WO2018101396A1 - Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic ct device - Google Patents

Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic ct device Download PDF

Info

Publication number
WO2018101396A1
WO2018101396A1 PCT/JP2017/043031 JP2017043031W WO2018101396A1 WO 2018101396 A1 WO2018101396 A1 WO 2018101396A1 JP 2017043031 W JP2017043031 W JP 2017043031W WO 2018101396 A1 WO2018101396 A1 WO 2018101396A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ultrasonic imaging
ultrasonic
arrival time
subject
Prior art date
Application number
PCT/JP2017/043031
Other languages
French (fr)
Japanese (ja)
Inventor
東 隆
高木 周
遥 井本
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2018101396A1 publication Critical patent/WO2018101396A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/15Transmission-tomography

Definitions

  • the present invention relates to an ultrasonic imaging apparatus, an ultrasonic imaging method, an ultrasonic imaging program, and an ultrasonic CT apparatus, and more particularly to temperature detection of a subject including water and fat.
  • thermography When the subject is a living body, infrared rays emitted from the subject are detected and converted into temperature.
  • the second example is an MRI (Magnetic Resonance Imaging) apparatus.
  • the temperature can be calculated using the fact that the relaxation parameters (relaxation times T 1 and T 2 ) measured by the MRI apparatus, proton resonance frequency (Proton Resonance Frequency: PRF), and the like have temperature dependence.
  • thermography as the first example has a problem that the penetration depth (Penetration Depth) of infrared rays into the living body is relatively short and is limited to the measurement of the temperature distribution near the surface of the living body.
  • the MRI apparatus as the second example is large and has a problem that the introduction cost and the imaging cost are high. Furthermore, there are factors that can be affected when the temperature of the subject is monitored, such as the need to perform imaging in a strong magnetic field.
  • an X-ray CT (X-ray Computer Tomography) apparatus is also conceivable.
  • X-ray CT apparatus a method of calculating a temperature change using a linear attenuation coefficient is conceivable, but the sensitivity of the linear attenuation coefficient to temperature is low, the temperature resolution is limited, and it has not been put into practical use.
  • a CT apparatus using reflected ultrasonic waves is also conceivable.
  • the correlation coefficient between the echo luminance of the subject and the temperature is very small, and it is difficult to quantitatively calculate the temperature.
  • the present invention has been made in view of such problems, and realizes an ultrasonic imaging apparatus, an ultrasonic imaging method, an ultrasonic imaging program, which realizes temperature detection of a subject including water and fat at a low cost, It is another object of the present invention to provide an ultrasonic CT apparatus.
  • an ultrasonic imaging apparatus is an ultrasonic imaging apparatus that detects a temperature of a subject including water and fat, and the subject includes the subject.
  • the temperature dependent characteristic acquisition means for acquiring the temperature dependent characteristics of the sound speed of each of the plurality of parts, and each of the plurality of paths through the subject.
  • the first arrival time acquisition means for acquiring a plurality of first arrival time measurement values through which the ultrasonic wave passes, the plurality of first arrival time measurement values acquired by the first arrival time acquisition means, and the plurality Temperature determining means for determining the temperature of each of the plurality of parts based on the temperature dependent characteristic of the sound velocity of each of the plurality of parts acquired by the part temperature dependent characteristic acquisition means.
  • the multiple part temperature-dependent characteristic acquisition unit is a temperature environment different from a temperature environment in which measured values of the plurality of first measurement times are measured.
  • the sound speed of each of the plurality of parts is calculated based on the measurement values of the plurality of second measurement times measured below, and based on the sound speed of each of the plurality of parts, the water content ratio and the fat content are calculated.
  • the content ratio may be calculated, and the dependence of the sound speed on each of the plurality of parts may be calculated.
  • a factor caused by sound speed in each of a plurality of grids in a calculation region including the plurality of parts of the subject is a delay factor.
  • the temperature determination means is based on a measured value of the first arrival time in a certain path and a delay factor assumed for each of a plurality of grids on the path passing through the path among the plurality of grids of the calculation area.
  • a temperature correction unit may be provided to correct the temperature of each of the plurality of grids on the path so as to reduce the arrival time difference.
  • the temperature correction unit may correct the temperature of each of the plurality of grids on the path so that the arrival time difference becomes zero.
  • the temperature correction unit may correct the temperature change amount common to the plurality of grids on the path.
  • thermo correction unit uses a sign of a temperature change for correcting the temperature of each of the plurality of grids on the path as the assumption. It may be determined based on the sign of the temperature differential value of the delay factor and the sign of the arrival time difference.
  • the temperature correction unit may include a sign for the temperature change for correcting the temperature of each of the plurality of grids on the path. If the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference are the same, it may be determined to be positive, and if it is different, negative.
  • An ultrasonic CT apparatus includes the ultrasonic imaging apparatus according to any one of (1) to (8), an ultrasonic measurement unit that measures the plurality of first arrival times, An ultrasonic CT apparatus may be provided.
  • the ultrasonic imaging method is an ultrasonic imaging method in which a temperature of a subject including water and fat is detected, and water is contained in each of a plurality of portions of the subject. Based on the ratio and the fat content ratio, the temperature-dependent characteristics acquisition step for acquiring the temperature-dependent characteristics of the sound speeds of each of the plurality of parts, and a plurality of ultrasonic waves that pass through each of the plurality of paths that penetrate the subject.
  • the ultrasound imaging program according to the present invention is a computer that detects the temperature of a subject including water and fat, and the water content ratio and the fat content in each of the plurality of parts of the subject. Based on the content ratio, the temperature-dependent characteristic acquisition means for acquiring the temperature-dependent characteristics of the sound speeds of the plurality of parts, and the measurement of the plurality of first arrival times through which the ultrasonic waves pass through each of the plurality of paths passing through the subject First arrival time acquisition means for acquiring values, measured values of the plurality of first arrival times acquired by the first arrival time acquisition means, and each of the plurality of parts acquired by the plurality of part temperature-dependent characteristic acquisition means And an ultrasonic imaging program for functioning as temperature determining means for determining the temperature of each of the plurality of parts based on the temperature-dependent characteristics of the sound speed of
  • an ultrasonic imaging apparatus an ultrasonic imaging method, an ultrasonic imaging program, and an ultrasonic CT apparatus that can realize temperature detection of a subject including water and fat at a low cost.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic CT apparatus according to a first embodiment of the present invention. It is a figure which shows the structure of the principal part of the ultrasonic measurement part 2 which concerns on the 1st Embodiment of this invention. It is a flowchart of the ultrasonic imaging program which concerns on the 1st Embodiment of this invention. It is a schematic diagram which shows the calculation area
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic CT apparatus 1 according to the first embodiment of the present invention.
  • the ultrasonic CT apparatus 1 includes an ultrasonic measurement unit 2 and an ultrasonic imaging device 3, and the ultrasonic imaging device 3 includes a control unit 4, an input device 5, and a display device 6. And comprising.
  • the control unit 4 includes a CPU unit 11, a storage unit 12, an information input unit 13, and an information output unit 14.
  • the control unit 4 is realized by a commonly used computer, and further includes a ROM (Read Only Memory) and a RAM (Random Access Memory), which are not shown, and the ROM and RAM constitute an internal memory of the computer.
  • the storage unit 12 is a recording medium, and may be configured by a semiconductor memory, a hard disk, or any other arbitrary recording medium.
  • the storage unit 12 is installed inside the computer, but may be installed outside the computer. Further, the storage unit 12 may be a single unit or a plurality of recording media.
  • the information input unit 13 is an interface or the like connected to the input device 5, and acquires information that the user inputs to the input device 5 from the input device 5.
  • the information output unit 14 is an interface connected to the display device 6 and outputs information to be displayed on the display device 6 to the display device 6.
  • the input device 5 is realized by a keyboard, a mouse, a touch panel, etc.
  • the display device 6 is realized by a generally used display.
  • the control unit 4 of the ultrasonic imaging apparatus 3 includes means for executing each step of the ultrasonic imaging method described below.
  • the ultrasound imaging program 31 according to the embodiment is a program for causing a computer to function as each means. The details of the CPU unit 11 and the storage unit 12 of the control unit 4 will be described later.
  • the ultrasonic measurement unit 2 of the ultrasonic CT apparatus 1 will be described.
  • the main configuration of the ultrasonic measurement unit 2 is disclosed in Non-Patent Document 1, for example.
  • the diagnostic apparatus described in Non-Patent Document 1 is a CT apparatus using transmitted ultrasound. Ultrasonic waves are high frequency sound waves that exceed the human audible range (20 Hz to 20 kHz). The frequency of the ultrasonic wave used here is preferably 1 MHz or more and 20 MHz or less.
  • the diagnostic apparatus has a ring array transducer, and a plurality of transducers for transmission and a plurality of detection elements for reception are arranged in a ring shape in the ring array of the ring array transducer.
  • the ring array is fixed on a rail that moves up and down in the water tank, and the ring array can be controlled up and down by a stepping motor. Thereby, the arrival times at which supersonic speeds pass through a plurality of paths penetrating the subject (here, the breast) are measured.
  • the patient only lies on the bed and inserts the subject's breast into the aquarium, and is not squeezed like mammography.
  • FIG. 2 is a diagram illustrating a configuration of a main part of the ultrasonic measurement unit 2 according to the embodiment.
  • the ultrasonic measurement unit 2 includes a ring array transducer 21, a switching circuit 22 (1024 to 256 multiplexer), an ultrasonic control system 23, and a measurement control unit 24.
  • the ring array transducer 21 is a ring-type vibrator composed of 1024 elements, and includes four transmission / reception probes 25. Each transmitting / receiving probe 25 has a concave shape that constitutes a quarter of the ring, and includes 256 strip-shaped piezoelectric elements. Each strip-type piezoelectric element is usually used for both transmission and reception.
  • a subject 100 is placed inside the ring.
  • the ring array transducer 21 it is manufactured by the same manufacturing process as that of a generally used ultrasonic diagnostic probe (convex probe). That is, in the convex type probe, a process of bending so that the middle of the opening protrudes in the middle of the process, but the ring array transducer 21 according to the embodiment performs a process of bending so that the middle of the opening is recessed.
  • the resonance frequency is 2 MHz, it is needless to say that the present invention is not limited to this.
  • the switching circuit 22 collects data by the following operation.
  • Each of the four transmission / reception probes 25 transmits a signal, and at this time, all of the four transmission / reception probes 25 receive the signal and acquire the delay time. That is, first, the transmission transducers (1 to 256) of the first transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals. . Similarly, the transmission transducers (257 to 512) of the second transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals.
  • the transmission transducers (513 to 768) of the third transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals.
  • the transmission transducers (769 to 1024) of the fourth transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals.
  • the measurement control unit 24 controls the ultrasonic control system 23 when the data collection for one round of the ring array transducer 21 is completed, a sequence in which the measurement controller 24 pauses for a fixed time on the order of 1/10 seconds is performed, and a total of 3 Data collection.
  • each transmission / reception probe 25 includes a heating element 26.
  • the heating element 26 becomes an ultrasonic oscillator, for example, when a high-intensity focused ultrasound therapy (HIFU: High Intensity / Focused / Ultrasound) is performed.
  • HIFU High Intensity / Focused / Ultrasound
  • the heating element 26 may be a plurality of micro heaters.
  • Each microheater has a diameter of, for example, 1.6 mm. When the subject 100 is heated, the microheater is extended from each transmission / reception probe and connected to a region to be heated in the subject 100 (or medium).
  • the heating element 26 is connected to the ultrasonic control system 23 and the measurement control unit 24.
  • the ultrasonic control system 23 has a thermostat function, and the measurement control unit 24 controls the ultrasonic control system 23 so that a desired condition is applied to the subject 100 (or medium) according to a desired condition. Heat can be applied.
  • the transmission / reception probe 25 is provided with the heating element 26, but is not limited to the heating element for the purpose of heating, and may be a cooling object for the purpose of cooling. It is desirable that the ultrasonic measurement unit 2 includes a temperature adjustment mechanism that heats or cools at least a part of the measurement region including the subject, that is, changes the temperature according to the purpose.
  • an ultrasonic imaging program 31 is stored in the storage unit 12. Furthermore, the storage unit 12 includes an information storage unit 32. In the ultrasonic imaging apparatus 3, an ultrasonic imaging program 31 stored in the storage unit 12 is activated. The ultrasonic imaging apparatus 3 according to the embodiment detects the temperature of the subject 100 including water and fat.
  • FIG. 3 is a flowchart of the ultrasound imaging program 31 according to this embodiment.
  • the ultrasonic imaging program 31 detects the temperature of the subject 100 based on the measurement data acquired from the ultrasonic measurement unit 2.
  • the CPU unit 11 of the control unit 4 includes a temperature-dependent characteristic acquisition unit 41, a first arrival time acquisition unit 42, and a temperature determination unit 43.
  • the temperature-dependent characteristic acquisition unit 41 includes a second arrival time acquisition unit 45, a reference temperature sound speed determination unit 46, and a temperature-dependent characteristic calculation unit 47.
  • Temporal-dependent characteristic acquisition step S1
  • S1 temperature-dependent characteristic acquisition step
  • the water content ratio and the fat content ratio in each of a plurality of parts (pixels) of the subject 100 are acquired, and details thereof will be described later.
  • the temperature dependent characteristics of the sound speed of fat and water are approximated as first and fifth order temperature functions, respectively.
  • the sound speed (m / s) is SOS and the fat sound speed is SOS f
  • the fat sound speed SOS f is approximated by the following Equation 1.
  • D 0 1402.39
  • D 1 5.0371
  • D 2 ⁇ 5.8085 ⁇ 10 ⁇ 2
  • D 3 3.3420 ⁇ 10 ⁇ 4
  • D 4 ⁇ 1.4780 ⁇ 10 ⁇ 6
  • D 5 3.1464 ⁇ 10 ⁇ 9 .
  • the subject 100 when the subject 100 is a living body, the subject 100 contains substances other than water and fat. Water and fat are greatly different from each other in the temperature-dependent characteristic of sound speed in the region of 20 ° C. to 80 ° C., and the temperature-dependent characteristic of sound speed varies greatly depending on the mixing ratio.
  • the temperature dependence of the sound speed of other substances generally depends on whether the sound speed increases as the temperature rises like water or the sound speed decreases as the temperature rises like fat. It can be broadly divided into any kind of characteristics. Therefore, the subject 100 is classified into a plurality of parts (a plurality of pixels), and the temperature-dependent characteristics of the sound speed of each part are determined based on the water content ratio and the fat content ratio in each part. In this embodiment, each part is approximated to a mixture of water and fat as an effective and simple technique.
  • the content ratio (weight ratio) of fat and water with respect to the whole mixture is R f and R w , respectively
  • the sound velocity SOS mix of the mixture is expressed by the following Equation 3.
  • each part is a mixture of only water and fat, and the temperature-dependent characteristics of the sound speed of each part are acquired by the content ratio of water and the content ratio of fat.
  • other substances may be further considered, not just water and fat. That is, in addition to the water content ratio and the fat content ratio in each part, the temperature-dependent characteristics of the sound speed of each part may be acquired based on the content ratio of other substances.
  • First arrival time acquisition step A plurality of measured values of the first arrival time through which the ultrasonic wave passes through each of a plurality of paths penetrating the subject (S2: first arrival time acquisition step).
  • the ultrasonic measurement unit 2 measures a plurality of first arrival times, and acquires a measurement value of the first arrival times from the ultrasonic measurement unit 2.
  • a plurality of measured values of the first arrival time may be recorded in the information storage unit 32, and the measured values of the first arrival time may be acquired from the information storage unit 32.
  • FIG. 4 is a schematic diagram showing a calculation area (measurement area) according to the embodiment.
  • a transmitting element and a receiving element are arranged on the circumference, and a subject 100 that is a living body is arranged in the circumference.
  • An area including the subject 100 is a calculation area, and the calculation area is divided into a plurality (N) of grids (pixels).
  • a plurality (M) of paths through which ultrasonic waves emitted from a plurality of transmitting elements on the ring circumference reach each of a plurality of receiving elements on the circumference are determined.
  • the subject 100 is arranged on the calculation area, and a plurality of grids classified on the subject 100 become a plurality of parts of the subject 100, respectively, and the plurality of paths include a plurality of paths that penetrate the subject 100. It is out.
  • Measurements are performed at unknown temperature conditions.
  • the subject 100 is a breast
  • the breast contains a tumor
  • hyperthermia thermal therapy
  • a plurality (M) of arrival times through which the ultrasonic waves pass through each of the plurality (M) of paths are measured, and the plurality of (M) arrival times are measured.
  • a measured value is obtained.
  • a plurality of arrival times measured in an unknown temperature state are a plurality of first measurement times.
  • FIG. 4 illustrates four paths l, l + 1, n, and n + 1, and the arrival times (s) thereof are shown as P l , P l + 1 , P n , and P n + 1 .
  • a j-th (j is an integer from 1 to N) grid segment passing through the i-th (i is an integer from 1 to M) path is defined as a weight function W i, j . Since the weight function W i, j is obtained, it can be handled as a known value. Further, a factor resulting from the sound speed in the j-th grid is defined as a delay factor f j (hereinafter referred to as slowness (s)).
  • the slowness f j is a value obtained by dividing the size (length) of one grid by the speed of sound SOS, and is the passing time of one grid of ultrasonic waves.
  • W i, j f j is the product of the weight functions W i, j and slowness f j is the transit time of the j-th grid in the i th path. Therefore, the sum of W i, j f j is the arrival time P i (s) that the ultrasonic wave passes through the i-th path.
  • the arrival time P i is expressed by the following Equation 4.
  • the grid weight function W i, j through which the i-th path passes has a positive value.
  • a to J are attached to the grid through which the l-th path shown in FIG. 4 passes, and the weighting functions W l and A to J are values of weights (contributions) according to the length passing through the grid. It becomes. For example, when the length of one side of the grid is 1, the weight function W i, j has a value between 0 and ⁇ 2.
  • Equation 4 M simultaneous linear equations can be obtained by Equation 4 relating to a plurality (M) of first arrival times P i (i is an integer of 1 to M) measured from a plurality (M) of paths. From the relationship between the unknown and the number of equations, if M ⁇ N 2 , the value of the slowness f j of each grid (pixel) can be determined as a solution.
  • Techniques sound speed reconstruction method for calculating a sequential approximate solution for the slowness f j are well known. For example, the ART (Algebraic Reconstruction Technique) method, the SIRT (Simultaneous Iterative Reconstruction Technique) method, the SART (Simultaneous Algebraic Reconstruction Technique). ) Method and C-SART (Curved-ray SART) method.
  • the temperature of each region of the subject 100 is determined, the subject 100 temperature detections (temperature monitoring) are performed. Furthermore, the temperature detection result of the cross section of the subject 100 can be displayed by imaging the temperature of each part.
  • the ultrasonic imaging program 31 according to the embodiment has been described above.
  • the main feature of the ultrasound imaging program 31 according to this embodiment is that the temperature-dependent characteristics of the sound speed of each of the plurality of parts of the subject 100 are based on the water content ratio and the fat content ratio of each of the plurality of parts. To decide.
  • the temperature dependent characteristic acquisition step (step S1) there can be many methods for determining the water content ratio and the fat content ratio of each of the plurality of parts.
  • the temperature dependent characteristic acquisition step (step S1) according to the embodiment will be described below. ) Will be described in detail.
  • FIG. 5 is a flowchart of the temperature-dependent characteristic acquisition step (step S1) according to this embodiment.
  • [Second arrival time acquisition step: sa] Acquires measurement values of a plurality of second measurement times in which ultrasonic waves pass through each of a plurality of paths penetrating the subject, measured in a temperature environment different from the temperature environment in which the measurement values of the plurality of first measurement times are measured.
  • the ultrasonic measurement unit 2 measures a plurality of second arrival times, and acquires a measurement value of the second arrival times from the ultrasonic measurement unit 2. Further, a plurality of measured values of the second arrival time may be recorded in the information storage unit 32, and the measured values of the second arrival time may be acquired from the information storage unit 32.
  • Step sa is the same as step S2 (first arrival time acquisition step) except that the measured temperature environment is different.
  • step S2 the measurement for the running in an unknown temperature state, in step sa, is performed under a known reference temperature T s environment.
  • the reference temperature T s is set to 25 ° C.
  • the reference temperature T s is preferably set to 20 ° C. or more and 30 ° C. or less.
  • the temperature distribution of the subject 100 can be regarded as substantially constant.
  • T s environment using a ring array transducer 21 of the ultrasonic measuring unit 2, the arrival time of the plurality the plurality of respective paths ultrasound undergoes the (M present) (M number) is measured, A plurality of (M) arrival time measurement values are acquired.
  • a plurality of arrival times measured under a known reference temperature T s environment is a plurality of second measuring time.
  • step S3 temperature determination step
  • step S3 temperature determination step
  • step S3 temperature determination step
  • step S3 temperature determination step
  • step S3 temperature determination step
  • step S3 The value of the slowness f j of each grid (pixel) is determined from the simultaneous linear equations consisting of Equation 4 relating to a plurality of first arrival times
  • step sb The value of the slowness f j of each grid (pixel) is determined from the simultaneous linear equations consisting of Equation 4 relating to a plurality of second arrival times.
  • a slowness value or a sound speed value at each of a plurality of parts of the subject 100 is determined.
  • a region other than the subject 100 in the calculation region is filled with a known medium such as water.
  • the temperature dependence characteristics of the sound speed in these areas are stored in the information storage section 32, and the temperature dependence characteristics of the sound speed in these areas may be acquired from the information storage section 32.
  • the temperature dependence characteristics of the sound speed at each of the plurality of parts of the subject 100 may be stored in the information storage unit 32, and the temperature dependence characteristics of the sound speed at each of the plurality of parts may be acquired from the information storage unit 32.
  • the temperature dependent characteristic acquisition step (step S1) according to the embodiment has been described above.
  • the water content ratio Rw and the fat content ratio Rf of each of the plurality of parts of the subject 100 are obtained by measurement using the ultrasonic measurement unit 2 according to the embodiment. It is determined.
  • the measurement of the plurality of second arrival times is performed under a temperature environment (reference temperature T s ) different from the measurement of the plurality of first arrival times, but otherwise, measurement may be performed under common conditions. Therefore, in addition to determining the temperature-dependent characteristics of the sound speed of each of a plurality of parts (multiple grids) with high accuracy, measurement can be performed using the same apparatus (ultrasonic measurement unit 2), thereby reducing measurement time. There are special effects such as a reduction in the cost of preparing the device.
  • the multiple-part temperature-dependent characteristic acquisition step is not limited to the embodiment.
  • the water content Rw and the fat content Rf may be determined.
  • the water content ratio R w and the fat content ratio R f are determined by measurement using an MRI apparatus, and a plurality of test subjects are determined based on the determined water content ratio R w and fat content ratio R f . You may determine the temperature dependence characteristic of the sound speed of each site
  • step S1 is before the temperature change, even if time is required for the reconstruction time, no particular inconvenience occurs.
  • step S2 high-speed reconstruction is desired in consideration of real-time feedback. The following method is also useful as a method for realizing this.
  • this is a technique for reconstructing the difference between the first arrival time distribution and the second arrival time distribution instead of reconstructing the first arrival time distribution.
  • the distribution of fat and water in the living body has a more complex spatial distribution than the temperature distribution. This is because the heat diffuses to the surroundings with a constant thermal conductivity, so it is unlikely to have a discontinuous distribution.
  • the shape of a mixture of mammary gland and fat is intermittent in each other region This is because they often have complex anatomical structures mixed with each other.
  • the complexity of the sound speed distribution increases the calculation cost because it increases the number of iterations in the ART method, SART method, and C-SART method.
  • the temperature distribution is locally applied in a temperature change such as focused ultrasound treatment. Since it stays, the number of iterations can be reduced.
  • the ultrasonic CT apparatus 1 according to the second embodiment of the present invention is the ultrasonic CT apparatus according to the first embodiment except that the configuration of the temperature determining means 43 provided in the ultrasonic imaging apparatus 3 is different. 1 has the same configuration.
  • the temperature determination unit 43 according to this embodiment includes a temperature correction unit 48.
  • the inventors devised a T-SART (Temperature considering SART) method in which the temperature distribution is taken into consideration in the SART method and adopted as the sound velocity reconstruction method according to the embodiment.
  • T-SART Temporal considering SART
  • SART sound velocity reconstruction method
  • the subscripts i, j, and k represent the path number, grid number (pixel number), and number of calculation steps, respectively.
  • g, a, w, and p represent a brightness function, a weight function, a weight function considering a Hamming window function, and projection data, respectively.
  • the luminance value is the passing time of each grid, that is, the slowness f
  • the projection data is the arrival time P (first arrival time).
  • the model is corrected by calculating the “slowness difference” in a system without sound speed heterogeneity from the “arrival time difference” with a system without sound speed heterogeneity. Therefore, to be precise, here, arrival time means “difference in arrival time with a system without sound speed heterogeneity” and slowness means “difference in slowness with system without sound speed heterogeneity". ing.
  • FIG. 6A is a diagram for explaining the SART method.
  • the SART method can be interpreted as making the following modifications.
  • the difference arrival time difference
  • the difference is multiplied by the weight function (wi , j ) for the path of each grid, and is distributed evenly, and the correction amount (in the parenthesis of the summation symbol ⁇ in the numerator of the second term on the right side of Equation 5) )
  • the correction amount in the parenthesis of the summation symbol ⁇ in the numerator of the second term on the right side of Equation 5)
  • the arrival time difference is zero due to the luminance value change (correction amount) common to each of the plurality of grids on the route (i-th route). Then, the luminance value (slowness) distribution is corrected so that the temperature distributions of a plurality of grids on the path are corrected based on the corrected luminance value (slowness) distribution.
  • the temperature calculation error increases in a region where the change rate of the temperature-dependent characteristic of the sound speed is small. Therefore, in particular, in a model in which the subject is a mixture of water and fat, the temperature-dependent characteristics of each part are convex upward and can be a function having a maximum value near the target temperature. In some cases, there may be no intersection with such temperature dependent characteristics, so a small sound speed error may cause a large temperature error.
  • the initial value T j (0) of the temperature distribution of a plurality of grids is set as the initial condition.
  • the luminance value g j (k) (here, slowness) in each calculation step is the reciprocal of the speed of sound and is therefore expressed as a function of the temperature T j (k) . Since the luminance value g j (k) and the temperature T j (k) have a one-to-one correspondence, the initial value g j of the luminance value distribution can be set by setting the initial value T j (0) of the temperature distribution of a plurality of grids. There is no need to set (0) .
  • the luminance value g l (k) is expressed by the following formula 6.
  • Formula 6 is represented by Formula 7 shown below by Formula 1 thru
  • or 3 and approximation ( Rf + Rw 1) with the mixture of only water and fat.
  • the value of the luminance value g j (slowness) is changed by correcting the temperature using Equation 7.
  • the T-SART method as in the SART method, attention is paid to each path of ultrasonic waves. Then, all temperatures on the i-th path are changed evenly by dt i .
  • the variable z i, j is defined as a function that becomes 1 when the j-th grid is on the i-th path and 0 when there is no j-th grid on the i-th path.
  • the corrected temperature distribution in the i-th path is expressed by Equation 8 below.
  • the luminance value after temperature correction is expressed by the following formula 9.
  • Equation 8 The luminance value (slowness) when temperature correction is given on the path is calculated by Equation 8 and Equation 9. Therefore, it is important to calculate the correction temperature amount dt i given to the i-th path shown in Formula 8.
  • the temperature of the i-th path is corrected so that the arrival time of the ultrasonic wave passing through the i-th path becomes equal to the actual arrival time.
  • Equation 10 The condition for this is defined by Equation 10 shown below.
  • FIG. 6B is a diagram for explaining the T-SART method.
  • the temperature distribution is corrected by correcting the temperature distribution so that the arrival time difference becomes zero based on the temperature change (correction amount) common to each of the plurality of grids on the i-th path with respect to the assumed temperature distribution. Based on the distribution, the luminance value (slowness) distribution of a plurality of grids on the path is corrected.
  • Equation 8 a relational expression for the projection data p i and the calculated change temperature dt i can be obtained.
  • it is difficult to directly solve the change temperature dt i and in the present embodiment, it is calculated using the following search method.
  • the search direction is assumed to be correct.
  • the absolute value of the arrival time difference is increased, that is, if
  • the arrival time difference dP (T j (k) + z i, j ⁇ n ⁇ ddt) and dP (T j (k) + z i, j ⁇ (n + 1) ⁇ ddt) is that the sign of the sign is reversed (n is an integer of 1 or more).
  • the iterative calculation termination condition is not limited to the above condition, and a method using a relative residual is also conceivable. Further, the search method of dt i is not limited to these, and other methods may be used.
  • the correction values for all routes are calculated by the above method. Similar to the SART method, the T-SART method averages the correction values calculated in all the routes, and corrects the model using the following Equation 12. For the distribution of correction values, a Hamming window function is introduced to correct the data density.
  • FIG. 7 is a flowchart of the temperature determination step (step S3) according to this embodiment. Step S3 based on the described T-SART method will be described below.
  • Initial temperature condition setting step ta
  • An initial temperature condition is set for each of a plurality of grids in a calculation region including a plurality of parts of the subject (ta: initial temperature condition setting step).
  • the initial value T j (0) of the temperature distribution of the plurality of grids is set, but the initial value T j (0) of the temperature distribution may be a predetermined temperature (uniform distribution), for example.
  • Temporal correction step: tb A measured value of the first arrival time in a certain route (i-th route: i is an integer of 1 to M) and a delay factor assumed for each of a plurality of grids on the route passing through the route among a plurality of grids in the computer area
  • i-th route: i is an integer of 1 to M
  • a delay factor assumed for each of a plurality of grids on the route passing through the route among a plurality of grids in the computer area When there is a difference in arrival time between the arrival times based on, the temperatures of the grids on the plurality of paths are corrected so as to reduce the difference in arrival time (tb: temperature correction step).
  • tb temperature correction step
  • the plurality of grids on the route are a plurality of grids that penetrate the route among the plurality of grids in the computer area.
  • the plurality of grids on the route are A to J. .
  • Step tb is repeated for all (M) routes.
  • step tb the temperature distributions T j (k) of the plurality of on-path grids passing through the i-th path are determined by the temperature change dt i common to the plurality of on-path grids so that the arrival time difference dP i becomes zero. It is corrected.
  • the method for determining the temperature change dt i is as already described. One example is shown. (I) A temperature search width ddt having a predetermined value is set. (Ii) The temperature distribution of the grid on the path is changed to (T j (k) + ddt).
  • the temperature distribution of the path grid is corrected so as to reduce the arrival time difference.
  • a value common to the grid on the path is used for the temperature change for correction in each path.
  • the method is not limited to this method.
  • the arrival time difference is reduced by correcting the temperature distribution of the on-path grid, the temperature distribution is not limited to being corrected by a common value in the on-path grid.
  • the reason why the arrival time difference is reduced by correcting the temperature distribution will be explained below.
  • the estimation accuracy of the mixing ratio decreases in a region where the change of the mixing ratio is steep.
  • the temperature-dependent characteristic of sound speed deviates from the original temperature-dependent characteristic. The result of this deviation induces a temperature estimation error.
  • the boundary of the temperature distribution is always gentle due to the effect of thermal diffusion (if there is a region with significantly lower thermal conductivity compared to the surroundings, the thermal diffusion efficiency decreases only in that region, so the temperature spatial gradient is large.
  • the temperature distribution assumes spatial continuity rather than the spatial continuity of the mixing ratio of fat and water. Therefore, it is appropriate to reduce the arrival time difference by correcting the temperature distribution.
  • each pixel is divided into a region having a temperature dependence of sound speed similar to water and a region having a temperature dependence of sound speed similar to fat.
  • the ultrasonic CT apparatus 1 according to the third embodiment of the present invention is different from the ultrasonic CT apparatus according to the second embodiment except that the configuration of the temperature determining means 48 provided in the ultrasonic imaging apparatus 3 is different. 1 has the same configuration.
  • the temperature determination unit 48 according to the second embodiment there may be a problem in convergence.
  • the temperature determining unit 48 according to the embodiment determines the temperature change for correction in consideration of convergence.
  • Equation 13 the corrected luminance value (slowness) is approximated by Equation 13 shown below.
  • Expression 14 is obtained as a conditional expression that satisfies the correction temperature dt i by Expression 10 and Expression 13.
  • Equation 15 is a conditional expression for calculating the correction temperature in the i-th path (one path) to the last, and dP i and dt i are scalar quantities.
  • the left side of Equation 15 means the difference between the arrival time of the ultrasonic wave and the actual arrival time in the current model, and the right side of Equation 15 shows the change in arrival time that changes when the correction temperature dt i is given. I mean. By correcting the temperature so that they are equal, the arrival time of the ultrasonic wave passing through the i-th path is adjusted to be equal to the actually measured value.
  • the (positive or negative) sign of the correction temperature dt i is determined depending on the signs of dP i and a i T (dG / dt). Therefore, the sign of the differential value dG / dT of the luminance value is important.
  • Expression 17 is derived from Expression 16 when an ideal temperature distribution T j ideal set in the system is used.
  • Expression 17 is replaced with Expression 18 shown below.
  • Equation 18 is approximated to Equation 19 shown below.
  • Formula 19 means line integration along the path by multiplying the temperature differential value of the brightness value (slowness) in each grid (pixel) by the difference from the ideal temperature. It is assumed that the i-th path starts from one point on the outer periphery of the ring, passes through the central portion where the subject is arranged, and reaches another point on the opposite side of the one point on the outer periphery of the ring. For example, consider a case where the sign of the temperature differential dG / dT of the brightness value is negative near the outer periphery of the calculation area, and the sign of the temperature differential dG / dT of the brightness value is positive near the center of the calculation area. Then, it is assumed that the arrival time difference dP i from the actually measured value in the i-th route is calculated as a positive value.
  • the absolute value of dG / dT near the outer periphery is larger than the absolute value of dG / dT near the center, or the region where dG / dT is negative is greater than the region where dG / dT is positive. If it is long, the correction temperature dt i ( common to all of the plurality of grids on the i-th path) in the T-SART method can be negative from Equation 11. Even in such a case, the signs of dT j (k) may be all positive in all grids on the i-th path.
  • both sides of Equation 19 can be positive.
  • the actual correction temperature dT j (k) is a positive value in all the grids on the i-th path
  • the correction temperature dt i in the T-SART method is negative, and the correction temperature is It is calculated opposite to the original temperature difference, and the convergence may be deteriorated.
  • a T-SART method (hereinafter referred to as a modified T-SART method) in consideration of convergence is adopted.
  • the correction temperature is set to the correction temperature dt i common to all the plurality of grids on the i-th path.
  • the sign of the correction temperature is determined according to the sign of the sign of the temperature differential dG / dT of the luminance value (slowness) in each of the plurality of grids.
  • the correction temperature is set to a correction temperature dt i common to all the plurality of grids on the i-th path.
  • the correction temperature in the j-th grid is set to dt i, j .
  • Expression 10 is rewritten to Expression 20 shown below.
  • Equation 20 can be rewritten as Equation 21 below.
  • C i is a constant for the i-th path.
  • the sign of the correction temperature dt i, j in each grid (pixel) is determined according to the sign of the temperature differentiation of the luminance value (slowness). As shown in Equation 23 below, if the arrival time difference dP i is positive , the sign of dt i, j is determined so that (dG / dT) dt i, j becomes positive.
  • Equation 24 if the arrival time difference dP i is negative, the sign of dt i, j is determined so that (dG / dT) dt i, j is negative.
  • the modified T-SART method is described below using a two-dimensional hyperplane. Assuming that the number of grids is 2 (j is an integer of 1 or 2), the projection data p i (arrival time) and the luminance value g j (slowness) are expressed by the following formula 25 using ⁇ ij as a weight function.
  • FIG. 8 is a diagram showing directions of correction vectors in the SART method and the T-SART method on a two-dimensional hyperplane.
  • the two formulas shown in Formula 25 can be represented by a straight line l and a straight line m, respectively.
  • the model is corrected so that a perpendicular line is extended to a straight line that means a solution to a certain projection. That is, the correction vector of the luminance value (slowness) has a direction orthogonal to the straight line as shown by a broken line in FIG.
  • the temperature is uniformly corrected in each path, and the two-dimensional hyperplane is expressed by the signs of ⁇ G1 (dT) and ⁇ G2 (dT) that are components of the correction vector.
  • Region 1 where the signs of ⁇ G1 (dT) and ⁇ G2 (dT) are (positive, positive), region 2 (positive, negative), region 3 (negative, negative), and (negative, positive) region 4 is classified into four areas. Among these, as indicated by the solid line in FIG. 8, when the correction vector is region 1 and region 3, it is considered to have good convergence, but when the correction vector is region 2 and region 4, It is considered that there may be a problem with convergence.
  • FIG. 9 is a diagram showing the direction of the correction vector in the modified T-SART method on the two-dimensional hyperplane.
  • the directions of correction vectors in the SART method and the T-SART method are also shown.
  • the correction vector in the SART method has a direction orthogonal to the straight line 1 as indicated by V1 in the figure.
  • the correction temperatures of the grid 1 and the grid 2 are the same (both are set to C 1 here), and thus have a direction indicated by V 2 in the figure.
  • the sign of the temperature change to be corrected is changed according to the sign of the temperature derivative of the luminance value (slowness). Therefore, in the case shown in FIG. Are different from each other. Therefore, the correction vector has a direction indicated by V3 in the figure.
  • Step S3 is as shown in the flowchart of FIG. 7, but the configuration of the temperature correction step (step tb) is different from that of the second embodiment.
  • the temperature of each of the grids on the plurality of paths is corrected so as to reduce the arrival time difference and, if desired, the arrival time difference is zero.
  • the sign of the temperature change that corrects the temperature of each of the grids on the plurality of paths is determined based on the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference. Yes.
  • the absolute value of the temperature change for correcting the temperature of each of the plurality of path grids is a value common to the plurality of path paths.
  • the sign of the temperature change that corrects the temperature of each grid on the path is determined to be positive if the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference are the same, and negative if they are different It is more desirable to do this.
  • step tb in the temperature correction step (step tb), the absolute value of the temperature change in the plurality of grids is a common value. Therefore, in step tb, the sign of the temperature change in each grid is determined, and the common value is calculated. As described above, the sign of the temperature change in each grid is determined by Equations 23 and 24. The calculation of the common value is similar to the method for determining the temperature change in the second embodiment.
  • step tb A temperature search width ddt having a predetermined value is set (similar to the second embodiment).
  • the temperature distribution of the grid on the path is changed to (T j (k) + ddt) (similar to the second embodiment).
  • a luminance value G (T j (k) + ddt) in the temperature distribution (T j ( k) + ddt) is calculated (similar to the second embodiment).
  • the absolute value of the temperature change for correction in each path grid is a common value in a plurality of path grids, but is not limited thereto.
  • the sign of the temperature change for correction in each grid on the path is determined by Expressions 23 and 24.
  • the sign of the temperature change in the plurality of grids on the path is all determined by Expressions 23 and 24. It does not have to be. What is necessary is just to determine the code
  • the “part” is preferably a grid on a route that is 70% or more of a plurality of grids on a route.
  • the convergence based on Equations 23 and 24 is applied to the T-SART method.
  • the present invention is not limited to this, and other sound speed reproduction using the temperature differential value of the luminance value is possible. You may apply to a construction method.
  • the ultrasonic imaging apparatus, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic CT apparatus have been described above. Below, the measurement result and calculation result by embodiment of this invention are shown below.
  • FIG. 10 is a diagram showing an example of a measurement result obtained by the ultrasonic CT apparatus 1 according to the first embodiment of the present invention.
  • FIG. 10 is an image of the sound velocity distribution based on the measurement data of the subject 100.
  • an acrylamide gel is used for the subject 100
  • a micro heater is used as the heating element 26, simulating a HIFU that warms a small region to a high temperature by ultrasonic waves.
  • the center portion of the subject 100 is heated intensively and the temperature rises due to internal heat generation.
  • the state of the subject 100 is 2 minutes after the start of heating. .
  • the temperature of the subject 100 and the medium (water) before heating is 20 ° C.
  • the sampling rate is 10 MHz, and the sample interval time is 0.1 ⁇ s.
  • the sound speed at the center of heating is increased to near 1550 m / s, and the sound speed decreases as the distance from the microheater increases.
  • the sound speed is 1482 m / s in a constant state. It is near s.
  • FIG. 11A is a diagram showing a model of the subject 100 set in the ultrasonic imaging apparatus 3 according to the second and third embodiments of the present invention.
  • the subject 100 is a cell.
  • the fat content ratio is constant and the diameter of the subject 100 is set to 20 mm.
  • the medium around the subject 100 is water (the content ratio of fat is 0).
  • FIG. 11B is a diagram showing a calculation result of the ultrasonic imaging apparatus 3 according to the second embodiment of the present invention.
  • FIG. 11B shows a calculation result obtained by performing iteration (number of calculation steps) 100 times on the temperature distribution of the path i shown in FIG. 11A.
  • a temperature distribution curve which is a calculation result by the T-SART method according to the embodiment is shown together with a temperature distribution of a set model.
  • the subject 100 shown in FIG. 11B has a fat content ratio of 20%. That is, the weight ratio of fat to water is 1: 4.
  • the subject 100 is such a mixture, both the temperature dependence of the water slowness and the temperature dependence of the subject 100 are dG / dT> 0, and the calculation result shows the model temperature distribution and the practical use. The same level of agreement.
  • FIG. 11C is a diagram showing a calculation result of the ultrasonic imaging apparatus 3 according to the third embodiment of the present invention.
  • FIG. 11C shows a calculation result obtained by performing iteration (number of calculation steps) 50 times on the temperature distribution of the path i shown in FIG. 11A.
  • a temperature distribution curve which is a calculation result by the modified T-SART method according to the embodiment is shown together with a set model temperature distribution.
  • the subject 100 shown in FIG. 11C has a fat content ratio of 60%. That is, the weight ratio of fat to water is 3: 2.
  • the temperature dependence of the slowness of water is dG / dT> 0, whereas the temperature dependence of the slowness of the subject 100 is dG / dT ⁇ 0.
  • the T-SART method may cause a problem in convergence.
  • the calculation results have a practical level of coincidence.
  • a discontinuous jump (jump) in temperature is observed at the boundary between the subject 100 and the medium (water).
  • each grid is a pixel (pixel), but is not limited to this, and may be three-dimensional imaging.
  • each grid is a voxel.
  • the example of ultrasonic therapy was mainly demonstrated about the temperature change detected with the ultrasonic imaging apparatus which concerns on embodiment of this invention.
  • examples of temperature detection are not limited to this, and there are, for example, the following two examples.
  • the technique of the present invention can be widely applied including these examples.
  • Temperature measurement is also useful in blood flow imaging.
  • the blood flow at temperature T 0 flows from the region where the temperature is not lowered (temperature T 0 ).
  • a temperature difference of T ROI -T 0 is generated in the observation region, so that if the temperature distribution can be visualized, the state of blood flow can be visualized.
  • This can be treated as a contrast agent using thermal energy.
  • a general medical contrast agent introduces a substance that does not originally exist in the living body, and therefore a chemical substance administered from outside the body for a certain period of time remains in the body even after imaging of the contrast agent is completed.
  • a thermal contrast agent is used, if the temperature difference is not significantly large, the contrast effect disappears with time without affecting the living body, so there is a great merit from the viewpoint of biological safety. .
  • 1 Ultrasonic CT device 2 Ultrasonic measurement unit, 3 Ultrasonic imaging device, 4 Control unit, 5 Input device, 6 Display device, 11 CPU unit, 12 Storage unit, 13 Information input unit, 14 Information output unit, 21 Ring array transducer, 22 switching circuit, 23 ultrasonic control system, 24 measurement control unit, 25 transmission / reception probe, 26 heating element, 31 ultrasonic imaging program, 32 information storage unit, 41 temperature-dependent characteristic acquisition means, 42 first arrival Time acquisition means, 43 temperature determination means, 45 second arrival time acquisition means, 46 reference temperature sound speed determination means, 47 temperature dependent characteristic calculation means, 48 temperature correction means.

