WO2018101012A1 - Power supply control device, power supply control method, and computer program - Google Patents
Power supply control device, power supply control method, and computer program Download PDFInfo
- Publication number
- WO2018101012A1 WO2018101012A1 PCT/JP2017/040760 JP2017040760W WO2018101012A1 WO 2018101012 A1 WO2018101012 A1 WO 2018101012A1 JP 2017040760 W JP2017040760 W JP 2017040760W WO 2018101012 A1 WO2018101012 A1 WO 2018101012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- value
- temperature
- electric wire
- calculated
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/04—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
Definitions
- the present invention relates to a power supply control device, a power supply control method, and a computer program.
- This application claims priority based on Japanese Patent Application No. 2016-235118 filed on December 2, 2016, and incorporates all the description content described in the above Japanese application.
- Patent Document 1 discloses a power supply control device that controls power supply via an electric wire by switching a switch provided in the middle of the electric wire to ON or OFF.
- the electric wire temperature is calculated based on the electric wire current value flowing through the electric wire.
- the switch is turned off to lower the wire temperature.
- Patent Document 2 discloses a power supply control device that has a low processing amount for calculating the wire temperature performed by a microcomputer (hereinafter referred to as a microcomputer).
- the microcomputer periodically acquires the electric wire current value.
- n integer greater than or equal to 2
- the microcomputer uses the n wire current values acquired from the first cycle of the n cycle to the n cycle.
- the temperature is calculated, and it is determined whether or not the calculated wire temperature is equal to or higher than the temperature threshold.
- the microcomputer determines that the wire temperature is equal to or higher than the temperature threshold, the microcomputer outputs a control signal instructing switching to OFF to the switch.
- the microcomputer determines whether or not the wire current value is equal to or greater than a predetermined value from the first cycle of the n cycle related to the acquisition of the wire current value to the (n ⁇ 1) cycle.
- the microcomputer outputs a control signal instructing switching to OFF to the switch.
- a power supply control device is a power supply control device that controls power supply via an electric wire, and an acquisition unit that periodically acquires an electric wire current value flowing through the electric wire, and the acquisition unit acquires A square value calculation unit for calculating the square value of the electric wire current value, and a temperature calculation for calculating the electric wire temperature of the electric wire every time n (n: an integer of 2 or more) related to the acquisition of the electric wire current value elapses.
- n an integer of 2 or more
- the integrated value of the k square values calculated by the square value calculation unit in the k period (k: a natural number less than or equal to n) from the first cycle of the n cycle is greater than or equal to an integration threshold.
- a change unit that changes the integration threshold to a smaller value as the electric wire temperature calculated by the temperature calculation unit is higher.
- a power feeding control method is a power feeding control method for controlling power feeding through an electric wire, the step of periodically obtaining a current value of the electric wire flowing through the electric wire, and 2 of the obtained electric wire current value. From the step of calculating the multiplier value, the step of calculating the wire temperature of the wire, and the first cycle of the n cycle each time n (n: an integer of 2 or more) related to the acquisition of the wire current value elapses. a step of determining whether or not an integrated value of the k square values calculated in the k (k: natural number equal to or less than n) period is equal to or greater than an integration threshold; Changing to a smaller value.
- the computer program which concerns on 1 aspect of this invention WHEREIN: The step which acquires the electric wire electric current value which flows through an electric wire periodically, the step which calculates the square value of the acquired electric wire electric current value, and acquisition of the said electric wire electric current value Each time an n (n: integer greater than or equal to 2) period has elapsed, a step of calculating the wire temperature of the electric wire and a k (k: natural number less than n) period from the first period of the n period were calculated. A step of determining whether or not an integrated value of the k square values is equal to or greater than an integrated threshold value and a step of changing the integrated threshold value to a smaller value as the calculated electric wire temperature is higher are executed.
- the present invention can be realized not only as a power supply control device including such a characteristic processing unit, but also as a power supply control method using such characteristic processing as a step, It can be realized as a computer program for execution. Further, the present invention can be realized as a semiconductor integrated circuit that realizes part or all of the power supply control device, or can be realized as a power supply control system including the power supply control device.
- FIG. 1 is a block diagram illustrating a main configuration of a power supply system 1 according to a first embodiment. It is a block diagram which shows the principal part structure of a microcomputer. It is a flowchart which shows the procedure of the electric wire protection process of an electric wire. It is a graph which shows transition of a counter value. 10 is a chart showing storage contents of a storage unit in Embodiment 2. It is a flowchart which shows the procedure of the electric wire protection process of an electric wire. It is a flowchart which shows the procedure of the electric wire protection process of an electric wire.
- the wire temperature rises. If the wire current value continues to be slightly smaller than the predetermined value, the wire temperature may greatly exceed the temperature threshold during the (n-1) th cycle of the n cycle for acquiring the wire current value There is.
- an object of the present invention is to provide a power supply control device, a power supply control method, and a computer program capable of performing a determination that is substantially equivalent to the determination related to the wire temperature using the wire current value.
- a power supply control device is a power supply control device that controls power supply via an electric wire, and periodically acquires an electric wire current value flowing through the electric wire, and the acquisition unit. Calculates the square value of the electric wire current value acquired by the calculation unit, and calculates the electric wire temperature of the electric wire every time an n (n: integer greater than or equal to 2) period related to the acquisition of the electric wire current value elapses.
- the integrated value of the k square values calculated by the square value calculation unit in the k (k: natural number less than or equal to n) period from the first cycle of the n cycle is greater than or equal to the integration threshold value.
- An integrated value determination unit that determines whether or not there is a change unit, and a change unit that changes the integration threshold value to a smaller value as the electric wire temperature calculated by the temperature calculation unit is higher.
- the power supply control device provides the n squares calculated by the square value calculation unit from the first cycle to the n cycle of the n cycle each time the n cycle elapses.
- a temperature difference calculation unit that calculates a temperature difference between the electric wire temperature and a predetermined temperature based on the value; and the temperature calculation unit adds the temperature difference calculated by the temperature difference calculation unit to the predetermined temperature. To calculate the wire temperature.
- the temperature difference calculation unit includes an integrated value of the n square values, a preceding temperature difference between the wire temperature and a predetermined temperature calculated in advance. Based on the above, the temperature difference between the wire temperature and the predetermined temperature is calculated.
- a storage unit storing n weighting factors corresponding to each of the n square values, and each of the n square values
- a multiplication unit that multiplies the corresponding weighting factors in the n weighting factors, and the temperature difference calculation unit includes an integrated value of n multiplication values multiplied by the multiplication unit and the previously calculated value.
- the temperature difference between the wire temperature and the predetermined temperature is calculated based on the wire temperature and the preceding temperature difference between the predetermined temperature.
- the power feeding control method is a power feeding control method for controlling power feeding through an electric wire, the step of periodically obtaining the value of the electric wire current flowing through the electric wire, and the obtained electric wire current.
- a step of calculating a square value of the value, a step of calculating a wire temperature of the wire every time an n (n: integer greater than or equal to 2) period related to acquisition of the wire current value elapses, and 1 of the n cycle The step of determining whether or not the integrated value of the k square values calculated in the k period (k: natural number less than or equal to n) from the period is greater than or equal to the integration threshold, and the higher the calculated wire temperature, Changing the integration threshold value to a small value.
- the computer program which concerns on 1 aspect of this invention WHEREIN: The step which acquires the electric wire electric current value which flows through an electric wire to a computer periodically, the step which calculates the square value of the acquired electric wire electric current value, and the said electric wire electric current Every time an n (n: integer greater than or equal to 2) period for obtaining a value elapses, a step of calculating the wire temperature of the wire, and a k (k: natural number less than n) period from the first period of the n period.
- the step of determining whether or not the integrated value of the k square values calculated in step S is equal to or greater than the integrated threshold value and the step of changing the integrated threshold value to a smaller value as the calculated wire temperature is higher are executed. .
- the electric wire current value is periodically acquired, and the square value of the acquired electric wire current value is calculated. It is determined whether or not the integrated value of k square values calculated from the first cycle to the k cycle of the n cycle related to the acquisition of the electric wire current value is equal to or greater than the integration threshold.
- the increase in the wire temperature increases as the power consumption consumed by the wire, that is, the integrated value of the square value of the wire current value increases. Therefore, the integrated value of the k square values indicates the increase range of the wire temperature during the k period.
- the integrated threshold value is changed to a smaller value as the calculated wire temperature is higher, that is, as the wire temperature is closer to the temperature threshold at which energization through the wire is to be cut off.
- the integrated threshold indicates an allowable increase in the wire temperature.
- Determining whether or not the integrated value of k square values is equal to or greater than the integral threshold is whether or not the increase in wire temperature during the k period is equal to or greater than the allowable increase in wire temperature. This corresponds to determining, that is, determining whether the wire temperature is equal to or higher than the temperature threshold. As a result, a determination that is substantially equivalent to the determination related to the wire temperature is performed using the wire current value.
- the wire temperature and the predetermined temperature are calculated based on n square values calculated from the first cycle of the n cycle to the n cycle every time the n cycle elapses.
- the wire temperature is calculated by adding a predetermined temperature to the calculated temperature difference. Therefore, the square value is used not only for determination of the integrated value but also for calculation of the wire temperature.
- the temperature difference between the electric wire temperature and the predetermined temperature is calculated based on an integrated value of n square values, so that the temperature difference is easily calculated.
- each of the n square values is multiplied by a corresponding weighting factor, and an accurate temperature difference is calculated based on an integrated value of the n multiplied values.
- FIG. 1 is a block diagram illustrating a main configuration of a power supply system 1 according to the first embodiment.
- the power supply system 1 is suitably mounted on a vehicle, and includes a battery 10, n (n: integer of 2 or more) loads 11a, 11b,..., A power supply control device 12, and n electric wires W1, W2, and so on. It is equipped with ... One end of each of the electric wires W1, W2,... Is connected to the positive electrode of the battery 10. The other ends of the electric wires W1, W2,... Are connected to one ends of loads 11a, 11b,. The negative electrode of the battery 10 and the other ends of the loads 11a, 11b, ... are grounded.
- the power feeding control device 12 is connected in the middle of the electric wires W1, W2,.
- the battery 10 supplies power to the loads 11a, 11b,... Via the electric wires W1, W2,.
- Each of the loads 11a, 11b,... Is an electric device mounted on the vehicle.
- Each of the loads 11a, 11b,... Operates when power is supplied, and stops operating when power supply is stopped.
- the power feeding control device 12 controls power feeding via the electric wires W1, W2,.
- the power supply control device 12 performs the interruption of energization and the release of the interruption for each of the electric wires W1, W2,.
- power supply from the battery 10 to the load connected to this wire is stopped, and this load operates Stop.
- the interruption of energization through one of the n wires W1, W2,... is released, power supply from the battery 10 to the load connected to the wire is resumed. Operate.
- power supply from the battery 10 to the load 11a is stopped, and the load 11a stops operating.
- the load 11a stops operating.
- the power supply from the battery 10 to the load 11a is resumed, and the load 11a operates.
- the power supply control device 12 has an operation signal indicating one or a plurality of loads to be operated among the n loads 11a, 11b,..., And operates among the n loads 11a, 11b,. And a stop signal indicating one or a plurality of loads to be stopped.
- the operation signal is input, the power supply control device 12 passes through one or more electric wires connected to one or more loads indicated by the input operation signal among the electric wires W1, W2,. Release the power interruption.
- one or more loads indicated by the activation signal are activated.
- the stop signal is input, the power supply control device 12 passes through one or more electric wires connected to one or more loads indicated by the input stop signal among the electric wires W1, W2,. Shut off the energized power. Thereby, the operation
- the power supply control device 12 cuts off energization based on the current values of the wires flowing through the wires W1, W2,... And the temperatures of the wires W1, W2,. For example, the power supply control device 12 interrupts energization via the electric wire W1 based on the value of the electric wire current flowing through the electric wire W1 and the electric wire temperature of the electric wire W1.
- the power supply control device 12 includes n switches 20a, 20b, ..., n current output circuits 21a, 21b, ..., n drive circuits 22a, 22b, ..., a microcomputer 23, and It has n resistors R1, R2,.
- Each of the n switches 20a, 20b,... is an N-channel FET (Field-Effect-Transistor).
- the switches 20a, 20b,... Are provided in the middle of the electric wires W1, W2,.
- the current output circuits 21a, 21b,... are connected in the middle of the electric wires W1, W2,.
- the drain of the switch 20a is connected to the positive electrode of the battery 10 via the electric wire W1.
- the source of the switch 20a is connected to the current output circuit 21a via the electric wire W1.
- the current output circuit 21a is further connected to one end of the load 11a via the electric wire W1 and to one end of the resistor R1.
- the other end of the resistor R1 is grounded.
- One end of the resistor R1 is further connected to the drive circuit 22a and the microcomputer 23.
- the drive circuit 22a is further connected to the gate of the switch 20a and the microcomputer 23.
- the switch 20b, the current output circuit 21b, the drive circuit 22b, and the resistor R2 are connected in the same manner as the switch 20a, the current output circuit 21a, the drive circuit 22a, and the resistor R1.
- Other switches, current output circuits, drive circuits, and resistors not shown are also connected in the same manner as the switches 20a, current output circuits 21a, drive circuits 22a, and resistors R1.
- the switch 20a when the gate voltage value with respect to the source potential is equal to or higher than a certain voltage value, a current can flow through the drain and the source. At this time, the switch 20a is on. When the switch 20a is switched on, the interruption of energization via the electric wire W1 is released. Thereby, electric power is supplied from the battery 10 to the load 11a via the electric wire W1, and the load 11a operates.
- the switch 20a when the gate voltage value with respect to the source potential is less than a certain voltage value, no current flows through the drain and the source. At this time, the switch 20a is off. When the switch 20a is switched off, the energization through the electric wire W1 is interrupted. Thereby, the power supply from the battery 10 to the load 11a is stopped, and the load 11a stops its operation.
- the current output circuit 21a is constituted by, for example, a current mirror circuit, and outputs a current whose current value is a predetermined fraction of the electric wire current value flowing through the electric wire W1 to the resistor R1.
- the voltage value between both ends of the resistor R1 (hereinafter, referred to as both-end voltage value) is calculated by dividing the product of the wire current value of the wire W1 and the resistance value of the resistor R1 by the predetermined number described above.
- the resistance value of the resistor R1 is constant. For this reason, the voltage value across the resistor R1 is proportional to the wire current value of the wire W1. Therefore, the acquisition of the voltage value across the resistor R1 corresponds to the acquisition of the wire current value of the wire W1.
- a voltage value across the resistor R1 is input to the drive circuit 22a, and a control signal including a high level voltage value and a low level voltage value is input from the microcomputer 23.
- the drive circuit 22a is a switch based on the ground potential.
- the voltage value of the gate 20a is increased.
- the switch 20a the gate voltage value with reference to the source potential becomes a certain voltage value or more, and the switch 20a is switched from OFF to ON.
- the drive circuit 22a uses the ground potential as a reference when the voltage value indicated by the control signal is switched from the high level voltage value to the low level voltage value.
- the voltage value of the gate of the switch 20a is lowered. Thereby, in the switch 20a, the gate voltage value with reference to the source potential becomes less than a certain voltage value, and the switch 20a is switched from on to off.
- the drive circuit 22a reduces the voltage value of the gate of the switch 20a with respect to the ground potential regardless of the voltage value indicated by the control signal. Switch off. Thereafter, the drive circuit 22a keeps the switch 20a off until a predetermined condition is satisfied.
- the predetermined condition is, for example, that the voltage value indicated by the control signal is switched in the order of the low level voltage value and the high level voltage value.
- An operation signal and a stop signal are input to the microcomputer 23.
- the microcomputer 23 switches the voltage value indicated by the control signal to the low level voltage value or the high level voltage value based on the contents indicated by the input operation signal or stop signal or the input voltage value across the resistor R1.
- the microcomputer 23 also receives a voltage value across the resistor R2, and also receives a voltage value across other resistors (not shown).
- the microcomputer 23 outputs a control signal to the drive circuit 22b and also outputs a control signal to a drive circuit (not shown).
- the microcomputer 23 switches the voltage values indicated by the plurality of control signals.
- FIG. 2 is a block diagram showing a main configuration of the microcomputer 23.
- the microcomputer 23 includes a control unit 30, a storage unit 31, an input unit 32, n input units 33a, 33b, ..., n output units 34a, 34b, ..., and n A (Analog) / D (Digital) converters 35a, 35b,...
- the control unit 30, the storage unit 31, and the input unit 32 are connected to the bus 36.
- the output unit 34a is connected to the drive circuit 22a and the bus 36 separately.
- the A / D converter 35a is connected to the input unit 33a and the bus 36 separately.
- the input unit 33a is further connected to one end of the resistor R1.
- the output unit 34b is connected to the drive circuit 22b and the bus 36 separately.
- the A / D converter 35b is connected to the input unit 33b and the bus 36 separately.
- the input unit 33b is further connected to one end of the resistor R2.
- An input unit, an output unit, and an A / D conversion unit (not shown) are connected in the same manner as the input unit 33a, the output unit 34a, and the A / D conversion unit 35a.
- the input unit 32 receives an operation signal and a stop signal. When the operation signal or the stop signal is input, the input unit 32 notifies the control unit 30 of the input signal and the load indicated by the signal.
- operations of the input unit 33a, the output unit 34a, and the A / D conversion unit 35a will be described.
- the operations of the input unit 33b, the output unit 34b, and the A / D conversion unit 35b are the same as the operations of the input unit 33a, the output unit 34a, and the A / D conversion unit 35a.
- operations of an input unit, an output unit, and an A / D conversion unit are the same as the operations of the input unit 33a, the output unit 34a, and the A / D conversion unit 35a. Therefore, detailed description of these operations is omitted.
- the voltage value at both ends of the analog resistor R1 is input to the input unit 33a.
- the input unit 33a outputs the input analog both-end voltage value to the A / D conversion unit 35a.
- the A / D converter 35a converts the analog both-end voltage value input from the input unit 33a into a digital both-end voltage value.
- the control unit 30 acquires the digital both-end voltage value from the A / D conversion unit 35a.
- the both-end voltage value acquired by the control unit 30 substantially matches the both-end voltage value of the resistor R1 at the time of acquisition.
- the output unit 34a outputs a control signal to the drive circuit 22a.
- the output unit 34a switches the voltage value indicated by the control signal output to the drive circuit 22a to a low level voltage value or a high level voltage value in accordance with an instruction from the control unit 30.
- the storage unit 31 is a nonvolatile memory.
- the storage unit 31 stores a computer program P1.
- the control unit 30 has a CPU (Central Processing Unit) (not shown).
- the CPU of the control unit 30 executes the computer program P1 stored in the storage unit 31 to execute the operation process, the stop process, and the electric wire protection processes of the electric wires W1, W2,.
- the operation process is a process for operating one or a plurality of loads among the n loads 11a, 11b,.
- the stop process is a process for stopping the operation of one or a plurality of loads in the n loads 11a, 11b,.
- Each of the electric wire protection processes of the electric wires W1, W2,... Is a process of protecting the corresponding electric wires from overheating.
- the electric wire protection process for the electric wire W1 is a process for protecting the electric wire W1 from overheating.
- the computer program P1 is a computer program for causing the CPU of the control unit 30 to execute the operation process, the stop process, and the electric wire protection processes of the electric wires W1, W2,.
- the computer program P1 may be stored in the storage medium E1 so that the computer can read it.
- the computer program P1 read from the storage medium E1 by a reading device (not shown) is stored in the storage unit 31.
- the storage medium E1 is an optical disk, a flexible disk, a magnetic disk, a magnetic optical disk, a semiconductor memory, or the like.
- the optical disc is a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a BD (Blu-ray (registered trademark) Disc).
- the magnetic disk is, for example, a hard disk.
- the computer program P1 may be downloaded from an external device (not shown) connected to a communication network (not shown), and the downloaded computer program P1 may be stored in the storage unit 31.
- the output units 34a, 34b,... Correspond to the loads 11a, 11b,. Therefore, each operation
- the drive circuit 22a switches the switch 20a from OFF to ON, and the load 11a. Operates.
- the drive circuit 22a switches the switch 20a from on to off, and the operation of the load 11a stops. .
- the control unit 30 performs an operation process when an operation signal is input to the input unit 32.
- the control unit 30 instructs the output unit corresponding to each of the one or a plurality of loads indicated by the operation signal to switch the voltage value indicated by the control signal from the low level voltage value to the high level voltage value. Accordingly, one or a plurality of loads indicated by the operation signal input to the input unit 32 are operated. Thereafter, the control unit 30 ends the operation process.
- the control unit 30 executes a stop process.
- the control unit 30 instructs the output unit corresponding to each of the one or a plurality of loads indicated by the stop signal to switch the voltage value indicated by the control signal from the high level voltage value to the low level voltage value. Thereby, the operation
- the control unit 30 executes the electric wire protection processes of the electric wires W1, W2,.
- the control unit 30 periodically executes these n wire protection processes.
- the start points of the n wire protection processes are substantially the same.
- the electric wire protection process of the electric wire W1 is demonstrated.
- the wire protection process for the wire W2 and the wire protection process for other wires not shown are performed in the same manner as the wire protection process for the wire W1. For this reason, detailed description of these electric wire protection processes is abbreviate
- a cycle in which the wire protection process of the wire W1 is executed is described as ⁇ t (unit: s).
- “ ⁇ ” represents a product.
- the control unit 30 In the wire protection process of the wire W1, the control unit 30 always acquires the wire current value of the wire W1 from the A / D conversion unit 35a. Therefore, the period ⁇ t related to the execution of the electric wire protection process is also a period related to the acquisition of the electric wire current value.
- the wire protection process of the wire W1 that is repeatedly executed includes a wire protection process that calculates the temperature difference between the wire temperature of the wire W1 and the ambient temperature of the wire W1, and a wire protection process that does not calculate the temperature difference. Yes.
- the control unit 30 repeatedly calculates the temperature difference between the wire temperature and the ambient temperature every time the n period related to the execution of the wire protection process elapses.
- the control unit 30 determines the electric wire based on the previously calculated temperature difference and the integrated value of the electric wire current value calculated from the first cycle of the n cycle to the n cycle related to the execution of the wire protection process. Calculate the temperature difference between temperature and ambient temperature.
- the ambient temperature of the electric wire W1 depends on the place in the vehicle where the electric wire W1 is arranged, and hardly depends on the temperature outside the vehicle. In the vehicle, the position where the electric wire W1 is arranged is fixed. For this reason, it can be considered that the ambient temperature is a constant temperature.
- the ambient temperature is preset. The ambient temperature corresponds to a predetermined temperature.
- the temperature difference and the electric wire current value in the s period of the n period related to the execution of the electric wire protection process are described as ⁇ T (s) (unit: ° C.) and I (s) (unit: A).
- s is an integer greater than or equal to zero and less than or equal to n.
- the temperature difference ⁇ T (n) is a temperature difference in the nth cycle, and the preceding temperature difference ⁇ T (0) is a previously calculated temperature difference.
- the temperature difference ⁇ T (n) is calculated by the following equations (1), (2), and (3).
- ⁇ is a heat dissipation time constant (unit: s) of the electric wire W1.
- Rth is the wire thermal resistance (unit: ° C./W) of the wire W1.
- Rw is the wire resistance (unit: ⁇ ) of the wire W1.
- the period ⁇ t, the heat radiation time constant ⁇ , the wire thermal resistance Rth, and the wire resistance Rw are constant.
- Ca and Cb are constants.
- the wire resistance Rw is, for example, the wire resistance of the wire W1 when the wire temperature of the wire W1 is a smoke generation temperature at which the wire W1 smokes.
- the wire resistance Rw When the wire resistance Rw is set in this way, when the wire temperature of the wire W1 is low, the wire resistance Rw is larger than the actual wire resistance, and the temperature difference ⁇ T (n) is also larger than the actual temperature difference. In the same case, when the wire temperature of the wire W1 is high, the wire resistance Rw substantially matches the actual wire resistance, and the temperature difference ⁇ T (n) also substantially matches the actual temperature difference. Therefore, by setting the wire resistance Rw to the wire resistance when the wire temperature is the smoke generation temperature, when the wire temperature is high, that is, when an accurate calculation of the wire temperature is required, an accurate temperature difference is obtained. Calculated.
- the temperature difference ⁇ T (n ⁇ 1) is a temperature difference in the (n ⁇ 1) period and is not calculated.
- the temperature difference ⁇ T (n ⁇ 1) is represented by the electric wire current value I (n ⁇ 1) and the temperature difference ⁇ T (n ⁇ 2), and when the equation (1) is developed, the temperature difference ⁇ T (n) It is represented by
- the temperature difference ⁇ T (n) is obtained by changing the electric wire current values I (n), I (n ⁇ 1),..., I (1) and the preceding temperature difference ⁇ T (0). And can be expressed as the following equation (4).
- the constant Ct is defined as 1-exp ( ⁇ n ⁇ ⁇ t / ⁇ ) using the integer n, the period ⁇ t, and the wire heat dissipation time constant ⁇ described above.
- equation (2) can be expanded as it can.
- Ct 1- (1-Ca) n Therefore, (1-Ca) n can be expressed as (1-Ct). Then, when (1-Ca) n in the equation (4) is replaced with (1-Ct), the equation (4) is expanded as the following equation (5).
- the first term represents heat generation and the second term represents heat dissipation. Since the constant Ct exceeds zero and is less than 1, (1-Ct) also exceeds zero and is less than 1. For example, if (1-Ct) is 0.8 and the wire current values I (n), I (n-1),..., I (1) are all zero, the temperature difference ⁇ T (n) is 0.8 ⁇ ⁇ T (0), which indicates that it is 80% of the previously calculated temperature difference. Therefore, when the state where the electric wire current value is zero continues, the temperature difference between the electric wire temperature and the ambient temperature becomes small, and the electric wire temperature approaches the ambient temperature.
- the control unit 30 calculates the preceding temperature difference ⁇ T (0) calculated last time and the wire current value I (1) calculated in the wire protection process in the (n ⁇ 1) th cycle from the first cycle. ), I (2),..., I (n), and the integrated value of the square values of each, is substituted into the equation (6) to calculate the temperature difference ⁇ T (n).
- the control unit 30 calculates the wire temperature by adding a preset ambient temperature to the calculated temperature difference ⁇ T (n).
- the control unit 30 determines whether or not the wire temperature is equal to or higher than the temperature threshold. When it is determined that the wire temperature is equal to or higher than the temperature threshold, the control unit 30 instructs the output unit 34a to change the voltage value indicated by the control signal output from the output unit 34a from the high level voltage value to the low level voltage value. Switch to. Thereby, the drive circuit 22a switches the switch 20a from on to off, and the energization through the electric wire W1 is interrupted.
- the control unit 30 acquires the wire current value acquired in the wire protection process in the k period from the first period. Whether or not the wire temperature is equal to or higher than the temperature threshold by determining whether or not the integrated value of the square values of I (1), I (2),. Determine whether.
- the temperature difference ⁇ T (k) at the kth cycle is expressed by the following equation (7).
- the expression (7) is an expression in which the integer n is replaced with a natural number k in the expression (4).
- equation (7) is expanded as the following equation (8).
- the temperature difference ⁇ T (k) does not decrease from ⁇ T (0). Therefore, in the equation (8), it is considered that the heat radiation amount is zero.
- the ambient temperature is expressed as Ta (unit: ° C.)
- the difference between the wire temperature (Ta + ⁇ T (k)) at the kth cycle and the previously calculated wire temperature (Ta + ⁇ T (0)) is ⁇ T (k) ⁇ T (0). For this reason, the first term on the right side of equation (8) indicates the temperature increase from the previously calculated wire temperature.
- Ta + ⁇ T (k) ⁇ Tth is developed as follows.
- Ta + ⁇ T (k) ⁇ Tth is expressed by the following expressions (9) and (10).
- the integrated threshold value Fth is changed based on the preceding temperature difference ⁇ T (0), that is, the temperature difference calculated by the control unit 30. Further, since the previously calculated wire temperature Tw is represented by Ta + ⁇ T (0), the integrated threshold Fth is changed based on the wire temperature calculated by the control unit 30.
- the control unit 30 changes the integrated threshold value Fth every time the wire temperature Tw is calculated, that is, every time the n period related to the execution of the wire protection process elapses.
- the control unit 30 determines that the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of the square value of the wire current value is the integrated threshold value. By determining whether or not it is equal to or higher than Fth, it is determined whether or not the wire temperature Tw is equal to or higher than the temperature threshold Tth.
- the control unit 30 determines that the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of the square value of the electric wire current value is equal to or greater than the integrated threshold Fth, the control unit 30 The voltage value indicated by the control signal output from the output unit 34a is switched from the high level voltage value to the low level voltage value. Thereby, the drive circuit 22a switches the switch 20a from on to off, and the energization through the electric wire W1 is interrupted.
- FIG. 3 is a flowchart showing the procedure of the wire protection process for the wire W1.
- the storage unit 31 stores a counter value for counting the number of cycles, an integrated value of the electric wire current value, and a preceding temperature difference. These are changed by the control unit 30.
- the preceding temperature difference is a temperature difference between the previously calculated wire temperature and the ambient temperature.
- the control unit 30 first increments the counter value by 1 (step S1), and acquires the voltage value across the resistor R1 from the A / D conversion unit 35a (step S2). As described above, since the voltage value across the resistor R1 is proportional to the wire current value of the wire W1, obtaining the voltage value across the wire corresponds to obtaining the wire current value.
- the electric wire current value is calculated by dividing the product of the voltage value at both ends and the predetermined number described above by the resistance value of the resistor R1. Since the wire protection process is periodically executed, the control unit 30 periodically acquires the voltage value across the resistor R1.
- the control unit 30 functions as an acquisition unit.
- control part 30 calculates the square value of the electric wire current value which the both-ends voltage value acquired by step S2 shows (step S3).
- the control unit 30 also functions as a square value calculation unit.
- control unit 30 adds the square value calculated in step S3 to the integrated value stored in the storage unit 31 (step S4).
- the integrated value stored in the storage unit 31 is changed to the integrated value calculated in step S4.
- the wire protection process when the counter value stored in the storage unit 31 becomes an integer n, the counter value and the integrated value stored in the storage unit 31 are changed to zero. Therefore, the wire protection process whose counter value at the time when Step S1 is executed is the natural number u is the wire protection process of the u-th cycle. In the wire protection process at the u-th cycle, the integrated value at the time when step S4 is executed is I (1) 2 + I (2) 2 +... + I (u) 2 .
- control unit 30 determines whether or not the counter value is an integer n (step S5). When it is determined that the counter value is not the integer n, that is, the counter value is less than the integer n (S5: NO), the control unit 30 determines whether or not the integrated value is greater than or equal to the integration threshold (step S6). ).
- the integrated value and the integrated threshold used in step S6 are the integrated value and the integrated threshold stored in the storage unit 31, respectively.
- the control unit 30 also functions as an integrated value determination unit.
- the control unit 30 ends the wire protection process for the wire W1. In this case, after the period ⁇ t has elapsed, the wire protection process for the wire W1 is executed again.
- the control unit 30 When determining that the integrated value is equal to or greater than the integrated threshold (S6: YES), the control unit 30 instructs the output unit 34a to set the voltage value indicated by the control signal output by the output unit 34a to the low level voltage value. (Step S7). As a result, the drive circuit 22a switches the switch 20a to OFF.
- the control part 30 complete finishes the electric wire protection process of the electric wire W1, after performing step S7. In this case, until the second predetermined condition is satisfied, the control unit 30 does not execute the wire protection process for the wire W1, and keeps the switch 20a off.
- the second predetermined condition is, for example, that a stop signal indicating the load 11a and an operation signal indicating the operation of the load 11a are sequentially input to the input unit 32.
- the control unit 30 determines that the counter value is an integer n, that is, when it is determined that the currently executed wire protection processing is the n-th cycle wire protection processing (S5: YES), the storage unit 31. Is changed to zero (step S8), and the preceding temperature difference is read from the storage unit 31 (step S9). Next, the control unit 30 calculates the integrated value I (1) 2 + I (2) 2 +... + I (n) 2 calculated in step S4 and the preceding temperature difference ⁇ T (0) read in step S9. Substituting into the equation (6), the temperature difference ⁇ T (n) is calculated (step S10).
- the control unit 30 calculates the n calculated in step S4 of the wire protection process from the 1st cycle to the nth cycle.
- the temperature difference between the electric wire temperature and the ambient temperature is calculated based on the integrated value of the square values and the preceding temperature difference.
- the control unit 30 also functions as a temperature difference calculation unit.
- step S10 since the temperature difference is calculated based on the integrated value of the square value of the electric wire current value, it is easy to calculate the temperature difference.
- the square value calculated in step S3 is used not only for determination related to the integrated value but also for calculating electric wire temperature.
- control unit 30 calculates the wire temperature of the wire W1 by adding the temperature difference calculated in step S10 to the preset ambient temperature (step S11). Therefore, the control unit 30 executes step S11 every time the counter value reaches the integer n, that is, every time when the n period related to the execution of the wire protection process elapses, and calculates the wire temperature.
- the control unit 30 also functions as a temperature calculation unit.
- step S11 the control unit 30 changes the integrated value stored in the storage unit 31 to zero (step S12), and determines whether or not the wire temperature calculated in step S11 is equal to or higher than the temperature threshold. (Step S13). When it determines with the electric wire temperature being more than a temperature threshold value (S13: YES), the control part 30 performs step S7. As a result, the drive circuit 22a switches the switch 20a to off, and the switch 20a is kept off until the second predetermined condition is satisfied.
- step S13 When it is determined that the wire temperature is lower than the temperature threshold (step S13: NO), the control unit 30 changes the preceding temperature difference stored in the storage unit 31 to the temperature difference calculated in step S10 (step S14). ). Next, the control unit 30 calculates the integrated threshold value Fth by substituting the preceding temperature difference ⁇ T (0) changed in step S14 into the equation (10) (step S15). In step S15, a smaller integrated value is calculated as the electric wire temperature calculated in step S11 is higher, that is, as the preceding temperature difference changed in step S14 is higher. Next, the control unit 30 changes the integration threshold value stored in the storage unit 31 to the integration threshold value calculated in Step S15 (Step S16). The control unit 30 also functions as a changing unit.
- the control part 30 complete finishes the electric wire protection process of the electric wire W1, after performing step S16. In this case, after the period ⁇ t has elapsed, the wire protection process for the wire W1 is executed again.
- step S6 of the k-th cycle wire protection process it is determined whether or not the formula (9) is satisfied. That is, it is determined whether or not the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 is equal to or greater than the integrated threshold Fth.
- the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of k square values indicates the increase range of the wire temperature. That is, the increasing range of the wire temperature increases as the power consumption consumed by the wire W1, that is, the integrated value of the square value of the wire current value increases.
- the controller 30 changes the integrated threshold value to a smaller value in step S16 as the electric wire temperature calculated in the n-th electric wire protection process is higher, that is, as the electric wire temperature is closer to the temperature threshold value.
- the integrated threshold indicates an allowable increase in the wire temperature. Therefore, executing step S6 determines whether or not the increase in the wire temperature during the k period is equal to or greater than the allowable increase in the wire temperature, that is, the wire temperature is equal to or greater than the temperature threshold. This is equivalent to determining whether or not. As a result, in step S6, the control unit 30 performs a determination that is substantially equivalent to the determination related to the wire temperature, using the wire current value.
- FIG. 4 is a chart showing the transition of the counter value. As described above, the wire protection process for the wire W2 and the wire protection process for other wires not shown are executed in the same manner as the wire protection process for the wire W1, and the wire protection process for the wires W1, W2,. It is executed almost simultaneously.
- FIG. 4 shows the transition of the counter value related to the wire protection processing of the wires W1, W2, W3, and W4 when the integer n is 4.
- the counter values related to the first wire protection process for the wires W1, W2, W3, and W4 are 1, 2, 3, and 4, respectively.
- the counter values relating to the second wire protection process for the wires W1, W2, W3, and W4 are 2, 3, 4, and 1, respectively.
- the counter values related to the third wire protection process for the wires W1, W2, W3, and W4 are 3, 4, 1, and 2, respectively.
- the counter values related to the fourth wire protection process for the wires W1, W2, W3, and W4 are 4, 1, 2, and 3, respectively.
- This next wire protection process is the first wire protection process.
- the control unit 30 makes a determination related to the wire temperature.
- the control unit 30 makes a determination related to the integrated value.
- the counter values related to the wire protection processing of the wires W1, W2, W3, and W4 are different from each other. For this reason, the determination related to the wire temperature is always performed in one wire protection process among the four wire protection processes whose start time points substantially coincide with each other, and the determination related to the integrated value is performed in the other three wire protection processes. Is done.
- the processing amount of the control unit 30 related to the calculation of the wire temperature is larger than the processing amount of the control unit 30 related to the calculation of the integrated value.
- the counter values related to the wire protection processing of the wires W1, W2, W3, and W4 are different from each other. For this reason, the maximum value of the processing amount of the control unit 30 performed per unit time is small. As the maximum value of the processing amount performed per unit time is larger, it is necessary to use an expensive CPU as the CPU of the control unit 30. In the power supply control device 12, since the maximum value of the processing amount performed per unit time is small, an inexpensive CPU can be used as the CPU of the control unit 30.
- the square value I (u) 2 (u: natural number) of the electric wire current value is multiplied by a weight coefficient (1-Ca) nu .
- the square value I (u) 2 is calculated by the wire protection process in the u period.
- the storage unit 31 stores a square value of the electric wire current value and a weighting factor in association with the counter value.
- FIG. 5 is a chart showing the stored contents of the storage unit 31 in the second embodiment.
- Fu (u: natural number) indicates a square value I (u) 2
- ⁇ u indicates a weight coefficient (1-Ca) nu .
- the weight coefficient ⁇ n is 1.
- FIG. 5 shows an example in which the integer n is 4.
- the storage unit 31 stores a square value of the electric wire current value and a weighting factor in association with the counter value.
- the square value of the electric wire current value is changed by the control unit 30 in the electric wire protection process.
- the weighting factor is a constant and is set in advance.
- a table similar to the table shown in FIG. 5 is stored in the storage unit 31 for each of the electric wires W1, W2,. Therefore, the storage unit 31 stores n weighting factors corresponding to the square value of n wire current values.
- wire protection process for the wire W1 will be described.
- the wire protection process for the wire W2 and the wire protection process for other wires not shown are performed in the same manner as the wire protection process for the wire W1. For this reason, detailed description of these electric wire protection processes is abbreviate
- Steps S21 to S23, S25 to S29, S32, and S34 to S39 of the wire protection process for the wire W1 in the second embodiment are the same as steps S1 to S3, S4 to S8, S9, and S11 to S16. Therefore, detailed description of steps S21 to S23, S25 to S29, S32, and S34 to S39 is omitted.
- step S24 After calculating the square value of the electric wire current value in step S23 of the electric wire protection process for the electric wire W1, the control unit 30 sets the square value of the electric wire current value stored in the storage unit 31 to the calculated square value. Change (step S24). In step S24, the square value of the electric wire current value corresponding to the counter value stored in the storage unit 31 is changed. For example, when the counter value is 1, the control unit 30 changes the square value F1 of the wire current value to the calculated square value. After executing step S24, the control unit 30 executes step S25.
- Step S30 the control unit 30 multiplies each of the n square values by the corresponding weight coefficient in the n weight coefficients (Step S30).
- the control unit 30 calculates F1 ⁇ ⁇ 1, F2 ⁇ ⁇ 2, F3 ⁇ ⁇ 3, and F4 ⁇ ⁇ 4.
- the control unit 30 also functions as a multiplication unit.
- the control unit 30 calculates a second integrated value of the n multiplied values multiplied in step S30 (step S31).
- the second integrated value is F1 ⁇ ⁇ 1 + F2 ⁇ ⁇ 2 + F3 ⁇ ⁇ 3 + F4 ⁇ ⁇ 4.
- the second integrated value is I (n) 2 + (1 ⁇ Ca) ⁇ I (n ⁇ 1) 2 +... + (1 ⁇ Ca) n ⁇ 1 ⁇ I (1) 2 in equation (5). It is.
- the control unit 30 executes step S32 after executing step S31. After reading the preceding temperature difference in step S32, the control unit 30 reads the preceding temperature difference ⁇ T (0) and the second integrated value I (n) 2 + (1 ⁇ Ca) ⁇ I calculated in step S31. The temperature difference ⁇ T (n) is calculated by substituting (n ⁇ 1) 2 +... + (1 ⁇ Ca) n ⁇ 1 ⁇ I (1) 2 into the equation (5) (step S33). . In step S33, since the equation (5) that is not approximated is used, an accurate temperature difference is calculated. The control unit 30 executes step S34 after executing step S33. In step S34, the wire temperature of the wire W1 is calculated by adding the temperature difference calculated in step S33 to the preset ambient temperature.
- the power supply control device 12 according to the second embodiment has an effect obtained by performing a temperature difference calculation based on an integrated value of n square values among the effects exhibited by the power supply control device 12 according to the first embodiment. Except for the other effects.
- the control unit 30 performs the determination related to the integrated value when the counter value is less than the integer n.
- the control unit 30 may perform the determination related to the integrated value when the counter value is equal to or less than the integer n. For example, before determining whether or not the counter value is an integer n, the control unit 30 determines whether or not the integrated value of the square value of the electric wire current value is equal to or greater than an integration threshold value. Then, when it is determined that the integrated value is less than the integrated threshold, the control unit 30 determines whether or not the counter value is an integer n.
- control unit 30 determines that the integrated value is equal to or greater than the integration threshold value, the control unit 30 instructs one of the output units 34a, 34b,... To switch the voltage value indicated by the control signal to the low level voltage value. .
- the control unit 30 ends the wire protection process.
- the temperature difference between the wire temperature and the ambient temperature may be calculated based on the wire current value, and the wire temperature may not be calculated by adding the ambient temperature to the calculated temperature difference. .
- the wire temperature may be calculated based on the wire current value.
- the switches 20a, 20b,... are not limited to N-channel FETs, but may be P-channel FETs, bipolar transistors, relay contacts, or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Protection Of Static Devices (AREA)
Abstract
A power supply control device (12) controls the supply of power, which is supplied via an electric wire (W1). A control unit of a microcomputer (23) periodically fetches an electric wire current value flowing in the electric wire (W1), and calculates the square value of the fetched electric wire current value. The control unit of the microcomputer (23) calculates the electric wire temperature of the electric wire (W1) each time n (n: integer of 2 or greater) periods relating to fetching of the electric wire current elapse. The control unit of the microcomputer (23) determines whether or not the integrated value of the square value of k items, calculated at the kth (k: natural number of n or less) period from the first period of the n periods, is an integrated threshold value or greater. The control unit of the microcomputer (23) changes the integrated threshold value to be a smaller value the higher that the calculated electric wire temperature is.
Description
本発明は、給電制御装置、給電制御方法及びコンピュータプログラムに関する。
本出願は、2016年12月2日出願の日本出願第2016-235118号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present invention relates to a power supply control device, a power supply control method, and a computer program.
This application claims priority based on Japanese Patent Application No. 2016-235118 filed on December 2, 2016, and incorporates all the description content described in the above Japanese application.
本出願は、2016年12月2日出願の日本出願第2016-235118号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present invention relates to a power supply control device, a power supply control method, and a computer program.
This application claims priority based on Japanese Patent Application No. 2016-235118 filed on December 2, 2016, and incorporates all the description content described in the above Japanese application.
特許文献1には、電線の中途に設けられたスイッチをオン又はオフに切替えることによって電線を介した給電を制御する給電制御装置が開示されている。この給電制御装置では、電線を流れる電線電流値に基づいて、電線温度を算出する。算出した電線温度が温度閾値以上である場合、スイッチをオフに切替え、電線温度を低下させる。
Patent Document 1 discloses a power supply control device that controls power supply via an electric wire by switching a switch provided in the middle of the electric wire to ON or OFF. In this power supply control device, the electric wire temperature is calculated based on the electric wire current value flowing through the electric wire. When the calculated wire temperature is equal to or higher than the temperature threshold, the switch is turned off to lower the wire temperature.
特許文献2には、マイクロコンピュータ(以下、マイコンという)が行う電線温度の算出の処理量が低い給電制御装置が開示されている。この給電制御装置では、マイコンは、周期的に電線電流値を取得する。マイコンは、電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、このn周期の1周期目からn周期目に取得したn個の電線電流値に基づいて、電線温度を算出し、算出した電線温度が温度閾値以上であるか否かを判定する。マイコンは、電線温度が温度閾値以上であると判定した場合、オフへの切替えを指示する制御信号をスイッチに出力する。
Patent Document 2 discloses a power supply control device that has a low processing amount for calculating the wire temperature performed by a microcomputer (hereinafter referred to as a microcomputer). In this power supply control device, the microcomputer periodically acquires the electric wire current value. Each time an n (n: integer greater than or equal to 2) period related to the acquisition of the wire current value elapses, the microcomputer uses the n wire current values acquired from the first cycle of the n cycle to the n cycle. The temperature is calculated, and it is determined whether or not the calculated wire temperature is equal to or higher than the temperature threshold. When the microcomputer determines that the wire temperature is equal to or higher than the temperature threshold, the microcomputer outputs a control signal instructing switching to OFF to the switch.
マイコンは、電線電流値の取得に係るn周期の1周期目から(n-1)周期目については、電線電流値が所定値以上であるか否かを判定する。マイコンは、電線電流値が所定値以上である場合、オフへの切替えを指示する制御信号をスイッチに出力する。
The microcomputer determines whether or not the wire current value is equal to or greater than a predetermined value from the first cycle of the n cycle related to the acquisition of the wire current value to the (n−1) cycle. When the electric wire current value is equal to or greater than a predetermined value, the microcomputer outputs a control signal instructing switching to OFF to the switch.
本発明の一態様に係る給電制御装置は、電線を介した給電を制御する給電制御装置であって、該電線を流れる電線電流値を周期的に取得する取得部と、該取得部が取得した電線電流値の2乗値を算出する2乗値算出部と、該電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出する温度算出部と、前記n周期の1周期目からk(k:n以下の自然数)周期目に前記2乗値算出部が算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定する積算値判定部と、該温度算出部が算出した電線温度が高い程、前記積算閾値を小さい値に変更する変更部とを備える。
A power supply control device according to an aspect of the present invention is a power supply control device that controls power supply via an electric wire, and an acquisition unit that periodically acquires an electric wire current value flowing through the electric wire, and the acquisition unit acquires A square value calculation unit for calculating the square value of the electric wire current value, and a temperature calculation for calculating the electric wire temperature of the electric wire every time n (n: an integer of 2 or more) related to the acquisition of the electric wire current value elapses. And the integrated value of the k square values calculated by the square value calculation unit in the k period (k: a natural number less than or equal to n) from the first cycle of the n cycle is greater than or equal to an integration threshold. And a change unit that changes the integration threshold to a smaller value as the electric wire temperature calculated by the temperature calculation unit is higher.
本発明の一態様に係る給電制御方法は、電線を介した給電を制御する給電制御方法であって、該電線を流れる電線電流値を周期的に取得するステップと、取得した電線電流値の2乗値を算出するステップと、前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップとを含む。
A power feeding control method according to an aspect of the present invention is a power feeding control method for controlling power feeding through an electric wire, the step of periodically obtaining a current value of the electric wire flowing through the electric wire, and 2 of the obtained electric wire current value. From the step of calculating the multiplier value, the step of calculating the wire temperature of the wire, and the first cycle of the n cycle each time n (n: an integer of 2 or more) related to the acquisition of the wire current value elapses. a step of determining whether or not an integrated value of the k square values calculated in the k (k: natural number equal to or less than n) period is equal to or greater than an integration threshold; Changing to a smaller value.
本発明の一態様に係るコンピュータプログラムは、コンピュータに、電線を流れる電線電流値を周期的に取得するステップと、取得した電線電流値の2乗値を算出するステップと、前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップとを実行させる。
The computer program which concerns on 1 aspect of this invention WHEREIN: The step which acquires the electric wire electric current value which flows through an electric wire periodically, the step which calculates the square value of the acquired electric wire electric current value, and acquisition of the said electric wire electric current value Each time an n (n: integer greater than or equal to 2) period has elapsed, a step of calculating the wire temperature of the electric wire and a k (k: natural number less than n) period from the first period of the n period were calculated. A step of determining whether or not an integrated value of the k square values is equal to or greater than an integrated threshold value and a step of changing the integrated threshold value to a smaller value as the calculated electric wire temperature is higher are executed.
なお、本発明を、このような特徴的な処理部を備える給電制御装置として実現することができるだけでなく、かかる特徴的な処理をステップとする給電制御方法として実現したり、かかるステップをコンピュータに実行させるためのコンピュータプログラムとして実現したりすることができる。また、本発明を、給電制御装置の一部又は全部を実現する半導体集積回路として実現したり、給電制御装置を含む給電制御システムとして実現したりすることができる。
In addition, the present invention can be realized not only as a power supply control device including such a characteristic processing unit, but also as a power supply control method using such characteristic processing as a step, It can be realized as a computer program for execution. Further, the present invention can be realized as a semiconductor integrated circuit that realizes part or all of the power supply control device, or can be realized as a power supply control system including the power supply control device.
[本開示が解決しようとする課題]
特許文献2に記載の給電制御装置では、電線温度が温度閾値以上であるか否かの判定に代えて、電線電流値が所定値以上であるか否かの判定を行っている。しかしながら、電線電流値が所定値以上である場合における電線温度と温度閾値との差は大きい。言い換えると、たとえ、電線電流値が所定値未満であっても、電線温度が温度閾値以上となる場合がある。 [Problems to be solved by the present disclosure]
In the power supply control device described inPatent Literature 2, instead of determining whether the electric wire temperature is equal to or higher than the temperature threshold value, it is determined whether the electric wire current value is equal to or higher than a predetermined value. However, the difference between the wire temperature and the temperature threshold is large when the wire current value is greater than or equal to a predetermined value. In other words, even if the electric wire current value is less than a predetermined value, the electric wire temperature may be equal to or higher than the temperature threshold value.
特許文献2に記載の給電制御装置では、電線温度が温度閾値以上であるか否かの判定に代えて、電線電流値が所定値以上であるか否かの判定を行っている。しかしながら、電線電流値が所定値以上である場合における電線温度と温度閾値との差は大きい。言い換えると、たとえ、電線電流値が所定値未満であっても、電線温度が温度閾値以上となる場合がある。 [Problems to be solved by the present disclosure]
In the power supply control device described in
単位時間当たりの電線の発熱量が、単位時間当たりの電線の放熱量を超えている限り、電線温度は上昇する。電線電流値が所定値よりも若干小さい状態が継続した場合、電線電流値の取得に係るn周期の1周期目から(n-1)周期目の間に電線温度が温度閾値を大きく超える可能性がある。
As long as the heat generation amount of the wire per unit time exceeds the heat dissipation amount of the wire per unit time, the wire temperature rises. If the wire current value continues to be slightly smaller than the predetermined value, the wire temperature may greatly exceed the temperature threshold during the (n-1) th cycle of the n cycle for acquiring the wire current value There is.
そこで、電線電流値を用いて、電線温度に係る判定と略等価な判定を行うことができる給電制御装置、給電制御方法及びコンピュータプログラムを提供することを目的とする。
Therefore, an object of the present invention is to provide a power supply control device, a power supply control method, and a computer program capable of performing a determination that is substantially equivalent to the determination related to the wire temperature using the wire current value.
[本開示の効果]
本開示によれば、電線電流値を用いて、電線温度に係る判定と略等価な判定を行うことができる。 [Effects of the present disclosure]
According to the present disclosure, it is possible to perform a determination that is substantially equivalent to the determination related to the wire temperature using the wire current value.
本開示によれば、電線電流値を用いて、電線温度に係る判定と略等価な判定を行うことができる。 [Effects of the present disclosure]
According to the present disclosure, it is possible to perform a determination that is substantially equivalent to the determination related to the wire temperature using the wire current value.
[本発明の実施形態の説明]
最初に本発明の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。 [Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. You may combine arbitrarily at least one part of embodiment described below.
最初に本発明の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。 [Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. You may combine arbitrarily at least one part of embodiment described below.
(1)本発明の一態様に係る給電制御装置は、電線を介した給電を制御する給電制御装置であって、該電線を流れる電線電流値を周期的に取得する取得部と、該取得部が取得した電線電流値の2乗値を算出する2乗値算出部と、該電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出する温度算出部と、前記n周期の1周期目からk(k:n以下の自然数)周期目に前記2乗値算出部が算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定する積算値判定部と、該温度算出部が算出した電線温度が高い程、前記積算閾値を小さい値に変更する変更部とを備える。
(1) A power supply control device according to an aspect of the present invention is a power supply control device that controls power supply via an electric wire, and periodically acquires an electric wire current value flowing through the electric wire, and the acquisition unit. Calculates the square value of the electric wire current value acquired by the calculation unit, and calculates the electric wire temperature of the electric wire every time an n (n: integer greater than or equal to 2) period related to the acquisition of the electric wire current value elapses. The integrated value of the k square values calculated by the square value calculation unit in the k (k: natural number less than or equal to n) period from the first cycle of the n cycle is greater than or equal to the integration threshold value. An integrated value determination unit that determines whether or not there is a change unit, and a change unit that changes the integration threshold value to a smaller value as the electric wire temperature calculated by the temperature calculation unit is higher.
(2)本発明の一態様に係る給電制御装置は、前記n周期が経過する都度、該n周期の1周期目からn周期目に前記2乗値算出部が算出したn個の前記2乗値に基づいて、前記電線温度と所定温度との温度差を算出する温度差算出部を備え、前記温度算出部は、該所定温度に、前記温度差算出部が算出した温度差を加算することによって前記電線温度を算出する。
(2) The power supply control device according to an aspect of the present invention provides the n squares calculated by the square value calculation unit from the first cycle to the n cycle of the n cycle each time the n cycle elapses. A temperature difference calculation unit that calculates a temperature difference between the electric wire temperature and a predetermined temperature based on the value; and the temperature calculation unit adds the temperature difference calculated by the temperature difference calculation unit to the predetermined temperature. To calculate the wire temperature.
(3)本発明の一態様に係る給電制御装置では、前記温度差算出部は、前記n個の2乗値の積算値と、先行して算出した前記電線温度及び所定温度の先行温度差とに基づいて、前記電線温度及び所定温度の温度差を算出する。
(3) In the power supply control device according to an aspect of the present invention, the temperature difference calculation unit includes an integrated value of the n square values, a preceding temperature difference between the wire temperature and a predetermined temperature calculated in advance. Based on the above, the temperature difference between the wire temperature and the predetermined temperature is calculated.
(4)本発明の一態様に係る給電制御装置は、前記n個の2乗値夫々に対応するn個の重み係数が記憶されている記憶部と、前記n個の2乗値夫々に、前記n個の重み係数中の対応する重み係数を乗算する乗算部とを備え、前記温度差算出部は、前記乗算部が乗算したn個の乗算値の積算値と、先行して算出した前記電線温度及び所定温度の先行温度差とに基づいて、前記電線温度及び所定温度の温度差を算出する。
(4) In the power supply control device according to one aspect of the present invention, a storage unit storing n weighting factors corresponding to each of the n square values, and each of the n square values, A multiplication unit that multiplies the corresponding weighting factors in the n weighting factors, and the temperature difference calculation unit includes an integrated value of n multiplication values multiplied by the multiplication unit and the previously calculated value. The temperature difference between the wire temperature and the predetermined temperature is calculated based on the wire temperature and the preceding temperature difference between the predetermined temperature.
(5)本発明の一態様に係る給電制御方法は、電線を介した給電を制御する給電制御方法であって、該電線を流れる電線電流値を周期的に取得するステップと、取得した電線電流値の2乗値を算出するステップと、前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップとを含む。
(5) The power feeding control method according to one aspect of the present invention is a power feeding control method for controlling power feeding through an electric wire, the step of periodically obtaining the value of the electric wire current flowing through the electric wire, and the obtained electric wire current. A step of calculating a square value of the value, a step of calculating a wire temperature of the wire every time an n (n: integer greater than or equal to 2) period related to acquisition of the wire current value elapses, and 1 of the n cycle The step of determining whether or not the integrated value of the k square values calculated in the k period (k: natural number less than or equal to n) from the period is greater than or equal to the integration threshold, and the higher the calculated wire temperature, Changing the integration threshold value to a small value.
(6)本発明の一態様に係るコンピュータプログラムは、コンピュータに、電線を流れる電線電流値を周期的に取得するステップと、取得した電線電流値の2乗値を算出するステップと、前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップとを実行させる。
(6) The computer program which concerns on 1 aspect of this invention WHEREIN: The step which acquires the electric wire electric current value which flows through an electric wire to a computer periodically, the step which calculates the square value of the acquired electric wire electric current value, and the said electric wire electric current Every time an n (n: integer greater than or equal to 2) period for obtaining a value elapses, a step of calculating the wire temperature of the wire, and a k (k: natural number less than n) period from the first period of the n period The step of determining whether or not the integrated value of the k square values calculated in step S is equal to or greater than the integrated threshold value and the step of changing the integrated threshold value to a smaller value as the calculated wire temperature is higher are executed. .
上記の一態様に係る給電制御装置、給電制御方法及びコンピュータプログラムにあっては、電線電流値を周期的に取得し、取得した電線電流値の2乗値を算出する。電線電流値の取得に係るn周期の1周期目からk周期目に算出したk個の2乗値の積算値が積算閾値以上であるか否かを判定する。
In the power supply control device, the power supply control method, and the computer program according to the above aspect, the electric wire current value is periodically acquired, and the square value of the acquired electric wire current value is calculated. It is determined whether or not the integrated value of k square values calculated from the first cycle to the k cycle of the n cycle related to the acquisition of the electric wire current value is equal to or greater than the integration threshold.
電線温度の上昇幅は、電線で消費された消費電力、即ち、電線電流値の2乗値の積算値が大きい程、大きい。従って、k個の2乗値の積算値は、k周期中の電線温度の上昇幅を示す。
The increase in the wire temperature increases as the power consumption consumed by the wire, that is, the integrated value of the square value of the wire current value increases. Therefore, the integrated value of the k square values indicates the increase range of the wire temperature during the k period.
n周期が経過する都度、算出した電線温度が高い程、即ち、電線温度が、電線を介した通電を遮断すべき温度閾値に近い程、積算閾値を小さい値に変更する。積算閾値は、許容される電線温度の上昇幅を示す。
Every time the n period elapses, the integrated threshold value is changed to a smaller value as the calculated wire temperature is higher, that is, as the wire temperature is closer to the temperature threshold at which energization through the wire is to be cut off. The integrated threshold indicates an allowable increase in the wire temperature.
k個の2乗値の積算値が積算閾値以上であるか否かを判定することは、k周期中の電線温度の上昇幅が、許容される電線温度の上昇幅以上であるか否かを判定すること、即ち、電線温度が温度閾値以上であるか否かを判定することに相当する。結果、電線電流値を用いて、電線温度に係る判定と略等価な判定が行われる。
Determining whether or not the integrated value of k square values is equal to or greater than the integral threshold is whether or not the increase in wire temperature during the k period is equal to or greater than the allowable increase in wire temperature. This corresponds to determining, that is, determining whether the wire temperature is equal to or higher than the temperature threshold. As a result, a determination that is substantially equivalent to the determination related to the wire temperature is performed using the wire current value.
上記の一態様に係る給電制御装置にあっては、n周期が経過する都度、n周期の1周期目からn周期目に算出したn個の2乗値に基づいて、電線温度と、所定温度との温度差を算出し、算出した温度差に所定温度を加算することによって電線温度を算出する。従って、2乗値は、積算値に係る判定だけではなく、電線温度の算出にも用いられる。
In the power supply control device according to the above aspect, the wire temperature and the predetermined temperature are calculated based on n square values calculated from the first cycle of the n cycle to the n cycle every time the n cycle elapses. The wire temperature is calculated by adding a predetermined temperature to the calculated temperature difference. Therefore, the square value is used not only for determination of the integrated value but also for calculation of the wire temperature.
上記の一態様に係る給電制御装置にあっては、電線温度と所定温度との温度差の算出を、n個の2乗値の積算値に基づいて行うので、温度差の算出が容易である。
In the power supply control device according to the above aspect, the temperature difference between the electric wire temperature and the predetermined temperature is calculated based on an integrated value of n square values, so that the temperature difference is easily calculated. .
上記の一態様に係る給電制御装置にあっては、n個の2乗値夫々に、対応する重み係数を乗算し、n個の乗算値の積算値に基づいて正確な温度差が算出される。
In the power supply control device according to the above aspect, each of the n square values is multiplied by a corresponding weighting factor, and an accurate temperature difference is calculated based on an integrated value of the n multiplied values. .
[本発明の実施形態の詳細]
本発明の実施形態に係る給電制御装置の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 [Details of the embodiment of the present invention]
A specific example of a power supply control device according to an embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
本発明の実施形態に係る給電制御装置の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 [Details of the embodiment of the present invention]
A specific example of a power supply control device according to an embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
(実施形態1)
図1は、実施形態1における電源システム1の要部構成を示すブロック図である。電源システム1は、車両に好適に搭載されており、バッテリ10、n(n:2以上の整数)個の負荷11a,11b,・・・、給電制御装置12及びn個の電線W1,W2,・・・を備える。バッテリ10の正極には、電線W1,W2,・・・夫々の一端が接続されている。電線W1,W2,・・・夫々の他端には、負荷11a,11b,・・・の一端が接続されている。バッテリ10の負極と、負荷11a,11b,・・・の他端とは接地されている。給電制御装置12は、電線W1,W2,・・・の中途に接続されている。 (Embodiment 1)
FIG. 1 is a block diagram illustrating a main configuration of apower supply system 1 according to the first embodiment. The power supply system 1 is suitably mounted on a vehicle, and includes a battery 10, n (n: integer of 2 or more) loads 11a, 11b,..., A power supply control device 12, and n electric wires W1, W2, and so on. It is equipped with ... One end of each of the electric wires W1, W2,... Is connected to the positive electrode of the battery 10. The other ends of the electric wires W1, W2,... Are connected to one ends of loads 11a, 11b,. The negative electrode of the battery 10 and the other ends of the loads 11a, 11b, ... are grounded. The power feeding control device 12 is connected in the middle of the electric wires W1, W2,.
図1は、実施形態1における電源システム1の要部構成を示すブロック図である。電源システム1は、車両に好適に搭載されており、バッテリ10、n(n:2以上の整数)個の負荷11a,11b,・・・、給電制御装置12及びn個の電線W1,W2,・・・を備える。バッテリ10の正極には、電線W1,W2,・・・夫々の一端が接続されている。電線W1,W2,・・・夫々の他端には、負荷11a,11b,・・・の一端が接続されている。バッテリ10の負極と、負荷11a,11b,・・・の他端とは接地されている。給電制御装置12は、電線W1,W2,・・・の中途に接続されている。 (Embodiment 1)
FIG. 1 is a block diagram illustrating a main configuration of a
バッテリ10は、電線W1,W2,・・・を介して負荷11a,11b,・・・に電力を供給する。負荷11a,11b,・・・夫々は車両に搭載された電気機器である。負荷11a,11b,・・・夫々は、給電されている場合、作動し、給電が停止した場合、動作を停止する。
The battery 10 supplies power to the loads 11a, 11b,... Via the electric wires W1, W2,. Each of the loads 11a, 11b,... Is an electric device mounted on the vehicle. Each of the loads 11a, 11b,... Operates when power is supplied, and stops operating when power supply is stopped.
給電制御装置12は、電線W1,W2,・・・を介した給電を各別に制御する。給電制御装置12は、電線W1,W2,・・・夫々について、通電の遮断と、遮断の解除とを行う。n個の電線W1,W2,・・・中の1つの電線を介した通電が遮断された場合、バッテリ10から、この電線に接続されている負荷への給電が停止され、この負荷は動作を停止する。n個の電線W1,W2,・・・中の1つの電線を介した通電の遮断が解除された場合、バッテリ10から、この電線に接続されている負荷への給電が再開され、この負荷は作動する。具体例として、電線W1を介した通電が遮断された場合、バッテリ10から負荷11aへの給電が停止され、負荷11aは動作を停止する。また、電線W1を介した通電が解除された場合、バッテリ10から負荷11aへの給電が再開され、負荷11aは作動する。
The power feeding control device 12 controls power feeding via the electric wires W1, W2,. The power supply control device 12 performs the interruption of energization and the release of the interruption for each of the electric wires W1, W2,. When energization through one of the n wires W1, W2,... is interrupted, power supply from the battery 10 to the load connected to this wire is stopped, and this load operates Stop. When the interruption of energization through one of the n wires W1, W2,... is released, power supply from the battery 10 to the load connected to the wire is resumed. Operate. As a specific example, when energization through the electric wire W1 is interrupted, power supply from the battery 10 to the load 11a is stopped, and the load 11a stops operating. Further, when the energization via the electric wire W1 is released, the power supply from the battery 10 to the load 11a is resumed, and the load 11a operates.
給電制御装置12には、n個の負荷11a,11b,・・・の中で作動すべき一又は複数の負荷を示す作動信号と、n個の負荷11a,11b,・・・の中で動作を停止すべき一又は複数の負荷を示す停止信号とが入力される。給電制御装置12は、作動信号が入力された場合、電線W1,W2,・・・の中で、入力された作動信号が示す一又は複数の負荷に接続されている一又は複数の電線を介した通電の遮断を解除する。これにより、作動信号が示す一又は複数の負荷は作動する。
給電制御装置12は、停止信号が入力された場合、電線W1,W2,・・・の中で、入力された停止信号が示す一又は複数の負荷に接続されている一又は複数の電線を介した通電を遮断する。これにより、停止信号が示す一又は複数の負荷は、動作を停止する。 The powersupply control device 12 has an operation signal indicating one or a plurality of loads to be operated among the n loads 11a, 11b,..., And operates among the n loads 11a, 11b,. And a stop signal indicating one or a plurality of loads to be stopped. When the operation signal is input, the power supply control device 12 passes through one or more electric wires connected to one or more loads indicated by the input operation signal among the electric wires W1, W2,. Release the power interruption. As a result, one or more loads indicated by the activation signal are activated.
When the stop signal is input, the powersupply control device 12 passes through one or more electric wires connected to one or more loads indicated by the input stop signal among the electric wires W1, W2,. Shut off the energized power. Thereby, the operation | movement of the 1 or several load which a stop signal shows stops.
給電制御装置12は、停止信号が入力された場合、電線W1,W2,・・・の中で、入力された停止信号が示す一又は複数の負荷に接続されている一又は複数の電線を介した通電を遮断する。これにより、停止信号が示す一又は複数の負荷は、動作を停止する。 The power
When the stop signal is input, the power
給電制御装置12は、電線W1,W2,・・・夫々を流れる電線電流値と、電線W1,W2,・・・夫々の電線温度とに基づいて、通電を遮断する。例えば、給電制御装置12は、電線W1を流れる電線電流値と、電線W1の電線温度とに基づいて、電線W1を介した通電を遮断する。
The power supply control device 12 cuts off energization based on the current values of the wires flowing through the wires W1, W2,... And the temperatures of the wires W1, W2,. For example, the power supply control device 12 interrupts energization via the electric wire W1 based on the value of the electric wire current flowing through the electric wire W1 and the electric wire temperature of the electric wire W1.
給電制御装置12は、n個のスイッチ20a,20b,・・・、n個の電流出力回路21a,21b,・・・、n個の駆動回路22a,22b,・・・、マイコン23、及び、n個の抵抗R1,R2,・・・を有する。n個のスイッチ20a,20b,・・・夫々はNチャネル型のFET(Field Effect Transistor)である。スイッチ20a,20b,・・・夫々は、電線W1,W2,・・・の中途に設けられている。同様に、電流出力回路21a,21b,・・・夫々は、電線W1,W2,・・・の中途に接続されている。
The power supply control device 12 includes n switches 20a, 20b, ..., n current output circuits 21a, 21b, ..., n drive circuits 22a, 22b, ..., a microcomputer 23, and It has n resistors R1, R2,. Each of the n switches 20a, 20b,... is an N-channel FET (Field-Effect-Transistor). The switches 20a, 20b,... Are provided in the middle of the electric wires W1, W2,. Similarly, the current output circuits 21a, 21b,... Are connected in the middle of the electric wires W1, W2,.
スイッチ20aのドレインは、電線W1を介してバッテリ10の正極に接続されている。スイッチ20aのソースは電線W1を介して電流出力回路21aに接続されている。電流出力回路21aは、更に、電線W1を介して負荷11aの一端に接続されると共に、抵抗R1の一端に接続されている。抵抗R1の他端は接地されている。抵抗R1の一端は、更に、駆動回路22a及びマイコン23に接続されている。駆動回路22aは、更に、スイッチ20aのゲートと、マイコン23とに接続されている。
The drain of the switch 20a is connected to the positive electrode of the battery 10 via the electric wire W1. The source of the switch 20a is connected to the current output circuit 21a via the electric wire W1. The current output circuit 21a is further connected to one end of the load 11a via the electric wire W1 and to one end of the resistor R1. The other end of the resistor R1 is grounded. One end of the resistor R1 is further connected to the drive circuit 22a and the microcomputer 23. The drive circuit 22a is further connected to the gate of the switch 20a and the microcomputer 23.
スイッチ20b、電流出力回路21b、駆動回路22b及び抵抗R2は、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1と同様に接続されている。図示していない他のスイッチ、電流出力回路、駆動回路及び抵抗も、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1と同様に接続されている。
The switch 20b, the current output circuit 21b, the drive circuit 22b, and the resistor R2 are connected in the same manner as the switch 20a, the current output circuit 21a, the drive circuit 22a, and the resistor R1. Other switches, current output circuits, drive circuits, and resistors not shown are also connected in the same manner as the switches 20a, current output circuits 21a, drive circuits 22a, and resistors R1.
以下では、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1の動作を説明する。
スイッチ20b、電流出力回路21b、駆動回路22b及び抵抗R2の動作は、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1の動作と同様である。更に、図示しない他のスイッチ、電流出力回路、駆動回路及び抵抗の動作も、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1の動作と同様である。このため、これらの動作の詳細な説明を省略する。 Hereinafter, operations of theswitch 20a, the current output circuit 21a, the drive circuit 22a, and the resistor R1 will be described.
The operations of theswitch 20b, current output circuit 21b, drive circuit 22b, and resistor R2 are the same as the operations of the switch 20a, current output circuit 21a, drive circuit 22a, and resistor R1. Furthermore, the operations of other switches, current output circuits, drive circuits, and resistors (not shown) are the same as the operations of the switch 20a, current output circuit 21a, drive circuit 22a, and resistor R1. Therefore, detailed description of these operations is omitted.
スイッチ20b、電流出力回路21b、駆動回路22b及び抵抗R2の動作は、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1の動作と同様である。更に、図示しない他のスイッチ、電流出力回路、駆動回路及び抵抗の動作も、スイッチ20a、電流出力回路21a、駆動回路22a及び抵抗R1の動作と同様である。このため、これらの動作の詳細な説明を省略する。 Hereinafter, operations of the
The operations of the
スイッチ20aについて、ソースの電位を基準としたゲートの電圧値が一定電圧値以上である場合、ドレイン及びソースを介して電流が流れることが可能である。このとき、スイッチ20aはオンである。スイッチ20aがオンに切替わった場合、電線W1を介した通電の遮断が解除される。これにより、電線W1を介して、バッテリ10から負荷11aに給電され、負荷11aが作動する。
In the switch 20a, when the gate voltage value with respect to the source potential is equal to or higher than a certain voltage value, a current can flow through the drain and the source. At this time, the switch 20a is on. When the switch 20a is switched on, the interruption of energization via the electric wire W1 is released. Thereby, electric power is supplied from the battery 10 to the load 11a via the electric wire W1, and the load 11a operates.
スイッチ20aについて、ソースの電位を基準としたゲートの電圧値が一定電圧値未満である場合、ドレイン及びソースを介して電流が流れることはない。このとき、スイッチ20aはオフである。スイッチ20aがオフに切替わった場合、電線W1を介した通電が遮断される。これにより、バッテリ10から負荷11aへの給電が停止し、負荷11aは動作を停止する。
In the switch 20a, when the gate voltage value with respect to the source potential is less than a certain voltage value, no current flows through the drain and the source. At this time, the switch 20a is off. When the switch 20a is switched off, the energization through the electric wire W1 is interrupted. Thereby, the power supply from the battery 10 to the load 11a is stopped, and the load 11a stops its operation.
電流出力回路21aは、例えば、カレントミラー回路によって構成され、電流値が、電線W1を流れる電線電流値の所定数分の1である電流を抵抗R1に出力する。抵抗R1の両端間の電圧値(以下、両端電圧値という)は、電線W1の電線電流値と抵抗R1の抵抗値との積を前述した所定数で除算することによって算出される。抵抗R1の抵抗値は一定である。このため、抵抗R1の両端電圧値は電線W1の電線電流値に比例する。従って、抵抗R1の両端電圧値の取得は、電線W1の電線電流値の取得に相当する。
The current output circuit 21a is constituted by, for example, a current mirror circuit, and outputs a current whose current value is a predetermined fraction of the electric wire current value flowing through the electric wire W1 to the resistor R1. The voltage value between both ends of the resistor R1 (hereinafter, referred to as both-end voltage value) is calculated by dividing the product of the wire current value of the wire W1 and the resistance value of the resistor R1 by the predetermined number described above. The resistance value of the resistor R1 is constant. For this reason, the voltage value across the resistor R1 is proportional to the wire current value of the wire W1. Therefore, the acquisition of the voltage value across the resistor R1 corresponds to the acquisition of the wire current value of the wire W1.
駆動回路22aには、抵抗R1の両端電圧値が入力されると共に、マイコン23から、ハイレベル電圧値及びローレベル電圧値によって構成される制御信号が入力される。
駆動回路22aは、抵抗R1の両端電圧値が基準電圧値未満である場合において、制御信号が示す電圧値がローレベル電圧値からハイレベル電圧値に切替わったとき、接地電位を基準としたスイッチ20aのゲートの電圧値を上昇させる。これにより、スイッチ20aでは、ソースの電位を基準としたゲートの電圧値が一定電圧値以上となり、スイッチ20aはオフからオンに切替わる。 A voltage value across the resistor R1 is input to thedrive circuit 22a, and a control signal including a high level voltage value and a low level voltage value is input from the microcomputer 23.
When the voltage value across the resistor R1 is less than the reference voltage value and the voltage value indicated by the control signal is switched from the low level voltage value to the high level voltage value, thedrive circuit 22a is a switch based on the ground potential. The voltage value of the gate 20a is increased. As a result, in the switch 20a, the gate voltage value with reference to the source potential becomes a certain voltage value or more, and the switch 20a is switched from OFF to ON.
駆動回路22aは、抵抗R1の両端電圧値が基準電圧値未満である場合において、制御信号が示す電圧値がローレベル電圧値からハイレベル電圧値に切替わったとき、接地電位を基準としたスイッチ20aのゲートの電圧値を上昇させる。これにより、スイッチ20aでは、ソースの電位を基準としたゲートの電圧値が一定電圧値以上となり、スイッチ20aはオフからオンに切替わる。 A voltage value across the resistor R1 is input to the
When the voltage value across the resistor R1 is less than the reference voltage value and the voltage value indicated by the control signal is switched from the low level voltage value to the high level voltage value, the
また、駆動回路22aは、抵抗R1の両端電圧値が基準電圧値未満である場合において、制御信号が示す電圧値がハイレベル電圧値からローレベル電圧値に切替わったとき、接地電位を基準としたスイッチ20aのゲートの電圧値を低下させる。これにより、スイッチ20aでは、ソースの電位を基準としたゲートの電圧値が一定電圧値未満となり、スイッチ20aはオンからオフに切替わる。
Further, when the voltage value across the resistor R1 is less than the reference voltage value, the drive circuit 22a uses the ground potential as a reference when the voltage value indicated by the control signal is switched from the high level voltage value to the low level voltage value. The voltage value of the gate of the switch 20a is lowered. Thereby, in the switch 20a, the gate voltage value with reference to the source potential becomes less than a certain voltage value, and the switch 20a is switched from on to off.
駆動回路22aは、抵抗R1の両端電圧値が基準電圧値以上となった場合、制御信号が示す電圧値に無関係に、接地電位を基準としたスイッチ20aのゲートの電圧値を低下させ、スイッチ20aをオフに切替える。その後、駆動回路22aは、所定条件が満たされるまで、スイッチ20aのオフを維持する。所定条件は、例えば、制御信号が示す電圧値がローレベル電圧値及びハイレベル電圧値の順に切替わることである。
When the voltage value at both ends of the resistor R1 becomes equal to or higher than the reference voltage value, the drive circuit 22a reduces the voltage value of the gate of the switch 20a with respect to the ground potential regardless of the voltage value indicated by the control signal. Switch off. Thereafter, the drive circuit 22a keeps the switch 20a off until a predetermined condition is satisfied. The predetermined condition is, for example, that the voltage value indicated by the control signal is switched in the order of the low level voltage value and the high level voltage value.
マイコン23には、作動信号及び停止信号が入力される。マイコン23は、入力された作動信号若しくは停止信号が示す内容、又は、入力された抵抗R1の両端電圧値に基づいて、制御信号が示す電圧値をローレベル電圧値又はハイレベル電圧値に切替える。
マイコン23には、抵抗R2の両端電圧値も入力され、図示しない他の抵抗の両端電圧値も入力される。また、マイコン23は、駆動回路22bに制御信号を出力すると共に、図示しない駆動回路にも制御信号を出力する。マイコン23は、複数の制御信号が示す電圧値を各別に切替える。 An operation signal and a stop signal are input to themicrocomputer 23. The microcomputer 23 switches the voltage value indicated by the control signal to the low level voltage value or the high level voltage value based on the contents indicated by the input operation signal or stop signal or the input voltage value across the resistor R1.
Themicrocomputer 23 also receives a voltage value across the resistor R2, and also receives a voltage value across other resistors (not shown). The microcomputer 23 outputs a control signal to the drive circuit 22b and also outputs a control signal to a drive circuit (not shown). The microcomputer 23 switches the voltage values indicated by the plurality of control signals.
マイコン23には、抵抗R2の両端電圧値も入力され、図示しない他の抵抗の両端電圧値も入力される。また、マイコン23は、駆動回路22bに制御信号を出力すると共に、図示しない駆動回路にも制御信号を出力する。マイコン23は、複数の制御信号が示す電圧値を各別に切替える。 An operation signal and a stop signal are input to the
The
図2はマイコン23の要部構成を示すブロック図である。マイコン23は、制御部30、記憶部31、入力部32、n個の入力部33a,33b,・・・、n個の出力部34a,34b,・・・及びn個のA(Analog)/D(Digital)変換部35a,35b,・・・を有する。制御部30、記憶部31及び入力部32はバス36に接続されている。
FIG. 2 is a block diagram showing a main configuration of the microcomputer 23. The microcomputer 23 includes a control unit 30, a storage unit 31, an input unit 32, n input units 33a, 33b, ..., n output units 34a, 34b, ..., and n A (Analog) / D (Digital) converters 35a, 35b,... The control unit 30, the storage unit 31, and the input unit 32 are connected to the bus 36.
出力部34aは、駆動回路22aとバス36とに各別に接続されている。A/D変換部35aは、入力部33aとバス36とに各別に接続されている。入力部33aは、更に、抵抗R1の一端に接続されている。
同様に、出力部34bは、駆動回路22bとバス36とに各別に接続されている。A/D変換部35bは、入力部33bとバス36とに各別に接続されている。入力部33bは、更に、抵抗R2の一端に接続されている。図示しない入力部、出力部及びA/D変換部は、入力部33a、出力部34a及びA/D変換部35aと同様に接続されている。 Theoutput unit 34a is connected to the drive circuit 22a and the bus 36 separately. The A / D converter 35a is connected to the input unit 33a and the bus 36 separately. The input unit 33a is further connected to one end of the resistor R1.
Similarly, theoutput unit 34b is connected to the drive circuit 22b and the bus 36 separately. The A / D converter 35b is connected to the input unit 33b and the bus 36 separately. The input unit 33b is further connected to one end of the resistor R2. An input unit, an output unit, and an A / D conversion unit (not shown) are connected in the same manner as the input unit 33a, the output unit 34a, and the A / D conversion unit 35a.
同様に、出力部34bは、駆動回路22bとバス36とに各別に接続されている。A/D変換部35bは、入力部33bとバス36とに各別に接続されている。入力部33bは、更に、抵抗R2の一端に接続されている。図示しない入力部、出力部及びA/D変換部は、入力部33a、出力部34a及びA/D変換部35aと同様に接続されている。 The
Similarly, the
入力部32には、作動信号及び停止信号が入力される。入力部32は、作動信号又は停止信号が入力された場合、入力された信号と、この信号が示す負荷とを制御部30に通知する。
The input unit 32 receives an operation signal and a stop signal. When the operation signal or the stop signal is input, the input unit 32 notifies the control unit 30 of the input signal and the load indicated by the signal.
以下に、入力部33a、出力部34a及びA/D変換部35aの動作を説明する。
入力部33b、出力部34b及びA/D変換部35bの動作は、入力部33a、出力部34a及びA/D変換部35aの動作と同様である。更に、図示しない入力部、出力部及びA/D変換部の動作も、入力部33a、出力部34a及びA/D変換部35aの動作と同様である。このため、これらの動作の詳細な説明を省略する。 Hereinafter, operations of theinput unit 33a, the output unit 34a, and the A / D conversion unit 35a will be described.
The operations of theinput unit 33b, the output unit 34b, and the A / D conversion unit 35b are the same as the operations of the input unit 33a, the output unit 34a, and the A / D conversion unit 35a. Furthermore, operations of an input unit, an output unit, and an A / D conversion unit (not shown) are the same as the operations of the input unit 33a, the output unit 34a, and the A / D conversion unit 35a. Therefore, detailed description of these operations is omitted.
入力部33b、出力部34b及びA/D変換部35bの動作は、入力部33a、出力部34a及びA/D変換部35aの動作と同様である。更に、図示しない入力部、出力部及びA/D変換部の動作も、入力部33a、出力部34a及びA/D変換部35aの動作と同様である。このため、これらの動作の詳細な説明を省略する。 Hereinafter, operations of the
The operations of the
入力部33aには、アナログの抵抗R1の両端電圧値が入力される。入力部33aは、入力されたアナログの両端電圧値をA/D変換部35aに出力する。A/D変換部35aは、入力部33aから入力されたアナログの両端電圧値をデジタルの両端電圧値に変換する。制御部30は、A/D変換部35aからデジタルの両端電圧値を取得する。制御部30が取得する両端電圧値は、取得時点における抵抗R1の両端電圧値と略一致する。
The voltage value at both ends of the analog resistor R1 is input to the input unit 33a. The input unit 33a outputs the input analog both-end voltage value to the A / D conversion unit 35a. The A / D converter 35a converts the analog both-end voltage value input from the input unit 33a into a digital both-end voltage value. The control unit 30 acquires the digital both-end voltage value from the A / D conversion unit 35a. The both-end voltage value acquired by the control unit 30 substantially matches the both-end voltage value of the resistor R1 at the time of acquisition.
出力部34aは、制御信号を駆動回路22aに出力している。出力部34aは、制御部30の指示に従って、駆動回路22aに出力している制御信号が示す電圧値を、ローレベル電圧値又はハイレベル電圧値に切替える。
The output unit 34a outputs a control signal to the drive circuit 22a. The output unit 34a switches the voltage value indicated by the control signal output to the drive circuit 22a to a low level voltage value or a high level voltage value in accordance with an instruction from the control unit 30.
記憶部31は不揮発性メモリである。記憶部31には、コンピュータプログラムP1が記憶されている。
制御部30は、図示しないCPU(Central Processing Unit)を有する。制御部30のCPUは、記憶部31に記憶されているコンピュータプログラムP1を実行することによって、作動処理、停止処理、及び、電線W1,W2,・・・夫々の電線保護処理を実行する。 Thestorage unit 31 is a nonvolatile memory. The storage unit 31 stores a computer program P1.
Thecontrol unit 30 has a CPU (Central Processing Unit) (not shown). The CPU of the control unit 30 executes the computer program P1 stored in the storage unit 31 to execute the operation process, the stop process, and the electric wire protection processes of the electric wires W1, W2,.
制御部30は、図示しないCPU(Central Processing Unit)を有する。制御部30のCPUは、記憶部31に記憶されているコンピュータプログラムP1を実行することによって、作動処理、停止処理、及び、電線W1,W2,・・・夫々の電線保護処理を実行する。 The
The
作動処理は、n個の負荷11a,11b,・・・中の一又は複数の負荷を作動させる処理である。停止処理は、n個の負荷11a,11b,・・・中の一又は複数の負荷の動作を停止させる処理である。電線W1,W2,・・・夫々の電線保護処理夫々は、対応する電線を過熱から保護する処理である。具体例として、電線W1の電線保護処理は、電線W1を過熱から保護する処理である。
コンピュータプログラムP1は、制御部30のCPUに、作動処理、停止処理、及び、電線W1,W2,・・・夫々の電線保護処理を実行させるためのコンピュータプログラムである。 The operation process is a process for operating one or a plurality of loads among the n loads 11a, 11b,. The stop process is a process for stopping the operation of one or a plurality of loads in the n loads 11a, 11b,. Each of the electric wire protection processes of the electric wires W1, W2,... Is a process of protecting the corresponding electric wires from overheating. As a specific example, the electric wire protection process for the electric wire W1 is a process for protecting the electric wire W1 from overheating.
The computer program P1 is a computer program for causing the CPU of thecontrol unit 30 to execute the operation process, the stop process, and the electric wire protection processes of the electric wires W1, W2,.
コンピュータプログラムP1は、制御部30のCPUに、作動処理、停止処理、及び、電線W1,W2,・・・夫々の電線保護処理を実行させるためのコンピュータプログラムである。 The operation process is a process for operating one or a plurality of loads among the n loads 11a, 11b,. The stop process is a process for stopping the operation of one or a plurality of loads in the n loads 11a, 11b,. Each of the electric wire protection processes of the electric wires W1, W2,... Is a process of protecting the corresponding electric wires from overheating. As a specific example, the electric wire protection process for the electric wire W1 is a process for protecting the electric wire W1 from overheating.
The computer program P1 is a computer program for causing the CPU of the
なお、コンピュータプログラムP1は、コンピュータが読み取り可能に、記憶媒体E1に記憶されていてもよい。この場合、図示しない読み出し装置によって記憶媒体E1から読み出されたコンピュータプログラムP1が記憶部31に記憶される。記憶媒体E1は、光ディスク、フレキシブルディスク、磁気ディスク、磁気光ディスク又は半導体メモリ等である。光ディスクは、CD(Compact Disc)-ROM(Read Only Memory)、DVD(Digital Versatile Disc)-ROM、又は、BD(Blu-ray(登録商標) Disc)等である。磁気ディスクは、例えばハードディスクである。また、図示しない通信網に接続されている図示しない外部装置からコンピュータプログラムP1をダウンロードし、ダウンロードしたコンピュータプログラムP1を記憶部31に記憶してもよい。
Note that the computer program P1 may be stored in the storage medium E1 so that the computer can read it. In this case, the computer program P1 read from the storage medium E1 by a reading device (not shown) is stored in the storage unit 31. The storage medium E1 is an optical disk, a flexible disk, a magnetic disk, a magnetic optical disk, a semiconductor memory, or the like. The optical disc is a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a BD (Blu-ray (registered trademark) Disc). The magnetic disk is, for example, a hard disk. Alternatively, the computer program P1 may be downloaded from an external device (not shown) connected to a communication network (not shown), and the downloaded computer program P1 may be stored in the storage unit 31.
出力部34a,34b,・・・夫々は負荷11a,11b,・・・に対応している。従って、負荷11a,11b,・・・夫々の動作は、出力部34a,34b,・・・が出力している制御信号が示す電圧値に応じて制御される。前述したように、出力部34aが出力している制御信号が示す電圧値がローレベル電圧値からハイレベル電圧値に切替わった場合、駆動回路22aはスイッチ20aをオフからオンに切替え、負荷11aが作動する。出力部34aが出力している制御信号が示す電圧値がハイレベル電圧値からローレベル電圧値に切替わった場合、駆動回路22aはスイッチ20aをオンからオフに切替え、負荷11aの動作が停止する。
The output units 34a, 34b,... Correspond to the loads 11a, 11b,. Therefore, each operation | movement of load 11a, 11b, ... is controlled according to the voltage value which the control signal which output part 34a, 34b, ... outputs has shown. As described above, when the voltage value indicated by the control signal output from the output unit 34a is switched from the low level voltage value to the high level voltage value, the drive circuit 22a switches the switch 20a from OFF to ON, and the load 11a. Operates. When the voltage value indicated by the control signal output from the output unit 34a is switched from the high level voltage value to the low level voltage value, the drive circuit 22a switches the switch 20a from on to off, and the operation of the load 11a stops. .
制御部30は、入力部32に作動信号が入力された場合、作動処理を実行する。作動処理では、制御部30は、作動信号が示す一又は複数の負荷夫々に対応する出力部に指示して、制御信号が示す電圧値をローレベル電圧値からハイレベル電圧値に切替えさせる。これにより、入力部32に入力された作動信号が示す一又は複数の負荷が作動する。その後、制御部30は、作動処理を終了する。
The control unit 30 performs an operation process when an operation signal is input to the input unit 32. In the operation process, the control unit 30 instructs the output unit corresponding to each of the one or a plurality of loads indicated by the operation signal to switch the voltage value indicated by the control signal from the low level voltage value to the high level voltage value. Accordingly, one or a plurality of loads indicated by the operation signal input to the input unit 32 are operated. Thereafter, the control unit 30 ends the operation process.
制御部30は、入力部32に停止信号が入力された場合、停止処理を実行する。停止処理では、制御部30は、停止信号が示す一又は複数の負荷夫々に対応する出力部に指示して、制御信号が示す電圧値をハイレベル電圧値からローレベル電圧値に切替えさせる。これにより、入力部32に入力された停止信号が示す一又は複数の負荷が動作を停止する。その後、制御部30は、停止処理を終了する。
When the stop signal is input to the input unit 32, the control unit 30 executes a stop process. In the stop process, the control unit 30 instructs the output unit corresponding to each of the one or a plurality of loads indicated by the stop signal to switch the voltage value indicated by the control signal from the high level voltage value to the low level voltage value. Thereby, the operation | movement of the 1 or several load which the stop signal input into the input part 32 shows stops operation | movement. Thereafter, the control unit 30 ends the stop process.
制御部30は、電線W1,W2,・・・夫々の電線保護処理を時分割方式で並行して実行する。制御部30は、これらのn個の電線保護処理を周期的に実行する。n個の電線保護処理の開始時点は略一致している。
以下では、電線W1の電線保護処理を説明する。電線W2の電線保護処理、及び、図示しない他の電線の電線保護処理は、電線W1の電線保護処理と同様に実行される。このため、これらの電線保護処理の詳細な説明を省略する。 Thecontrol unit 30 executes the electric wire protection processes of the electric wires W1, W2,. The control unit 30 periodically executes these n wire protection processes. The start points of the n wire protection processes are substantially the same.
Below, the electric wire protection process of the electric wire W1 is demonstrated. The wire protection process for the wire W2 and the wire protection process for other wires not shown are performed in the same manner as the wire protection process for the wire W1. For this reason, detailed description of these electric wire protection processes is abbreviate | omitted.
以下では、電線W1の電線保護処理を説明する。電線W2の電線保護処理、及び、図示しない他の電線の電線保護処理は、電線W1の電線保護処理と同様に実行される。このため、これらの電線保護処理の詳細な説明を省略する。 The
Below, the electric wire protection process of the electric wire W1 is demonstrated. The wire protection process for the wire W2 and the wire protection process for other wires not shown are performed in the same manner as the wire protection process for the wire W1. For this reason, detailed description of these electric wire protection processes is abbreviate | omitted.
電線W1の電線保護処理が実行される周期をΔt(単位:s)と記載する。また、以下では、「・」は積を表す。
電線W1の電線保護処理では、制御部30は、A/D変換部35aから電線W1の電線電流値を必ず取得する。従って、電線保護処理の実行に係る周期Δtは電線電流値の取得に係る周期でもある。 A cycle in which the wire protection process of the wire W1 is executed is described as Δt (unit: s). In the following, “·” represents a product.
In the wire protection process of the wire W1, thecontrol unit 30 always acquires the wire current value of the wire W1 from the A / D conversion unit 35a. Therefore, the period Δt related to the execution of the electric wire protection process is also a period related to the acquisition of the electric wire current value.
電線W1の電線保護処理では、制御部30は、A/D変換部35aから電線W1の電線電流値を必ず取得する。従って、電線保護処理の実行に係る周期Δtは電線電流値の取得に係る周期でもある。 A cycle in which the wire protection process of the wire W1 is executed is described as Δt (unit: s). In the following, “·” represents a product.
In the wire protection process of the wire W1, the
繰り返し実行される電線W1の電線保護処理には、電線W1の電線温度と、電線W1の周囲温度との温度差を算出する電線保護処理と、温度差を算出しない電線保護処理とが含まれている。温度差を算出する電線保護処理が実行されてからn周期目の電線保護処理では、再び温度差が算出される。従って、制御部30は、電線保護処理の実行に係るn周期が経過する都度、電線温度と周囲温度との温度差を繰り返し算出する。温度差の算出では、制御部30は、前回算出した温度差と、電線保護処理の実行に係るn周期の1周期目からn周期目に算出した電線電流値の積算値とに基づいて、電線温度と周囲温度との温度差を算出する。
The wire protection process of the wire W1 that is repeatedly executed includes a wire protection process that calculates the temperature difference between the wire temperature of the wire W1 and the ambient temperature of the wire W1, and a wire protection process that does not calculate the temperature difference. Yes. In the wire protection process of the nth cycle after the wire protection process for calculating the temperature difference is executed, the temperature difference is calculated again. Therefore, the control unit 30 repeatedly calculates the temperature difference between the wire temperature and the ambient temperature every time the n period related to the execution of the wire protection process elapses. In the calculation of the temperature difference, the control unit 30 determines the electric wire based on the previously calculated temperature difference and the integrated value of the electric wire current value calculated from the first cycle of the n cycle to the n cycle related to the execution of the wire protection process. Calculate the temperature difference between temperature and ambient temperature.
電線W1の周囲温度は、電線W1が配置される車両内の場所に依存し、車両の外側の温度には殆ど依存することはない。車両内において、電線W1が配置される位置は固定されている。このため、周囲温度を一定温度であると見なすことができる。周囲温度は、予め設定されている。周囲温度は所定温度に相当する。
The ambient temperature of the electric wire W1 depends on the place in the vehicle where the electric wire W1 is arranged, and hardly depends on the temperature outside the vehicle. In the vehicle, the position where the electric wire W1 is arranged is fixed. For this reason, it can be considered that the ambient temperature is a constant temperature. The ambient temperature is preset. The ambient temperature corresponds to a predetermined temperature.
電線W1の電線温度の算出を説明する。電線保護処理の実行に係るn周期のs周期目における温度差及び電線電流値夫々をΔT(s)(単位:℃)及びI(s)(単位:A)と記載する。sは、ゼロ以上であり、かつ、n以下の整数である。温度差ΔT(n)はn周期目における温度差であり、先行温度差ΔT(0)は前回算出された温度差である。温度差ΔT(n)は、下記の(1)式、(2)式及び(3)式によって算出される。
The calculation of the wire temperature of the wire W1 will be described. The temperature difference and the electric wire current value in the s period of the n period related to the execution of the electric wire protection process are described as ΔT (s) (unit: ° C.) and I (s) (unit: A). s is an integer greater than or equal to zero and less than or equal to n. The temperature difference ΔT (n) is a temperature difference in the nth cycle, and the preceding temperature difference ΔT (0) is a previously calculated temperature difference. The temperature difference ΔT (n) is calculated by the following equations (1), (2), and (3).
ここで、τは電線W1の放熱時定数(単位:s)である。Rthは電線W1の電線熱抵抗(単位:℃/W)である。Rwは電線W1の電線抵抗(単位:Ω)である。周期Δt、放熱時定数τ、電線熱抵抗Rth及び電線抵抗Rwは一定である。このため、Ca及びCb夫々は定数である。
電線抵抗Rwは、例えば、電線W1の電線温度が、電線W1が発煙する発煙温度である場合における電線W1の電線抵抗である。このように電線抵抗Rwを設定した場合において、電線W1の電線温度が低いとき、電線抵抗Rwは実際の電線抵抗よりも大きく、温度差ΔT(n)も実際の温度差よりも大きい。同様の場合において、電線W1の電線温度が高いとき、電線抵抗Rwは実際の電線抵抗と略一致し、温度差ΔT(n)も実際の温度差と略一致する。従って、電線抵抗Rwを、電線温度が発煙温度である場合における電線抵抗に設定することによって、電線温度が高い場合、即ち、正確な電線温度の演算が要求される場合に、正確な温度差が算出される。 Here, τ is a heat dissipation time constant (unit: s) of the electric wire W1. Rth is the wire thermal resistance (unit: ° C./W) of the wire W1. Rw is the wire resistance (unit: Ω) of the wire W1. The period Δt, the heat radiation time constant τ, the wire thermal resistance Rth, and the wire resistance Rw are constant. For this reason, Ca and Cb are constants.
The wire resistance Rw is, for example, the wire resistance of the wire W1 when the wire temperature of the wire W1 is a smoke generation temperature at which the wire W1 smokes. When the wire resistance Rw is set in this way, when the wire temperature of the wire W1 is low, the wire resistance Rw is larger than the actual wire resistance, and the temperature difference ΔT (n) is also larger than the actual temperature difference. In the same case, when the wire temperature of the wire W1 is high, the wire resistance Rw substantially matches the actual wire resistance, and the temperature difference ΔT (n) also substantially matches the actual temperature difference. Therefore, by setting the wire resistance Rw to the wire resistance when the wire temperature is the smoke generation temperature, when the wire temperature is high, that is, when an accurate calculation of the wire temperature is required, an accurate temperature difference is obtained. Calculated.
電線抵抗Rwは、例えば、電線W1の電線温度が、電線W1が発煙する発煙温度である場合における電線W1の電線抵抗である。このように電線抵抗Rwを設定した場合において、電線W1の電線温度が低いとき、電線抵抗Rwは実際の電線抵抗よりも大きく、温度差ΔT(n)も実際の温度差よりも大きい。同様の場合において、電線W1の電線温度が高いとき、電線抵抗Rwは実際の電線抵抗と略一致し、温度差ΔT(n)も実際の温度差と略一致する。従って、電線抵抗Rwを、電線温度が発煙温度である場合における電線抵抗に設定することによって、電線温度が高い場合、即ち、正確な電線温度の演算が要求される場合に、正確な温度差が算出される。 Here, τ is a heat dissipation time constant (unit: s) of the electric wire W1. Rth is the wire thermal resistance (unit: ° C./W) of the wire W1. Rw is the wire resistance (unit: Ω) of the wire W1. The period Δt, the heat radiation time constant τ, the wire thermal resistance Rth, and the wire resistance Rw are constant. For this reason, Ca and Cb are constants.
The wire resistance Rw is, for example, the wire resistance of the wire W1 when the wire temperature of the wire W1 is a smoke generation temperature at which the wire W1 smokes. When the wire resistance Rw is set in this way, when the wire temperature of the wire W1 is low, the wire resistance Rw is larger than the actual wire resistance, and the temperature difference ΔT (n) is also larger than the actual temperature difference. In the same case, when the wire temperature of the wire W1 is high, the wire resistance Rw substantially matches the actual wire resistance, and the temperature difference ΔT (n) also substantially matches the actual temperature difference. Therefore, by setting the wire resistance Rw to the wire resistance when the wire temperature is the smoke generation temperature, when the wire temperature is high, that is, when an accurate calculation of the wire temperature is required, an accurate temperature difference is obtained. Calculated.
温度差ΔT(n-1)は、(n-1)周期目における温度差であり、算出されることはない。このため、温度差ΔT(n-1)を電線電流値I(n-1)及び温度差ΔT(n-2)で表し、(1)式を展開すると、温度差ΔT(n)は下記式で表される。
The temperature difference ΔT (n−1) is a temperature difference in the (n−1) period and is not calculated. For this reason, the temperature difference ΔT (n−1) is represented by the electric wire current value I (n−1) and the temperature difference ΔT (n−2), and when the equation (1) is developed, the temperature difference ΔT (n) It is represented by
同様の展開を繰り返すことによって、温度差ΔT(n)は、電線電流値I(n),I(n-1),・・・,I(1)と、先行温度差ΔT(0)とを用いて下記の(4)式のように表すことができる。
By repeating the same development, the temperature difference ΔT (n) is obtained by changing the electric wire current values I (n), I (n−1),..., I (1) and the preceding temperature difference ΔT (0). And can be expressed as the following equation (4).
ここで、前述した整数n、周期Δt及び電線放熱時定数τを用いて、定数Ctを1-exp(-n・Δt/τ)と定義する。Ct=1-{exp(-Δt/τ)}n と、(2)式とを用いて、exp(-Δt/τ)を消去した場合、(2)式を下記式ように展開することができる。
Ct=1-(1-Ca)n
従って、(1-Ca)n を(1-Ct)と表すことができる。そして、(4)式の(1-Ca)n を(1-Ct)に置き換えると、(4)式は、下記の(5)式のように展開される。 Here, the constant Ct is defined as 1-exp (−n · Δt / τ) using the integer n, the period Δt, and the wire heat dissipation time constant τ described above. When exp (−Δt / τ) is deleted using Ct = 1− {exp (−Δt / τ)} n and equation (2), equation (2) can be expanded as it can.
Ct = 1- (1-Ca) n
Therefore, (1-Ca) n can be expressed as (1-Ct). Then, when (1-Ca) n in the equation (4) is replaced with (1-Ct), the equation (4) is expanded as the following equation (5).
Ct=1-(1-Ca)n
従って、(1-Ca)n を(1-Ct)と表すことができる。そして、(4)式の(1-Ca)n を(1-Ct)に置き換えると、(4)式は、下記の(5)式のように展開される。 Here, the constant Ct is defined as 1-exp (−n · Δt / τ) using the integer n, the period Δt, and the wire heat dissipation time constant τ described above. When exp (−Δt / τ) is deleted using Ct = 1− {exp (−Δt / τ)} n and equation (2), equation (2) can be expanded as it can.
Ct = 1- (1-Ca) n
Therefore, (1-Ca) n can be expressed as (1-Ct). Then, when (1-Ca) n in the equation (4) is replaced with (1-Ct), the equation (4) is expanded as the following equation (5).
Δt/τは正の実数であるため、exp(-Δt/τ)は1未満である。また、放熱時定数τは大きく、周期Δtは小さいため、exp(-Δt/τ)は、1に略一致する。このため、(2)式で表されるCaは、1よりも十分に小さく、(1-Ca)を1に近似することができる。このように近似を行った場合、ΔT(n)は、下記の(6)式で表すことができる。
Since Δt / τ is a positive real number, exp (−Δt / τ) is less than 1. Further, since the heat radiation time constant τ is large and the period Δt is small, exp (−Δt / τ) is approximately equal to 1. Therefore, Ca represented by the equation (2) is sufficiently smaller than 1, and (1-Ca) can be approximated to 1. When approximation is performed in this way, ΔT (n) can be expressed by the following equation (6).
(6)式の右辺について、第1項は発熱を表し、第2項は放熱を表す。また、定数Ctは、ゼロを超えており、かつ、1未満であるため、(1-Ct)もゼロを超えており、かつ、1未満である。例えば、(1-Ct)が0.8であり、かつ、電線電流値I(n),I(n-1),・・・,I(1)の全てがゼロであった場合、温度差ΔT(n)は、0.8・ΔT(0)であり、前回算出した温度差の80%であることを示す。従って、電線電流値がゼロである状態が継続した場合、電線温度と周囲温度との温度差は小さくなり、電線温度は周囲温度に近づく。
For the right side of equation (6), the first term represents heat generation and the second term represents heat dissipation. Since the constant Ct exceeds zero and is less than 1, (1-Ct) also exceeds zero and is less than 1. For example, if (1-Ct) is 0.8 and the wire current values I (n), I (n-1),..., I (1) are all zero, the temperature difference ΔT (n) is 0.8 · ΔT (0), which indicates that it is 80% of the previously calculated temperature difference. Therefore, when the state where the electric wire current value is zero continues, the temperature difference between the electric wire temperature and the ambient temperature becomes small, and the electric wire temperature approaches the ambient temperature.
n周期目の電線保護処理では、制御部30は、前回算出した先行温度差ΔT(0)と、1周期目から(n-1)周期目の電線保護処理で算出した電線電流値I(1),I(2),・・・,I(n)夫々の2乗値の積算値とを(6)式に代入することによって、温度差ΔT(n)を算出する。制御部30は、算出した温度差ΔT(n)に、予め設定されている周囲温度を加算することによって電線温度を算出する。
In the wire protection process in the nth cycle, the control unit 30 calculates the preceding temperature difference ΔT (0) calculated last time and the wire current value I (1) calculated in the wire protection process in the (n−1) th cycle from the first cycle. ), I (2),..., I (n), and the integrated value of the square values of each, is substituted into the equation (6) to calculate the temperature difference ΔT (n). The control unit 30 calculates the wire temperature by adding a preset ambient temperature to the calculated temperature difference ΔT (n).
制御部30は、電線温度が温度閾値以上であるか否かを判定する。制御部30は、電線温度が温度閾値以上であると判定した場合、出力部34aに指示して、出力部34aが出力している制御信号が示す電圧値をハイレベル電圧値からローレベル電圧値に切替える。これにより、駆動回路22aはスイッチ20aをオンからオフに切替え、電線W1を介した通電が遮断される。
The control unit 30 determines whether or not the wire temperature is equal to or higher than the temperature threshold. When it is determined that the wire temperature is equal to or higher than the temperature threshold, the control unit 30 instructs the output unit 34a to change the voltage value indicated by the control signal output from the output unit 34a from the high level voltage value to the low level voltage value. Switch to. Thereby, the drive circuit 22a switches the switch 20a from on to off, and the energization through the electric wire W1 is interrupted.
電線保護処理の実行に係るn周期のk(k:整数n未満の自然数)周期目の電線保護処理では、制御部30は、1周期目からk周期目の電線保護処理で取得した電線電流値I(1),I(2),・・・,I(k)の2乗値の積算値が積算閾値以上であるか否かを判定することによって、電線温度が温度閾値以上であるか否かを判定する。
In the wire protection process in the n period k (k: a natural number less than an integer n) in the execution of the wire protection process, the control unit 30 acquires the wire current value acquired in the wire protection process in the k period from the first period. Whether or not the wire temperature is equal to or higher than the temperature threshold by determining whether or not the integrated value of the square values of I (1), I (2),. Determine whether.
k周期目の温度差ΔT(k)は下記の(7)式で表される。(7)式は、(4)式において、整数nを自然数kに置き換えた式である。
The temperature difference ΔT (k) at the kth cycle is expressed by the following equation (7). The expression (7) is an expression in which the integer n is replaced with a natural number k in the expression (4).
ここで、前述したように、(1-Ca)を1に近似した場合、(7)式は下記の(8)式のように展開される。
Here, as described above, when (1-Ca) is approximated to 1, equation (7) is expanded as the following equation (8).
(8)式ついて、右辺の値は温度差ΔT(0)以上であるため、温度差ΔT(k)はΔT(0)から低下することはない。従って、(8)式では、放熱量がゼロであるとみなされている。
周囲温度をTa(単位:℃)と表した場合、k周期目における電線温度(Ta+ΔT(k))と、前回算出した電線温度(Ta+ΔT(0))との差は、ΔT(k)-ΔT(0)である。このため、(8)式の右辺の第1項は、前回算出した電線温度からの温度の上昇幅を示している。電線温度(Ta+ΔT(k))が温度閾値Tth以上である場合、即ち、Ta+ΔT(k)≧Tthを満たす場合にスイッチ20aをオンからオフに切替える。Ta+ΔT(k)≧Tthは下記のように展開される。 Since the value on the right side of the equation (8) is equal to or greater than the temperature difference ΔT (0), the temperature difference ΔT (k) does not decrease from ΔT (0). Therefore, in the equation (8), it is considered that the heat radiation amount is zero.
When the ambient temperature is expressed as Ta (unit: ° C.), the difference between the wire temperature (Ta + ΔT (k)) at the kth cycle and the previously calculated wire temperature (Ta + ΔT (0)) is ΔT (k) −ΔT (0). For this reason, the first term on the right side of equation (8) indicates the temperature increase from the previously calculated wire temperature. When the electric wire temperature (Ta + ΔT (k)) is equal to or higher than the temperature threshold Tth, that is, when Ta + ΔT (k) ≧ Tth is satisfied, theswitch 20a is switched from on to off. Ta + ΔT (k) ≧ Tth is developed as follows.
周囲温度をTa(単位:℃)と表した場合、k周期目における電線温度(Ta+ΔT(k))と、前回算出した電線温度(Ta+ΔT(0))との差は、ΔT(k)-ΔT(0)である。このため、(8)式の右辺の第1項は、前回算出した電線温度からの温度の上昇幅を示している。電線温度(Ta+ΔT(k))が温度閾値Tth以上である場合、即ち、Ta+ΔT(k)≧Tthを満たす場合にスイッチ20aをオンからオフに切替える。Ta+ΔT(k)≧Tthは下記のように展開される。 Since the value on the right side of the equation (8) is equal to or greater than the temperature difference ΔT (0), the temperature difference ΔT (k) does not decrease from ΔT (0). Therefore, in the equation (8), it is considered that the heat radiation amount is zero.
When the ambient temperature is expressed as Ta (unit: ° C.), the difference between the wire temperature (Ta + ΔT (k)) at the kth cycle and the previously calculated wire temperature (Ta + ΔT (0)) is ΔT (k) −ΔT (0). For this reason, the first term on the right side of equation (8) indicates the temperature increase from the previously calculated wire temperature. When the electric wire temperature (Ta + ΔT (k)) is equal to or higher than the temperature threshold Tth, that is, when Ta + ΔT (k) ≧ Tth is satisfied, the
上記の2式中の第2式の右辺を積算閾値Fthと定義した場合、Ta+ΔT(k)≧Tthは、下記の(9)式及び(10)式で表される。
When the right side of the second expression in the above two expressions is defined as the integration threshold Fth, Ta + ΔT (k) ≧ Tth is expressed by the following expressions (9) and (10).
(10)式の右辺において、変数は先行温度差ΔT(0)のみである。従って、積算閾値Fthは、先行温度差ΔT(0)、即ち、制御部30が算出した温度差に基づいて変更される。また、前回算出した電線温度TwはTa+ΔT(0)で表されるので、積算閾値Fthは、制御部30が算出した電線温度に基づいて変更される。
In the right side of equation (10), the only variable is the preceding temperature difference ΔT (0). Therefore, the integrated threshold value Fth is changed based on the preceding temperature difference ΔT (0), that is, the temperature difference calculated by the control unit 30. Further, since the previously calculated wire temperature Tw is represented by Ta + ΔT (0), the integrated threshold Fth is changed based on the wire temperature calculated by the control unit 30.
従って、制御部30は、電線温度Twを算出する都度、即ち、電線保護処理の実行に係るn周期が経過する都度、積算閾値Fthを変更する。n周期中のk周期目の電線保護処理では、制御部30は、電線電流値の2乗値の積算値I(1)2 +I(2)2 +・・・+I(k)2 が積算閾値Fth以上であるか否かを判定することによって、電線温度Twが温度閾値Tth以上であるか否かを判定する。
Therefore, the control unit 30 changes the integrated threshold value Fth every time the wire temperature Tw is calculated, that is, every time the n period related to the execution of the wire protection process elapses. In the wire protection process at the k-th cycle in the n cycle, the control unit 30 determines that the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of the square value of the wire current value is the integrated threshold value. By determining whether or not it is equal to or higher than Fth, it is determined whether or not the wire temperature Tw is equal to or higher than the temperature threshold Tth.
制御部30は、電線電流値の2乗値の積算値I(1)2 +I(2)2 +・・・+I(k)2 が積算閾値Fth以上であると判定した場合、出力部34aに指示して、出力部34aが出力している制御信号が示す電圧値をハイレベル電圧値からローレベル電圧値に切替える。これにより、駆動回路22aはスイッチ20aをオンからオフに切替え、電線W1を介した通電が遮断される。
When the control unit 30 determines that the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of the square value of the electric wire current value is equal to or greater than the integrated threshold Fth, the control unit 30 The voltage value indicated by the control signal output from the output unit 34a is switched from the high level voltage value to the low level voltage value. Thereby, the drive circuit 22a switches the switch 20a from on to off, and the energization through the electric wire W1 is interrupted.
図3は、電線W1の電線保護処理の手順を示すフローチャートである。記憶部31には、周期の数をカウントするためのカウンタ値と、電線電流値の積算値と、先行温度差とが記憶されている。これらは制御部30によって変更される。前述したように、先行温度差は、前回算出した電線温度と周囲温度との温度差である。
FIG. 3 is a flowchart showing the procedure of the wire protection process for the wire W1. The storage unit 31 stores a counter value for counting the number of cycles, an integrated value of the electric wire current value, and a preceding temperature difference. These are changed by the control unit 30. As described above, the preceding temperature difference is a temperature difference between the previously calculated wire temperature and the ambient temperature.
電線保護処理では、制御部30は、まず、カウンタ値を1だけインクリメントし(ステップS1)、抵抗R1の両端電圧値をA/D変換部35aから取得する(ステップS2)。前述したように、抵抗R1の両端電圧値は電線W1の電線電流値に比例するので、両端電圧値を取得することは電線電流値を取得することに相当する。電線電流値は、両端電圧値と、前述した所定数との積を抵抗R1の抵抗値で除算することによって算出される。電線保護処理は周期的に実行されるので、制御部30は、抵抗R1の両端電圧値を周期的に取得する。制御部30は、取得部として機能する。
In the wire protection process, the control unit 30 first increments the counter value by 1 (step S1), and acquires the voltage value across the resistor R1 from the A / D conversion unit 35a (step S2). As described above, since the voltage value across the resistor R1 is proportional to the wire current value of the wire W1, obtaining the voltage value across the wire corresponds to obtaining the wire current value. The electric wire current value is calculated by dividing the product of the voltage value at both ends and the predetermined number described above by the resistance value of the resistor R1. Since the wire protection process is periodically executed, the control unit 30 periodically acquires the voltage value across the resistor R1. The control unit 30 functions as an acquisition unit.
次に、制御部30は、ステップS2で取得した両端電圧値が示す電線電流値の2乗値を算出する(ステップS3)。制御部30は、2乗値算出部としても機能する。
次に、制御部30は、ステップS3で算出した2乗値を、記憶部31に記憶されている積算値に加算する(ステップS4)。記憶部31に記憶されている積算値は、ステップS4で算出された積算値に変更される。 Next, thecontrol part 30 calculates the square value of the electric wire current value which the both-ends voltage value acquired by step S2 shows (step S3). The control unit 30 also functions as a square value calculation unit.
Next, thecontrol unit 30 adds the square value calculated in step S3 to the integrated value stored in the storage unit 31 (step S4). The integrated value stored in the storage unit 31 is changed to the integrated value calculated in step S4.
次に、制御部30は、ステップS3で算出した2乗値を、記憶部31に記憶されている積算値に加算する(ステップS4)。記憶部31に記憶されている積算値は、ステップS4で算出された積算値に変更される。 Next, the
Next, the
電線保護処理では、記憶部31に記憶されているカウンタ値が整数nとなった場合、記憶部31に記憶されているカウンタ値及び積算値はゼロに変更される。従って、ステップS1が実行された時点のカウンタ値が自然数uである電線保護処理は、u周期目の電線保護処理である。そして、u周期目の電線保護処理において、ステップS4が実行された時点の積算値は、I(1)2 +I(2)2 +・・・+I(u)2 である。
In the electric wire protection process, when the counter value stored in the storage unit 31 becomes an integer n, the counter value and the integrated value stored in the storage unit 31 are changed to zero. Therefore, the wire protection process whose counter value at the time when Step S1 is executed is the natural number u is the wire protection process of the u-th cycle. In the wire protection process at the u-th cycle, the integrated value at the time when step S4 is executed is I (1) 2 + I (2) 2 +... + I (u) 2 .
次に、制御部30は、カウンタ値が整数nであるか否かを判定する(ステップS5)。制御部30は、カウンタ値が整数nではない、即ち、カウンタ値が整数n未満であると判定した場合(S5:NO)、積算値が積算閾値以上であるか否かを判定する(ステップS6)。ステップS6で用いられる積算値及び積算閾値夫々は、記憶部31に記憶されている積算値及び積算閾値である。制御部30は積算値判定部としても機能する。
Next, the control unit 30 determines whether or not the counter value is an integer n (step S5). When it is determined that the counter value is not the integer n, that is, the counter value is less than the integer n (S5: NO), the control unit 30 determines whether or not the integrated value is greater than or equal to the integration threshold (step S6). ). The integrated value and the integrated threshold used in step S6 are the integrated value and the integrated threshold stored in the storage unit 31, respectively. The control unit 30 also functions as an integrated value determination unit.
制御部30は、積算値が積算閾値未満であると判定した場合(S6:NO)、電線W1の電線保護処理を終了する。この場合、周期Δtが経過した後、再び電線W1の電線保護処理が実行される。
When it is determined that the integrated value is less than the integrated threshold (S6: NO), the control unit 30 ends the wire protection process for the wire W1. In this case, after the period Δt has elapsed, the wire protection process for the wire W1 is executed again.
制御部30は、積算値が積算閾値以上であると判定した場合(S6:YES)、出力部34aに指示して、出力部34aが出力している制御信号が示す電圧値をローレベル電圧値に切替えさせる(ステップS7)。これにより、駆動回路22aはスイッチ20aをオフに切替える。
When determining that the integrated value is equal to or greater than the integrated threshold (S6: YES), the control unit 30 instructs the output unit 34a to set the voltage value indicated by the control signal output by the output unit 34a to the low level voltage value. (Step S7). As a result, the drive circuit 22a switches the switch 20a to OFF.
制御部30は、ステップS7を実行した後、電線W1の電線保護処理を終了する。この場合、第2の所定条件が満たされるまで、制御部30は電線W1の電線保護処理を実行せず、スイッチ20aをオフに維持する。第2の所定条件は、例えば、入力部32に、負荷11aを示す停止信号、及び、負荷11aの作動を示す作動信号が順次入力されることである。
The control part 30 complete | finishes the electric wire protection process of the electric wire W1, after performing step S7. In this case, until the second predetermined condition is satisfied, the control unit 30 does not execute the wire protection process for the wire W1, and keeps the switch 20a off. The second predetermined condition is, for example, that a stop signal indicating the load 11a and an operation signal indicating the operation of the load 11a are sequentially input to the input unit 32.
制御部30は、カウンタ値が整数nであると判定した場合、即ち、現在実行している電線保護処理がn周期目の電線保護処理であると判定した場合(S5:YES)、記憶部31に記憶されているカウンタ値をゼロに変更し(ステップS8)、記憶部31から先行温度差を読み出す(ステップS9)。次に、制御部30は、ステップS4で算出した積算値I(1)2 +I(2)2 +・・・+I(n)2 と、ステップS9で読み出した先行温度差ΔT(0)とを(6)式に代入し、温度差ΔT(n)を算出する(ステップS10)。
When the control unit 30 determines that the counter value is an integer n, that is, when it is determined that the currently executed wire protection processing is the n-th cycle wire protection processing (S5: YES), the storage unit 31. Is changed to zero (step S8), and the preceding temperature difference is read from the storage unit 31 (step S9). Next, the control unit 30 calculates the integrated value I (1) 2 + I (2) 2 +... + I (n) 2 calculated in step S4 and the preceding temperature difference ΔT (0) read in step S9. Substituting into the equation (6), the temperature difference ΔT (n) is calculated (step S10).
従って、制御部30は、カウンタ値が整数nとなる都度、即ち、電線保護処理の実行に係るn周期が経過する都度、1周期目からn周期目の電線保護処理のステップS4で算出したn個の2乗値の積算値と、先行温度差とに基づいて、電線温度と周囲温度との温度差を算出する。制御部30は温度差算出部としても機能する。
ステップS10では、電線電流値の2乗値の積算値に基づいて温度差が算出されるので、温度差の算出が容易である。また、電線保護処理では、ステップS3で算出される2乗値は、積算値に係る判定だけではなく、電線温度の算出にも用いられる。 Therefore, every time the counter value becomes the integer n, that is, every time when the n period related to the execution of the wire protection process elapses, thecontrol unit 30 calculates the n calculated in step S4 of the wire protection process from the 1st cycle to the nth cycle. The temperature difference between the electric wire temperature and the ambient temperature is calculated based on the integrated value of the square values and the preceding temperature difference. The control unit 30 also functions as a temperature difference calculation unit.
In step S10, since the temperature difference is calculated based on the integrated value of the square value of the electric wire current value, it is easy to calculate the temperature difference. In the electric wire protection process, the square value calculated in step S3 is used not only for determination related to the integrated value but also for calculating electric wire temperature.
ステップS10では、電線電流値の2乗値の積算値に基づいて温度差が算出されるので、温度差の算出が容易である。また、電線保護処理では、ステップS3で算出される2乗値は、積算値に係る判定だけではなく、電線温度の算出にも用いられる。 Therefore, every time the counter value becomes the integer n, that is, every time when the n period related to the execution of the wire protection process elapses, the
In step S10, since the temperature difference is calculated based on the integrated value of the square value of the electric wire current value, it is easy to calculate the temperature difference. In the electric wire protection process, the square value calculated in step S3 is used not only for determination related to the integrated value but also for calculating electric wire temperature.
次に、制御部30は、予め設定されている周囲温度にステップS10で算出した温度差を加算することによって、電線W1の電線温度を算出する(ステップS11)。従って、制御部30は、カウンタ値が整数nになる都度、即ち、電線保護処理の実行に係るn周期が経過する都度、ステップS11を実行し、電線温度を算出する。制御部30は、温度算出部としても機能する。
Next, the control unit 30 calculates the wire temperature of the wire W1 by adding the temperature difference calculated in step S10 to the preset ambient temperature (step S11). Therefore, the control unit 30 executes step S11 every time the counter value reaches the integer n, that is, every time when the n period related to the execution of the wire protection process elapses, and calculates the wire temperature. The control unit 30 also functions as a temperature calculation unit.
制御部30は、ステップS11を実行した後、記憶部31に記憶されている積算値をゼロに変更し(ステップS12)、ステップS11で算出した電線温度が温度閾値以上であるか否かを判定する(ステップS13)。制御部30は、電線温度が温度閾値以上であると判定した場合(S13:YES)、ステップS7を実行する。これにより、駆動回路22aはスイッチ20aをオフに切替え、第2の所定条件が満たされるまでスイッチ20aのオフが維持される。
After executing step S11, the control unit 30 changes the integrated value stored in the storage unit 31 to zero (step S12), and determines whether or not the wire temperature calculated in step S11 is equal to or higher than the temperature threshold. (Step S13). When it determines with the electric wire temperature being more than a temperature threshold value (S13: YES), the control part 30 performs step S7. As a result, the drive circuit 22a switches the switch 20a to off, and the switch 20a is kept off until the second predetermined condition is satisfied.
制御部30は、電線温度が温度閾値未満であると判定した場合(ステップS13:NO)、記憶部31に記憶されている先行温度差を、ステップS10で算出した温度差に変更する(ステップS14)。次に、制御部30は、ステップS14で変更された先行温度差ΔT(0)を(10)式に代入することによって積算閾値Fthを算出する(ステップS15)。ステップS15では、ステップS11で算出された電線温度が高い程、即ち、ステップS14で変更された先行温度差が高い程、小さな積算値が算出される。次に、制御部30は、記憶部31に記憶されている積算閾値を、ステップS15で算出した積算閾値に変更する(ステップS16)。制御部30は変更部としても機能する。
When it is determined that the wire temperature is lower than the temperature threshold (step S13: NO), the control unit 30 changes the preceding temperature difference stored in the storage unit 31 to the temperature difference calculated in step S10 (step S14). ). Next, the control unit 30 calculates the integrated threshold value Fth by substituting the preceding temperature difference ΔT (0) changed in step S14 into the equation (10) (step S15). In step S15, a smaller integrated value is calculated as the electric wire temperature calculated in step S11 is higher, that is, as the preceding temperature difference changed in step S14 is higher. Next, the control unit 30 changes the integration threshold value stored in the storage unit 31 to the integration threshold value calculated in Step S15 (Step S16). The control unit 30 also functions as a changing unit.
制御部30は、ステップS16を実行した後、電線W1の電線保護処理を終了する。この場合、周期Δtが経過した後、再び電線W1の電線保護処理が実行される。
The control part 30 complete | finishes the electric wire protection process of the electric wire W1, after performing step S16. In this case, after the period Δt has elapsed, the wire protection process for the wire W1 is executed again.
k周期目の電線保護処理のステップS6では、(9)式を満たすか否かが判定される。即ち、積算値I(1)2 +I(2)2 +・・・+I(k)2 が積算閾値Fth以上であるか否かが判定される。(8)式の説明で述べたように、k個の2乗値の積算値I(1)2 +I(2)2 +・・・+I(k)2 は電線温度の上昇幅を示す。即ち、電線温度の上昇幅は、電線W1で消費された消費電力、即ち、電線電流値の2乗値の積算値が大きい程、大きい。
In step S6 of the k-th cycle wire protection process, it is determined whether or not the formula (9) is satisfied. That is, it is determined whether or not the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 is equal to or greater than the integrated threshold Fth. As described in the description of the equation (8), the integrated value I (1) 2 + I (2) 2 +... + I (k) 2 of k square values indicates the increase range of the wire temperature. That is, the increasing range of the wire temperature increases as the power consumption consumed by the wire W1, that is, the integrated value of the square value of the wire current value increases.
制御部30は、n周期目の電線保護処理で算出した電線温度が高い程、即ち、電線温度が温度閾値に近い程、ステップS16で積算閾値を小さい値に変更する。積算閾値は、許容される電線温度の上昇幅を示す。
従って、ステップS6を実行することは、k周期中の電線温度の上昇幅が、許容される電線温度の上昇幅以上であるか否かを判定すること、即ち、電線温度が温度閾値以上であるか否かを判定することに相当する。結果、ステップS6では、制御部30は、電線電流値を用いて、電線温度に係る判定と略等価な判定を行っている。 Thecontroller 30 changes the integrated threshold value to a smaller value in step S16 as the electric wire temperature calculated in the n-th electric wire protection process is higher, that is, as the electric wire temperature is closer to the temperature threshold value. The integrated threshold indicates an allowable increase in the wire temperature.
Therefore, executing step S6 determines whether or not the increase in the wire temperature during the k period is equal to or greater than the allowable increase in the wire temperature, that is, the wire temperature is equal to or greater than the temperature threshold. This is equivalent to determining whether or not. As a result, in step S6, thecontrol unit 30 performs a determination that is substantially equivalent to the determination related to the wire temperature, using the wire current value.
従って、ステップS6を実行することは、k周期中の電線温度の上昇幅が、許容される電線温度の上昇幅以上であるか否かを判定すること、即ち、電線温度が温度閾値以上であるか否かを判定することに相当する。結果、ステップS6では、制御部30は、電線電流値を用いて、電線温度に係る判定と略等価な判定を行っている。 The
Therefore, executing step S6 determines whether or not the increase in the wire temperature during the k period is equal to or greater than the allowable increase in the wire temperature, that is, the wire temperature is equal to or greater than the temperature threshold. This is equivalent to determining whether or not. As a result, in step S6, the
図4は、カウンタ値の推移を示す図表である。前述したように、電線W2の電線保護処理、及び、図示しない他の電線の電線保護処理は、電線W1の電線保護処理と同様に実行され、電線W1,W2,・・・の電線保護処理は略同時に実行される。図4には、整数nが4である場合における電線W1,W2,W3,W4の電線保護処理に係るカウンタ値の推移が示されている。
FIG. 4 is a chart showing the transition of the counter value. As described above, the wire protection process for the wire W2 and the wire protection process for other wires not shown are executed in the same manner as the wire protection process for the wire W1, and the wire protection process for the wires W1, W2,. It is executed almost simultaneously. FIG. 4 shows the transition of the counter value related to the wire protection processing of the wires W1, W2, W3, and W4 when the integer n is 4.
電線W1,W2,W3,W4夫々の第1回目の電線保護処理に係るカウンタ値は、1、2、3及び4である。電線W1,W2,W3,W4夫々の第2回目の電線保護処理に係るカウンタ値は、2、3、4及び1である。電線W1,W2,W3,W4夫々の第3回目の電線保護処理に係るカウンタ値は、3、4、1及び2である。電線W1,W2,W3,W4夫々の第4回目の電線保護処理に係るカウンタ値は、4、1、2及び3である。この次の電線保護処理は、第1回目の電線保護処理である。
The counter values related to the first wire protection process for the wires W1, W2, W3, and W4 are 1, 2, 3, and 4, respectively. The counter values relating to the second wire protection process for the wires W1, W2, W3, and W4 are 2, 3, 4, and 1, respectively. The counter values related to the third wire protection process for the wires W1, W2, W3, and W4 are 3, 4, 1, and 2, respectively. The counter values related to the fourth wire protection process for the wires W1, W2, W3, and W4 are 4, 1, 2, and 3, respectively. This next wire protection process is the first wire protection process.
n周期目、即ち、4周期目の電線保護処理で制御部30は電線温度に係る判定を行い、1周期目から3周期目の電線保護処理では、制御部30は、積算値に係る判定を行う。図4に示すように、電線W1,W2,W3,W4の電線保護処理に係るカウンタ値は、相互に異なっている。このため、常に、開始時点が略一致している4つの電線保護処理中の1つの電線保護処理では、電線温度に係る判定が行われ、他の3つの電線保護処理では、積算値に係る判定が行われる。
In the wire protection process in the nth cycle, that is, in the fourth cycle, the control unit 30 makes a determination related to the wire temperature. In the wire protection processing in the first cycle to the third cycle, the control unit 30 makes a determination related to the integrated value. Do. As shown in FIG. 4, the counter values related to the wire protection processing of the wires W1, W2, W3, and W4 are different from each other. For this reason, the determination related to the wire temperature is always performed in one wire protection process among the four wire protection processes whose start time points substantially coincide with each other, and the determination related to the integrated value is performed in the other three wire protection processes. Is done.
当然のことながら、電線温度の算出に係る制御部30の処理量は、積算値の算出に係る制御部30の処理量よりも大きい。前述したように、電線W1,W2,W3,W4の電線保護処理に係るカウンタ値は、相互に異なっている。このため、単位時間に行う制御部30の処理量の最大値は小さい。単位時間に行う処理量の最大値が大きい程、制御部30が有するCPUとして、高価なCPUを用いる必要がある。給電制御装置12では、単位時間に行う処理量の最大値が小さいため、制御部30が有するCPUとして、安価なCPUを用いることができる。
As a matter of course, the processing amount of the control unit 30 related to the calculation of the wire temperature is larger than the processing amount of the control unit 30 related to the calculation of the integrated value. As described above, the counter values related to the wire protection processing of the wires W1, W2, W3, and W4 are different from each other. For this reason, the maximum value of the processing amount of the control unit 30 performed per unit time is small. As the maximum value of the processing amount performed per unit time is larger, it is necessary to use an expensive CPU as the CPU of the control unit 30. In the power supply control device 12, since the maximum value of the processing amount performed per unit time is small, an inexpensive CPU can be used as the CPU of the control unit 30.
整数nが2、3又は5以上である場合においても、n個の電線W1,W2,・・・の電線保護処理に係るカウンタ値は、相互に異なっているので、単位時間に行う制御部30の処理量の最大値は小さい。
Even when the integer n is 2, 3 or 5 or more, the counter values related to the wire protection processing of the n wires W1, W2,... Are different from each other. The maximum processing amount is small.
(実施形態2)
実施形態1における電線保護処理では、電線温度の算出に、近似が行われた(6)式が用いられている。しかしながら、電線温度の算出に(5)式を用いてもよい。
以下では、実施形態2について、実施形態1と異なる点を説明する。後述する構成を除く他の構成については、実施形態1と共通しているため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。 (Embodiment 2)
In the wire protection process in the first embodiment, the approximation (6) is used for the calculation of the wire temperature. However, equation (5) may be used for calculating the wire temperature.
In the following, the second embodiment will be described while referring to differences from the first embodiment. Since the configuration other than the configuration described below is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given to the components common to the first embodiment, and the description thereof is omitted.
実施形態1における電線保護処理では、電線温度の算出に、近似が行われた(6)式が用いられている。しかしながら、電線温度の算出に(5)式を用いてもよい。
以下では、実施形態2について、実施形態1と異なる点を説明する。後述する構成を除く他の構成については、実施形態1と共通しているため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。 (Embodiment 2)
In the wire protection process in the first embodiment, the approximation (6) is used for the calculation of the wire temperature. However, equation (5) may be used for calculating the wire temperature.
In the following, the second embodiment will be described while referring to differences from the first embodiment. Since the configuration other than the configuration described below is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given to the components common to the first embodiment, and the description thereof is omitted.
(5)式では、電線電流値の2乗値I(u)2 (u:自然数)に重み係数(1-Ca)n-u が乗算されている。2乗値I(u)2 は、u周期目の電線保護処理で算出される。記憶部31には、カウンタ値に対応付けて電線電流値の2乗値と、重み係数とが記憶されている。
In the equation (5), the square value I (u) 2 (u: natural number) of the electric wire current value is multiplied by a weight coefficient (1-Ca) nu . The square value I (u) 2 is calculated by the wire protection process in the u period. The storage unit 31 stores a square value of the electric wire current value and a weighting factor in association with the counter value.
図5は、実施形態2における記憶部31の記憶内容を示す図表である。図5では、Fu(u:自然数)は2乗値I(u)2 を示し、αuは重み係数(1-Ca)n-u を示す。重み係数αnは1である。図5には、整数nが4である例が示されている。図5に示すように、記憶部31には、カウンタ値に対応付けて、電線電流値の2乗値と重み係数とが記憶されている。電線電流値の2乗値は、電線保護処理において、制御部30によって変更される。重み係数は、定数であり、予め設定されている。電線W1,W2,・・・夫々の電線保護処理について、図5に示すテーブルと同様のテーブルが記憶部31に記憶されている。従って、記憶部31には、n個の電線電流値の2乗値に対応するn個の重み係数が記憶されている。
FIG. 5 is a chart showing the stored contents of the storage unit 31 in the second embodiment. In FIG. 5, Fu (u: natural number) indicates a square value I (u) 2 , and αu indicates a weight coefficient (1-Ca) nu . The weight coefficient αn is 1. FIG. 5 shows an example in which the integer n is 4. As shown in FIG. 5, the storage unit 31 stores a square value of the electric wire current value and a weighting factor in association with the counter value. The square value of the electric wire current value is changed by the control unit 30 in the electric wire protection process. The weighting factor is a constant and is set in advance. A table similar to the table shown in FIG. 5 is stored in the storage unit 31 for each of the electric wires W1, W2,. Therefore, the storage unit 31 stores n weighting factors corresponding to the square value of n wire current values.
