ category4, (α category5 user -μ category5) / σ category5 ).
 複数の妊娠経験者に対応する特徴ベクトルvそれぞれの次元及びユーザに対応するユーザ特徴ベクトルの次元は、それぞれアンケートに含まれる複数のアンケート項目の項目数より小さい。本例の場合、特徴ベクトルv及びユーザ特徴ベクトルqの次元は、それぞれ8であり、アンケートに含まれる複数のアンケート項目の項目数103より小さい。運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6は、それぞれ20のアンケート項目を含むが、特徴ベクトルv及びユーザ特徴ベクトルqは、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6に対応する要素を1つずつ有する。このように、同一カテゴリに含まれる複数の評価値について代表値(本例の場合、合計値)を採用することで、アンケートにおける回答のぶれの影響を少なくすることができ、個人的事情をより良く捉えることができる。 The dimension of each feature vector v corresponding to a plurality of pregnant persons and the dimension of a user feature vector corresponding to a user are smaller than the number of items of a plurality of questionnaire items included in each questionnaire. In the case of this example, the dimension of the feature vector v and the user feature vector q is 8 respectively, which is smaller than the number 103 of items of a plurality of questionnaire items included in the questionnaire. The exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 each include 20 questionnaire items. The feature vector v and the user feature vector q are the exercise category QD2, the meal category QD3, and the couple category. It has one element each corresponding to QD4, stress category QD5, and life category QD6. In this way, by adopting representative values (total values in this example) for multiple evaluation values included in the same category, it is possible to reduce the impact of response blurring in the questionnaire, and to improve personal circumstances. I can catch it well.
 複数の妊娠経験者に対応する特徴ベクトルvは、複数の妊娠経験者の客観情報に関する1又は複数の要素と、複数の妊娠経験者の主観情報に関する1又は複数の要素とをそれぞれ含む。また、ユーザ特徴ベクトルqは、ユーザの客観情報に関する1又は複数の要素と、ユーザの主観情報に関する1又は複数の要素とを含む。本例の場合、特徴ベクトルv及びユーザ特徴ベクトルqは、客観情報に関する1又は複数の要素として、身体情報QD1に対応する3次元ベクトルw1又はq1の3つの要素を含む。また、特徴ベクトルv及びユーザ特徴ベクトルqは、主観情報に関する1又は複数の要素として、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6に対応する5次元ベクトルw2又はq2の5つの要素を含む。これにより、妊娠経験者及びユーザの特徴を、客観的な観点と主観的な観点の両方から捉えることができ、個人的事情をより良く捉えることができる。なお、本明細書において例示した特徴ベクトルvは、3次元ベクトルw1と5次元ベクトルw2を合成した8次元ベクトルvであったが、特徴ベクトルvの次元は8に限られないし、身体情報QD1に関するベクトルw1の次元は、身体情報QD1に含まれる項目数に応じて増減してもよいし、各カテゴリに関するベクトルw2の次元は、カテゴリ数に応じて増減してもよい。同様に、本明細書において例示したユーザ特徴ベクトルqは、3次元ベクトルq1と5次元ベクトルq2を合成した8次元ベクトルqであったが、ユーザ特徴ベクトルqの次元は8に限られないし、身体情報QD1に関するベクトルq1の次元は、身体情報QD1に含まれる項目数に応じて増減してもよいし、各カテゴリに関するベクトルq2の次元は、カテゴリ数に応じて増減してもよい。 The feature vector v corresponding to a plurality of pregnancy experienced persons includes one or more elements related to objective information of a plurality of pregnancy experienced persons and one or more elements related to subjective information of the plurality of pregnant experience persons. The user feature vector q includes one or more elements related to the objective information of the user and one or more elements related to the subjective information of the user. In the case of this example, the feature vector v and the user feature vector q include three elements of the three-dimensional vector w1 or q1 corresponding to the body information QD1 as one or a plurality of elements related to objective information. The feature vector v and the user feature vector q are five-dimensional vectors w2 or q2 corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 as one or more elements related to subjective information. The five elements are included. Thereby, the characteristics of pregnant persons and users can be grasped from both an objective viewpoint and a subjective viewpoint, and personal circumstances can be better understood. Note that the feature vector v exemplified in this specification is an 8-dimensional vector v obtained by synthesizing the 3-dimensional vector w1 and the 5-dimensional vector w2. However, the dimension of the feature vector v is not limited to 8, and the physical information QD1 is related to it. The dimension of the vector w1 may be increased or decreased according to the number of items included in the physical information QD1, and the dimension of the vector w2 regarding each category may be increased or decreased according to the number of categories. Similarly, the user feature vector q exemplified in the present specification is an eight-dimensional vector q obtained by combining the three-dimensional vector q1 and the five-dimensional vector q2. However, the dimension of the user feature vector q is not limited to eight, The dimension of the vector q1 related to the information QD1 may be increased or decreased according to the number of items included in the physical information QD1, and the dimension of the vector q2 related to each category may be increased or decreased according to the number of categories.
 なお、妊娠経験者を複数のグループに分類して、グループ毎に評価値の平均や分散を算出し、グループ毎に特徴ベクトルvを算出した場合、ユーザ特徴ベクトル算出部13は、妊娠経験者のグループ毎にユーザ特徴ベクトルqを算出してもよい。例えば、ユーザ特徴ベクトル算出部13は、妊娠するまでに要した期間がMヶ月以下の第1グループの評価値の平均及び分散を用いて第1ユーザ特徴ベクトルを算出し、妊娠するまでに要した期間がMヶ月より長い第2グループの評価値の平均及び分散を用いて第2ユーザ特徴ベクトルを算出してもよい。これにより、ユーザが第1グループに属する場合の妊娠期間の予測値と、ユーザが第2グループに属する場合の予測値とが得られ、ユーザは、複数のシナリオを比較して妊活計画を立てることができる。 In addition, when the pregnancy pregnant persons are classified into a plurality of groups, the average or variance of evaluation values is calculated for each group, and the feature vector v is calculated for each group, the user feature vector calculation unit 13 The user feature vector q may be calculated for each group. For example, the user feature vector calculation unit 13 calculates the first user feature vector using the average and variance of the evaluation values of the first group whose period required to become pregnant is M months or less, and was required before becoming pregnant. The second user feature vector may be calculated using the average and variance of evaluation values of the second group whose period is longer than M months. Thereby, the predicted value of the pregnancy period when the user belongs to the first group and the predicted value when the user belongs to the second group are obtained, and the user makes a pregnancy plan by comparing a plurality of scenarios. be able to.
 図6は、本発明の実施形態に係る妊娠期間予測装置10により実行される類似ベクトル抽出処理を示すフローチャートである。抽出部14は、ユーザ特徴ベクトルqと、ある妊娠経験者に対応する特徴ベクトルvとの差ベクトルq-vを算出する(S30)。そして、差ベクトルのノルム||q-v||を算出する(S31)。記号「||・||」は、ベクトルのノルムを表す。ここで、ベクトルのノルムは、Lノルム、すなわちベクトルの各要素の2乗和の平方根で定義してよいが、Lノルム(p≧0)を用いてもよいし、要素毎に異なる重み付けを与えるノルムを用いてもよい。 FIG. 6 is a flowchart showing similar vector extraction processing executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. The extraction unit 14 calculates a difference vector q−v between the user feature vector q and the feature vector v corresponding to a certain pregnancy experienced person (S30). Then, the norm || q−v || of the difference vector is calculated (S31). The symbol “||. ||” represents the norm of the vector. Here, the norm of the vector may be defined by the L 2 norm, that is, the square root of the sum of squares of each element of the vector, but the L p norm (p ≧ 0) may be used, and a different weight for each element. A norm that gives may be used.