Abstract

Provided is an ultrasonic imaging device with which the temperature of a subject containing water and fat can be inexpensively detected. The ultrasonic imaging device pertaining to the invention detects the temperature of a subject that contains water and fat, wherein said ultrasonic imaging device comprises a temperature-dependent-characteristic-acquisition means that acquires a temperature-dependent characteristic of the acoustic velocities at each of a plurality of sites of the subject on the basis of a the water content ratios and the fat content ratios at each of the plurality of sites, a first arrival time acquisition means that acquires a measurement value of a plurality of first arrival times at which ultrasonic waves arrive via a plurality of pathways that pass through the subject, and a temperature determination means that determines the temperatures of the plurality of sites on the basis of the measurement values of the plurality of first arrival times and the temperature-dependent characteristic of the acoustic velocities of the plurality of sites.

Description

超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波CT装置Ultrasonic imaging apparatus, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic CT apparatus
 本発明は、超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波CT装置に関し、特に、水と脂肪を含む被検体の温度検知に関する。 The present invention relates to an ultrasonic imaging apparatus, an ultrasonic imaging method, an ultrasonic imaging program, and an ultrasonic CT apparatus, and more particularly to temperature detection of a subject including water and fat.
 被検体を温度検知する装置が実現されている。第1の例は、サーモグラフィである。被検体が生体である場合に、被検体から放射される赤外線を検出して温度に換算する。 An apparatus for detecting the temperature of the subject has been realized. The first example is thermography. When the subject is a living body, infrared rays emitted from the subject are detected and converted into temperature.
 第2の例は、MRI(Magnetic Resonance Imaging)装置である。MRI装置が測定する緩和パラメータ(緩和時間T及びT)やプロトン共鳴周波数(Proton Resonance Frequency:PRF)などが温度依存性を有することを利用して、温度算出することができる。 The second example is an MRI (Magnetic Resonance Imaging) apparatus. The temperature can be calculated using the fact that the relaxation parameters (relaxation times T 1 and T 2 ) measured by the MRI apparatus, proton resonance frequency (Proton Resonance Frequency: PRF), and the like have temperature dependence.
 しかしながら、従来の温度検知する装置には、以下の問題がある。第1の例であるサーモグラフィには、生体に対する赤外線の侵入深さ(Penetration Depth)は比較的短く、生体の表面付近における温度分布の測定に限定されるという問題がある。 However, the conventional temperature detection device has the following problems. The thermography as the first example has a problem that the penetration depth (Penetration Depth) of infrared rays into the living body is relatively short and is limited to the measurement of the temperature distribution near the surface of the living body.
 第2の例であるMRI装置は大型であり、導入コストや撮像コストが高いという問題がある。さらに、強磁場下で撮像を行う必要であるなど、被検体を温度モニタリングする上で、影響を受け得る要因を含んでいる。 The MRI apparatus as the second example is large and has a problem that the introduction cost and the imaging cost are high. Furthermore, there are factors that can be affected when the temperature of the subject is monitored, such as the need to perform imaging in a strong magnetic field.
 また、第3の例として、X線CT(X-ray Computer Tomography)装置も考えられる。X線CT装置では、線形減衰係数を用いて温度変化を算出する手法が考えられるが、線形減衰係数の温度への感度が低く、温度分解能に限界が生じ、実用化には至っていない。 As a third example, an X-ray CT (X-ray Computer Tomography) apparatus is also conceivable. In the X-ray CT apparatus, a method of calculating a temperature change using a linear attenuation coefficient is conceivable, but the sensitivity of the linear attenuation coefficient to temperature is low, the temperature resolution is limited, and it has not been put into practical use.
 さらに、第4の例として、反射超音波によるCT装置も考えられる。しかしながら、一般に、被検体のエコー輝度と温度の相関係数が微小であり、定量的な温度算出は困難である。また、音速変化に起因するエコーシフトに着目して温度を算出する試みもあるが、取得した信号のエコーシフトから音速変化した場所を特定することが難しいため、実用化に至っていない。 Furthermore, as a fourth example, a CT apparatus using reflected ultrasonic waves is also conceivable. However, generally, the correlation coefficient between the echo luminance of the subject and the temperature is very small, and it is difficult to quantitatively calculate the temperature. There is also an attempt to calculate the temperature by paying attention to the echo shift caused by the sound speed change, but it has not been put into practical use because it is difficult to specify the location where the sound speed has changed from the echo shift of the acquired signal.
 本発明は、かかる課題を鑑みてなされたものであり、水と脂肪を含む被検体の温度検知を低コストで実現する、超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波CT装置の提供を目的とする。 The present invention has been made in view of such problems, and realizes an ultrasonic imaging apparatus, an ultrasonic imaging method, an ultrasonic imaging program, which realizes temperature detection of a subject including water and fat at a low cost, It is another object of the present invention to provide an ultrasonic CT apparatus.
 (1)上記課題を解決するために、本発明に係る超音波画像化装置は、水と脂肪を含む被検体を、温度検知をする、超音波画像化装置であって、前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得手段と、前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得手段と、前記第1到達時間取得手段が取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得手段が取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定手段と、を備える。 (1) In order to solve the above-described problem, an ultrasonic imaging apparatus according to the present invention is an ultrasonic imaging apparatus that detects a temperature of a subject including water and fat, and the subject includes the subject. Based on the water content ratio and the fat content ratio in each of the plurality of parts, the temperature dependent characteristic acquisition means for acquiring the temperature dependent characteristics of the sound speed of each of the plurality of parts, and each of the plurality of paths through the subject The first arrival time acquisition means for acquiring a plurality of first arrival time measurement values through which the ultrasonic wave passes, the plurality of first arrival time measurement values acquired by the first arrival time acquisition means, and the plurality Temperature determining means for determining the temperature of each of the plurality of parts based on the temperature dependent characteristic of the sound velocity of each of the plurality of parts acquired by the part temperature dependent characteristic acquisition means.
 (2)上記(1)に記載の超音波画像化装置であって、前記複数部位温度依存特性取得手段は、前記複数の第1測定時間の測定値が測定される温度環境とは異なる温度環境下において測定される複数の第2測定時間の測定値に基づいて、前記複数の部位それぞれの音速を算出し、前記複数の部位それぞれの音速に基づいて、前記水の含有比率と、前記脂肪の含有比率を算出し、前記複数の部位それぞれの前記音速の依存性を算出してもよい。 (2) The ultrasonic imaging apparatus according to (1), wherein the multiple part temperature-dependent characteristic acquisition unit is a temperature environment different from a temperature environment in which measured values of the plurality of first measurement times are measured. The sound speed of each of the plurality of parts is calculated based on the measurement values of the plurality of second measurement times measured below, and based on the sound speed of each of the plurality of parts, the water content ratio and the fat content are calculated. The content ratio may be calculated, and the dependence of the sound speed on each of the plurality of parts may be calculated.
 (3)上記(1)又は(2)に記載の超音波画像化装置であって、前記被検体の前記複数の部位を含む計算領域の複数のグリッドそれぞれにおける音速に起因する因子を遅延因子とするとき、前記温度決定手段は、ある経路における前記第1到達時間の測定値と、前記計算領域の前記複数のグリッドのうち該経路を貫く複数の経路上グリッドそれぞれに仮定される遅延因子に基づく到達時間と、が到達時間差を有する場合に、該到達時間差を低減するように、前記複数の経路上グリッドそれぞれの温度を補正する、温度補正手段を、備えてもよい。 (3) In the ultrasonic imaging apparatus according to (1) or (2), a factor caused by sound speed in each of a plurality of grids in a calculation region including the plurality of parts of the subject is a delay factor. In this case, the temperature determination means is based on a measured value of the first arrival time in a certain path and a delay factor assumed for each of a plurality of grids on the path passing through the path among the plurality of grids of the calculation area. When the arrival time has an arrival time difference, a temperature correction unit may be provided to correct the temperature of each of the plurality of grids on the path so as to reduce the arrival time difference.
 (4)上記(3)に記載の超音波画像化装置であって、前記温度補正手段は、該到達時間差がゼロとなるように、前記複数の経路上グリッドそれぞれの温度を補正してもよい。 (4) In the ultrasonic imaging apparatus according to (3), the temperature correction unit may correct the temperature of each of the plurality of grids on the path so that the arrival time difference becomes zero. .
 (5)上記(3)又は(4)に記載の超音波画像化装置であって、前記温度補正手段は、前記複数の経路上グリッドに共通する温度変化分により補正してもよい。 (5) In the ultrasonic imaging apparatus according to the above (3) or (4), the temperature correction unit may correct the temperature change amount common to the plurality of grids on the path.
 (6)上記(3)又は(4)に記載の超音波画像化装置であって、前記温度補正手段は、前記複数の経路上グリッドそれぞれの温度を補正する温度変化分の符号を、前記仮定される遅延因子の温度微分値の符号と、前記到達時間差の符号と、に基づいて決定してもよい。 (6) The ultrasonic imaging apparatus according to (3) or (4), wherein the temperature correction unit uses a sign of a temperature change for correcting the temperature of each of the plurality of grids on the path as the assumption. It may be determined based on the sign of the temperature differential value of the delay factor and the sign of the arrival time difference.
 (7)上記(6)に記載の超音波画像化装置であって、前記温度補正手段は、前記複数の経路上グリッドそれぞれの温度を補正する前記温度変化分の絶対値を、前記複数の経路上部位において共通する値としてもよい。 (7) The ultrasonic imaging apparatus according to (6), wherein the temperature correction unit calculates an absolute value of the temperature change for correcting the temperature of each of the plurality of grids on the plurality of paths. It is good also as a value common in an upper part.
 (8)上記(6)又は(7)に記載の超音波画像化装置であって、前記温度補正手段は、前記複数の経路上グリッドそれぞれの温度を補正する前記温度変化分の符号を、前記仮定される遅延因子の温度微分値の符号と、前記到達時間差の符号とが同じ場合は正と、異なる場合は負と、決定してもよい。 (8) In the ultrasonic imaging apparatus according to (6) or (7), the temperature correction unit may include a sign for the temperature change for correcting the temperature of each of the plurality of grids on the path. If the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference are the same, it may be determined to be positive, and if it is different, negative.
 (9)本発明に係る超音波CT装置は、上記(1)乃至(8)のいずれかに記載の超音波画像化装置と、前記複数の第1到達時間を測定する超音波測定部と、を備える、超音波CT装置であってもよい。 (9) An ultrasonic CT apparatus according to the present invention includes the ultrasonic imaging apparatus according to any one of (1) to (8), an ultrasonic measurement unit that measures the plurality of first arrival times, An ultrasonic CT apparatus may be provided.
 (10)上記(9)に記載の超音波CT装置であって、前記超音波測定部は、被検体を含む測定領域のうち少なくとも一部の領域を温度変化させる温度調整機能、を備えていてもよい。 (10) The ultrasonic CT apparatus according to (9), wherein the ultrasonic measurement unit includes a temperature adjustment function that changes a temperature of at least a part of a measurement region including a subject. Also good.
 (11)本発明に係る超音波画像化方法は、水と脂肪を含む被検体を、温度検知をする、超音波画像化方法であって、前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得ステップと、前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得ステップと、前記第1到達時間取得ステップが取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得ステップが取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定ステップと、を備えていてもよい。 (11) The ultrasonic imaging method according to the present invention is an ultrasonic imaging method in which a temperature of a subject including water and fat is detected, and water is contained in each of a plurality of portions of the subject. Based on the ratio and the fat content ratio, the temperature-dependent characteristics acquisition step for acquiring the temperature-dependent characteristics of the sound speeds of each of the plurality of parts, and a plurality of ultrasonic waves that pass through each of the plurality of paths that penetrate the subject. A first arrival time acquisition step of acquiring a measurement value of one arrival time, a plurality of measurement values of the first arrival time acquired by the first arrival time acquisition step, and a plurality of part temperature dependent characteristic acquisition steps And a temperature determining step of determining the temperature of each of the plurality of parts based on the temperature-dependent characteristics of the sound speed of each of the plurality of parts.
 (12)本発明に係る超音波画像化プログラムは、コンピュータを、水と脂肪を含む被検体を、温度検知をするために、前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得手段、前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得手段、前記第1到達時間取得手段が取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得手段が取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定手段、として機能させるための、超音波画像化プログラムであってもよい。 (12) The ultrasound imaging program according to the present invention is a computer that detects the temperature of a subject including water and fat, and the water content ratio and the fat content in each of the plurality of parts of the subject. Based on the content ratio, the temperature-dependent characteristic acquisition means for acquiring the temperature-dependent characteristics of the sound speeds of the plurality of parts, and the measurement of the plurality of first arrival times through which the ultrasonic waves pass through each of the plurality of paths passing through the subject First arrival time acquisition means for acquiring values, measured values of the plurality of first arrival times acquired by the first arrival time acquisition means, and each of the plurality of parts acquired by the plurality of part temperature-dependent characteristic acquisition means And an ultrasonic imaging program for functioning as temperature determining means for determining the temperature of each of the plurality of parts based on the temperature-dependent characteristics of the sound speed of
 本発明により、水と脂肪を含む被検体の温度検知を低コストで実現する、超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波CT装置が提供される。 According to the present invention, there are provided an ultrasonic imaging apparatus, an ultrasonic imaging method, an ultrasonic imaging program, and an ultrasonic CT apparatus that can realize temperature detection of a subject including water and fat at a low cost.
本発明の第1の実施形態に係る超音波CT装置の構成を示すブロック図である。1 is a block diagram showing a configuration of an ultrasonic CT apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る超音波測定部2の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the ultrasonic measurement part 2 which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る超音波画像化プログラムのフローチャートである。It is a flowchart of the ultrasonic imaging program which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る計算領域を示す模式図である。It is a schematic diagram which shows the calculation area | region which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る温度依存特性取得ステップのフローチャートである。It is a flowchart of the temperature dependence characteristic acquisition step which concerns on the 1st Embodiment of this invention. SART法を説明する図である。It is a figure explaining SART method. T-SART法を説明する図である。It is a figure explaining T-SART method. 本発明の第2の実施形態に係る温度決定ステップのフローチャートである。It is a flowchart of the temperature determination step which concerns on the 2nd Embodiment of this invention. 2次元超平面におけるSART法及びT-SART法における補正ベクトルの向きを示す図である。It is a figure which shows the direction of the correction vector in SART method and T-SART method in a two-dimensional hyperplane. 2次元超平面における修正T-SART法における補正ベクトルの向きを示す図である。It is a figure which shows the direction of the correction vector in the correction T-SART method in a two-dimensional hyperplane. 本発明の第1の実施形態に係る超音波CT装置による測定結果の例を示す図である。It is a figure which shows the example of the measurement result by the ultrasonic CT apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2及び第3の実施形態に係る超音波画像化装置において設定される被検体のモデルを示す図である。It is a figure which shows the model of the subject set in the ultrasonic imaging apparatus which concerns on the 2nd and 3rd embodiment of this invention. 本発明の第2の実施形態に係る超音波画像化装置の計算結果を示す図である。It is a figure which shows the calculation result of the ultrasonic imaging apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る超音波画像化装置の計算結果を示す図である。It is a figure which shows the calculation result of the ultrasonic imaging apparatus which concerns on the 3rd Embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、図面は説明をより明確にするため、実際の態様に比べ、寸法、形状等について模式的に表す場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In order to clarify the description, the drawings may schematically represent dimensions, shapes, and the like as compared with actual embodiments, but are merely examples and do not limit the interpretation of the present invention. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る超音波CT装置1の構成を示すブロック図である。当該実施形態に係る超音波CT装置1は、超音波測定部2と、超音波画像化装置3とを備え、超音波画像化装置3は、制御部4と、入力装置5と、表示装置6と、を備える。制御部4は、CPU部11と、記憶部12と、情報入力部13と、情報出力部14と、を備えている。制御部4は、一般に用いられるコンピュータによって実現され、図示しないが、ROM(Read Only Memory)やRAM(Random Access Memory)をさらに備えており、ROMやRAMはコンピュータの内部メモリを構成している。記憶部12は記録媒体であり、半導体メモリ、ハードディスク、又は、その他の任意の記録媒体によって構成されていてもよい。ここで、記憶部12は、コンピュータの内部に設置されているが、コンピュータの外部に設置されていてもよい。また、記憶部12は、1つの単体であっても、複数の記録媒体であってもよい。情報入力部13は入力装置5に接続されるインターフェイスなどであり、ユーザが入力装置5に入力する情報を入力装置5から取得する。情報出力部14は表示装置6に接続されるインターフェイスなどであり、表示装置6に表示させる情報を表示装置6へ出力する。なお、入力装置5は、キーボードやマウス、タッチパネルなどによって実現され、表示装置6は、一般に用いられるディスプレイなどにより実現される。超音波画像化装置3の制御部4は、以下に説明する超音波画像化方法の各ステップを実行する手段をそれぞれ備えている。また、当該実施形態に係る超音波画像化プログラム31は、コンピュータを、各手段として機能させるためのプログラムである。なお、制御部4のCPU部11及び記憶部12の詳細については後述する。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of an ultrasonic CT apparatus 1 according to the first embodiment of the present invention. The ultrasonic CT apparatus 1 according to this embodiment includes an ultrasonic measurement unit 2 and an ultrasonic imaging device 3, and the ultrasonic imaging device 3 includes a control unit 4, an input device 5, and a display device 6. And comprising. The control unit 4 includes a CPU unit 11, a storage unit 12, an information input unit 13, and an information output unit 14. The control unit 4 is realized by a commonly used computer, and further includes a ROM (Read Only Memory) and a RAM (Random Access Memory), which are not shown, and the ROM and RAM constitute an internal memory of the computer. The storage unit 12 is a recording medium, and may be configured by a semiconductor memory, a hard disk, or any other arbitrary recording medium. Here, the storage unit 12 is installed inside the computer, but may be installed outside the computer. Further, the storage unit 12 may be a single unit or a plurality of recording media. The information input unit 13 is an interface or the like connected to the input device 5, and acquires information that the user inputs to the input device 5 from the input device 5. The information output unit 14 is an interface connected to the display device 6 and outputs information to be displayed on the display device 6 to the display device 6. The input device 5 is realized by a keyboard, a mouse, a touch panel, etc., and the display device 6 is realized by a generally used display. The control unit 4 of the ultrasonic imaging apparatus 3 includes means for executing each step of the ultrasonic imaging method described below. The ultrasound imaging program 31 according to the embodiment is a program for causing a computer to function as each means. The details of the CPU unit 11 and the storage unit 12 of the control unit 4 will be described later.
 当該実施形態に係る超音波CT装置1の超音波測定部2について説明する。超音波測定部2の主な構成は、例えば非特許文献1に開示されている。非特許文献1に記載の診断装置は、透過超音波によるCT装置である。超音波とは、人間の可聴域(20Hz~20kHz)を超える高い周波数の音波である。ここで用いられる超音波の周波数は1MHz以上20MHz以下が望ましい。当該診断装置は、リングアレイトランスデューサを有しており、リングアレイトランスデューサのリングアレイには、複数の送信用振動子及び複数の受信用検出素子がそれぞれリング状に並んでいる。リングアレイは,水槽内において上下動するレール上に固定されており、ステッピングモータによりリングアレイを上下に制御することができる。これにより、被検体(ここでは、乳房)を貫く複数の経路を超音速が経る到達時間それぞれを測定する。患者はベッドに寝そべり,被検体である乳房を水槽中に挿入するだけでよく、マンモグラフィのように圧迫されることがない。 The ultrasonic measurement unit 2 of the ultrasonic CT apparatus 1 according to the embodiment will be described. The main configuration of the ultrasonic measurement unit 2 is disclosed in Non-Patent Document 1, for example. The diagnostic apparatus described in Non-Patent Document 1 is a CT apparatus using transmitted ultrasound. Ultrasonic waves are high frequency sound waves that exceed the human audible range (20 Hz to 20 kHz). The frequency of the ultrasonic wave used here is preferably 1 MHz or more and 20 MHz or less. The diagnostic apparatus has a ring array transducer, and a plurality of transducers for transmission and a plurality of detection elements for reception are arranged in a ring shape in the ring array of the ring array transducer. The ring array is fixed on a rail that moves up and down in the water tank, and the ring array can be controlled up and down by a stepping motor. Thereby, the arrival times at which supersonic speeds pass through a plurality of paths penetrating the subject (here, the breast) are measured. The patient only lies on the bed and inserts the subject's breast into the aquarium, and is not squeezed like mammography.
