WO2018101058A1 - Phenolic hydroxy group-containing resin and resist material - Google Patents

Phenolic hydroxy group-containing resin and resist material Download PDF

Info

Publication number
WO2018101058A1
WO2018101058A1 PCT/JP2017/041224 JP2017041224W WO2018101058A1 WO 2018101058 A1 WO2018101058 A1 WO 2018101058A1 JP 2017041224 W JP2017041224 W JP 2017041224W WO 2018101058 A1 WO2018101058 A1 WO 2018101058A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
containing resin
hydroxyl group
phenolic hydroxyl
Prior art date
Application number
PCT/JP2017/041224
Other languages
French (fr)
Japanese (ja)
Inventor
今田 知之
勇介 佐藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018553765A priority Critical patent/JP6590084B2/en
Publication of WO2018101058A1 publication Critical patent/WO2018101058A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders

Definitions

  • the present invention is a phenolic hydroxyl group-containing resin having high fluidity and heat resistance, and excellent in developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same, a curable composition, and The present invention relates to a resist material.
  • the phenolic hydroxyl group-containing resin most widely used for photoresist applications is of the cresol novolac type, but it is not capable of meeting the performance requirements of today's increasingly sophisticated and diversified, heat resistance, fluidity, Further improvements in various properties such as developability and dry etching resistance have been demanded (see Patent Document 1).
  • the problem to be solved by the present invention is a phenolic hydroxyl group-containing resin having high fluidity and heat resistance, and excellent in developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same,
  • the object is to provide a curable composition and a resist material.
  • a phenolic hydroxyl group-containing resin which is a reaction product of a tri (hydroxyaryl) alkane type compound and a diformylarene compound, has fluidity and heat resistance.
  • the present invention has been completed by finding that it has high developability and excellent developability and dry etching resistance when used as a resist material.
  • the present invention relates to a phenolic hydroxyl group-containing resin which is a reaction product of a tri (hydroxyaryl) alkane type compound (A) and a diformylarene compound (B).
  • the present invention further relates to a photosensitive composition containing the phenolic hydroxyl group-containing resin and a photosensitive agent.
  • the present invention further relates to a curable composition containing the phenolic hydroxyl group-containing resin and a curing agent.
  • the present invention further relates to a cured product of the curable composition.
  • the present invention further relates to a resist material using the phenolic hydroxyl group-containing resin.
  • a phenolic hydroxyl group-containing resin having high fluidity and heat resistance and excellent developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same, and a curable composition And resist materials can be provided.
  • FIG. 1 is a GPC chart of the tri (hydroxyaryl) alkane type compound (A-1) obtained in Production Example 1.
  • FIG. 2 is a 13 C-NMR chart of the tri (hydroxyaryl) alkane type compound (A-1) obtained in Production Example 1.
  • FIG. 3 is a GPC chart of the phenolic hydroxyl group-containing resin (1) obtained in Example 1.
  • FIG. 4 is a GPC chart of the phenolic hydroxyl group-containing resin (2) obtained in Example 2.
  • the phenolic hydroxyl group-containing resin of the present invention is a reaction product of a tri (hydroxyaryl) alkane type compound (A) and a diformylarene compound (B).
  • the tri (hydroxyaryl) alkane type compound (A) is an alkane compound having three aryl groups having a hydroxy group in its molecular structure, and its specific structure is not particularly limited. Especially, since it becomes phenolic hydroxyl-containing resin excellent in heat resistance especially, it is preferable that it is a compound which has all three hydroxyaryl groups on the same carbon atom. Specific examples of such a compound include, for example, the following structural formula (1-1) or (1-2)
  • R 1 and R 2 are each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group or a halogen atom.
  • l is independently 0 or an integer of 1 to 4
  • m is an integer of 0 or 1 to 5
  • n is an integer of 0 or 1 to 7.
  • R 3 is a hydrogen atom or an alkyl group.
  • R 1 is each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, or a halogen atom
  • l is each independently 0 or an integer of 1 to 4.
  • the aliphatic hydrocarbon group may be either a straight chain type or a branched structure, and may have either an unsaturated group in the structure or not.
  • the number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms.
  • the specific structure of the aromatic ring-containing hydrocarbon group is not particularly limited as long as it is a structural part containing an aromatic ring.
  • aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, a benzyl group
  • Aralkyl groups such as phenylethyl group, phenylpropyl group and naphthylmethyl group.
  • alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • R 1 is preferably an aliphatic hydrocarbon group, more preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and any of a methyl group, an ethyl group, a propyl group, and a butyl group. It is particularly preferred.
  • R 2 in the structural formulas (1-1) and (1-2) is each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, or a halogen atom, and m is 0 or An integer of 1 to 5, n is 0 or an integer of 1 to 7.
  • the aliphatic hydrocarbon group may be either a straight chain type or a branched structure, and may have either an unsaturated group in the structure or not.
  • the number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms.
  • the specific structure of the aromatic ring-containing hydrocarbon group is not particularly limited as long as it is a structural part containing an aromatic ring.
  • aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, a benzyl group
  • Aralkyl groups such as phenylethyl group, phenylpropyl group and naphthylmethyl group.
  • alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • R 2 is preferably an aliphatic hydrocarbon group, and preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance.
  • R 2 is preferably an aliphatic hydrocarbon group, and preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance.
  • m or n is preferably 0, 1, or 2, and more preferably 0.
  • R 3 in the structural formulas (1-1) and (1-2) is a hydrogen atom or an alkyl group, respectively.
  • the alkyl group may be linear or may have a branched structure.
  • the number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms.
  • R 3 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, since it becomes a phenolic hydroxyl group-containing resin having an excellent balance of fluidity, heat resistance, and dry etching resistance. More preferably, it is any one of a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the tri (hydroxyaryl) alkane type compound (A) can be produced, for example, by subjecting a phenol compound (a1) and a hydroxyl group-containing aromatic aldehyde compound (a2) to a condensation reaction, and Honshu Chemical Industry Co., Ltd.
  • Commercially available products such as “TrisP-HAP” [1,1,1-tris (4-hydroxyphenyl) ethane] manufactured by the Company may be used.
  • TrisP-HAP [1,1,1-tris (4-hydroxyphenyl) ethane] manufactured by the Company
  • phenol compound (a1) for example, one or more of hydrogen atoms on the aromatic nucleus of phenol or phenol is substituted with an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, a halogen atom, or the like.
  • Compounds. These may be used alone or in combination of two or more.
  • a phenol compound having an aliphatic hydrocarbon group having 1 to 6 carbon atoms is preferable because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance, and is preferably a methyl group, an ethyl group, a propyl group, or a butyl group.
  • a phenol compound having any of the above is more preferred.
  • the number of aliphatic hydrocarbon groups on the aromatic nucleus is preferably 1 to 4, and preferably 1 or 2. In particular, it is preferable to use 2,5-xylenol as the phenol compound (a1).
  • the hydroxyl group-containing aromatic aldehyde compound (a2) is, for example, hydroxybenzaldehyde, hydroxynaphthaldehyde, one or more of hydrogen atoms on the aromatic nucleus are aliphatic hydrocarbon groups, aromatic ring-containing hydrocarbon groups, Examples thereof include compounds substituted with an alkoxy group, a halogen atom or the like. Moreover, the substitution position of the formyl group and hydroxyl group on the aromatic nucleus is not particularly limited, and any compound may be used.
  • the hydroxyl group-containing aromatic aldehyde compound (a2) may be used alone or in combination of two or more.
  • hydroxybenzaldehyde or hydroxynaphthaldehyde is preferable because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance. Furthermore, hydroxybenzaldehyde is preferable and 4-hydroxybenzaldehyde is more preferable because it becomes a phenolic hydroxyl group-containing resin having excellent fluidity.
  • the reaction molar ratio [(a1) / (a2)] of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) yields the target tri (hydroxyaryl) alkane type compound (A)) in a high yield.
  • it is preferably in the range of 1 / 0.2 to 1 / 0.5, more preferably in the range of 1 / 0.25 to 1 / 0.45.
  • the reaction between the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) is preferably performed under acid catalyst conditions.
  • the acid catalyst used here include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
  • the reaction of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) may be performed in an organic solvent as necessary.
  • the solvent used here include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether,
  • the reaction of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) is performed, for example, in a temperature range of 60 to 140 ° C. for 0.5 to 20 hours.
  • the reaction product is put into a poor solvent (S1) of the tri (hydroxyaryl) alkane type compound (A) and the precipitate is filtered off, and then the tri (hydroxyaryl) alkane type compound (
  • S1 a poor solvent of the tri (hydroxyaryl) alkane type compound
  • the precipitate is filtered off, and then the tri (hydroxyaryl) alkane type compound
  • the contained aromatic aldehyde compound (a2) and the acid catalyst used can be removed to obtain a purified tri (hydroxyaryl) alkane type compound (A).
  • reaction product is heated to 80 ° C. or higher to A crystal of the tri (hydroxyaryl) alkane type compound (A) can be precipitated by dissolving the (hydroxyaryl) alkane type compound (A) in an aromatic hydrocarbon solvent and cooling it as it is.
  • the poor solvent (S1) used for purification of the tri (hydroxyaryl) alkane type compound (A) is, for example, water; monoalcohols such as methanol, ethanol, propanol, ethoxyethanol; n-hexane, n-heptane, n -Aliphatic hydrocarbons such as octane and cyclohexane; aromatic hydrocarbons such as toluene and xylene. These may be used alone or in combination of two or more. Of these, water, methanol, and ethoxyethanol are preferred because of the excellent solubility of the acid catalyst.
  • the solvent (S2) is, for example, a monoalcohol such as methanol, ethanol, or propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane.
  • a monoalcohol such as methanol, ethanol, or propanol
  • ethylene glycol 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane.
  • Polyols such as diol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, ethylene Glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, Glycol ethers such as ethylene glycol ethyl methyl ether and ethylene glycol monophenyl ether; Cyclic ethers such as 1,3-dioxane and 1,4-dioxane; Glycol esters such as ethylene glycol acetate; Ketones such as acetone, methyl ethyl ketone and methyl isobutyl
  • the tri (hydroxyaryl) alkane type compound (A) with higher purity can be obtained by purifying the reaction product by washing with water or reprecipitation.
  • the degree of purification of the tri (hydroxyaryl) alkane type compound (A) is not particularly limited, but the performance of the phenolic hydroxyl group-containing resin such as fluidity, heat resistance, developability, and dry etching resistance is further improved.
  • the purity of the tri (hydroxyaryl) alkane-type compound (A) is preferably 90% or more, more preferably 95% or more as a value calculated from the area ratio in the GPC chart.
  • the purity of the tri (hydroxyaryl) alkane type compound (A) is a value calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. Further, the molecular weight and polydispersity (Mw / Mn) of the resin described later are values measured by GPC measurement under the following conditions.
  • the tri (hydroxyaryl) alkane-type compound (A) may be a single structure or a plurality of compounds having different structures. You may use together. Further, other phenolic hydroxyl group-containing compound (A ′) other than the tri (hydroxyaryl) alkane type compound (A) may be used in combination. Examples of the other phenolic hydroxyl group-containing compound (A ′) include phenol, cresol, xylenol, phenylphenol, dihydroxybenzene, biphenol, bisphenol, naphthol, and dihydroxynaphthalene. These may be used alone or in combination of two or more.
  • the tri (hydroxyaryl) alkane type compound (A) and the other phenolic hydroxyl group-containing compound are used.
  • the tri (hydroxyaryl) alkane type compound (A) is preferably used in a proportion of 70 parts by mass or more, more preferably 90 parts by mass or more. preferable.
  • the specific structure of the diformylarene compound (B) is not particularly limited as long as it is an aromatic compound having two formyl groups, and any compound may be used. Moreover, the substitution position on the aromatic nucleus of two formyl groups is not particularly limited. Specific examples of the diformylarene compound (B) include, for example, diformylbenzene, diformylnaphthalene, diformylanthracene, and one or more of hydrogen atoms on these aromatic rings are alkyl groups, alkoxy groups, halogen atoms And the like. A diformylarene compound (B) may be used individually by 1 type, and may use multiple types together.
  • one or more of hydrogen atoms on diformylbenzene and its aromatic ring are alkyl groups, alkoxy groups, halogens.
  • a compound substituted with an atom or the like is preferable, and diformylbenzene is more preferable.
  • diformylarene compound (B) in addition to the diformylarene compound (B), other diformyl compounds (B ′) such as diformylalkane, monoformyl compounds (B ′′) such as benzaldehyde compounds, naphthaldehyde compounds, monoformylalkanes, etc.
  • diformylarene compound (B ′) in addition to the diformylarene compound (B), other diformyl compound (B ′) such as diformylalkane, monoformyl compounds (B ′′) such as benzaldehyde compounds, naphthaldehyde compounds, monoformylalkanes, etc.
  • B ′ is used in combination, the effects of the present invention are sufficiently exerted, so that the diformylarene compound is contained in a total of 100 parts by mass of these formyl group-containing compounds.
  • B is preferably used in a proportion of 70 parts by mass or more, and more preferably
  • the reaction method of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is not particularly limited.
  • the reaction can be carried out in the same manner as a general method for producing a novolak resin. .
  • the reaction molar ratio [(A) / (B)] between the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is appropriately adjusted according to the desired molecular weight, etc. Since excessively high molecular weight can be suppressed and a phenolic hydroxyl group-containing resin having a molecular weight suitable as a resist material can be obtained, the range of 1 / 0.1 to 1 / 0.8 is preferable. A range of 3 to 1 / 0.7 is more preferable.
  • the reaction molar ratio [(P) / (H)] with the compound (H) is preferably in the range of 1 / 0.1 to 1 / 0.8, and 1 / 0.3 to 1 / 0.7. More preferably, it is the range.
  • the reaction between the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is preferably carried out under acid catalyst conditions.
  • the acid catalyst used here include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
  • the reaction of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) may be performed in an organic solvent as necessary.
  • the solvent used here include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether
  • the reaction of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is performed, for example, in a temperature range of 60 to 140 ° C. for 0.5 to 20 hours.
  • the desired phenolic hydroxyl group-containing resin can be obtained by performing reprecipitation operation by adding water to the reaction product.
  • the weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin of the present invention is in the range of 3,000 to 50,000 because the phenolic hydroxyl group-containing resin has an excellent balance of fluidity, heat resistance, and dry etching resistance. Is preferable, and the range of 5,000 to 15,000 is more preferable.
  • the polydispersity (Mw / Mn) of the phenolic hydroxyl group-containing resin is preferably in the range of 1.1 to 10.0, more preferably in the range of 1.1 to 5.0. A range of 0 to 3.5 is particularly preferred.
  • the weight average molecular weight (Mw) and the polydispersity (Mw / Mn) are values measured by GPC under the following conditions.
  • the phenolic hydroxyl group-containing resin of the present invention described in detail above can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc., as in general phenol resins. Above all, it is particularly suitable as a resist material as an application that makes use of characteristics such as fluidity, heat resistance, developability, and dry etching resistance. In addition to general interlayer insulation films, resist underlayer films, resist permanent films, etc. It can be used for various resist members.
  • the photosensitive composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a photosensitive agent as essential components.
  • the photosensitive agent include compounds having a quinonediazide group.
  • Specific examples of the compound having a quinonediazide group include, for example, an aromatic (poly) hydroxy compound and a sulfonic acid having a quinonediazide group such as 1,2-naphthoquinone-2-diazide-5-sulfonic acid or a halide thereof.
  • Examples thereof include ester compounds, partial ester compounds, amidated products, and partially amidated products.
  • aromatic (poly) hydroxy compound examples include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,6-tri Hydroxybenzophenone, 2,3,4-trihydroxy-2′-methylbenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3 ′, 4,4 ′, 6-pentahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ', 5', 6-hexahydroxybenzophenone, 2,3,3 ', 4,4', 5'-hexahydroxybenzophenone, etc.
  • Polyhydroxy benzophenone compound examples include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,
  • a tris (hydroxyphenyl) methane compound such as phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or a methyl-substituted product thereof;
  • the blending amount of the photosensitive agent in the photosensitive composition of the present invention is a photosensitive composition having excellent photosensitivity, and therefore 5 to 50 parts by mass with respect to 100 parts by mass in total of the resin solid content of the photosensitive composition. It is preferable that the ratio is
  • the photosensitive composition of the present invention may be used in combination with other resins (X).
  • resins (X) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
  • the various novolak resins include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, and phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with an acid catalyst.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
  • the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (X) can be arbitrarily set according to the use, but the effect of the present invention is more remarkable. Therefore, the proportion of the other resin (X) is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention.
  • the phenolic hydroxyl group of the present invention is used with respect to 100 parts by mass of the other resin (X).
  • the resin content is preferably in the range of 3 to 80 parts by mass.
  • the photosensitive composition of the present invention may contain a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications.
  • a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications.
  • the surfactant used here include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ether compounds such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ether compounds such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid ester compounds such as polyoxyethylene sorbitan monolaurate, poly Non
  • the compounding amount of these surfactants is preferably in the range of 0.001 to 2 parts by mass with respect to a total of 100 parts by mass of resin solids in the photosensitive composition of the present invention.
  • a photosensitive resist material can be obtained by adding various additives such as a crosslinking agent and a dissolution accelerator and dissolving in an organic solvent.
  • the photosensitive resist material may be used as it is as a coating material, or may be used as a resist film obtained by applying a photosensitive resist material on a support film and removing the solvent.
  • the support film used as a resist film examples include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films.
  • the surface of the support film may be a corona-treated one or a release agent.
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol Dialkylene glycol dialkyl ethers such as diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Acetate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl ethers
  • the photosensitive resist material can be produced by blending the above components and mixing them using a stirrer or the like.
  • the resist material contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • Examples of a general photolithography method using the photosensitive resist material include the following methods.
  • the photosensitive resist material is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and prebaked at a temperature of 60 to 150 ° C.
  • the coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like.
  • the resist pattern is formed by exposing through a resist pattern and developing with an alkali developer.
  • the photosensitive resist material is used for a resist permanent film
  • the crosslinking agent used here are the same as those used in the curable composition described below.
  • the method for forming the resist permanent film include the following methods. First, the photosensitive resist material is applied on an object such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate and the like to be subjected to photolithography, and prebaked at a temperature of 60 to 150 ° C.
  • the application method is the same as that described above.
  • the resist pattern is exposed to light, further thermally cured at a temperature of 110 to 210 ° C., and then developed with an alkali developer to form a resist pattern.
  • the film may be developed with an alkali developer first, and then thermally cured at a temperature of 110 to 210 ° C.
  • the resist permanent film examples include a solder resist, a package material, an underfill material, a package adhesive layer of a circuit element, and an adhesive layer between a product circuit element and a circuit board in a semiconductor device.
  • a thin film transistor protective film there are a thin film transistor protective film, a liquid crystal color filter protective film, a black matrix, a spacer, and the like.
  • the curable composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a curing agent as essential components.
  • a curing agent as essential components.
  • other resins (Y) may be used in combination.
  • resins (Y) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
  • various novolak resins such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds
  • Modified novolak resin phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenyl
  • the various novolak resins include phenolphenol, cresol, xylenol and other alkylphenols, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with acid catalyst conditions.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
  • the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (Y) can be arbitrarily set according to the use, but the effect of the present invention is more remarkable. Therefore, the ratio of the other resin (Y) to 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention is preferable.
  • the curing agent used in the present invention is not particularly limited as long as it is a compound capable of causing a curing reaction with the phenolic hydroxyl group-containing resin of the present invention, and various compounds can be used.
  • the curing method of the curable composition of the present invention is not particularly limited, and it can be cured by an appropriate method such as thermal curing or photocuring according to the type of curing agent or the type of curing accelerator described below. it can. Curing conditions such as the heating temperature and time in thermosetting, the type of light beam in photocuring and the exposure time are appropriately adjusted according to the type of curing agent, the type of curing accelerator described below, and the like.
  • the curing agent include, for example, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and the like. Products, oxazoline compounds and the like.
  • Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol
  • Examples include compounds in which 1 to 6 groups are acyloxymethylated.
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
  • glycoluril compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
  • urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
  • the resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound.
  • alkylphenol such as phenol, cresol or xylenol
  • a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F
  • a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene
  • aldehyde compound examples include polymers obtained by reacting under catalytic conditions.
  • Examples of the epoxy compound include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene- Examples include phenol addition reaction type epoxy resins, phosphorus atom-containing epoxy resins, polyglycidyl ethers of cocondensates of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, and the like. That.
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
  • azide compound examples include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
  • Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether.
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
  • a glycoluril compound, a urea compound, and a resole resin are preferable, and a glycoluril compound is particularly preferable because it is a curable composition having excellent curability and heat resistance in a cured product.
  • curing agent in the curable composition of this invention becomes a composition excellent in sclerosis
  • the ratio is preferably 0.5 to 50 parts by mass.
  • the curable composition of the present invention may contain a curing accelerator together with the curing agent.
  • a curing accelerator such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate is used as a curing accelerator. Is preferred.
  • a photoacid generator it is preferable to use a photoacid generator as a curing accelerator.
  • photoacid generator examples include sulfonium salt compounds such as tris (4-methylphenyl) sulfonium trifluoromethanesulfonate and tris (4-methylphenyl) sulfonium hexafluorophosphate; bis [4-n-alkylphenyl] iodonium hexafluorophosphate Bis [4-n-alkylphenyl] iodonium hexafluoroantimonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium bis (perfluorobutanesulfonyl) imide, bis [4-n-alkylphenyl] iodonium salt compounds such as iodonium tetrakispentafluorophenylborate (n-alkyl groups in each compound are preferably those having 10 to 13 carbon atom
  • a curable resist material can be obtained by adding various additives such as a crosslinking agent and a dissolution accelerator and dissolving in an organic solvent.
  • the curable resist material may be used as it is as a coating material, or a curable resist material applied on a support film and desolvated may be used as a resist film.
  • the support film used as a resist film examples include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films.
  • the surface of the support film may be a corona-treated one or a release agent.
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol Dialkylene glycol dialkyl ethers such as diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Acetate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl ethers
  • the curable resist material can be prepared by blending the above components and mixing them using a stirrer or the like.
  • the resist material contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the curable resist material is used for a resist underlayer film application, as an example of a method for forming the resist underlayer film, for example, the curable resist material is subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, etc.
  • a resist underlayer film is formed by a method such as coating on a product, drying under a temperature condition of 100 to 200 ° C., and further heat curing under a temperature condition of 250 to 400 ° C.
  • a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
  • the purity of the tri (hydroxyaryl) alkane type compound (A-1) is a value calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. Further, the number average molecular weight (Mn), weight average molecular weight (Mw), and polydispersity (Mw / Mn) of the synthesized resin are measured under the following GPC measurement conditions.
  • the precipitate was filtered off and dried under vacuum to obtain 213 g of white crystalline tri (hydroxyaryl) alkane type compound (A-1).
  • the purity of the tri (hydroxyaryl) alkane type compound (A-1) calculated from the area ratio in the GPC chart was 98.2%.
  • a GPC chart of the tri (hydroxyaryl) alkane type compound (A-1) is shown in FIG. 1, and a 13 C-NMR chart is shown in FIG.
  • Example 1 Production of phenolic hydroxyl group-containing resin (1) A 100 ml four-necked flask equipped with a cooling tube was charged with 18.3 g of tri (hydroxyaryl) alkane type compound (A-1) and 3.6 g of terephthalaldehyde. -54.9 g of ethoxyethanol was added and dissolved. After adding 2.8 g of 98 wt% sulfuric acid, the mixture was heated to 100 ° C. and reacted for 14 hours. After completion of the reaction, water was added to the resulting reaction mixture to precipitate a crude product. The recovered crude product was dissolved in acetone and reprecipitated by adding water again.
  • the precipitate was separated by filtration and vacuum-dried to obtain 20.2 g of a red powdery phenolic hydroxyl group-containing resin (1).
  • the number average molecular weight (Mn) of the phenolic hydroxyl group-containing resin (1) was 2,828, the weight average molecular weight (Mw) was 7,905, and the polydispersity (Mw / Mn) was 2.80.
  • a GPC chart of the phenolic hydroxyl group-containing resin (1) is shown in FIG.
  • Example 2 Production of phenolic hydroxyl group-containing resin (2) A 100 ml four-necked flask equipped with a cooling tube was charged with 18.3 g of a tri (hydroxyaryl) alkane-type compound (A-1) and 3.6 g of isophthalaldehyde. 54.9 g of ethoxyethanol was added and dissolved. After adding 2.8 g of 98 wt% sulfuric acid, the mixture was heated to 100 ° C. and reacted for 14 hours. After completion of the reaction, water was added to the resulting reaction mixture to precipitate a crude product. The recovered crude product was dissolved in acetone and reprecipitated by adding water again.
  • A-1 tri (hydroxyaryl) alkane-type compound
  • isophthalaldehyde 54.9 g of ethoxyethanol was added and dissolved. After adding 2.8 g of 98 wt% sulfuric acid, the mixture was heated to 100 ° C. and reacted for 14 hours. After completion of the reaction, water
  • FIG. 4 shows a GPC chart of the phenolic hydroxyl group-containing resin (2).
  • Photosensitive Composition 8 parts by mass of the phenolic hydroxyl group-containing resin was dissolved in 40 parts by mass of propylene glycol monomethyl ether acetate, and 2 parts by mass of a photosensitizing agent was added to the solution and dissolved. This was filtered through a 0.2 ⁇ m membrane filter to obtain a photosensitive composition.
  • the photosensitizer was “P-200” (4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol, 1 mol 2-naphthoquinone-2-diazide-5-sulfonyl chloride condensate).
  • composition for heat resistance test 8 parts by mass of the phenolic hydroxyl group-containing resin is dissolved in 40 parts by mass of propylene glycol monomethyl ether acetate, and this is filtered through a 0.2 ⁇ m membrane filter to obtain a composition for heat resistance test. It was.
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m. Dried for 60 seconds. Two wafers were prepared, and one of them was designated as “no exposure sample”. The other was used as an “exposed sample” and irradiated with 100 mJ / cm 2 of ghi line using a ghi line lamp (“Multi Light” manufactured by USHIO INC.), And then heat-treated at 140 ° C. for 60 seconds. .
  • Both the “non-exposed sample” and the “exposed sample” were immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the film thickness of each sample before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a mask corresponding to a resist pattern having a line-and-space ratio of 1: 1 and a line width of 1 to 10 ⁇ m set every 1 ⁇ m is brought into close contact with this wafer, and then a ghi line lamp (“Multi Light” manufactured by USHIO INC. )) was used for irradiation with ghi rays, and heat treatment was performed at 140 ° C. for 60 seconds.
  • the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the exposure amount (Eop exposure amount) capable of faithfully reproducing the line width of 3 ⁇ m when the ghi line exposure amount was increased from 100 mJ / cm 2 to 10 mJ / cm 2 was evaluated.
  • the photosensitive composition obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a photomask is placed on the obtained wafer and irradiated with 200 mJ / cm 2 of ghi line using a ghi line lamp (“Ushio Electric Co., Ltd.“ Multi-light ”), and then heat-treated at 140 ° C. for 60 seconds. Went.
  • the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the pattern state is confirmed using a laser microscope (Keyence Co., Ltd. “VK-X200”).
  • a line width of 1 was evaluated as B when the line width was 5 ⁇ m and could not be resolved.
  • the composition for heat resistance test obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • the resin content was scraped from the obtained wafer and the glass transition temperature (Tg) was measured.
  • the glass transition temperature (Tg) was measured using a differential scanning calorimeter (DSC) (“Q100” manufactured by TA Instruments Co., Ltd.) under a nitrogen atmosphere, a temperature range of ⁇ 100 to 250 ° C., and a temperature rising temperature of 10 ° C. / Performed under the condition of minutes.
  • DSC differential scanning calorimeter
  • curable composition 4 parts by mass of the phenolic hydroxyl group-containing resin and 1 part by mass of the curing agent were dissolved in 25 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 ⁇ m membrane filter to obtain a curable composition.
  • the curing agent “1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • Alkali Developability (nm / s)
  • the curable composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m. Dried for 60 seconds. This was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds. The film thickness before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
  • the curable composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 180 ° C. for 60 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it was heat-cured at 350 ° C. for 120 seconds to form a cured coating film having a thickness of 0.3 ⁇ m.
  • the cured coating film on the wafer was subjected to CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.).
  • the curable composition obtained above was applied by a spin coater onto a silicon wafer having a diameter of 5 inches and a hole pattern having a diameter of 110 nm and a depth of 300 nm. After drying on a hot plate at 180 ° C. for 180 seconds, heat curing was carried out at 210 ° C. for 60 seconds to obtain a cured coating film having a film thickness of 0.3 ⁇ m.
  • a silicon wafer is cut on a hole pattern line, and a cross section is observed with a laser microscope (Keyence Co., Ltd. “VK-X200”) to evaluate whether the flow of the curable composition into the hole pattern was sufficient under the following conditions. did.
  • B The whole hole is not filled with the cured product and there is a gap.