 抽出部14は、ユーザ特徴ベクトルqに対して、全ての妊娠経験者に対応する特徴ベクトルvとの差ベクトルのノルム||q-v||を算出し、ノルムの値が小さい順にK本のベクトルを類似ベクトルv1、v2、…vKとして抽出する(S32)。ここで、Kの値は1以上の整数であり、任意であるが、後に詳細に説明する妊娠するまでの期間の予測値の予測精度が高まるように定めてもよい。例えば、N人の妊娠経験者に関するN本の特徴ベクトルが得られている場合、抽出部14は、ユーザ特徴ベクトルqとの差ベクトルのノルムが小さい上位20~40%の特徴ベクトルを類似ベクトルとして抽出してもよい。その場合、類似ベクトルの数Kは、K=0.2N~0.4Nである。このように、ベクトルのノルムによって類似ベクトルを抽出することで、比較的負荷の軽い演算処理で、ユーザと個人的状況が類似する妊娠経験者を抽出することができる。 The extraction unit 14 calculates the norm || q−v || of the difference vector from the feature vector v corresponding to all pregnant persons with respect to the user feature vector q, and the K values in ascending order of the norm value. The vectors are extracted as similar vectors v1, v2,... VK (S32). Here, the value of K is an integer of 1 or more and is arbitrary, but may be determined so that the prediction accuracy of the predicted value of the period until pregnancy, which will be described in detail later, is increased. For example, when N feature vectors related to N pregnant women are obtained, the extraction unit 14 uses the top 20 to 40% feature vectors having a small norm of the difference vector from the user feature vector q as similar vectors. It may be extracted. In this case, the number K of similar vectors is K = 0.2N to 0.4N. As described above, by extracting a similar vector based on a vector norm, it is possible to extract a pregnancy experienced person whose personal situation is similar to that of the user by a relatively light-weight calculation process.
 なお、抽出部14により抽出される類似ベクトルを用いて、ユーザの属するグループを推定することもできる。例えば、特徴ベクトルvを妊娠経験者全体の評価値の平均及び分散に基づいて算出し、妊娠経験者を、妊娠するまでに要した期間がMヶ月以下の第1グループと、妊娠するまでに要した期間がMヶ月より長い第2グループとに分類する。そして、ユーザ特徴ベクトルqを、妊娠経験者全体の評価値の平均及び分散に基づいて算出し、第1グループに属する特徴ベクトルvとユーザ特徴ベクトルqの類似度と、第2グループに属する特徴ベクトルvとユーザ特徴ベクトルqの類似度とを比較して、最も類似度が高いグループをユーザの属するグループとして推定することができる。ここで、類似度の比較は、例えば、ユーザ特徴ベクトルqと特徴ベクトルvとの差ベクトルのノルムをそれぞれ算出して、第1グループに関するノルムの平均値と、第2グループに関するノルムの平均値とを比較することによって行うことができ、ノルムの平均値が小さいグループをユーザの属するグループとして推定することができる。また、例えば、妊娠経験者を、自然妊娠に至った第1グループと、自然妊娠に至らなかったが人工授精又は体外授精によって妊娠に至った第2グループとに分類して、ユーザがどちらのグループに属するか推定することもできる。当然ながら、妊娠経験者を3以上のグループに分類した場合であっても、同様の方法でユーザの属するグループを推定することができる。 Note that the group to which the user belongs can also be estimated using the similar vector extracted by the extraction unit 14. For example, the feature vector v is calculated on the basis of the average and variance of the evaluation values of all pregnant persons, and the pregnant person is required to become pregnant with the first group whose period required to become pregnant is M months or less. The second period is longer than M months. Then, the user feature vector q is calculated based on the average and variance of the evaluation values of the whole pregnancy experienced person, the similarity between the feature vector v belonging to the first group and the user feature vector q, and the feature vector belonging to the second group By comparing v and the similarity of the user feature vector q, the group having the highest similarity can be estimated as the group to which the user belongs. Here, the comparison of the degrees of similarity, for example, by calculating the norm of the difference vector between the user feature vector q and the feature vector v, respectively, and the average value of the norm related to the first group and the average value of the norm related to the second group And a group having a small norm average value can be estimated as a group to which the user belongs. In addition, for example, a person who has experienced pregnancy is classified into a first group that has reached natural pregnancy and a second group that has not reached natural pregnancy but has become pregnant by artificial or in vitro insemination, and the user selects either group. Can also be estimated. Naturally, even when pregnant women are classified into three or more groups, the group to which the user belongs can be estimated by the same method.
 図7は、本発明の実施形態に係る妊娠期間予測装置10により実行される累積分布関数算出処理を示すフローチャートである。予測部15は、類似ベクトルv1、v2、…vKに対応するK人の妊娠経験者が妊娠するまでに要した期間を取得する(S40)。本実施形態に係る予測部15は、第1アンケートデータデータベースDBから妊娠経験者が妊娠するまでに要した期間を取得する。 FIG. 7 is a flowchart showing a cumulative distribution function calculation process executed by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. The prediction unit 15 acquires a period required until K pregnant women corresponding to the similar vectors v1, v2,... VK become pregnant (S40). The prediction unit 15 according to the present embodiment acquires a period required until the pregnant person becomes pregnant from the first questionnaire data database DB.
 予測部15は、類似ベクトルに対応するK人の妊娠経験者が妊娠するまでに要した期間のヒストグラムを生成し、カーネル密度推定によって、当該ヒストグラムから妊娠期間の確率分布を算出する(S41)。ここで、カーネル密度推定に用いるカーネル関数は、正規分布であってよいが、その他の関数を採用してもよい。また、カーネル密度推定に用いるバンド幅は、数ヶ月に相当する幅であってよい。なお、予測部15は、カーネル密度推定以外の方法によって、K人の妊娠経験者が妊娠するまでに要した期間から妊娠期間の確率分布を算出してもよい。 The prediction unit 15 generates a histogram of the period required for the K pregnant persons corresponding to the similar vector to become pregnant, and calculates the probability distribution of the pregnancy period from the histogram by kernel density estimation (S41). Here, the kernel function used for kernel density estimation may be a normal distribution, but other functions may be adopted. The bandwidth used for kernel density estimation may be a width corresponding to several months. Note that the prediction unit 15 may calculate the probability distribution of the pregnancy period from a period required until K pregnant persons become pregnant by a method other than the kernel density estimation.
 予測部15は、妊娠期間の確率分布から、ユーザが任意の期間内に妊娠する確率を示す累積分布関数を算出する(S42)。予測部15は、例えば、算出した累積分布関数によって、ユーザが半年以内に妊娠する確率を与えることができる。また、予測部15は、例えば、妊娠確率が80%となる期間を累積分布関数から求めることで、ユーザが妊娠するまでの期間の予測値を与えることができる。 The prediction unit 15 calculates a cumulative distribution function indicating the probability that the user will become pregnant within an arbitrary period from the probability distribution of the pregnancy period (S42). The prediction unit 15 can give the probability that the user will become pregnant within half a year, for example, by the calculated cumulative distribution function. In addition, the prediction unit 15 can give a predicted value of a period until the user becomes pregnant, for example, by obtaining a period in which the pregnancy probability is 80% from the cumulative distribution function.
 本実施形態に係る妊娠期間予測装置10によれば、抽出部14を備えることで、複数の妊娠経験者の中から、ユーザと個人的状況が類似する妊娠経験者を抽出することができる。また、予測部15によって、抽出された妊娠経験者の妊娠期間に基づいて、ユーザが妊娠するまでの期間の予測値を算出することができる。そのため、妊娠するまでの期間を、ユーザの個人的事情を加味して予測することができる。ユーザは、定量的な予測値を得ることで、妊活の見通しを立てることが容易になる。例えば、ユーザは、妊娠に向けて生活習慣を見直したり、専門医の診察を受けるか否かを判断する材料として予測値を活用したり、予測値を基準として妊活に集中する期間を定めたりすることができる。 According to the pregnancy period prediction apparatus 10 according to the present embodiment, by providing the extraction unit 14, it is possible to extract a pregnancy experienced person whose personal situation is similar to the user from a plurality of pregnancy experienced persons. In addition, the prediction unit 15 can calculate a predicted value of a period until the user becomes pregnant based on the extracted pregnancy period of the experienced pregnancy person. Therefore, the period until becoming pregnant can be predicted in consideration of the user's personal circumstances. By obtaining a quantitative prediction value, the user can easily set the outlook for pregnancy. For example, the user may review lifestyle habits for pregnancy, use predicted values as a material for determining whether or not to see a specialist, or set a period of concentration on pregnancy based on predicted values be able to.