 図2は、当該実施形態に係る超音波測定部2の主要部の構成を示す図である。超音波測定部2は、リングアレイトランスデューサ21と、スイッチング回路22(1024 to 256 multiplexer)と、超音波制御システム23と、測定制御部24と、を備える。リングアレイトランスデューサ21は、1024素子から成るリング型振動子であり、4個の送受信プローブ25を備えている。各送受信プローブ25は、リングの1/4を構成する凹面型形状をしており、256個の短冊型圧電素子を含んでいる。各短冊型圧電素子は送信と受信の用途を兼ねるのが通例である。リングの内部に、被検体100が配置される。一般に用いられる超音波診断プローブ(コンベックス型探触子)と同様の製造工程により製造される。つまり、コンベックス型探触子ではその工程の途中において、開口の真ん中が出っ張るように曲げる行程が入るが、当該実施形態に係るリングアレイトランスデューサ21では、開口の真ん中が凹むように曲げる行程を行う。ここで、共振周波数は2MHzであるが、これに限定されることはないのは言うまでもない。 FIG. 2 is a diagram illustrating a configuration of a main part of the ultrasonic measurement unit 2 according to the embodiment. The ultrasonic measurement unit 2 includes a ring array transducer 21, a switching circuit 22 (1024 to 256 multiplexer), an ultrasonic control system 23, and a measurement control unit 24. The ring array transducer 21 is a ring-type vibrator composed of 1024 elements, and includes four transmission / reception probes 25. Each transmitting / receiving probe 25 has a concave shape that constitutes a quarter of the ring, and includes 256 strip-shaped piezoelectric elements. Each strip-type piezoelectric element is usually used for both transmission and reception. A subject 100 is placed inside the ring. It is manufactured by the same manufacturing process as that of a generally used ultrasonic diagnostic probe (convex probe). That is, in the convex type probe, a process of bending so that the middle of the opening protrudes in the middle of the process, but the ring array transducer 21 according to the embodiment performs a process of bending so that the middle of the opening is recessed. Here, although the resonance frequency is 2 MHz, it is needless to say that the present invention is not limited to this.
 スイッチング回路22は以下の動作によりデータ収集を行う。4個の送受信プローブ25それぞれが信号を送信し、その際に、4個の送受信プローブ25すべてがその信号を受信し、その遅延時間を取得する。すなわち、まず、1個目の送受信プローブ25の送信用振動子(1~256)が順に信号を発信し、4個の送受信プローブ25の受信用検出素子(1~1024)がその信号を受信する。同様に、2個目の送受信プローブ25の送信用振動子(257~512)が順に信号を発信し、4個の送受信プローブ25の受信用検出素子(1~1024)がその信号を受信する。さらに、3個目の送受信プローブ25の送信用振動子(513~768)が順に信号を発信し、4個の送受信プローブ25の受信用検出素子(1~1024)がその信号を受信する。最後に、4個目の送受信プローブ25の送信用振動子(769~1024)が順に信号を発信し、4個の送受信プローブ25の受信用検出素子(1~1024)がその信号を受信する。 The switching circuit 22 collects data by the following operation. Each of the four transmission / reception probes 25 transmits a signal, and at this time, all of the four transmission / reception probes 25 receive the signal and acquire the delay time. That is, first, the transmission transducers (1 to 256) of the first transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals. . Similarly, the transmission transducers (257 to 512) of the second transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals. Further, the transmission transducers (513 to 768) of the third transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals. Finally, the transmission transducers (769 to 1024) of the fourth transmission / reception probe 25 sequentially transmit signals, and the reception detection elements (1 to 1024) of the four transmission / reception probes 25 receive the signals.
 測定制御部24が、超音波制御システム23を制御することにより、リングアレイトランスデューサ21の1周分のデータ収集が終了すると1/10秒から秒オーダーの一定時間休止するシーケンスを繰り返し行い、計3回のデータ収集を行っている。 When the measurement control unit 24 controls the ultrasonic control system 23, when the data collection for one round of the ring array transducer 21 is completed, a sequence in which the measurement controller 24 pauses for a fixed time on the order of 1/10 seconds is performed, and a total of 3 Data collection.
 さらに、各送受信プローブ25は、発熱体26を備えている。ここで、発熱体26は、例えば、高密度焦点式超音波治療法(HIFU:High Intensity Focused Ultrasound)を施す場合には、超音波発振器となる。HIFUでは、複数の経路より発振される超音波を収束させて、患部に対して集中的に照射する。また、発熱体26は、複数のマイクロヒータであってもよい。各マイクロヒータの径は例えば1.6mmであり、被検体100を加熱する際には、各送受信プローブから延伸させて、被検体100(又は媒質)のうち加熱させたい領域に接続させる。かかる径のマイクロヒータであれば、他の測定領域へ与える影響を抑制しつつ、加熱目標とする狭い領域を高温に加熱することができる。発熱体26は、超音波制御システム23及び測定制御部24と、接続されている。超音波制御システム23は、サーモスタット機能を有しており、測定制御部24が、超音波制御システム23を制御することにより、所望の条件に対応して、被検体100(又は媒質)に所望の加熱を施すことができる。なお、ここでは、送受信プローブ25は発熱体26を備えるとしたが、加熱を目的とした発熱体に限定されることはなく、冷却を目的とした冷却体であってもよい。目的に応じて、被検体を含む測定領域のうち少なくとも一部の領域を、加熱又は冷却する、すなわち、温度変化させる、温度調整機構を、超音波測定部2が備えているのが望ましい。 Furthermore, each transmission / reception probe 25 includes a heating element 26. Here, the heating element 26 becomes an ultrasonic oscillator, for example, when a high-intensity focused ultrasound therapy (HIFU: High Intensity / Focused / Ultrasound) is performed. In the HIFU, ultrasonic waves oscillated from a plurality of paths are converged to irradiate the affected area intensively. Further, the heating element 26 may be a plurality of micro heaters. Each microheater has a diameter of, for example, 1.6 mm. When the subject 100 is heated, the microheater is extended from each transmission / reception probe and connected to a region to be heated in the subject 100 (or medium). With a microheater having such a diameter, it is possible to heat a narrow region targeted for heating to a high temperature while suppressing the influence on other measurement regions. The heating element 26 is connected to the ultrasonic control system 23 and the measurement control unit 24. The ultrasonic control system 23 has a thermostat function, and the measurement control unit 24 controls the ultrasonic control system 23 so that a desired condition is applied to the subject 100 (or medium) according to a desired condition. Heat can be applied. Here, the transmission / reception probe 25 is provided with the heating element 26, but is not limited to the heating element for the purpose of heating, and may be a cooling object for the purpose of cooling. It is desirable that the ultrasonic measurement unit 2 includes a temperature adjustment mechanism that heats or cools at least a part of the measurement region including the subject, that is, changes the temperature according to the purpose.
 以下に、当該実施形態に係る超音波画像化装置3について説明する。図1に示す通り、記憶部12には、超音波画像化プログラム31が記憶されている。さらに、記憶部12は、情報記憶部32を備えている。超音波画像化装置3において、記憶部12に記憶される超音波画像化プログラム31が起動する。当該実施形態に係る超音波画像化装置3は、水と脂肪を含む被検体100を、温度検知する。 Hereinafter, the ultrasonic imaging apparatus 3 according to the embodiment will be described. As shown in FIG. 1, an ultrasonic imaging program 31 is stored in the storage unit 12. Furthermore, the storage unit 12 includes an information storage unit 32. In the ultrasonic imaging apparatus 3, an ultrasonic imaging program 31 stored in the storage unit 12 is activated. The ultrasonic imaging apparatus 3 according to the embodiment detects the temperature of the subject 100 including water and fat.
 図3は、当該実施形態に係る超音波画像化プログラム31のフローチャートである。超音波画像化プログラム31は、超音波測定部2より取得する測定データに基づいて、被検体100の温度検知を行う。制御部4のCPU部11は、温度依存特性取得手段41と、第1到達時間取得手段42と、温度決定手段43と、を備える。温度依存特性取得手段41は、第2到達時間取得手段45と、基準温度音速決定手段46と、温度依存特性算出手段47と、を備える。 FIG. 3 is a flowchart of the ultrasound imaging program 31 according to this embodiment. The ultrasonic imaging program 31 detects the temperature of the subject 100 based on the measurement data acquired from the ultrasonic measurement unit 2. The CPU unit 11 of the control unit 4 includes a temperature-dependent characteristic acquisition unit 41, a first arrival time acquisition unit 42, and a temperature determination unit 43. The temperature-dependent characteristic acquisition unit 41 includes a second arrival time acquisition unit 45, a reference temperature sound speed determination unit 46, and a temperature-dependent characteristic calculation unit 47.
[温度依存特性取得ステップ:S1]
 被検体100が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、複数の部位それぞれの音速の温度依存特性を取得する(S1:温度依存特性取得ステップ)。本ステップにおいて、被検体100が有する複数の部位(ピクセル)それぞれにおける水の含有比率及び脂肪の含有比率とを取得するが、その詳細については後述する。
[Temperature-dependent characteristic acquisition step: S1]
Based on the water content ratio and the fat content ratio in each of the plurality of parts of the subject 100, the temperature-dependent characteristics of the sound speed of each of the plurality of parts are acquired (S1: temperature-dependent characteristic acquisition step). In this step, the water content ratio and the fat content ratio in each of a plurality of parts (pixels) of the subject 100 are acquired, and details thereof will be described later.
 脂肪及び水の音速の温度依存特性は、それぞれ、1次及び5次の温度関数として近似される。ここで、音速(m/s)をSOSとし、脂肪の音速をSOSとすると、脂肪の音速SOSは次に示す数式1で近似される。 The temperature dependent characteristics of the sound speed of fat and water are approximated as first and fifth order temperature functions, respectively. Here, when the sound speed (m / s) is SOS and the fat sound speed is SOS f , the fat sound speed SOS f is approximated by the following Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、C=1506.9,C=-3.3である。また、水の音速をSOSとすると、水の音速SOSは次に示す数式2で近似される。 Here, C 0 = 1506.9 and C 1 = −3.3. Further, when the sound speed of water is SOS w , the sound speed of water SOS w is approximated by Equation 2 shown below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、D=1402.39,D=5.0371,D=-5.8085×10-2,D=3.3420×10-4,D=-1.4780×10-6,D=3.1464×10-9である。また、被検体100が生体である場合に、被検体100には、水と脂肪以外の物質が含まれている。水と脂肪とは、音速の温度依存特性が20℃~80℃の領域で互いに大きく異なっており、混合比により音速の温度依存特性が大きく変動する。また、他の物質(組織)の音速の温度依存特性は、一般には、水のように温度上昇に対して音速が増大するか、脂肪のように温度上昇に対して音速が低下するかの二種類のいずれかの特性に大別できる。それゆえ、被検体100を複数の部位(複数のピクセル)に分類し、各部位における水の含有比率と脂肪の含有比率とに基づいて、各部位の音速の温度依存特性を決定する。当該実施形態において、実効的でかつ簡便な手法として、各部位を水と脂肪のみの混合物に近似する。混合物全体に対する脂肪及び水の含有比率(重量比率)をそれぞれ及びR及びRとすると、混合物(各部位)の音速SOSmixは、次に示す数式3で示される。 Here, D 0 = 1402.39, D 1 = 5.0371, D 2 = −5.8085 × 10 −2 , D 3 = 3.3420 × 10 −4 , D 4 = −1.4780 × 10 − 6 , D 5 = 3.1464 × 10 −9 . Further, when the subject 100 is a living body, the subject 100 contains substances other than water and fat. Water and fat are greatly different from each other in the temperature-dependent characteristic of sound speed in the region of 20 ° C. to 80 ° C., and the temperature-dependent characteristic of sound speed varies greatly depending on the mixing ratio. The temperature dependence of the sound speed of other substances (tissues) generally depends on whether the sound speed increases as the temperature rises like water or the sound speed decreases as the temperature rises like fat. It can be broadly divided into any kind of characteristics. Therefore, the subject 100 is classified into a plurality of parts (a plurality of pixels), and the temperature-dependent characteristics of the sound speed of each part are determined based on the water content ratio and the fat content ratio in each part. In this embodiment, each part is approximated to a mixture of water and fat as an effective and simple technique. When the content ratio (weight ratio) of fat and water with respect to the whole mixture is R f and R w , respectively, the sound velocity SOS mix of the mixture (each part) is expressed by the following Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、各部位を水と脂肪のみの混合物と近似しているので、R+R=1である。なお、数式3に示す通り、各部位を水と脂肪のみの混合物とし、水の含有比率と脂肪の含有比率とにより、各部位の音速の温度依存特性を取得する。しかし、水と脂肪のみならず、他の物質をさらに考慮してもよい。すなわち、各部位における水の含有比率と脂肪の含有比率とに基づくことに加えて、他の物質の含有比率にさらに基づいて、各部位の音速の温度依存特性を取得してもよい。 Here, since each part is approximated to a mixture of water and fat only, R f + R w = 1. In addition, as shown in Formula 3, each part is a mixture of only water and fat, and the temperature-dependent characteristics of the sound speed of each part are acquired by the content ratio of water and the content ratio of fat. However, other substances may be further considered, not just water and fat. That is, in addition to the water content ratio and the fat content ratio in each part, the temperature-dependent characteristics of the sound speed of each part may be acquired based on the content ratio of other substances.
[第1到達時間取得ステップ:S2]
 被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する(S2:第1到達時間取得ステップ)。超音波測定部2が複数の第1到達時間を測定し、該第1到達時間の測定値を超音波測定部2より取得する。また、情報記憶部32に複数の第1到達時間の測定値が記録されており、該第1到達時間の測定値を情報記憶部32より取得してもよい。
[First arrival time acquisition step: S2]
A plurality of measured values of the first arrival time through which the ultrasonic wave passes through each of a plurality of paths penetrating the subject (S2: first arrival time acquisition step). The ultrasonic measurement unit 2 measures a plurality of first arrival times, and acquires a measurement value of the first arrival times from the ultrasonic measurement unit 2. In addition, a plurality of measured values of the first arrival time may be recorded in the information storage unit 32, and the measured values of the first arrival time may be acquired from the information storage unit 32.
 図4は、当該実施形態に係る計算領域(測定領域)を示す模式図である。円周上には、送信素子及び受信素子が配置されており、円周内には、生体である被検体100が配置される。被検体100を含む領域が計算領域であり、計算領域を複数(N個)のグリッド(ピクセル)に分割する。リング円周上にある複数の送信素子それぞれから出射される超音波が円周上にある複数の受信素子それぞれに到達する複数(M本)の経路を決定する。計算領域上に被検体100が配置されており、被検体100上に分類される複数のグリッドがそれぞれ被検体100の複数の部位となり、当該複数の経路は、被検体100を貫く経路を複数含んでいる。 FIG. 4 is a schematic diagram showing a calculation area (measurement area) according to the embodiment. A transmitting element and a receiving element are arranged on the circumference, and a subject 100 that is a living body is arranged in the circumference. An area including the subject 100 is a calculation area, and the calculation area is divided into a plurality (N) of grids (pixels). A plurality (M) of paths through which ultrasonic waves emitted from a plurality of transmitting elements on the ring circumference reach each of a plurality of receiving elements on the circumference are determined. The subject 100 is arranged on the calculation area, and a plurality of grids classified on the subject 100 become a plurality of parts of the subject 100, respectively, and the plurality of paths include a plurality of paths that penetrate the subject 100. It is out.
 測定は未知の温度状態で実行される。例えば、被検体100が乳房であり、乳房が腫瘍を含んでおり、腫瘍細胞を40℃以上に加熱するハイパーサーミア(温熱治療)を乳房に施術する場合である。超音波測定部2のリングアレイトランスデューサ21を用いて、当該複数(M本)の経路それぞれを超音波が経る複数(M個)の到達時間が測定され、当該複数(M個)の到達時間の測定値が取得される。未知の温度状態で測定される複数の到達時間が複数の第1測定時間である。図4には、4本の経路l,l+1,n,n+1が例示されており、それぞれの到達時間(s)がP,Pl+1,P,Pn+1として示されている。 Measurements are performed at unknown temperature conditions. For example, the subject 100 is a breast, the breast contains a tumor, and hyperthermia (thermal therapy) for heating tumor cells to 40 ° C. or higher is performed on the breast. Using the ring array transducer 21 of the ultrasonic measurement unit 2, a plurality (M) of arrival times through which the ultrasonic waves pass through each of the plurality (M) of paths are measured, and the plurality of (M) arrival times are measured. A measured value is obtained. A plurality of arrival times measured in an unknown temperature state are a plurality of first measurement times. FIG. 4 illustrates four paths l, l + 1, n, and n + 1, and the arrival times (s) thereof are shown as P l , P l + 1 , P n , and P n + 1 .
[温度決定ステップ:S3]
 第1到達時間取得ステップが取得する複数の第1到達時間の測定値と、複数部位温度依存特性取得ステップが取得する複数の部位それぞれの音速の温度依存特性と、に基づいて、複数の部位それぞれの温度を決定する(S3:温度決定ステップ)。
[Temperature determination step: S3]
Based on the measured values of the plurality of first arrival times acquired by the first arrival time acquisition step and the temperature-dependent characteristics of the sound speeds of the plurality of portions acquired by the multiple-part temperature-dependent characteristic acquisition step, Is determined (S3: temperature determination step).
 i番目(iは1~Mの整数)の経路を貫くj番目(jは1~Nの整数)のグリッドのセグメントを重み関数Wi,jとして定義すると、経路とグリッドが定義されれば、重み関数Wi,jは求まるので既知の値として取り扱うことができる。また、j番目のグリッドにおける音速に起因する因子を遅延因子f(以下、スローネス(s))と記す)とする。スローネスfは、1グリッドのサイズ(長さ)を音速SOSで除した値であり、超音波の1グリッドの通過時間である。重み関数Wi,jとスローネスfの積であるWi,jは、i番目の経路におけるj番目のグリッドの通過時間である。よって、Wi,jの和がi番目の経路を超音波が経る到達時間P(s)である。到達時間Pは、次に示す数式4で示される。 If a j-th (j is an integer from 1 to N) grid segment passing through the i-th (i is an integer from 1 to M) path is defined as a weight function W i, j , Since the weight function W i, j is obtained, it can be handled as a known value. Further, a factor resulting from the sound speed in the j-th grid is defined as a delay factor f j (hereinafter referred to as slowness (s)). The slowness f j is a value obtained by dividing the size (length) of one grid by the speed of sound SOS, and is the passing time of one grid of ultrasonic waves. W i, j f j is the product of the weight functions W i, j and slowness f j is the transit time of the j-th grid in the i th path. Therefore, the sum of W i, j f j is the arrival time P i (s) that the ultrasonic wave passes through the i-th path. The arrival time P i is expressed by the following Equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数式4に示す重み関数Wi,jは、i番目の経路上にないグリッドに対してWi,j=0となる。対して、i番目の経路が貫くグリッドの重み関数Wi,jは正の値を持つ。例えば、図4に示すl番目の経路が貫くグリッドにはA~Jが付されており、重み関数Wl,A~Jは、グリッドを通過する長さに応じた重み(寄与度)の値となる。例えばグリッドの1辺の長さを1とすると、重み関数Wi,jは0から√2の間の値を持つ。 The weight function W i, j shown in Equation 4 is W i, j = 0 for a grid that is not on the i-th path. On the other hand, the grid weight function W i, j through which the i-th path passes has a positive value. For example, A to J are attached to the grid through which the l-th path shown in FIG. 4 passes, and the weighting functions W l and A to J are values of weights (contributions) according to the length passing through the grid. It becomes. For example, when the length of one side of the grid is 1, the weight function W i, j has a value between 0 and √2.
 複数(M本)の経路から測定される複数(M個)の第1到達時間P(iは1~Mの整数)に係る数式4により、M個の連立1次方程式が得られる。未知数と方程式の数の関係から、M≧Nであれば、解として各グリッド(ピクセル)のスローネスfの値を決定することができる。スローネスfについて逐次的な近似解を計算により求める手法(音速再構成法)は周知であり、例えば、ART(Algebraic Reconstruction Technique)法やSIRT(Simultaneous Iterative Reconstruction Technique)法、SART(Simultaneous Algebraic Reconstruction Technique)法、C-SART(Curved-ray SART)法がある。 M simultaneous linear equations can be obtained by Equation 4 relating to a plurality (M) of first arrival times P i (i is an integer of 1 to M) measured from a plurality (M) of paths. From the relationship between the unknown and the number of equations, if M ≧ N 2 , the value of the slowness f j of each grid (pixel) can be determined as a solution. Techniques (sound speed reconstruction method) for calculating a sequential approximate solution for the slowness f j are well known. For example, the ART (Algebraic Reconstruction Technique) method, the SIRT (Simultaneous Iterative Reconstruction Technique) method, the SART (Simultaneous Algebraic Reconstruction Technique). ) Method and C-SART (Curved-ray SART) method.
 各部位のスローネスfの値が決定されると、各部位におけるスローネスfの値と数式3に示す音速の温度依存特性に基づいて、被検体100の各部位の温度が決定され、被検体100の温度検知(温度モニタリング)がなされる。さらに、各部位の温度を画像化することにより、被検体100の断面の温度検知結果を表示することができる。 When the value of slowness f j of each site is determined, based on the temperature dependence of the sound velocity shown in the values and formulas 3 slowness f j at each site, the temperature of each region of the subject 100 is determined, the subject 100 temperature detections (temperature monitoring) are performed. Furthermore, the temperature detection result of the cross section of the subject 100 can be displayed by imaging the temperature of each part.
 以上、当該実施形態に係る超音波画像化プログラム31について説明した。当該実施形態に係る超音波画像化プログラム31の主な特徴は、被検体100の複数の部位それぞれの音速の温度依存特性を、複数の部位それぞれの水の含有比率と脂肪の含有比率とに基づいて決定することにある。温度依存特性取得ステップ(ステップS1)において、複数の部位それぞれの水の含有比率と脂肪の含有比率を決定する方法は多々あり得るが、以下に当該実施形態に係る温度依存特性取得ステップ(ステップS1)の詳細を説明する。 The ultrasonic imaging program 31 according to the embodiment has been described above. The main feature of the ultrasound imaging program 31 according to this embodiment is that the temperature-dependent characteristics of the sound speed of each of the plurality of parts of the subject 100 are based on the water content ratio and the fat content ratio of each of the plurality of parts. To decide. In the temperature dependent characteristic acquisition step (step S1), there can be many methods for determining the water content ratio and the fat content ratio of each of the plurality of parts. Hereinafter, the temperature dependent characteristic acquisition step (step S1) according to the embodiment will be described below. ) Will be described in detail.
 図5は、当該実施形態に係る温度依存特性取得ステップ(ステップS1)のフローチャートである。 FIG. 5 is a flowchart of the temperature-dependent characteristic acquisition step (step S1) according to this embodiment.
[第2到達時間取得ステップ:sa]
 複数の第1測定時間の測定値が測定される温度環境とは異なる温度環境下において測定される、被検体を貫く複数の経路それぞれを超音波が経る複数の第2測定時間の測定値を取得する(sa:第2到達時間取得ステップ)。超音波測定部2が複数の第2到達時間を測定し、該第2到達時間の測定値を超音波測定部2より取得する。また、情報記憶部32に複数の第2到達時間の測定値が記録されており、該第2到達時間の測定値を情報記憶部32より取得してもよい。
[Second arrival time acquisition step: sa]
Acquires measurement values of a plurality of second measurement times in which ultrasonic waves pass through each of a plurality of paths penetrating the subject, measured in a temperature environment different from the temperature environment in which the measurement values of the plurality of first measurement times are measured. (Sa: second arrival time acquisition step). The ultrasonic measurement unit 2 measures a plurality of second arrival times, and acquires a measurement value of the second arrival times from the ultrasonic measurement unit 2. Further, a plurality of measured values of the second arrival time may be recorded in the information storage unit 32, and the measured values of the second arrival time may be acquired from the information storage unit 32.
