WO2018100813A1 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
WO2018100813A1
WO2018100813A1 PCT/JP2017/030956 JP2017030956W WO2018100813A1 WO 2018100813 A1 WO2018100813 A1 WO 2018100813A1 JP 2017030956 W JP2017030956 W JP 2017030956W WO 2018100813 A1 WO2018100813 A1 WO 2018100813A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
chemical formula
general formula
alkyl group
Prior art date
Application number
PCT/JP2017/030956
Other languages
French (fr)
Japanese (ja)
Inventor
誠紀 蓮沼
賢輔 大川
東 潤
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to JP2018553661A priority Critical patent/JP6642732B2/en
Priority to CN201780054875.1A priority patent/CN109690420A/en
Publication of WO2018100813A1 publication Critical patent/WO2018100813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Definitions

  • the present invention relates to an electrophotographic photoreceptor.
  • the electrophotographic photoreceptor is used as an image carrier in an electrophotographic image forming apparatus (for example, a printer or a multifunction machine).
  • the electrophotographic photoreceptor includes a photosensitive layer.
  • As the electrophotographic photosensitive member for example, a single layer type electrophotographic photosensitive member or a multilayer type electrophotographic photosensitive member is used.
  • the single-layer type electrophotographic photosensitive member includes a photosensitive layer having a charge generation function and a charge transport function.
  • the photosensitive layer includes a charge generation layer having a charge generation function and a charge transport layer having a charge transport function.
  • Patent Document 1 describes an electrophotographic photoreceptor containing a polyarylate resin.
  • the polyarylate resin has a repeating unit represented by the chemical formula (RA).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrophotographic photosensitive member provided with a photosensitive layer having excellent wear resistance.
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer.
  • the photosensitive layer includes a charge generation layer and a charge transport layer.
  • the charge generation layer includes a charge generation agent.
  • the charge transport layer includes a hole transport agent, a binder resin, and a phthalocyanine pigment.
  • the binder resin includes a polyarylate resin.
  • the polyarylate resin is represented by the general formula (1).
  • the content of the phthalocyanine pigment is 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • kt represents 2 or 3.
  • X represents a divalent group represented by the chemical formula (2A), the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
  • the electrophotographic photoreceptor of the present invention is excellent in wear resistance.
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • system when the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • OEt in the chemical formula and the general formula represents an ethoxy group.
  • alkyl group having 1 to 8 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, and neopentyl group. Hexyl group, heptyl group, or octyl group.
  • alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, isopentyl, and neopentyl groups. Or a hexyl group.
  • An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a s-butyl group, and a t-butyl group.
  • An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • An alkoxy group having 1 to 8 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy, pentyloxy, iso Examples thereof include a pentyloxy group, a neopentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group.
  • alkoxy group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy, pentyloxy, iso Examples thereof include a pentyloxy group, a neopentyloxy group, and a hexyloxy group.
  • An alkoxy group having 1 to 4 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, and a t-butoxy group.
  • a cycloalkane having 5 to 7 carbon atoms is unsubstituted.
  • Examples of the cycloalkane having 5 to 7 carbon atoms include cyclopentane, cyclohexane, and cycloheptane.
  • An aryl group having 6 to 14 carbon atoms is unsubstituted.
  • Examples of the aryl group having 6 to 14 carbon atoms include an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 14 carbon atoms and an unsubstituted aromatic condensed bicyclic carbon group having 6 to 14 carbon atoms.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • An aryloxy group having 6 to 14 carbon atoms is unsubstituted.
  • An aryloxy group having 6 to 14 carbon atoms is a group in which an oxygen atom is bonded to an aryl group having 6 to 14 carbon atoms.
  • Examples of the aryloxy group having 6 to 14 carbon atoms include a phenoxy group, a naphthyloxy group, an anthryloxy group, and a phenanthryloxy group.
  • the aralkyl group having 7 to 20 carbon atoms is unsubstituted.
  • the aralkyl group having 7 to 20 carbon atoms is a group in which an aryl group having 6 to 14 carbon atoms and an alkyl group having 1 to 6 carbon atoms are bonded.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include phenylmethyl group (benzyl group), 2-phenylethyl group (phenethyl group), 1-phenylethyl group, 3-phenylpropyl group, and 4-phenylbutyl. Groups.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the structure of an electrophotographic photoreceptor (hereinafter sometimes referred to as a photoreceptor) according to an embodiment of the present invention will be described.
  • the photoreceptor according to the exemplary embodiment is a multilayer electrophotographic photoreceptor (hereinafter sometimes referred to as a multilayer photoreceptor).
  • 1A to 1C are partial cross-sectional views showing the structure of the multilayer photoreceptor 1 according to this embodiment.
  • the multilayer photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3.
  • the photosensitive layer 3 includes a charge generation layer 3a and a charge transport layer 3b.
  • FIG. 1A the multilayer photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3.
  • the photosensitive layer 3 includes a charge generation layer 3a and a charge transport layer 3b.
  • the multilayer photoreceptor 1 may include a charge generation layer 3a on a conductive substrate 2, and a charge transport layer 3b on the charge generation layer 3a.
  • the multilayer photoreceptor 1 may include a charge transport layer 3b on the conductive substrate 2, and further include a charge generation layer 3a on the charge transport layer 3b.
  • the charge transport layer 3 b may be disposed as the outermost surface layer of the multilayer photoreceptor 1.
  • the charge transport layer 3b may be a single layer (single layer).
  • the photosensitive layer 3 may be disposed directly on the conductive substrate 2.
  • the multilayer photoreceptor 1 includes, for example, a conductive substrate 2, an intermediate layer 4 (undercoat layer), and a photosensitive layer 3.
  • the photosensitive layer 3 may be indirectly disposed on the conductive substrate 2.
  • the intermediate layer 4 may be provided between the conductive substrate 2 and the charge generation layer 3a.
  • the intermediate layer 4 may be provided, for example, between the charge generation layer 3a and the charge transport layer 3b.
  • the charge generation layer 3a may be a single layer or a plurality of layers.
  • the thickness of the charge generation layer 3a is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the charge transport layer 3b is not particularly limited as long as it can sufficiently function as the charge transport layer 3b.
  • the thickness of the charge transport layer 3b is preferably 2 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the elements (conductive substrate 2, photosensitive layer 3, and intermediate layer 4) of the multilayer photoreceptor 1 according to the present embodiment will be described. Further, a method for manufacturing the photoreceptor 1 will be described.
  • the conductive substrate 2 is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor 1.
  • a conductive substrate composed of a material having at least a surface portion having conductivity (hereinafter sometimes referred to as a conductive material) can be used.
  • An example of the conductive substrate 2 is a conductive substrate made of a conductive material.
  • Another example of the conductive substrate 2 is a conductive substrate coated with a conductive material.
  • the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium. These conductive materials may be used alone or in combination of two or more. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.). Of these conductive materials, aluminum or an aluminum alloy is preferable.
  • the shape of the conductive substrate 2 can be appropriately selected according to the structure of the image forming apparatus to be used. Examples of the shape of the conductive substrate 2 include a sheet shape and a drum shape. Further, the thickness of the conductive substrate 2 can be appropriately selected according to the shape of the conductive substrate 2.
  • the charge generation layer 3a contains a charge generation agent.
  • the charge generation layer 3a may contain a charge generation layer binder resin (hereinafter sometimes referred to as a base resin).
  • the charge transport layer 3b includes a hole transport agent, a binder resin, and a phthalocyanine pigment.
  • the charge generation layer 3a and the charge transport layer 3b may contain an additive.
  • the charge generator, the phthalocyanine pigment, the hole transport agent, the binder resin, the base resin, and the additive will be described.
  • the charge generator is not particularly limited as long as it is a charge generator for the photoreceptor 1.
  • Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, and cyanine pigments.
  • Powders of inorganic photoconductive materials such as selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, pyrylium salts, ansanthrone pigments, triphenylmethane pigments, selenium pigments, toluidine pigments, pyrazoline pigments
  • examples thereof include pigments and quinacridone pigments.
  • the phthalocyanine pigment include phthalocyanine pigments and phthalocyanine derivative pigments.
  • the phthalocyanine pigment include a metal-free phthalocyanine pigment (more specifically, an X-type metal-free phthalocyanine pigment (xH 2 Pc) and the like).
  • the phthalocyanine derivative pigment examples include metal phthalocyanine pigments (more specifically, titanyl phthalocyanine pigments, copper phthalocyanine pigments, V-type hydroxygallium phthalocyanine pigments, and the like).
  • the crystal shape of the phthalocyanine pigment is not particularly limited, and phthalocyanine pigments having various crystal shapes are used. Examples of the crystal shape of the phthalocyanine pigment include ⁇ -type, ⁇ -type, ⁇ -type, and Y-type.
  • a charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type. Of these charge generators, phthalocyanine pigments are preferable, and Y-type titanyl phthalocyanine pigments are more preferable.
  • a charge generator having an absorption wavelength in a desired region may be used alone, or two or more charge generators may be used in combination. Further, for example, in a digital optical image forming apparatus, it is preferable to use a photoconductor having sensitivity in a wavelength region of 700 nm or more. Examples of the digital optical image forming apparatus include a laser beam printer or a facsimile using a light source such as a semiconductor laser. Therefore, for example, phthalocyanine pigments are preferable, and X-type metal-free phthalocyanine pigments or Y-type titanyl phthalocyanine pigments are more preferable.
  • an ansanthrone pigment or a perylene pigment is preferably used as a charge generating agent.
  • the wavelength of the short wavelength laser include wavelengths of 350 nm or more and 550 nm or less.
  • the charge generators are, for example, phthalocyanine pigments represented by chemical formulas (CGM-1) to (CGM-4) (hereinafter referred to as charge generators (CGM-1) to (CGM-4), respectively). There).
  • the content of the charge generation agent in the charge generation layer 3a is preferably 0.1 parts by weight or more and 50 parts by weight or less, and 0.5 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the charge generation layer binder resin.
  • the amount is more preferably 0.5 parts by mass or less, and particularly preferably 0.5 parts by mass or more and 4.5 parts by mass or less.
  • Examples of the phthalocyanine pigment in the charge transport layer 3b include a metal-free phthalocyanine pigment or a metal phthalocyanine pigment.
  • Examples of the metal-free phthalocyanine pigment include X-type metal-free phthalocyanine pigment.
  • Examples of metal phthalocyanine pigments include titanyl phthalocyanine pigments (more specifically, Y-type titanyl phthalocyanine pigments or ⁇ -type titanyl phthalocyanine pigments) or copper phthalocyanine pigments (more specifically, ⁇ -type copper phthalocyanine pigments). Can be mentioned.
  • Examples of the phthalocyanine pigment in the charge transport layer 3b include an X-type metal-free phthalocyanine pigment, a Y-type titanyl phthalocyanine pigment, an ⁇ -type titanyl phthalocyanine pigment, or an ⁇ -type copper phthalocyanine pigment.
  • the content of the phthalocyanine pigment in the charge transport layer 3b is 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the content of the phthalocyanine pigment in the charge transport layer 3b exceeds 1.00 parts by mass with respect to 100 parts by mass of the binder resin, the sensitivity repeatability in a high temperature and high humidity environment decreases. This is because the absorption of exposure light in the charge transport layer 3b is increased, making it difficult for the exposure light to reach the charge generation layer 3a, and sufficient carriers are not generated.
  • the content of the phthalocyanine pigment in the charge transport layer 3b is less than 0.01 parts by mass with respect to 100 parts by mass of the binder resin, the sensitivity repeatability in a high temperature and high humidity environment is deteriorated. This is because residual charges in the photosensitive layer 3 accumulate and carriers are less likely to reach the surface of the photoreceptor 1.
  • hole transport agent for example, a nitrogen-containing cyclic compound or a condensed polycyclic compound can be used.
  • the nitrogen-containing cyclic compound and the condensed polycyclic compound include diamine derivatives (more specifically, benzidine derivatives, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′).
  • N′-tetraphenylnaphthylenediamine derivative or N, N, N ′, N′-tetraphenylphenanthrylenediamine derivative, etc.
  • oxadiazole compounds more specifically, 2,5-di ( 4-methylaminophenyl) -1,3,4-oxadiazole, etc.
  • styryl compounds more specifically, 9- (4-diethylaminostyryl) anthracene, etc.
  • carbazole compounds more specifically, Organic polysilane compounds; pyrazoline compounds (more specifically, 1-phenyl-3- (p-dimethylaminophenyl) pi Ethylbenzthiazoline etc.); hydrazone compounds; indole-based compound; oxazole-based compounds; isoxazole compounds; thiazole compounds; thiadiazole compounds; imidazole compounds; pyrazole compound; triazole compounds.
  • the hole transport agent preferably contains a hole transport agent (2), (3), (4), (5), or (6).
  • the charge transport layer contains the hole transport agent (2), (3), (4), (5) or (6), thereby improving the repetitive characteristics of the sensitivity of the photoreceptor in a high temperature and high humidity environment. It is also possible to improve the potential environment stability and wear resistance of the photoreceptor.
  • the hole transport agent is preferably the hole transport agent (2), (3), (4) or (5). 3), (4), or (5) is more preferable, and the hole transport agent (3) is still more preferable.
  • the hole transport agent is preferably the hole transport agent (4), (5), or (6), more preferably the hole transport agent (4). preferable.
  • Q 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • the phenyl group may be substituted with an alkyl group having 1 to 8 carbon atoms.
  • Q 2 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • Q 3 , Q 4 , Q 5 , Q 6 , and Q 7 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • a represents an integer of 0 or more and 5 or less.
  • a represents an integer of 2 or more and 5 or less, a plurality of Q 2 bonded to the same phenyl group may be the same or different from each other.
  • Q 8 , Q 10 , Q 11 , Q 12 , Q 13 , and Q 14 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or 1 or more carbon atoms. It represents an alkoxy group of 8 or less or a phenyl group.
  • Q 9 and Q 15 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • b represents an integer of 0 or more and 5 or less. When b represents an integer of 2 or more and 5 or less, a plurality of Q 9 bonded to the same phenyl group may be the same as or different from each other.
  • c represents an integer of 0 or more and 4 or less.
  • the plurality of Q 15 bonded to the same phenylene group may be the same as or different from each other.
  • k represents 0 or 1.
  • R a , R b and R c each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms.
  • q represents an integer of 0 or more and 4 or less.
  • a plurality of R c bonded to the same phenylene group may be the same as or different from each other.
  • m and n each independently represent an integer of 0 or more and 5 or less.
  • m represents an integer of 2 or more and 5 or less
  • a plurality of R b bonded to the same phenyl group may be the same or different from each other.
  • n represents an integer of 2 or more and 5 or less
  • a plurality of R a bonded to the same phenyl group may be the same or different from each other.
  • R 1 , R 2 , and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 6 to 14 carbon atoms.
  • the following aryl groups, aryloxy groups having 6 to 14 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, halogen atoms, or hydrogen atoms are represented.
  • R 2 and R 3 may be bonded to each other.
  • d represents 1 or 2.
  • R 111 and R 112 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms. Represents an aryloxy group having 6 to 14 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a halogen atom.
  • d 1 and d 2 each independently represents an integer of 0 or more and 5 or less.
  • d 3 represents 1 or 2.
  • the phenyl group represented by Q 1 is preferably a phenyl group substituted with an alkyl group having 1 to 8 carbon atoms, more preferably a phenyl group substituted with a methyl group. preferable.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 2 is preferably an alkyl group having 1 to 6 carbon atoms, and is an alkyl group having 1 to 4 carbon atoms. More preferably, it is more preferably a methyl group. It is preferable that a represents 0 or 1.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably an alkyl group having 1 to 4 carbon atoms, and preferably an n-butyl group. More preferred.
  • the alkoxy group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably an alkoxy group having 1 to 4 carbon atoms, more preferably a methoxy group or an ethoxy group. .
  • Q 3 to Q 7 each independently preferably represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, More preferably, it represents an atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • two adjacent Q 3 to Q 7 are bonded to each other to form a ring (more specifically, a benzene ring or a cycloalkane having 5 to 7 carbon atoms). May be.
  • adjacent Q 6 and Q 7 of Q 3 to Q 7 may be bonded to each other to form a benzene ring or a cycloalkane having 5 to 7 carbon atoms.
  • this benzene ring is condensed with a phenyl group to which Q 3 to Q 7 are bonded to form a bicyclic condensed ring group (naphthyl group).
  • Q 3 to Q 7 are bonded to the cycloalkane having 5 to 7 carbon atoms.
  • the condensation site between the cycloalkane having 5 to 7 carbon atoms and the phenyl group may contain a double bond.
  • Two adjacent Q 3 to Q 7 are preferably bonded to each other to form a cycloalkane having 5 to 7 carbon atoms, more preferably cyclohexane.
  • Q 1 represents a phenyl group or a hydrogen atom
  • the phenyl group is substituted with an alkyl group having 1 to 8 carbon atoms
  • Q 2 has 1 to 8 carbon atoms.
  • Q 3 to Q 7 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, and a is 0 or 1 Is preferably represented. Two adjacent Q 3 to Q 7 may be bonded to each other to form a ring.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 8 and Q 10 to Q 14 is preferably an alkyl group having 1 to 4 carbon atoms, and may be a methyl group or an ethyl group. It is more preferable that In general formula (3), Q 8 and Q 10 to Q 14 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, and b and c each represent 0. Is preferred.
  • the alkyl group having 1 to 8 carbon atoms represented by R a and R b is preferably an alkyl group having 1 to 4 carbon atoms, and represents a methyl group or an ethyl group. Is more preferable.
  • R a and R b represent an alkyl group having 1 to 8 carbon atoms, m and n each independently represent an integer of 0 to 2, and q represents 0. It is preferable.
  • the aryl group having 6 to 14 carbon atoms represented by R 1 , R 2 and R 3 is preferably a phenyl group.
  • R 2 and R 3 may be bonded to each other.
  • a ring may be formed.
  • examples of such a ring include a cycloalkane (more specifically, a cycloalkane having 5 to 7 carbon atoms) or an aromatic ring (more specifically, an aromatic ring having 5 to 7 carbon atoms). Is mentioned.
  • R 2 and R 3 represent a phenyl group
  • R 2 and R 3 may be bonded to each other to form a ring and become a fluorenyl group.
  • R 1 , R 2 , and R 3 each preferably represents an aryl group having 6 to 14 carbon atoms. R 2 and R 3 may be bonded to each other.
  • R 111 and R 112 each preferably represents an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, More preferably, it represents a group.
  • the plurality of R 111 may be the same as or different from each other.
  • the bonding position of R 111 is not particularly limited.
  • R 111 may be bonded to the ortho, meta, or para position of the phenyl group, and is preferably bonded to the para position of the phenyl group.
  • d 2 represents an integer of 2 or more and 5 or less
  • the plurality of R 112 may be the same as or different from each other.
  • the bonding position of R 112 is not particularly limited.
  • R 112 may be bonded to the ortho, meta, or para position of the phenyl group, and is preferably bonded to the para position of the phenyl group.
  • d 1 and d 2 are each independently preferably represents 0 or 1.
  • d 3 represents 1 or 2.
  • the general formula (6) corresponds to the general formula (6-1).
  • the general formula (6) corresponds to the general formula (6-2).
  • R 111 in formula (6-1) and (6-2) in, R 112, d 1 and d 2 are each, R 111 in formula (6) in, R 112, d 1 and d 2 as defined It is.
  • D 3 in the general formula (6) preferably represents 1.
  • R 111 and R 112 each represents an alkyl group having 1 to 6 carbon atoms
  • d 1 and d 2 each independently represent 0 or 1
  • d 3 is 1 is preferably represented.
  • Examples of the hole transport agent (2) include hole transport agents represented by chemical formulas (HTM-1) to (HTM-4) (hereinafter referred to as hole transport agents (HTM-1) to (HTM-4, respectively). ) May be described.
  • Examples of the hole transporting agent (3) include hole transporting agents represented by chemical formulas (HTM-5) and (HTM-7) (hereinafter referred to as hole transporting agent (HTM-5) and (HTM-7, respectively).
  • Examples of the hole transporting agent (4) include hole transporting agents represented by chemical formulas (HTM-6) and (HTM-8) (hereinafter referred to as hole transporting agent (HTM-6) and (HTM-8), respectively). ) May be described.
  • Examples of the hole transporting agent (5) include hole transporting agents represented by chemical formula (HTM-11) and chemical formula (HTM-12) (hereinafter referred to as hole transporting agent (HTM-11) and (HTM- 12))).
  • Examples of the hole transporting agent (6) include hole transporting agents represented by chemical formula (HTM-9) and chemical formula (HTM-10) (hereinafter referred to as hole transporting agent (HTM-9) and (HTM- 10))).
  • Each of the hole transport agents (2) to (5) can be produced, for example, by appropriately applying a known method.
  • the hole transport agent (6) can be produced, for example, by the following method.
  • the hole transporting agent (6) is, for example, a reaction represented by the reaction formulas (r-1), (r-2) and (r-3) (hereinafter referred to as reactions (r-1) and (r-2), respectively. ) And (r-3)), or according to a similar method.
  • Reaction (r-1), (r -2) and (r-3) R 111, R 112, d 1, d 2 in, and d 3 are each formula in (6)
  • R 111, R 112 , d 1 , d 2 , and d 3 are synonymous.
  • reaction (r-1) 1 mol equivalent of the compound represented by the chemical formula (A1) (hereinafter referred to as the compound (A1)) and 1 mol equivalent of triethyl phosphite are reacted to give 1 mol An equivalent amount of the compound represented by the chemical formula (B1) (hereinafter referred to as the compound (B1)) is obtained.
  • the reaction temperature for reaction (r-1) is preferably 160 ° C. or higher and 200 ° C. or lower.
  • the reaction time for reaction (r-1) is preferably 2 hours or longer and 10 hours or shorter.
  • reaction (r-2) 1 mol equivalent of a compound represented by the chemical formula (A2) (hereinafter referred to as the compound (A2)) and 1 mol equivalent of triethyl phosphite are reacted to give 1 mol An equivalent amount of the compound represented by the chemical formula (B2) (hereinafter referred to as the compound (B2)) is obtained.
  • Reaction (r-2) can be carried out in the same manner as in reaction (r-1), except that compound (A1) is changed to compound (A2).