 図8は、本発明の実施形態に係る妊娠期間予測装置10により出力される妊娠期間予測結果を示す図である。同図では、妊娠期間予測結果を含む結果表示画面DPが、ユーザ端末装置20に表示されている例を示している。 FIG. 8 is a diagram illustrating a pregnancy period prediction result output by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. In the figure, an example in which a result display screen DP including a pregnancy period prediction result is displayed on the user terminal device 20 is shown.
 結果表示画面DPは、予測結果DP1と、アドバイス表示DP2と、第1グラフDP3と、を含む。予測結果DP1は、妊娠期間予測結果であり、「6ヶ月以内に妊娠する確率は10%です」という第1メッセージと、「1年以内に妊娠する確率は45%です」という第2メッセージと、「1年6ヶ月以内に妊娠する確率は90%です」という第3メッセージとを含む。第1メッセージ、第2メッセージ及び第3メッセージは、予測部15により算出された累積分布関数に基づいて算出された、期間と妊娠確率の関係を示している。予測結果DP1は、妊娠するまでに要する期間と妊娠確率との関係を定量的に示しており、ユーザは、予測結果DP1を参考にして、妊活の見通しを立てることができる。なお、同図において示した第1メッセージ、第2メッセージ及び第3メッセージの内容は例示である。妊娠期間予測装置10によれば、任意の期間内に妊娠する確率を示すことができるし、特定の妊娠確率となる期間を示すこともできる。 The result display screen DP includes a prediction result DP1, an advice display DP2, and a first graph DP3. The prediction result DP1 is a prediction result of the pregnancy period, the first message “the probability of becoming pregnant within 6 months is 10%”, the second message “the probability of becoming pregnant within one year is 45%”, and And a third message that “the probability of becoming pregnant within one year and six months is 90%”. The first message, the second message, and the third message indicate the relationship between the period and the pregnancy probability calculated based on the cumulative distribution function calculated by the prediction unit 15. The prediction result DP1 quantitatively shows the relationship between the period required to become pregnant and the pregnancy probability, and the user can make a prediction of pregnancy life with reference to the prediction result DP1. The contents of the first message, the second message, and the third message shown in FIG. According to the pregnancy period prediction device 10, it is possible to indicate the probability of becoming pregnant within an arbitrary period, and it is also possible to indicate the period during which a specific pregnancy probability is achieved.
 アドバイス表示DP2は、妊活に関する改善点を表示するためのボタンである。ユーザは、アドバイス表示DP2を押下することで、ユーザの生活習慣等をどのように変えると、どの程度妊娠確率が向上するかというアドバイスを得ることができる。アドバイスの内容については、図10を用いて詳細に説明する。 The advice display DP2 is a button for displaying improvement points related to pregnancy. The user can obtain advice on how much the pregnancy probability is improved by changing the user's lifestyle etc. by pressing the advice display DP2. The contents of the advice will be described in detail with reference to FIG.
 第1グラフDP3は、横軸に期間を示し、縦軸に妊娠確率を示して、ユーザに対応する累積分布関数DF1を示したものである。第1グラフDP3から、6ヶ月以内の妊娠確率が10%であり、1年以内の妊娠確率が45%であり、1年6ヶ月以内の妊娠確率が90%であることが読み取れる。第1グラフDP3によって、ユーザは、期間と妊娠確率の関係を視覚的に把握することができる。 The first graph DP3 indicates the cumulative distribution function DF1 corresponding to the user, with the horizontal axis indicating the period and the vertical axis indicating the pregnancy probability. It can be seen from the first graph DP3 that the pregnancy probability within 6 months is 10%, the pregnancy probability within 1 year is 45%, and the pregnancy probability within 1 year 6 months is 90%. The first graph DP3 allows the user to visually grasp the relationship between the period and the pregnancy probability.
 図9は、本発明の実施形態に係る妊娠期間予測装置10により実行される改善項目決定処理を示すフローチャートである。変化算出部16は、第2アンケートデータの内容を変化させた場合における、累積分布関数の変化を算出する。詳細には、変化算出部16は、ユーザ特徴ベクトルqを構成する3次元ベクトルq1と5次元ベクトルq2のうち5次元ベクトルq2を変化させて、8次元の試行ベクトルtを生成する(S50)。すなわち、変化算出部16は、アンケートに含まれる複数のアンケート項目のうち、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6に対応するユーザ特徴ベクトルqの要素を増減させて試行ベクトルtを生成する。もっとも、変化算出部16は、身体情報QD1に含まれる体重及び年齢に対応するユーザ特徴ベクトルqの要素を増減させて試行ベクトルtを生成してもよい。このように、ユーザ特徴ベクトルqの要素を増減させることは、第2アンケートデータの内容を変化させることに相当する。 FIG. 9 is a flowchart showing improvement item determination processing executed by the pregnancy period prediction device 10 according to the embodiment of the present invention. The change calculation unit 16 calculates a change in the cumulative distribution function when the content of the second questionnaire data is changed. Specifically, the change calculation unit 16 changes the five-dimensional vector q2 out of the three-dimensional vector q1 and the five-dimensional vector q2 constituting the user feature vector q to generate an eight-dimensional trial vector t (S50). That is, the change calculation unit 16 increases or decreases the elements of the user feature vector q corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 among the plurality of questionnaire items included in the questionnaire. To generate a trial vector t. But the change calculation part 16 may produce | generate the trial vector t by increasing / decreasing the element of the user characteristic vector q corresponding to the weight and age contained in the physical information QD1. Thus, increasing or decreasing the element of the user feature vector q corresponds to changing the contents of the second questionnaire data.
 変化算出部16は、8次元の試行ベクトルtに基づいて、累積分布関数を算出する(S51)。より詳細には、複数の特徴ベクトルvのうちから8次元の試行ベクトルtに類似するK本の類似ベクトルを抽出し、K本の類似ベクトルに対応する妊娠経験者の妊娠に要した期間に基づいてヒストグラムをつくり、ヒストグラムからカーネル密度推定により確率分布を算出し、確率分布から累積分布関数を算出する。 The change calculation unit 16 calculates a cumulative distribution function based on the 8-dimensional trial vector t (S51). More specifically, K similar vectors similar to the 8-dimensional trial vector t are extracted from a plurality of feature vectors v, and based on a period required for pregnancy of a pregnant person corresponding to the K similar vectors. A histogram is created, a probability distribution is calculated from the histogram by kernel density estimation, and a cumulative distribution function is calculated from the probability distribution.
 変化算出部16は、複数の試行ベクトルtについて累積分布関数を算出し、決定部17は、妊娠期間の予測値が最も短くなる試行ベクトルtを選択する(S52)。例えば、変化算出部16は、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6に対応するユーザ特徴ベクトルqの要素をそれぞれ増加(又は減少)させ、増加量(又は減少量)の合計が所定値となるように5本の試行ベクトルtを生成し、累積分布関数を算出して、決定部17は、所定の期間(例えば1年)内に妊娠する確率が最も大きい試行ベクトルtを選択してよい。また、例えば、変化算出部16は、運動カテゴリQD2、食事カテゴリQD3、夫婦カテゴリQD4、ストレスカテゴリQD5及び生活カテゴリQD6から選択した2つのカテゴリに対応するユーザ特徴ベクトルqの2つの要素をそれぞれ増加(又は減少)させ、増加量(又は減少量)の合計が所定値となるように10本の試行ベクトルtを生成し、累積分布関数を算出して、決定部17は、所定の期間(例えば1年)内に妊娠する確率が最も大きい試行ベクトルtを選択してよい。 The change calculation unit 16 calculates a cumulative distribution function for a plurality of trial vectors t, and the determination unit 17 selects a trial vector t that minimizes the predicted value of the pregnancy period (S52). For example, the change calculation unit 16 increases (or decreases) the elements of the user feature vector q corresponding to the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6, respectively, and increases (or decreases) 5) are generated so that the sum of the amount) becomes a predetermined value, a cumulative distribution function is calculated, and the determination unit 17 has the highest probability of becoming pregnant within a predetermined period (for example, one year). A trial vector t may be selected. Further, for example, the change calculation unit 16 increases two elements of the user feature vector q corresponding to two categories selected from the exercise category QD2, the meal category QD3, the couple category QD4, the stress category QD5, and the life category QD6 ( Or 10) to generate a trial distribution vector t so that the sum of the increase amounts (or decrease amounts) becomes a predetermined value, calculate a cumulative distribution function, and the determination unit 17 determines a predetermined period (for example, 1 The trial vector t having the highest probability of becoming pregnant within a year may be selected.