 ステップsaは、測定される温度環境下が異なる点を除いて、ステップS2(第1到達時間取得ステップ)と同じである。ステップS2では、測定は未知の温度状態で実行されているのに対して、ステップsaでは、既知の基準温度T環境下で実行される。被検体100が乳房である場合、被検体100を十分に冷やして温度分布が抑制される温度環境下である。ここでは、基準温度Tを25℃としているが、被検体が人体の一部である場合、基準温度Tを20℃以上30℃以下とするのが望ましい。また、体内深部対応と体表温度は一般的に異なるが、体表からの距離の関数として温度勾配を設定することも有効である。かかる温度環境下では、被検体100の温度分布はほぼ一定とみなすことができる。既知の基準温度T環境下で、超音波測定部2のリングアレイトランスデューサ21を用いて、当該複数(M本)の経路それぞれを超音波が経る複数(M個)の到達時間が測定され、当該複数(M個)の到達時間の測定値が取得される。既知の基準温度T環境下で測定される複数の到達時間が複数の第2測定時間である。 Step sa is the same as step S2 (first arrival time acquisition step) except that the measured temperature environment is different. In step S2, the measurement for the running in an unknown temperature state, in step sa, is performed under a known reference temperature T s environment. When the subject 100 is a breast, the subject 100 is in a temperature environment where the subject 100 is sufficiently cooled to suppress the temperature distribution. Here, the reference temperature T s is set to 25 ° C. However, when the subject is a part of a human body, the reference temperature T s is preferably set to 20 ° C. or more and 30 ° C. or less. Further, although the correspondence to the deep part of the body and the body surface temperature are generally different, it is also effective to set the temperature gradient as a function of the distance from the body surface. Under such a temperature environment, the temperature distribution of the subject 100 can be regarded as substantially constant. Under a known reference temperature T s environment, using a ring array transducer 21 of the ultrasonic measuring unit 2, the arrival time of the plurality the plurality of respective paths ultrasound undergoes the (M present) (M number) is measured, A plurality of (M) arrival time measurement values are acquired. A plurality of arrival times measured under a known reference temperature T s environment is a plurality of second measuring time.
[基準温度音速決定ステップ:sb]
 第2到達時間取得ステップが取得する複数の第2到達時間の測定値に基づいて、複数の部位それぞれの音速を決定する(sb:基準温度音速決定ステップ)。ステップS3(温度決定ステップ)において、複数の第1到達時間に係る数式4からなる連立1次方程式より、各グリッド(ピクセル)のスローネスfの値を決定するのに対して、ステップsbでは、複数の第2到達時間に係る数式4からなる連立1次方程式より、各グリッド(ピクセル)のスローネスfの値を決定する。被検体100の複数の部位それぞれにおけるスローネスの値又は音速の値を決定する。
[Reference temperature sound speed determination step: sb]
Based on the measured values of the plurality of second arrival times acquired by the second arrival time acquisition step, the sound speed of each of the plurality of parts is determined (sb: reference temperature sound speed determination step). In step S3 (temperature determination step), the value of the slowness f j of each grid (pixel) is determined from the simultaneous linear equations consisting of Equation 4 relating to a plurality of first arrival times, whereas in step sb, The value of the slowness f j of each grid (pixel) is determined from the simultaneous linear equations consisting of Equation 4 relating to a plurality of second arrival times. A slowness value or a sound speed value at each of a plurality of parts of the subject 100 is determined.
[温度依存特性算出ステップ:sc]
 基準温度音速決定ステップが決定する被検体の複数の部位それぞれのスローネスの値又は音速の値に基づいて、被検体の複数の部位それぞれの音速の温度依存特性を算出する(sc:温度依存特性算出ステップ)。既知の基準温度Tにおける水の音速SOS及び脂肪の音速SOSを数式3に代入し、各部位が水と脂肪のみの混合物と近似(R+R=1)する。それにより、複数の部位それぞれにおける水の含有比率R及び脂肪の含有比率Rを決定する。決定される水の含有比率R及び脂肪の含有比率Rに基づいて、数式3より、被検体100の複数の部位それぞれにおける音速の温度依存特性が算出される。
[Temperature dependent characteristic calculation step: sc]
Based on the slowness value or the sound velocity value of each of the plurality of parts of the subject determined in the reference temperature sound speed determination step, the temperature dependence characteristic of the sound speed of each of the plurality of parts of the subject is calculated (sc: temperature dependence characteristic calculation). Step). The sound speed SOS w of water and the sound speed SOS f of fat at a known reference temperature T s are substituted into Equation 3, and each part approximates a mixture of water and fat only (R f + R w = 1). Thereby determining the content ratio R w and fat content ratio R f of water in each of the plurality of sites. Based on the determined water content ratio R w and fat content ratio R f , the temperature-dependent characteristics of the sound velocity at each of the plurality of parts of the subject 100 are calculated from Equation 3.
 なお、計算領域(測定領域)における被検体100以外の領域には、水など既知の媒質が充填されていることが考えられる。これら領域における音速の温度依存特性が情報記憶部32に記憶されており、これら領域における音速の温度依存特性を情報記憶部32より取得すればよい。また、情報記憶部32に被検体100の複数の部位それぞれにおける音速の温度依存特性が記憶されており、複数の部位それぞれにおける音速の温度依存特性を情報記憶部32より取得してもよい。 Note that it is considered that a region other than the subject 100 in the calculation region (measurement region) is filled with a known medium such as water. The temperature dependence characteristics of the sound speed in these areas are stored in the information storage section 32, and the temperature dependence characteristics of the sound speed in these areas may be acquired from the information storage section 32. In addition, the temperature dependence characteristics of the sound speed at each of the plurality of parts of the subject 100 may be stored in the information storage unit 32, and the temperature dependence characteristics of the sound speed at each of the plurality of parts may be acquired from the information storage unit 32.
 以上、当該実施形態に係る温度依存特性取得ステップ(ステップS1)について説明した。当該実施形態に係る温度依存特性取得ステップでは、当該実施形態に係る超音波測定部2を用いる測定により、被検体100の複数の部位それぞれの水の含有比率R及び脂肪の含有比率Rが決定される。複数の第2到達時間の測定は、複数の第1到達時間の測定とは、異なる温度環境下(基準温度T)で実行されるが、それ以外については共通の条件下で測定することができるので、複数の部位(複数のグリッド)それぞれの音速の温度依存特性を高い精度で決定することに加えて、同じ装置(超音波測定部2)を用いて測定ができるので、測定時間の低減、装置を準備するコストの低減など、格別な効果を奏する。 The temperature dependent characteristic acquisition step (step S1) according to the embodiment has been described above. In the temperature-dependent characteristic acquisition step according to the embodiment, the water content ratio Rw and the fat content ratio Rf of each of the plurality of parts of the subject 100 are obtained by measurement using the ultrasonic measurement unit 2 according to the embodiment. It is determined. The measurement of the plurality of second arrival times is performed under a temperature environment (reference temperature T s ) different from the measurement of the plurality of first arrival times, but otherwise, measurement may be performed under common conditions. Therefore, in addition to determining the temperature-dependent characteristics of the sound speed of each of a plurality of parts (multiple grids) with high accuracy, measurement can be performed using the same apparatus (ultrasonic measurement unit 2), thereby reducing measurement time. There are special effects such as a reduction in the cost of preparing the device.
 しかしながら、複数部位温度依存特性取得ステップは、当該実施形態に限定されることがない。他の測定により、水の含有比率R及び脂肪の含有比率Rが決定されてもよい。例えば、MRI装置により測定により、水の含有比率R及び脂肪の含有比率Rを決定し、決定される水の含有比率R及び脂肪の含有比率Rに基づいて、被検体の複数の部位それぞれの音速の温度依存特性を決定してもよい。 However, the multiple-part temperature-dependent characteristic acquisition step is not limited to the embodiment. By other measurements, the water content Rw and the fat content Rf may be determined. For example, the water content ratio R w and the fat content ratio R f are determined by measurement using an MRI apparatus, and a plurality of test subjects are determined based on the determined water content ratio R w and fat content ratio R f . You may determine the temperature dependence characteristic of the sound speed of each site | part.
 また、温度計測は、一般的にリアルタイムに行うことが望ましい。これは集束超音波治療の例のように外部から温度変化を与えるときに、本発明に基づいた手法によって温度分布計測を行うことが、外部温度制御手段にフィードバックする情報を与え、高精度制御に寄与できる可能性があり、フィードバックするにはリアルタイムに温度を算出する必要があるためである。ステップS1のプロセスは、温度変化を行う前なので再構成時間に時間を要しても格段の不都合は生じない。一方、ステップS2からステップS3に関するプロセスに関してはリアルタイムのフィードバックを考えると高速な再構成が望まれる。これを実現する方法として、以下の手法も有用である。すなわち、第1到達時間分布の再構成を行うのではなく、第1到達時間分布と第2到達時間分布の差に対して、再構成を行う手法である。一般に、生体中における脂肪と水の分布は、温度分布より複雑な空間分布をとる。これは、熱が一定の熱伝導率で周囲に拡散するために、不連続な分布をとることが少ないが、例えば乳癌撮像の場合、乳腺と脂肪が混在する形状は、互いの領域が断続的に混ざり合った複雑な解剖学的な構造をとることが多いためである。音速分布の複雑さは、ART法、SART法やC-SART法におけるイテレーションの回数を増大させるため、演算コストが大きい。一方、第1到達時間分布と第2到達時間分布の差を計算することにより、温度分布が反映された音速分布を取得する場合、集束超音波治療など温度変化においては、温温度分布は局所に留まるため、イテレーションの回数を低減できる。 Also, it is generally desirable to measure temperature in real time. This is because when a temperature change is given from the outside as in the example of focused ultrasound therapy, the temperature distribution measurement by the method based on the present invention gives information to be fed back to the external temperature control means, and high precision control is achieved. This is because there is a possibility of contributing and it is necessary to calculate the temperature in real time for feedback. Since the process of step S1 is before the temperature change, even if time is required for the reconstruction time, no particular inconvenience occurs. On the other hand, regarding the processes related to steps S2 to S3, high-speed reconstruction is desired in consideration of real-time feedback. The following method is also useful as a method for realizing this. In other words, this is a technique for reconstructing the difference between the first arrival time distribution and the second arrival time distribution instead of reconstructing the first arrival time distribution. In general, the distribution of fat and water in the living body has a more complex spatial distribution than the temperature distribution. This is because the heat diffuses to the surroundings with a constant thermal conductivity, so it is unlikely to have a discontinuous distribution. For example, in the case of breast cancer imaging, the shape of a mixture of mammary gland and fat is intermittent in each other region This is because they often have complex anatomical structures mixed with each other. The complexity of the sound speed distribution increases the calculation cost because it increases the number of iterations in the ART method, SART method, and C-SART method. On the other hand, when the sound velocity distribution reflecting the temperature distribution is obtained by calculating the difference between the first arrival time distribution and the second arrival time distribution, the temperature distribution is locally applied in a temperature change such as focused ultrasound treatment. Since it stays, the number of iterations can be reduced.
[第2の実施形態]
 本発明の第2の実施形態に係る超音波CT装置1は、超音波画像化装置3に備えられる温度決定手段43の構成が異なることを除いて、第1の実施形態に係る超音波CT装置1と同じ構成を有している。当該実施形態に係る温度決定手段43は、温度補正手段48を備える。
[Second Embodiment]
The ultrasonic CT apparatus 1 according to the second embodiment of the present invention is the ultrasonic CT apparatus according to the first embodiment except that the configuration of the temperature determining means 43 provided in the ultrasonic imaging apparatus 3 is different. 1 has the same configuration. The temperature determination unit 43 according to this embodiment includes a temperature correction unit 48.
 発明者らは、SART法に温度分布を考慮させたT-SART(Temperature considering SART)法を考案し、当該実施形態に係る音速再構成法として採用している。以下、T-SART法について説明するが、その前に、SART法について説明する。SART法では、各計算ステップにおいて、次に示す数式5を用いた修正を行っている。 The inventors devised a T-SART (Temperature considering SART) method in which the temperature distribution is taken into consideration in the SART method and adopted as the sound velocity reconstruction method according to the embodiment. Hereinafter, the T-SART method will be described, but before that, the SART method will be described. In the SART method, correction using Formula 5 shown below is performed at each calculation step.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、添え字のi,j,kはそれぞれ、経路番号、グリッド番号(ピクセル番号)、及び計算ステップ数を表している。また、g,a,w,pはそれぞれ、輝度値、重み関数、ハミング窓関数を考慮した重み関数、及び投影データを表している。ここでは、音速の再構成を行っているので、輝度値は各グリッドの通過時間、すなわちスローネスfであり、投影データは到達時間P(第1到達時間)である。なお、ここでは、音速不均質が存在しない系との「到達時間差」から、音速不均質が存在しない系における「スローネス差」を算出することにより、モデルの修正を行っている。それゆえ、ここでは、正確に言えば、到達時間とは「音速不均質が存在しない系との到達時間差」を、スローネスとは「音速不均質が存在しない系とのスローネス差」をそれぞれ意味している。 Here, the subscripts i, j, and k represent the path number, grid number (pixel number), and number of calculation steps, respectively. In addition, g, a, w, and p represent a brightness function, a weight function, a weight function considering a Hamming window function, and projection data, respectively. Here, since the sound velocity is reconstructed, the luminance value is the passing time of each grid, that is, the slowness f, and the projection data is the arrival time P (first arrival time). Here, the model is corrected by calculating the “slowness difference” in a system without sound speed heterogeneity from the “arrival time difference” with a system without sound speed heterogeneity. Therefore, to be precise, here, arrival time means "difference in arrival time with a system without sound speed heterogeneity" and slowness means "difference in slowness with system without sound speed heterogeneity". ing.
 図6Aは、SART法を説明する図である。数式5に示す通り、SART法では、以下の修正をしていると解釈できる。まず、ある1本の経路に注目し、実際の到達時間(p)と現在のモデルにおける到達時間(a・g)との差分(到達時間差)を算出する。そして、その差分を各グリッドの持つ経路に対する重み関数(wi,j)を乗算して、均等に分配し修正量(数式5の右辺の第2項の分子にある総和記号Σのかっこの中)を用いてモデルを修正する。図6Aに示す通り、仮定される輝度値(スローネス)分布に対して、当該経路(i番目の経路)上の複数のグリッドそれぞれに共通する輝度値変化分(修正量)により、到達時間差がゼロとなるように、輝度値(スローネス)分布を補正し、補正される輝度値(スローネス)分布に基づいて、当該経路上の複数のグリッドの温度分布を修正する。 FIG. 6A is a diagram for explaining the SART method. As shown in Equation 5, the SART method can be interpreted as making the following modifications. First, paying attention to a certain route, the difference (arrival time difference) between the actual arrival time (p i ) and the arrival time (a · g) in the current model is calculated. Then, the difference is multiplied by the weight function (wi , j ) for the path of each grid, and is distributed evenly, and the correction amount (in the parenthesis of the summation symbol Σ in the numerator of the second term on the right side of Equation 5) ) To correct the model. As shown in FIG. 6A, for the assumed luminance value (slowness) distribution, the arrival time difference is zero due to the luminance value change (correction amount) common to each of the plurality of grids on the route (i-th route). Then, the luminance value (slowness) distribution is corrected so that the temperature distributions of a plurality of grids on the path are corrected based on the corrected luminance value (slowness) distribution.
 SART法では、経路上のスローネスを経路に沿って等しく修正しているので、音速の温度依存特性の変化率が微小となっている領域における温度算出誤差が大きくなる。それゆえ、特に、被検体を水と脂肪の混合物とするモデルにおいては、各部位の温度依存特性が上に凸となり対象とする温度付近に極大値を持つ関数となりうるので、再構成中の音速がかかる温度依存特性と交点を持たない場合もありうるので、小さな音速誤差が大きな温度誤差を引き起こす可能性がある。 In the SART method, since the slowness on the path is corrected equally along the path, the temperature calculation error increases in a region where the change rate of the temperature-dependent characteristic of the sound speed is small. Therefore, in particular, in a model in which the subject is a mixture of water and fat, the temperature-dependent characteristics of each part are convex upward and can be a function having a maximum value near the target temperature. In some cases, there may be no intersection with such temperature dependent characteristics, so a small sound speed error may cause a large temperature error.
 これに対して、T-SART法では、温度分布から音速算出を行うので、初期条件として、複数のグリッドの温度分布の初期値T (0)を設定することとなる。各計算ステップにおける輝度値g (k)(ここでは、スローネス)は音速の逆数であるため、温度T (k)の関数として表される。なお、輝度値g (k)と温度T (k)は一対一対応するので、複数のグリッドの温度分布の初期値T (0)を設定すれば、輝度値分布の初期値g (0)を設定する必要はない。輝度値g (k)は、次に示す数式6で示される。 On the other hand, in the T-SART method, since the sound velocity is calculated from the temperature distribution, the initial value T j (0) of the temperature distribution of a plurality of grids is set as the initial condition. The luminance value g j (k) (here, slowness) in each calculation step is the reciprocal of the speed of sound and is therefore expressed as a function of the temperature T j (k) . Since the luminance value g j (k) and the temperature T j (k) have a one-to-one correspondence, the initial value g j of the luminance value distribution can be set by setting the initial value T j (0) of the temperature distribution of a plurality of grids. There is no need to set (0) . The luminance value g l (k) is expressed by the following formula 6.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 さらに、数式1乃至3、及び水と脂肪のみの混合物と近似(R+R=1)により、数式6は、以下に示す数式7で表される。 Furthermore, Formula 6 is represented by Formula 7 shown below by Formula 1 thru | or 3 and approximation ( Rf + Rw = 1) with the mixture of only water and fat.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 T-SART法では数式7を用いて、温度を補正することにより、輝度値g(スローネス)の値を変動させる。T-SART法では、SART法と同様に、超音波の各経路に注目する。そして、i番目の経路上すべての温度を均等にdtだけ変化させる。 In the T-SART method, the value of the luminance value g j (slowness) is changed by correcting the temperature using Equation 7. In the T-SART method, as in the SART method, attention is paid to each path of ultrasonic waves. Then, all temperatures on the i-th path are changed evenly by dt i .
 ここで、変数zi,jを、i番目の経路上にj番目のグリッドがある場合に1となり、i番目の経路上にj番目のグリッドがない場合に0となる関数と定義する。i番目の経路における補正後の温度分布は、次に示す数式8で表される。 Here, the variable z i, j is defined as a function that becomes 1 when the j-th grid is on the i-th path and 0 when there is no j-th grid on the i-th path. The corrected temperature distribution in the i-th path is expressed by Equation 8 below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 そして、温度補正後の輝度値は、次に示す数式9で表される。 The luminance value after temperature correction is expressed by the following formula 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 経路上に温度補正を与える場合の輝度値(スローネス)は、数式8及び数式9により算出される。そのために、数式8に示すi番目の経路に与える補正温度量dtの算出が重要となる。T-SART法では、i番目の経路を経る超音波の到達時間が、実際の到達時間と等しくなるように、i番目の経路の温度を補正している。そのための条件は、次に示す数式10で定義される。 The luminance value (slowness) when temperature correction is given on the path is calculated by Equation 8 and Equation 9. Therefore, it is important to calculate the correction temperature amount dt i given to the i-th path shown in Formula 8. In the T-SART method, the temperature of the i-th path is corrected so that the arrival time of the ultrasonic wave passing through the i-th path becomes equal to the actual arrival time. The condition for this is defined by Equation 10 shown below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図6Bは、T-SART法を説明する図である。仮定される温度分布に対して、i番目の経路上の複数のグリッドそれぞれに共通する温度変化分(修正量)により、到達時間差がゼロとなるように、温度分布を補正し、補正される温度分布に基づいて、当該経路上の複数のグリッドの輝度値(スローネス)分布を修正する。 FIG. 6B is a diagram for explaining the T-SART method. The temperature distribution is corrected by correcting the temperature distribution so that the arrival time difference becomes zero based on the temperature change (correction amount) common to each of the plurality of grids on the i-th path with respect to the assumed temperature distribution. Based on the distribution, the luminance value (slowness) distribution of a plurality of grids on the path is corrected.
 数式8乃至10を連立することにより、投影データpと算出する変化温度dtについての関係式が得られる。しかしながら、実際には、変化温度dtを直接解くことは困難ンであり、当該実施形態において、以下のような探索法を用いて算出している。 By combining Equations 8 to 10, a relational expression for the projection data p i and the calculated change temperature dt i can be obtained. However, in practice, it is difficult to directly solve the change temperature dt i , and in the present embodiment, it is calculated using the following search method.
 まず、補正温度の探索幅ddtを設定し、探索方向を決定するために、dt=0を数式9に代入して、輝度値G(T (k))を算出する。そして、次に示す数式11により与えられる投影データ(P)との到達時間差dP(T (k))を算出する。 First, the correction temperature search width ddt is set, and the luminance value G (T j (k) ) is calculated by substituting dt i = 0 into Equation 9 in order to determine the search direction. Then, the arrival time difference dP i (T j (k) ) from the projection data (P i ) given by the following equation 11 is calculated.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 次に、温度の探索幅ddtだけ変動させるdt=ddtにおける輝度値G(T (k)+zi,j・ddt)を算出し、同様に、到達時間差dP(T (k)+zi,j・ddt)を求める。 Next, the luminance value G (T j (k) + z i, j · ddt) at dt i = ddt that is changed by the temperature search width ddt is calculated. Similarly, the arrival time difference dP (T j (k) + z i is calculated. , J · ddt).
 ここで、修正することにより、到達時間差の絶対値が減少するのであれば、すなわち、|dP(T (k))|>|dP(T (k)+zi,j・ddt)|であれば、探索方向が正しいとする。反対に、到達時間差の絶対値が増大するのであれば、すなわち、|dP(T (k))|<|dP(T (k)+zi,j・ddt)|であれば、ddt=-ddtとして、探索方向を反対方向へ修正する。探索方向が決定すれば、dtを、0,ddt,2・ddt,3・ddt…と、探索幅だけ温度を変動させながら、到達時間を計算する。反復計算の終了条件として、ここでは、連続する補正温度における到達時間差dP(T (k)+zi,j・n・ddt)とdP(T (k)+zi,j・(n+1)・ddt)とが、正負の符号が反転することとしている(nは1以上の整数)。正負の符号が反転するということは、補正温度n・ddtと、補正温度(n+1)・ddtとの間に、数式10を満たす補正温度が存在すると考えられる。例えば、補正温度n・ddtと、補正温度(n+1)・ddtとのうち、到達温度差の絶対値が小さい方の補正温度を採用すればよい。 Here, if the absolute value of the arrival time difference is reduced by the correction, that is, | dP (T j (k) ) |> | dP (T j (k) + z i, j · ddt) | If so, the search direction is assumed to be correct. On the other hand, if the absolute value of the arrival time difference is increased, that is, if | dP (T j (k) ) | <| dP (T j (k) + z i, j · ddt) | As -ddt, the search direction is corrected in the opposite direction. If the search direction is determined, the dt i, 0, ddt, 2 · ddt, 3 · ddt ... and, while changing only search width temperature, calculates the arrival time. As an end condition of the iterative calculation, here, the arrival time difference dP (T j (k) + z i, j · n · ddt) and dP (T j (k) + z i, j · (n + 1) · ddt) is that the sign of the sign is reversed (n is an integer of 1 or more). The fact that the sign of positive / negative is reversed is considered that there is a correction temperature satisfying Equation 10 between the correction temperature n · ddt and the correction temperature (n + 1) · ddt. For example, a correction temperature having a smaller absolute value of the reached temperature difference between the correction temperature n · ddt and the correction temperature (n + 1) · ddt may be employed.