  • reaction (r-3) 1 molar equivalent of the compound represented by the chemical formula (C) (hereinafter referred to as the compound (C)), 1 molar equivalent of the compound (B1), and 1 molar equivalent of the compound ( B2) is reacted with to obtain 1 molar equivalent of the hole transporting agent (6). It is preferable to add 1 mol or more and 5 mol or less of compound (B1) with respect to 1 mol of compound (C). It is preferable to add 1 mol or more and 5 mol or less of compound (B2) with respect to 1 mol of compound (C).
  • the reaction temperature for reaction (r-3) is preferably 0 ° C. or higher and 50 ° C. or lower.
  • the reaction time for reaction (r-3) is preferably 10 minutes to 24 hours.
  • the reaction (r-3) may be performed in an atmosphere of an inert gas (for example, argon gas).
  • the reaction (r-3) may be performed in the presence of a base.
  • a base examples include sodium alkoxide (more specifically, sodium methoxide or sodium ethoxide), metal hydride (more specifically, sodium hydride, potassium hydride, etc.) or metal salt (more specifically, Specifically, n-butyllithium and the like can be mentioned.
  • sodium methoxide is preferred.
  • bases may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the base added is preferably 1 mol or more and 3 mol or less with respect to 1 mol of the compound (C).
  • the reaction (r-3) may be performed in a solvent.
  • the solvent include ether (more specifically, tetrahydrofuran, diethyl ether, dioxane and the like), halogenated hydrocarbon (more specifically, methylene chloride, chloroform, dichloroethane and the like) or aromatic hydrocarbon (more specifically, Specifically, benzene, toluene, etc.) are mentioned.
  • ether more specifically, tetrahydrofuran, diethyl ether, dioxane and the like
  • halogenated hydrocarbon more specifically, methylene chloride, chloroform, dichloroethane and the like
  • aromatic hydrocarbon more specifically, Specifically, benzene, toluene, etc.
  • tetrahydrofuran is preferred.
  • the hole transport agent (6) as the target compound can be isolated.
  • a purification method a known method is appropriately employed, and examples thereof include crystallization or silica gel chromatography.
  • the solvent used for purification include chloroform, hexane, and a mixed solvent of chloroform and hexane.
  • the content of the hole transporting agent is preferably 10 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the binder resin includes a polyarylate resin (1).
  • the polyarylate resin (1) is represented by the general formula (1).
  • kt represents 2 or 3.
  • X represents a divalent group represented by the chemical formula (2A), the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
  • kt represents 3, and X preferably represents a divalent group represented by chemical formula (2B), chemical formula (2C), or chemical formula (2D).
  • the polyarylate resin (1) is represented by a repeating unit represented by the chemical formula (1-5) (hereinafter sometimes referred to as a repeating unit (1-5)) and a general formula (1-6). Repeating units (hereinafter sometimes referred to as repeating units (1-6)).
  • Kt in general formula (1-5) and X in general formula (1-6) have the same meanings as kt and X in general formula (1), respectively.
  • the polyarylate resin (1) may have a repeating unit other than the repeating units (1-5) and (1-6).
  • the ratio (molar fraction) of the total amount of the repeating units (1-5) and (1-6) to the total amount of the repeating units in the polyarylate resin (1) is preferably 0.80 or more, 0.90 or more is more preferable, and 1.00 is still more preferable.
  • the arrangement of the repeating units (1-5) and (1-6) in the polyarylate resin (1) is not particularly limited as long as the repeating unit derived from the aromatic diol and the repeating unit derived from the aromatic dicarboxylic acid are adjacent to each other. .
  • polyarylate resin (1) examples include polyarylate resins represented by chemical formulas (R-1) to (R-4) (hereinafter referred to as polyarylate resins (R-1) to (R-4)). May be included).
  • the viscosity average molecular weight of the polyarylate resin (1) is preferably 10,000 or more, more preferably 20,000 or more, still more preferably 30,000 or more, and 45,000 or more. It is particularly preferred.
  • the viscosity average molecular weight of the polyarylate resin (1) is preferably 80,000 or less, more preferably 60,000 or less, and further preferably 52,000 or less. When the viscosity average molecular weight of the polyarylate resin (1) is 10,000 or more, the wear resistance of the binder resin can be increased, and the charge transport layer 3b is hardly worn.
  • the viscosity average molecular weight of the polyarylate resin (1) is 80,000 or less, the polyarylate resin (1) is easily dissolved in the solvent during the formation of the photosensitive layer 3, and the formation of the photosensitive layer 3 is easy. Tend to be.
  • the binder resin only the polyarylate resin (1) may be used alone, or a resin (other resin) other than the polyarylate resin (1) may be included within a range that does not impair the effects of the present invention.
  • a resin (other resin) other than the polyarylate resin (1) may be included within a range that does not impair the effects of the present invention.
  • other resins include thermoplastic resins (more specifically, polyarylate resins other than polyarylate resin (1), polycarbonate resins, styrene resins, styrene-butadiene copolymers, and styrene-acrylonitrile copolymers.
  • the production method of the polyarylate resin (1) is not particularly limited as long as the polyarylate resin (1) can be produced. Examples of these production methods include a method of polycondensing an aromatic diol and an aromatic dicarboxylic acid for constituting a repeating unit of the polyarylate resin (1).
  • the synthesis method of the polyarylate resin (1) is not particularly limited, and a known synthesis method (more specifically, solution polymerization, melt polymerization, interfacial polymerization, or the like) can be employed. Hereinafter, an example of the manufacturing method of polyarylate resin (1) is demonstrated.
  • the polyarylate resin (1) is produced, for example, according to the reaction represented by the reaction formula (R-1) (hereinafter sometimes referred to as reaction (R-1)) or by a method analogous thereto.
  • the method for producing the polyarylate resin (1) includes, for example, reaction (R-1).
  • kt in general formula (1-11) and X in general formula (1-9) have the same meanings as kt and X in general formula (1), respectively.
  • the amount of the aromatic diol (1-11) relative to 1 mol of the aromatic dicarboxylic acid (1-9) is preferably 0.9 to 1.1 mol. Within the above range, the polyarylate resin (1) can be easily purified, and the yield of the polyarylate resin (1) is improved.
  • the reaction (R-1) may be allowed to proceed in the presence of an alkali and a catalyst.
  • the catalyst include tertiary ammonium (more specifically, trialkylamine and the like) or quaternary ammonium salt (more specifically, benzyltrimethylammonium bromide and the like).
  • the alkali include alkali metal hydroxides (more specifically, sodium hydroxide or potassium hydroxide) and alkaline earth metal hydroxides (more specifically, calcium hydroxide).
  • Reaction (R-1) may be allowed to proceed in a solvent and under an inert gas atmosphere.
  • the solvent include water or chloroform.
  • Examples of the inert gas include argon.
  • the reaction time for reaction (R-1) is preferably 2 hours or longer and 5 hours or shorter.
  • the reaction temperature is preferably 5 ° C or higher and 25 ° C or lower. *
  • aromatic dicarboxylic acid (1-9) examples include an aromatic dicarboxylic acid having two carboxyl groups bonded on the aromatic ring (more specifically, 2,6-naphthalenedicarboxylic acid, 4,4′- Dicarboxydiphenyl ether, or 4,4′-dicarboxybiphenyl).
  • the aromatic dicarboxylic acid may contain other dicarboxylic acids in addition to the aromatic dicarboxylic acid (1-9).
  • a derivative of the aromatic dicarboxylic acid (1-9) (more specifically, a halogenated alkanoyl or aromatic dicarboxylic acid, instead of the aromatic dicarboxylic acid (1-9). Acid anhydride) may be used.
  • aromatic diol (1-11) examples include 1,1-bis (3-methylphenyl) cyclohexane or 1,1-bis (3-methylphenyl) cyclopentane.
  • another diol for example, bisphenol A, bisphenol S, bisphenol E, or bisphenol F
  • an aromatic diol derivative can be used in place of the aromatic diol (1-11). Examples of the aromatic diol derivative include diacetate.
  • the polyarylate resin (1) In the production of the polyarylate resin (1), other steps may be included as necessary.
  • An example of such a process is a purification process.
  • the purification method include known methods (more specifically, filtration, chromatography, crystal folding, etc.).
  • the base resin is not particularly limited as long as it can be applied to the photoreceptor 1.
  • the base resin include a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • the thermoplastic resin include a styrene resin, a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, a styrene-maleic acid copolymer, a styrene-acrylic acid copolymer, an acrylic copolymer, and a polyethylene resin.
  • Ethylene-vinyl acetate copolymer chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin, urethane resin, polycarbonate resin, polyarylate resin, polysulfone
  • the resin include diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, and polyester resin.
  • the thermosetting resin include silicone resins, epoxy resins, phenol resins, urea resins, melamine resins, and other crosslinkable thermosetting resins.
  • the photocurable resin include an epoxy acrylic resin or a urethane-acrylic resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the base resin As the base resin, the same resin as the above-described binder resin is also exemplified, but in the same laminated photoreceptor 1, a resin different from the binder resin is usually selected. This is based on the following reasons.
  • the charge generating layer 3a and the charge transport layer 3b are usually formed in this order, and therefore a coating solution for forming a charge transport layer on the charge generation layer 3a (hereinafter referred to as charge transport layer use) (It may be described as a coating solution).
  • charge transport layer use a coating solution for forming a charge transport layer on the charge generation layer 3a
  • the charge transport layer 3b When the charge transport layer 3b is formed, the charge generation layer 3a is preferably not dissolved in the solvent of the charge transport layer coating solution. Therefore, as the base resin, a resin different from the binder resin is usually selected in the same laminated photoreceptor 1.
  • additives examples include a deterioration inhibitor (more specifically, an antioxidant, a radical scavenger, a quencher, or an ultraviolet absorber), a softener, a surface modifier, a bulking agent, a thickener, Examples include dispersion stabilizers, waxes, donors, surfactants, or leveling agents.
  • antioxidants examples include hindered phenol compounds, hindered amine compounds, thioether compounds, and phosphite compounds. Among these antioxidants, hindered phenol compounds and hindered amine compounds are preferred.
  • the photoreceptor 1 according to the second embodiment may have an intermediate layer 4 (for example, an undercoat layer).
  • the intermediate layer 4 contains, for example, inorganic particles and a resin (intermediate layer resin).
  • the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, or zinc oxide). Etc.) or non-metal oxide (more specifically, silica etc.) particles. These inorganic particles may be used individually by 1 type, and may use 2 or more types together. The inorganic particles may be subjected to a surface treatment.
  • the intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer 4.
  • the photosensitive layer forming step includes a charge generation layer forming step and a charge transport layer forming step.
  • a coating solution for forming the charge generation layer 3a (hereinafter, sometimes referred to as a charge generation layer coating solution) is prepared.
  • the charge generation layer coating solution is applied onto the conductive substrate 2 to form a coating film.
  • the coating film is dried by an appropriate method to remove at least a part of the solvent contained in the coating film to form the charge generation layer 3a.
  • the charge generation layer coating solution includes, for example, a charge generation agent, a base resin, and a solvent.
  • Such a charge generation layer coating solution is prepared by dissolving or dispersing a charge generation agent and a base resin in a solvent.
  • Various additives may be added to the charge generation layer coating solution as necessary.
  • a charge transport layer coating solution is prepared.
  • the charge transport layer coating solution is applied onto the charge generation layer 3a to form a coating film.
  • the coating film is dried by an appropriate method to remove at least a part of the solvent contained in the coating film, thereby forming the charge transport layer 3b.
  • the coating solution for charge transport layer contains a hole transport agent, a polyarylate resin (1) as a binder resin, a phthalocyanine pigment, and a solvent.
  • the coating solution for the charge transport layer can be prepared by dissolving or dispersing the hole transport agent, the polyarylate resin (1), and the phthalocyanine pigment in a solvent.
  • Various additives may be added to the charge transport layer coating solution as necessary.
  • the solvent contained in the charge generation layer coating solution and the charge transport layer coating solution can dissolve or disperse each component contained in the coating solution. And if it is easy to remove from a coating film by drying, it will not specifically limit.
  • the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic carbonization, and the like.
  • Hydrogen more specifically, benzene, toluene, xylene, etc.
  • halogenated hydrocarbon more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.
  • ether more specifically, dimethyl ether
  • Diethyl ether, tetrahydrofuran ethylene glycol dimethyl ether, or diethylene glycol dimethyl ether
  • ketones more specifically, acetone, methyl ethyl ketone, or cyclohexanone
  • esters more specifically, ethyl acetate or methyl acetate, etc.
  • Methyl formaldehyde dimethylformamide, or dimethyl sulfoxide.
  • solvents may be used alone or in combination of two or more.
  • non-halogen solvents are preferably used.
  • the combination of two or more include a mixed solvent containing methanol, butanol and toluene, a mixed solvent containing propylene glycol monomethyl ether and tetrahydrofuran, or a mixed solvent containing tetrahydrofuran and toluene.
  • Coating solution is prepared by mixing each component and dispersing in a solvent.
  • a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
  • the coating liquid may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of each layer formed.
  • the method for applying the coating solution is not particularly limited as long as it is a method capable of uniformly applying the coating solution.
  • the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
  • the method for removing at least a part of the solvent contained in the coating solution is not particularly limited as long as it is a method capable of evaporating the solvent in the coating solution.
  • the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of performing heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned.
  • the heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
  • the method for manufacturing the photoreceptor 1 may further include a step of forming the intermediate layer 4 as necessary.
  • a known method can be appropriately selected for the step of forming the intermediate layer 4.
  • the electrophotographic photoreceptor of the present invention described above is excellent in fog resistance, it can be suitably used in various image forming apparatuses.
  • the following charge generators, hole transport agents, binder resins, and pigments were prepared as materials for producing a laminated photoreceptor.
  • the charge generating agent (CGM-2) described in the second embodiment was prepared.
  • the charge generating agent (CGM-2) was a titanyl phthalocyanine pigment (Y-type titanyl phthalocyanine pigment, Y-type titanyl phthalocyanine crystal) represented by the chemical formula (CGM-2).
  • the crystal structure was Y-type.
  • the CuK ⁇ characteristic X-ray diffraction spectrum was measured using the measurement apparatus and measurement conditions described in the second embodiment.
  • Binder resin In addition to the polyarylate resins (R-1) to (R-4) described in the first embodiment, binder resins (R-5) to (R-6) were prepared. Binder resins (R-5) to (R-6) are polyarylate resins having repeating units represented by chemical formulas (R-5) to (R-6), respectively.
  • the inside of the reaction vessel was purged with argon. Thereafter, 600 mL of water was further added to the reaction vessel. The contents of the reaction vessel were stirred for 1 hour under the condition of the internal temperature of the reaction vessel of 20 ° C. Next, the contents of the reaction vessel were cooled, and the internal temperature of the reaction vessel was lowered to 10 ° C. In this way, an alkaline aqueous solution was prepared.
  • the internal temperature of the reaction container of the alkaline aqueous solution was maintained at 10 ° C., and the contents in the reaction container were stirred.
  • the chloroform solution was put into an aqueous alkali solution to initiate the polymerization reaction.
  • the polymerization reaction was allowed to proceed for 3 hours while stirring the contents of the reaction vessel and maintaining the internal temperature in the reaction vessel at 13 ⁇ 3 ° C. Thereafter, the upper layer (aqueous layer) was removed using a decant to obtain an organic layer.
  • a 2 L Erlenmeyer flask was used as a reaction vessel. After adding 500 mL of ion-exchanged water to the reaction vessel, the organic layer was added. Further, 300 g of chloroform and 6 mL of acetic acid were added to the reaction vessel. The contents of the reaction vessel were stirred at room temperature (25 ° C.) for 30 minutes. Next, the upper layer (aqueous layer) was removed by decanting to obtain an organic layer. Next, the organic layer was washed 8 times with a separatory funnel using 500 mL of ion-exchanged water.
  • the X-type metal-free phthalocyanine pigment As the pigment, the X-type metal-free phthalocyanine pigment, the Y-type titanyl phthalocyanine pigment, the ⁇ -type titanyl phthalocyanine pigment, and the ⁇ -type copper phthalocyanine pigment described in the second embodiment were prepared.
  • a surface-treated titanium oxide (“Prototype SMT-A” manufactured by Teika Co., Ltd., average primary particle size 10 nm) was prepared. Specifically, titanium oxide was surface-treated with alumina and silica, and further, surface-treated with methyl hydrogen polysiloxane was prepared while wet-dispersing the surface-treated titanium oxide. Subsequently, surface-treated titanium oxide (2 parts by mass) and Amilan (registered trademark) (“CM8000” manufactured by Toray Industries, Inc.) (1 part by mass) as a polyamide resin were added to the mixed solvent. Amilan was a quaternary copolymerized polyamide resin of polyamide 6, polyamide 12, polyamide 66, and polyamide 610.
  • This mixed solvent was a solvent containing methanol (10 parts by mass), butanol (1 part by mass), and toluene (1 part by mass). These were mixed for 5 hours using a bead mill, and materials (surface-treated titanium oxide and polyamide resin) were dispersed in a mixed solvent. This prepared the coating liquid for intermediate
  • the obtained intermediate layer coating solution was filtered using a filter having an opening of 5 ⁇ m. Then, the coating liquid for intermediate
  • a Y-type titanyl phthalocyanine pigment (1.5 parts by mass) and a polyvinyl acetal resin (“SREC BX-5” manufactured by Sekisui Chemical Co., Ltd.) (1 part by mass) as a base resin were added to a mixed solvent.
  • This mixed solvent was a solvent containing propylene glycol monomethyl ether (40 parts by mass) and tetrahydrofuran (40 parts by mass). These were mixed for 12 hours using a bead mill, and materials (Y-type titanyl phthalocyanine pigment and polyvinyl acetal resin) were dispersed in a mixed solvent to prepare a charge generation layer coating solution.
  • the obtained coating solution for charge generation layer was filtered using a filter having an opening of 3 ⁇ m. Subsequently, the obtained filtrate was applied onto the intermediate layer formed as described above by using a dip coating method to form a coating film. Subsequently, the coating film was dried at 50 ° C. for 5 minutes. As a result, a charge generation layer (thickness: 0.3 ⁇ m) was formed on the intermediate layer.
  • Formation of charge transport layer 50 parts by mass of a hole transporting agent (HTM-1), 2 parts by mass of a hindered phenol antioxidant (“Irganox (registered trademark) 1010” manufactured by BASF Corporation) as an additive, and 3 as an electron acceptor compound , 3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone, 0.04 parts by mass of an X-type metal-free phthalocyanine pigment as a phthalocyanine pigment, and a polyarylate resin as a binder resin ( R-1) 100 parts by mass was added to the mixed solvent.
  • HTM-1 hole transporting agent
  • Irganox hindered phenol antioxidant
  • 3 an electron acceptor compound
  • 3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone 0.04 parts by mass of an X-type metal-free phthalocyanine pigment as a phthalocyanine pigment
  • This mixed solvent was a solvent containing 550 parts by mass of tetrahydrofuran and 150 parts by mass of toluene. These were mixed for 12 hours, and the materials (hole transport agent (HTM-1), hindered phenol antioxidant, electron acceptor compound, X-type metal-free phthalocyanine pigment, and polyarylate resin (R-1) were mixed in a mixed solvent. ) was dispersed to prepare a coating solution for charge transport layer.
  • HTM-1 hole transport agent
  • R-1 polyarylate resin
  • the charge transport layer coating solution was applied onto the charge generation layer by the same operation as the charge generation layer coating solution to form a coating film. Thereafter, the coating film was dried at 120 ° C. for 40 minutes to form a charge transport layer (film thickness 20 ⁇ m) on the charge generation layer. As a result, a photoreceptor (A-1) was obtained.
  • the photoreceptor (A-1) had a configuration in which an intermediate layer, a charge generation layer, and a charge transport layer were laminated in this order on a conductive substrate.
  • the binder resin the binder resins shown in Table 1 were used in place of the polyarylate resin (R-1).
  • the phthalocyanine pigment the types and contents of the pigments shown in Table 1 were used instead of 0.04 part by mass of the X-type metal-free phthalocyanine pigment. In this way, photoreceptors (A-2) to (A-21) and photoreceptors (B-1) to (B-4) were obtained, respectively.
  • Table 1 shows the structures of the photoconductors (A-1) to (A-21) and the photoconductors (B-1) to (B-4).
  • R-1 to R-6 indicate polyarylate resins (R-1) to (R-4) and binder resins (R-5) to (R-6), respectively.
  • the column “molecular weight of the binder resin” indicates the viscosity average molecular weight.
  • X-H 2 Pc, Y-TiOPc, ⁇ -TiOPc, and ⁇ -CuPc in the column “Types of phthalocyanine pigments” are X-type metal-free phthalocyanine pigment, Y-type titanyl phthalocyanine pigment, ⁇ -type titanyl phthalocyanine pigment, and An ⁇ -type copper phthalocyanine pigment is shown.
  • the column “content of phthalocyanine pigment” indicates the content of phthalocyanine pigment with respect to 100 parts by mass of the binder resin in the charge transport layer.
  • the columns “HTM-1 to HTM-12” in the “hole transport agent” indicate the hole transport agents (HTM-1) to (HTM-12), respectively.
  • a plurality of post-exposure potentials were measured by increasing the exposure dose from 0.05 ⁇ J / cm 2 to 1.0 ⁇ J / cm 2 .
  • the measurement of the post-exposure potential was performed in a low temperature and low humidity environment (LL environment: temperature 10 ° C. and relative humidity 15% RH) or a high temperature and high humidity environment (HH environment: temperature 30 ° C. and relative humidity 85% RH).
  • a linear function was obtained by linearly approximating a plurality of post-exposure potentials with respect to the exposure amount using the least square method.
  • the exposure amount when the post-exposure potential was ⁇ 300 V was calculated using a linear function.
  • the exposure amount obtained was E1 / 2 (unit: ⁇ J / cm 2 ).
  • E1 / 2 obtained from the post-exposure potential measured in the LL environment is defined as E1 / 2 (LL)
  • E1 / 2 obtained from the post-exposure potential measured in the HH environment is represented as E1 / 2 (HH).
  • ⁇ E1 / 2 was calculated from the obtained E1 / 2 (LL) and E1 / 2 (HH) using Equation (1).
  • ⁇ E1 / 2 E1 / 2 (LL) ⁇ E1 / 2 (HH) (1) It shows that stability with respect to the temperature / humidity environment (potential environment stability) of the potential after exposure is excellent as the value of ⁇ E1 / 2 is small.
  • Table 2 shows the evaluation results of the potential environment stability.
  • HH repeatability Using either a drum sensitivity tester (manufactured by Gentec Co., Ltd.) or any of photoconductors (A-1) to (A-21) and photoconductors (B-1) to (B-4) Charging was performed under conditions of several 31 rpm and a charging potential of ⁇ 600V. Next, monochromatic light (wavelength: 780 nm, exposure amount: 0.8 ⁇ J / cm 2 ) was taken out from the light of the halogen lamp using a bandpass filter and irradiated on the surface of the photoreceptor. The surface potential of the photoreceptor was measured 80 milliseconds after the exposure light irradiation. The obtained surface potential was defined as the initial post-exposure potential (V L0 ).
  • the surface of the photosensitive member was irradiated with monochromatic light (wavelength: 660 nm, exposure amount: 5 ⁇ J / cm 2 ) to remove static electricity. Such charge-exposure-static charge was repeated, and the photoreceptor was rotated 10,000 times. Next, charging and exposure were performed under the same conditions, and the post-exposure potential was measured 80 milliseconds after the exposure light was irradiated. The obtained surface potential was taken as the post-exposure potential after 10,000 revolutions (V L10,000 ). Measurement of the post-exposure potential was performed in an HH environment (temperature 30 ° C. and relative humidity 85% RH). ⁇ V L was calculated from V L0 and V L10,000 using Equation (2).
  • the charge transport layer was peeled off from this polypropylene sheet and attached to a wheel S-36 (manufactured by Taber) to prepare a sample.
  • the prepared sample is set in a rotary abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), wear wheel CS-10 (manufactured by Taber), and rotated 1,000 times under conditions of load 500 gf and rotation speed 60 rpm, wear evaluation test Carried out. Wear loss (mg / 1000 rotations), which is a change in mass of the sample before and after the wear evaluation test, was measured. The wear resistance of the photoreceptor was evaluated based on the obtained wear loss. Table 2 shows the evaluation results of wear resistance.
  • the photosensitive layer was a laminated photosensitive layer.
  • the photosensitive layer was provided with a charge generation layer and a charge transport layer.
  • the charge transport layer contained a hole transport agent, any of polyarylate resins (R-1) to (R-4) as binder resins, and a phthalocyanine pigment.
  • the content of the phthalocyanine pigment in the charge transport layer was 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the polyarylate resins (R-1) to (R-4) were polyarylate resins represented by the general formula (1).
  • the wear loss was 2.8 mg to 3.7 mg.
  • the charge transport layer did not contain a phthalocyanine pigment.
  • the charge transport layer contained binder resins (R-5) and (R-6), respectively.
  • the binder resins (R-5) and (R-6) were not polyarylate resins represented by the general formula (1).
  • the content of the phthalocyanine pigment in the charge transport layer was 2.00 masses with respect to 100 mass parts of the binder resin.
  • the wear loss was 4.0 mg or more and 11.4 mg or less.
  • the charge transport layer contained a polyarylate resin (R-4) as a binder resin.
  • R-4 polyarylate resin
  • the abrasion loss of the photoreceptor (A-4) was 2.8 mg.
  • the charge transport layer is made of any one of polyarylate resins (R-1) to (R-3) as a binder resin. Included. As shown in Table 2, in the photoconductors (A-1) to (A-3), the wear loss was 3.5 mg or more and 3.7 mg or less.
  • the photoconductor (A-4) was superior in wear resistance to the photoconductors (A-1) to (A-3).
  • the electrophotographic photosensitive member according to the present invention can be used in an image forming apparatus such as a multifunction machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

An electrographic photoreceptor (1), provided with an electroconductive base (2) and a photosensitive layer (3). The photosensitive layer is provided with a charge generation layer (3a) and a charge transportation layer (3b). The charge generation layer contains a charge-generating agent. The charge transportation layer contains a hole transportation agent, a binder resin, and a phthalocyanine-type pigment. The binder resin contains a polyarylate resin. The polyarylate resin is represented by general formula (1). The amount of the phthalocyanine-type pigment contained is 0.01-1.00 mass parts, relative to 100 mass parts of the binder resin. In general formula (1), kt represents 2 or 3. X represents a divalent group represented by chemical formula (2A), chemical formula (2B), chemical formula (2C), or chemical formula (2D).

Description

電子写真感光体Electrophotographic photoreceptor
 本発明は、電子写真感光体に関する。 The present invention relates to an electrophotographic photoreceptor.
 電子写真感光体は、像担持体として電子写真方式の画像形成装置(例えば、プリンター、又は複合機)において用いられる。電子写真感光体は、感光層を備える。電子写真感光体は、例えば、単層型電子写真感光体、又は積層型電子写真感光体が用いられる。単層型電子写真感光体は、電荷発生の機能と、電荷輸送の機能とを有する感光層を備える。積層型電子写真感光体においては、感光層は電荷発生の機能を有する電荷発生層と、電荷輸送の機能を有する電荷輸送層とを備える。 The electrophotographic photoreceptor is used as an image carrier in an electrophotographic image forming apparatus (for example, a printer or a multifunction machine). The electrophotographic photoreceptor includes a photosensitive layer. As the electrophotographic photosensitive member, for example, a single layer type electrophotographic photosensitive member or a multilayer type electrophotographic photosensitive member is used. The single-layer type electrophotographic photosensitive member includes a photosensitive layer having a charge generation function and a charge transport function. In the multilayer electrophotographic photosensitive member, the photosensitive layer includes a charge generation layer having a charge generation function and a charge transport layer having a charge transport function.
 特許文献1には、ポリアリレート樹脂を含有する電子写真感光体が記載されている。ポリアリレート樹脂は、化学式(R-A)で表される繰返し単位を有する。 Patent Document 1 describes an electrophotographic photoreceptor containing a polyarylate resin. The polyarylate resin has a repeating unit represented by the chemical formula (RA).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
特開平10-288845号公報Japanese Patent Laid-Open No. 10-288845
 しかしながら、特許文献1に記載の電子写真感光体は、耐摩耗性が十分ではなかった。 However, the electrophotographic photosensitive member described in Patent Document 1 has insufficient wear resistance.
 本発明は上記課題に鑑みてなされたものであり、本発明の目的は、耐摩耗性に優れる感光層を備えた電子写真感光体を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrophotographic photosensitive member provided with a photosensitive layer having excellent wear resistance.
 本発明の電子写真感光体は、導電性基体と、感光層とを備える。前記感光層は、電荷発生層と、電荷輸送層とを備える。電荷発生層は、電荷発生剤を含む。前記電荷輸送層は、正孔輸送剤と、バインダー樹脂と、フタロシアニン系顔料とを含む。前記バインダー樹脂は、ポリアリレート樹脂を含む。前記ポリアリレート樹脂は、一般式(1)で表される。前記フタロシアニン系顔料の含有量は、前記バインダー樹脂100質量部に対して0.01質量部以上1.00質量部以下である。 The electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer. The photosensitive layer includes a charge generation layer and a charge transport layer. The charge generation layer includes a charge generation agent. The charge transport layer includes a hole transport agent, a binder resin, and a phthalocyanine pigment. The binder resin includes a polyarylate resin. The polyarylate resin is represented by the general formula (1). The content of the phthalocyanine pigment is 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記一般式(1)中、ktは2又は3を表す。Xは、化学式(2A)、化学式(2B)、化学式(2C)、又は化学式(2D)で表される二価の基を表す。 In the general formula (1), kt represents 2 or 3. X represents a divalent group represented by the chemical formula (2A), the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の電子写真感光体は、耐摩耗性に優れる。 The electrophotographic photoreceptor of the present invention is excellent in wear resistance.
本発明の第一実施形態に係る電子写真感光体の構造を示す部分断面図である。It is a fragmentary sectional view showing the structure of the electrophotographic photosensitive member according to the first embodiment of the present invention. 本発明の第一実施形態に係る電子写真感光体の構造を示す部分断面図である。It is a fragmentary sectional view showing the structure of the electrophotographic photosensitive member according to the first embodiment of the present invention. 本発明の第一実施形態に係る電子写真感光体の構造を示す部分断面図である。It is a fragmentary sectional view showing the structure of the electrophotographic photosensitive member according to the first embodiment of the present invention.
 以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。なお、本明細書において、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。また、化学式及び一般式中の「OEt」はエトキシ基を表す。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the summary of invention is not limited. In the present specification, a compound and its derivatives may be generically named by adding “system” after the compound name. When the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof. Further, “OEt” in the chemical formula and the general formula represents an ethoxy group.
 以下、炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基、炭素原子数1以上4以下のアルキル基、炭素原子数1以上3以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、炭素原子数1以上6以下のアルコキシ基、炭素原子数1以上4以下のアルコキシ基、炭素原子数5以上7以下のシクロアルカン、炭素原子数6以上14以下のアリール基、炭素原子数6以上14以下のアリールオキシ基、炭素原子数7以上20以下のアラルキル基、及びハロゲン原子は、各々、次の意味である。 Hereinafter, an alkyl group having 1 to 8 carbon atoms, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms, and 1 carbon atom An alkoxy group having 8 or less carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cycloalkane having 5 to 7 carbon atoms, an aryl group having 6 to 14 carbon atoms , An aryloxy group having 6 to 14 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a halogen atom have the following meanings.
 炭素原子数1以上8以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、又はオクチル基が挙げられる。 An alkyl group having 1 to 8 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, and neopentyl group. Hexyl group, heptyl group, or octyl group.
 炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、又はヘキシル基が挙げられる。 An alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, isopentyl, and neopentyl groups. Or a hexyl group.
 炭素原子数1以上4以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上4以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、又はt-ブチル基が挙げられる。 An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a s-butyl group, and a t-butyl group.
 炭素原子数1以上3以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上3以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、又はイソプロピル基が挙げられる。 An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 炭素原子数1以上8以下のアルコキシ基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、へプチルオキシ基、又はオクチルオキシ基が挙げられる。 An alkoxy group having 1 to 8 carbon atoms is linear or branched and unsubstituted. Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy, pentyloxy, iso Examples thereof include a pentyloxy group, a neopentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group.
 炭素原子数1以上6以下のアルコキシ基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、又はヘキシルオキシ基が挙げられる。 An alkoxy group having 1 to 6 carbon atoms is linear or branched and unsubstituted. Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy, pentyloxy, iso Examples thereof include a pentyloxy group, a neopentyloxy group, and a hexyloxy group.
 炭素原子数1以上4以下のアルコキシ基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上4以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、又はt-ブトキシ基が挙げられる。 An alkoxy group having 1 to 4 carbon atoms is linear or branched and unsubstituted. Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, and a t-butoxy group.
 炭素原子数5以上7以下のシクロアルカンは、非置換である。炭素原子数5以上7以下のシクロアルカンとしては、例えば、シクロペンタン、シクロヘキサン、又はシクロへプタンが挙げられる。 A cycloalkane having 5 to 7 carbon atoms is unsubstituted. Examples of the cycloalkane having 5 to 7 carbon atoms include cyclopentane, cyclohexane, and cycloheptane.
 炭素原子数6以上14以下のアリール基は、非置換である。炭素原子数6以上14以下のアリール基は、例えば、炭素原子数6以上14以下の非置換の芳香族単環炭化水素基、炭素原子数6以上14以下の非置換の芳香族縮合二環炭化水素基又は炭素原子数6以上14以下の非置換の芳香族縮合三環炭化水素基である。炭素原子数6以上14以下のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、又はフェナントリル基が挙げられる。 An aryl group having 6 to 14 carbon atoms is unsubstituted. Examples of the aryl group having 6 to 14 carbon atoms include an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 14 carbon atoms and an unsubstituted aromatic condensed bicyclic carbon group having 6 to 14 carbon atoms. A hydrogen group or an unsubstituted aromatic condensed tricyclic hydrocarbon group having 6 to 14 carbon atoms. Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
 炭素原子数6以上14以下のアリールオキシ基は、非置換である。炭素原子数6以上14以下のアリールオキシ基は、炭素原子数6以上14以下のアリール基に酸素原子が結合した基である。炭素原子数6以上14以下のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、アントリルオキシ基、又はフェナントリルオキシ基が挙げられる。 An aryloxy group having 6 to 14 carbon atoms is unsubstituted. An aryloxy group having 6 to 14 carbon atoms is a group in which an oxygen atom is bonded to an aryl group having 6 to 14 carbon atoms. Examples of the aryloxy group having 6 to 14 carbon atoms include a phenoxy group, a naphthyloxy group, an anthryloxy group, and a phenanthryloxy group.
 炭素原子数7以上20以下のアラルキル基は、非置換である。炭素原子数7以上20以下のアラルキル基は、炭素原子数6以上14以下のアリール基と、炭素原子数1以上6以下のアルキル基とが結合した基である。炭素原子数7以上20以下のアラルキル基としては、例えば、フェニルメチル基(ベンジル基)、2-フェニルエチル基(フェネチル基)、1-フェニルエチル基、3-フェニルプロピル基、又は4-フェニルブチル基が挙げられる。 An aralkyl group having 7 to 20 carbon atoms is unsubstituted. The aralkyl group having 7 to 20 carbon atoms is a group in which an aryl group having 6 to 14 carbon atoms and an alkyl group having 1 to 6 carbon atoms are bonded. Examples of the aralkyl group having 7 to 20 carbon atoms include phenylmethyl group (benzyl group), 2-phenylethyl group (phenethyl group), 1-phenylethyl group, 3-phenylpropyl group, and 4-phenylbutyl. Groups.
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
<電子写真感光体>
 本発明の実施形態に係る電子写真感光体(以下、感光体と記載することがある)の構造を説明する。本実施形態に係る感光体は積層型電子写真感光体(以下、積層型感光体と記載することがある)である。図1A~図1Cは、本実施形態に係る積層型感光体1の構造を示す部分断面図である。図1Aに示すように、積層型感光体1は、導電性基体2と、感光層3とを備える。感光層3は、電荷発生層3aと電荷輸送層3bとを備える。図1Aに示すように、積層型感光体1は、導電性基体2上に電荷発生層3aを備え、電荷発生層3aの上に更に電荷輸送層3bを備えてもよい。また、図1Bに示すように、積層型感光体1は、導電性基体2上に電荷輸送層3bを備え、電荷輸送層3bの上に更に電荷発生層3aを備えてもよい。図1Aに示すように、電荷輸送層3bは積層型感光体1の最表面層として配置されてもよい。電荷輸送層3bは、一層(単層)であってもよい。
<Electrophotographic photoreceptor>
The structure of an electrophotographic photoreceptor (hereinafter sometimes referred to as a photoreceptor) according to an embodiment of the present invention will be described. The photoreceptor according to the exemplary embodiment is a multilayer electrophotographic photoreceptor (hereinafter sometimes referred to as a multilayer photoreceptor). 1A to 1C are partial cross-sectional views showing the structure of the multilayer photoreceptor 1 according to this embodiment. As shown in FIG. 1A, the multilayer photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3. The photosensitive layer 3 includes a charge generation layer 3a and a charge transport layer 3b. As shown in FIG. 1A, the multilayer photoreceptor 1 may include a charge generation layer 3a on a conductive substrate 2, and a charge transport layer 3b on the charge generation layer 3a. As shown in FIG. 1B, the multilayer photoreceptor 1 may include a charge transport layer 3b on the conductive substrate 2, and further include a charge generation layer 3a on the charge transport layer 3b. As shown in FIG. 1A, the charge transport layer 3 b may be disposed as the outermost surface layer of the multilayer photoreceptor 1. The charge transport layer 3b may be a single layer (single layer).
 図1Aに示すように、感光層3は導電性基体2上に直接的に配置されてもよい。また、図1Cに示すように、積層型感光体1は、例えば、導電性基体2と、中間層4(下引層)と、感光層3とを備える。図1Cに示すように、感光層3は導電性基体2上に間接的に配置されてもよい。図1Cに示すように、中間層4は、導電性基体2と電荷発生層3aとの間に設けられてもよい。中間層4は、例えば、電荷発生層3aと電荷輸送層3bとの間に設けられてもよい。電荷発生層3aは、単層であってもよく、複数層であってもよい。 As shown in FIG. 1A, the photosensitive layer 3 may be disposed directly on the conductive substrate 2. As shown in FIG. 1C, the multilayer photoreceptor 1 includes, for example, a conductive substrate 2, an intermediate layer 4 (undercoat layer), and a photosensitive layer 3. As shown in FIG. 1C, the photosensitive layer 3 may be indirectly disposed on the conductive substrate 2. As shown in FIG. 1C, the intermediate layer 4 may be provided between the conductive substrate 2 and the charge generation layer 3a. The intermediate layer 4 may be provided, for example, between the charge generation layer 3a and the charge transport layer 3b. The charge generation layer 3a may be a single layer or a plurality of layers.
 電荷発生層3aの厚さは、具体的には、0.01μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましい。電荷輸送層3bの厚さは、電荷輸送層3bとして十分に作用することができれば、特に限定されない。電荷輸送層3bの厚さは、具体的には、2μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 Specifically, the thickness of the charge generation layer 3a is preferably 0.01 μm or more and 5 μm or less, and more preferably 0.1 μm or more and 3 μm or less. The thickness of the charge transport layer 3b is not particularly limited as long as it can sufficiently function as the charge transport layer 3b. Specifically, the thickness of the charge transport layer 3b is preferably 2 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.
 以下、本実施形態に係る積層型感光体1の要素(導電性基体2、感光層3、及び中間層4)を説明する。更に感光体1の製造方法も説明する。 Hereinafter, the elements (conductive substrate 2, photosensitive layer 3, and intermediate layer 4) of the multilayer photoreceptor 1 according to the present embodiment will be described. Further, a method for manufacturing the photoreceptor 1 will be described.
[1.導電性基体]
 導電性基体2は、感光体1の導電性基体として用いることができる限り、特に限定されない。導電性基体2としては、少なくとも表面部が導電性を有する材料(以下、導電性材料と記載することがある)で構成される導電性基体を用いることができる。導電性基体2の一例としては、導電性材料で構成される導電性基体が挙げられる。導電性基体2の別の例としては、導電性材料で被覆されている導電性基体が挙げられる。導電性材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、又はインジウムが挙げられる。これら導電性材料は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。2種以上の組合せとしては、例えば、合金(より具体的には、アルミニウム合金、ステンレス鋼、又は真鍮等)が挙げられる。これら導電性材料のうち、アルミニウム又はアルミニウム合金が好ましい。
[1. Conductive substrate]
The conductive substrate 2 is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor 1. As the conductive substrate 2, a conductive substrate composed of a material having at least a surface portion having conductivity (hereinafter sometimes referred to as a conductive material) can be used. An example of the conductive substrate 2 is a conductive substrate made of a conductive material. Another example of the conductive substrate 2 is a conductive substrate coated with a conductive material. Examples of the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium. These conductive materials may be used alone or in combination of two or more. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.). Of these conductive materials, aluminum or an aluminum alloy is preferable.
 導電性基体2の形状は、使用する画像形成装置の構造に合わせて適宜選択することができる。導電性基体2の形状としては、例えば、シート状又はドラム状が挙げられる。また、導電性基体2の厚みは、導電性基体2の形状に応じて、適宜選択することができる。 The shape of the conductive substrate 2 can be appropriately selected according to the structure of the image forming apparatus to be used. Examples of the shape of the conductive substrate 2 include a sheet shape and a drum shape. Further, the thickness of the conductive substrate 2 can be appropriately selected according to the shape of the conductive substrate 2.
[2.感光層]
 電荷発生層3aは、電荷発生剤を含む。電荷発生層3aは、電荷発生層用バインダー樹脂(以下、ベース樹脂と記載することがある)を含有してもよい。電荷輸送層3bは、正孔輸送剤と、バインダー樹脂と、フタロシアニン系顔料とを含む。電荷発生層3a及び電荷輸送層3bは、添加剤を含有してもよい。以下、電荷発生剤と、フタロシアニン系顔料と、正孔輸送剤と、バインダー樹脂と、ベース樹脂と、添加剤とを説明する。
[2. Photosensitive layer]
The charge generation layer 3a contains a charge generation agent. The charge generation layer 3a may contain a charge generation layer binder resin (hereinafter sometimes referred to as a base resin). The charge transport layer 3b includes a hole transport agent, a binder resin, and a phthalocyanine pigment. The charge generation layer 3a and the charge transport layer 3b may contain an additive. Hereinafter, the charge generator, the phthalocyanine pigment, the hole transport agent, the binder resin, the base resin, and the additive will be described.
[2-1.電荷発生剤、フタロシアニン系顔料]
 電荷発生剤は、感光体1用の電荷発生剤であれば、特に限定されない。電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン顔料、ビスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、トリスアゾ顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、セレン、セレン-テルル、セレン-ヒ素、硫化カドミウム、アモルファスシリコンのような無機光導電材料の粉末、ピリリウム塩、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料、又はキナクリドン系顔料が挙げられる。フタロシアニン系顔料としては、例えば、フタロシアニン顔料又はフタロシアニン誘導体の顔料が挙げられる。フタロシアニン顔料としては、例えば、無金属フタロシアニン顔料(より具体的には、X型無金属フタロシアニン顔料(x-H2Pc)等)が挙げられる。フタロシアニン誘導体の顔料としては、例えば、金属フタロシアニン顔料(より具体的には、チタニルフタロシアニン顔料、銅フタロシアニン顔料、又はV型ヒドロキシガリウムフタロシアニン顔料等)が挙げられる。フタロシアニン系顔料の結晶形状については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。フタロシアニン系顔料の結晶形状としては、例えば、α型、β型、ε型、又はY型が挙げられる。電荷発生剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの電荷発生剤のうち、フタロシアニン系顔料が好ましく、Y型チタニルフタロシアニン顔料がより好ましい。
[2-1. Charge generator, phthalocyanine pigment]
The charge generator is not particularly limited as long as it is a charge generator for the photoreceptor 1. Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, and cyanine pigments. Powders of inorganic photoconductive materials such as selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, pyrylium salts, ansanthrone pigments, triphenylmethane pigments, selenium pigments, toluidine pigments, pyrazoline pigments Examples thereof include pigments and quinacridone pigments. Examples of the phthalocyanine pigment include phthalocyanine pigments and phthalocyanine derivative pigments. Examples of the phthalocyanine pigment include a metal-free phthalocyanine pigment (more specifically, an X-type metal-free phthalocyanine pigment (xH 2 Pc) and the like). Examples of the phthalocyanine derivative pigment include metal phthalocyanine pigments (more specifically, titanyl phthalocyanine pigments, copper phthalocyanine pigments, V-type hydroxygallium phthalocyanine pigments, and the like). The crystal shape of the phthalocyanine pigment is not particularly limited, and phthalocyanine pigments having various crystal shapes are used. Examples of the crystal shape of the phthalocyanine pigment include α-type, β-type, ε-type, and Y-type. A charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type. Of these charge generators, phthalocyanine pigments are preferable, and Y-type titanyl phthalocyanine pigments are more preferable.
 所望の領域に吸収波長を有する電荷発生剤を単独で用いてもよいし、2種以上の電荷発生剤を組み合わせて用いてもよい。更に、例えば、デジタル光学式の画像形成装置には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。デジタル光学式の画像形成装置としては、例えば、半導体レーザーのような光源を使用したレーザービームプリンター又はファクシミリが挙げられる。そのため、例えば、フタロシアニン系顔料が好ましく、X型無金属フタロシアニン顔料又はY型チタニルフタロシアニン顔料がより好ましい。 A charge generator having an absorption wavelength in a desired region may be used alone, or two or more charge generators may be used in combination. Further, for example, in a digital optical image forming apparatus, it is preferable to use a photoconductor having sensitivity in a wavelength region of 700 nm or more. Examples of the digital optical image forming apparatus include a laser beam printer or a facsimile using a light source such as a semiconductor laser. Therefore, for example, phthalocyanine pigments are preferable, and X-type metal-free phthalocyanine pigments or Y-type titanyl phthalocyanine pigments are more preferable.
 短波長レーザー光源を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料又はペリレン系顔料が好適に用いられる。短波長レーザーの波長としては、例えば、350nm以上550nm以下の波長が挙げられる。 For a photoreceptor applied to an image forming apparatus using a short wavelength laser light source, an ansanthrone pigment or a perylene pigment is preferably used as a charge generating agent. Examples of the wavelength of the short wavelength laser include wavelengths of 350 nm or more and 550 nm or less.
 電荷発生剤は、例えば、化学式(CGM-1)~(CGM-4)で表されるフタロシアニン系顔料である(以下、それぞれ電荷発生剤(CGM-1)~(CGM-4)と記載することがある)。 The charge generators are, for example, phthalocyanine pigments represented by chemical formulas (CGM-1) to (CGM-4) (hereinafter referred to as charge generators (CGM-1) to (CGM-4), respectively). There).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 電荷発生層3aにおける電荷発生剤の含有量は、電荷発生層用バインダー樹脂100質量部に対して、0.1質量部以上50質量部以下であることが好ましく、0.5質量部以上30質量部以下であることがより好ましく、0.5質量部以上4.5質量部以下であることが特に好ましい。 The content of the charge generation agent in the charge generation layer 3a is preferably 0.1 parts by weight or more and 50 parts by weight or less, and 0.5 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the charge generation layer binder resin. The amount is more preferably 0.5 parts by mass or less, and particularly preferably 0.5 parts by mass or more and 4.5 parts by mass or less.
 電荷輸送層3bにおけるフタロシアニン系顔料としては、例えば、無金属フタロシアニン顔料又は金属フタロシアニン顔料が挙げられる。無金属フタロシアニン顔料としては、例えば、X型無金属フタロシアニン顔料が挙げられる。金属フタロシアニン顔料としては、例えば、チタニルフタロシアニン顔料(より具体的には、Y型チタニルフタロシアニン顔料又はα型チタニルフタロシアニン顔料等)又は銅フタロシアニン顔料(より具体的には、ε型銅フタロシアニン顔料等)が挙げられる。電荷輸送層3bにおけるフタロシアニン系顔料としては、例えば、X型無金属フタロシアニン顔料、Y型チタニルフタロシアニン顔料、α型チタニルフタロシアニン顔料、又はε型銅フタロシアニン顔料が挙げられる。 Examples of the phthalocyanine pigment in the charge transport layer 3b include a metal-free phthalocyanine pigment or a metal phthalocyanine pigment. Examples of the metal-free phthalocyanine pigment include X-type metal-free phthalocyanine pigment. Examples of metal phthalocyanine pigments include titanyl phthalocyanine pigments (more specifically, Y-type titanyl phthalocyanine pigments or α-type titanyl phthalocyanine pigments) or copper phthalocyanine pigments (more specifically, ε-type copper phthalocyanine pigments). Can be mentioned. Examples of the phthalocyanine pigment in the charge transport layer 3b include an X-type metal-free phthalocyanine pigment, a Y-type titanyl phthalocyanine pigment, an α-type titanyl phthalocyanine pigment, or an ε-type copper phthalocyanine pigment.
 電荷輸送層3bにおけるフタロシアニン系顔料の含有量は、バインダー樹脂100質量部に対して0.01質量部以上1.00質量部以下である。電荷輸送層3bにおけるフタロシアニン系顔料の含有量が、バインダー樹脂100質量部に対して1.00質量部を超えると、高温高湿環境下における感度の繰り返し特性が低下する。電荷輸送層3bでの露光光の吸収が大きくなって露光光が電荷発生層3aに到達しにくくなり、キャリアが十分に生成されないためである。電荷輸送層3bにおけるフタロシアニン系顔料の含有量が、バインダー樹脂100質量部に対して0.01質量部未満であると、高温高湿環境下における感度の繰り返し特性が低下する。感光層3中の残留電荷が蓄積し、キャリアが感光体1の表面へ到達しにくくなるからである。 The content of the phthalocyanine pigment in the charge transport layer 3b is 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin. When the content of the phthalocyanine pigment in the charge transport layer 3b exceeds 1.00 parts by mass with respect to 100 parts by mass of the binder resin, the sensitivity repeatability in a high temperature and high humidity environment decreases. This is because the absorption of exposure light in the charge transport layer 3b is increased, making it difficult for the exposure light to reach the charge generation layer 3a, and sufficient carriers are not generated. If the content of the phthalocyanine pigment in the charge transport layer 3b is less than 0.01 parts by mass with respect to 100 parts by mass of the binder resin, the sensitivity repeatability in a high temperature and high humidity environment is deteriorated. This is because residual charges in the photosensitive layer 3 accumulate and carriers are less likely to reach the surface of the photoreceptor 1.
[2-2.正孔輸送剤]
 正孔輸送剤としては、例えば、含窒素環式化合物又は縮合多環式化合物を使用することができる。含窒素環式化合物及び縮合多環式化合物としては、例えば、ジアミン誘導体(より具体的には、ベンジジン誘導体、N,N,N’,N’-テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’-テトラフェニルナフチレンジアミン誘導体、又はN,N,N’,N’-テトラフェニルフェナントリレンジアミン誘導体等);オキサジアゾール系化合物(より具体的には、2,5-ジ(4-メチルアミノフェニル)-1,3,4-オキサジアゾール等);スチリル系化合物(より具体的には、9-(4-ジエチルアミノスチリル)アントラセン等);カルバゾール系化合物(より具体的には、ポリビニルカルバゾール等);有機ポリシラン化合物;ピラゾリン系化合物(より具体的には、1-フェニル-3-(p-ジメチルアミノフェニル)ピラゾリン等);ヒドラゾン系化合物;インドール系化合物;オキサゾール系化合物;イソオキサゾール系化合物;チアゾール系化合物;チアジアゾール系化合物;イミダゾール系化合物;ピラゾール系化合物;トリアゾール系化合物が挙げられる。
[2-2. Hole transport agent]
As the hole transport agent, for example, a nitrogen-containing cyclic compound or a condensed polycyclic compound can be used. Examples of the nitrogen-containing cyclic compound and the condensed polycyclic compound include diamine derivatives (more specifically, benzidine derivatives, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′). , N′-tetraphenylnaphthylenediamine derivative, or N, N, N ′, N′-tetraphenylphenanthrylenediamine derivative, etc.); oxadiazole compounds (more specifically, 2,5-di ( 4-methylaminophenyl) -1,3,4-oxadiazole, etc.); styryl compounds (more specifically, 9- (4-diethylaminostyryl) anthracene, etc.); carbazole compounds (more specifically, Organic polysilane compounds; pyrazoline compounds (more specifically, 1-phenyl-3- (p-dimethylaminophenyl) pi Ethylbenzthiazoline etc.); hydrazone compounds; indole-based compound; oxazole-based compounds; isoxazole compounds; thiazole compounds; thiadiazole compounds; imidazole compounds; pyrazole compound; triazole compounds.
 これらの正孔輸送剤のうち、一般式(2)、一般式(3)、一般式(4)、一般式(5)、又は一般式(6)で表される化合物(以下、それぞれ正孔輸送剤(2)、(3)、(4)、(5)、及び(6)と記載することがある)が好ましい。すなわち、正孔輸送剤は、正孔輸送剤(2)、(3)、(4)、(5)、又は(6)を含むことが好ましい。電荷輸送層が正孔輸送剤(2)、(3)、(4)、(5)又は(6)を含有することにより、感光体の高温高湿環境下での感度の繰り返し特性を向上させることができ、感光体の電位環境安定性及び耐摩耗性を向上させることもできる。感光体の電位環境安定性を更に向上させる観点から、正孔輸送剤は、正孔輸送剤(2)、(3)、(4)又は(5)であることが好ましく、正孔輸送剤(3)、(4)、又は(5)がより好ましく、正孔輸送剤(3)が更に好ましい。感光体の耐摩耗性を更に向上させる観点から、正孔輸送剤は、正孔輸送剤(4)、(5)、又は(6)が好ましく、正孔輸送剤(4)であることがより好ましい。 Among these hole transporting agents, compounds represented by the general formula (2), the general formula (3), the general formula (4), the general formula (5), or the general formula (6) (hereinafter each referred to as a hole). Transport agents (2), (3), (4), (5), and (6) may be described) are preferred. That is, the hole transport agent preferably contains a hole transport agent (2), (3), (4), (5), or (6). The charge transport layer contains the hole transport agent (2), (3), (4), (5) or (6), thereby improving the repetitive characteristics of the sensitivity of the photoreceptor in a high temperature and high humidity environment. It is also possible to improve the potential environment stability and wear resistance of the photoreceptor. From the viewpoint of further improving the potential environment stability of the photoreceptor, the hole transport agent is preferably the hole transport agent (2), (3), (4) or (5). 3), (4), or (5) is more preferable, and the hole transport agent (3) is still more preferable. From the viewpoint of further improving the abrasion resistance of the photoreceptor, the hole transport agent is preferably the hole transport agent (4), (5), or (6), more preferably the hole transport agent (4). preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(2)中、Q1は、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。フェニル基は、炭素原子数1以上8以下のアルキル基で置換されてもよい。Q2は、各々独立に、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。Q3、Q4、Q5、Q6、及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。Q3、Q4、Q5、Q6、及びQ7のうちの隣接した二つが互いに結合して環を形成してもよい。aは、0以上5以下の整数を表す。aが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ2は、互いに同一でも異なっていてもよい。 In general formula (2), Q 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group. The phenyl group may be substituted with an alkyl group having 1 to 8 carbon atoms. Q 2 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group. Q 3 , Q 4 , Q 5 , Q 6 , and Q 7 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group. To express. Two adjacent ones of Q 3 , Q 4 , Q 5 , Q 6 , and Q 7 may be bonded to each other to form a ring. a represents an integer of 0 or more and 5 or less. When a represents an integer of 2 or more and 5 or less, a plurality of Q 2 bonded to the same phenyl group may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(3)中、Q8、Q10、Q11、Q12、Q13、及びQ14は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。Q9及びQ15は、各々独立に、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。bは、0以上5以下の整数を表す。bが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ9は、互いに同一でも異なっていてもよい。cは、0以上4以下の整数を表す。cが2以上4以下の整数を表す場合、同一のフェニレン基に結合する複数のQ15は、互いに同一でも異なっていてもよい。kは、0又は1を表す。 In General Formula (3), Q 8 , Q 10 , Q 11 , Q 12 , Q 13 , and Q 14 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or 1 or more carbon atoms. It represents an alkoxy group of 8 or less or a phenyl group. Q 9 and Q 15 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group. b represents an integer of 0 or more and 5 or less. When b represents an integer of 2 or more and 5 or less, a plurality of Q 9 bonded to the same phenyl group may be the same as or different from each other. c represents an integer of 0 or more and 4 or less. When c represents an integer of 2 or more and 4 or less, the plurality of Q 15 bonded to the same phenylene group may be the same as or different from each other. k represents 0 or 1.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(4)中、Ra、Rb及びRcは、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基、又は炭素原子数1以上8以下のアルコキシ基を表す。qは、0以上4以下の整数を表す。qが2以上4以下の整数を表す場合、同一のフェニレン基に結合する複数のRcは、互いに同一でも異なっていてもよい。m及びnは、各々独立に、0以上5以下の整数を表す。mが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRbは、互いに同一でも異なっていてもよい。nが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRaは、互いに同一でも異なっていてもよい。 In general formula (4), R a , R b and R c each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms. q represents an integer of 0 or more and 4 or less. When q represents an integer of 2 or more and 4 or less, a plurality of R c bonded to the same phenylene group may be the same as or different from each other. m and n each independently represent an integer of 0 or more and 5 or less. When m represents an integer of 2 or more and 5 or less, a plurality of R b bonded to the same phenyl group may be the same or different from each other. When n represents an integer of 2 or more and 5 or less, a plurality of R a bonded to the same phenyl group may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(5)中、R1、R2、及びR3は、各々独立に、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、炭素原子数6以上14以下のアリール基、炭素原子数6以上14以下のアリールオキシ基、炭素原子数7以上20以下のアラルキル基、ハロゲン原子、又は水素原子を表す。R2とR3とは、互いに結合してもよい。dは、1又は2を表す。 In General Formula (5), R 1 , R 2 , and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 6 to 14 carbon atoms. The following aryl groups, aryloxy groups having 6 to 14 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, halogen atoms, or hydrogen atoms are represented. R 2 and R 3 may be bonded to each other. d represents 1 or 2.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 一般式(6)中、R111及びR112は、各々独立に、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、炭素原子数6以上14以下のアリール基、炭素原子数6以上14以下のアリールオキシ基、炭素原子数7以上20以下のアラルキル基、又はハロゲン原子を表す。d1及びd2は、各々独立に、0以上5以下の整数を表す。d3は、1又は2を表す。 In general formula (6), R 111 and R 112 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms. Represents an aryloxy group having 6 to 14 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a halogen atom. d 1 and d 2 each independently represents an integer of 0 or more and 5 or less. d 3 represents 1 or 2.
 一般式(2)中、Q1の表すフェニル基は、炭素原子数1以上8以下のアルキル基で置換されたフェニル基であることが好ましく、メチル基で置換されたフェニル基であることがより好ましい。 In general formula (2), the phenyl group represented by Q 1 is preferably a phenyl group substituted with an alkyl group having 1 to 8 carbon atoms, more preferably a phenyl group substituted with a methyl group. preferable.
 一般式(2)中、Q2の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上6以下のアルキル基であることが好ましく、炭素原子数1以上4以下のアルキル基であることがより好ましく、メチル基であることが更に好ましい。aは、0又は1を表すことが好ましい。 In general formula (2), the alkyl group having 1 to 8 carbon atoms represented by Q 2 is preferably an alkyl group having 1 to 6 carbon atoms, and is an alkyl group having 1 to 4 carbon atoms. More preferably, it is more preferably a methyl group. It is preferable that a represents 0 or 1.
 一般式(2)中、Q3~Q7の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、n-ブチル基であることがより好ましい。一般式(2)中、Q3~Q7の表す炭素原子数1以上8以下のアルコキシ基は、炭素原子数1以上4以下のアルコキシ基が好ましく、メトキシ基又はエトキシ基であることがより好ましい。一般式(2)中、Q3~Q7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表すことが好ましく、水素原子、炭素原子数1以上4以下のアルキル基、又は炭素原子数1以上4以下のアルコキシ基を表すことがより好ましい。 In general formula (2), the alkyl group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably an alkyl group having 1 to 4 carbon atoms, and preferably an n-butyl group. More preferred. In general formula (2), the alkoxy group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably an alkoxy group having 1 to 4 carbon atoms, more preferably a methoxy group or an ethoxy group. . In general formula (2), Q 3 to Q 7 each independently preferably represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, More preferably, it represents an atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
 一般式(2)中、Q3~Q7のうちの隣接した二つが互いに結合して、環(より具体的には、ベンゼン環、又は炭素原子数5以上7以下のシクロアルカン)を形成してもよい。例えば、Q3~Q7のうちの隣接したQ6とQ7とが互いに結合して、ベンゼン環、又は炭素原子数5以上7以下のシクロアルカンを形成してもよい。Q3~Q7のうちの隣接した二つが互いに結合してベンゼン環を形成する場合、このベンゼン環はQ3~Q7が結合するフェニル基と縮合して二環縮合環基(ナフチル基)を形成する。Q3~Q7のうちの隣接した二つが互いに結合して炭素原子数5以上7以下のシクロアルカンを形成する場合、この炭素原子数5以上7以下のシクロアルカンはQ3~Q7が結合するフェニル基と縮合して二環縮合環基を形成する。この場合、炭素原子数5以上7以下のシクロアルカンとフェニル基との縮合部位は、二重結合を含んでもよい。Q3~Q7のうちの隣接した二つが互いに結合して、炭素原子数5以上7以下のシクロアルカンを形成することが好ましく、シクロヘキサンを形成することがより好ましい。 In the general formula (2), two adjacent Q 3 to Q 7 are bonded to each other to form a ring (more specifically, a benzene ring or a cycloalkane having 5 to 7 carbon atoms). May be. For example, adjacent Q 6 and Q 7 of Q 3 to Q 7 may be bonded to each other to form a benzene ring or a cycloalkane having 5 to 7 carbon atoms. When two adjacent Q 3 to Q 7 are bonded to each other to form a benzene ring, this benzene ring is condensed with a phenyl group to which Q 3 to Q 7 are bonded to form a bicyclic condensed ring group (naphthyl group). Form. When two adjacent Q 3 to Q 7 are bonded to each other to form a cycloalkane having 5 to 7 carbon atoms, Q 3 to Q 7 are bonded to the cycloalkane having 5 to 7 carbon atoms. To form a bicyclic fused ring group. In this case, the condensation site between the cycloalkane having 5 to 7 carbon atoms and the phenyl group may contain a double bond. Two adjacent Q 3 to Q 7 are preferably bonded to each other to form a cycloalkane having 5 to 7 carbon atoms, more preferably cyclohexane.
 一般式(2)中、Q1は、フェニル基又は水素原子を表し、フェニル基は炭素原子数1以上8以下のアルキル基で置換されており、Q2は、炭素原子数1以上8以下のアルキル基を表し、Q3~Q7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表し、aは、0又は1を表すことが好ましい。Q3~Q7のうち隣接した二つが互いに結合して環を形成してもよい。 In general formula (2), Q 1 represents a phenyl group or a hydrogen atom, the phenyl group is substituted with an alkyl group having 1 to 8 carbon atoms, and Q 2 has 1 to 8 carbon atoms. Q 3 to Q 7 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, and a is 0 or 1 Is preferably represented. Two adjacent Q 3 to Q 7 may be bonded to each other to form a ring.
 一般式(3)中、Q8及びQ10~Q14の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。一般式(3)中、Q8及びQ10~Q14は、各々独立に、水素原子、炭素原子数1以上4以下のアルキル基、又はフェニル基を表し、b及びcは、0を表すことが好ましい。 In general formula (3), the alkyl group having 1 to 8 carbon atoms represented by Q 8 and Q 10 to Q 14 is preferably an alkyl group having 1 to 4 carbon atoms, and may be a methyl group or an ethyl group. It is more preferable that In general formula (3), Q 8 and Q 10 to Q 14 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, and b and c each represent 0. Is preferred.
 一般式(4)中、Ra及びRbの表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基又はエチル基を表すことがより好ましい。一般式(4)中、Ra及びRbは、炭素原子数1以上8以下のアルキル基を表し、m及びnは、各々独立に、0以上2以下の整数を表し、qは0を表すことが好ましい。 In general formula (4), the alkyl group having 1 to 8 carbon atoms represented by R a and R b is preferably an alkyl group having 1 to 4 carbon atoms, and represents a methyl group or an ethyl group. Is more preferable. In General Formula (4), R a and R b represent an alkyl group having 1 to 8 carbon atoms, m and n each independently represent an integer of 0 to 2, and q represents 0. It is preferable.
 一般式(5)中、R1、R2、及びR3の表す炭素原子数6以上14以下のアリール基としては、フェニル基が好ましい。 In general formula (5), the aryl group having 6 to 14 carbon atoms represented by R 1 , R 2 and R 3 is preferably a phenyl group.
 一般式(5)中、R2とR3とは、互いに結合してもよい。互いに結合した結果、環を形成してもよい。このような環としては、シクロアルカン(より具体的には、炭素原子数5以上7以下のシクロアルカン等)又は芳香環(より具体的には、炭素原子数5以上7以下の芳香環等)が挙げられる。例えば、R2及びR3が何れもフェニル基を表す場合、R2とR3とは、互いに結合して環を形成し、フルオレニル基となってもよい。 In general formula (5), R 2 and R 3 may be bonded to each other. As a result of bonding to each other, a ring may be formed. Examples of such a ring include a cycloalkane (more specifically, a cycloalkane having 5 to 7 carbon atoms) or an aromatic ring (more specifically, an aromatic ring having 5 to 7 carbon atoms). Is mentioned. For example, when both R 2 and R 3 represent a phenyl group, R 2 and R 3 may be bonded to each other to form a ring and become a fluorenyl group.
 R1、R2、及びR3は、各々、炭素原子数6以上14以下のアリール基を表すことが好ましい。R2とR3とは、互いに結合してもよい。 R 1 , R 2 , and R 3 each preferably represents an aryl group having 6 to 14 carbon atoms. R 2 and R 3 may be bonded to each other.