Abstract

Provided are: a phenolic hydroxy group-containing resin having high fluidity and heat resistance, and having superior developability and dry etching resistance when used as a resist material, and a photosensitive compound, a curable composition, and a resist material which contain the phenolic hydroxy group-containing resin. Specifically, provided are a phenolic hydroxy group-containing resin which is a reaction product of a tri(hydroxyaryl)alkane compound (A) and a diformyl arene compound (B), and a photosensitive compound, a curable composition, and a resist material which use the phenolic hydroxy group-containing resin. The tri(hydroxyaryl)alkane compound (A) is preferably represented by structural formula (1-1) or (1-2) [in the formulas, R1 and R2 each independently represent any of an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, and a halogen atom, each l independently represents an integer of 0 or 1-4, m represents an integer of 0 or 1-4, n represents an integer of 0 or 1-6, and R3 represents a hydrogen atom or an alkyl group.].

Description

フェノール性水酸基含有樹脂及びレジスト材料Phenolic hydroxyl group-containing resin and resist material
 本発明は、流動性及び耐熱性が高く、レジスト材料として用いた場合の現像性や耐ドライエッチング性にも優れるフェノール性水酸基含有樹脂、これを含有する感光性組成物、硬化性組成物、及びレジスト材料に関する。 The present invention is a phenolic hydroxyl group-containing resin having high fluidity and heat resistance, and excellent in developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same, a curable composition, and The present invention relates to a resist material.
 フォトレジストの分野では、用途や機能に応じて細分化された多種多様なレジストパターン形成方法が次々に開発されており、それに伴い、レジスト用樹脂材料に対する要求性能も高度化かつ多様化している。例えば、パターン形成用の樹脂材料には、高集積化された半導体に微細なパターンを正確かつ高い生産効率で形成するための高い現像性が要求さる。下層膜、反射防止膜、BARC膜、ハードマスク等と呼ばれる用途では、ドライエッチング耐性や低反射性、凹凸のある基材表面にも対応し得る高い流動性等が求められる。また、レジスト永久膜等と呼ばれる用途では、高耐熱性に加え基材追従性等の靱性が要求される。更に、品質信頼性の観点から、世界各国の様々な環境下での長期保存安定性も重要な性能の一つである。 In the field of photoresists, a variety of resist pattern forming methods that have been subdivided according to applications and functions have been developed one after another, and accordingly, the required performance for resist resin materials has become sophisticated and diversified. For example, a resin material for forming a pattern requires high developability for forming a fine pattern accurately and with high production efficiency on a highly integrated semiconductor. In applications called underlayer films, antireflection films, BARC films, hard masks, etc., dry etching resistance, low reflectivity, and high fluidity that can be applied to uneven substrate surfaces are required. In addition, in applications such as resist permanent films, toughness such as substrate followability is required in addition to high heat resistance. Furthermore, from the viewpoint of quality and reliability, long-term storage stability in various environments around the world is one of the important performances.
 フォトレジスト用途に最も広く用いられているフェノール性水酸基含有樹脂はクレゾールノボラック型のものであるが、高度化かつ多様化が進む昨今の市場要求性能に対応できるものではなく、耐熱性や流動性、現像性、耐ドライエッチング性等、様々な性能において更なる改良が求められていた(特許文献1参照)。 The phenolic hydroxyl group-containing resin most widely used for photoresist applications is of the cresol novolac type, but it is not capable of meeting the performance requirements of today's increasingly sophisticated and diversified, heat resistance, fluidity, Further improvements in various properties such as developability and dry etching resistance have been demanded (see Patent Document 1).
特開平2-55359号公報JP-A-2-55359
 本発明が解決しようとする課題は、流動性及び耐熱性が高く、レジスト材料として用いた場合の現像性や耐ドライエッチング性にも優れるフェノール性水酸基含有樹脂、これを含有する感光性組成物、硬化性組成物、及びレジスト材料を提供することにある。 The problem to be solved by the present invention is a phenolic hydroxyl group-containing resin having high fluidity and heat resistance, and excellent in developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same, The object is to provide a curable composition and a resist material.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、トリ(ヒドロキシアリール)アルカン型化合物と、ジホルミルアレーン化合物との反応物であるフェノール性水酸基含有樹脂は、流動性及び耐熱性が高く、レジスト材料として用いた場合の現像性や耐ドライエッチング性等にも優れることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a phenolic hydroxyl group-containing resin, which is a reaction product of a tri (hydroxyaryl) alkane type compound and a diformylarene compound, has fluidity and heat resistance. As a result, the present invention has been completed by finding that it has high developability and excellent developability and dry etching resistance when used as a resist material.
 即ち、本発明は、トリ(ヒドロキシアリール)アルカン型化合物(A)と、ジホルミルアレーン化合物(B)との反応物であるフェノール性水酸基含有樹脂に関する。 That is, the present invention relates to a phenolic hydroxyl group-containing resin which is a reaction product of a tri (hydroxyaryl) alkane type compound (A) and a diformylarene compound (B).
 本発明はさらに、前記フェノール性水酸基含有樹脂と感光剤とを含有する感光性組成物に関する。 The present invention further relates to a photosensitive composition containing the phenolic hydroxyl group-containing resin and a photosensitive agent.
 本発明はさらに、前記フェノール性水酸基含有樹脂と硬化剤とを含有する硬化性組成物に関する。 The present invention further relates to a curable composition containing the phenolic hydroxyl group-containing resin and a curing agent.
 本発明はさらに、前記硬化性組成物の硬化物に関する。 The present invention further relates to a cured product of the curable composition.
 本発明はさらに、前記フェノール性水酸基含有樹脂を用いたレジスト材料に関する。 The present invention further relates to a resist material using the phenolic hydroxyl group-containing resin.
 本発明によれば、流動性及び耐熱性が高く、レジスト材料として用いた場合の現像性や耐ドライエッチング性にも優れるフェノール性水酸基含有樹脂、これを含有する感光性組成物、硬化性組成物、及びレジスト材料を提供することができる。 According to the present invention, a phenolic hydroxyl group-containing resin having high fluidity and heat resistance and excellent developability and dry etching resistance when used as a resist material, a photosensitive composition containing the same, and a curable composition And resist materials can be provided.
図1は、製造例1で得られたトリ(ヒドロキシアリール)アルカン型化合物(A-1)のGPCチャート図である。FIG. 1 is a GPC chart of the tri (hydroxyaryl) alkane type compound (A-1) obtained in Production Example 1. 図2は、製造例1で得られたトリ(ヒドロキシアリール)アルカン型化合物(A-1)の13C-NMRチャート図である。FIG. 2 is a 13 C-NMR chart of the tri (hydroxyaryl) alkane type compound (A-1) obtained in Production Example 1. 図3は、実施例1で得られたフェノール性水酸基含有樹脂(1)のGPCチャート図である。FIG. 3 is a GPC chart of the phenolic hydroxyl group-containing resin (1) obtained in Example 1. 図4は、実施例2で得られたフェノール性水酸基含有樹脂(2)のGPCチャート図である。FIG. 4 is a GPC chart of the phenolic hydroxyl group-containing resin (2) obtained in Example 2.
 以下、本発明を詳細に説明する。
 本発明のフェノール性水酸基含有樹脂は、トリ(ヒドロキシアリール)アルカン型化合物(A)と、ジホルミルアレーン化合物(B)との反応物である。
Hereinafter, the present invention will be described in detail.
The phenolic hydroxyl group-containing resin of the present invention is a reaction product of a tri (hydroxyaryl) alkane type compound (A) and a diformylarene compound (B).
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)は、ヒドロキシ基を有するアリール基を分子構造中に3つ有するアルカン化合物のことであり、その具体構造は特に限定されない。中でも、特に耐熱性に優れるフェノール性水酸基含有樹脂となることから、三つのヒドロキシアリール基をすべて同一の炭素原子上に有する化合物であることが好ましい。このような化合物の具体例としては、例えば、下記構造式(1-1)又は(1-2) The tri (hydroxyaryl) alkane type compound (A) is an alkane compound having three aryl groups having a hydroxy group in its molecular structure, and its specific structure is not particularly limited. Especially, since it becomes phenolic hydroxyl-containing resin excellent in heat resistance especially, it is preferable that it is a compound which has all three hydroxyaryl groups on the same carbon atom. Specific examples of such a compound include, for example, the following structural formula (1-1) or (1-2)
Figure JPOXMLDOC01-appb-C000002
[式中R、Rはそれぞれ独立に脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子の何れかである。lはそれぞれ独立に0又は1~4の整数、mは0又は1~5の整数、nは0又は1~7の整数である。Rは水素原子又はアルキル基である。]
で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
[Wherein R 1 and R 2 are each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group or a halogen atom. l is independently 0 or an integer of 1 to 4, m is an integer of 0 or 1 to 5, and n is an integer of 0 or 1 to 7. R 3 is a hydrogen atom or an alkyl group. ]
The compound represented by these is mentioned.
 前記構造式(1-1)及び(1-2)中のRはそれぞれ独立に脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子の何れかであり、lはそれぞれ独立に0又は1~4の整数である。前記脂肪族炭化水素基は、直鎖型のもの、分岐構造を有するもののどちらでも良く、構造中に不飽和基を有するもの、有さないもののどちらでも良い。その炭素原子数は特に限定されず、炭素原子数1~6の短鎖のもの、炭素原子数7以上の比較的長鎖のもの、いずれでも良い。前記芳香環含有炭化水素基は、芳香環を含有する構造部位であれば具体構造は特に限定されず、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基の他、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基等のアラルキル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、へキシルオキシ基、シクロへキシルオキシ基等が挙げられる。前記ハロゲン原子はフッ素原子、塩素原子、臭素原子が挙げられる。 In the structural formulas (1-1) and (1-2), R 1 is each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, or a halogen atom, and l is each independently 0 or an integer of 1 to 4. The aliphatic hydrocarbon group may be either a straight chain type or a branched structure, and may have either an unsaturated group in the structure or not. The number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms. The specific structure of the aromatic ring-containing hydrocarbon group is not particularly limited as long as it is a structural part containing an aromatic ring. In addition to an aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, a benzyl group Aralkyl groups such as phenylethyl group, phenylpropyl group and naphthylmethyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
 中でも、耐熱性や耐ドライエッチング性に優れるフェノール性水酸基含有樹脂となることから、lが1~4の整数であることが好ましく、1又は2であることがより好ましい。また、Rは脂肪族炭化水素基であることが好ましく、炭素原子数1~6の脂肪族炭化水素基であることがより好ましく、メチル基、エチル基、プロピル基、ブチル基のいずれかであることが特に好ましい。 Among them, l is preferably an integer of 1 to 4, and more preferably 1 or 2, because the phenolic hydroxyl group-containing resin is excellent in heat resistance and dry etching resistance. R 1 is preferably an aliphatic hydrocarbon group, more preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and any of a methyl group, an ethyl group, a propyl group, and a butyl group. It is particularly preferred.
 前記構造式(1-1)及び(1-2)中のRはそれぞれ独立に脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子の何れかであり、mは0又は1~5の整数、nは0又は1~7の整数である。前記脂肪族炭化水素基は、直鎖型のもの、分岐構造を有するもののどちらでも良く、構造中に不飽和基を有するもの、有さないもののどちらでも良い。その炭素原子数は特に限定されず、炭素原子数1~6の短鎖のもの、炭素原子数7以上の比較的長鎖のもの、いずれでも良い。前記芳香環含有炭化水素基は、芳香環を含有する構造部位であれば具体構造は特に限定されず、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基の他、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基等のアラルキル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、へキシルオキシ基、シクロへキシルオキシ基等が挙げられる。前記ハロゲン原子はフッ素原子、塩素原子、臭素原子が挙げられる。 R 2 in the structural formulas (1-1) and (1-2) is each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, or a halogen atom, and m is 0 or An integer of 1 to 5, n is 0 or an integer of 1 to 7. The aliphatic hydrocarbon group may be either a straight chain type or a branched structure, and may have either an unsaturated group in the structure or not. The number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms. The specific structure of the aromatic ring-containing hydrocarbon group is not particularly limited as long as it is a structural part containing an aromatic ring. In addition to an aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, a benzyl group Aralkyl groups such as phenylethyl group, phenylpropyl group and naphthylmethyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
 中でも、耐熱性や耐ドライエッチング性に優れるフェノール性水酸基含有樹脂となることから、Rは脂肪族炭化水素基であることが好ましく、炭素原子数1~6の脂肪族炭化水素基であることがより好ましく、メチル基、エチル基、プロピル基、ブチル基のいずれかであることが特に好ましい。また、m或いはnは0、1、2のいずれかであることが好ましく、0であることがより好ましい。 Among them, R 2 is preferably an aliphatic hydrocarbon group, and preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance. Are more preferable, and any of a methyl group, an ethyl group, a propyl group, and a butyl group is particularly preferable. Moreover, m or n is preferably 0, 1, or 2, and more preferably 0.
 前記構造式(1-1)及び(1-2)中のRはそれぞれ水素原子又はアルキル基である。前記アルキル基は直鎖型でもよいし、分岐構造を有するものでも良い。その炭素原子数は特に限定されず、炭素原子数1~6の短鎖のもの、炭素原子数7以上の比較的長鎖のもの、いずれでも良い。中でも、流動性、耐熱性、耐ドライエッチング性のバランスに優れるフェノール性水酸基含有樹脂となることから、Rは水素原子又は炭素原子数1~6のアルキル基であることが好ましく、水素原子、メチル基、エチル基、プロピル基、ブチル基の何れかであることがより好ましい。 R 3 in the structural formulas (1-1) and (1-2) is a hydrogen atom or an alkyl group, respectively. The alkyl group may be linear or may have a branched structure. The number of carbon atoms is not particularly limited, and may be a short chain having 1 to 6 carbon atoms or a relatively long chain having 7 or more carbon atoms. Among them, R 3 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, since it becomes a phenolic hydroxyl group-containing resin having an excellent balance of fluidity, heat resistance, and dry etching resistance. More preferably, it is any one of a methyl group, an ethyl group, a propyl group, and a butyl group.
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)は、例えば、フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)とを縮合反応させて製造することができ、また、本州化学工業株式会社製「TrisP-HAP」[1,1,1-トリス(4-ヒドロキシフェニル)エタン]等の市販品を利用してもよい。以下、フェノール化合物(a1)と芳香族アルデヒド化合物(a2)とを縮合反応させて製造する場合の製造方法の一例について説明する。 The tri (hydroxyaryl) alkane type compound (A) can be produced, for example, by subjecting a phenol compound (a1) and a hydroxyl group-containing aromatic aldehyde compound (a2) to a condensation reaction, and Honshu Chemical Industry Co., Ltd. Commercially available products such as “TrisP-HAP” [1,1,1-tris (4-hydroxyphenyl) ethane] manufactured by the Company may be used. Hereinafter, an example of the manufacturing method in the case of manufacturing by making a phenol compound (a1) and an aromatic aldehyde compound (a2) carry out a condensation reaction is demonstrated.
 前記フェノール化合物(a1)は、例えば、フェノールや、フェノールの芳香核上の水素原子の一つ乃至複数が脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子等で置換された化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、耐熱性や耐ドライエッチング性に優れるフェノール性水酸基含有樹脂となることから炭素原子数1~6の脂肪族炭化水素基を有するフェノール化合物が好ましく、メチル基、エチル基、プロピル基、ブチル基のいずれかを有するフェノール化合物がより好ましい。芳香核上の脂肪族炭化水素基の数は、1~4であることが好ましく、1又は2であることが好ましい。特に、前記フェノール化合物(a1)として2,5-キシレノールを用いることが好ましい。 In the phenol compound (a1), for example, one or more of hydrogen atoms on the aromatic nucleus of phenol or phenol is substituted with an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, a halogen atom, or the like. Compounds. These may be used alone or in combination of two or more. Among them, a phenol compound having an aliphatic hydrocarbon group having 1 to 6 carbon atoms is preferable because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance, and is preferably a methyl group, an ethyl group, a propyl group, or a butyl group. A phenol compound having any of the above is more preferred. The number of aliphatic hydrocarbon groups on the aromatic nucleus is preferably 1 to 4, and preferably 1 or 2. In particular, it is preferable to use 2,5-xylenol as the phenol compound (a1).
 前記水酸基含有芳香族アルデヒド化合物(a2)は、例えば、ヒドロキシベンズアルデヒド、ヒドロキシナフトアルデヒドの他、これらの芳香核上の水素原子の一つ乃至複数が脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子等で置換された化合物が挙げられる。また、芳香核上のホルミル基と水酸基との置換位置は特に限定されず、いずれの化合物を用いてもよい。水酸基含有芳香族アルデヒド化合物(a2)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、耐熱性や耐ドライエッチング性に優れるフェノール性水酸基含有樹脂となることからヒドロキシベンズアルデヒド又はヒドロキシナフトアルデヒドが好ましい。さらに、流動性にも優れるフェノール性水酸基含有樹脂となることから、ヒドロキシベンズアルデヒドが好ましく、4-ヒドロキシベンズアルデヒドがより好ましい。 The hydroxyl group-containing aromatic aldehyde compound (a2) is, for example, hydroxybenzaldehyde, hydroxynaphthaldehyde, one or more of hydrogen atoms on the aromatic nucleus are aliphatic hydrocarbon groups, aromatic ring-containing hydrocarbon groups, Examples thereof include compounds substituted with an alkoxy group, a halogen atom or the like. Moreover, the substitution position of the formyl group and hydroxyl group on the aromatic nucleus is not particularly limited, and any compound may be used. The hydroxyl group-containing aromatic aldehyde compound (a2) may be used alone or in combination of two or more. Among them, hydroxybenzaldehyde or hydroxynaphthaldehyde is preferable because it becomes a phenolic hydroxyl group-containing resin having excellent heat resistance and dry etching resistance. Furthermore, hydroxybenzaldehyde is preferable and 4-hydroxybenzaldehyde is more preferable because it becomes a phenolic hydroxyl group-containing resin having excellent fluidity.
 前記フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)との反応モル比率[(a1)/(a2)]は、目的のトリ(ヒドロキシアリール)アルカン型化合物(A))を高収率かつ高純度で得られることから、1/0.2~1/0.5の範囲であることが好ましく、1/0.25~1/0.45の範囲であることがより好ましい。 The reaction molar ratio [(a1) / (a2)] of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) yields the target tri (hydroxyaryl) alkane type compound (A)) in a high yield. In addition, since it is obtained with high purity, it is preferably in the range of 1 / 0.2 to 1 / 0.5, more preferably in the range of 1 / 0.25 to 1 / 0.45.
 フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)との反応は、酸触媒条件下で行うことが好ましい。ここで用いる酸触媒は、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、それぞれ単独で用いても良いし、2種以上併用しても良い。これらの中でも、触媒活性に優れる点から硫酸、パラトルエンスルホン酸が好ましい。 The reaction between the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) is preferably performed under acid catalyst conditions. Examples of the acid catalyst used here include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
 フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)との反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる溶媒は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。 The reaction of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) may be performed in an organic solvent as necessary. Examples of the solvent used here include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene Glycol ethers such as recall ethyl methyl ether and ethylene glycol monophenyl ether; cyclic ethers such as 1,3-dioxane, 1,4-dioxane and tetrahydrofuran; glycol esters such as ethylene glycol acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like Examples include ketones. These solvents may be used alone or in combination of two or more kinds.
 前記フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)との反応は、例えば、60~140℃の温度範囲で、0.5~20時間かけて行う。 The reaction of the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) is performed, for example, in a temperature range of 60 to 140 ° C. for 0.5 to 20 hours.
 反応終了後は、例えば、反応生成物をトリ(ヒドロキシアリール)アルカン型化合物(A)の貧溶媒(S1)に投入して沈殿物を濾別し、次いで、トリ(ヒドロキシアリール)アルカン型化合物(A)の溶解性が高く、かつ、前記貧溶媒(S1)と混和する溶媒(S2)に得られた沈殿物を再溶解させる方法により、反応生成物から未反応のフェノール化合物(a1)や水酸基含有芳香族アルデヒド化合物(a2)、用いた酸触媒を除去し、精製されたトリ(ヒドロキシアリール)アルカン型化合物(A)を得ることが出来る。 After completion of the reaction, for example, the reaction product is put into a poor solvent (S1) of the tri (hydroxyaryl) alkane type compound (A) and the precipitate is filtered off, and then the tri (hydroxyaryl) alkane type compound ( By the method of redissolving the precipitate obtained in the solvent (S2) that is highly soluble in A) and miscible with the poor solvent (S1), unreacted phenol compound (a1) or hydroxyl group is obtained from the reaction product. The contained aromatic aldehyde compound (a2) and the acid catalyst used can be removed to obtain a purified tri (hydroxyaryl) alkane type compound (A).
 フェノール化合物(a1)と水酸基含有芳香族アルデヒド化合物(a2)との反応をトルエン、キシレン等の芳香族炭化水素溶媒中で行った場合には、反応生成物を80℃以上まで加熱して前記トリ(ヒドロキシアリール)アルカン型化合物(A)を芳香族炭化水素溶媒に溶解し、そのまま冷却することにより前記トリ(ヒドロキシアリール)アルカン型化合物(A)の結晶を析出させることが出来る。 When the reaction between the phenol compound (a1) and the hydroxyl group-containing aromatic aldehyde compound (a2) is carried out in an aromatic hydrocarbon solvent such as toluene or xylene, the reaction product is heated to 80 ° C. or higher to A crystal of the tri (hydroxyaryl) alkane type compound (A) can be precipitated by dissolving the (hydroxyaryl) alkane type compound (A) in an aromatic hydrocarbon solvent and cooling it as it is.
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)の精製に用いる前記貧溶媒(S1)は、例えば、水;メタノール、エタノール、プロパノール、エトキシエタノール等のモノアルコール;n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、酸触媒の溶解性に優れることから水、メタノール、エトキシエタノールが好ましい。 The poor solvent (S1) used for purification of the tri (hydroxyaryl) alkane type compound (A) is, for example, water; monoalcohols such as methanol, ethanol, propanol, ethoxyethanol; n-hexane, n-heptane, n -Aliphatic hydrocarbons such as octane and cyclohexane; aromatic hydrocarbons such as toluene and xylene. These may be used alone or in combination of two or more. Of these, water, methanol, and ethoxyethanol are preferred because of the excellent solubility of the acid catalyst.
 一方、前記溶媒(S2)は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、前記貧溶媒(S1)として水やモノアルコールを用いた場合には、溶媒(S2)としてアセトンを用いることが好ましい。 On the other hand, the solvent (S2) is, for example, a monoalcohol such as methanol, ethanol, or propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane. Polyols such as diol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, ethylene Glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, Glycol ethers such as ethylene glycol ethyl methyl ether and ethylene glycol monophenyl ether; Cyclic ethers such as 1,3-dioxane and 1,4-dioxane; Glycol esters such as ethylene glycol acetate; Ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone Etc. These may be used alone or in combination of two or more. Especially, when water or monoalcohol is used as the poor solvent (S1), it is preferable to use acetone as the solvent (S2).
 反応終了後は、水洗や再沈殿等により反応生成物を精製することにより、より高純度のトリ(ヒドロキシアリール)アルカン型化合物(A)を得ることができる。トリ(ヒドロキシアリール)アルカン型化合物(A)の精製度は特に問われないが、フェノール性水酸基含有樹脂の流動性や耐熱性、現像性、耐ドライエッチング性等の性能が一層向上することから、トリ(ヒドロキシアリール)アルカン型化合物(A)の純度はGPCチャート図の面積比から算出される値で90%以上であることが好ましく、95%以上であることがより好ましい。 After completion of the reaction, the tri (hydroxyaryl) alkane type compound (A) with higher purity can be obtained by purifying the reaction product by washing with water or reprecipitation. The degree of purification of the tri (hydroxyaryl) alkane type compound (A) is not particularly limited, but the performance of the phenolic hydroxyl group-containing resin such as fluidity, heat resistance, developability, and dry etching resistance is further improved. The purity of the tri (hydroxyaryl) alkane-type compound (A) is preferably 90% or more, more preferably 95% or more as a value calculated from the area ratio in the GPC chart.
 なお、本発明において前記トリ(ヒドロキシアリール)アルカン型化合物(A)の純度は、下記条件のGPC測定にて得られるチャート図の面積比から算出される値である。また、後述する樹脂の分子量や多分散度(Mw/Mn)は下記条件のGPC測定にて測定される値である。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
In the present invention, the purity of the tri (hydroxyaryl) alkane type compound (A) is a value calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. Further, the molecular weight and polydispersity (Mw / Mn) of the resin described later are values measured by GPC measurement under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” (8.0 mmФ ×) manufactured by Showa Denko KK 300 mm) + “Shodex KF804” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: Filtered 0.5% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
 本発明のフェノール性水酸基含有樹脂を製造する際には、前記トリ(ヒドロキシアリール)アルカン型化合物(A)として単一構造のものを単独で用いても良いし、構造の異なる複数種の化合物を併用しても良い。また、前記トリ(ヒドロキシアリール)アルカン型化合物(A)以外のその他のフェノール性水酸基含有化合物(A’)を併用してもよい。前記その他のフェノール性水酸基含有化合物(A’)は、例えば、フェノール、クレゾール、キシレノール、フェニルフェノール、ジヒドロキシベンゼン、ビフェノール、ビスフェノール、ナフトール、ジヒドロキシナフタレン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。その他のフェノール性水酸基含有化合物(A’)を用いる場合には、本発明の効果が十分に発揮されることから、前記トリ(ヒドロキシアリール)アルカン型化合物(A)とその他のフェノール性水酸基含有化合物(A’)との合計100質量部中、前記トリ(ヒドロキシアリール)アルカン型化合物(A)が70質量部以上となる割合で用いることが好ましく、90質量部以上となる割合で用いることがより好ましい。 In producing the phenolic hydroxyl group-containing resin of the present invention, the tri (hydroxyaryl) alkane-type compound (A) may be a single structure or a plurality of compounds having different structures. You may use together. Further, other phenolic hydroxyl group-containing compound (A ′) other than the tri (hydroxyaryl) alkane type compound (A) may be used in combination. Examples of the other phenolic hydroxyl group-containing compound (A ′) include phenol, cresol, xylenol, phenylphenol, dihydroxybenzene, biphenol, bisphenol, naphthol, and dihydroxynaphthalene. These may be used alone or in combination of two or more. When the other phenolic hydroxyl group-containing compound (A ′) is used, the effects of the present invention are sufficiently exerted. Therefore, the tri (hydroxyaryl) alkane type compound (A) and the other phenolic hydroxyl group-containing compound are used. In a total of 100 parts by mass with (A ′), the tri (hydroxyaryl) alkane type compound (A) is preferably used in a proportion of 70 parts by mass or more, more preferably 90 parts by mass or more. preferable.
 前記ジホルミルアレーン化合物(B)は、2つのホルミル基を有する芳香族化合物であれば具体構造は特に限定されず、いずれの化合物を用いてもよい。また、二つのホルミル基の芳香核上の置換位置も特に限定されない。ジホルミルアレーン化合物(B)の具体例としては、例えば、ジホルミルベンゼン、ジホルミルナフタレン、ジホルミルアントラセン、及びこれらの芳香環上の水素原子の一つ乃至複数がアルキル基、アルコキシ基、ハロゲン原子等で置換された化合物が挙げられる。ジホルミルアレーン化合物(B)は一種類を単独で用いてもよいし、複数種を併用してもよい。中でも、流動性、耐熱性、耐ドライエッチング性のバランスに優れるフェノール性水酸基含有樹脂となることから、ジホルミルベンゼン及びその芳香環上の水素原子の一つ乃至複数がアルキル基、アルコキシ基、ハロゲン原子等で置換された化合物等が好ましく、ジホルミルベンゼンがより好ましい。 The specific structure of the diformylarene compound (B) is not particularly limited as long as it is an aromatic compound having two formyl groups, and any compound may be used. Moreover, the substitution position on the aromatic nucleus of two formyl groups is not particularly limited. Specific examples of the diformylarene compound (B) include, for example, diformylbenzene, diformylnaphthalene, diformylanthracene, and one or more of hydrogen atoms on these aromatic rings are alkyl groups, alkoxy groups, halogen atoms And the like. A diformylarene compound (B) may be used individually by 1 type, and may use multiple types together. Among them, since it becomes a phenolic hydroxyl group-containing resin having an excellent balance of fluidity, heat resistance, and dry etching resistance, one or more of hydrogen atoms on diformylbenzene and its aromatic ring are alkyl groups, alkoxy groups, halogens. A compound substituted with an atom or the like is preferable, and diformylbenzene is more preferable.
 本発明では、前記ジホルミルアレーン化合物(B)と併せて、ジホルミルアルカン等のその他のジホルミル化合物(B’)や、ベンズアルデヒド化合物、ナフトアルデヒド化合物、モノホルミルアルカン等のモノホルミル化合物(B”)等を併用してもよい。その他のジホルミル化合物(B’)を併用する場合、本発明の効果が十分に発揮されることから、これらホルミル基含有化合物の合計100質量部中、前記ジホルミルアレーン化合物(B)が70質量部以上となる割合で用いることが好ましく、90質量部以上となる割合で用いることがより好ましい。 In the present invention, in addition to the diformylarene compound (B), other diformyl compounds (B ′) such as diformylalkane, monoformyl compounds (B ″) such as benzaldehyde compounds, naphthaldehyde compounds, monoformylalkanes, etc. When the other diformyl compound (B ′) is used in combination, the effects of the present invention are sufficiently exerted, so that the diformylarene compound is contained in a total of 100 parts by mass of these formyl group-containing compounds. (B) is preferably used in a proportion of 70 parts by mass or more, and more preferably used in a proportion of 90 parts by mass or more.
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)と前記ジホルミルアレーン化合物(B)との反応方法は特に限定されず、例えば、一般的なノボラック樹脂の製造方法と同様にして反応させることができる。 The reaction method of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is not particularly limited. For example, the reaction can be carried out in the same manner as a general method for producing a novolak resin. .
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)と前記ジホルミルアレーン化合物(B)との反応モル比率[(A)/(B)]は、所望の分子量等に応じて適宜調整されるが、過剰な高分子量化を抑制でき、レジスト材料として適当な分子量のフェノール性水酸基含有樹脂が得られることから、1/0.1~1/0.8の範囲であることが好ましく、1/0.3~1/0.7の範囲であることがより好ましい。 The reaction molar ratio [(A) / (B)] between the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is appropriately adjusted according to the desired molecular weight, etc. Since excessively high molecular weight can be suppressed and a phenolic hydroxyl group-containing resin having a molecular weight suitable as a resist material can be obtained, the range of 1 / 0.1 to 1 / 0.8 is preferable. A range of 3 to 1 / 0.7 is more preferable.
 前記その他のフェノール性水酸基含有化合物(A’)やその他のジホルミル化合物(B’)、モノホルミル化合物(B”)を併用する場合には、フェノール性水酸基含有化合物原料の合計(P)とホルミル基含有化合物(H)との反応モル比率[(P)/(H)]が、1/0.1~1/0.8の範囲であることが好ましく、1/0.3~1/0.7の範囲であることがより好ましい。 When the other phenolic hydroxyl group-containing compound (A ′), other diformyl compound (B ′) and monoformyl compound (B ″) are used in combination, the total of phenolic hydroxyl group-containing compound raw materials (P) and a formyl group are contained. The reaction molar ratio [(P) / (H)] with the compound (H) is preferably in the range of 1 / 0.1 to 1 / 0.8, and 1 / 0.3 to 1 / 0.7. More preferably, it is the range.
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)と前記ジホルミルアレーン化合物(B)との反応は、酸触媒条件下で行うことが好ましい。ここで用いる酸触媒は、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、それぞれ単独で用いても良いし、2種以上併用しても良い。これらの中でも、触媒活性に優れる点から硫酸、パラトルエンスルホン酸が好ましい。 The reaction between the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is preferably carried out under acid catalyst conditions. Examples of the acid catalyst used here include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
 前記トリ(ヒドロキシアリール)アルカン型化合物(A)と前記ジホルミルアレーン化合物(B)との反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる溶媒は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。 The reaction of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) may be performed in an organic solvent as necessary. Examples of the solvent used here include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene Glycol ethers such as recall ethyl methyl ether and ethylene glycol monophenyl ether; cyclic ethers such as 1,3-dioxane, 1,4-dioxane and tetrahydrofuran; glycol esters such as ethylene glycol acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like Examples include ketones. These solvents may be used alone or in combination of two or more kinds.
  前記トリ(ヒドロキシアリール)アルカン型化合物(A)と前記ジホルミルアレーン化合物(B)との反応は、例えば、60~140℃の温度範囲で、0.5~20時間かけて行う。 The reaction of the tri (hydroxyaryl) alkane type compound (A) and the diformylarene compound (B) is performed, for example, in a temperature range of 60 to 140 ° C. for 0.5 to 20 hours.
 反応終了後は、反応生成物に水を加えて再沈殿操作を行うなどして、目的のフェノール性水酸基含有樹脂を得ることが出来る。 After completion of the reaction, the desired phenolic hydroxyl group-containing resin can be obtained by performing reprecipitation operation by adding water to the reaction product.
 本発明のフェノール性水酸基含有樹脂の重量平均分子量(Mw)は、流動性、耐熱性、耐ドライエッチング性のバランスに優れるフェノール性水酸基含有樹脂となることから、3,000~50,000の範囲であることが好ましく、5,000~15,000の範囲であることがより好ましい。また、フェノール性水酸基含有樹脂の多分散度(Mw/Mn)は1.1~10.0の範囲であることが好ましく、1.1~5.0の範囲であることがより好ましく、2.0~3.5の範囲であることが特に好ましい。 The weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin of the present invention is in the range of 3,000 to 50,000 because the phenolic hydroxyl group-containing resin has an excellent balance of fluidity, heat resistance, and dry etching resistance. Is preferable, and the range of 5,000 to 15,000 is more preferable. The polydispersity (Mw / Mn) of the phenolic hydroxyl group-containing resin is preferably in the range of 1.1 to 10.0, more preferably in the range of 1.1 to 5.0. A range of 0 to 3.5 is particularly preferred.
 なお、本発明において重量平均分子量(Mw)及び多分散度(Mw/Mn)は、下記条件のGPCにて測定される値である。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
In the present invention, the weight average molecular weight (Mw) and the polydispersity (Mw / Mn) are values measured by GPC under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
+ Showa Denko Co., Ltd. “Shodex KF803” (8.0 mmФ × 300 mm) + Showa Denko Co., Ltd. “Shodex KF804” (8.0 mmФ × 300 mm)
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: Filtered 0.5% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
 以上詳述した本発明のフェノール性水酸基含有樹脂は、一般的なフェノール樹脂同様、塗料や接着剤、電気・電子部材、フォトレジスト、液晶配向膜等様々な用途に用いることができる。中でも、流動性や耐熱性、現像性、ドライエッチング耐性が高い特性を生かした用途として、特にレジスト用材料に適しており、一般的な層間絶縁膜の他、レジスト下層膜、レジスト永久膜等の様々なレジスト部材に用いることができる。 The phenolic hydroxyl group-containing resin of the present invention described in detail above can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc., as in general phenol resins. Above all, it is particularly suitable as a resist material as an application that makes use of characteristics such as fluidity, heat resistance, developability, and dry etching resistance. In addition to general interlayer insulation films, resist underlayer films, resist permanent films, etc. It can be used for various resist members.
 本発明の感光性組成物は、前記本発明のフェノール性水酸基含有樹脂と感光剤とを必須の成分として含有する。前記感光剤は、例えば、キノンジアジド基を有する化合物が挙げられる。キノンジアジド基を有する化合物の具体例としては、例えば、芳香族(ポリ)ヒドロキシ化合物と、1,2-ナフトキノン-2-ジアジド-5-スルホン酸等のキノンジアジド基を有するスルホン酸或いはそのハライドとの完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物などが挙げられる。 The photosensitive composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a photosensitive agent as essential components. Examples of the photosensitive agent include compounds having a quinonediazide group. Specific examples of the compound having a quinonediazide group include, for example, an aromatic (poly) hydroxy compound and a sulfonic acid having a quinonediazide group such as 1,2-naphthoquinone-2-diazide-5-sulfonic acid or a halide thereof. Examples thereof include ester compounds, partial ester compounds, amidated products, and partially amidated products.
 前記芳香族(ポリ)ヒドロキシ化合物は、例えば、2,3,4-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2’-メチルベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’,6-ペンタヒドロキシベンゾフェノン、2,2’,3,4,4’-ペンタヒドロキシベンゾフェノン、2,2’,3,4,5-ペンタヒドロキシベンゾフェノン、2,3’,4,4’,5’,6-ヘキサヒドロキシベンゾフェノン、2,3,3’,4,4’,5’-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン化合物; Examples of the aromatic (poly) hydroxy compound include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,6-tri Hydroxybenzophenone, 2,3,4-trihydroxy-2′-methylbenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3 ′, 4,4 ′, 6-pentahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ', 5', 6-hexahydroxybenzophenone, 2,3,3 ', 4,4', 5'-hexahydroxybenzophenone, etc. Polyhydroxy benzophenone compound;
 ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4’-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2’,4’-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2’,3’,4’-トリヒドロキシフェニル)プロパン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール、3,3’-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール等のビス[(ポリ)ヒドロキシフェニル]アルカン化合物; Bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, 2- (4-hydroxyphenyl) -2- (4′-hydroxyphenyl) propane, 2- (2, 4-dihydroxyphenyl) -2- (2 ′, 4′-dihydroxyphenyl) propane, 2- (2,3,4-trihydroxyphenyl) -2- (2 ′, 3 ′, 4′-trihydroxyphenyl) Propane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol, 3,3′-dimethyl- {1- [4- [2- ( Bis [(poly) hydroxyphenyl] alkane compounds such as 3-methyl-4-hydroxyphenyl) -2-propyl] phenyl] ethylidene} bisphenol;
 トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン等のトリス(ヒドロキシフェニル)メタン化合物又はそのメチル置換体; Tris (4-hydroxyphenyl) methane, bis (4-hydroxy-3,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethyl) A tris (hydroxyphenyl) methane compound such as phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or a methyl-substituted product thereof;
 ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタンなどの、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン化合物又はそのメチル置換体等が挙げられる。これらの感光剤はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Bis (3-cyclohexyl-4-hydroxyphenyl) -3-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -2-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -4- Hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -3-hydroxyphenylmethane, bis ( 5-cyclohexyl-4-hydroxy-2-methylphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3- Methylph Nyl) -4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -2-hydroxy Phenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4) -Methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4-methylphenyl) -4-hydroxyphenylmethane and the like, bis (cyclohexylhydroxyphenyl) (hydroxyphenyl) methane compounds Methyl-substituted products thereof. These photosensitizers may be used alone or in combination of two or more.
 本発明の感光性組成物における前記感光剤の配合量は、光感度に優れる感光性組成物となることから、感光性組成物の樹脂固形分の合計100質量部に対し、5~50質量部となる割合であることが好ましい。 The blending amount of the photosensitive agent in the photosensitive composition of the present invention is a photosensitive composition having excellent photosensitivity, and therefore 5 to 50 parts by mass with respect to 100 parts by mass in total of the resin solid content of the photosensitive composition. It is preferable that the ratio is
 本発明の感光性組成物は、前記本発明のフェノール性水酸基含有樹脂以外に、その他の樹脂(X)を併用しても良い。ここで用いるその他の樹脂(X)は、例えば、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体等が挙げられる。 In addition to the phenolic hydroxyl group-containing resin of the present invention, the photosensitive composition of the present invention may be used in combination with other resins (X). Other resins (X) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
 前記各種のノボラック樹脂は、より具体的には、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。 More specifically, the various novolak resins include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, and phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with an acid catalyst.
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。 The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
 これらその他の樹脂を用いる場合、本発明のフェノール性水酸基含有樹脂とその他の樹脂(X)との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏する効果がより顕著に発現することから、本発明のフェノール性水酸基含有樹脂100質量部に対し、その他の樹脂(X)が0.5~100質量部となる割合であることが好ましい。 When these other resins are used, the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (X) can be arbitrarily set according to the use, but the effect of the present invention is more remarkable. Therefore, the proportion of the other resin (X) is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention.
 また、本発明のフェノール性水酸基含有樹脂の光感度に優れる特徴を活かして、これを感度向上剤として用いる場合には、前記その他の樹脂(X)100質量部に対し、本発明のフェノール性水酸基含有樹脂が3~80質量部の範囲であることが好ましい。 In addition, taking advantage of the excellent photosensitivity of the phenolic hydroxyl group-containing resin of the present invention and using it as a sensitivity improver, the phenolic hydroxyl group of the present invention is used with respect to 100 parts by mass of the other resin (X). The resin content is preferably in the range of 3 to 80 parts by mass.
 本発明の感光性組成物は、レジスト用途に用いた場合の製膜性やパターンの密着性の向上等の目的で界面活性剤を含有していても良い。ここで用いる界面活性剤は、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル化合物、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル化合物、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル化合物、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテ-ト、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル化合物等のノニオン系界面活性剤;フルオロ脂肪族基を有する重合性単量体と[ポリ(オキシアルキレン)](メタ)アクリレートとの共重合体など分子構造中にフッ素原子を有するフッ素系界面活性剤;分子構造中にシリコーン構造部位を有するシリコーン系界面活性剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The photosensitive composition of the present invention may contain a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications. Examples of the surfactant used here include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ether compounds such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ether compounds such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid ester compounds such as polyoxyethylene sorbitan monolaurate, poly Nonionic surfactants such as polyoxyethylene sorbitan fatty acid ester compounds such as xylethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate; fluoro fat Fluorosurfactants having a fluorine atom in the molecular structure such as a copolymer of a polymerizable monomer having a group and [poly (oxyalkylene)] (meth) acrylate; having a silicone structure site in the molecular structure Examples thereof include silicone surfactants. These may be used alone or in combination of two or more.
 これらの界面活性剤の配合量は、本発明の感光性組成物中の樹脂固形分の合計100質量部に対し0.001~2質量部の範囲で用いることが好ましい。 The compounding amount of these surfactants is preferably in the range of 0.001 to 2 parts by mass with respect to a total of 100 parts by mass of resin solids in the photosensitive composition of the present invention.
 本発明の感光性組成物をレジスト用途に用いる場合には、本発明のフェノール性水酸基含有樹脂、感光剤の他、更に必要に応じてその他の樹脂(X)や界面活性剤、染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することにより感光性レジスト材料とすることができる。感光性レジスト材料は塗材としてそのまま用いても良いし、感光性レジスト材料を支持フィルム上に塗布して脱溶剤させたものをレジストフィルムとして用いても良い。レジストフィルムとして用いる際の支持フィルムは、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の合成樹脂フィルムが挙げられ、単層フィルムでも複数の積層フィルムでも良い。また、該支持フィルムの表面はコロナ処理されたものや剥離剤が塗布されたものでも良い。 When the photosensitive composition of the present invention is used for resist applications, in addition to the phenolic hydroxyl group-containing resin and photosensitive agent of the present invention, other resins (X), surfactants, dyes, and fillers as necessary. A photosensitive resist material can be obtained by adding various additives such as a crosslinking agent and a dissolution accelerator and dissolving in an organic solvent. The photosensitive resist material may be used as it is as a coating material, or may be used as a resist film obtained by applying a photosensitive resist material on a support film and removing the solvent. Examples of the support film used as a resist film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films. The surface of the support film may be a corona-treated one or a release agent.
 前記有機溶剤の種類は特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The type of the organic solvent is not particularly limited. For example, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol Dialkylene glycol dialkyl ethers such as diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Acetate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethoxyacetic acid Ethyl, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate, ethyl acetoacetate, etc. These may be ester compounds, and these may be used alone or in combination of two or more.
 前記感光性レジスト材料は上記各成分を配合し、攪拌機等を用いて混合することにより製造することができる。また、レジスト材料が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して製造することが出来る。 The photosensitive resist material can be produced by blending the above components and mixing them using a stirrer or the like. When the resist material contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記感光性レジスト材料を用いた一般的なフォトリソグラフィーの方法は、例えば、次のような方法が挙げられる。まず、前記感光性レジスト材料をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等のフォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。このときの塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でも良い。次いで、レジストパターンを通して露光し、アルカリ現像液にて現像することにより、レジストパターンを形成する。 Examples of a general photolithography method using the photosensitive resist material include the following methods. First, the photosensitive resist material is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and prebaked at a temperature of 60 to 150 ° C. The coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like. Next, the resist pattern is formed by exposing through a resist pattern and developing with an alkali developer.
 前記感光性レジスト材料をレジスト永久膜用途に用いる場合には、感光剤と併せて架橋剤を含有することが好ましい。ここで用いる架橋剤は、後述する硬化性組成物で用いる硬化剤と同様のものが挙げられる。レジスト永久膜を形成する方法は、例えば、以下のような方法が挙げられる。まず前記感光性レジスト材料をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。塗布方法は先で挙げたものと同様である。次いで、レジストパターンを通して露光し、更に110~210℃の温度条件で熱硬化させた後、アルカリ現像液にて現像することにより、レジストパターンを形成する。或いは、露光後、先にアルカリ現像液にて現像し、その後に110~210℃の温度条件で熱硬化させても良い。 When the photosensitive resist material is used for a resist permanent film, it is preferable to contain a crosslinking agent in addition to the photosensitive agent. Examples of the crosslinking agent used here are the same as those used in the curable composition described below. Examples of the method for forming the resist permanent film include the following methods. First, the photosensitive resist material is applied on an object such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate and the like to be subjected to photolithography, and prebaked at a temperature of 60 to 150 ° C. The application method is the same as that described above. Next, the resist pattern is exposed to light, further thermally cured at a temperature of 110 to 210 ° C., and then developed with an alkali developer to form a resist pattern. Alternatively, after exposure, the film may be developed with an alkali developer first, and then thermally cured at a temperature of 110 to 210 ° C.
 レジスト永久膜の具体例としては、半導体デバイスにおいては、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子のパッケージ接着層、積回路素子と回路基板との接着層等が挙げられる。また、LCD、OELDに代表される薄型ディスプレイにおいては、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリックス、スペーサー等が挙げられる。 Specific examples of the resist permanent film include a solder resist, a package material, an underfill material, a package adhesive layer of a circuit element, and an adhesive layer between a product circuit element and a circuit board in a semiconductor device. In thin displays represented by LCD and OELD, there are a thin film transistor protective film, a liquid crystal color filter protective film, a black matrix, a spacer, and the like.
 本発明の硬化性組成物は、前記本発明のフェノール性水酸基含有樹脂と、硬化剤とを必須の成分として含有する。また、前記本発明のフェノール性水酸基含有樹脂以外に、その他の樹脂(Y)を併用しても良い。ここで用いるその他の樹脂(Y)は、例えば、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体等が挙げられる。 The curable composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a curing agent as essential components. In addition to the phenolic hydroxyl group-containing resin of the present invention, other resins (Y) may be used in combination. Other resins (Y) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
 前記各種のノボラック樹脂は、より具体的には、フェノールェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。 More specifically, the various novolak resins include phenolphenol, cresol, xylenol and other alkylphenols, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with acid catalyst conditions.
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。 The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
 これらその他の樹脂を用いる場合、本発明のフェノール性水酸基含有樹脂とその他の樹脂(Y)との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏する効果がより顕著に発現することから、本発明のフェノール性水酸基含有樹脂100質量部に対し、その他の樹脂(Y)が0.5~100質量部となる割合であることが好ましい。 When these other resins are used, the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (Y) can be arbitrarily set according to the use, but the effect of the present invention is more remarkable. Therefore, the ratio of the other resin (Y) to 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention is preferable.
 本発明で用いる硬化剤は、前記本発明のフェノール性水酸基含有樹脂と硬化反応を生じ得る化合物であれば特に限定なく、様々な化合物を用いることができる。また、本発明の硬化性組成物の硬化方法は特に限定されず、硬化剤の種類や、後述する硬化促進剤の種類等に応じて、熱硬化や光硬化など適当な方法で硬化させることができる。熱硬化における加熱温度や時間、光硬化における光線の種類や露光時間等の硬化条件は、硬化剤の種類や、後述する硬化促進剤の種類等に応じて適宜調節される。 The curing agent used in the present invention is not particularly limited as long as it is a compound capable of causing a curing reaction with the phenolic hydroxyl group-containing resin of the present invention, and various compounds can be used. Moreover, the curing method of the curable composition of the present invention is not particularly limited, and it can be cured by an appropriate method such as thermal curing or photocuring according to the type of curing agent or the type of curing accelerator described below. it can. Curing conditions such as the heating temperature and time in thermosetting, the type of light beam in photocuring and the exposure time are appropriately adjusted according to the type of curing agent, the type of curing accelerator described below, and the like.
 前記硬化剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。 Specific examples of the curing agent include, for example, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and the like. Products, oxazoline compounds and the like.
 前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。 Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol Examples include compounds in which 1 to 6 groups are acyloxymethylated.
 前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。 Examples of the guanamine compound include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
 前記グリコールウリル化合物は、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。 Examples of the glycoluril compound include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
 前記ウレア化合物は、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。 Examples of the urea compound include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
 前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。 The resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound. Examples include polymers obtained by reacting under catalytic conditions.
 前記エポキシ化合物は、例えば、ジグリシジルオキシナフタレン、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。 Examples of the epoxy compound include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene- Examples include phenol addition reaction type epoxy resins, phosphorus atom-containing epoxy resins, polyglycidyl ethers of cocondensates of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, and the like. That.
 前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。 Examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
 前記アジド化合物は、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。  Examples of the azide compound include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
 前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether. , Neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether Etc.
 前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。  Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
 これらの中でも、硬化性や硬化物における耐熱性に優れる硬化性組成物となることから、グリコールウリル化合物、ウレア化合物、レゾール樹脂が好ましく、グリコールウリル化合物が特に好ましい。 Among these, a glycoluril compound, a urea compound, and a resole resin are preferable, and a glycoluril compound is particularly preferable because it is a curable composition having excellent curability and heat resistance in a cured product.
 本発明の硬化性組成物における前記硬化剤の配合量は、硬化性に優れる組成物となることから、本発明のフェノール性水酸基含有樹脂とその他の樹脂(X)との合計100質量部に対し、0.5~50質量部となる割合であることが好ましい。 Since the compounding quantity of the said hardening | curing agent in the curable composition of this invention becomes a composition excellent in sclerosis | hardenability, with respect to a total of 100 mass parts of phenolic hydroxyl group containing resin of this invention, and other resin (X). The ratio is preferably 0.5 to 50 parts by mass.
 本発明の硬化性組成物は、前記硬化剤と合わせて硬化促進剤を含有しても良い。本発明の硬化性組成物を熱硬化させる場合には、硬化促進剤として、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等の酸化合物を用いることが好ましい。他方、本発明の硬化性組成物を光硬化させる場合には、硬化促進剤として光酸発生剤を用いることが好ましい。光酸発生剤は、例えば、トリス(4-メチルフェニル)スルホニウムトリフルオロメタンスルホネート、トリス(4-メチルフェニル)スルホニウムヘキサフルオロホスフェート等のスルホニウム塩化合物;ビス[4-n-アルキルフェニル]ヨードニウムヘキサフルオロホスフェート、ビス[4-n-アルキルフェニル]ヨードニウムヘキサフルオロアンチモネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4-t-ブチルフェニル)ヨードニウムビス(パーフルオロブタンスルホニル)イミド、ビス[4-n-アルキルフェニル]ヨードニウムテトラキスペンタフルオロフェニルボレート等のヨードニウム塩化合物(各化合物中のn-アルキル基は炭素数10~13のものが好ましい);2-[2-(フラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(メチルフラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-メトキシフェニル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(3,4-ジメトキシフェニル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン等のクロロメチルトリアジン化合物等が挙げられる。硬化促進剤はそれぞれ単独で用いても良いし、2種以上併用しても良い。硬化促進剤の添加量は、硬化性組成物の樹脂固形分に対し、0.1~10質量%となる範囲であることが好ましい。 The curable composition of the present invention may contain a curing accelerator together with the curing agent. When the curable composition of the present invention is thermally cured, an acid compound such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate is used as a curing accelerator. Is preferred. On the other hand, when photocuring the curable composition of the present invention, it is preferable to use a photoacid generator as a curing accelerator. Examples of the photoacid generator include sulfonium salt compounds such as tris (4-methylphenyl) sulfonium trifluoromethanesulfonate and tris (4-methylphenyl) sulfonium hexafluorophosphate; bis [4-n-alkylphenyl] iodonium hexafluorophosphate Bis [4-n-alkylphenyl] iodonium hexafluoroantimonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium bis (perfluorobutanesulfonyl) imide, bis [4-n-alkylphenyl] iodonium salt compounds such as iodonium tetrakispentafluorophenylborate (n-alkyl groups in each compound are preferably those having 10 to 13 carbon atoms); 2- (furan-2-yl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (methylfuran-2-yl) ethynyl] -4,6-bis (trichloromethyl) ) -S-triazine, 2- (methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (4-methoxyphenyl) ethynyl] -4,6-bis (trichloromethyl) And chloromethyltriazine compounds such as -s-triazine and 2- [2- (3,4-dimethoxyphenyl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine. The curing accelerators may be used alone or in combination of two or more. The addition amount of the curing accelerator is preferably in the range of 0.1 to 10% by mass with respect to the resin solid content of the curable composition.
 本発明の硬化性組成物をレジスト用途に用いる場合には、本発明のフェノール性水酸基含有樹脂、硬化剤の他、更に必要に応じてその他の樹脂(Y)、界面活性剤や染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することにより硬化性レジスト材料とすることができる。硬化性レジスト材料は塗材としてそのまま用いても良いし、硬化性レジスト材料を支持フィルム上に塗布して脱溶剤させたものをレジストフィルムとして用いても良い。レジストフィルムとして用いる際の支持フィルムは、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の合成樹脂フィルムが挙げられ、単層フィルムでも複数の積層フィルムでも良い。また、該支持フィルムの表面はコロナ処理されたものや剥離剤が塗布されたものでも良い。 When the curable composition of the present invention is used for resist applications, in addition to the phenolic hydroxyl group-containing resin and the curing agent of the present invention, other resins (Y), surfactants, dyes, and fillers as necessary. A curable resist material can be obtained by adding various additives such as a crosslinking agent and a dissolution accelerator and dissolving in an organic solvent. The curable resist material may be used as it is as a coating material, or a curable resist material applied on a support film and desolvated may be used as a resist film. Examples of the support film used as a resist film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films. The surface of the support film may be a corona-treated one or a release agent.
 前記有機溶剤の種類は特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The type of the organic solvent is not particularly limited. For example, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol Dialkylene glycol dialkyl ethers such as diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Acetate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethoxyacetic acid Ethyl, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate, ethyl acetoacetate, etc. These may be ester compounds, and these may be used alone or in combination of two or more.
 前記硬化性レジスト材料は上記各成分を配合し、攪拌機等を用いて混合することによりせいぞうすることができる。また、レジスト材料が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して製造することが出来る。 The curable resist material can be prepared by blending the above components and mixing them using a stirrer or the like. When the resist material contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記硬化性レジスト材料をレジスト下層膜用途に用いる場合、レジスト下層膜を作成する方法の一例としては、例えば、前記硬化性レジスト材料をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等フォトリソグラフィーを行う対象物上に塗布し、100~200℃の温度条件下で乾燥させた後、更に250~400℃の温度条件下で加熱硬化させるなどの方法によりレジスト下層膜を形成する。次いで、この下層膜上で通常のフォトリソグラフィー操作を行ってレジストパターンを形成し、ハロゲン系プラズマガス等でドライエッチング処理することにより、多層レジスト法によるレジストパターンを形成することが出来る。 When the curable resist material is used for a resist underlayer film application, as an example of a method for forming the resist underlayer film, for example, the curable resist material is subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, etc. A resist underlayer film is formed by a method such as coating on a product, drying under a temperature condition of 100 to 200 ° C., and further heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
 以下に具体的な例を挙げて、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with specific examples.
 本願実施例において、トリ(ヒドロキシアリール)アルカン型化合物(A-1)の純度は下記条件のGPC測定にて得たチャート図の面積比から算出した値である。また、合成した樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び多分散度(Mw/Mn)は、下記のGPCの測定条件で測定したものである。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1mL
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
In the examples of the present application, the purity of the tri (hydroxyaryl) alkane type compound (A-1) is a value calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. Further, the number average molecular weight (Mn), weight average molecular weight (Mw), and polydispersity (Mw / Mn) of the synthesized resin are measured under the following GPC measurement conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
+ Showa Denko Co., Ltd. “Shodex KF803” (8.0 mmФ × 300 mm) + Showa Denko Co., Ltd. “Shodex KF804” (8.0 mmФ × 300 mm)
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: 0.5% by mass tetrahydrofuran solution filtered with a microfilter in terms of resin solids Injection volume: 0.1 mL
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
 13C-NMRスペクトルの測定は以下の条件にて行った。
 測定装置:日本電子(株)製「AL-400」
 溶媒:DMSO-d
 試料濃度:30wt%
 測定モード:SGNNE(NOE消去の1H完全デカップリング法)
 パルス角度:45℃パルス
 積算回数:10000回
The 13 C-NMR spectrum was measured under the following conditions.
Measuring device: “AL-400” manufactured by JEOL Ltd.
Solvent: DMSO-d 6
Sample concentration: 30 wt%
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Pulse angle: 45 ° C pulse Integration count: 10,000 times
製造例1 トリ(ヒドロキシアリール)アルカン型化合物(A-1)の製造
 冷却管を設置した2000mlの4口フラスコに、2,5-キシレノール293.2g、4-ヒドロキシベンズアルデヒド122gを仕込み、2-エトキシエタノール500mlに溶解させた。氷浴中で冷却しながら硫酸30mlを添加した後、マントルヒーターで100℃まで加熱し、2時間攪拌しながら反応させた。反応終了後、得られた反応混合物に水を加えて粗成生物を沈殿させた。回収した粗生成物をアセトンに溶解させ、再度水を加えて再沈殿させた。沈殿物を濾別し、真空乾燥させて、白色結晶のトリ(ヒドロキシアリール)アルカン型化合物(A-1)213gを得た。GPCチャート図の面積比から算出されるトリ(ヒドロキシアリール)アルカン型化合物(A-1)の純度は98.2%であった。トリ(ヒドロキシアリール)アルカン型化合物(A-1)のGPCチャートを図1に、13C-NMRチャートを図2に示す。
Production Example 1 Production of tri (hydroxyaryl) alkane-type compound (A-1) A 2000 ml four-necked flask equipped with a condenser was charged with 293.2 g of 2,5-xylenol and 122 g of 4-hydroxybenzaldehyde, and 2-ethoxy Dissolved in 500 ml of ethanol. After adding 30 ml of sulfuric acid while cooling in an ice bath, the mixture was heated to 100 ° C. with a mantle heater and reacted with stirring for 2 hours. After completion of the reaction, water was added to the obtained reaction mixture to precipitate a crude product. The recovered crude product was dissolved in acetone and reprecipitated by adding water again. The precipitate was filtered off and dried under vacuum to obtain 213 g of white crystalline tri (hydroxyaryl) alkane type compound (A-1). The purity of the tri (hydroxyaryl) alkane type compound (A-1) calculated from the area ratio in the GPC chart was 98.2%. A GPC chart of the tri (hydroxyaryl) alkane type compound (A-1) is shown in FIG. 1, and a 13 C-NMR chart is shown in FIG.
実施例1 フェノール性水酸基含有樹脂(1)の製造
 冷却管を設置した100mlの4口フラスコにトリ(ヒドロキシアリール)アルカン型化合物(A-1)18.3g、テレフタルアルデヒド3.6gを仕込み、2-エトキシエタノール54.9gを加えて溶解させた。98wt%硫酸2.8gを添加した後、100℃まで加熱して14時間反応させた。反応終了後、得られた反応混合物に水を加えて粗生成物を沈殿させた。回収した粗生成物をアセトンに溶解させ、再度水を加えて再沈殿させた。沈殿物を濾別し、真空乾燥させて、赤色粉末のフェノール性水酸基含有樹脂(1)20.2gを得た。フェノール性水酸基含有樹脂(1)の数平均分子量(Mn)は2,828、重量平均分子量(Mw)は7,905、多分散度(Mw/Mn)は2.80であった。フェノール性水酸基含有樹脂(1)のGPCチャートを図3に示す。
Example 1 Production of phenolic hydroxyl group-containing resin (1) A 100 ml four-necked flask equipped with a cooling tube was charged with 18.3 g of tri (hydroxyaryl) alkane type compound (A-1) and 3.6 g of terephthalaldehyde. -54.9 g of ethoxyethanol was added and dissolved. After adding 2.8 g of 98 wt% sulfuric acid, the mixture was heated to 100 ° C. and reacted for 14 hours. After completion of the reaction, water was added to the resulting reaction mixture to precipitate a crude product. The recovered crude product was dissolved in acetone and reprecipitated by adding water again. The precipitate was separated by filtration and vacuum-dried to obtain 20.2 g of a red powdery phenolic hydroxyl group-containing resin (1). The number average molecular weight (Mn) of the phenolic hydroxyl group-containing resin (1) was 2,828, the weight average molecular weight (Mw) was 7,905, and the polydispersity (Mw / Mn) was 2.80. A GPC chart of the phenolic hydroxyl group-containing resin (1) is shown in FIG.
実施例2 フェノール性水酸基含有樹脂(2)の製造
 冷却管を設置した100ml 4口フラスコにトリ(ヒドロキシアリール)アルカン型化合物(A-1)18.3g、イソフタルアルデヒド3.6gを仕込み、2-エトキシエタノール54.9gを加えて溶解させた。98wt%硫酸2.8gを添加した後、100℃まで過熱して14時間反応させた。反応終了後、得られた反応混合物に水を加えて粗生成物を沈殿させた。回収した粗生成物をアセトンに溶解させ、再度水を加えて再沈殿させた。沈殿物を濾別し、真空乾燥させて、赤色粉末のフェノール性水酸基含有樹脂(2)20.5gを得た。フェノール性水酸基含有樹脂(2)の数平均分子量(Mn)は3,267、重量平均分子量(Mw)は9,975、多分散度(Mw/Mn)は3.05であった。フェノール性水酸基含有樹脂(2)のGPCチャートを図4示す。
Example 2 Production of phenolic hydroxyl group-containing resin (2) A 100 ml four-necked flask equipped with a cooling tube was charged with 18.3 g of a tri (hydroxyaryl) alkane-type compound (A-1) and 3.6 g of isophthalaldehyde. 54.9 g of ethoxyethanol was added and dissolved. After adding 2.8 g of 98 wt% sulfuric acid, the mixture was heated to 100 ° C. and reacted for 14 hours. After completion of the reaction, water was added to the resulting reaction mixture to precipitate a crude product. The recovered crude product was dissolved in acetone and reprecipitated by adding water again. The precipitate was separated by filtration and vacuum-dried to obtain 20.5 g of a red powdery phenolic hydroxyl group-containing resin (2). The number average molecular weight (Mn) of the phenolic hydroxyl group-containing resin (2) was 3,267, the weight average molecular weight (Mw) was 9,975, and the polydispersity (Mw / Mn) was 3.05. FIG. 4 shows a GPC chart of the phenolic hydroxyl group-containing resin (2).
比較製造例1 フェノール性水酸基含有樹脂(1’)の製造
 攪拌機、温度計を備えた2Lの4つ口フラスコに、m-クレゾール648g、p-クレゾール432g、シュウ酸2.5g、42%ホルムアルデヒド492gを仕込み、100℃まで加熱して反応させた。常圧で200℃まで加熱して脱水及び蒸留し、更に230℃で6時間減圧蒸留を行い、淡黄色固形のフェノール性水酸基含有樹脂(1’)736gを得た。フェノール性水酸基含有樹脂(1’)の数平均分子量(Mn)は1,450、重量平均分子量(Mw)は10,316、多分散度(Mw/Mn)は7.12であった。
Comparative Production Example 1 Production of phenolic hydroxyl group-containing resin (1 ′) In a 2 L four-necked flask equipped with a stirrer and a thermometer, 648 g of m-cresol, 432 g of p-cresol, 2.5 g of oxalic acid, 492 g of 42% formaldehyde And heated to 100 ° C. for reaction. The mixture was heated to 200 ° C. at normal pressure, dehydrated and distilled, and further distilled under reduced pressure at 230 ° C. for 6 hours to obtain 736 g of a pale yellow solid phenolic hydroxyl group-containing resin (1 ′). The number average molecular weight (Mn) of the phenolic hydroxyl group-containing resin (1 ′) was 1,450, the weight average molecular weight (Mw) was 10,316, and the polydispersity (Mw / Mn) was 7.12.
実施例3、4及び比較例1
 実施例1、2、比較製造例1で得たフェノール性水酸基含有樹脂について、下記の要領で評価した。結果を表1に示す。
Examples 3 and 4 and Comparative Example 1
The phenolic hydroxyl group-containing resins obtained in Examples 1 and 2 and Comparative Production Example 1 were evaluated in the following manner. The results are shown in Table 1.
感光性組成物の製造
 前記フェノール性水酸基含有樹脂8質量部をプロピレングリコールモノメチルエーテルアセテート40質量部に溶解させ、この溶液に感光剤2質量部を加えて溶解させた。これを0.2μmのメンブランフィルターで濾過し、感光性組成物を得た。
 感光剤は東洋合成工業株式会社製「P-200」(4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール1モルと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド2モルとの縮合物)を用いた。
Production of Photosensitive Composition 8 parts by mass of the phenolic hydroxyl group-containing resin was dissolved in 40 parts by mass of propylene glycol monomethyl ether acetate, and 2 parts by mass of a photosensitizing agent was added to the solution and dissolved. This was filtered through a 0.2 μm membrane filter to obtain a photosensitive composition.
The photosensitizer was “P-200” (4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol, 1 mol 2-naphthoquinone-2-diazide-5-sulfonyl chloride condensate).
耐熱性試験用組成物の製造
 前記フェノール性水酸基含有樹脂8質量部をプロピレングリコールモノメチルエーテルアセテート40質量部に溶解させ、これを0.2μmのメンブランフィルターで濾過し、耐熱性試験用組成物を得た。
Production of composition for heat resistance test 8 parts by mass of the phenolic hydroxyl group-containing resin is dissolved in 40 parts by mass of propylene glycol monomethyl ether acetate, and this is filtered through a 0.2 μm membrane filter to obtain a composition for heat resistance test. It was.
アルカリ現像性[ADR(nm/s)]の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。このウェハを2枚用意し、一方を「露光なしサンプル」とした。他方を「露光有サンプル」としてghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いて100mJ/cmのghi線を照射したのち、140℃、60秒間の条件で加熱処理を行った。
 「露光なしサンプル」と「露光有サンプル」の両方をアルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。各サンプルの現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性[ADR(nm/s)]とした。
Evaluation of Alkali Developability [ADR (nm / s)] The photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm. Dried for 60 seconds. Two wafers were prepared, and one of them was designated as “no exposure sample”. The other was used as an “exposed sample” and irradiated with 100 mJ / cm 2 of ghi line using a ghi line lamp (“Multi Light” manufactured by USHIO INC.), And then heat-treated at 140 ° C. for 60 seconds. .
Both the “non-exposed sample” and the “exposed sample” were immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds and then dried on a hot plate at 110 ° C. for 60 seconds. The film thickness of each sample before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
光感度の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。このウェハ上にラインアンドスペースが1:1であり、ライン幅が1~10μmまで1μmごとに設定されたレジストパターン対応のマスクを密着させた後、ghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いてghi線を照射し、140℃、60秒間の条件で加熱処理を行った。次いで、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。
 ghi線露光量を100mJ/cmから10mJ/cm毎に増加させた場合の、ライン幅3μmを忠実に再現することのできる露光量(Eop露光量)を評価した。
Evaluation of Photosensitivity The photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds. A mask corresponding to a resist pattern having a line-and-space ratio of 1: 1 and a line width of 1 to 10 μm set every 1 μm is brought into close contact with this wafer, and then a ghi line lamp (“Multi Light” manufactured by USHIO INC. )) Was used for irradiation with ghi rays, and heat treatment was performed at 140 ° C. for 60 seconds. Next, the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
The exposure amount (Eop exposure amount) capable of faithfully reproducing the line width of 3 μm when the ghi line exposure amount was increased from 100 mJ / cm 2 to 10 mJ / cm 2 was evaluated.
解像度の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。得られたウェハ上にフォトマスクを乗せ、ghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いて200mJ/cmのghi線を照射したのち、140℃、60秒間の条件で加熱処理を行った。次いで、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。レーザーマイクロスコープ(株式会社キーエンス製「VK-X200」)を用いてパターン状態を確認し、L/S=1/1の線幅が5μmで解像できているものをA、L/S=1/1の線幅が5μmで解像できていないものをBとして評価した。
Evaluation of Resolution The photosensitive composition obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds. A photomask is placed on the obtained wafer and irradiated with 200 mJ / cm 2 of ghi line using a ghi line lamp (“Ushio Electric Co., Ltd.“ Multi-light ”), and then heat-treated at 140 ° C. for 60 seconds. Went. Next, the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds. The pattern state is confirmed using a laser microscope (Keyence Co., Ltd. “VK-X200”). A / L / S = 1, where the line width of L / S = 1/1 is resolved at 5 μm. A line width of 1 was evaluated as B when the line width was 5 μm and could not be resolved.
耐熱性評価
 先で得た耐熱性試験用組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。得られたウェハより樹脂分をかきとり、そのガラス転移温度(Tg)を測定した。ガラス転移温度(Tg)の測定は示差走査熱量計(DSC)(株式会社TAインスツルメント製「Q100」)を用いて、窒素雰囲気下、温度範囲-100~250℃、昇温温度10℃/分の条件で行った。
Evaluation of heat resistance The composition for heat resistance test obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds. The resin content was scraped from the obtained wafer and the glass transition temperature (Tg) was measured. The glass transition temperature (Tg) was measured using a differential scanning calorimeter (DSC) (“Q100” manufactured by TA Instruments Co., Ltd.) under a nitrogen atmosphere, a temperature range of −100 to 250 ° C., and a temperature rising temperature of 10 ° C. / Performed under the condition of minutes.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例5、6及び比較例2
 実施例1、2、比較製造例1で得たフェノール性水酸基含有樹脂について、下記の要領で評価した。結果を表2に示す。
Examples 5 and 6 and Comparative Example 2
The phenolic hydroxyl group-containing resins obtained in Examples 1 and 2 and Comparative Production Example 1 were evaluated in the following manner. The results are shown in Table 2.
硬化性組成物の製造
 前記フェノール性水酸基含有樹脂4質量部、硬化剤1質量部をプロピレングリコールモノメチルエーテルアセテート25質量部に溶解させ、これを0.2μmのメンブランフィルターで濾過し、硬化性組成物を得た。
 硬化剤は東京化成工業株式会社製「1,3,4,6-テトラキス(メトキシメチル)グリコールウリル」を用いた。
Production of curable composition: 4 parts by mass of the phenolic hydroxyl group-containing resin and 1 part by mass of the curing agent were dissolved in 25 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 μm membrane filter to obtain a curable composition. Got.
As the curing agent, “1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd. was used.
アルカリ現像性[ADR(nm/s)]の評価
 先で得た硬化性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。これをアルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性[ADR(nm/s)]とした。
Evaluation of Alkali Developability [ADR (nm / s)] The curable composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm. Dried for 60 seconds. This was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds. The film thickness before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
耐ドライエッチング性の評価
 先で得た硬化性組成物を5インチシリコンウェハ上にスピンコーターで塗布し、酸素濃度20容量%の環境下、180℃のホットプレート上で60秒乾燥させた。次いで、350℃で120秒間加熱硬化させ、膜厚0.3μmの硬化塗膜を形成した。ウェハ上の硬化塗膜を、エッチング装置(神鋼精機社製の「EXAM」)を使用して、CF/Ar/O(CF:40mL/分、Ar:20mL/分、O:5mL/分 圧力:20Pa RFパワー:200W 処理時間:40秒 温度:15℃)の条件でエッチング処理した。このときのエッチング処理前後の膜厚を測定して、エッチングレートを算出し、耐エッチング性を評価した。評価基準は以下の通りである。
A:エッチングレートが150nm/分以下の場合
B:エッチングレートが150nm/分を超える場合
Evaluation of dry etching resistance The curable composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 180 ° C. for 60 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it was heat-cured at 350 ° C. for 120 seconds to form a cured coating film having a thickness of 0.3 μm. The cured coating film on the wafer was subjected to CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.). / Min Pressure: 20 Pa RF power: 200 W Processing time: 40 seconds Temperature: 15 ° C.) Etching was performed. The film thickness before and after the etching treatment at this time was measured, the etching rate was calculated, and the etching resistance was evaluated. The evaluation criteria are as follows.
A: When the etching rate is 150 nm / min or less B: When the etching rate exceeds 150 nm / min
流動性の評価
 φ110nm、深さ300nmのホールパターンが形成された直径5インチのシリコンウェハ上に、先で得た硬化性組成物をスピンコーターで塗布し、酸素濃度20容量%の環境下、110℃のホットプレート上で180秒乾燥させた後、210℃で60秒間加熱硬化させ、膜厚0.3μmの硬化塗膜を得た。シリコンウェハをホールパターン線上で切断し、レーザー顕微鏡(キーエンス製株式会社「VK-X200」)で断面を観察して、硬化性組成物のホールパターンへの流入が十分であったかどうかを下記条件で評価した。
A:ホール全体が硬化物で満たされている
B:ホール全体が硬化物で満たされておらず、空隙がある場合。
Evaluation of fluidity The curable composition obtained above was applied by a spin coater onto a silicon wafer having a diameter of 5 inches and a hole pattern having a diameter of 110 nm and a depth of 300 nm. After drying on a hot plate at 180 ° C. for 180 seconds, heat curing was carried out at 210 ° C. for 60 seconds to obtain a cured coating film having a film thickness of 0.3 μm. A silicon wafer is cut on a hole pattern line, and a cross section is observed with a laser microscope (Keyence Co., Ltd. “VK-X200”) to evaluate whether the flow of the curable composition into the hole pattern was sufficient under the following conditions. did.
A: The whole hole is filled with the cured product B: The whole hole is not filled with the cured product and there is a gap.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (7)