 なお、反復計算の終了条件は、上記条件に限定されることはなく、他に、相対残差を利用する方法も考えられる。また、dtの探索法はこれらに限定されることはなく、他の方法を用いてもよい。 The iterative calculation termination condition is not limited to the above condition, and a method using a relative residual is also conceivable. Further, the search method of dt i is not limited to these, and other methods may be used.
 以上の方法により、全ての経路における補正値を計算する。そして、SART法と同様に、T-SART法では全ての経路において算出した補正値を平均化して、次に示す数式12を用いてモデルを修正する。なお、補正値の分配には、ハミング窓関数を導入して、データ密度の是正を行っている。 The correction values for all routes are calculated by the above method. Similar to the SART method, the T-SART method averages the correction values calculated in all the routes, and corrects the model using the following Equation 12. For the distribution of correction values, a Hamming window function is introduced to correct the data density.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図7は、当該実施形態に係る温度決定ステップ(ステップS3)のフローチャートである。説明したT-SART法に基づくステップS3について、以下に説明する。 FIG. 7 is a flowchart of the temperature determination step (step S3) according to this embodiment. Step S3 based on the described T-SART method will be described below.
[初期温度条件設定ステップ:ta]
 被検体の複数の部位を含む計算領域の複数グリッドそれぞれにおける温度の初期条件を設定する(ta:初期温度条件設定ステップ)。ここで、複数のグリッドの温度分布の初期値T (0)を設定するが、温度分布の初期値T (0)は、例えば、所定の温度(一様分布)としてよい。
[Initial temperature condition setting step: ta]
An initial temperature condition is set for each of a plurality of grids in a calculation region including a plurality of parts of the subject (ta: initial temperature condition setting step). Here, the initial value T j (0) of the temperature distribution of the plurality of grids is set, but the initial value T j (0) of the temperature distribution may be a predetermined temperature (uniform distribution), for example.
[温度補正ステップ:tb]
 ある経路(i番目の経路:iは1~Mの整数)における第1到達時間の測定値と、計算機領域の複数のグリッドのうち該経路を貫く複数の経路上グリッドそれぞれに仮定される遅延因子に基づく到達時間と、が到達時間差を有する場合に、到達時間差を低減するように、複数の経路上グリッドそれぞれの温度を補正する(tb:温度補正ステップ)。ここでは、到達時間差がゼロとなるように複数の経路上グリッドそれぞれの温度を補正するのが望ましい。さらに、複数の経路上グリッドに共通する温度変化分により補正するのが望ましい。複数の経路上グリッドとは、計算機領域の複数のグリッドのうち、該経路を貫く複数のグリッドであり、図4に示すl番目の経路の場合、複数の経路上グリッドは、A~Jである。ステップtbをすべて(M本)の経路について繰り返す。
[Temperature correction step: tb]
A measured value of the first arrival time in a certain route (i-th route: i is an integer of 1 to M) and a delay factor assumed for each of a plurality of grids on the route passing through the route among a plurality of grids in the computer area When there is a difference in arrival time between the arrival times based on, the temperatures of the grids on the plurality of paths are corrected so as to reduce the difference in arrival time (tb: temperature correction step). Here, it is desirable to correct the temperature of each of the grids on the plurality of paths so that the arrival time difference becomes zero. Furthermore, it is desirable to correct by a temperature change common to a plurality of grids on the path. The plurality of grids on the route are a plurality of grids that penetrate the route among the plurality of grids in the computer area. In the case of the l-th route shown in FIG. 4, the plurality of grids on the route are A to J. . Step tb is repeated for all (M) routes.
 ステップtbでは、i番目の経路を貫く複数の経路上グリッドの温度分布T (k)を、到達時間差dPがゼロとなるように、複数の経路上グリッドに共通する温度変化分dtにより補正している。温度変化分dtの決定方法については、すでに説明している通りである。その1例を示す。(i)所定の値を有する温度の探索幅ddtを設定する。(ii)経路上グリッドの温度分布を(T (k)+ddt)に変動させる。(iii)温度分布(T (k)+ddt)における輝度値G(T (k)+ddt)を算出する(数式9参照)。ここで、温度依存特性取得ステップ(ステップS1)が取得する被検体100の複数の部位それぞれの音速の温度依存特性に基づいて、温度分布(T (k)+ddt)における輝度値g (k)(スローネス)を計算する。(iv)到達時間差dP(T (k)+ddt)を算出する(数式11参照)。(v)到達時間差の増減により、ddtの符号を決定する。前述の通り、到達時間差の絶対値が減少するのであれば、ddtの符号を維持し、増大するのであれば、ddtの符号を反転させ(ddt=-ddt)、探索方向を決定する。(vi)決定された探索方向により、温度分布(T (k)+n・ddt)に対して(nは1以上の整数)、上記(ii)~(iv)を、到達時間差dPの符号が反転するまで繰り返す。(vii)本計算ステップ(k)における補正のための温度変化分dtを決定する。 In step tb, the temperature distributions T j (k) of the plurality of on-path grids passing through the i-th path are determined by the temperature change dt i common to the plurality of on-path grids so that the arrival time difference dP i becomes zero. It is corrected. The method for determining the temperature change dt i is as already described. One example is shown. (I) A temperature search width ddt having a predetermined value is set. (Ii) The temperature distribution of the grid on the path is changed to (T j (k) + ddt). (Iii) the temperature distribution (T j (k) + ddt) luminance values in G (T j (k) + ddt) is calculated (see Equation 9). Here, the luminance value g j (k ) in the temperature distribution (T j (k) + ddt) based on the temperature-dependent characteristics of the sound speed of each of the plurality of parts of the subject 100 acquired in the temperature-dependent characteristic acquisition step (step S1). ) Calculate (slowness). (Iv) The arrival time difference dP i (T j (k) + ddt) is calculated (see Expression 11). (V) The sign of ddt is determined by increasing or decreasing the arrival time difference. As described above, if the absolute value of the arrival time difference decreases, the sign of ddt is maintained, and if it increases, the sign of ddt is inverted (ddt = −ddt) to determine the search direction. (Vi) For the temperature distribution (T j (k) + n · ddt) (n is an integer of 1 or more) according to the determined search direction, the above (ii) to (iv) are represented by the sign of the arrival time difference dP i Repeat until is reversed. (Vii) The temperature change dt i for correction in this calculation step (k) is determined.
[計算結果判定ステップ:tc]
 k番目(kは1以上の整数)の計算ステップの結果を判定する(tc:計算結果判定ステップ)。1番目(k=1)の計算ステップにおいては、自動的に2番目(k=2)の計算ステップへ移行する。k番目(k≧2の整数)においては、k番目の計算結果と、(k-1)番目の計算結果と、の差分に基づいて、収束性を判断する。十分に収束していると判断される場合には、ステップS3を終了する。十分には収束していないと判断される場合には、k=k+1として、k+1番目の計算ステップへ移行する。
[Calculation result judgment step: tc]
The result of the k-th (k is an integer equal to or greater than 1) calculation step is determined (tc: calculation result determination step). In the first (k = 1) calculation step, the process automatically proceeds to the second (k = 2) calculation step. For the kth (k ≧ 2), the convergence is determined based on the difference between the kth calculation result and the (k−1) th calculation result. If it is determined that the convergence is sufficient, step S3 is terminated. If it is determined that the convergence is not sufficient, k = k + 1 is set, and the process proceeds to the (k + 1) th calculation step.
 以上の計算により、複数(M本)の経路の到達時間差dPを最小化する、輝度値(スローネス)分布が取得され、かかる輝度値分布を与える温度分布が取得される。 Through the above calculation, a luminance value (slowness) distribution that minimizes the arrival time difference dP i of a plurality (M) of routes is acquired, and a temperature distribution that provides the luminance value distribution is acquired.
 当該実施形態では、経路上グリッドの輝度値(スローネス)分布を直接補正するSART法と異なり、到達時間差を低減させるように、経路上グリッドの温度分布を補正している。計算を簡便にすることにより、各径路における補正のための温度変化分を経路上グリッドにおいて共通する値を用いている。しかし、共通する値を用いることは計算時間の短縮のために望ましいものの、この方法に限定されることがないのは言うまでもない。経路上グリッドの温度分布を補正することにより、到達時間差を低減させるのであれば、経路上グリッドにおいて共通する値により、温度分布を補正することに限定されることはない。 In this embodiment, unlike the SART method that directly corrects the luminance value (slowness) distribution of the path grid, the temperature distribution of the path grid is corrected so as to reduce the arrival time difference. By simplifying the calculation, a value common to the grid on the path is used for the temperature change for correction in each path. However, although it is desirable to use a common value for shortening the calculation time, it is needless to say that the method is not limited to this method. As long as the arrival time difference is reduced by correcting the temperature distribution of the on-path grid, the temperature distribution is not limited to being corrected by a common value in the on-path grid.
 なお、温度分布の補正により到達時間差を低減させている理由に関して以下に補足的な説明を行う。第2到達時間取得から基準温度音速を求める工程において、断層像再構成には必ず一定の空間解像度の限界が存在する。このため脂肪と水の混合比の空間分布においては、混合比の変化が急峻な領域において、混合比の推定精度が低下する。推定精度の低下に伴い、音速の温度依存特性が、本来の温度依存特性からずれてしまう。このずれの結果が温度推定誤差を誘発する。一方、温度分布は熱拡散の影響で常に境界がなだらかとなる(周囲に比べて、著しく熱伝導率の小さい領域が存在すると、その部分のみ熱拡散効率が低下するため、温度の空間勾配が大きくなる。しかし、生体中の組織において、著しく熱伝導率が小さい領域は存在することは想定する必要がない)。このため脂肪・水の混合比の空間的な連続性よりは、温度分布の方が空間的な連続性を仮定する理由が存在する。よって、温度分布の補正により到達時間差を低減させることが妥当となる。 In addition, the reason why the arrival time difference is reduced by correcting the temperature distribution will be explained below. In the process of obtaining the reference temperature sound speed from the second arrival time acquisition, there is always a certain spatial resolution limit for tomographic image reconstruction. For this reason, in the spatial distribution of the mixing ratio of fat and water, the estimation accuracy of the mixing ratio decreases in a region where the change of the mixing ratio is steep. As the estimation accuracy decreases, the temperature-dependent characteristic of sound speed deviates from the original temperature-dependent characteristic. The result of this deviation induces a temperature estimation error. On the other hand, the boundary of the temperature distribution is always gentle due to the effect of thermal diffusion (if there is a region with significantly lower thermal conductivity compared to the surroundings, the thermal diffusion efficiency decreases only in that region, so the temperature spatial gradient is large. However, it is not necessary to assume that there is a region with extremely low thermal conductivity in the tissue in the living body). For this reason, there is a reason that the temperature distribution assumes spatial continuity rather than the spatial continuity of the mixing ratio of fat and water. Therefore, it is appropriate to reduce the arrival time difference by correcting the temperature distribution.
 また前記の例では基準温度音速やMRIから脂肪・水混合比率を求める例に関して説明を行った。それ以外の方法として、2つの基準温度を用いて、この温度変化の間に音速が正に変化する領域と、負に変化する領域に二分して、それぞれを脂肪領域、水領域とすることも可能である。この場合は、解像度が十分に高い場合には、画素毎に水に類似した音速の温度依存性をもつ領域と、脂肪に類似した音速の温度依存性をもつ領域に二分化する。 In the above example, the example of obtaining the fat / water mixing ratio from the reference temperature sound velocity and MRI has been described. Another method is to use two reference temperatures and divide the sound speed into two areas: a region where the sound velocity changes positively during this temperature change and a region where the sound velocity changes negatively. Is possible. In this case, when the resolution is sufficiently high, each pixel is divided into a region having a temperature dependence of sound speed similar to water and a region having a temperature dependence of sound speed similar to fat.
[第3の実施形態]
 本発明の第3の実施形態に係る超音波CT装置1は、超音波画像化装置3に備えられる温度決定手段48の構成が異なることを除いて、第2の実施形態に係る超音波CT装置1と同じ構成を有している。第2の実施形態に係る温度決定手段48では、収束性に問題が発生する場合があり得る。当該実施形態に係る温度決定手段48では、収束性を考慮して、補正のための温度変化分を決定している。
[Third Embodiment]
The ultrasonic CT apparatus 1 according to the third embodiment of the present invention is different from the ultrasonic CT apparatus according to the second embodiment except that the configuration of the temperature determining means 48 provided in the ultrasonic imaging apparatus 3 is different. 1 has the same configuration. In the temperature determination unit 48 according to the second embodiment, there may be a problem in convergence. The temperature determining unit 48 according to the embodiment determines the temperature change for correction in consideration of convergence.
 最初に、T-SART法の収束性について考察する。数式8より、補正後の輝度値(スローネス)は、次に示す数式13に近似される。 First, let us consider the convergence of the T-SART method. From Equation 8, the corrected luminance value (slowness) is approximated by Equation 13 shown below.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、数式10及び数式13により、補正温度dtを満たす条件式が次に示す数式14が得られる。 Further, the following Expression 14 is obtained as a conditional expression that satisfies the correction temperature dt i by Expression 10 and Expression 13.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、zi,jとai,jの関係を用いて、数式14を整理すると、補正温度の条件式として、次に示す数式15が得られる。 Here, when formula 14 is arranged using the relationship between z i, j and a i, j , formula 15 shown below is obtained as a conditional expression for the correction temperature.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ただし、到達時間差dPは数式11を満たしている。なお、数式15は、あくまでi番目の経路(1つの経路)における補正温度を算出するための条件式であり、dP及びdtはスカラー量であることに留意する。数式15の左辺は、現在のモデルにおける超音波の到達時間と実測の到達時間の差を意味し、数式15の右辺は、補正温度dtが与えられた場合に変化する到達時間の変化分を意味している。両者が等しくなるように、温度を補正することにより、i番目の経路を経る超音波の到達時間を実測値と等しくなるように調整する。数式15に示す通り、補正温度dtの(正負の)符号は、dP及びa (dG/dt)の符号に依存して決定される。それゆえ、輝度値の微分値dG/dTの符号が重要となる。 However, the arrival time difference dP i satisfies Expression 11. Note that Formula 15 is a conditional expression for calculating the correction temperature in the i-th path (one path) to the last, and dP i and dt i are scalar quantities. The left side of Equation 15 means the difference between the arrival time of the ultrasonic wave and the actual arrival time in the current model, and the right side of Equation 15 shows the change in arrival time that changes when the correction temperature dt i is given. I mean. By correcting the temperature so that they are equal, the arrival time of the ultrasonic wave passing through the i-th path is adjusted to be equal to the actually measured value. As shown in Equation 15, the (positive or negative) sign of the correction temperature dt i is determined depending on the signs of dP i and a i T (dG / dt). Therefore, the sign of the differential value dG / dT of the luminance value is important.
 理想的な輝度値分布(スローネス分布)をg idealとすると、dPは次に示す数式16で近似される。 Assuming that an ideal luminance value distribution (slowness distribution) is g j ideal , dP i is approximated by Expression 16 shown below.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 前述の通り、輝度値(スローネス)と温度とは一対一対応をするため、系に設定される理想的な温度分布T idealを用いると、数式16より次に示す数式17が導出される。 As described above, since the luminance value (slowness) and the temperature have a one-to-one correspondence, Expression 17 shown below is derived from Expression 16 when an ideal temperature distribution T j ideal set in the system is used.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 さらに、現在のモデルと理想的な温度分布の差をdT (k)とすると、数式17は次に示す数式18に置き換えられる。 Further, if the difference between the current model and the ideal temperature distribution is dT j (k) , Expression 17 is replaced with Expression 18 shown below.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 さらに、数式18は次に示す数式19に近似される。 Furthermore, Equation 18 is approximated to Equation 19 shown below.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 数式19は、各グリッド(ピクセル)における輝度値(スローネス)の温度微分値に理想温度との差分を乗算し、経路に沿う線積分を意味している。i番目の経路がリング外周上の一点より始まり、被検体が配置される中心部分を貫き、リング外周上の該一点とは反対側にある他の一点に至る経路であるとする。例えば、計算領域の外周付近において輝度値の温度微分dG/dTの符号は負であり、計算領域の中心付近においては、輝度値の温度微分dG/dTの符号は正である場合を考える。そして、i番目の経路における実測値との到達時間差dPが正の値として算出されているとする。 Formula 19 means line integration along the path by multiplying the temperature differential value of the brightness value (slowness) in each grid (pixel) by the difference from the ideal temperature. It is assumed that the i-th path starts from one point on the outer periphery of the ring, passes through the central portion where the subject is arranged, and reaches another point on the opposite side of the one point on the outer periphery of the ring. For example, consider a case where the sign of the temperature differential dG / dT of the brightness value is negative near the outer periphery of the calculation area, and the sign of the temperature differential dG / dT of the brightness value is positive near the center of the calculation area. Then, it is assumed that the arrival time difference dP i from the actually measured value in the i-th route is calculated as a positive value.
 i番目の経路における線積分において、外周付近におけるdG/dTの絶対値が中心付近におけるdG/dTの絶対値より大きかったり、dG/dTが負である領域がdG/dTが正である領域より長かったりすれば、数式11より、T-SART法における(i番目の経路上の複数のグリッドすべてに共通の)補正温度dtが負となり得る。かかる場合であっても、i番目の経路上のすべてグリッドにおいてdT (k)の符号がすべて正であることもあり得る。中心部分のdT (k)の値が外周付近のdT (k)の値より大きい場合に、数式19の両辺が正となり得る。この場合、実際の補正温度dT (k)は、i番目の経路上のすべてのグリッドにおいて正の値であるにもかかわらず、T-SART法における補正温度dtは負となり、補正温度が本来の温度差と逆に算出され、収束性が悪くなる場合が生じる。 In the line integration in the i-th path, the absolute value of dG / dT near the outer periphery is larger than the absolute value of dG / dT near the center, or the region where dG / dT is negative is greater than the region where dG / dT is positive. If it is long, the correction temperature dt i ( common to all of the plurality of grids on the i-th path) in the T-SART method can be negative from Equation 11. Even in such a case, the signs of dT j (k) may be all positive in all grids on the i-th path. When the value of dT j (k) in the central portion is larger than the value of dT j (k) near the outer periphery, both sides of Equation 19 can be positive. In this case, although the actual correction temperature dT j (k) is a positive value in all the grids on the i-th path, the correction temperature dt i in the T-SART method is negative, and the correction temperature is It is calculated opposite to the original temperature difference, and the convergence may be deteriorated.
 当該実施形態において、収束性を考慮したT-SART法(以下、修正T-SART法)を採用している。T-SART法では、輝度値(スローネス)の温度微分dG/dTの符号にかかわらず、補正温度をi番目の経路上の複数のグリッドすべてに共通の補正温度dtとしている。これに対して、修正T-SART法では、複数のグリッドそれぞれにおいて、輝度値(スローネス)の温度微分dG/dTの符号の符号に応じて、補正温度の符号を決定している。 In this embodiment, a T-SART method (hereinafter referred to as a modified T-SART method) in consideration of convergence is adopted. In the T-SART method, regardless of the sign of the temperature differential dG / dT of the luminance value (slowness), the correction temperature is set to the correction temperature dt i common to all the plurality of grids on the i-th path. On the other hand, in the modified T-SART method, the sign of the correction temperature is determined according to the sign of the sign of the temperature differential dG / dT of the luminance value (slowness) in each of the plurality of grids.
 T-SART法では、補正温度をi番目の経路上の複数のグリッドすべてに共通の補正温度dtとしている。しかし、一般に、補正温度をグリッド(ピクセル)に応じて異なるとしてよいので、j番目のグリッドにおける補正温度をdti,jとする。この場合、数式10は、次に示す数式20に書き換えられる。 In the T-SART method, the correction temperature is set to a correction temperature dt i common to all the plurality of grids on the i-th path. However, in general, since the correction temperature may be different depending on the grid (pixel), the correction temperature in the j-th grid is set to dt i, j . In this case, Expression 10 is rewritten to Expression 20 shown below.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 数20に示すjを、i番目の経路上のグリッドに限定すれば、数式20は次に示す数式21に書き換えられる。 If j shown in Equation 20 is limited to the grid on the i-th path, Equation 20 can be rewritten as Equation 21 below.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 計算を簡単にするために、i番目の経路における補正温度の絶対値は等しいとして、次に示す数式22を条件として設定する。 In order to simplify the calculation, the absolute value of the correction temperature in the i-th path is assumed to be equal, and the following formula 22 is set as a condition.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここで、Cはi番目の経路に対する定数である。各グリッド(ピクセル)における補正温度dti,jの符号を、輝度値(スローネス)の温度微分の符号に応じて決定する。次に示す数式23の通り、到達時間差dPが正であれば、(dG/dT)dti,jが正となるように、dti,jの符号を決定する。 Here, C i is a constant for the i-th path. The sign of the correction temperature dt i, j in each grid (pixel) is determined according to the sign of the temperature differentiation of the luminance value (slowness). As shown in Equation 23 below, if the arrival time difference dP i is positive , the sign of dt i, j is determined so that (dG / dT) dt i, j becomes positive.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 次に示す数式24の通り、到達時間差dPが負であれば、(dG/dT)dti,jが負となるように、dti,jの符号を決定する。 As shown in Equation 24 below, if the arrival time difference dP i is negative, the sign of dt i, j is determined so that (dG / dT) dt i, j is negative.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 説明を簡単にするために、修正T-SART法を、2次元超平面を用いて以下に説明する。グリッドの数を2(jは1か2の整数)とすると、投影データp(到達時間)と輝度値g(スローネス)は、ωijは重み関数として、以下に示す数式25で表される。 For ease of explanation, the modified T-SART method is described below using a two-dimensional hyperplane. Assuming that the number of grids is 2 (j is an integer of 1 or 2), the projection data p i (arrival time) and the luminance value g j (slowness) are expressed by the following formula 25 using ω ij as a weight function. The
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 図8は、2次元超平面におけるSART法及びT-SART法における補正ベクトルの向きを示す図である。2次元超平面において、数式25に示す2式は、それぞれ直線l及び直線mで表すことができる。ART法やSART法では、ある投影に対する解を意味する直線へ、垂線の足を延ばすようにモデルの修正を行っている。すなわち、輝度値(スローネス)の補正ベクトルは、図8に破線で示す通り、直線に直交する向きを有する。 FIG. 8 is a diagram showing directions of correction vectors in the SART method and the T-SART method on a two-dimensional hyperplane. In the two-dimensional hyperplane, the two formulas shown in Formula 25 can be represented by a straight line l and a straight line m, respectively. In the ART method and the SART method, the model is corrected so that a perpendicular line is extended to a straight line that means a solution to a certain projection. That is, the correction vector of the luminance value (slowness) has a direction orthogonal to the straight line as shown by a broken line in FIG.