以下では、電線W1の電線保護処理を説明する。電線W2の電線保護処理、及び、図示しない他の電線の電線保護処理は、電線W1の電線保護処理と同様に実行される。このため、これらの電線保護処理の詳細な説明を省略する。
Hereinafter, the wire protection process for the wire W1 will be described. The wire protection process for the wire W2 and the wire protection process for other wires not shown are performed in the same manner as the wire protection process for the wire W1. For this reason, detailed description of these electric wire protection processes is abbreviate | omitted.
図6及び図7は、電線W1の電線保護処理の手順を示すフローチャートである。実施形態2における電線W1の電線保護処理のステップS21~S23,S25~S29,S32,S34~S39夫々は、ステップS1~S3,S4~S8,S9,S11~S16と同様である。このため、ステップS21~S23,S25~S29,S32,S34~S39の詳細な説明を省略する。
6 and 7 are flowcharts showing the procedure of the wire protection process for the wire W1. Steps S21 to S23, S25 to S29, S32, and S34 to S39 of the wire protection process for the wire W1 in the second embodiment are the same as steps S1 to S3, S4 to S8, S9, and S11 to S16. Therefore, detailed description of steps S21 to S23, S25 to S29, S32, and S34 to S39 is omitted.
制御部30は、電線W1の電線保護処理のステップS23で電線電流値の2乗値を算出した後、記憶部31に記憶されている電線電流値の2乗値を、算出した2乗値に変更する(ステップS24)。ステップS24では、記憶部31に記憶されているカウンタ値に対応する電線電流値の2乗値を変更する。例えば、カウンタ値が1である場合、制御部30は、電線電流値の2乗値F1を、算出した2乗値に変更する。制御部30は、ステップS24を実行した後、ステップS25を実行する。
After calculating the square value of the electric wire current value in step S23 of the electric wire protection process for the electric wire W1, the control unit 30 sets the square value of the electric wire current value stored in the storage unit 31 to the calculated square value. Change (step S24). In step S24, the square value of the electric wire current value corresponding to the counter value stored in the storage unit 31 is changed. For example, when the counter value is 1, the control unit 30 changes the square value F1 of the wire current value to the calculated square value. After executing step S24, the control unit 30 executes step S25.
制御部30は、ステップS29を実行した後、n個の2乗値夫々に、n個の重み係数中の対応する重み係数を乗算する(ステップS30)。整数nが4である場合、制御部30は、F1・α1、F2・α2、F3・α3及びF4・α4を算出する。制御部30は乗算部としても機能する。
次に、制御部30は、ステップS30で乗算したn個の乗算値の第2の積算値を算出する(ステップS31)。整数nが4である場合、第2の積算値は、F1・α1+F2・α2+F3・α3+F4・α4である。第2の積算値は、(5)式のI(n)2 +(1-Ca)・I(n-1)2 +・・・+(1-Ca)n-1 ・I(1)2 である。 After executing Step S29, thecontrol unit 30 multiplies each of the n square values by the corresponding weight coefficient in the n weight coefficients (Step S30). When the integer n is 4, the control unit 30 calculates F1 · α1, F2 · α2, F3 · α3, and F4 · α4. The control unit 30 also functions as a multiplication unit.
Next, thecontrol unit 30 calculates a second integrated value of the n multiplied values multiplied in step S30 (step S31). When the integer n is 4, the second integrated value is F1 · α1 + F2 · α2 + F3 · α3 + F4 · α4. The second integrated value is I (n) 2 + (1−Ca) · I (n−1) 2 +... + (1−Ca) n−1 · I (1) 2 in equation (5). It is.
次に、制御部30は、ステップS30で乗算したn個の乗算値の第2の積算値を算出する(ステップS31)。整数nが4である場合、第2の積算値は、F1・α1+F2・α2+F3・α3+F4・α4である。第2の積算値は、(5)式のI(n)2 +(1-Ca)・I(n-1)2 +・・・+(1-Ca)n-1 ・I(1)2 である。 After executing Step S29, the
Next, the
制御部30は、ステップS31を実行した後、ステップS32を実行する。制御部30は、ステップS32で先行温度差を読み出した後、読み出した先行温度差ΔT(0)と、ステップS31で算出した第2の積算値I(n)2 +(1-Ca)・I(n-1)2 +・・・+(1-Ca)n-1 ・I(1)2 とを(5)式に代入することによって、温度差ΔT(n)を算出する(ステップS33)。
ステップS33では、近似が行われていない(5)式が用いられるので、正確な温度差が算出される。制御部30は、ステップS33を実行した後、ステップS34を実行する。ステップS34では、予め設定されている周囲温度にステップS33で算出した温度差を加算することによって、電線W1の電線温度を算出する。 Thecontrol unit 30 executes step S32 after executing step S31. After reading the preceding temperature difference in step S32, the control unit 30 reads the preceding temperature difference ΔT (0) and the second integrated value I (n) 2 + (1−Ca) · I calculated in step S31. The temperature difference ΔT (n) is calculated by substituting (n−1) 2 +... + (1−Ca) n−1 · I (1) 2 into the equation (5) (step S33). .
In step S33, since the equation (5) that is not approximated is used, an accurate temperature difference is calculated. Thecontrol unit 30 executes step S34 after executing step S33. In step S34, the wire temperature of the wire W1 is calculated by adding the temperature difference calculated in step S33 to the preset ambient temperature.
ステップS33では、近似が行われていない(5)式が用いられるので、正確な温度差が算出される。制御部30は、ステップS33を実行した後、ステップS34を実行する。ステップS34では、予め設定されている周囲温度にステップS33で算出した温度差を加算することによって、電線W1の電線温度を算出する。 The
In step S33, since the equation (5) that is not approximated is used, an accurate temperature difference is calculated. The
実施形態2における給電制御装置12は、実施形態1における給電制御装置12が奏する効果の中で、温度差の算出を、n個の2乗値の積算値に基づいて行うことによって得られる効果を除く他の効果を同様に奏する。
The power supply control device 12 according to the second embodiment has an effect obtained by performing a temperature difference calculation based on an integrated value of n square values among the effects exhibited by the power supply control device 12 according to the first embodiment. Except for the other effects.
なお、実施形態1,2における電線保護処理では、制御部30は、カウンタ値が整数n未満である場合に積算値に係る判定を行っている。しかしながら、制御部30は、カウンタ値が整数n以下である場合に積算値に係る判定を行ってもよい。例えば、制御部30は、カウンタ値が整数nであるか否かを判定する前に、電線電流値の2乗値の積算値が積算閾値以上であるか否かを判定する。そして、制御部30は、積算値が積算閾値未満であると判定した場合に、カウンタ値が整数nであるか否かを判定する。制御部30は、積算値が積算閾値以上であると判定した場合、出力部34a,34b,・・・中の1つに指示して、制御信号が示す電圧値をローレベル電圧値に切替えさせる。制御部30は、カウンタ値が整数nではないと判定した場合、電線保護処理を終了する。
In the electric wire protection process in the first and second embodiments, the control unit 30 performs the determination related to the integrated value when the counter value is less than the integer n. However, the control unit 30 may perform the determination related to the integrated value when the counter value is equal to or less than the integer n. For example, before determining whether or not the counter value is an integer n, the control unit 30 determines whether or not the integrated value of the square value of the electric wire current value is equal to or greater than an integration threshold value. Then, when it is determined that the integrated value is less than the integrated threshold, the control unit 30 determines whether or not the counter value is an integer n. When the control unit 30 determines that the integrated value is equal to or greater than the integration threshold value, the control unit 30 instructs one of the output units 34a, 34b,... To switch the voltage value indicated by the control signal to the low level voltage value. . When it is determined that the counter value is not the integer n, the control unit 30 ends the wire protection process.
また、実施形態1,2において、電線電流値に基づいて、電線温度と周囲温度との温度差を算出し、算出した温度差に周囲温度を加算することによって電線温度を算出しなくてもよい。電線電流値に基づいて電線温度が算出されればよい。
更に、実施形態1,2において、スイッチ20a,20b,・・・夫々は、Nチャネル型のFETに限定されず、Pチャネル型のFET、バイポーラトランジスタ又はリレー接点等であってもよい。 In Embodiments 1 and 2, the temperature difference between the wire temperature and the ambient temperature may be calculated based on the wire current value, and the wire temperature may not be calculated by adding the ambient temperature to the calculated temperature difference. . The wire temperature may be calculated based on the wire current value.
Furthermore, in the first and second embodiments, the switches 20a, 20b,... Are not limited to N-channel FETs, but may be P-channel FETs, bipolar transistors, relay contacts, or the like.
更に、実施形態1,2において、スイッチ20a,20b,・・・夫々は、Nチャネル型のFETに限定されず、Pチャネル型のFET、バイポーラトランジスタ又はリレー接点等であってもよい。 In
Furthermore, in the first and second embodiments, the
開示された実施形態1,2はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The disclosed first and second embodiments are examples in all respects, and should not be considered as restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 電源システム
10 バッテリ
11a,11b 負荷
12 給電制御装置
20a,20b スイッチ
21a,21b 電流出力回路
22a,22b 駆動回路
23 マイコン
30 制御部(取得部、2乗値算出部、温度算出部、積算値判定部、変更部、温度差算出部、乗算部)
31 記憶部
32,33a,33b 入力部
34a,34b 出力部
35a,35b A/D変換部
36 バス
E1 記憶媒体
P1 コンピュータプログラム
R1,R2 抵抗
W1,W2,W3,W4 電線 DESCRIPTION OFSYMBOLS 1 Power supply system 10 Battery 11a, 11b Load 12 Electric power feeding control apparatus 20a, 20b Switch 21a, 21b Current output circuit 22a, 22b Drive circuit 23 Microcomputer 30 Control part (acquisition part, square value calculation part, temperature calculation part, integrated value determination) Part, change part, temperature difference calculation part, multiplication part)
31 storage unit 32, 33a, 33b input unit 34a, 34b output unit 35a, 35b A / D conversion unit 36 bus E1 storage medium P1 computer program R1, R2 resistance W1, W2, W3, W4 electric wire
10 バッテリ
11a,11b 負荷
12 給電制御装置
20a,20b スイッチ
21a,21b 電流出力回路
22a,22b 駆動回路
23 マイコン
30 制御部(取得部、2乗値算出部、温度算出部、積算値判定部、変更部、温度差算出部、乗算部)
31 記憶部
32,33a,33b 入力部
34a,34b 出力部
35a,35b A/D変換部
36 バス
E1 記憶媒体
P1 コンピュータプログラム
R1,R2 抵抗
W1,W2,W3,W4 電線 DESCRIPTION OF
31
Claims (6)
- 電線を介した給電を制御する給電制御装置であって、
該電線を流れる電線電流値を周期的に取得する取得部と、
該取得部が取得した電線電流値の2乗値を算出する2乗値算出部と、
該電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出する温度算出部と、
前記n周期の1周期目からk(k:n以下の自然数)周期目に前記2乗値算出部が算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定する積算値判定部と、
該温度算出部が算出した電線温度が高い程、前記積算閾値を小さい値に変更する変更部と
を備える給電制御装置。 A power supply control device for controlling power supply via an electric wire,
An acquisition unit for periodically acquiring the value of the electric wire current flowing through the electric wire;
A square value calculation unit for calculating a square value of the electric wire current value acquired by the acquisition unit;
A temperature calculating unit that calculates the wire temperature of the wire each time an n period (n: an integer of 2 or more) related to the acquisition of the wire current value elapses;
It is determined whether or not the integrated value of the k square values calculated by the square value calculation unit in the k period (k: a natural number equal to or less than n) from the first period of the n period is equal to or greater than an integration threshold. An integrated value determination unit to perform,
A power supply control device comprising: a change unit that changes the integrated threshold value to a smaller value as the electric wire temperature calculated by the temperature calculation unit is higher. - 前記n周期が経過する都度、該n周期の1周期目からn周期目に前記2乗値算出部が算出したn個の前記2乗値に基づいて、前記電線温度と所定温度との温度差を算出する温度差算出部を備え、
前記温度算出部は、該所定温度に、前記温度差算出部が算出した温度差を加算することによって前記電線温度を算出する
請求項1に記載の給電制御装置。 Each time the n period elapses, a temperature difference between the wire temperature and a predetermined temperature based on the n square values calculated by the square value calculation unit from the first period to the n period of the n period. A temperature difference calculation unit for calculating
The power supply control device according to claim 1, wherein the temperature calculation unit calculates the wire temperature by adding the temperature difference calculated by the temperature difference calculation unit to the predetermined temperature. - 前記温度差算出部は、前記n個の2乗値の積算値と、先行して算出した前記電線温度及び所定温度の先行温度差とに基づいて、前記電線温度及び所定温度の温度差を算出する
請求項2に記載の給電制御装置。 The temperature difference calculation unit calculates a temperature difference between the wire temperature and the predetermined temperature based on an integrated value of the n square values and a preceding temperature difference between the wire temperature and a predetermined temperature calculated in advance. The power supply control device according to claim 2. - 前記n個の2乗値夫々に対応するn個の重み係数が記憶されている記憶部と、
前記n個の2乗値夫々に、前記n個の重み係数中の対応する重み係数を乗算する乗算部と
を備え、
前記温度差算出部は、前記乗算部が乗算したn個の乗算値の積算値と、先行して算出した前記電線温度及び所定温度の先行温度差とに基づいて、前記電線温度及び所定温度の温度差を算出する
請求項2に記載の給電制御装置。 A storage unit storing n weighting factors corresponding to the n square values;
A multiplier that multiplies each of the n square values by a corresponding weighting factor in the n weighting factors,
The temperature difference calculation unit is configured to calculate the wire temperature and the predetermined temperature based on an integrated value of the n multiplied values multiplied by the multiplication unit and a preceding temperature difference between the wire temperature and the predetermined temperature calculated in advance. The power supply control device according to claim 2, wherein a temperature difference is calculated. - 電線を介した給電を制御する給電制御方法であって、
該電線を流れる電線電流値を周期的に取得するステップと、
取得した電線電流値の2乗値を算出するステップと、
前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、
前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、
算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップと
を含む給電制御方法。 A power supply control method for controlling power supply via an electric wire,
Periodically obtaining a current value of a wire flowing through the wire;
Calculating a square value of the acquired electric wire current value;
Calculating the wire temperature of the wire each time n (n: an integer greater than or equal to 2) period for obtaining the wire current value elapses;
Determining whether or not an integrated value of the k square values calculated from the first cycle of the n cycle to the k (k: natural number of n or less) cycle is equal to or greater than an integration threshold;
And a step of changing the integrated threshold value to a smaller value as the calculated wire temperature is higher. - コンピュータに、
電線を流れる電線電流値を周期的に取得するステップと、
取得した電線電流値の2乗値を算出するステップと、
前記電線電流値の取得に係るn(n:2以上の整数)周期が経過する都度、前記電線の電線温度を算出するステップと、
前記n周期の1周期目からk(k:n以下の自然数)周期目に算出したk個の前記2乗値の積算値が積算閾値以上であるか否かを判定するステップと、
算出した電線温度が高い程、前記積算閾値を小さい値に変更するステップと
を実行させるためのコンピュータプログラム。 On the computer,
Periodically obtaining the value of the electric wire current flowing through the electric wire;
Calculating a square value of the acquired electric wire current value;
Calculating the wire temperature of the wire each time n (n: an integer greater than or equal to 2) period for obtaining the wire current value elapses;
Determining whether or not an integrated value of the k square values calculated from the first cycle of the n cycle to the k (k: natural number of n or less) cycle is equal to or greater than an integration threshold;
A computer program for executing the step of changing the integrated threshold to a smaller value as the calculated electric wire temperature is higher.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-235118 | 2016-12-02 | ||
JP2016235118A JP2018093624A (en) | 2016-12-02 | 2016-12-02 | Power supply control device, power supply control method, and computer program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101012A1 true WO2018101012A1 (en) | 2018-06-07 |
Family
ID=62241373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040760 WO2018101012A1 (en) | 2016-12-02 | 2017-11-13 | Power supply control device, power supply control method, and computer program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018093624A (en) |
WO (1) | WO2018101012A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11362509B2 (en) | 2019-06-06 | 2022-06-14 | Yazaki Corporation | Method of power supply line protection, master device, and power supply system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09215388A (en) * | 1996-01-29 | 1997-08-15 | Toyota Motor Corp | Inverter apparatus |
JP2006345654A (en) * | 2005-06-09 | 2006-12-21 | Mitsubishi Electric Corp | Overcurrent protective device |
JP2011125101A (en) * | 2009-12-09 | 2011-06-23 | Furukawa Electric Co Ltd:The | Current detector, power supply device and current detection method |
JP2015070753A (en) * | 2013-09-30 | 2015-04-13 | 日立オートモティブシステムズ株式会社 | Battery control system |
JP2015105924A (en) * | 2013-12-02 | 2015-06-08 | 株式会社オートネットワーク技術研究所 | Temperature calculation device and protective device |
-
2016
- 2016-12-02 JP JP2016235118A patent/JP2018093624A/en active Pending
-
2017
- 2017-11-13 WO PCT/JP2017/040760 patent/WO2018101012A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09215388A (en) * | 1996-01-29 | 1997-08-15 | Toyota Motor Corp | Inverter apparatus |
JP2006345654A (en) * | 2005-06-09 | 2006-12-21 | Mitsubishi Electric Corp | Overcurrent protective device |
JP2011125101A (en) * | 2009-12-09 | 2011-06-23 | Furukawa Electric Co Ltd:The | Current detector, power supply device and current detection method |
JP2015070753A (en) * | 2013-09-30 | 2015-04-13 | 日立オートモティブシステムズ株式会社 | Battery control system |
JP2015105924A (en) * | 2013-12-02 | 2015-06-08 | 株式会社オートネットワーク技術研究所 | Temperature calculation device and protective device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11362509B2 (en) | 2019-06-06 | 2022-06-14 | Yazaki Corporation | Method of power supply line protection, master device, and power supply system |
Also Published As
Publication number | Publication date |
---|---|
JP2018093624A (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5189929B2 (en) | Semiconductor switch control device | |
KR102306521B1 (en) | Inrush control with multiple switches | |
JP5639868B2 (en) | Load circuit protection device | |
TWI652490B (en) | System, circuit and method for detecting faults in hot plug applications | |
JP5937050B2 (en) | Charging circuit | |
US8436600B2 (en) | Apparatus for detecting a state of operation of a power semiconductor device | |
US20130193939A1 (en) | Voltage regulator | |
JP6381023B2 (en) | Inrush current limiting circuit | |
JP2011085470A (en) | Apparatus and method for current detection | |
JP6128055B2 (en) | Wire protector | |
WO2017094762A1 (en) | Power feeding control apparatus | |
JP2017103963A5 (en) | ||
WO2018101012A1 (en) | Power supply control device, power supply control method, and computer program | |
JP7131211B2 (en) | Power supply controller | |
EP2821799B1 (en) | Highly accurate current measurement | |
JP6176003B2 (en) | Control device | |
JP5776946B2 (en) | Power supply control device | |
JP7067033B2 (en) | Power supply control device, power supply control method and computer program | |
CN105684256A (en) | Current-limiting circuit | |
IT201600088220A1 (en) | CIRCUIT OF ELECTRONIC FUSE, EQUIPMENT AND CORRESPONDENT PROCEDURE | |
JP7013860B2 (en) | Motor drive | |
JP6107688B2 (en) | Wire protector | |
KR102371590B1 (en) | Apparatus and Method for Controlling Hot Wire without Outside Sensor | |
US20220291703A1 (en) | Power supply control apparatus | |
JP7107442B2 (en) | power conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17876255 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17876255 Country of ref document: EP Kind code of ref document: A1 |