  1. トリ(ヒドロキシアリール)アルカン型化合物(A)と、ジホルミルアレーン化合物(B)との反応物であるフェノール性水酸基含有樹脂。 A phenolic hydroxyl group-containing resin which is a reaction product of a tri (hydroxyaryl) alkane type compound (A) and a diformylarene compound (B).
  2. 前記トリ(ヒドロキシアリール)アルカン型化合物(A)が、下記構造式(1-1)又は(1-2)
    Figure JPOXMLDOC01-appb-C000001
    [式中R、Rはそれぞれ独立に脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子の何れかである。lはそれぞれ独立に0又は1~4の整数、mは0又は1~4の整数、nは0又は1~6の整数である。Rは水素原子又はアルキル基である。]
    で表される化合物である請求項1記載のフェノール性水酸基含有樹脂。
    The tri (hydroxyaryl) alkane type compound (A) is represented by the following structural formula (1-1) or (1-2):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 are each independently an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group or a halogen atom. l is independently 0 or an integer of 1 to 4, m is 0 or an integer of 1 to 4, and n is 0 or an integer of 1 to 6. R 3 is a hydrogen atom or an alkyl group. ]
    The phenolic hydroxyl group-containing resin according to claim 1, which is a compound represented by the formula:
  3. 多分散度(Mw/Mn)が1.1~10.0の範囲である請求項1記載のフェノール性水酸基含有樹脂。 The phenolic hydroxyl group-containing resin according to claim 1, wherein the polydispersity (Mw / Mn) is in the range of 1.1 to 10.0.
  4. 請求項1~3の何れか一つに記載のフェノール性水酸基含有樹脂と感光剤とを含有する感光性組成物。 A photosensitive composition comprising the phenolic hydroxyl group-containing resin according to any one of claims 1 to 3 and a photosensitive agent.
  5. 請求項1~3の何れか一つに記載のフェノール性水酸基含有樹脂と硬化剤とを含有する硬化性組成物。 A curable composition comprising the phenolic hydroxyl group-containing resin according to any one of claims 1 to 3 and a curing agent.
  6. 請求項5記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 5.
  7. 請求項1~3の何れか一つに記載のフェノール性水酸基含有樹脂を用いたレジスト材料。 A resist material using the phenolic hydroxyl group-containing resin according to any one of claims 1 to 3.
PCT/JP2017/041224 2016-12-01 2017-11-16 Phenolic hydroxy group-containing resin and resist material WO2018101058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018553765A JP6590084B2 (en) 2016-12-01 2017-11-16 Phenolic hydroxyl group-containing resin and resist material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234110 2016-12-01
JP2016234110 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101058A1 true WO2018101058A1 (en) 2018-06-07

Family

ID=62241324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041224 WO2018101058A1 (en) 2016-12-01 2017-11-16 Phenolic hydroxy group-containing resin and resist material

Country Status (3)

Country Link
JP (1) JP6590084B2 (en)
TW (1) TW201829513A (en)
WO (1) WO2018101058A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268049A (en) * 1994-03-29 1995-10-17 Meiwa Kasei Kk New phenol resin
JP2009242472A (en) * 2008-03-28 2009-10-22 Sumitomo Bakelite Co Ltd Thermosetting resin composition and thermosetting resin molding material
WO2012063636A1 (en) * 2010-11-10 2012-05-18 Dic株式会社 Positive-type photoresist composition
WO2016103850A1 (en) * 2014-12-24 2016-06-30 Dic株式会社 Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film
WO2016185865A1 (en) * 2015-05-20 2016-11-24 Dic株式会社 Novolac-type phenolic-hydroxy-group-containing resin, and resist film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188263A1 (en) * 2016-04-28 2017-11-02 日産化学工業株式会社 Composition for forming resist underlayer film with improved film density

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268049A (en) * 1994-03-29 1995-10-17 Meiwa Kasei Kk New phenol resin
JP2009242472A (en) * 2008-03-28 2009-10-22 Sumitomo Bakelite Co Ltd Thermosetting resin composition and thermosetting resin molding material
WO2012063636A1 (en) * 2010-11-10 2012-05-18 Dic株式会社 Positive-type photoresist composition
WO2016103850A1 (en) * 2014-12-24 2016-06-30 Dic株式会社 Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film
WO2016185865A1 (en) * 2015-05-20 2016-11-24 Dic株式会社 Novolac-type phenolic-hydroxy-group-containing resin, and resist film

Also Published As

Publication number Publication date
TW201829513A (en) 2018-08-16
JP6590084B2 (en) 2019-10-16
JPWO2018101058A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6187731B1 (en) Phenolic hydroxyl group-containing resin and resist film
JP6156591B2 (en) Novolac type phenolic hydroxyl group-containing resin and resist film
JP6341348B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP6816471B2 (en) Phenolic hydroxyl group-containing compounds and resist materials
JP6123967B1 (en) Novolac type phenolic hydroxyl group-containing resin and resist film
JP5939450B1 (en) Phenolic hydroxyl group-containing resin, production method thereof, photosensitive composition, resist material, coating film, curable composition and cured product thereof, and resist underlayer film
JP6274366B1 (en) Novolac resin and resist material
JP6269904B1 (en) Method for producing novolac resin
JP6590084B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6590085B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6341349B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP6328350B2 (en) Novolac resin and resist material
WO2022239597A1 (en) Resin containing phenolic hydroxyl group
JP6863077B2 (en) Dendrimer type resin and resist material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875673

Country of ref document: EP

Kind code of ref document: A1