 これに対して、T-SART法では、各径路において温度を均等に補正しており、補正ベクトルの各成分であるΔG1(dT)とΔG2(dT)との符号により、2次元超平面は、ΔG1(dT)とΔG2(dT)との符号が(正,正)となる領域1、(正,負)となる領域2、(負,負)となる領域3、及び(負,正)領域4の4つの領域に分類される。このうち、図8に実線で示す通り、補正ベクトルが領域1及び領域3となる場合には、良好な収束性を有すると考えられるが、補正ベクトルが領域2及び領域4となる場合には、収束性に問題が生じうると考えられる。 On the other hand, in the T-SART method, the temperature is uniformly corrected in each path, and the two-dimensional hyperplane is expressed by the signs of ΔG1 (dT) and ΔG2 (dT) that are components of the correction vector. Region 1 where the signs of ΔG1 (dT) and ΔG2 (dT) are (positive, positive), region 2 (positive, negative), region 3 (negative, negative), and (negative, positive) region 4 is classified into four areas. Among these, as indicated by the solid line in FIG. 8, when the correction vector is region 1 and region 3, it is considered to have good convergence, but when the correction vector is region 2 and region 4, It is considered that there may be a problem with convergence.
 図9は、2次元超平面における修正T-SART法における補正ベクトルの向きを示す図である。参考のために、SART法及びT-SART法における補正ベクトルの向きを併せて示している。前述の通り、SART法における補正ベクトルは、図にV1で示す通り、直線lと直交する向きを有する。T-SART法では、グリッド1とグリッド2の補正温度は等しい(ここではともにCとする)ので、図にV2で示す向きを有する。これに対して、修正T-SART法では、輝度値(スローネス)の温度微分の符号に応じて、補正する温度変化分の符号を変化させるので、図9に示す場合では、補正する温度変化分の符号が互いに異なっている。それゆえ、補正ベクトルは図にV3で示す向きを有する。 FIG. 9 is a diagram showing the direction of the correction vector in the modified T-SART method on the two-dimensional hyperplane. For reference, the directions of correction vectors in the SART method and the T-SART method are also shown. As described above, the correction vector in the SART method has a direction orthogonal to the straight line 1 as indicated by V1 in the figure. In the T-SART method, the correction temperatures of the grid 1 and the grid 2 are the same (both are set to C 1 here), and thus have a direction indicated by V 2 in the figure. On the other hand, in the modified T-SART method, the sign of the temperature change to be corrected is changed according to the sign of the temperature derivative of the luminance value (slowness). Therefore, in the case shown in FIG. Are different from each other. Therefore, the correction vector has a direction indicated by V3 in the figure.
 以下に、当該実施形態に係る温度決定ステップ(ステップS3)を説明する。当該実施形態に係るステップS3は、図7に示すフローチャートの通りであるが、温度補正ステップ(ステップtb)の構成が、第2の実施形態と異なっている。当該実施形態では、第2の実施形態と同様に、到達時間差を低減するよう、さらに望むべくは、到達時間差をゼロとなるように、複数の経路上グリッドそれぞれの温度を補正している。しかしながら、当該実施形態では、複数の経路上グリッドそれぞれの温度を補正する温度変化分の符号を、仮定される遅延因子の温度微分値の符号と、到達時間差の符号と、に基づいて決定している。複数の経路上グリッドそれぞれの温度を補正する温度変化分の絶対値を、複数の経路上部位において共通する値とするのが、望ましい。複数の経路上グリッドそれぞれの温度を補正する温度変化分の符号を、仮定される遅延因子の温度微分値の符号と、到達時間差の符号とが同じ場合は正と、異なる場合は負と、決定するのが、さらに望ましい。 Hereinafter, the temperature determination step (step S3) according to the embodiment will be described. Step S3 according to this embodiment is as shown in the flowchart of FIG. 7, but the configuration of the temperature correction step (step tb) is different from that of the second embodiment. In this embodiment, as in the second embodiment, the temperature of each of the grids on the plurality of paths is corrected so as to reduce the arrival time difference and, if desired, the arrival time difference is zero. However, in this embodiment, the sign of the temperature change that corrects the temperature of each of the grids on the plurality of paths is determined based on the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference. Yes. It is desirable that the absolute value of the temperature change for correcting the temperature of each of the plurality of path grids is a value common to the plurality of path paths. The sign of the temperature change that corrects the temperature of each grid on the path is determined to be positive if the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference are the same, and negative if they are different It is more desirable to do this.
 当該実施形態では、温度補正ステップ(ステップtb)において、複数のグリッドにおける温度変化分の絶対値を共通の値としている。それゆえ、ステップtbにおいて、各グリッドにおける温度変化分の符号を決定し、当該共通する値を算出する。前述の通り、各グリッドにおける温度変化分の符号は、数式23及び24により決定される。当該共通する値の算出は、第2の実施形態における温度変化分の決定方法に類似している。 In this embodiment, in the temperature correction step (step tb), the absolute value of the temperature change in the plurality of grids is a common value. Therefore, in step tb, the sign of the temperature change in each grid is determined, and the common value is calculated. As described above, the sign of the temperature change in each grid is determined by Equations 23 and 24. The calculation of the common value is similar to the method for determining the temperature change in the second embodiment.
 以下に、当該実施形態に係る温度補正ステップ(ステップtb)の1例を示す。(i)所定の値を有する温度の探索幅ddtを設定する(第2の実施形態と同様)。(ii)経路上グリッドの温度分布を(T(k)+ddt)に変動させる(第2の実施形態と同様)。(iii)温度分布(T (k)+ddt)における輝度値G(T (k)+ddt)を算出する(第2の実施形態と同様)。(iv)各経路上グリッドにおいて、輝度値(スローネス)の温度微分値dG/dTの符号と、到達時間差dPの符号と、に基づいて、温度変化分の符号を決定する(数式23及び24参照)。(v)各経路上グリッドにおいて決定される温度変化分の符号に基づいて、到達時間差dPを算出する。(vi)温度分布(T (k)±n・ddt)に対して(nは1以上の整数、各径路上グリッドにおける符号は±のいずれか)、上記(ii)、(iii)、及び(v)を、到達時間差dPの符号が反転するまで繰り返す。(vii)本計算ステップ(k)における補正のための温度変化分の絶対値Cを決定する。 Hereinafter, an example of the temperature correction step (step tb) according to the embodiment will be described. (I) A temperature search width ddt having a predetermined value is set (similar to the second embodiment). (Ii) The temperature distribution of the grid on the path is changed to (T j (k) + ddt) (similar to the second embodiment). (Iii) A luminance value G (T j (k) + ddt) in the temperature distribution (T j ( k) + ddt) is calculated (similar to the second embodiment). (Iv) In each grid on the path, the sign of the temperature change is determined based on the sign of the temperature differential value dG / dT of the luminance value (slowness) and the sign of the arrival time difference dP i (Equations 23 and 24). reference). (V) The arrival time difference dP i is calculated based on the sign of the temperature change determined in each grid on the path. (Vi) With respect to the temperature distribution (T j (k) ± n · ddt) (n is an integer of 1 or more, and the sign in each on-path grid is ±), (ii), (iii), and (V) is repeated until the sign of the arrival time difference dP i is reversed. (Vii) The absolute value C i of the temperature change for correction in this calculation step (k) is determined.
 当該実施形態において、各径路上グリッドにおける補正のための温度変化分の絶対値を、複数の経路上グリッドにおいて共通の値としたが、これに限定されることはない。また、各経路上グリッドにおける補正のための温度変化分の符号を、数式23及び24により決定しているが、複数の経路上グリッドにおける温度変化分の符号を、すべて数式23及び24により決定していなくてもよい。収束性の方向性を決定するの十分な程度に、複数の経路上グリッドの一部における温度変化分の符号を決定すればよい。具体的に一部とは、複数の経路上グリッドのうち、7割以上の経路上グリッドであるのが望ましい。また、当該実施形態では、数式23及び24に基づく収束性を、T-SART法に適用しているが、これに限定されることはなく、輝度値の温度微分値を用いる、他の音速再構成法に適用してもよい。 In this embodiment, the absolute value of the temperature change for correction in each path grid is a common value in a plurality of path grids, but is not limited thereto. Further, the sign of the temperature change for correction in each grid on the path is determined by Expressions 23 and 24. However, the sign of the temperature change in the plurality of grids on the path is all determined by Expressions 23 and 24. It does not have to be. What is necessary is just to determine the code | symbol for the temperature change in a part of several grid on a path | route to the extent sufficient to determine the directionality of convergence. Specifically, the “part” is preferably a grid on a route that is 70% or more of a plurality of grids on a route. In this embodiment, the convergence based on Equations 23 and 24 is applied to the T-SART method. However, the present invention is not limited to this, and other sound speed reproduction using the temperature differential value of the luminance value is possible. You may apply to a construction method.
 以上、本発明の実施形態に係る超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波CT装置について、説明した。以下に、本発明の実施形態による測定結果及び計算結果を以下に示す。 The ultrasonic imaging apparatus, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic CT apparatus according to the embodiment of the present invention have been described above. Below, the measurement result and calculation result by embodiment of this invention are shown below.
 図10は、本発明の第1の実施形態に係る超音波CT装置1による測定結果の例を示す図である。図10は、被検体100の測定データより、音速分布を画像化したものである。ここで、被検体100にアクリルアミドゲルを用いており、超音波により小さな領域を高温に加温するHIFUを模して、発熱体26としてマイクロヒータを用いている。被検体100の中心部を集中的に加熱し、内部発熱によって温度が上昇する非定常な温度条件となっており、図10は、加熱開始から2分後の被検体100の状態を示している。なお、被検体100及び媒質(水)の加熱前の温度は20℃である。サンプリングレートを10MHzとし、サンプル間隔時間を0.1μsとしている。図10に示す通り、加熱の中心部の音速が1550m/s近くまで速くなっており、マイクロヒータから離れるにつれて、音速が遅くなっており、媒質(水)においては、音速は定状態の1482m/s付近である。 FIG. 10 is a diagram showing an example of a measurement result obtained by the ultrasonic CT apparatus 1 according to the first embodiment of the present invention. FIG. 10 is an image of the sound velocity distribution based on the measurement data of the subject 100. Here, an acrylamide gel is used for the subject 100, and a micro heater is used as the heating element 26, simulating a HIFU that warms a small region to a high temperature by ultrasonic waves. The center portion of the subject 100 is heated intensively and the temperature rises due to internal heat generation. The state of the subject 100 is 2 minutes after the start of heating. . Note that the temperature of the subject 100 and the medium (water) before heating is 20 ° C. The sampling rate is 10 MHz, and the sample interval time is 0.1 μs. As shown in FIG. 10, the sound speed at the center of heating is increased to near 1550 m / s, and the sound speed decreases as the distance from the microheater increases. In the medium (water), the sound speed is 1482 m / s in a constant state. It is near s.
 図11Aは、本発明の第2及び第3の実施形態に係る超音波画像化装置3において設定される被検体100のモデルを示す図である。図11Aに示すように、被検体100は細胞であり、ここでは簡単のために、脂肪の含有比率が一定とし、被検体100の直径を20mmと設定している。被検体100の周囲の媒質は水である(脂肪の含有比率は0)。 FIG. 11A is a diagram showing a model of the subject 100 set in the ultrasonic imaging apparatus 3 according to the second and third embodiments of the present invention. As shown in FIG. 11A, the subject 100 is a cell. For simplicity, the fat content ratio is constant and the diameter of the subject 100 is set to 20 mm. The medium around the subject 100 is water (the content ratio of fat is 0).
 図11Bは、本発明の第2の実施形態に係る超音波画像化装置3の計算結果を示す図である。図11Bは、図11Aに示す経路iの温度分布について、100回のイテレーション(計算ステップ数)を施した計算結果である。当該実施形態に係るT-SART法による計算結果である温度分布曲線を、設定されるモデルの温度分布とともに示している。なお、図11Bに示す被検体100は、脂肪の含有比率を20%としている。すなわち、脂肪と水の重量比は1:4である。被検体100がかかる混合物である場合、水のスローネスの温度依存性も、被検体100のスローネスの温度依存性も、ともにdG/dT>0であり、計算結果は、モデルの温度分布と、実用的なレベルの一致をみている。 FIG. 11B is a diagram showing a calculation result of the ultrasonic imaging apparatus 3 according to the second embodiment of the present invention. FIG. 11B shows a calculation result obtained by performing iteration (number of calculation steps) 100 times on the temperature distribution of the path i shown in FIG. 11A. A temperature distribution curve which is a calculation result by the T-SART method according to the embodiment is shown together with a temperature distribution of a set model. Note that the subject 100 shown in FIG. 11B has a fat content ratio of 20%. That is, the weight ratio of fat to water is 1: 4. When the subject 100 is such a mixture, both the temperature dependence of the water slowness and the temperature dependence of the subject 100 are dG / dT> 0, and the calculation result shows the model temperature distribution and the practical use. The same level of agreement.
 図11Cは、本発明の第3の実施形態に係る超音波画像化装置3の計算結果を示す図である。図11Cは、図11Aに示す経路iの温度分布について、50回のイテレーション(計算ステップ数)を施した計算結果である。当該実施形態に係る修正T-SART法による計算結果である温度分布曲線を、設定されるモデル温度分布とともに示している。なお、図11Cに示す被検体100は、脂肪の含有比率を60%としている。すなわち、脂肪と水の重量比は3:2である。被検体100がかかる混合物である場合、水のスローネスの温度依存性はdG/dT>0であるのに対して、被検体100のスローネスの温度依存性はdG/dT<0である。かかる場合、T-SART法では、収束性に問題が発生し得るが、収束性を考慮した当該実施形態に係る修正T-SART法では、計算結果は、実用的なレベルの一致をみている。なお、被検体100と媒質(水)との境界においては、温度の不連続な飛び(ジャンプ)がみられている。以上、本発明の実施形態による測定結果及び計算結果を示した。 FIG. 11C is a diagram showing a calculation result of the ultrasonic imaging apparatus 3 according to the third embodiment of the present invention. FIG. 11C shows a calculation result obtained by performing iteration (number of calculation steps) 50 times on the temperature distribution of the path i shown in FIG. 11A. A temperature distribution curve which is a calculation result by the modified T-SART method according to the embodiment is shown together with a set model temperature distribution. Note that the subject 100 shown in FIG. 11C has a fat content ratio of 60%. That is, the weight ratio of fat to water is 3: 2. When the subject 100 is such a mixture, the temperature dependence of the slowness of water is dG / dT> 0, whereas the temperature dependence of the slowness of the subject 100 is dG / dT <0. In such a case, the T-SART method may cause a problem in convergence. However, in the modified T-SART method according to the embodiment in consideration of convergence, the calculation results have a practical level of coincidence. In addition, a discontinuous jump (jump) in temperature is observed at the boundary between the subject 100 and the medium (water). The measurement results and calculation results according to the embodiment of the present invention have been described above.
 本発明は、上記実施形態に限定されることはなく、超音波画像化に広く適用することが出来る。上記実施形態において、2次元画像化を例として、各グリッドをピクセル(画素)としているが、これに限定されることはなく、3次元画像化としてもよい。この場合、各グリッドはボクセルとなる。 The present invention is not limited to the above embodiment, and can be widely applied to ultrasonic imaging. In the above-described embodiment, two-dimensional imaging is taken as an example, and each grid is a pixel (pixel), but is not limited to this, and may be three-dimensional imaging. In this case, each grid is a voxel.
 なお、本発明の実施形態に係る超音波画像化装置で検出する温度変化について、主に超音波治療の例について説明を行った。しかしながら、温度検知をする例はこれに限定されることはなく、例えば以下の2つの例がある。これらの例を含めて本発明の手法を広く適用することができる。 In addition, the example of ultrasonic therapy was mainly demonstrated about the temperature change detected with the ultrasonic imaging apparatus which concerns on embodiment of this invention. However, examples of temperature detection are not limited to this, and there are, for example, the following two examples. The technique of the present invention can be widely applied including these examples.
 癌をイメージングする際に、癌と他の部位の代謝量の相違を可視化することで、腫瘍、特に転移の結果形成された腫瘤の存在が可視化出来ることが知られている。これは一般的にはフッ素の放射性同位元素でラベリングしたブドウ糖を造影剤として使う方法として、PET(Positron Emission Tomography)として実用化されている。代謝が活発な部位は発熱も多いため、温度分布上に差異が生じることが既に知られている。また、温度変化を与えた時に、代謝量が異なる部位のみ、温度変化の履歴が異なることも知られている。例えばある領域の生体組織の温度を下げた時には、代謝が多い部位のみ温度変化に遅れが生じ、温度を下げるのを止めた時には、代謝が多い部位から早く温度が回復することが知られている。このことを使うと、PETのように放射性同位元素を用いることなく、体外から腫瘍の存在が疑われる領域に温度変化を導入するのみで、代謝が異なる領域を可視化することが出来る。この代謝異常領域の可視化のために、T-SART法に基づいた温度分布計測を行うことが可能である。この場合、治療のモニタリングの例と異なり、初期温度分布が一定という仮定が妥当でない場合もあるため、正確な温度を求めるのは困難である。しかし、目的は代謝量が周囲の正常組織の代謝量に比べて相対的に異なる領域の描出にあるので、必ずしも正確な温度を定量的に算出する必要はない。図2の装置構成に、温度変更機構を組込むことで、上記のコンセプトを実現することが出来る。 It is known that when a cancer is imaged, the presence of a tumor, particularly a tumor formed as a result of metastasis, can be visualized by visualizing the difference in the amount of metabolism between the cancer and other sites. This is generally put to practical use as PET (Positron Emission Tomography) as a method of using glucose labeled with a radioactive isotope of fluorine as a contrast agent. It is already known that there is a difference in the temperature distribution because the site where metabolism is active has a lot of fever. It is also known that when temperature changes are applied, only the sites with different metabolic amounts have different temperature change histories. For example, it is known that when the temperature of a living tissue in a certain region is lowered, the temperature change is delayed only at a site with much metabolism, and when the temperature is stopped lowering, the temperature is quickly recovered from the site with much metabolism. . If this is used, a region with different metabolism can be visualized by introducing a temperature change from outside the body to a region where the presence of a tumor is suspected without using a radioisotope like PET. In order to visualize this metabolic abnormality region, it is possible to perform temperature distribution measurement based on the T-SART method. In this case, unlike the therapy monitoring example, it is difficult to obtain an accurate temperature because the assumption that the initial temperature distribution is constant may not be appropriate. However, since the purpose is to depict a region in which the metabolic rate is relatively different from that of the surrounding normal tissue, it is not always necessary to quantitatively calculate the accurate temperature. The above concept can be realized by incorporating a temperature changing mechanism into the apparatus configuration of FIG.
 血流のイメージングにおいても、温度計測は有用である。観察領域のみ温度をTROIに下げた場合に、温度を下げていない領域(温度T)から温度Tの血流が流入する。この結果観察領域において、TROI-Tの温度差が生じるため、もし温度分布を可視化することが出来れば、血流の様子を可視化することが出来る。これはあたかも熱的なエネルギーを用いた造影剤として扱うことが出来る。一般の医療用の造影剤では、本来生体中に存在しない物質を導入するため、造影剤撮像が終了した後でも、一定時間体外から投与した化学物質が体内に残留することになる。しかし、熱的な造影剤を用いた場合は、温度差が著しく大きく無い場合は、生体に作用を与えることなく、造影効果が時間と共に消失するので、生体安全性上の観点からはメリットが大きい。 Temperature measurement is also useful in blood flow imaging. When the temperature of only the observation region is lowered to T ROI , the blood flow at temperature T 0 flows from the region where the temperature is not lowered (temperature T 0 ). As a result, a temperature difference of T ROI -T 0 is generated in the observation region, so that if the temperature distribution can be visualized, the state of blood flow can be visualized. This can be treated as a contrast agent using thermal energy. A general medical contrast agent introduces a substance that does not originally exist in the living body, and therefore a chemical substance administered from outside the body for a certain period of time remains in the body even after imaging of the contrast agent is completed. However, when a thermal contrast agent is used, if the temperature difference is not significantly large, the contrast effect disappears with time without affecting the living body, so there is a great merit from the viewpoint of biological safety. .
 さらに、また温度変化以外に音速分布変化から診断を行う例についても、以下の1つの例がある。これらの例に関しても本発明の手法を広く適用することが可能である。温度変化以外の音速分布の変化を診断に行う例として、抗癌剤治療のモニタリングが想定される。超音波CTは三次元データを無被曝に計測可能であるために、抗癌剤治療の際の、抗癌剤効果をモニタリングする点においても有用である。抗癌剤の効果が有効である時には、腫瘍のサイズ変化が観測できる。すなわち、週や月の時間オーダーで音速分布が変化することになる。この場合は温度変化の場合と異なり、経時変化を追跡する時間が極めて長期化するために、撮像位置の変化等を補正するレジストレーションと位置補正が必要となる。その癌の変化に関しては、変化前後の音速分布図の差分を取る方法以外に、本発明で実施しているような、再構成前に変化を抽出することも、変化に対して感度を上げるためには有益である。 Furthermore, there is one example below for an example of making a diagnosis from a change in sound velocity distribution in addition to a change in temperature. The technique of the present invention can be widely applied to these examples. As an example of performing a diagnosis of a change in sound velocity distribution other than a temperature change, monitoring of anticancer drug treatment is assumed. Since ultrasonic CT can measure three-dimensional data without exposure, it is also useful in monitoring the effect of an anticancer agent during anticancer agent treatment. When the effect of the anticancer drug is effective, a change in the size of the tumor can be observed. That is, the sound speed distribution changes in the time order of the week or month. In this case, unlike the case of the temperature change, since the time for tracking the change with time is extremely long, registration and position correction for correcting the change of the imaging position and the like are required. Regarding the change in the cancer, in addition to the method of taking the difference between the sound velocity distribution maps before and after the change, extracting the change before reconstruction as in the present invention also increases the sensitivity to the change. It is beneficial to.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年12月1日付で出願された日本特許出願2016-234424に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-234424 filed on December 1, 2016, which is incorporated by reference in its entirety.
 1 超音波CT装置、2 超音波測定部、3 超音波画像化装置、4 制御部、5 入力装置、6 表示装置、11 CPU部、12 記憶部、13 情報入力部、14 情報出力部、21 リングアレイトランスデューサ、22 スイッチング回路、23 超音波制御システム、24 測定制御部、25 送受信プローブ、26 発熱体、31 超音波画像化プログラム、32 情報記憶部、41 温度依存特性取得手段、42 第1到達時間取得手段、43 温度決定手段、45 第2到達時間取得手段、46 基準温度音速決定手段、47 温度依存特性算出手段、48 温度補正手段。 1 Ultrasonic CT device, 2 Ultrasonic measurement unit, 3 Ultrasonic imaging device, 4 Control unit, 5 Input device, 6 Display device, 11 CPU unit, 12 Storage unit, 13 Information input unit, 14 Information output unit, 21 Ring array transducer, 22 switching circuit, 23 ultrasonic control system, 24 measurement control unit, 25 transmission / reception probe, 26 heating element, 31 ultrasonic imaging program, 32 information storage unit, 41 temperature-dependent characteristic acquisition means, 42 first arrival Time acquisition means, 43 temperature determination means, 45 second arrival time acquisition means, 46 reference temperature sound speed determination means, 47 temperature dependent characteristic calculation means, 48 temperature correction means.