 一般式(6)中、R111及びR112は、各々、炭素原子数1以上6以下のアルキル基を表すことが好ましく、炭素原子数1以上3以下のアルキル基を表すことがより好ましく、メチル基を表すことが更に好ましい。 In general formula (6), R 111 and R 112 each preferably represents an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, More preferably, it represents a group.
 d1が2以上5以下の整数を表すとき、複数のR111は、互いに同一であっても異なっていてもよい。R111の結合位置は特に限定されない。R111は、フェニル基のオルト位、メタ位又はパラ位に結合してもよく、フェニル基のパラ位に結合することが好ましい。d2が2以上5以下の整数を表すとき、複数のR112は、互いに同一であっても異なっていてもよい。R112の結合位置は特に限定されない。R112は、フェニル基のオルト位、メタ位又はパラ位に結合してもよく、フェニル基のパラ位に結合することが好ましい。一般式(6)中、d1及びd2は、各々独立に、0又は1を表すことが好ましい。 When d 1 represents an integer of 2 or more and 5 or less, the plurality of R 111 may be the same as or different from each other. The bonding position of R 111 is not particularly limited. R 111 may be bonded to the ortho, meta, or para position of the phenyl group, and is preferably bonded to the para position of the phenyl group. When d 2 represents an integer of 2 or more and 5 or less, the plurality of R 112 may be the same as or different from each other. The bonding position of R 112 is not particularly limited. R 112 may be bonded to the ortho, meta, or para position of the phenyl group, and is preferably bonded to the para position of the phenyl group. In the general formula (6), d 1 and d 2 are each independently preferably represents 0 or 1.
 一般式(6)中、d3は、1又は2を表す。d3が1を表すとき、一般式(6)は、一般式(6-1)に相当する。d3が2を表すとき、一般式(6)は、一般式(6-2)に相当する。一般式(6-1)及び(6-2)中のR111、R112、d1及びd2は、各々、一般式(6)中のR111、R112、d1及びd2と同義である。一般式(6)中のd3は、1を表すことが好ましい。 In general formula (6), d 3 represents 1 or 2. When d 3 represents 1, the general formula (6) corresponds to the general formula (6-1). When d 3 represents 2, the general formula (6) corresponds to the general formula (6-2). R 111 in formula (6-1) and (6-2) in, R 112, d 1 and d 2 are each, R 111 in formula (6) in, R 112, d 1 and d 2 as defined It is. D 3 in the general formula (6) preferably represents 1.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(6)中、R111及びR112は、各々、炭素原子数1以上6以下のアルキル基を表し、d1及びd2は、各々独立に、0又は1を表し、d3は、1を表すことが好ましい。 In the general formula (6), R 111 and R 112 each represents an alkyl group having 1 to 6 carbon atoms, d 1 and d 2 each independently represent 0 or 1, and d 3 is 1 is preferably represented.
 正孔輸送剤(2)としては、例えば、化学式(HTM-1)~(HTM-4)で表される正孔輸送剤(以下、それぞれ正孔輸送剤(HTM-1)~(HTM-4)と記載することがある)が挙げられる。正孔輸送剤(3)としては、例えば、化学式(HTM-5)及び(HTM-7)で表される正孔輸送剤(以下、それぞれ正孔輸送剤(HTM-5)及び(HTM-7)と記載することがある)が挙げられる。正孔輸送剤(4)としては、例えば、化学式(HTM-6)及び(HTM-8)で表される正孔輸送剤(以下、それぞれ正孔輸送剤(HTM-6)及び(HTM-8)と記載することがある)が挙げられる。正孔輸送剤(5)としては、例えば、化学式(HTM-11)及び化学式(HTM-12)で表される正孔輸送剤(以下、それぞれ正孔輸送剤(HTM-11)及び(HTM-12)と記載することがある)が挙げられる。正孔輸送剤(6)としては、例えば、化学式(HTM-9)及び化学式(HTM-10)で表される正孔輸送剤(以下、それぞれ正孔輸送剤(HTM-9)及び(HTM-10)と記載することがある)が挙げられる。 Examples of the hole transport agent (2) include hole transport agents represented by chemical formulas (HTM-1) to (HTM-4) (hereinafter referred to as hole transport agents (HTM-1) to (HTM-4, respectively). ) May be described. Examples of the hole transporting agent (3) include hole transporting agents represented by chemical formulas (HTM-5) and (HTM-7) (hereinafter referred to as hole transporting agent (HTM-5) and (HTM-7, respectively). ) May be described. Examples of the hole transporting agent (4) include hole transporting agents represented by chemical formulas (HTM-6) and (HTM-8) (hereinafter referred to as hole transporting agent (HTM-6) and (HTM-8), respectively). ) May be described. Examples of the hole transporting agent (5) include hole transporting agents represented by chemical formula (HTM-11) and chemical formula (HTM-12) (hereinafter referred to as hole transporting agent (HTM-11) and (HTM- 12))). Examples of the hole transporting agent (6) include hole transporting agents represented by chemical formula (HTM-9) and chemical formula (HTM-10) (hereinafter referred to as hole transporting agent (HTM-9) and (HTM- 10))).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 正孔輸送剤(2)~(5)の各々は、例えば、公知の方法を適宜適用することにより、製造することができる。正孔輸送剤(6)は、例えば、以下の方法で製造することができる。正孔輸送剤(6)は、例えば、反応式(r-1)、(r-2)及び(r-3)で表される反応(以下、それぞれ反応(r-1)、(r-2)及び(r-3)と記載する)に従って、又はこれに準ずる方法に従って、製造される。反応(r-1)、(r-2)及び(r-3)中のR111、R112、d1、d2、及びd3は、各々、一般式(6)中のR111、R112、d1、d2、及びd3と同義である。 Each of the hole transport agents (2) to (5) can be produced, for example, by appropriately applying a known method. The hole transport agent (6) can be produced, for example, by the following method. The hole transporting agent (6) is, for example, a reaction represented by the reaction formulas (r-1), (r-2) and (r-3) (hereinafter referred to as reactions (r-1) and (r-2), respectively. ) And (r-3)), or according to a similar method. Reaction (r-1), (r -2) and (r-3) R 111, R 112, d 1, d 2 in, and d 3 are each formula in (6) R 111, R 112 , d 1 , d 2 , and d 3 are synonymous.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 反応(r-1)では、1モル当量の化学式(A1)で表される化合物(以下、化合物(A1)と記載する)と、1モル当量の亜リン酸トリエチルとを反応させて、1モル当量の化学式(B1)で表される化合物(以下、化合物(B1)と記載する)を得る。反応(r-1)では、1モルの化合物(A1)に対して、1モル以上2.5モル以下の亜リン酸トリエチルを添加することが好ましい。反応(r-1)の反応温度は160℃以上200℃以下であることが好ましい。反応(r-1)の反応時間は2時間以上10時間以下であることが好ましい。 In the reaction (r-1), 1 mol equivalent of the compound represented by the chemical formula (A1) (hereinafter referred to as the compound (A1)) and 1 mol equivalent of triethyl phosphite are reacted to give 1 mol An equivalent amount of the compound represented by the chemical formula (B1) (hereinafter referred to as the compound (B1)) is obtained. In the reaction (r-1), it is preferable to add 1 mol to 2.5 mol of triethyl phosphite with respect to 1 mol of the compound (A1). The reaction temperature for reaction (r-1) is preferably 160 ° C. or higher and 200 ° C. or lower. The reaction time for reaction (r-1) is preferably 2 hours or longer and 10 hours or shorter.
 反応(r-2)では、1モル当量の化学式(A2)で表される化合物(以下、化合物(A2)と記載する)と、1モル当量の亜リン酸トリエチルとを反応させて、1モル当量の化学式(B2)で表される化合物(以下、化合物(B2)と記載する)を得る。反応(r-2)は、化合物(A1)を化合物(A2)に変更した以外は、反応(r-1)と同じ方法で行うことができる。 In the reaction (r-2), 1 mol equivalent of a compound represented by the chemical formula (A2) (hereinafter referred to as the compound (A2)) and 1 mol equivalent of triethyl phosphite are reacted to give 1 mol An equivalent amount of the compound represented by the chemical formula (B2) (hereinafter referred to as the compound (B2)) is obtained. Reaction (r-2) can be carried out in the same manner as in reaction (r-1), except that compound (A1) is changed to compound (A2).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 反応(r-3)では、1モル当量の化学式(C)で表される化合物(以下、化合物(C)と記載する)と、1モル当量の化合物(B1)と、1モル当量の化合物(B2)とを反応させて、1モル当量の正孔輸送剤(6)を得る。1モルの化合物(C)に対して、1モル以上5モル以下の化合物(B1)を添加することが好ましい。1モルの化合物(C)に対して、1モル以上5モル以下の化合物(B2)を添加することが好ましい。反応(r-3)の反応温度は0℃以上50℃以下であることが好ましい。反応(r-3)の反応時間は10分以上24時間以下であることが好ましい。反応(r-3)は不活性ガス(例えば、アルゴンガス)の雰囲気下で行われてもよい。 In the reaction (r-3), 1 molar equivalent of the compound represented by the chemical formula (C) (hereinafter referred to as the compound (C)), 1 molar equivalent of the compound (B1), and 1 molar equivalent of the compound ( B2) is reacted with to obtain 1 molar equivalent of the hole transporting agent (6). It is preferable to add 1 mol or more and 5 mol or less of compound (B1) with respect to 1 mol of compound (C). It is preferable to add 1 mol or more and 5 mol or less of compound (B2) with respect to 1 mol of compound (C). The reaction temperature for reaction (r-3) is preferably 0 ° C. or higher and 50 ° C. or lower. The reaction time for reaction (r-3) is preferably 10 minutes to 24 hours. The reaction (r-3) may be performed in an atmosphere of an inert gas (for example, argon gas).
 反応(r-3)は、塩基の存在下で行われてもよい。塩基としては、例えば、ナトリウムアルコキシド(より具体的には、ナトリウムメトキシド又はナトリウムエトキシド等)、金属水素化物(より具体的には、水素化ナトリウム又は水素化カリウム等)又は金属塩(より具体的には、n-ブチルリチウム等)が挙げられる。これらの塩基のうち、ナトリウムメトキシドが好ましい。これらの塩基は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。塩基の添加量は、1モルの化合物(C)に対して、1モル以上3モル以下であることが好ましい。 The reaction (r-3) may be performed in the presence of a base. Examples of the base include sodium alkoxide (more specifically, sodium methoxide or sodium ethoxide), metal hydride (more specifically, sodium hydride, potassium hydride, etc.) or metal salt (more specifically, Specifically, n-butyllithium and the like can be mentioned. Of these bases, sodium methoxide is preferred. These bases may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the base added is preferably 1 mol or more and 3 mol or less with respect to 1 mol of the compound (C).
 反応(r-3)は、溶媒中で行われてもよい。溶媒としては、例えば、エーテル(より具体的には、テトラヒドロフラン、ジエチルエーテル又はジオキサン等)、ハロゲン化炭化水素(より具体的には、塩化メチレン、クロロホルム又はジクロロエタン等)又は芳香族炭化水素(より具体的には、ベンゼン又はトルエン等)が挙げられる。これらの溶媒のうち、テトラヒドロフランが好ましい。 The reaction (r-3) may be performed in a solvent. Examples of the solvent include ether (more specifically, tetrahydrofuran, diethyl ether, dioxane and the like), halogenated hydrocarbon (more specifically, methylene chloride, chloroform, dichloroethane and the like) or aromatic hydrocarbon (more specifically, Specifically, benzene, toluene, etc.) are mentioned. Of these solvents, tetrahydrofuran is preferred.
 反応(r-3)で得られた反応生成物(productant)を、必要に応じて精製することにより、目的化合物である正孔輸送剤(6)を単離することができる。精製方法としては、公知の方法が適宜採用され、例えば、晶析又はシリカゲルクロマトグラフィーが挙げられる。精製に使用する溶媒としては、例えば、クロロホルム、ヘキサン、又はクロロホルムとヘキサンとの混合溶媒が挙げられる。 By purifying the reaction product (product) obtained in the reaction (r-3) as necessary, the hole transport agent (6) as the target compound can be isolated. As a purification method, a known method is appropriately employed, and examples thereof include crystallization or silica gel chromatography. Examples of the solvent used for purification include chloroform, hexane, and a mixed solvent of chloroform and hexane.
 正孔輸送剤の含有量は、バインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。 The content of the hole transporting agent is preferably 10 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin.
[2-3.バインダー樹脂]
 バインダー樹脂は、ポリアリレート樹脂(1)を含む。ポリアリレート樹脂(1)は、一般式(1)で表される。
[2-3. Binder resin]
The binder resin includes a polyarylate resin (1). The polyarylate resin (1) is represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 一般式(1)中、ktは2又は3を表す。Xは、化学式(2A)、化学式(2B)、化学式(2C)、又は化学式(2D)で表される二価の基を表す。 In general formula (1), kt represents 2 or 3. X represents a divalent group represented by the chemical formula (2A), the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(1)中、ktは3を表し、Xは、化学式(2B)、化学式(2C)、又は化学式(2D)を表される二価の基を表すことが好ましい。 In general formula (1), kt represents 3, and X preferably represents a divalent group represented by chemical formula (2B), chemical formula (2C), or chemical formula (2D).
 ポリアリレート樹脂(1)は、化学式(1-5)で表される繰返し単位(以下、繰返し単位(1-5)と記載することがある)と、一般式(1-6)で表される繰返し単位(以下、繰返し単位(1-6)と記載することがある)とを有する。 The polyarylate resin (1) is represented by a repeating unit represented by the chemical formula (1-5) (hereinafter sometimes referred to as a repeating unit (1-5)) and a general formula (1-6). Repeating units (hereinafter sometimes referred to as repeating units (1-6)).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(1-5)中のkt及び一般式(1-6)中のXは、それぞれ一般式(1)中のkt及びXと同義である。 Kt in general formula (1-5) and X in general formula (1-6) have the same meanings as kt and X in general formula (1), respectively.
 ポリアリレート樹脂(1)は、繰返し単位(1-5)及び(1-6)以外の繰返し単位を有してもよい。ポリアリレート樹脂(1)中の繰返し単位の物質量の合計に対する繰返し単位(1-5)及び(1-6)の物質量の合計の比率(モル分率)は、0.80以上が好ましく、0.90以上がより好ましく、1.00が更に好ましい。 The polyarylate resin (1) may have a repeating unit other than the repeating units (1-5) and (1-6). The ratio (molar fraction) of the total amount of the repeating units (1-5) and (1-6) to the total amount of the repeating units in the polyarylate resin (1) is preferably 0.80 or more, 0.90 or more is more preferable, and 1.00 is still more preferable.
 ポリアリレート樹脂(1)における繰返し単位(1-5)及び(1-6)の配列は、芳香族ジオール由来の繰返し単位と芳香族ジカルボン酸由来の繰返し単位とが互いに隣接する限り、特に限定されない。 The arrangement of the repeating units (1-5) and (1-6) in the polyarylate resin (1) is not particularly limited as long as the repeating unit derived from the aromatic diol and the repeating unit derived from the aromatic dicarboxylic acid are adjacent to each other. .
 ポリアリレート樹脂(1)としては、例えば、化学式(R-1)~(R-4)で表されるポリアリレート樹脂(以下、ポリアリレート樹脂(R-1)~(R-4)と記載することがある)が挙げられる。 Examples of the polyarylate resin (1) include polyarylate resins represented by chemical formulas (R-1) to (R-4) (hereinafter referred to as polyarylate resins (R-1) to (R-4)). May be included).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 ポリアリレート樹脂(1)の粘度平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが更に好ましく、45,000以上であることが特に好ましい。ポリアリレート樹脂(1)の粘度平均分子量は、80,000以下であることが好ましく、60,000以下であることがより好ましく、52,000以下であることが更に好ましい。ポリアリレート樹脂(1)の粘度平均分子量が10,000以上である場合、バインダー樹脂の耐摩耗性を高めることができ、電荷輸送層3bが摩耗しにくくなる。一方、ポリアリレート樹脂(1)の粘度平均分子量が80,000以下である場合、感光層3の形成時に、ポリアリレート樹脂(1)が溶剤に溶解し易くなり、感光層3の形成が容易になる傾向がある。 The viscosity average molecular weight of the polyarylate resin (1) is preferably 10,000 or more, more preferably 20,000 or more, still more preferably 30,000 or more, and 45,000 or more. It is particularly preferred. The viscosity average molecular weight of the polyarylate resin (1) is preferably 80,000 or less, more preferably 60,000 or less, and further preferably 52,000 or less. When the viscosity average molecular weight of the polyarylate resin (1) is 10,000 or more, the wear resistance of the binder resin can be increased, and the charge transport layer 3b is hardly worn. On the other hand, when the viscosity average molecular weight of the polyarylate resin (1) is 80,000 or less, the polyarylate resin (1) is easily dissolved in the solvent during the formation of the photosensitive layer 3, and the formation of the photosensitive layer 3 is easy. Tend to be.
 バインダー樹脂としては、ポリアリレート樹脂(1)のみを単独で用いてもよいし、ポリアリレート樹脂(1)以外の樹脂(その他の樹脂)を、本発明の効果を損なわない範囲で含んでいてもよい。その他の樹脂としては、例えば、熱可塑性樹脂(より具体的には、ポリアリレート樹脂(1)以外のポリアリレート樹脂、ポリカーボネート樹脂、スチレン系樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸共重合体、アクリル共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル-酢酸ビニル共重合体、ポリエステル樹脂、アルキド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、又はポリエステル樹脂等)、熱硬化性樹脂(より具体的には、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、又はその他架橋性の熱硬化性樹脂等)、又は、光硬化性樹脂(より具体的には、エポキシ-アクリル酸系樹脂、又はウレタン-アクリル酸系共重合体等)が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 As the binder resin, only the polyarylate resin (1) may be used alone, or a resin (other resin) other than the polyarylate resin (1) may be included within a range that does not impair the effects of the present invention. Good. Examples of other resins include thermoplastic resins (more specifically, polyarylate resins other than polyarylate resin (1), polycarbonate resins, styrene resins, styrene-butadiene copolymers, and styrene-acrylonitrile copolymers. , Styrene-maleic acid copolymer, styrene-acrylic acid copolymer, acrylic copolymer, polyethylene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer, vinyl chloride -Vinyl acetate copolymer, polyester resin, alkyd resin, polyamide resin, polyurethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, or polyester resin), thermosetting resin (more specific) In , Silicone resin, epoxy resin, phenol resin, urea resin, melamine resin, or other cross-linkable thermosetting resin), or photo-curing resin (more specifically, epoxy-acrylic resin or urethane) -Acrylic acid copolymer). These may be used alone or in combination of two or more.
(ポリアリレート樹脂(1)の製造方法)
 ポリアリレート樹脂(1)の製造方法は、ポリアリレート樹脂(1)を製造できれば、特に限定されない。これらの製造方法として、例えば、ポリアリレート樹脂(1)の繰返し単位を構成するための芳香族ジオールと芳香族ジカルボン酸とを縮重合させる方法が挙げられる。ポリアリレート樹脂(1)の合成方法は特に限定されず、公知の合成方法(より具体的には、溶液重合、溶融重合、又は界面重合等)を採用することができる。以下、ポリアリレート樹脂(1)の製造方法の一例を説明する。
(Production method of polyarylate resin (1))
The production method of the polyarylate resin (1) is not particularly limited as long as the polyarylate resin (1) can be produced. Examples of these production methods include a method of polycondensing an aromatic diol and an aromatic dicarboxylic acid for constituting a repeating unit of the polyarylate resin (1). The synthesis method of the polyarylate resin (1) is not particularly limited, and a known synthesis method (more specifically, solution polymerization, melt polymerization, interfacial polymerization, or the like) can be employed. Hereinafter, an example of the manufacturing method of polyarylate resin (1) is demonstrated.
 ポリアリレート樹脂(1)は、例えば、反応式(R-1)で表される反応(以下、反応(R-1)と記載することがある)に従って又はこれに準じる方法によって製造される。ポリアリレート樹脂(1)の製造方法は、例えば、反応(R-1)を含む。 The polyarylate resin (1) is produced, for example, according to the reaction represented by the reaction formula (R-1) (hereinafter sometimes referred to as reaction (R-1)) or by a method analogous thereto. The method for producing the polyarylate resin (1) includes, for example, reaction (R-1).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 反応(R-1)において、一般式(1-11)中のkt及び一般式(1-9)中のXは、それぞれ一般式(1)中のkt及びXと同義である。 In reaction (R-1), kt in general formula (1-11) and X in general formula (1-9) have the same meanings as kt and X in general formula (1), respectively.
 反応(R-1)では、一般式(1-9)で表される芳香族ジカルボン酸(以下、芳香族ジカルボン酸(1-9)と記載することがある)と、一般式(1-11)で表される芳香族ジオール(以下、芳香族ジオール(1-11)と記載することがある)とを反応させて、ポリアリレート樹脂(1)を得る。 In the reaction (R-1), an aromatic dicarboxylic acid represented by the general formula (1-9) (hereinafter sometimes referred to as aromatic dicarboxylic acid (1-9)) and a general formula (1-11) ) (Hereinafter sometimes referred to as aromatic diol (1-11)) to obtain polyarylate resin (1).
 芳香族ジカルボン酸(1-9)の物質量1モルに対する、芳香族ジオール(1-11)の物質量は、0.9モル以上1.1モル以下であることが好ましい。上記範囲であると、ポリアリレート樹脂(1)を精製し易く、ポリアリレート樹脂(1)の収率が向上する。 The amount of the aromatic diol (1-11) relative to 1 mol of the aromatic dicarboxylic acid (1-9) is preferably 0.9 to 1.1 mol. Within the above range, the polyarylate resin (1) can be easily purified, and the yield of the polyarylate resin (1) is improved.
 反応(R-1)は、アルカリ及び触媒の存在下で進行させてもよい。触媒としては、例えば、第三級アンモニウム(より具体的には、トリアルキルアミン等)又は第四級アンモニウム塩(より具体的には、ベンジルトリメチルアンモニウムブロマイド等)が挙げられる。アルカリとしては、例えば、アルカリ金属の水酸化物(より具体的には、水酸化ナトリウム又は水酸化カリウム等)、アルカリ土類金属の水酸化物(より具体的には、水酸化カルシウム等)が挙げられる。反応(R-1)は、溶媒中及び不活性ガス雰囲気下で進行させてもよい。溶媒としては、例えば、水又はクロロホルムが挙げられる。不活性ガスとしては、例えば、アルゴンが挙げられる。反応(R-1)の反応時間は、2時間以上5時間以下が好ましい。反応温度は、5℃以上25℃以下が好ましい。  The reaction (R-1) may be allowed to proceed in the presence of an alkali and a catalyst. Examples of the catalyst include tertiary ammonium (more specifically, trialkylamine and the like) or quaternary ammonium salt (more specifically, benzyltrimethylammonium bromide and the like). Examples of the alkali include alkali metal hydroxides (more specifically, sodium hydroxide or potassium hydroxide) and alkaline earth metal hydroxides (more specifically, calcium hydroxide). Can be mentioned. Reaction (R-1) may be allowed to proceed in a solvent and under an inert gas atmosphere. Examples of the solvent include water or chloroform. Examples of the inert gas include argon. The reaction time for reaction (R-1) is preferably 2 hours or longer and 5 hours or shorter. The reaction temperature is preferably 5 ° C or higher and 25 ° C or lower. *
 芳香族ジカルボン酸(1-9)としては、例えば、芳香環上に結合する2つのカルボキシル基を有する芳香族ジカルボン酸(より具体的には、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル、又は4,4’-ジカルボキシビフェニル等)が挙げられる。芳香族ジカルボン酸は、芳香族ジカルボン酸(1-9)以外に他のジカルボン酸を含んでもよい。なお、ポリアリレート樹脂(1)の合成において、芳香族ジカルボン酸(1-9)の代わりに、芳香族ジカルボン酸(1-9)の誘導体(より具体的には、ハロゲン化アルカノイル又は芳香族ジカルボン酸無水物)を用いてもよい。 Examples of the aromatic dicarboxylic acid (1-9) include an aromatic dicarboxylic acid having two carboxyl groups bonded on the aromatic ring (more specifically, 2,6-naphthalenedicarboxylic acid, 4,4′- Dicarboxydiphenyl ether, or 4,4′-dicarboxybiphenyl). The aromatic dicarboxylic acid may contain other dicarboxylic acids in addition to the aromatic dicarboxylic acid (1-9). In the synthesis of the polyarylate resin (1), a derivative of the aromatic dicarboxylic acid (1-9) (more specifically, a halogenated alkanoyl or aromatic dicarboxylic acid, instead of the aromatic dicarboxylic acid (1-9). Acid anhydride) may be used.
 芳香族ジオール(1-11)としては、例えば、1,1-ビス(3-メチルフェニル)シクロヘキサン又は1,1-ビス(3-メチルフェニル)シクロペンタンが挙げられる。反応(R-1)では、芳香族ジオールは、芳香族ジオール(1-11)に加えて他のジオール(例えば、ビスフェノールA、ビスフェノールS、ビスフェノールE、又はビスフェノールF等)を用いてもよい。ポリアリレート樹脂(1)を合成において、芳香族ジオール(1-11)の代わりに芳香族ジオールの誘導体を用いることができる。芳香族ジオールの誘導体としては、例えば、ジアセテートが挙げられる。 Examples of the aromatic diol (1-11) include 1,1-bis (3-methylphenyl) cyclohexane or 1,1-bis (3-methylphenyl) cyclopentane. In the reaction (R-1), as the aromatic diol, in addition to the aromatic diol (1-11), another diol (for example, bisphenol A, bisphenol S, bisphenol E, or bisphenol F) may be used. In the synthesis of the polyarylate resin (1), an aromatic diol derivative can be used in place of the aromatic diol (1-11). Examples of the aromatic diol derivative include diacetate.
 ポリアリレート樹脂(1)の製造では、必要に応じて他の工程を含んでもよい。このような工程としては、例えば、精製工程が挙げられる。精製方法としては、例えば、公知の方法(より具体的には、ろ過、クロマトグラフィー、又は晶折等)が挙げられる。 In the production of the polyarylate resin (1), other steps may be included as necessary. An example of such a process is a purification process. Examples of the purification method include known methods (more specifically, filtration, chromatography, crystal folding, etc.).
[2-4.ベース樹脂]
 ベース樹脂は、感光体1に適用できる限り、特に限定されない。ベース樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、スチレン系樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸系共重合体、アクリル共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル-酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、又はポリエステル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、又はその他架橋性の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシアクリル酸系樹脂、又はウレタン-アクリル酸系樹脂が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[2-4. Base resin]
The base resin is not particularly limited as long as it can be applied to the photoreceptor 1. Examples of the base resin include a thermoplastic resin, a thermosetting resin, and a photocurable resin. Examples of the thermoplastic resin include a styrene resin, a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, a styrene-maleic acid copolymer, a styrene-acrylic acid copolymer, an acrylic copolymer, and a polyethylene resin. , Ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin, urethane resin, polycarbonate resin, polyarylate resin, polysulfone Examples of the resin include diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, and polyester resin. Examples of the thermosetting resin include silicone resins, epoxy resins, phenol resins, urea resins, melamine resins, and other crosslinkable thermosetting resins. Examples of the photocurable resin include an epoxy acrylic resin or a urethane-acrylic resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
 ベース樹脂は、上述したバインダー樹脂と同様の樹脂も例示されているが、同一の積層型感光体1においては、通常、バインダー樹脂とは異なる樹脂が選択される。これは以下の理由を根拠としている。積層型感光体1を製造する際、通常、電荷発生層3a、電荷輸送層3bの順に形成するため、電荷発生層3aに、電荷輸送層を形成するための塗布液(以下、電荷輸送層用塗布液と記載することがある)を塗布することになる。電荷輸送層3bの形成時に、電荷発生層3aは、電荷輸送層用塗布液の溶剤に溶解しないことが好ましい。そこで、ベース樹脂は、同一の積層型感光体1においては、通常、バインダー樹脂とは異なる樹脂が選択される。 As the base resin, the same resin as the above-described binder resin is also exemplified, but in the same laminated photoreceptor 1, a resin different from the binder resin is usually selected. This is based on the following reasons. When the multilayer photoconductor 1 is manufactured, the charge generating layer 3a and the charge transport layer 3b are usually formed in this order, and therefore a coating solution for forming a charge transport layer on the charge generation layer 3a (hereinafter referred to as charge transport layer use) (It may be described as a coating solution). When the charge transport layer 3b is formed, the charge generation layer 3a is preferably not dissolved in the solvent of the charge transport layer coating solution. Therefore, as the base resin, a resin different from the binder resin is usually selected in the same laminated photoreceptor 1.
[2-5.添加剤]
 添加剤としては、例えば、劣化防止剤(より具体的には、酸化防止剤、ラジカル捕捉剤、消光剤、又は紫外線吸収剤等)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、ドナー、界面活性剤、又はレベリング剤が挙げられる。
[2-5. Additive]
Examples of the additive include a deterioration inhibitor (more specifically, an antioxidant, a radical scavenger, a quencher, or an ultraviolet absorber), a softener, a surface modifier, a bulking agent, a thickener, Examples include dispersion stabilizers, waxes, donors, surfactants, or leveling agents.
 酸化防止剤としては、例えば、ヒンダードフェノール化合物、ヒンダードアミン化合物、チオエーテル化合物、又はホスファイト化合物が挙げられる。これらの酸化防止剤の中でも、ヒンダードフェノール化合物及びヒンダードアミン化合物が好ましい。 Examples of the antioxidant include hindered phenol compounds, hindered amine compounds, thioether compounds, and phosphite compounds. Among these antioxidants, hindered phenol compounds and hindered amine compounds are preferred.
[3.中間層]
 第二実施形態に係る感光体1は、中間層4(例えば、下引き層)を有してもよい。中間層4は、例えば、無機粒子、及び樹脂(中間層用樹脂)を含有する。中間層4を介在させると、電流リークの発生を抑制し得る程度の絶縁状態を維持しつつ、感光体1を露光した時に発生する電流の流れを円滑にして、電気抵抗の上昇を抑えることができる。
[3. Middle layer]
The photoreceptor 1 according to the second embodiment may have an intermediate layer 4 (for example, an undercoat layer). The intermediate layer 4 contains, for example, inorganic particles and a resin (intermediate layer resin). By interposing the intermediate layer 4, it is possible to smooth the flow of current generated when the photosensitive member 1 is exposed and suppress an increase in electric resistance while maintaining an insulating state capable of suppressing the occurrence of current leakage. it can.
 無機粒子としては、例えば、金属(より具体的には、アルミニウム、鉄、又は銅等)の粒子、金属酸化物(より具体的には、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ、又は酸化亜鉛等)の粒子、又は非金属酸化物(より具体的には、シリカ等)の粒子が挙げられる。これらの無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。なお、無機粒子は、表面処理を施してもよい。 Examples of the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, or zinc oxide). Etc.) or non-metal oxide (more specifically, silica etc.) particles. These inorganic particles may be used individually by 1 type, and may use 2 or more types together. The inorganic particles may be subjected to a surface treatment.
 中間層用樹脂としては、中間層4を形成する樹脂として用いることができれば、特に限定されない。 The intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer 4.
[4.感光体の製造方法]
 積層型感光体1の製造方法において、感光層形成工程は、電荷発生層形成工程と電荷輸送層形成工程とを有する。電荷発生層形成工程では、まず、電荷発生層3aを形成するための塗布液(以下、電荷発生層用塗布液と記載することがある)を調製する。電荷発生層用塗布液を導電性基体2上に塗布し、塗布膜を形成する。次いで、適宜な方法で塗布膜を乾燥させることによって、塗布膜に含まれる溶剤の少なくとも一部を除去して電荷発生層3aを形成する。電荷発生層用塗布液は、例えば、電荷発生剤と、ベース樹脂と、溶剤とを含む。このような電荷発生層用塗布液は、電荷発生剤と、ベース樹脂とを溶剤に溶解又は分散させることにより調製する。電荷発生層用塗布液は、必要に応じて各種添加剤を加えてもよい。
[4. Photoconductor manufacturing method]
In the method for manufacturing the multilayer photoreceptor 1, the photosensitive layer forming step includes a charge generation layer forming step and a charge transport layer forming step. In the charge generation layer forming step, first, a coating solution for forming the charge generation layer 3a (hereinafter, sometimes referred to as a charge generation layer coating solution) is prepared. The charge generation layer coating solution is applied onto the conductive substrate 2 to form a coating film. Next, the coating film is dried by an appropriate method to remove at least a part of the solvent contained in the coating film to form the charge generation layer 3a. The charge generation layer coating solution includes, for example, a charge generation agent, a base resin, and a solvent. Such a charge generation layer coating solution is prepared by dissolving or dispersing a charge generation agent and a base resin in a solvent. Various additives may be added to the charge generation layer coating solution as necessary.
 電荷輸送層形成工程では、まず、電荷輸送層用塗布液を調製する。電荷輸送層用塗布液を電荷発生層3a上に塗布し、塗布膜を形成する。次いで、適宜な方法で塗布膜を乾燥させることによって、塗布膜に含まれる溶剤の少なくとも一部を除去して電荷輸送層3bを形成する。電荷輸送層用塗布液は、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(1)と、フタロシアニン系顔料と、溶剤とを含む。電荷輸送層用塗布液は、正孔輸送剤と、ポリアリレート樹脂(1)と、フタロシアニン系顔料とを溶剤に溶解又は分散させることにより調製することができる。電荷輸送層用塗布液には、必要に応じて各種添加剤を加えてもよい。 In the charge transport layer forming step, first, a charge transport layer coating solution is prepared. The charge transport layer coating solution is applied onto the charge generation layer 3a to form a coating film. Next, the coating film is dried by an appropriate method to remove at least a part of the solvent contained in the coating film, thereby forming the charge transport layer 3b. The coating solution for charge transport layer contains a hole transport agent, a polyarylate resin (1) as a binder resin, a phthalocyanine pigment, and a solvent. The coating solution for the charge transport layer can be prepared by dissolving or dispersing the hole transport agent, the polyarylate resin (1), and the phthalocyanine pigment in a solvent. Various additives may be added to the charge transport layer coating solution as necessary.
 以下、感光層形成工程の詳細を説明する。電荷発生層用塗布液及び電荷輸送層用塗布液(以下、これら2つの塗布液を塗布液と記載することがある)に含有される溶剤は、塗布液に含まれる各成分を溶解又は分散でき、かつ乾燥により塗布膜から除去され易ければ、特に限定されない。溶剤としては、例えば、アルコール(より具体的には、メタノール、エタノール、イソプロパノール、又はブタノール等)、脂肪族炭化水素(より具体的には、n-ヘキサン、オクタン、又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン、又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素、又はクロロベンゼン等)、エーテル(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、又はジエチレングリコールジメチルエーテル等)、ケトン(より具体的には、アセトン、メチルエチルケトン、又はシクロヘキサノン等)、エステル(より具体的には、酢酸エチル又は酢酸メチル等)、ジメチルホルムアルデヒド、ジメチルホルムアミド、又はジメチルスルホキシドが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの溶剤のうち、非ハロゲン溶剤を用いることが好ましい。2種以上の組合せとしては、例えば、メタノールとブタノールとトルエンとを含む混合溶媒、プロピレングリコールモノメチルエーテルとテトラヒドロフランとを含む混合溶媒、又はテトラヒドロフランとトルエンとを含む混合溶媒が挙げられる。 Hereinafter, details of the photosensitive layer forming step will be described. The solvent contained in the charge generation layer coating solution and the charge transport layer coating solution (hereinafter, these two coating solutions may be referred to as coating solutions) can dissolve or disperse each component contained in the coating solution. And if it is easy to remove from a coating film by drying, it will not specifically limit. Examples of the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic carbonization, and the like. Hydrogen (more specifically, benzene, toluene, xylene, etc.), halogenated hydrocarbon (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ether (more specifically, dimethyl ether) , Diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, or diethylene glycol dimethyl ether), ketones (more specifically, acetone, methyl ethyl ketone, or cyclohexanone), esters (more specifically, ethyl acetate or methyl acetate, etc.), Methyl formaldehyde, dimethylformamide, or dimethyl sulfoxide. These solvents may be used alone or in combination of two or more. Of these solvents, non-halogen solvents are preferably used. Examples of the combination of two or more include a mixed solvent containing methanol, butanol and toluene, a mixed solvent containing propylene glycol monomethyl ether and tetrahydrofuran, or a mixed solvent containing tetrahydrofuran and toluene.
 塗布液は、それぞれ各成分を混合し、溶剤に分散することにより調製される。混合又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー、又は超音波分散器を用いることができる。 Coating solution is prepared by mixing each component and dispersing in a solvent. For mixing or dispersing, for example, a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
 塗布液は、各成分の分散性、又は形成される各々の層の表面平滑性を向上させるために、例えば、界面活性剤又はレベリング剤を含有してもよい。 The coating liquid may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of each layer formed.
 塗布液を塗布する方法としては、塗布液を均一に塗布できる方法であれば、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法、又はバーコート法が挙げられる。 The method for applying the coating solution is not particularly limited as long as it is a method capable of uniformly applying the coating solution. Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
 塗布液に含まれる溶剤の少なくとも一部を除去する方法としては、塗布液中の溶剤を蒸発させ得る方法であれば、特に限定されない。除去する方法としては、例えば、加熱、減圧、又は加熱と減圧との併用が挙げられる。より具体的には、高温乾燥機、又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間である。 The method for removing at least a part of the solvent contained in the coating solution is not particularly limited as long as it is a method capable of evaporating the solvent in the coating solution. Examples of the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of performing heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned. The heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
 なお、感光体1の製造方法は、必要に応じて中間層4を形成する工程を更に有してもよい。中間層4を形成する工程は、公知の方法を適宜選択することができる。 Note that the method for manufacturing the photoreceptor 1 may further include a step of forming the intermediate layer 4 as necessary. A known method can be appropriately selected for the step of forming the intermediate layer 4.
 以上説明した本発明の電子写真感光体は、耐かぶり性に優れるため、種々の画像形成装置で好適に使用できる。 Since the electrophotographic photoreceptor of the present invention described above is excellent in fog resistance, it can be suitably used in various image forming apparatuses.
 以下、実施例を用いて本発明を更に具体的に説明する。なお、本発明は実施例の範囲に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically using examples. The present invention is not limited to the scope of the examples.
 積層型感光体を製造するための材料として、以下の電荷発生剤、正孔輸送剤、バインダー樹脂、及び顔料を準備した。 The following charge generators, hole transport agents, binder resins, and pigments were prepared as materials for producing a laminated photoreceptor.
(電荷発生剤)
 第二実施形態で説明した電荷発生剤(CGM-2)を準備した。電荷発生剤(CGM-2)は、化学式(CGM-2)で表されるチタニルフタロシアニン顔料(Y型チタニルフタロシアニン顔料、Y型チタニルフタロシアニン結晶)であった。結晶構造はY型であった。
(Charge generator)
The charge generating agent (CGM-2) described in the second embodiment was prepared. The charge generating agent (CGM-2) was a titanyl phthalocyanine pigment (Y-type titanyl phthalocyanine pigment, Y-type titanyl phthalocyanine crystal) represented by the chemical formula (CGM-2). The crystal structure was Y-type.
 Y型チタニルフタロシアニン結晶は、CuKα特性X線回折スペクトルチャートにおいて、ブラッグ角2θ±0.2°=9.2°、14.5°、18.1°、24.1°、27.2°にピークを有しており、主ピークは27.2°であった。なお、CuKα特性X線回折スペクトルは、第二実施形態で説明した測定装置及び測定条件で測定された。 Y-type titanyl phthalocyanine crystal has a Bragg angle of 2θ ± 0.2 ° = 9.2 °, 14.5 °, 18.1 °, 24.1 °, 27.2 ° in the CuKα characteristic X-ray diffraction spectrum chart. It had a peak, and the main peak was 27.2 °. The CuKα characteristic X-ray diffraction spectrum was measured using the measurement apparatus and measurement conditions described in the second embodiment.
(正孔輸送剤)
 第二実施形態で説明した正孔輸送剤(HTM-1)~(HTM-12)を準備した。
(Hole transport agent)
The hole transport agents (HTM-1) to (HTM-12) described in the second embodiment were prepared.
(バインダー樹脂)
 第一実施形態で説明したポリアリレート樹脂(R-1)~(R-4)に加えて、バインダー樹脂(R-5)~(R-6)を準備した。バインダー樹脂(R-5)~(R-6)は、それぞれ化学式(R-5)~(R-6)で表される繰返し単位を有するポリアリレート樹脂である。
(Binder resin)
In addition to the polyarylate resins (R-1) to (R-4) described in the first embodiment, binder resins (R-5) to (R-6) were prepared. Binder resins (R-5) to (R-6) are polyarylate resins having repeating units represented by chemical formulas (R-5) to (R-6), respectively.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(ポリアリレート樹脂(R-1)~(R-4)の合成方法)
 以下に、ポリアリレート樹脂(R-1)~(R-4)の合成方法を説明する。
(Method for synthesizing polyarylate resins (R-1) to (R-4))
A method for synthesizing the polyarylate resins (R-1) to (R-4) will be described below.
[ポリアリレート樹脂(R-1)の作製]
 三口フラスコを反応容器として用いた。この反応容器は、温度計、三方コック、及び滴下ロート200mLを備えた容量1Lの三口フラスコである。反応容器に1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン12.2g(41.3ミリモル)と、t-ブチルフェノール0.06g(0.41ミリモル)と、水酸化ナトリウム3.9g(98ミリモル)と、ベンジルトリブチルアンモニウムクロライド0.12g(0.38ミリモル)とを投入した。次いで、反応容器内をアルゴン置換した。その後、水600mLを更に反応容器に投入した。反応容器の内温20℃の条件下で、反応容器の内容物を1時間攪拌した。次いで、反応容器の内容物を冷却し、反応容器の内温を10℃まで降温した。このようにしてアルカリ性水溶液を調製した。
[Preparation of polyarylate resin (R-1)]
A three-necked flask was used as a reaction vessel. This reaction container is a 1 L three-necked flask equipped with a thermometer, a three-way cock, and a dropping funnel 200 mL. In a reaction vessel, 12.1-g (41.3 mmol) of 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 0.06 g (0.41 mmol) of t-butylphenol, and 3.9 g of sodium hydroxide (98 mmol) and 0.12 g (0.38 mmol) of benzyltributylammonium chloride were added. Next, the inside of the reaction vessel was purged with argon. Thereafter, 600 mL of water was further added to the reaction vessel. The contents of the reaction vessel were stirred for 1 hour under the condition of the internal temperature of the reaction vessel of 20 ° C. Next, the contents of the reaction vessel were cooled, and the internal temperature of the reaction vessel was lowered to 10 ° C. In this way, an alkaline aqueous solution was prepared.
 4,4’-オキシビス安息香酸クロリド9.56g(32.4ミリモル)をクロロホルム300gに溶解させて、クロロホルム溶液を別途調製した。 9.56 g (32.4 mmol) of 4,4'-oxybisbenzoic acid chloride was dissolved in 300 g of chloroform to separately prepare a chloroform solution.
 次いで、アルカリ水溶液の反応容器の内温を10℃に維持し、反応容器内の内容物を攪拌した状態とした。クロロホルム溶液をアルカリ水溶液へ投入し、重合反応を開始させた。重合反応は、反応容器の内容物を攪拌させて反応容器内の内温を13±3℃に維持しつつ、3時間進行させた。その後、デカントを用いて上層(水層)を除去し、有機層を得た。 Subsequently, the internal temperature of the reaction container of the alkaline aqueous solution was maintained at 10 ° C., and the contents in the reaction container were stirred. The chloroform solution was put into an aqueous alkali solution to initiate the polymerization reaction. The polymerization reaction was allowed to proceed for 3 hours while stirring the contents of the reaction vessel and maintaining the internal temperature in the reaction vessel at 13 ± 3 ° C. Thereafter, the upper layer (aqueous layer) was removed using a decant to obtain an organic layer.
 反応容器として容量2Lの三角フラスコを用いた。反応容器にイオン交換水500mLを投入した後に有機層を投入した。更に、反応容器にクロロホルム300gと、酢酸6mLとを添加した。反応容器の内容物を室温(25℃)で30分間攪拌した。次いで、デカントで上層(水層)を除去し、有機層を得た。次いで、イオン交換水500mLを用いて有機層を分液ロートにて8回洗浄した。 A 2 L Erlenmeyer flask was used as a reaction vessel. After adding 500 mL of ion-exchanged water to the reaction vessel, the organic layer was added. Further, 300 g of chloroform and 6 mL of acetic acid were added to the reaction vessel. The contents of the reaction vessel were stirred at room temperature (25 ° C.) for 30 minutes. Next, the upper layer (aqueous layer) was removed by decanting to obtain an organic layer. Next, the organic layer was washed 8 times with a separatory funnel using 500 mL of ion-exchanged water.
 水洗後の有機層を分液により取り出した。有機層をろ過し、ろ液を得た。容量3Lのビーカーに1.5Lのメタノールを投入した。メタノールを攪拌した状態で、有機層をゆっくりと滴下し、沈殿物を得た。沈殿物をろ過によりろ別した。得られた沈殿物を温度70℃で12時間真空乾燥させた。その結果、ポリアリレート樹脂(R-1)を得た。ポリアリレート樹脂(R-1)の収量は10.1gであり、収率は58.3モル%であった。 The organic layer after washing with water was taken out by liquid separation. The organic layer was filtered to obtain a filtrate. 1.5 L of methanol was put into a 3 L beaker. While methanol was stirred, the organic layer was slowly added dropwise to obtain a precipitate. The precipitate was filtered off. The obtained precipitate was vacuum-dried at a temperature of 70 ° C. for 12 hours. As a result, polyarylate resin (R-1) was obtained. The yield of the polyarylate resin (R-1) was 10.1 g, and the yield was 58.3 mol%.
[ポリアリレート樹脂(R-2)~(R-4)の作製]
 4,4’-オキシビス安息香酸クロリドをポリアリレート樹脂(R-2)~(R-4)の出発物質であるハロゲン化アルカノイルに変更した以外は、ポリアリレート樹脂(R-1)と同様にしてそれぞれポリアリレート樹脂(R-2)~(R-4)を製造した。ハロゲン化アルカノイルの物質量は、ポリアリレート樹脂(R-1)~(R-4)の合成におけるハロゲン化アルカノイルの物質量と同様であった。
[Preparation of polyarylate resins (R-2) to (R-4)]
The same procedure as for the polyarylate resin (R-1) except that 4,4′-oxybisbenzoyl chloride was changed to the halogenated alkanoyl starting material of the polyarylate resins (R-2) to (R-4). Polyarylate resins (R-2) to (R-4) were produced respectively. The amount of halogenated alkanoyl was the same as the amount of halogenated alkanoyl in the synthesis of polyarylate resins (R-1) to (R-4).
(顔料)
 顔料は、第二実施形態で説明したX型無金属フタロシアニン顔料と、Y型チタニルフタロシアニン顔料と、α型チタニルフタロシアニン顔料と、ε型銅フタロシアニン顔料とを準備した。
(Pigment)
As the pigment, the X-type metal-free phthalocyanine pigment, the Y-type titanyl phthalocyanine pigment, the α-type titanyl phthalocyanine pigment, and the ε-type copper phthalocyanine pigment described in the second embodiment were prepared.
<感光体の製造>
[感光体(A-1)]
 以下、実施例1に係る感光体(A-1)の製造について説明する。
<Manufacture of photoconductor>
[Photoreceptor (A-1)]
Hereinafter, the production of the photoreceptor (A-1) according to Example 1 will be described.
(中間層の形成)
 はじめに、表面処理された酸化チタン(テイカ株式会社製「試作品SMT-A」、平均一次粒径10nm)を準備した。詳しくは、アルミナとシリカとを用いて酸化チタンを表面処理し、更に、表面処理された酸化チタンを湿式分散しながらメチルハイドロジェンポリシロキサンを用いて表面処理したものを準備した。次いで、表面処理された酸化チタン(2質量部)と、ポリアミド樹脂であるアミラン(登録商標)(東レ株式会社製「CM8000」)(1質量部)とを、混合溶剤に添加した。アミランは、ポリアミド6,ポリアミド12,ポリアミド66,及びポリアミド610の四元共重合ポリアミド樹脂であった。この混合溶剤は、メタノール(10質量部)と、ブタノール(1質量部)と、トルエン(1質量部)とを含む溶剤であった。ビーズミルを用いて、これらを5時間混合し混合溶剤中に材料(表面処理された酸化チタン、及びポリアミド樹脂)を分散させた。これにより、中間層用塗布液を調製した。
(Formation of intermediate layer)
First, a surface-treated titanium oxide (“Prototype SMT-A” manufactured by Teika Co., Ltd., average primary particle size 10 nm) was prepared. Specifically, titanium oxide was surface-treated with alumina and silica, and further, surface-treated with methyl hydrogen polysiloxane was prepared while wet-dispersing the surface-treated titanium oxide. Subsequently, surface-treated titanium oxide (2 parts by mass) and Amilan (registered trademark) (“CM8000” manufactured by Toray Industries, Inc.) (1 part by mass) as a polyamide resin were added to the mixed solvent. Amilan was a quaternary copolymerized polyamide resin of polyamide 6, polyamide 12, polyamide 66, and polyamide 610. This mixed solvent was a solvent containing methanol (10 parts by mass), butanol (1 part by mass), and toluene (1 part by mass). These were mixed for 5 hours using a bead mill, and materials (surface-treated titanium oxide and polyamide resin) were dispersed in a mixed solvent. This prepared the coating liquid for intermediate | middle layers.
 得られた中間層用塗布液を、目開き5μmのフィルターを用いてろ過した。その後、導電性基体としてのアルミニウム製のドラム状支持体(直径30mm、全長246mm)の表面に、ディップコート法を用いて、中間層用塗布液を塗布し、塗布膜を形成した。続いて、塗布膜を130℃で30分間乾燥させて、導電性基体(ドラム状支持体)上に中間層(膜厚1.5μm)を形成した。 The obtained intermediate layer coating solution was filtered using a filter having an opening of 5 μm. Then, the coating liquid for intermediate | middle layers was apply | coated to the surface of the drum-shaped support body (diameter 30mm, full length 246mm) as an electroconductive base | substrate using the dip coating method, and the coating film was formed. Subsequently, the coating film was dried at 130 ° C. for 30 minutes to form an intermediate layer (film thickness: 1.5 μm) on the conductive substrate (drum-shaped support).
(電荷発生層の形成)
 Y型チタニルフタロシアニン顔料(1.5質量部)と、ベース樹脂としてのポリビニルアセタール樹脂(積水化学工業株式会社製「エスレックBX-5」)(1質量部)とを、混合溶剤に添加した。この混合溶剤は、プロピレングリコールモノメチルエーテル(40質量部)と、テトラヒドロフラン(40質量部)とを含む溶剤であった。ビーズミルを用いて、これらを12時間混合し、混合溶剤中に材料(Y型チタニルフタロシアニン顔料、及びポリビニルアセタール樹脂)を分散させて、電荷発生層用塗布液を作製した。得られた電荷発生層用塗布液を、目開き3μmのフィルターを用いてろ過した。次いで、得られたろ過液を、上述のようにして形成された中間層上にディップコート法を用いて塗布し塗布膜を形成した。次いで、50℃で5分間塗布膜を乾燥させた。これにより、中間層上に電荷発生層(膜厚0.3μm)を形成した。
(Formation of charge generation layer)
A Y-type titanyl phthalocyanine pigment (1.5 parts by mass) and a polyvinyl acetal resin (“SREC BX-5” manufactured by Sekisui Chemical Co., Ltd.) (1 part by mass) as a base resin were added to a mixed solvent. This mixed solvent was a solvent containing propylene glycol monomethyl ether (40 parts by mass) and tetrahydrofuran (40 parts by mass). These were mixed for 12 hours using a bead mill, and materials (Y-type titanyl phthalocyanine pigment and polyvinyl acetal resin) were dispersed in a mixed solvent to prepare a charge generation layer coating solution. The obtained coating solution for charge generation layer was filtered using a filter having an opening of 3 μm. Subsequently, the obtained filtrate was applied onto the intermediate layer formed as described above by using a dip coating method to form a coating film. Subsequently, the coating film was dried at 50 ° C. for 5 minutes. As a result, a charge generation layer (thickness: 0.3 μm) was formed on the intermediate layer.
(電荷輸送層の形成)
 正孔輸送剤(HTM-1)50質量部と、添加剤としてのヒンダードフェノール酸化防止剤(BASF株式会社製「イルガノックス(登録商標)1010」)2質量部と、電子アクセプター化合物としての3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノン2質量部と、フタロシアニン顔料としてX型無金属フタロシアニン顔料0.04質量部と、バインダー樹脂としてのポリアリレート樹脂(R-1)100質量部とを、混合溶剤に添加した。この混合溶剤は、テトラヒドロフラン550質量部と、トルエン150質量部とを含む溶剤であった。これらを12時間混合し、混合溶剤中に材料(正孔輸送剤(HTM-1)、ヒンダードフェノール酸化防止剤、電子アクセプター化合物、X型無金属フタロシアニン顔料、及びポリアリレート樹脂(R-1))を分散させて、電荷輸送層用塗布液を調製した。
(Formation of charge transport layer)
50 parts by mass of a hole transporting agent (HTM-1), 2 parts by mass of a hindered phenol antioxidant (“Irganox (registered trademark) 1010” manufactured by BASF Corporation) as an additive, and 3 as an electron acceptor compound , 3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone, 0.04 parts by mass of an X-type metal-free phthalocyanine pigment as a phthalocyanine pigment, and a polyarylate resin as a binder resin ( R-1) 100 parts by mass was added to the mixed solvent. This mixed solvent was a solvent containing 550 parts by mass of tetrahydrofuran and 150 parts by mass of toluene. These were mixed for 12 hours, and the materials (hole transport agent (HTM-1), hindered phenol antioxidant, electron acceptor compound, X-type metal-free phthalocyanine pigment, and polyarylate resin (R-1) were mixed in a mixed solvent. ) Was dispersed to prepare a coating solution for charge transport layer.
 電荷発生層用塗布液と同様の操作により、電荷輸送層用塗布液を電荷発生層上に塗布し、塗布膜を形成した。その後、120℃で40分間塗布膜を乾燥させて、電荷発生層上に電荷輸送層(膜厚20μm)を形成した。その結果、感光体(A-1)が得られた。感光体(A-1)は、導電性基体上に、中間層、電荷発生層、及び電荷輸送層が、この順で積層された構成を有していた。 The charge transport layer coating solution was applied onto the charge generation layer by the same operation as the charge generation layer coating solution to form a coating film. Thereafter, the coating film was dried at 120 ° C. for 40 minutes to form a charge transport layer (film thickness 20 μm) on the charge generation layer. As a result, a photoreceptor (A-1) was obtained. The photoreceptor (A-1) had a configuration in which an intermediate layer, a charge generation layer, and a charge transport layer were laminated in this order on a conductive substrate.
[感光体(A-2)~(A-21)及び感光体(B-1)~(B-4)]
 正孔輸送剤(HTM-1)の代わりに表1に記載の正孔輸送剤を用いた。バインダー樹脂としてポリアリレート樹脂(R-1)の代わりに表1に記載のバインダー樹脂を用いた。フタロシアニン系顔料としてX型無金属フタロシアニン顔料0.04質量部の代わりに表1に記載の顔料の種類及び含有量を用いた。そのようにして感光体(A-2)~(A-21)及び感光体(B-1)~(B-4)をそれぞれ得た。
[Photosensitive members (A-2) to (A-21) and photosensitive members (B-1) to (B-4)]
Instead of the hole transport agent (HTM-1), the hole transport agents listed in Table 1 were used. As the binder resin, the binder resins shown in Table 1 were used in place of the polyarylate resin (R-1). As the phthalocyanine pigment, the types and contents of the pigments shown in Table 1 were used instead of 0.04 part by mass of the X-type metal-free phthalocyanine pigment. In this way, photoreceptors (A-2) to (A-21) and photoreceptors (B-1) to (B-4) were obtained, respectively.
 表1は、感光体(A-1)~(A-21)及び感光体(B-1)~(B-4)の構成を示す。欄「バインダー樹脂の種類」のR-1~R-6は、それぞれポリアリレート樹脂(R-1)~(R-4)及びバインダー樹脂(R-5)~(R-6)を示す。欄「バインダー樹脂の分子量」は粘度平均分子量を示す。欄「フタロシアニン系顔料の種類」のx-H2Pc、Y-TiOPc、α-TiOPc、及びε-CuPcは、それぞれX型無金属フタロシアニン顔料、Y型チタニルフタロシアニン顔料、α型チタニルフタロシアニン顔料、及びε型銅フタロシアニン顔料を示す。欄「フタロシアニン系顔料の含有量」は、電荷輸送層におけるバインダー樹脂100質量部に対するフタロシアニン系顔料の含有量を示す。欄「正孔輸送剤」のHTM-1~HTM-12は、それぞれ正孔輸送剤(HTM-1)~(HTM-12)を示す。 Table 1 shows the structures of the photoconductors (A-1) to (A-21) and the photoconductors (B-1) to (B-4). In the column “Binder resin type”, R-1 to R-6 indicate polyarylate resins (R-1) to (R-4) and binder resins (R-5) to (R-6), respectively. The column “molecular weight of the binder resin” indicates the viscosity average molecular weight. X-H 2 Pc, Y-TiOPc, α-TiOPc, and ε-CuPc in the column “Types of phthalocyanine pigments” are X-type metal-free phthalocyanine pigment, Y-type titanyl phthalocyanine pigment, α-type titanyl phthalocyanine pigment, and An ε-type copper phthalocyanine pigment is shown. The column “content of phthalocyanine pigment” indicates the content of phthalocyanine pigment with respect to 100 parts by mass of the binder resin in the charge transport layer. The columns “HTM-1 to HTM-12” in the “hole transport agent” indicate the hole transport agents (HTM-1) to (HTM-12), respectively.
<感度特性の評価:露光後電位VLの測定>
(電位環境安定性)
 感光体(A-1)~(A-21)及び感光体(B-1)~(B-4)の何れかに対して、ドラム感度試験機(ジェンテック株式会社製)を用いて、回転数31rpm及び帯電電位-600Vの条件で帯電させた。次いで、単色光(波長:780nm)をハロゲンランプの光からバンドパスフィルターを用いて取り出し、感光体の表面に照射した。単色光の照射終了後、80ミリ秒が経過した後の表面電位を測定した。露光量を0.05μJ/cm2から1.0μJ/cm2まで増加させて、複数の露光後電位を測定した。露光後電位の測定は、低温低湿環境(LL環境:温度10℃及び相対湿度15%RH)又は高温高湿環境(HH環境:温度30℃及び相対湿度85%RH)で行われた。最小二乗法を用いて複数の露光後電位を露光量に対して線形近似を行い、一次関数を得た。一次関数を用いて露光後電位が-300Vとなるときの露光量を算出した。得られた露光量をE1/2(単位:μJ/cm2)とした。詳しくは、LL環境で測定された露光後電位から求めたE1/2をE1/2(LL)とし、HH環境で測定された露光後電位から求めたE1/2をE1/2(HH)とした。得られたE1/2(LL)及びE1/2(HH)から数式(1)を用いて、ΔE1/2を算出した。
 ΔE1/2=E1/2(LL)-E1/2(HH)・・・(1)
ΔE1/2の値が小さいほど、露光後電位の温湿度環境に対する安定性(電位環境安定性)が優れることを示す。表2に電位環境安定性の評価結果を示す。
<Evaluation of sensitivity characteristics: measurement of potential V L after exposure>
(Potential environment stability)
Using either a drum sensitivity tester (manufactured by Gentec Co., Ltd.) or any of photoconductors (A-1) to (A-21) and photoconductors (B-1) to (B-4) Charging was performed under conditions of several 31 rpm and a charging potential of −600V. Next, monochromatic light (wavelength: 780 nm) was extracted from the light of the halogen lamp using a bandpass filter and irradiated on the surface of the photoreceptor. The surface potential after 80 milliseconds had elapsed after the end of monochromatic light irradiation was measured. A plurality of post-exposure potentials were measured by increasing the exposure dose from 0.05 μJ / cm 2 to 1.0 μJ / cm 2 . The measurement of the post-exposure potential was performed in a low temperature and low humidity environment (LL environment: temperature 10 ° C. and relative humidity 15% RH) or a high temperature and high humidity environment (HH environment: temperature 30 ° C. and relative humidity 85% RH). A linear function was obtained by linearly approximating a plurality of post-exposure potentials with respect to the exposure amount using the least square method. The exposure amount when the post-exposure potential was −300 V was calculated using a linear function. The exposure amount obtained was E1 / 2 (unit: μJ / cm 2 ). Specifically, E1 / 2 obtained from the post-exposure potential measured in the LL environment is defined as E1 / 2 (LL), and E1 / 2 obtained from the post-exposure potential measured in the HH environment is represented as E1 / 2 (HH). did. ΔE1 / 2 was calculated from the obtained E1 / 2 (LL) and E1 / 2 (HH) using Equation (1).
ΔE1 / 2 = E1 / 2 (LL) −E1 / 2 (HH) (1)
It shows that stability with respect to the temperature / humidity environment (potential environment stability) of the potential after exposure is excellent as the value of ΔE1 / 2 is small. Table 2 shows the evaluation results of the potential environment stability.
(HH繰り返し特性)
 感光体(A-1)~(A-21)及び感光体(B-1)~(B-4)の何れかに対して、ドラム感度試験機(ジェンテック株式会社製)を用いて、回転数31rpm及び帯電電位-600Vの条件で帯電させた。次いで、単色光(波長:780nm、露光量:0.8μJ/cm2)をハロゲンランプの光からバンドパスフィルターを用いて取り出し、感光体の表面に照射した。露光光を照射した後から80ミリ秒後に感光体の表面電位を測定した。得られた表面電位を初期の露光後電位(VL0)とした。次いで、単色光(波長:660nm、露光量:5μJ/cm2)を感光体の表面に照射して除電した。このような帯電-露光-除電を繰り返し、感光体を1万回転させた。次いで、同条件で帯電及び露光し、露光光を照射した後から80ミリ秒後の露光後電位を測定した。得られた表面電位を1万回転後の露光後電位(VL10,000)とした。露光後電位の測定は、HH環境(温度30℃及び相対湿度85%RH)で実行された。VL0及びVL10,000から数式(2)を用いて、ΔVLを算出した。
 ΔVL=|VL0-VL10,000|・・・(2)
ΔVLの値が小さいほど、HH環境における露光後電位の繰返し安定性(HH繰り返特性)が優れることを示す。表2にHH繰返し特性の評価結果を示す。
(HH repeatability)
Using either a drum sensitivity tester (manufactured by Gentec Co., Ltd.) or any of photoconductors (A-1) to (A-21) and photoconductors (B-1) to (B-4) Charging was performed under conditions of several 31 rpm and a charging potential of −600V. Next, monochromatic light (wavelength: 780 nm, exposure amount: 0.8 μJ / cm 2 ) was taken out from the light of the halogen lamp using a bandpass filter and irradiated on the surface of the photoreceptor. The surface potential of the photoreceptor was measured 80 milliseconds after the exposure light irradiation. The obtained surface potential was defined as the initial post-exposure potential (V L0 ). Next, the surface of the photosensitive member was irradiated with monochromatic light (wavelength: 660 nm, exposure amount: 5 μJ / cm 2 ) to remove static electricity. Such charge-exposure-static charge was repeated, and the photoreceptor was rotated 10,000 times. Next, charging and exposure were performed under the same conditions, and the post-exposure potential was measured 80 milliseconds after the exposure light was irradiated. The obtained surface potential was taken as the post-exposure potential after 10,000 revolutions (V L10,000 ). Measurement of the post-exposure potential was performed in an HH environment (temperature 30 ° C. and relative humidity 85% RH). ΔV L was calculated from V L0 and V L10,000 using Equation (2).
ΔV L = | V L0 −V L10,000 | (2)
It shows that the smaller the value of ΔV L, the better the repeated stability (HH repeatability) of the post-exposure potential in the HH environment. Table 2 shows the evaluation results of the HH repetition characteristics.
<感光体の耐摩耗性の評価:摩耗減量の測定>
 感光体(A-1)~(A-21)及び感光体(B-1)~(B-4)の何れかの製造において調製した電荷輸送層用塗布液を、アルミパイプ(直径:78mm)に巻きつけたポリプロピレンシート(厚さ0.3mm)に塗布し、塗布膜を形成した。120℃で40分塗布膜を乾燥させた。その結果、膜厚30μmの電荷輸送層が形成された摩耗評価試験用のシートを作製した。
<Evaluation of abrasion resistance of photoconductor: measurement of wear loss>
The coating solution for the charge transport layer prepared in the production of any one of the photoconductors (A-1) to (A-21) and the photoconductors (B-1) to (B-4) was used as an aluminum pipe (diameter: 78 mm). The film was applied to a polypropylene sheet (thickness 0.3 mm) wound around the film to form a coating film. The coating film was dried at 120 ° C. for 40 minutes. As a result, a wear evaluation test sheet on which a charge transport layer having a thickness of 30 μm was formed was produced.
 このポリプロピレンシートから電荷輸送層を剥離し、ウィールS-36(テーバー社製)に貼り付け、サンプルを作製した。作製したサンプルをロータリーアブレージョンテスター(株式会社東洋精機製作所製)にセットし、摩耗輪CS-10(テーバー社製)を用い、荷重500gfかつ回転速度60rpmの条件で1,000回転させ、摩耗評価試験を実施した。摩耗評価試験前後のサンプルの質量変化である摩耗減量(mg/1000回転)を測定した。得られた摩耗減量に基づいて、感光体の耐摩耗性を評価した。表2に耐摩耗性の評価結果を示す。 The charge transport layer was peeled off from this polypropylene sheet and attached to a wheel S-36 (manufactured by Taber) to prepare a sample. The prepared sample is set in a rotary abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), wear wheel CS-10 (manufactured by Taber), and rotated 1,000 times under conditions of load 500 gf and rotation speed 60 rpm, wear evaluation test Carried out. Wear loss (mg / 1000 rotations), which is a change in mass of the sample before and after the wear evaluation test, was measured. The wear resistance of the photoreceptor was evaluated based on the obtained wear loss. Table 2 shows the evaluation results of wear resistance.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表1に示すように、感光体(A-1)~(A-21)では、感光層は、積層型感光層であった。感光層は、電荷発生層と、電荷輸送層とを備えていた。電荷輸送層は、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(R-1)~(R-4)の何れかと、フタロシアニン系顔料とを含有していた。電荷輸送層におけるフタロシアニン系顔料の含有量は、バインダー樹脂100質量部に対して0.01質量部以上1.00質量部以下であった。ポリアリレート樹脂(R-1)~(R-4)は、一般式(1)で表されるポリアリレート樹脂であった。表2に示すように、感光体(A-1)~(A-21)では、摩耗減量は2.8mg以上3.7mg以下であった。 As shown in Table 1, in the photoreceptors (A-1) to (A-21), the photosensitive layer was a laminated photosensitive layer. The photosensitive layer was provided with a charge generation layer and a charge transport layer. The charge transport layer contained a hole transport agent, any of polyarylate resins (R-1) to (R-4) as binder resins, and a phthalocyanine pigment. The content of the phthalocyanine pigment in the charge transport layer was 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin. The polyarylate resins (R-1) to (R-4) were polyarylate resins represented by the general formula (1). As shown in Table 2, in the photoconductors (A-1) to (A-21), the wear loss was 2.8 mg to 3.7 mg.
 表1に示すように、感光体(B-1)では、電荷輸送層は、フタロシアニン系顔料を含有していなかった。感光体(B-2)及び(B-3)では、電荷輸送層は、それぞれバインダー樹脂(R-5)及び(R-6)を含有していた。バインダー樹脂(R-5)及び(R-6)は、一般式(1)で表されるポリアリレート樹脂ではなかった。感光体(B-4)では、電荷輸送層におけるフタロシアニン系顔料の含有量は、バインダー樹脂100質量部に対して2.00質量であった。表2に示すように、感光体(B-1)~(B-4)では、摩耗減量は4.0mg以上11.4mg以下であった。 As shown in Table 1, in the photoreceptor (B-1), the charge transport layer did not contain a phthalocyanine pigment. In the photoconductors (B-2) and (B-3), the charge transport layer contained binder resins (R-5) and (R-6), respectively. The binder resins (R-5) and (R-6) were not polyarylate resins represented by the general formula (1). In the photoreceptor (B-4), the content of the phthalocyanine pigment in the charge transport layer was 2.00 masses with respect to 100 mass parts of the binder resin. As shown in Table 2, in the photoconductors (B-1) to (B-4), the wear loss was 4.0 mg or more and 11.4 mg or less.
 表1及び表2から明らかなように、感光体(A-1)~(A-21)は、感光体(B-1)~(B-4)に比べ、耐摩耗性に優れていた。 As is clear from Tables 1 and 2, the photoconductors (A-1) to (A-21) were superior in wear resistance to the photoconductors (B-1) to (B-4).
 表1に示すように、感光体(A-4)では、電荷輸送層は、バインダー樹脂としてポリアリレート樹脂(R-4)を含んでいた。表2に示すように、感光体(A-4)では、摩耗減量は2.8mgであった。 As shown in Table 1, in the photoreceptor (A-4), the charge transport layer contained a polyarylate resin (R-4) as a binder resin. As shown in Table 2, the abrasion loss of the photoreceptor (A-4) was 2.8 mg.
 表1に示すように、感光体(A-1)~(A-3)では、電荷輸送層は、バインダー樹脂としてポリアリレート樹脂(R-1)~(R-3)の何れか1種を含んでいた。表2に示すように、感光体(A-1)~(A-3)では、摩耗減量は3.5mg以上3.7mg以下であった。 As shown in Table 1, in the photoreceptors (A-1) to (A-3), the charge transport layer is made of any one of polyarylate resins (R-1) to (R-3) as a binder resin. Included. As shown in Table 2, in the photoconductors (A-1) to (A-3), the wear loss was 3.5 mg or more and 3.7 mg or less.
 表1及び表2から明らかなように、感光体(A-4)は、感光体(A-1)~(A-3)に比べ、耐摩耗性に優れていた。 As is apparent from Tables 1 and 2, the photoconductor (A-4) was superior in wear resistance to the photoconductors (A-1) to (A-3).
 本発明に係る電子写真感光体は、複合機のような画像形成装置に利用できる。 The electrophotographic photosensitive member according to the present invention can be used in an image forming apparatus such as a multifunction machine.

Claims (10)

  1.  導電性基体と、感光層とを備える電子写真感光体であって、
     前記感光層は、電荷発生層と、電荷輸送層とを備え、
     前記電荷発生層は、電荷発生剤を含み、
     前記電荷輸送層は、正孔輸送剤と、バインダー樹脂と、フタロシアニン系顔料とを含み、
     前記バインダー樹脂は、ポリアリレート樹脂を含み、
     前記ポリアリレート樹脂は、一般式(1)で表され、
     前記フタロシアニン系顔料の含有量は、前記バインダー樹脂100質量部に対して0.01質量部以上1.00質量部以下である、電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
     前記一般式(1)中、
     ktは2又は3を表し、
     Xは、化学式(2A)、化学式(2B)、化学式(2C)、又は化学式(2D)で表される二価の基を表す。
    Figure JPOXMLDOC01-appb-C000002
    An electrophotographic photosensitive member comprising a conductive substrate and a photosensitive layer,
    The photosensitive layer includes a charge generation layer and a charge transport layer,
    The charge generation layer includes a charge generation agent,
    The charge transport layer includes a hole transport agent, a binder resin, and a phthalocyanine pigment,
    The binder resin includes a polyarylate resin,
    The polyarylate resin is represented by the general formula (1),
    The electrophotographic photoreceptor, wherein the content of the phthalocyanine pigment is 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1),
    kt represents 2 or 3,
    X represents a divalent group represented by the chemical formula (2A), the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
    Figure JPOXMLDOC01-appb-C000002
  2.  前記一般式(1)中、
     ktは3を表し、
     Xは、前記化学式(2B)、前記化学式(2C)、又は前記化学式(2D)で表される前記二価の基を表す、請求項1に記載の電子写真感光体。
    In the general formula (1),
    kt represents 3,
    2. The electrophotographic photoreceptor according to claim 1, wherein X represents the divalent group represented by the chemical formula (2B), the chemical formula (2C), or the chemical formula (2D).
  3.  前記ポリアリレート樹脂は、化学式(R-1)、化学式(R-2)、化学式(R-3)、又は化学式(R-4)で表される、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    2. The electrophotographic photosensitive member according to claim 1, wherein the polyarylate resin is represented by a chemical formula (R-1), a chemical formula (R-2), a chemical formula (R-3), or a chemical formula (R-4).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  4.  前記フタロシアニン系顔料は、X型無金属フタロシアニン顔料、Y型チタニルフタロシアニン顔料、α型チタニルフタロシアニン顔料、又はε型銅フタロシアニン顔料である、請求項1に記載の電子写真感光体。 2. The electrophotographic photoreceptor according to claim 1, wherein the phthalocyanine pigment is an X-type metal-free phthalocyanine pigment, a Y-type titanyl phthalocyanine pigment, an α-type titanyl phthalocyanine pigment, or an ε-type copper phthalocyanine pigment.
  5.  前記正孔輸送剤が、一般式(2)、一般式(3)、一般式(4)、一般式(5)、又は一般式(6)で表される化合物を含む、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000007
     前記一般式(2)中、
     Q1は、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、前記フェニル基は、炭素原子数1以上8以下のアルキル基を有してもよく、
     Q2は、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     Q3、Q4、Q5、Q6、及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、Q3、Q4、Q5、Q6、及びQ7のうちの隣接した二つが互いに結合して環を形成してもよく、
     aは、0以上5以下の整数を表し、aが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ2は、互いに同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000008
     前記一般式(3)中、
     Q8、Q10、Q11、Q12、Q13、及びQ14は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     Q9及びQ15は、各々独立に、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     bは、0以上5以下の整数を表し、bが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ9は、互いに同一でも異なっていてもよく、
     cは、0以上4以下の整数を表し、cが2以上4以下の整数を表す場合、同一のフェニレン基に結合する複数のQ15は、互いに同一でも異なっていてもよく、
     kは、0又は1を表す。
    Figure JPOXMLDOC01-appb-C000009
     前記一般式(4)中、
     Ra、Rb及びRcは、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基、又は炭素原子数1以上8以下のアルコキシ基を表し、
     qは、0以上4以下の整数を表し、qが2以上4以下の整数を表す場合、同一のフェニレン基に結合する複数のRcは、互いに同一でも異なっていてもよく、
     m及びnは、各々独立に、0以上5以下の整数を表し、mが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRbは、互いに同一でも異なっていてもよく、nが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRaは、互いに同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000010
     前記一般式(5)中、
     R1、R2、及びR3は、各々独立に、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、炭素原子数6以上14以下のアリール基、炭素原子数6以上14以下のアリールオキシ基、炭素原子数7以上20以下のアラルキル基、ハロゲン原子、又は水素原子を表し、
     R2とR3とは、互いに結合してもよく、
     dは、1又は2を表す。
    Figure JPOXMLDOC01-appb-C000011
     前記一般式(6)中、
     R111及びR112は、各々独立に、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、炭素原子数6以上14以下のアリール基、炭素原子数6以上14以下のアリールオキシ基、炭素原子数7以上20以下のアラルキル基、又はハロゲン原子を表し、
     d1及びd2は、各々独立に、0以上5以下の整数を表し、
     d3は、1又は2を表す。
    The said hole transport agent contains the compound represented by General formula (2), General formula (3), General formula (4), General formula (5), or General formula (6). Electrophotographic photoreceptor.
    Figure JPOXMLDOC01-appb-C000007
    In the general formula (2),
    Q 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group, and the phenyl group is an alkyl group having 1 to 8 carbon atoms. You may have
    Q 2 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group,
    Q 3 , Q 4 , Q 5 , Q 6 , and Q 7 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group. And two adjacent ones of Q 3 , Q 4 , Q 5 , Q 6 , and Q 7 may be bonded to each other to form a ring,
    a represents an integer of 0 to 5, and when a represents an integer of 2 to 5, a plurality of Q 2 bonded to the same phenyl group may be the same as or different from each other.
    Figure JPOXMLDOC01-appb-C000008
    In the general formula (3),
    Q 8 , Q 10 , Q 11 , Q 12 , Q 13 and Q 14 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or Represents a phenyl group,
    Q 9 and Q 15 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group,
    b represents an integer of 0 to 5, and when b represents an integer of 2 to 5, a plurality of Q 9 bonded to the same phenyl group may be the same or different from each other;
    c represents an integer of 0 or more and 4 or less, and when c represents an integer of 2 or more and 4 or less, a plurality of Q 15 bonded to the same phenylene group may be the same or different from each other;
    k represents 0 or 1.
    Figure JPOXMLDOC01-appb-C000009
    In the general formula (4),
    R a , R b and R c each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms,
    q represents an integer of 0 or more and 4 or less, and when q represents an integer of 2 or more and 4 or less, a plurality of R c bonded to the same phenylene group may be the same or different from each other;
    m and n each independently represent an integer of 0 to 5, and when m represents an integer of 2 to 5, a plurality of R b bonded to the same phenyl group may be the same or different from each other. In the case where n represents an integer of 2 or more and 5 or less, a plurality of R a bonded to the same phenyl group may be the same or different from each other.
    Figure JPOXMLDOC01-appb-C000010
    In the general formula (5),
    R 1 , R 2 , and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a carbon atom Represents an aryloxy group having 6 to 14 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a halogen atom, or a hydrogen atom,
    R 2 and R 3 may be bonded to each other,
    d represents 1 or 2.
    Figure JPOXMLDOC01-appb-C000011
    In the general formula (6),
    R 111 and R 112 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 6 to 14 carbon atoms. Represents the following aryloxy group, an aralkyl group having 7 to 20 carbon atoms, or a halogen atom;
    d 1 and d 2 each independently represents an integer of 0 to 5,
    d 3 represents 1 or 2.
  6.  前記一般式(2)中、
     Q1は、フェニル基又は水素原子を表し、前記フェニル基は炭素原子数1以上8以下のアルキル基を有し、
     Q2は、炭素原子数1以上8以下のアルキル基を表し、
     Q3、Q4、Q5、Q6及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表し、Q3、Q4、Q5、Q6及びQ7のうち隣接した二つが互いに結合して環を形成してもよく、
     aは、0又は1を表し、
     前記一般式(3)中、
     Q8、Q10、Q11、Q12、Q13及びQ14は、各々独立に、水素原子、炭素原子数1以上4以下のアルキル基、又はフェニル基を表し、
     b及びcは、0を表し、
     前記一般式(4)中、
     Ra及びRbは、各々独立に、炭素原子数1以上8以下のアルキル基を表し、
     m及びnは、各々独立に、0以上2以下の整数を表し、
     qは0を表し、
     前記一般式(5)中、
     R1、R2、及びR3は、各々、炭素原子数6以上14以下のアリール基を表し、
     R2とR3とは、互いに結合してもよく、
     前記一般式(6)中、
     R111及びR112は、各々、炭素原子数1以上6以下のアルキル基を表し、
     d1及びd2は、各々独立に、0又は1を表し、
     d3は、1を表す、請求項5に記載の電子写真感光体。
    In the general formula (2),
    Q 1 represents a phenyl group or a hydrogen atom, and the phenyl group has an alkyl group having 1 to 8 carbon atoms,
    Q 2 represents an alkyl group having 1 to 8 carbon atoms,
    Q 3, Q 4, Q 5 , Q 6 and Q 7 each independently represent a hydrogen atom, 1 to 8 of the alkyl group carbon atoms, or a carbon atom number of 1 to 8 alkoxy group, Q 3 , Q 4 , Q 5 , Q 6 and Q 7 may be bonded to each other to form a ring,
    a represents 0 or 1,
    In the general formula (3),
    Q 8 , Q 10 , Q 11 , Q 12 , Q 13 and Q 14 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group,
    b and c represent 0;
    In the general formula (4),
    R a and R b each independently represents an alkyl group having 1 to 8 carbon atoms,
    m and n each independently represent an integer of 0 or more and 2 or less,
    q represents 0;
    In the general formula (5),
    R 1 , R 2 , and R 3 each represents an aryl group having 6 to 14 carbon atoms,
    R 2 and R 3 may be bonded to each other,
    In the general formula (6),
    R 111 and R 112 each represents an alkyl group having 1 to 6 carbon atoms,
    d 1 and d 2 each independently represent 0 or 1,
    The electrophotographic photosensitive member according to claim 5, wherein d 3 represents 1.
  7.  前記正孔輸送剤は、化学式(HTM-1)、化学式(HTM-2)、化学式(HTM-3)、化学式(HTM-4)、化学式(HTM-5)、化学式(HTM-6)、化学式(HTM-7)、化学式(HTM-8)、化学式(HTM-9)、化学式(HTM-10)、化学式(HTM-11)、又は化学式(HTM-12)で表される、請求項5に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    The hole transport agent includes chemical formula (HTM-1), chemical formula (HTM-2), chemical formula (HTM-3), chemical formula (HTM-4), chemical formula (HTM-5), chemical formula (HTM-6), chemical formula (HTM-7), chemical formula (HTM-8), chemical formula (HTM-9), chemical formula (HTM-10), chemical formula (HTM-11), or chemical formula (HTM-12). The electrophotographic photosensitive member described.
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
  8.  前記電荷発生剤は、Y型チタニルフタロシアニン顔料である、請求項1に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the charge generator is a Y-type titanyl phthalocyanine pigment.
  9.  前記一般式(1)中、
     Xは、前記化学式(2D)で表される前記二価の基を表す、請求項1に記載の電子写真感光体。
    In the general formula (1),
    The electrophotographic photoreceptor according to claim 1, wherein X represents the divalent group represented by the chemical formula (2D).
  10.  前記正孔輸送剤は、前記一般式(3)又は(4)で表される化合物である、請求項1に記載の電子写真感光体。

                                                                                   
    The electrophotographic photoreceptor according to claim 1, wherein the hole transport agent is a compound represented by the general formula (3) or (4).

PCT/JP2017/030956 2016-11-30 2017-08-29 Electrophotographic photoreceptor WO2018100813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018553661A JP6642732B2 (en) 2016-11-30 2017-08-29 Electrophotographic photoreceptor
CN201780054875.1A CN109690420A (en) 2016-11-30 2017-08-29 Electrophtography photosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016232078 2016-11-30
JP2016-232078 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100813A1 true WO2018100813A1 (en) 2018-06-07

Family

ID=62242347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030956 WO2018100813A1 (en) 2016-11-30 2017-08-29 Electrophotographic photoreceptor

Country Status (3)

Country Link
JP (1) JP6642732B2 (en)
CN (1) CN109690420A (en)
WO (1) WO2018100813A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087942A (en) * 2016-11-30 2018-06-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor and method for manufacturing the same
JP2018120158A (en) * 2017-01-27 2018-08-02 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2021071564A (en) * 2019-10-30 2021-05-06 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177055A (en) * 1984-09-21 1986-04-19 Konishiroku Photo Ind Co Ltd Electrophotographic sensitive body
JPS62289845A (en) * 1986-06-10 1987-12-16 Canon Inc Electrophotographic sensitive body
JPH07253679A (en) * 1994-03-15 1995-10-03 Minolta Co Ltd Bipolar photosensitive body
JPH07319177A (en) * 1994-05-23 1995-12-08 Minolta Co Ltd Image forming method using bipolar photoreceptor
JP2004177703A (en) * 2002-11-27 2004-06-24 Kyocera Mita Corp Electrophotographic photoreceptor
JP2004238301A (en) * 2003-02-04 2004-08-26 Mitsui Chemicals Inc New imide compound, and electrophotographic photoreceptor using the compound, electrophotographic apparatus
JP2007193309A (en) * 2005-12-20 2007-08-02 Canon Inc Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2013011821A (en) * 2011-06-30 2013-01-17 Kyocera Document Solutions Inc Electrophotographic photoreceptor, and image forming apparatus
JP2014234362A (en) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative, method for producing the same and electrophotographic photoreceptor
JP2017049517A (en) * 2015-09-04 2017-03-09 京セラドキュメントソリューションズ株式会社 Laminated electrophotographic photoreceptor
JP2017134260A (en) * 2016-01-28 2017-08-03 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005734A (en) * 2006-07-10 2008-01-15 삼성전자주식회사 Organophotoreceptor and electrophotographic imaging apparatus employing the organophotoreceptor
JP4910591B2 (en) * 2006-09-19 2012-04-04 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge and image forming apparatus using the same
JP2011007914A (en) * 2009-06-24 2011-01-13 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5931123B2 (en) * 2014-05-23 2016-06-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor
US9529284B2 (en) * 2014-11-28 2016-12-27 Canon Kabushiki Kaisha Process cartridge, image forming method, and electrophotographic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177055A (en) * 1984-09-21 1986-04-19 Konishiroku Photo Ind Co Ltd Electrophotographic sensitive body
JPS62289845A (en) * 1986-06-10 1987-12-16 Canon Inc Electrophotographic sensitive body
JPH07253679A (en) * 1994-03-15 1995-10-03 Minolta Co Ltd Bipolar photosensitive body
JPH07319177A (en) * 1994-05-23 1995-12-08 Minolta Co Ltd Image forming method using bipolar photoreceptor
JP2004177703A (en) * 2002-11-27 2004-06-24 Kyocera Mita Corp Electrophotographic photoreceptor
JP2004238301A (en) * 2003-02-04 2004-08-26 Mitsui Chemicals Inc New imide compound, and electrophotographic photoreceptor using the compound, electrophotographic apparatus
JP2007193309A (en) * 2005-12-20 2007-08-02 Canon Inc Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2013011821A (en) * 2011-06-30 2013-01-17 Kyocera Document Solutions Inc Electrophotographic photoreceptor, and image forming apparatus
JP2014234362A (en) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative, method for producing the same and electrophotographic photoreceptor
JP2017049517A (en) * 2015-09-04 2017-03-09 京セラドキュメントソリューションズ株式会社 Laminated electrophotographic photoreceptor
JP2017134260A (en) * 2016-01-28 2017-08-03 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087942A (en) * 2016-11-30 2018-06-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor and method for manufacturing the same
JP2018120158A (en) * 2017-01-27 2018-08-02 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2021071564A (en) * 2019-10-30 2021-05-06 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor
JP7331630B2 (en) 2019-10-30 2023-08-23 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP6642732B2 (en) 2020-02-12
JPWO2018100813A1 (en) 2019-06-27
CN109690420A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
JP2017049517A (en) Laminated electrophotographic photoreceptor
JP6888517B2 (en) Polyarylate resin and electrophotographic photosensitive member
JP6387974B2 (en) Electrophotographic photoreceptor
JP6665811B2 (en) Electrophotographic photoreceptor
WO2017073176A1 (en) Electrophotographic photosensitive body
JP6658473B2 (en) Polyarylate resin and electrophotographic photoreceptor
JP6642732B2 (en) Electrophotographic photoreceptor
JP6773127B2 (en) Electrophotographic photosensitive member
JP6583231B2 (en) Electrophotographic photoreceptor
CN107728440B (en) Polyarylate resin and electrophotographic photoreceptor
JP6504126B2 (en) Electrophotographic photoreceptor
JP6520836B2 (en) Quinone derivatives and electrophotographic photosensitive members
JP6432530B2 (en) Electrophotographic photoreceptor
JP6597572B2 (en) Electrophotographic photoreceptor
JP6760396B2 (en) Electrophotographic photosensitive member
JP6579073B2 (en) Electrophotographic photoreceptor
JP7183678B2 (en) Compound mixture, electrophotographic photoreceptor, and method for producing compound mixture
JP6741145B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP6583230B2 (en) Electrophotographic photoreceptor
JP2019200273A (en) Method for manufacturing electrophotographic photoreceptor, coating liquid for forming photosensitive layer, and electrophotographic photoreceptor
JP6627815B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP6631485B2 (en) Electrophotographic photosensitive member and method of manufacturing electrophotographic photosensitive member
JP2020029419A (en) Manufacturing method of diamine compound, and manufacturing method of electrophotographic photoreceptor
JP2018054820A (en) Electrophotographic photoreceptor
JP2017211448A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877375

Country of ref document: EP

Kind code of ref document: A1