 決定部17は、アンケートに含まれる複数のアンケート項目のうち、選択された試行ベクトルtを実現するために改善すべき1又は複数のアンケート項目を決定する。例えば、食事カテゴリQD3に対応するユーザ特徴ベクトルqの要素を変化させた試行ベクトルtによって、累積分布関数が最も良く改善する場合、決定部17は、食事カテゴリQD3に含まれる第21項目から第40項目のうちいずれの項目を改善すべきか決定する。 The determination unit 17 determines one or a plurality of questionnaire items to be improved in order to realize the selected trial vector t among a plurality of questionnaire items included in the questionnaire. For example, when the cumulative distribution function is best improved by the trial vector t in which the element of the user feature vector q corresponding to the meal category QD3 is changed, the determination unit 17 changes the 21st to 40th items included in the meal category QD3. Decide which of the items should be improved.
 決定部17は、第1アンケートデータに含まれる評価値の分散と、第2アンケートデータに含まれる評価値とに基づいて、改善すべき1又は複数のアンケート項目を決定する(S53)。具体的には、決定部17は、改善候補となっているそれぞれのアンケート項目について、第1アンケートデータに含まれるアンケート項目の評価値の分散σ と、第2アンケートデータに含まれるアンケート項目の評価点anと、評価点の最高点maxとに基づいて、(max-an)σの値が大きい順に、改善すべき1又は複数のアンケート項目を決定する。このように改善すべき項目を選択することで、伸び代が十分に残っており、かつ妊娠経験者の間でもばらつきの大きい項目を改善項目として選択することができ、ユーザにとって改善が容易と思われる項目を個人的事情に鑑みて抽出でき、少ない努力で多くの成果が得られる努力目標を提示できる。 The determination unit 17 determines one or more questionnaire items to be improved based on the distribution of the evaluation values included in the first questionnaire data and the evaluation values included in the second questionnaire data (S53). Specifically, for each questionnaire item that is a candidate for improvement, the determination unit 17 determines the variance σ 2 n of the evaluation values of the questionnaire items included in the first questionnaire data and the questionnaire items included in the second questionnaire data. The one or more questionnaire items to be improved are determined in descending order of the value of (max−an) σ n based on the evaluation points an and the maximum score max of the evaluation points. By selecting items to be improved in this way, it is possible to select items that have sufficient margin for growth and have large variations among those who have experienced pregnancy as improvement items, and it is easy for users to improve. Items can be extracted in consideration of personal circumstances, and it is possible to present effort targets that can produce many results with little effort.
 なお、変化算出部16は、ユーザ特徴ベクトルqの要素の変化量の合計が所定値となる全ての変化の組み合わせ(又は代表的な変化の組み合わせ)について試行ベクトルtを生成し、累積分布関数を算出して、決定部17は、妊娠期間の予測値が最も短くなる試行ベクトルtを選択することとしてもよい。一般に、ユーザ特徴ベクトルqの要素のうち変化算出部16により値を増加又は減少させる要素の数をnとし、ユーザ特徴ベクトルqの要素に重複を許容して1ポイントずつ合計pポイントを割り振る場合、全ての変化の組み合わせの数は、n個のうちからp個を選ぶ重複組み合わせの数となり、(n+p-1)となる。本例の場合について具体的に説明すると、ユーザ特徴ベクトルqの要素のうち変化算出部16により値を増加又は減少させる要素の数は、カテゴリの数である5であり、ユーザ特徴ベクトルqの要素の変化量の合計を仮に3ポイントとすると、=35通りの試行ベクトルtを生成することになる。 The change calculation unit 16 generates a trial vector t for all combinations of changes (or representative combinations of changes) in which the total amount of change of the elements of the user feature vector q is a predetermined value, and calculates the cumulative distribution function. After calculating, the determination unit 17 may select the trial vector t that provides the shortest predicted value of the pregnancy period. In general, when the number of elements whose values are increased or decreased by the change calculation unit 16 among the elements of the user feature vector q is n, and the elements of the user feature vector q are allowed to overlap, and the total p points are allocated one point at a time, The number of all combinations of changes is the number of overlapping combinations that select p out of n , and is (n + p−1) C p . The case of this example will be described in detail. The number of elements whose values are increased or decreased by the change calculation unit 16 among the elements of the user feature vector q is 5 which is the number of categories, and the elements of the user feature vector q Assuming that the total change amount is 3 points, 7 C 3 = 35 trial vectors t are generated.
 図10は、本発明の実施形態に係る妊娠期間予測装置10により出力される改善アドバイスを示す図である。同図では、改善アドバイスを含む結果表示画面DPが、ユーザ端末装置20に表示されている例を示している。 FIG. 10 is a diagram showing improvement advice output by the pregnancy period prediction apparatus 10 according to the embodiment of the present invention. In the figure, an example in which a result display screen DP including improvement advice is displayed on the user terminal device 20 is shown.
 結果表示画面DPは、アドバイスDP4と、改善例DP5と、第2グラフDP6と、を含む。アドバイスDP4は、累積分布関数が最も良く改善する試行ベクトルtに基づいて得られる改善アドバイスであり、「食事カテゴリとストレスカテゴリの改善によって、1年以内に妊娠する確率が5%上昇します」というメッセージを含む。本例では、決定部17が、食事カテゴリQD3とストレスカテゴリQD5に対応するユーザ特徴ベクトルqの2つの要素を変化させた試行ベクトルtを選択し、当該試行ベクトルtに基づいて算出された累積分布関数によって、1年以内に妊娠する確率が5%上昇することが示された場合を図示している。もっとも、妊娠期間予測装置10は、1つのカテゴリに対応するユーザ特徴ベクトルqの1つの要素を変化させた試行ベクトルtを選択し、当該試行ベクトルtに基づいて算出された累積分布関数を示してもよいし、3つ以上のカテゴリに対応するユーザ特徴ベクトルqの3つ以上の要素を変化させた試行ベクトルtを選択し、当該試行ベクトルtに基づいて算出された累積分布関数を示してもよい。妊娠期間予測装置10は、複数の方法で生成した複数の試行ベクトルtについて累積分布関数を算出し、同じ期間で比較した場合に妊娠確率が最も高くなる試行ベクトルtを選択することとしよい。なお、本例では、メッセージとして1年以内に妊娠する確率が上昇することを示したが、メッセージの内容はこれに限られない。例えば、「妊娠確率が50%となる期間が、1年1ヶ月から1年に短縮します」というように、ある妊娠確率が達成されるまでの期間が短縮することを示してもよい。 The result display screen DP includes an advice DP4, an improvement example DP5, and a second graph DP6. The advice DP4 is an improvement advice obtained based on the trial vector t in which the cumulative distribution function is most improved, and “the improvement in the diet category and the stress category increases the probability of becoming pregnant within one year by 5%.” Contains a message. In this example, the determination unit 17 selects a trial vector t in which two elements of the user feature vector q corresponding to the meal category QD3 and the stress category QD5 are changed, and the cumulative distribution calculated based on the trial vector t. The case where the function indicates that the probability of becoming pregnant within one year increases by 5% is illustrated. However, the pregnancy period prediction apparatus 10 selects a trial vector t in which one element of the user feature vector q corresponding to one category is changed, and shows a cumulative distribution function calculated based on the trial vector t. Alternatively, a trial vector t in which three or more elements of the user feature vector q corresponding to three or more categories are changed is selected, and a cumulative distribution function calculated based on the trial vector t is shown. Good. The pregnancy period prediction apparatus 10 may calculate a cumulative distribution function for a plurality of trial vectors t generated by a plurality of methods, and may select a trial vector t having the highest pregnancy probability when compared in the same period. In this example, the message indicates that the probability of becoming pregnant within one year increases, but the content of the message is not limited to this. For example, it may indicate that the period until a certain pregnancy probability is achieved is shortened, such as “the period during which the pregnancy probability is 50% is shortened from one year to one month”.
 改善例DP5は、食事カテゴリQD3とストレスカテゴリQD5に含まれるアンケート項目のうち、いずれの項目を改善すべきかの例を示しており、「食事カテゴリの第30項目の評価値を+1」という第1改善例と、「食事カテゴリの第35項目の評価値を+2」という第2改善例と、「ストレスカテゴリの第70項目の評価値を+1」という第3改善例と、を含む。なお、本例では、第1改善例、第2改善例及び第3改善例の全てを達成した場合に、アドバイスDP4に示された妊娠確率の上昇が期待されるということを示している。「食事カテゴリの第30項目の評価値を+1」という第1改善例は、第30項目の5段階評価の評価点を1点上げるように食事内容を見直せばよいということを表し、「食事カテゴリの第35項目の評価値を+2」という第2改善例は、第35項目の5段階評価の評価点を2点上げるように食事内容を見直せばよいということを表す。また、「ストレスカテゴリの第70項目の評価値を+1」という第3改善例は、第70項目の5段階評価の評価点を1点上げるようにストレス状況を見直せばよいということを表す。 The improvement example DP5 shows an example of which of the questionnaire items included in the meal category QD3 and the stress category QD5 should be improved. The first evaluation value “the evaluation value of the 30th item of the meal category is +1”. An improvement example, a second improvement example “the evaluation value of the 35th item of the meal category is +2”, and a third improvement example of “the evaluation value of the 70th item of the stress category is +1” are included. In addition, in this example, when all the 1st improvement example, the 2nd improvement example, and the 3rd improvement example are achieved, it has shown that the raise of the pregnancy probability shown by advice DP4 is anticipated. The first improvement example of “+1 for the evaluation value of the 30th item of the meal category” represents that the meal content should be reviewed so that the evaluation score of the 5-level evaluation of the 30th item is increased by one. The second improvement example in which the evaluation value of the 35th item is +2 ”indicates that the meal contents should be reviewed so that the evaluation score of the 5-step evaluation of the 35th item is increased by two points. In addition, the third improvement example of “+1 for the evaluation value of the 70th item in the stress category” indicates that the stress situation should be reviewed so that the evaluation score for the 5-level evaluation of the 70th item is increased by one.
 本実施形態に係る妊娠期間予測装置10によれば、ユーザ特徴ベクトルqを変化させて、妊娠確率が最も良く改善する方向を探索することで、妊娠するまでの期間を短くするために改善すべき点を明らかにすることができ、ユーザに対して個別具体的なアドバイスを行うことができる。 According to the pregnancy period prediction apparatus 10 according to the present embodiment, the user characteristic vector q is changed to search for a direction in which the pregnancy probability is most improved, and should be improved in order to shorten the period until pregnancy. The point can be clarified, and individual specific advice can be given to the user.
 また、本実施形態に係る妊娠期間予測装置10によれば、ユーザにアンケートを行った結果から累積確率分布を算出することで、妊娠するまでの期間を確率的に示すことができ、努力目標を達成した場合の成果を、確率の上昇又は期間の短縮という形で定量的に示すことができる。これにより、妊活における目標を明確化することができ、期待される成果を定量的に意識することで、妊活を続ける動機付けを与えることができる。 In addition, according to the pregnancy period prediction device 10 according to the present embodiment, by calculating the cumulative probability distribution from the result of the questionnaire to the user, the period until pregnancy can be stochastically shown, and the effort target can be determined. The outcome when achieved can be shown quantitatively in the form of increased probability or reduced duration. Thereby, the goal in pregnancy can be clarified, and the motivation to continue the pregnancy can be given by being aware of the expected result quantitatively.
 第2グラフDP6は、横軸に期間を示し、縦軸に妊娠確率を示して、ユーザに対応する累積分布関数DF1と、改善アドバイスを実行した場合に対応する改善後の累積分布関数DF2と、を示したものである。第2グラフDP6から、現状における1年以内の妊娠確率は45%であるが、改善後の1年以内の妊娠確率は50%であることが読み取れる。第2グラフDP6によって、ユーザは、改善アドバイスに従って生活習慣等を見直した場合の効果を視覚的に把握することができる。 The second graph DP6 shows the period on the horizontal axis, the pregnancy probability on the vertical axis, the cumulative distribution function DF1 corresponding to the user, the improved cumulative distribution function DF2 corresponding to the case where improvement advice is executed, Is shown. From the second graph DP6, it can be seen that the pregnancy probability within one year in the current state is 45%, but the pregnancy probability within one year after improvement is 50%. The second graph DP6 allows the user to visually grasp the effects when the lifestyle habits are reviewed according to the improvement advice.
 妊娠期間予測装置10は、ユーザにアンケートを行った結果を含む第2アンケートデータを記憶部に格納しておき、ユーザが妊娠した場合に、当該ユーザに関するアンケートデータを第1アンケートデータデータベースDBに加えてもよい。アンケートデータを蓄積することで、妊娠期間の予測に用いるデータがより豊富となり、より信頼性の高い予測が可能となる。 The pregnancy period prediction device 10 stores the second questionnaire data including the result of the questionnaire for the user in the storage unit, and adds the questionnaire data regarding the user to the first questionnaire data database DB when the user becomes pregnant. May be. By accumulating questionnaire data, the data used for the prediction of pregnancy period becomes more abundant, and a more reliable prediction becomes possible.
 本発明を変形することにより、複数の項目を有する基礎データに基づく種々の予測装置を構成することができる。本発明を変形して得られる発明として、例えば、電力需要を予測する電力需要予測装置が挙げられる。電力需要予測装置は、過去の日時に関する環境データに基づいて、過去の日時に対応する複数の特徴ベクトルを算出する。ここで、環境データは、天候、気温、湿度、曜日及び祝祭日にあたるか否か等のデータを含む。複数の特徴ベクトルは、本明細書において説明したのと同様に、過去の日時に関する環境データに含まれる項目毎に平均と分散を求め、各項目の値と平均の差を分散の平方根で割った値を求めることで算出してよい。複数の特徴ベクトルの次元は、それぞれ環境データに含まれる項目数以下であってよい。例えば、環境データが、過去の日時に関する天候、気温、湿度及び曜日の4項目を含むものである場合、特徴ベクトルは4次元ベクトルであってよい。なお、環境データが、N項目を含むものである場合、特徴ベクトルはN次元以下であってよく、環境データに含まれるいくつかの項目を特徴ベクトルの1つの要素にまとめて表してもよい。環境データに含まれるいくつかの項目を特徴ベクトルの1つの要素にまとめることで、環境データの揺らぎの影響を軽減した特徴ベクトルが得られる場合がある。 By modifying the present invention, various prediction devices based on basic data having a plurality of items can be configured. As an invention obtained by modifying the present invention, for example, a power demand prediction device for predicting power demand can be cited. The power demand prediction apparatus calculates a plurality of feature vectors corresponding to the past date and time based on the environmental data regarding the past date and time. Here, the environmental data includes data such as weather, temperature, humidity, day of the week, and whether or not it falls on a public holiday. In the same manner as described in this specification, the plurality of feature vectors are obtained by calculating the average and variance for each item included in the environmental data related to the past date and time, and dividing the difference between the value of each item and the average by the square root of variance. You may calculate by calculating | requiring a value. Each dimension of the plurality of feature vectors may be equal to or less than the number of items included in the environment data. For example, when the environmental data includes four items of weather, temperature, humidity, and day of the week for the past date and time, the feature vector may be a four-dimensional vector. When the environment data includes N items, the feature vector may have N dimensions or less, and several items included in the environment data may be represented as one element of the feature vector. By combining several items included in the environmental data into one element of the feature vector, a feature vector in which the influence of fluctuations in the environmental data is reduced may be obtained.
 また、電力需要予測装置は、当日の環境データに基づいて、当日の特徴ベクトルを算出する。当日の特徴ベクトルは、本明細書において説明したのと同様に、各項目の値と過去の日時に関する環境データの平均との差を、過去の日時に関する環境データの分散の平方根で割った値を求めることで算出してよい。当日の特徴ベクトルの次元は、環境データに含まれる項目数以下であってよい。電力需要予測装置は、複数の特徴ベクトルから、当日の特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する。電力需要予測装置は、当日の特徴ベクトルと複数の特徴ベクトルのうちいずれかとの差ベクトルのノルムに基づいて、類似ベクトルを抽出してもよい。類似ベクトルは、本明細書において説明したのと同様に、当日の特徴ベクトルと複数の特徴ベクトルのうちいずれかとの差ベクトルのLノルムを求めて、ノルムの値が小さい順に複数の特徴ベクトルのうちから抽出されたK本のベクトルであってよい。なお、Lノルム以外のノルムを用いてもよいし、その他のベクトル間の距離を測る方法を用いてもよい。 Further, the power demand prediction apparatus calculates a feature vector for the current day based on the environmental data for the current day. As described in this specification, the feature vector of the current day is obtained by dividing the difference between the value of each item and the average of the environmental data related to the past date and time by the square root of the variance of the environmental data related to the past date and time. You may calculate by calculating | requiring. The dimension of the feature vector of the day may be equal to or less than the number of items included in the environmental data. The power demand prediction apparatus extracts one or a plurality of similar vectors similar to the current day feature vector from the plurality of feature vectors. The power demand prediction apparatus may extract a similar vector based on a norm of a difference vector between the current day feature vector and any one of a plurality of feature vectors. Similar vector, similar to that described herein, seeking L 2 norm of the difference vector between any of the feature vectors and a plurality of feature vectors of the day, a plurality of feature vectors in the order value of the norm is small It may be K vectors extracted from the house. Incidentally, may be used norm other than L 2 norm may be used a method of measuring the distance between other vectors.
 電力需要予測装置は、1又は複数の類似ベクトルに対応する1又は複数の日時における電力需要の実績に基づいて、当日の電力需要の予測値を算出する。電力需要予測装置は、1又は複数の類似ベクトルに対応する1又は複数の日時における電力需要の実績に基づいて、電力需要のヒストグラムを生成し、当該ヒストグラムからカーネル密度推定によって電力需要の確率分布を算出し、電力需要が任意の値以下に収まる確率を示す累積分布関数を算出してもよい。カーネル密度推定における種々のパラメータについては、本明細書において説明したのと同様に、任意に選択することができる。電力需要予測装置によれば、過去の環境データの中から、当日と状況が類似する環境データを抽出することができ、抽出された日時の電力需要の実績に基づいて、当日の電力需要の予測値を算出することができる。そのため、当日の環境を加味して電力需要を予測することができる。また、電力需要予測装置は、当日の電力需要が任意の値以下に収まる確率を示すことができ、当日の電力需要に関して定量的な予測を行うことができる。このため、電力需要予測装置によれば、電力供給量をどの程度とすべきか定量的な見積もりを得ることができる。 The power demand prediction apparatus calculates a predicted value of the power demand on the current day based on the actual power demand on one or more dates and times corresponding to one or more similar vectors. The power demand prediction device generates a power demand histogram based on the actual power demand at one or more dates and times corresponding to one or more similar vectors, and calculates a probability distribution of the power demand from the histogram by kernel density estimation. A cumulative distribution function indicating the probability that the power demand falls below an arbitrary value may be calculated. Various parameters in the kernel density estimation can be arbitrarily selected as described in the present specification. According to the power demand prediction device, environmental data having a similar situation to that of the current day can be extracted from the past environmental data, and the power demand is predicted on the current day based on the actual power demand on the extracted date and time. A value can be calculated. Therefore, the power demand can be predicted in consideration of the environment of the day. Moreover, the power demand prediction apparatus can indicate the probability that the power demand on the current day falls below an arbitrary value, and can make a quantitative prediction regarding the power demand on the current day. For this reason, according to the power demand prediction apparatus, it is possible to obtain a quantitative estimate of how much power supply should be.
 電力需要予測装置は、当日の環境データが変化した場合における、当日の電力需要の予測値の変化を算出してもよい。例えば、環境データに含まれる天候、気温及び湿度といったデータについて、天気予報に基づく値を採用して当日の電力需要の予測値を算出した後、実際の天候、気温及び湿度のデータが得られた場合に、電力需要の予測値を逐次更新することができる。具体的には、本明細書において説明したのと同様に、当日の特徴ベクトルを変化させた試行ベクトルを算出し、試行ベクトルに基づいて電力需要の累積分布関数を求めることで、当日の電力需要の予測値の変化を算出してもよい。その他、電力需要予測装置は、本明細書に記載した妊娠期間予測装置10の構成と同様の構成を備えることができる。また、本発明を変形することにより、電力需要を予測する電力需要予測方法及び電力需要予測プログラムを構成することもできる。 The power demand prediction device may calculate a change in the predicted value of the power demand for the day when the environmental data for the day changes. For example, with regard to data such as weather, temperature, and humidity included in environmental data, actual weather, temperature, and humidity data were obtained after calculating the predicted value of power demand for the day using values based on the weather forecast In this case, the predicted value of power demand can be updated sequentially. Specifically, in the same manner as described in the present specification, the power demand on the current day is calculated by calculating a trial vector in which the feature vector on the current day is changed and obtaining a cumulative distribution function of the power demand based on the trial vector. The change in the predicted value may be calculated. In addition, the power demand prediction apparatus can have the same configuration as the configuration of the pregnancy period prediction apparatus 10 described in this specification. Moreover, the electric power demand prediction method and electric power demand prediction program which estimate electric power demand can also be comprised by deform | transforming this invention.
 本発明を変形することにより、複数の項目を有する基礎データに基づいて、所定の事象が起こる予測値を算出する予測装置を構成することもできる。予測装置は、取得済み基礎データに基づいて、取得済み基礎データに含まれる複数の項目に対応する要素を有する複数の特徴ベクトルを算出する。複数の特徴ベクトルは、本明細書において説明したのと同様に、取得済み基礎データに含まれる項目毎に平均と分散を求め、各項目の値と平均の差を分散の平方根で割った値を求めることで算出してよい。複数の特徴ベクトルの次元は、それぞれ取得済み基礎データに含まれる項目数以下であってよい。 By modifying the present invention, it is possible to configure a prediction device that calculates a predicted value at which a predetermined event will occur based on basic data having a plurality of items. The prediction device calculates a plurality of feature vectors having elements corresponding to a plurality of items included in the acquired basic data based on the acquired basic data. As described in this specification, the plurality of feature vectors are obtained by calculating an average and a variance for each item included in the acquired basic data, and dividing the difference between the value of each item and the average by the square root of the variance. You may calculate by calculating | requiring. The dimension of the plurality of feature vectors may be less than or equal to the number of items included in each acquired basic data.
 予測装置は、新規基礎データに基づいて、新規特徴ベクトルを算出する。新規特徴ベクトルは、本明細書において説明したユーザ特徴ベクトルに相当し、各項目の値と取得済み基礎データの平均との差を、取得済み基礎データの分散の平方根で割った値を求めることで算出してよい。新規特徴ベクトルの次元は、新規基礎データに含まれる項目数以下であってよい。予測装置は、複数の特徴ベクトルから、新規特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する。予測装置は、新規特徴ベクトルと複数の特徴ベクトルのうちいずれかとの差ベクトルのノルムに基づいて、類似ベクトルを抽出してもよい。類似ベクトルは、本明細書において説明したのと同様に、新規特徴ベクトルと複数の特徴ベクトルのうちいずれかとの差ベクトルのLノルムを求めて、ノルムの値が小さい順に複数の特徴ベクトルのうちから抽出されたK本のベクトルであってよい。 The prediction device calculates a new feature vector based on the new basic data. The new feature vector corresponds to the user feature vector described in this specification, and the value obtained by dividing the difference between the value of each item and the average of the acquired basic data by the square root of the variance of the acquired basic data is obtained. It may be calculated. The dimension of the new feature vector may be equal to or less than the number of items included in the new basic data. The prediction device extracts one or a plurality of similar vectors similar to the new feature vector from the plurality of feature vectors. The prediction device may extract a similar vector based on a norm of a difference vector between the new feature vector and any one of the plurality of feature vectors. Similar vector, similar to that described herein, seeking L 2 norm of the difference vector between any of the new feature vector and a plurality of feature vectors, among the plurality of feature vectors in the order value of the norm is small May be K vectors extracted from.
 予測装置は、1又は複数の類似ベクトルに対応する1又は複数の事象の実績に基づいて、新規事象の予測値を算出する。予測装置は、1又は複数の類似ベクトルに対応する1又は複数の事象の実績に基づいて、新規事象が起こる頻度を示すヒストグラムを生成し、当該ヒストグラムからカーネル密度推定によって新規事象が起こる確率分布を算出し、新規事象が起こる確率を示す累積分布関数を算出してもよい。カーネル密度推定における種々のパラメータについては、本明細書において説明したのと同様に、任意に選択することができる。予測装置によれば、取得済み基礎データの中から、新規基礎データと状況が類似するデータを抽出することができ、抽出されたデータに対応する事象の実績に基づいて、新規事象の予測値を算出することができる。 The prediction device calculates a predicted value of a new event based on the results of one or more events corresponding to one or more similar vectors. The prediction device generates a histogram indicating the frequency of occurrence of a new event based on the performance of one or more events corresponding to one or more similar vectors, and obtains a probability distribution of occurrence of new events by kernel density estimation from the histogram. A cumulative distribution function indicating the probability of occurrence of a new event may be calculated. Various parameters in the kernel density estimation can be arbitrarily selected as described in the present specification. According to the prediction device, it is possible to extract data having a similar situation to the new basic data from the acquired basic data, and based on the results of the event corresponding to the extracted data, the predicted value of the new event is obtained. Can be calculated.
 予測装置は、新規基礎データが変化した場合における、新規事象の予測値の変化を算出してもよい。予測装置は、新規特徴ベクトルを変化させた試行ベクトルを算出し、試行ベクトルに基づいて事象の累積分布関数を求めることで、新規事象の予測値の変化を算出してもよい。その他、予測装置は、本明細書に記載した妊娠期間予測装置10の構成と同様の構成を備えることができる。また、本発明を変形することにより、複数の項目を有する基礎データに基づいて、所定の事象が起こる予測値を算出する予測方法及び予測プログラムを構成することもできる。 The prediction device may calculate a change in the predicted value of the new event when the new basic data changes. The prediction device may calculate a change in the predicted value of the new event by calculating a trial vector obtained by changing the new feature vector and obtaining a cumulative distribution function of the event based on the trial vector. In addition, the prediction device can have the same configuration as the configuration of the pregnancy period prediction device 10 described in this specification. In addition, by modifying the present invention, it is possible to configure a prediction method and a prediction program for calculating a predicted value at which a predetermined event occurs based on basic data having a plurality of items.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, the structures shown in different embodiments can be partially replaced or combined.
 10…妊娠期間予測装置、11…特徴ベクトル算出部、12…第2アンケートデータ取得部、13…ユーザ特徴ベクトル算出部、14…抽出部、15…予測部、16…変化算出部、17…決定部、20…ユーザ端末装置、DB…第1アンケートデータデータベース、DF1…累積分布関数、DF2…改善後の累積分布関数、DP…結果表示画面、DP1…予測結果、DP2…アドバイス表示、DP3…第1グラフ、DP4…アドバイス、DP5…改善例、DP6…第2グラフ、NW…通信ネットワーク、QD…第1アンケートデータ、QD1…身体情報、QD2…運動カテゴリ、QD3…食事カテゴリ、QD4…夫婦カテゴリ、QD5…ストレスカテゴリ、QD6…生活カテゴリ。 DESCRIPTION OF SYMBOLS 10 ... Pregnancy period prediction apparatus, 11 ... Feature vector calculation part, 12 ... 2nd questionnaire data acquisition part, 13 ... User feature vector calculation part, 14 ... Extraction part, 15 ... Prediction part, 16 ... Change calculation part, 17 ... Determination , 20 ... user terminal device, DB ... first questionnaire data database, DF1 ... cumulative distribution function, DF2 ... cumulative distribution function after improvement, DP ... result display screen, DP1 ... prediction result, DP2 ... advice display, DP3 ... first 1 graph, DP4 ... advice, DP5 ... improvement example, DP6 ... second graph, NW ... communication network, QD ... first questionnaire data, QD1 ... physical information, QD2 ... exercise category, QD3 ... meal category, QD4 ... couple category, QD5 ... stress category, QD6 ... life category.

Claims (9)

  1.  複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、前記複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出する特徴ベクトル算出部と、
     ユーザに前記アンケートを行った結果を含む第2アンケートデータに基づいて、前記ユーザに対応するユーザ特徴ベクトルを算出するユーザ特徴ベクトル算出部と、
     前記複数の特徴ベクトルから、前記ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する抽出部と、
     前記1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、前記ユーザが妊娠するまでの期間の予測値を算出する予測部と、
     を備える妊娠期間予測装置。
    A feature vector calculation unit for calculating a plurality of feature vectors corresponding to each of the plurality of pregnancy experienced persons based on first questionnaire data including a result of conducting a questionnaire to a plurality of pregnant persons;
    A user feature vector calculation unit that calculates a user feature vector corresponding to the user based on second questionnaire data including a result of performing the questionnaire to the user;
    An extraction unit that extracts one or more similar vectors similar to the user feature vector from the plurality of feature vectors;
    A prediction unit that calculates a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to the one or more similar vectors become pregnant;
    A pregnancy period prediction apparatus comprising:
  2.  前記第2アンケートデータの内容を変化させた場合における、前記ユーザが妊娠するまでの期間の予測値の変化を算出する変化算出部と、
     前記変化算出部により算出された前記予測値の変化に基づいて、前記予測値が短くなるように、前記アンケートに含まれる複数のアンケート項目のうち改善すべき1又は複数のアンケート項目を決定する決定部と、
     をさらに備える請求項1に記載の妊娠期間予測装置。
    A change calculating unit that calculates a change in a predicted value of a period until the user becomes pregnant when the content of the second questionnaire data is changed;
    Determination of determining one or more questionnaire items to be improved among a plurality of questionnaire items included in the questionnaire so that the predicted value is shortened based on a change in the predicted value calculated by the change calculation unit And
    The pregnancy period prediction apparatus according to claim 1, further comprising:
  3.  前記第1アンケートデータ及び前記第2アンケートデータは、前記アンケートに含まれる複数のアンケート項目にそれぞれ対応する評価値を含み、
     前記決定部は、前記第1アンケートデータに含まれる前記評価値の分散と、前記第2アンケートデータに含まれる前記評価値とに基づいて、前記改善すべき1又は複数のアンケート項目を決定する、
     請求項2に記載の妊娠期間予測装置。
    The first questionnaire data and the second questionnaire data include evaluation values respectively corresponding to a plurality of questionnaire items included in the questionnaire,
    The determination unit determines the one or more questionnaire items to be improved based on the distribution of the evaluation values included in the first questionnaire data and the evaluation values included in the second questionnaire data.
    The pregnancy period prediction apparatus according to claim 2.
  4.  前記予測部は、前記1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、前記ユーザが任意の期間内に妊娠する確率を示す累積分布関数を算出し、
     前記変化算出部は、前記第2アンケートデータの内容を変化させた場合における、前記累積分布関数の変化を算出する、
     請求項2又は3に記載の妊娠期間予測装置。
    The prediction unit is a cumulative distribution function that indicates a probability that the user will become pregnant within an arbitrary period based on a period of time required for one or more pregnant persons corresponding to the one or more similar vectors to become pregnant. To calculate
    The change calculation unit calculates a change in the cumulative distribution function when the content of the second questionnaire data is changed.
    The pregnancy period prediction apparatus according to claim 2 or 3.
  5.  前記抽出部は、前記ユーザ特徴ベクトルと前記複数の特徴ベクトルのうちいずれかとの差ベクトルのノルムに基づいて、前記複数の特徴ベクトルから、前記ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する、
     請求項1から4のいずれか1項に記載の妊娠期間予測装置。
    The extraction unit extracts one or a plurality of similar vectors similar to the user feature vector from the plurality of feature vectors based on a norm of a difference vector between the user feature vector and one of the plurality of feature vectors. To
    The pregnancy period prediction apparatus of any one of Claim 1 to 4.
  6.  前記複数の特徴ベクトルそれぞれの次元及び前記ユーザ特徴ベクトルの次元は、それぞれ前記アンケートに含まれる複数のアンケート項目の項目数より小さい、
     請求項1から5のいずれか1項に記載の妊娠期間予測装置。
    The dimensions of each of the plurality of feature vectors and the dimension of the user feature vector are smaller than the number of items of the plurality of questionnaire items included in the questionnaire,
    The pregnancy period prediction apparatus of any one of Claim 1 to 5.
  7.  前記複数の特徴ベクトルは、前記複数の妊娠経験者の客観情報に関する1又は複数の要素と、前記複数の妊娠経験者の主観情報に関する1又は複数の要素とをそれぞれ含み、
     前記ユーザ特徴ベクトルは、前記ユーザの客観情報に関する1又は複数の要素と、前記ユーザの主観情報に関する1又は複数の要素とを含む、
     請求項1から6のいずれか1項に記載の妊娠期間予測装置。
    The plurality of feature vectors each include one or more elements relating to objective information of the plurality of pregnant persons and one or more elements relating to subjective information of the plurality of pregnant persons,
    The user feature vector includes one or more elements related to objective information of the user and one or more elements related to subjective information of the user.
    The pregnancy period prediction apparatus of any one of Claim 1 to 6.
  8.  複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、前記複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出するステップと、
     ユーザに前記アンケートを行った結果を含む第2アンケートデータに基づいて、前記ユーザに対応するユーザ特徴ベクトルを算出するステップと、
     前記複数の特徴ベクトルから、前記ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出するステップと、
     前記1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、前記ユーザが妊娠するまでの期間の予測値を算出するステップと、
     を含む妊娠期間予測方法。
    Calculating a plurality of feature vectors corresponding to each of the plurality of pregnancy experienced persons based on first questionnaire data including a result of conducting a questionnaire to a plurality of pregnancy experienced persons;
    Calculating a user feature vector corresponding to the user based on second questionnaire data including a result of conducting the questionnaire to the user;
    Extracting one or more similar vectors similar to the user feature vector from the plurality of feature vectors;
    Calculating a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to the one or more similar vectors become pregnant;
    Pregnancy method including
  9.  コンピュータを、
     複数の妊娠経験者にアンケートを行った結果を含む第1アンケートデータに基づいて、前記複数の妊娠経験者それぞれに対応する複数の特徴ベクトルを算出する特徴ベクトル算出部と、
     ユーザに前記アンケートを行った結果を含む第2アンケートデータに基づいて、前記ユーザに対応するユーザ特徴ベクトルを算出するユーザ特徴ベクトル算出部と、
     前記複数の特徴ベクトルから、前記ユーザ特徴ベクトルに類似する1又は複数の類似ベクトルを抽出する抽出部と、
     前記1又は複数の類似ベクトルに対応する1又は複数の妊娠経験者が妊娠するまでに要した期間に基づいて、前記ユーザが妊娠するまでの期間の予測値を算出する予測部と、
     として機能させる妊娠期間予測プログラム。
    Computer
    A feature vector calculation unit for calculating a plurality of feature vectors corresponding to each of the plurality of pregnancy experienced persons based on first questionnaire data including a result of conducting a questionnaire to a plurality of pregnant persons;
    A user feature vector calculation unit that calculates a user feature vector corresponding to the user based on second questionnaire data including a result of performing the questionnaire to the user;
    An extraction unit that extracts one or more similar vectors similar to the user feature vector from the plurality of feature vectors;
    A prediction unit that calculates a predicted value of a period until the user becomes pregnant based on a period required until one or more pregnant persons corresponding to the one or more similar vectors become pregnant;
    Pregnancy program to function as.
PCT/JP2017/043282 2016-12-01 2017-12-01 Pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program WO2018101462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234468A JP2018092331A (en) 2016-12-01 2016-12-01 Pregnancy period prediction device and pregnancy period prediction method and pregnancy period prediction program
JP2016-234468 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101462A1 true WO2018101462A1 (en) 2018-06-07

Family

ID=62242166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043282 WO2018101462A1 (en) 2016-12-01 2017-12-01 Pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program

Country Status (2)

Country Link
JP (1) JP2018092331A (en)
WO (1) WO2018101462A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933290A (en) * 2020-08-14 2020-11-13 苏州赫亚斯顿智能科技有限公司 Method and device for establishing artificial reproduction pregnancy prediction by machine learning model
CN111967770A (en) * 2020-08-18 2020-11-20 深圳市维度统计咨询股份有限公司 Questionnaire data processing method and device based on big data and storage medium
CN114287013A (en) * 2019-09-25 2022-04-05 株式会社东芝 Inspection value prediction device, inspection value prediction system, inspection value prediction method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626170B1 (en) * 2018-09-11 2019-12-25 株式会社FiNC Technologies Health evaluation system, health evaluation server and health evaluation program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153869A (en) * 2013-02-07 2014-08-25 Ntt Communications Corp Information provision device, information provision program, and information provision method
JP2016504016A (en) * 2012-10-17 2016-02-12 セルマティックス, インコーポレイテッド System and method for determining the probability of pregnancy at selected time points
JP2016197330A (en) * 2015-04-03 2016-11-24 日本電気株式会社 Analysis system, and rehabilitation support system, method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504016A (en) * 2012-10-17 2016-02-12 セルマティックス, インコーポレイテッド System and method for determining the probability of pregnancy at selected time points
JP2014153869A (en) * 2013-02-07 2014-08-25 Ntt Communications Corp Information provision device, information provision program, and information provision method
JP2016197330A (en) * 2015-04-03 2016-11-24 日本電気株式会社 Analysis system, and rehabilitation support system, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287013A (en) * 2019-09-25 2022-04-05 株式会社东芝 Inspection value prediction device, inspection value prediction system, inspection value prediction method, and program
CN111933290A (en) * 2020-08-14 2020-11-13 苏州赫亚斯顿智能科技有限公司 Method and device for establishing artificial reproduction pregnancy prediction by machine learning model
CN111933290B (en) * 2020-08-14 2023-10-10 北京赫雅智能科技有限公司 Method and device for predicting artificial reproduction conception by machine learning model
CN111967770A (en) * 2020-08-18 2020-11-20 深圳市维度统计咨询股份有限公司 Questionnaire data processing method and device based on big data and storage medium

Also Published As

Publication number Publication date
JP2018092331A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2018101462A1 (en) Pregnancy time period forecasting device, pregnancy time period forecasting method, and pregnancy time period forecasting program
Gao et al. Identifying preferred management options: An integrated agent-based recreational fishing simulation model with an AHP-TOPSIS evaluation method
Heidari et al. On the long-term impact of algorithmic decision policies: Effort unfairness and feature segregation through social learning
US11170436B2 (en) Credit scoring method and server
JP7043786B2 (en) Sales activity support system, sales activity support method and sales activity support program
CN103412918A (en) Quality of service (QoS) and reputation based method for evaluating service trust levels
JP5234364B2 (en) Health guidance support system
CN108038622A (en) A kind of intelligent perception system recommendation user method
CN109582876A (en) Tourism industry user portrait building method, device and computer equipment
CN107370614A (en) Network user active degree appraisal procedure and Forecasting Methodology
CN112529716A (en) Quota prediction method, device and computer readable storage medium
CN108182633B (en) Loan data processing method, loan data processing device, loan data processing program, and computer device and storage medium
CN114880581A (en) User data processing method, storage medium and electronic device
KR102304563B1 (en) Method and apparatus for providing personalized obesity management service
Kaur et al. Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index
Frazier et al. Guessing preferences: A new approach to multi-attribute ranking and selection
CN115730125A (en) Object identification method and device, computer equipment and storage medium
Žižović et al. Multi-criteria decision making method for models with the dominant criterion
Pittarello et al. Chain ladder plus: a versatile approach for claims reserving
Wanjuki et al. Forecasting Commodity Price Index of Food and Beverages in Kenya Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Models
CN111652471A (en) List distribution control method and device, electronic equipment and storage medium
McCluskey et al. Computer assisted mass appraisal and the property tax
CN110427234A (en) The methods of exhibiting and device of the page
Adiga et al. Phase-Informed Bayesian ensemble models improve performance of COVID-19 forecasts
Ha et al. A fuzzy AHP model for selection of consultant contractor in bidding phase in Vietnam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875707

Country of ref document: EP

Kind code of ref document: A1