Claims (12)

  1.  水と脂肪を含む被検体を、温度検知をする、超音波画像化装置であって、
     前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得手段と、
     前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得手段と、
     前記第1到達時間取得手段が取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得手段が取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定手段と、
     を備える、超音波画像化装置。
    An ultrasonic imaging apparatus for detecting a temperature of a subject including water and fat,
    A temperature-dependent characteristic acquisition unit that acquires a temperature-dependent characteristic of sound speed of each of the plurality of parts based on a water content ratio and a fat content ratio in each of the plurality of parts of the subject; and
    First arrival time acquisition means for acquiring a plurality of measured values of first arrival times through which ultrasonic waves pass through each of a plurality of paths penetrating the subject;
    Based on the measured values of the plurality of first arrival times acquired by the first arrival time acquisition unit and the temperature-dependent characteristics of the sound speeds of the plurality of regions acquired by the plurality of region temperature dependency characteristic acquisition units. Temperature determining means for determining the temperature of each of the plurality of sites;
    An ultrasonic imaging apparatus comprising:
  2.  請求項1に記載の超音波画像化装置であって、
     前記複数部位温度依存特性取得手段は、
     前記複数の第1測定時間の測定値が測定される温度環境とは異なる温度環境下において測定される複数の第2測定時間の測定値に基づいて、前記複数の部位それぞれの音速を算出し、前記複数の部位それぞれの音速に基づいて、前記水の含有比率と、前記脂肪の含有比率を算出し、前記複数の部位それぞれの前記音速の依存性を算出する、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 1,
    The multi-site temperature-dependent characteristic acquisition means is
    Based on the measurement values of the plurality of second measurement times measured in a temperature environment different from the temperature environment in which the measurement values of the plurality of first measurement times are measured, the sound speed of each of the plurality of parts is calculated, Based on the sound speed of each of the plurality of parts, to calculate the content ratio of the water and the content ratio of the fat, to calculate the dependence of the sound speed of each of the plurality of parts,
    An ultrasonic imaging apparatus characterized by that.
  3.  請求項1又は2に記載の超音波画像化装置であって、
     前記被検体の前記複数の部位を含む計算領域の複数のグリッドそれぞれにおける音速に起因する因子を遅延因子とするとき、
     前記温度決定手段は、
     ある経路における前記第1到達時間の測定値と、前記計算領域の前記複数のグリッドのうち該経路を貫く複数の経路上グリッドそれぞれに仮定される遅延因子に基づく到達時間と、が到達時間差を有する場合に、
     該到達時間差を低減するように、前記複数の経路上グリッドそれぞれの温度を補正する、温度補正手段を、
     備えることを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 1 or 2,
    When a factor caused by sound speed in each of a plurality of grids of a calculation region including the plurality of parts of the subject is a delay factor,
    The temperature determining means includes
    A measured value of the first arrival time in a certain route and an arrival time based on a delay factor assumed for each of a plurality of grids on the route passing through the route among the plurality of grids in the calculation region have a difference in arrival time. In case,
    Temperature correction means for correcting the temperature of each of the plurality of grids on the path so as to reduce the arrival time difference;
    An ultrasonic imaging apparatus comprising:
  4.  請求項3に記載の超音波画像化装置であって、
     前記温度補正手段は、該到達時間差がゼロとなるように、前記複数の経路上グリッドそれぞれの温度を補正する、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 3,
    The temperature correction means corrects the temperature of each of the grids on the plurality of paths so that the arrival time difference is zero.
    An ultrasonic imaging apparatus characterized by that.
  5.  請求項3又は4に記載の超音波画像化装置であって、
     前記温度補正手段は、
     前記複数の経路上グリッドに共通する温度変化分により補正する、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 3 or 4,
    The temperature correction means includes
    Correction based on a temperature change common to the plurality of grids on the path,
    An ultrasonic imaging apparatus characterized by that.
  6.  請求項3又は4に記載の超音波画像化装置であって、
     前記温度補正手段は、
     前記複数の経路上グリッドそれぞれの温度を補正する温度変化分の符号を、前記仮定される遅延因子の温度微分値の符号と、前記到達時間差の符号と、に基づいて決定する、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 3 or 4,
    The temperature correction means includes
    The sign of the temperature change for correcting the temperature of each of the plurality of grids on the plurality of paths is determined based on the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference.
    An ultrasonic imaging apparatus characterized by that.
  7.  請求項6に記載の超音波画像化装置であって、
     前記温度補正手段は、
     前記複数の経路上グリッドそれぞれの温度を補正する前記温度変化分の絶対値を、前記複数の経路上部位において共通する値とする、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 6, wherein
    The temperature correction means includes
    The absolute value of the temperature change for correcting the temperature of each of the plurality of grids on the plurality of paths is a value common to the plurality of parts on the plurality of paths.
    An ultrasonic imaging apparatus characterized by that.
  8.  請求項6又は7に記載の超音波画像化装置であって、
     前記温度補正手段は、
     前記複数の経路上グリッドそれぞれの温度を補正する前記温度変化分の符号を、前記仮定される遅延因子の温度微分値の符号と、前記到達時間差の符号とが同じ場合は正と、異なる場合は負と、決定する、
     ことを特徴とする、超音波画像化装置。
    The ultrasonic imaging apparatus according to claim 6 or 7,
    The temperature correction means includes
    If the sign of the temperature differential value of the assumed delay factor and the sign of the arrival time difference are the same as the sign of the temperature change for correcting the temperature of each of the grids on the plurality of paths, To decide negative,
    An ultrasonic imaging apparatus characterized by that.
  9.  請求項1乃至8のいずれかに記載の超音波画像化装置と、
     前記複数の第1到達時間を測定する超音波測定部と、
     を備える、超音波CT装置。
    The ultrasonic imaging apparatus according to any one of claims 1 to 8,
    An ultrasonic measurement unit for measuring the plurality of first arrival times;
    An ultrasonic CT apparatus comprising:
  10.  請求項9に記載の超音波CT装置であって、
     前記超音波測定部は、被検体を含む測定領域のうち少なくとも一部の領域を温度変化させる温度調整機能、を備える、
     ことを特徴とする、超音波CT装置。
    The ultrasonic CT apparatus according to claim 9,
    The ultrasonic measurement unit includes a temperature adjustment function for changing the temperature of at least a part of a measurement region including a subject.
    An ultrasonic CT apparatus characterized by that.
  11.  水と脂肪を含む被検体を、温度検知をする、超音波画像化方法であって、
     前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得ステップと、
     前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得ステップと、
     前記第1到達時間取得ステップが取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得ステップが取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定ステップと、
     を備える、超音波画像化方法。
    An ultrasonic imaging method for detecting temperature of a subject including water and fat,
    Based on the water content ratio and the fat content ratio in each of the plurality of parts of the subject, a temperature-dependent characteristic acquisition step for acquiring the temperature-dependent characteristics of the sound speed of each of the plurality of parts;
    A first arrival time acquisition step of acquiring a plurality of first arrival time measurement values through which ultrasonic waves pass through each of a plurality of paths penetrating the subject;
    Based on the measured values of the plurality of first arrival times acquired by the first arrival time acquisition step and the temperature-dependent characteristics of the sound speeds of the plurality of portions acquired by the plurality of portion temperature-dependent characteristic acquisition steps. Determining a temperature of each of the plurality of portions; a temperature determining step;
    An ultrasonic imaging method comprising:
  12.  コンピュータを、
     水と脂肪を含む被検体を、温度検知をするために、
     前記被検体が有する複数の部位それぞれにおける水の含有比率と脂肪の含有比率とに基づいて、前記複数の部位それぞれの音速の温度依存特性を取得する、温度依存特性取得手段、
     前記被検体を貫く複数の経路それぞれを超音波が経る複数の第1到達時間の測定値を取得する、第1到達時間取得手段、
     前記第1到達時間取得手段が取得する前記複数の第1到達時間の測定値と、前記複数部位温度依存特性取得手段が取得する前記複数の部位それぞれの前記音速の温度依存特性と、に基づいて、前記複数の部位それぞれの温度を決定する、温度決定手段、
     として機能させるための、超音波画像化プログラム。
    Computer
    In order to detect the temperature of a subject containing water and fat,
    Temperature-dependent characteristic acquisition means for acquiring the temperature-dependent characteristics of the sound speed of each of the plurality of parts based on the water content ratio and the fat content ratio in each of the plurality of parts of the subject;
    First arrival time acquisition means for acquiring a plurality of measured values of first arrival times through which ultrasonic waves pass through each of a plurality of paths penetrating the subject;
    Based on the measured values of the plurality of first arrival times acquired by the first arrival time acquisition unit and the temperature-dependent characteristics of the sound speeds of the plurality of regions acquired by the plurality of region temperature dependency characteristic acquisition units. Temperature determining means for determining the temperature of each of the plurality of parts,
    Ultrasonic imaging program to function as
PCT/JP2017/043031 2016-12-01 2017-11-30 Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic ct device WO2018101396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234424A JP2020022523A (en) 2016-12-01 2016-12-01 Ultrasonic imaging apparatus, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic CT apparatus
JP2016-234424 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101396A1 true WO2018101396A1 (en) 2018-06-07

Family

ID=62241765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043031 WO2018101396A1 (en) 2016-12-01 2017-11-30 Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic ct device

Country Status (2)

Country Link
JP (1) JP2020022523A (en)
WO (1) WO2018101396A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044654A1 (en) * 2020-08-27 2022-03-03 富士フイルム株式会社 Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050823A (en) * 1999-08-09 2001-02-23 Yutaka Nawata Method for measuring temperature distribution in object noninvasively using ultrasonic ct
JP2006254977A (en) * 2005-03-15 2006-09-28 Institute Of National Colleges Of Technology Japan Method for noninvasively measuring fine temperature difference inside object before and after being heated

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050823A (en) * 1999-08-09 2001-02-23 Yutaka Nawata Method for measuring temperature distribution in object noninvasively using ultrasonic ct
JP2006254977A (en) * 2005-03-15 2006-09-28 Institute Of National Colleges Of Technology Japan Method for noninvasively measuring fine temperature difference inside object before and after being heated

Also Published As

Publication number Publication date
JP2020022523A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US10258277B2 (en) Method and system for determining fractional fat content of tissue
US10677866B1 (en) Systems and methods for correcting measurement artifacts in MR thermometry
JP5123183B2 (en) Image-based planning method and apparatus for targeted therapy
US9420989B2 (en) Apparatus, method and computer program product for calculating the speed of ultrasound in at least two tissue types
Arthur et al. Temperature dependence of ultrasonic backscattered energy in motion compensated images
Arthur et al. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy
Dillon et al. An analytical solution for improved HIFU SAR estimation
Todd et al. Reconstruction of fully three‐dimensional high spatial and temporal resolution MR temperature maps for retrospective applications
CN107569256A (en) Ultrasonic method based on thermal expansion and gate algorithm measurement biological tissue temperature change
JP2009509600A (en) Apparatus for heat-treating moving biological tissue and related method
Jiang et al. Ray theory-based transcranial phase correction for intracranial imaging: A phantom study
Celicanin et al. Hybrid ultrasound‐MR guided HIFU treatment method with 3 D motion compensation
Yazdani et al. The revisited frequency-shift method for shear wave attenuation computation and imaging
Johnson et al. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique
WO2018101396A1 (en) Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging program, and ultrasonic ct device
Johnson et al. Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms
Kim et al. Motion-robust, multi-slice, real-time MR thermometry for MR-guided thermal therapy in abdominal organs
Ozmen-Eryilmaz et al. Modeling acoustic wave field propagation in 3D breast models
Habash et al. Thermal therapy, Part IV: electromagnetic and thermal dosimetry
Song et al. Multiple back projection with impact factor algorithm based on circular scanning for microwave-induced thermoacoustic tomography
US11284858B1 (en) Systems and methods for plane-wave and fan-beam ultrasound-waveform tomography
Yang et al. Comparison of three dimensional strain volume reconstructions using SOUPR and wobbler based acquisitions: A phantom study
Koch et al. Numerical ray-tracing in full angle spatial compounding
Johnson Improved Treatment Planning and Assessment Techniques for Magnetic Resonance-Guided High-Intensity Focused Ultrasound Thermal Ablations of Soft Tissue Tumors
Rónaszéki et al. DETECTION OF A SPOKE-WHEEL PATTERN OF FOCAL NODULAR HYPERPLASIA WITH NOVEL MICROVASCULAR FLOW IMAGING.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP