WO2018100755A1 - Biological information measurement device, biological information measurement method, and biological information measurement system - Google Patents

Biological information measurement device, biological information measurement method, and biological information measurement system Download PDF

Info

Publication number
WO2018100755A1
WO2018100755A1 PCT/JP2017/006411 JP2017006411W WO2018100755A1 WO 2018100755 A1 WO2018100755 A1 WO 2018100755A1 JP 2017006411 W JP2017006411 W JP 2017006411W WO 2018100755 A1 WO2018100755 A1 WO 2018100755A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological information
information measuring
user
measuring device
gyro sensor
Prior art date
Application number
PCT/JP2017/006411
Other languages
French (fr)
Japanese (ja)
Inventor
安島 弘美
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016233300A external-priority patent/JP2018089000A/en
Priority claimed from JP2017011248A external-priority patent/JP6228326B1/en
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2018100755A1 publication Critical patent/WO2018100755A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present disclosure relates to a biological information measuring device, a biological information measuring method, and a biological information measuring system.
  • Patent Document 1 describes an electronic device that measures the pulse of a subject when the subject wears the wrist.
  • the biological information measuring device includes a gyro sensor and a controller.
  • the gyro sensor detects a change in a user's torso.
  • the controller performs a measurement process of the user's biological information based on the change detected in a state where the biological information measuring device is pressed against the trunk.
  • the biological information measuring method is a biological information measuring method by a biological information measuring device including a gyro sensor, and includes a detecting step and a measurement process.
  • the detecting step detects the fluctuation of the trunk with the gyro sensor in a state where the biological information measuring device is pressed against the trunk of the user.
  • the step of performing the measurement process performs a measurement process of the user's biological information based on the variation detected in the state.
  • the biological information measurement system includes a first device and a second device.
  • the first device includes a gyro sensor that detects a change in the body while the first device is pressed against a user's body.
  • the second device includes a controller that performs a measurement process of the user's biological information based on the variation detected in the state.
  • FIG. 1 is a functional block diagram showing a schematic configuration of the biological information measuring apparatus according to the first embodiment.
  • the biological information measuring apparatus 1 includes a controller 10, a power supply unit 11, a gyro sensor 12, a display unit 14, an audio output unit 16, a communication unit 17, a vibrator 18, and a storage unit. 20.
  • the controller 10 includes a processor that controls and manages the entire biological information measuring apparatus 1 including each functional block of the biological information measuring apparatus 1.
  • the controller 10 includes a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure and a program for measuring biological information of a subject.
  • a program is stored in a storage medium such as the storage unit 20, for example.
  • the power supply unit 11 includes a battery and supplies power to each unit of the biological information measuring apparatus 1.
  • the biological information measuring device 1 is supplied with electric power from the power supply unit 11 or an external power supply during operation.
  • the gyro sensor 12 detects the displacement of the biological information measuring device 1 as a motion factor by detecting the angular velocity of the biological information measuring device 1.
  • the gyro sensor 12 is, for example, a three-axis vibration gyro sensor that detects an angular velocity from deformation of a structure due to Coriolis force acting on a vibrating arm.
  • this structure may be made of a piezoelectric material such as quartz or piezoelectric ceramic.
  • the gyro sensor 12 may be formed by MEMS (Micro Electro Mechanical Systems) technology using the structure as a material such as silicon.
  • the gyro sensor 12 may be another type of gyro sensor such as an optical gyro sensor.
  • the controller 10 can measure the orientation of the biological information measuring device 1 by integrating the angular velocity acquired by the gyro sensor 12 with respect to time.
  • the gyro sensor 12 is an angular velocity sensor, for example. However, the gyro sensor 12 is not limited to the angular velocity sensor. The gyro sensor 12 only needs to detect the angular displacement of the biological information measuring apparatus 1 that is a motion factor. The motion factor detected by the gyro sensor 12 is transmitted to the controller 10.
  • the controller 10 acquires a motion factor from the gyro sensor 12.
  • the motion factor includes an index indicating the displacement of the biological information measuring device 1 based on the pulsation at the subject site of the subject.
  • the controller 10 generates a pulsation of the subject based on the motion factor.
  • the controller 10 measures biological information based on the subject's pulsation. Details of the measurement processing of biological information by the controller 10 will be described later.
  • the display unit 14 includes a display device such as a liquid crystal display, an organic EL panel (Organic Electro-Luminescence Panel), or an inorganic EL panel (Inorganic Electro-Luminescence panel).
  • the display unit 14 displays characters, images, symbols, graphics, and the like.
  • the display unit 14 may be configured with a touch screen display including not only a display function but also a touch screen function. In this case, the touch screen detects contact of the user's finger or stylus pen.
  • the touch screen can detect a position where a plurality of fingers, a stylus pen, or the like touches the touch screen.
  • the touch screen detection method may be any method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, and a load detection method.
  • a capacitance method a resistive film method
  • a surface acoustic wave method or an ultrasonic method
  • an infrared method an electromagnetic induction method
  • a load detection method a load detection method.
  • the voice output unit 16 notifies the user or the like by outputting sound.
  • the audio output unit 16 can be configured with an arbitrary speaker or the like.
  • the sound output unit 16 outputs the sound signal transmitted from the controller 10 as sound.
  • the communication unit 17 transmits and receives various data by performing wired communication or wireless communication with an external device.
  • the communication unit 17 can transmit, for example, a measurement result of biological information measured by the biological information measuring device 1 to an external device.
  • the communication part 17 can also communicate with the external device which memorize
  • the vibrator 18 informs the user and the like by generating vibration and the like.
  • the vibrator 18 presents a tactile sensation to the user of the biological information measuring device 1 by generating vibration or the like at an arbitrary part of the biological information measuring device 1.
  • an arbitrary member such as an eccentric motor, a piezoelectric element (piezo element), or a linear vibrator can be employed.
  • the storage unit 20 stores various programs and data including application programs.
  • the storage unit 20 may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage unit 20 may include a plurality of types of storage media.
  • the storage unit 20 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a storage medium reader.
  • the storage unit 20 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
  • the storage unit 20 stores various information and programs for operating the biological information measuring apparatus 1 and also functions as a work memory.
  • the storage unit 20 may store, for example, data detected by the gyro sensor 12 and measurement results of biological information.
  • the biological information measuring apparatus 1 is not limited to the configuration illustrated in FIG.
  • the biological information measuring apparatus 1 according to an embodiment includes a controller 10 and a gyro sensor 12. Therefore, in the biological information measuring apparatus 1 according to the embodiment, other components other than the controller 10 and the gyro sensor 12 may be omitted as appropriate, or other components may be added as necessary.
  • the biological information measuring apparatus 1 measures biological information at a test site of a subject.
  • the test site may be, for example, the body of a test subject (user of the biological information measuring device 1).
  • the biological information measuring apparatus 1 measures the biological information of the subject based on the fluctuation of the trunk that is the subject site.
  • the biological information measured by the biological information measuring device 1 includes, for example, at least one of a blood component, a pulse wave, a pulse, and a pulse wave propagation velocity.
  • the blood component includes, for example, a state of sugar metabolism and a state of lipid metabolism.
  • the state of glucose metabolism includes, for example, blood glucose level.
  • the state of lipid metabolism includes, for example, a lipid value. Lipid levels include neutral fat, total cholesterol, HDL (High Density Lipoprotein) cholesterol, LDL (Low Density Lipoprotein) cholesterol, and the like.
  • the biological information measuring apparatus 1 acquires, for example, a subject's pulse wave as biological information, and measures biological information such as blood components based on the acquired pulse wave.
  • FIG. 2 is a schematic perspective view showing an appearance of the biological information measuring apparatus 1 according to an embodiment.
  • the biological information measuring device 1 according to an embodiment can be configured as a relatively small dedicated terminal device, for example, as shown in FIG.
  • the biological information measuring device 1 is not limited to a dedicated terminal device.
  • the biological information measuring device 1 may be incorporated in any other electronic device.
  • FIG. 2A is a diagram showing the front side of the biological information measuring apparatus 1.
  • FIG. 2B is a diagram showing the back side of the biological information measuring device 1, that is, a diagram showing a state in which the biological information measuring device 1 shown in FIG.
  • the biological information measuring apparatus 1 includes a housing 30 whose external shape is substantially rectangular. As shown in FIG. 2A, the biological information measuring apparatus 1 includes a display unit 14 and an audio output unit 16 on the front side.
  • the display unit 14 displays information related to the measurement process of the biological information measuring device 1. In addition, the display unit 14 may display information such as time.
  • the audio output unit 16 outputs a sound when the biological information measuring device 1 starts measuring biological information or when the measurement is completed, and notifies the user that the measurement is started or completed. Moreover, the audio
  • the biological information measuring apparatus 1 may include a switch such as a button for starting measurement of biological information.
  • the biological information measuring apparatus 1 has a contact part 40 and a support part 50 on the back side.
  • the contact portion 40 and the support portion 50 form a plane that is substantially the same as the back surface of the housing 30.
  • at least one of the contact portion 40 and the support portion 50 may be a member protruding from the back side of the housing 30.
  • the contact portion 40 and the support portion 50 are fixed to the biological information measuring device 1 on the back surface of the housing 30.
  • At least one of the contact part 40 and the support part 50 may be provided so as not to be detachable from the biological information measuring device 1, for example.
  • At least one of the contact part 40 and the support part 50 may be configured to be detachable from the biological information measuring apparatus 1, for example.
  • the contact portion 40 and the support portion 50 are fixed on the back side of the housing 30 so as to extend linearly along the short side direction of the back surface.
  • the length of the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 may be shorter than the length of the short side of the back surface of the housing 30, for example. Further, the length relationship between the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 can be determined as appropriate.
  • the length of the contact portion 40 in the short side direction on the back surface of the housing 30 may be shorter or longer than the length of the support portion 50 in the short side direction on the back surface of the housing 30.
  • the length of the contact portion 40 in the short side direction on the back surface of the housing 30 and the length of the support portion 50 in the short side direction on the back surface of the housing 30 may be the same.
  • the abutting portion 40 abuts on the test site when the biological information is measured by the biological information measuring device 1. That is, the contact part 40 contacts the torso of the subject or the periphery thereof, for example, when measuring biological information.
  • the gyro sensor 12 is attached to the back side of the contact portion 40. In the example shown in FIG. 2B, since the gyro sensor 12 is installed inside the housing 30, the gyro sensor 12 is indicated by a broken line.
  • the contact part 40 and the gyro sensor 12 may be configured as separate members, or may be configured as one and the same member.
  • the support unit 50 contacts the subject at a position different from the contact unit 40 when the biological information is measured by the biological information measuring device 1.
  • the support part 50 contacts the subject's torso at a position different from the contact part 40, for example.
  • the support part 50 supports the contact state of the contact part 40 with respect to the test site by contacting the subject.
  • the biological information measuring apparatus 1 may include a plurality of support parts 50.
  • the plurality of support parts 50 are arranged in a straight line, for example.
  • the contact portion 40 and the support portion 50 (and the housing 30) are configured so that the variation of the test portion that contacts the contact portion 40 is appropriately transmitted to the gyro sensor 12. Details of the contact mode of the contact portion 40 and the support portion 50 to the test site will be described later.
  • the biological information measuring apparatus 1 is not limited to the structure shown in FIG. As described above, in the biological information measuring apparatus 1 according to an embodiment, other components other than the controller 10 and the gyro sensor 12 may be omitted or other components may be added as necessary. Good.
  • a belt 60 or a waistband 62 may be provided to fix the biological information measuring apparatus 1 to the user's torso.
  • FIG. 3 only a part of the belt 60 or the waistband 62 is shown, and the other parts are omitted.
  • the belt 60 or the waistband 62 is made long enough to be wound around the user's torso.
  • FIG. 3A shows a state in which a belt 60 or a waistband 62 is attached to the biological information measuring apparatus 1 shown in FIG.
  • FIG. 3B shows a state where the belt 60 or the waistband 62 is attached to the biological information measuring device 1 shown in FIG.
  • the biological information measuring device 1 When measuring biological information using the biological information measuring apparatus 1 shown in FIG. 2, it is necessary for the subject himself / herself to fix the biological information measuring apparatus 1 to the body of the subject using his / her hand.
  • the biological information measuring device 1 may be fixed to the body of the subject using the belt 60 or the waistband 62. it can. Therefore, in this case, it is not necessary for the subject himself / herself to fix the biological information measuring device 1 to the torso of the subject using his / her hand.
  • a mode in which the biological information measuring apparatus 1 is fixed to the body of the subject using the belt 60 or the waistband 62 will be described later.
  • the biological information measuring device 1 acquires a motion factor in a state where the contact portion 40 fixed to the biological information measuring device 1 is in contact with the test site, and measures the biological information based on the acquired motion factor.
  • the biological information measuring apparatus 1 may acquire the motion factor in a state where the support unit 50 fixed to the biological information measuring apparatus 1 is in contact with the subject at a position different from the test site.
  • the biological information measuring apparatus 1 is in a state where measurement processing of biological information can be performed based on, for example, an input operation by a subject.
  • the state in which measurement processing of biological information is possible refers to a state in which an application for measuring biological information is activated, for example.
  • the subject makes measurement processing of biological information possible and starts acquisition of a motion factor by the biological information measuring device 1.
  • FIG. 4 is a diagram schematically showing the structure in the human body.
  • FIG. 4 schematically shows the internal structure of a part of the human body.
  • FIG. 4 also schematically shows in particular a part of the heart and aorta in the human body.
  • the blood in the human body is delivered from the heart and then supplied to each part of the human body via blood vessels.
  • a part of blood delivered from the heart passes through the thoracic aorta and then passes through the abdominal aorta.
  • these blood vessels undergo fluctuations such as contraction.
  • Such fluctuations propagate through the user's body and also fluctuate the user's torso. Therefore, the gyro sensor 12 can detect the fluctuation of the user's torso while the biological information measuring device 1 is pressed against the torso including the chest or abdomen of the user. In this way, the gyro sensor 12 detects a motion factor resulting from a change in the user's torso.
  • FIG. 5 is a diagram illustrating an example of a motion factor acquisition mode by the biological information measuring apparatus 1.
  • 5A and 5B show a cross section of a part including the aorta in a living body such as a human body.
  • 5A and 5B show a state in which the back side of the housing 30 of the biological information measuring device 1 shown in FIG. 2 is in contact with the test site of the living body. Therefore, as shown in FIGS. 5A and 5B, the contact part 40 and the support part 50 are in contact with the test site on the surface of the living body (skin).
  • the test site on the surface of the living body is the torso of the user.
  • the aorta shown in FIGS. 5A and 5B may be the thoracic aorta shown in FIG. 4 or the abdominal aorta.
  • the subject presses the biological information measuring device 1 against the trunk and causes the biological information measuring device 1 to acquire a motion factor.
  • the contact portion 40 contacts the test site.
  • the support unit 50 is located at a position different from the contact unit 40, and the torso of the subject. Abut.
  • the biological information measuring device 1 when the biological information measuring device 1 is pressed in the direction of the arrow P at the position of the arrow P and brought into contact with the trunk, the biological information measuring device 1 It is displaced according to the movement of the expansion and contraction of the blood vessel based on the pulsation of the subject.
  • the biological information measuring device 1 is not pressed in the direction of the arrow P in the side view as shown by the arrow Q in FIGS. 5A and 5B with the support portion 50 that contacts the body as a fulcrum. Displace so that the upper end side rotates.
  • Such a displacement is usually a vibration-like displacement in which the reciprocation of a partial rotational motion is repeated.
  • the gyro sensor 12 included in the biological information measuring device 1 acquires the pulse wave of the subject by detecting the displacement of the biological information measuring device 1.
  • the pulse wave is obtained by capturing a change in the volume of the blood vessel caused by the inflow of blood as a waveform from the body surface.
  • the gyro sensor 12 detects a motion factor due to the fluctuation of the user's torso.
  • the gyro sensor 12 detects a motion factor caused by the fluctuation of the user's torso in a state where the biological information measuring apparatus 1 is pressed against the user's torso.
  • the controller 10 performs measurement processing of the user's biological information based on the motion factor detected by the gyro sensor 12 in this way.
  • the user's torso may include the user's abdomen or chest.
  • drum showed the example of the fluctuation
  • the fluctuation of the user's torso may include not only the fluctuation caused by the movement of the user's blood vessel but also at least one of the fluctuation caused by the user's breathing and the fluctuation caused by the user's body movement.
  • the user's blood vessel may also include the user's aorta.
  • the user's aorta may include at least one of the user's abdominal aorta and thoracic aorta. In large blood vessels such as the aorta, a large amount of blood constantly flows. Therefore, the biological information measuring apparatus 1 can measure biological information stably with high accuracy by using the user's aorta as a measurement target.
  • the gyro sensor 12 is pressed against the user's torso via the elastic member 19, so that it becomes easy to follow the fluctuation of the user's torso. Therefore, the biological information measuring device 1 can measure biological information stably with high accuracy.
  • the elastic member 19 may be any member that generates an elastic force, such as a spring, rubber, flexible resin, one using hydraulic pressure, one using air pressure, one using water pressure, or the like. is there.
  • the support portion 50 shown in FIG. 5B connects the housing on which the gyro sensor 12 is installed and the housing on which the gyro sensor 12 is not installed. As shown in FIG. 5B, the housing on which the gyro sensor 12 is installed has a mechanism that is movable around the support portion 50 relative to the housing on which the gyro sensor 12 is not installed. Yes.
  • the biological information measuring apparatus 1 includes the gyro sensor 12 so that the user can measure biological information from above the clothes while wearing the clothes. That is, according to the biological information measuring device 1, the user does not need to undress when measuring biological information. Moreover, according to the biological information measuring device 1, the user does not need to touch the measuring device directly to the skin. For this reason, according to the biological information measuring device 1, measurement of biological information can be performed easily.
  • the conventional acceleration sensor is not suitable for use as a pulse wave sensor because of its large noise.
  • a small acceleration sensor built into a device such as a small terminal is not common when measuring low frequencies around 1 Hz, such as pulse waves and respiration.
  • a large acceleration sensor is required for such purposes.
  • the gyro sensor 12 is used for measuring biological information.
  • a gyro sensor generally has little noise during measurement. Since the gyro sensor constantly vibrates (in the case of the vibration type gyro sensor), noise can be reduced due to the structure.
  • the gyro sensor 12 that can be incorporated in the small housing 30 can be employed.
  • FIG. 6 is a diagram illustrating an example of measuring biological information using the biological information measuring apparatus 1.
  • the gyro sensor 12 built in the biological information measuring apparatus 1 is indicated by a broken line.
  • FIG. 6 (A) shows an example using the biological information measuring apparatus 1 without the belt 60 or the waistband 62 as shown in FIG.
  • the biological information measuring apparatus 1 does not have the belt 60 or the waistband 62
  • the user himself / herself uses the hand or the like to cover the contact portion 40 of the biological information measuring apparatus 1.
  • Biometric information is measured by pressing against the test site.
  • the position of the gyro sensor 12 is pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily as shown in FIG. It may not be possible.
  • a position where the gyro sensor 12 is not provided that is, the vicinity of the lower end of the biological information measuring apparatus 1 shown in FIG.
  • the user can freely change the test site with which the contact portion 40 of the biological information measuring device 1 contacts.
  • the biological information measuring device 1 may be moved to the upper body side to make it easier to detect the movement of the thoracic aorta.
  • the biological information measuring device 1 may be moved to the lower body side to make it easier to detect the movement of the abdominal aorta.
  • the user of the biological information measuring device 1 can search for the position of the test site where the biological information can be measured satisfactorily and can measure the biological information with high accuracy.
  • FIG. 6B shows an example using the biological information measuring apparatus 1 on which the belt 60 or the waistband 62 as shown in FIG. 3 is attached.
  • the biological information measuring device 1 when the biological information measuring device 1 has the belt 60 or the waistband 62, the user himself / herself covers the contact portion 40 of the biological information measuring device 1 when measuring the biological information. There is no need to press against the test site. Further, in this case, the user adjusts the position where the belt 60 or the waistband 62 presses against the biological information measuring device 1, so that the test site where the contact portion 40 of the biological information measuring device 1 comes into contact is adjusted to some extent. Can be changed. Therefore, the user of the biological information measuring device 1 can search for the position of the test site where the measurement of the biological information can be satisfactorily performed and measure the biological information with high accuracy.
  • a part of the biological information measuring device 1 is pressed against the user's torso, and at least a part other than a part of the biological information measuring device 1 is a belt 60 of the user's clothes. Alternatively, it may be pressed against the waistband 62.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • FIG. 6C shows an example in which the biological information measuring apparatus 1 shown in FIG. In the example shown in FIG. 6C, it becomes easier to detect the movement of the abdominal aorta than in the examples shown in FIGS. 6A and 6B.
  • the user presses the contact portion 40 of the biological information measuring device 1 against the test site using a hand or the like, or using the belt 60 or the waistband 62. .
  • a part of the biological information measuring device 1 is pressed against the lower abdomen side of the user's torso, and at least a part other than a part of the biological information measuring device 1 is on the lower abdomen side. Rather, it may be pressed against the head side of the user's torso.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • FIG. 7 is a diagram showing another example of measuring biological information using the body information measuring apparatus 1 as in FIG. Also in FIG. 7, the gyro sensor 12 built in the biological information measuring apparatus 1 is indicated by a broken line.
  • the biological information may be measured with the body information measuring device 1 in the horizontal direction.
  • the position of the gyro sensor 12 is pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily. It may not be possible.
  • the position where the gyro sensor 12 is not present that is, the vicinity of the end of the biological information measuring device 1 on the side where the support unit 50 exists may be pressed using a hand or the like.
  • the gyro sensor 12 is close to the center line M of the torso, the movement of the thoracic aorta or the abdominal aorta can be detected well.
  • the orientation of the body information measuring device 1 may be reversed from the case shown in FIG. 7A.
  • the gyro sensor 12 contacts the side surface of the trunk, that is, the vicinity of the flank.
  • the position where the gyro sensor 12 is not provided that is, the vicinity of the end of the biological information measuring device 1 on the side where the support unit 50 exists may be pressed using a hand or the like.
  • a part of living body information measuring device 1 is pressed against the side of a user's torso, and at least a part other than a part of living body information measuring device 1 is a user's torso. It may be pressed against the center M side of the trunk rather than the side surface of the body.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • the biological information measuring apparatus 1 performs a pulse wave measurement process in a state in which the contact portion 40 is in contact with the test site.
  • FIG. 8 is a schematic diagram for explaining a pulse wave measurement process by the biological information measuring apparatus 1.
  • FIG. 9 is a flowchart showing the procedure of pulse wave measurement processing by the biological information measuring apparatus 1.
  • the horizontal axis represents time
  • the vertical axis schematically represents the output (rad / second) based on the pulse wave of the angular velocity sensor that is the gyro sensor 12.
  • the output of the angular velocity sensor shows only the peak of each pulse wave.
  • the biological information measuring apparatus 1 is ready to perform the biological information measurement process at time t 0 and starts the pulse wave measurement process.
  • the subject brings the contact portion 40 into contact with the test site as shown in FIG.
  • the controller 10 when the controller 10 starts the pulse wave measurement process, the controller 10 detects the output of the gyro sensor 12 according to the blood vessel pulsation of the subject.
  • the output of the gyro sensor 12 is adjusted, for example, by adjusting the position where the subject contacts the contact portion 40 with the site to be examined. Not stable. During this period, the pulse wave cannot be acquired accurately. Therefore, the biological information measuring apparatus 1 does not have to use the pulse wave measured during this period, for example, for measuring blood components that are biological information. For example, the biological information measuring apparatus 1 may not store the pulse wave measured during this period in the storage unit 20.
  • the controller 10 determines whether or not a stable pulse wave has been detected for a predetermined number of times (step S101 in FIG. 9).
  • the predetermined number of times is four in the example shown in FIG. 8, but is not limited to this.
  • a stable pulse wave is a pulse wave in which, for example, variations in peak output of each pulse wave and / or variations in intervals between peaks of each pulse wave are within a predetermined error range.
  • the predetermined error range in the interval between peaks is, for example, ⁇ 150 msec, but is not limited thereto.
  • the controller 10 detects a pulse wave in which the variation in the interval between the peaks of each pulse wave is within four consecutive times within ⁇ 150 msec from time t 1 to time t 2. ing.
  • step S102 the controller 10 acquires a pulse wave used for measuring a blood component.
  • Pulse wave acquisition start time is the time t 3 in FIG. 8, for example.
  • the controller 10 may store the pulse wave acquired in this way in the storage unit 20. Since the biological information measuring apparatus 1 starts acquiring pulse waves when it is determined that a stable pulse wave has been detected for a predetermined number of times in this manner, the subject actually touches the biological information measuring apparatus 1. This makes it easier to prevent erroneous detection in the case of not doing so.
  • the controller 10 After starting the acquisition of the pulse wave, the controller 10 ends the acquisition of the pulse wave when the pulse wave acquisition end condition is satisfied.
  • the end condition may be, for example, a case where a predetermined time has elapsed after starting the acquisition of the pulse wave.
  • the end condition may be, for example, a case where pulse waves for a predetermined pulse rate are acquired.
  • the termination condition is not limited to this, and other conditions may be set as appropriate.
  • the controller 10 from the time t 3 a predetermined time (e.g. 8 seconds or 15 seconds) to end the acquisition of the pulse wave at the time t 4 after the passage. As a result, the flow shown in FIG. 9 ends.
  • step S101 in FIG. 9 the controller 10 starts the pulse wave measurement process. It is determined whether or not a predetermined time has elapsed since the predetermined input operation was performed (step S103).
  • step S103 When the controller 10 determines that a predetermined time (for example, 30 seconds) has not elapsed since the predetermined input operation for starting the pulse wave measurement process has been performed (No in step S103), the flow illustrated in FIG. The process proceeds to S101.
  • a predetermined time for example, 30 seconds
  • step S103 if the controller 10 cannot detect a stable pulse wave even after a predetermined time has elapsed after performing a predetermined input operation for starting the pulse wave measurement process (Yes in step S103), the measurement process is automatically performed. Is terminated (timed out), and the flow of FIG. 9 is terminated.
  • FIG. 10 is a diagram illustrating an example of a pulse wave acquired at a test site (body) using the biological information measuring apparatus 1.
  • FIG. 10 shows a case where the gyro sensor 12 is used as a pulsation detecting means.
  • FIG. 10 is obtained by integrating the angular velocities acquired by the angular velocity sensor that is the gyro sensor 12.
  • the horizontal axis represents time
  • the vertical axis represents angle. Since the acquired pulse wave may include noise caused by the body movement of the subject, for example, correction by a filter that removes a DC (Direct Current) component may be performed to extract only the pulsation component.
  • DC Direct Current
  • the biological information measuring apparatus 1 calculates an index based on the pulse wave from the acquired pulse wave, and measures a blood component using the index based on the pulse wave.
  • a method of calculating an index based on the pulse wave from the acquired pulse wave will be described with reference to FIG.
  • the propagation of the pulse wave is a phenomenon in which the pulsation caused by the blood pushed out of the heart is transmitted through the wall of the artery or the blood.
  • the pulsation caused by the blood pushed out of the heart reaches the periphery of the limb as a forward wave, and a part of the pulsation is reflected by the branching portion of the blood vessel, the blood vessel diameter changing portion, etc., and returns as a reflected wave.
  • the index based on the pulse wave includes, for example, the pulse wave propagation velocity PWV (Pulse Wave Velocity) of the forward wave, the magnitude PR of the reflected wave of the pulse wave, the time difference ⁇ t between the forward wave and the reflected wave of the pulse wave, and the forward wave wave AI (Augmentation Index) expressed by the ratio of the magnitude of the wave and the reflected wave.
  • PWV Pulse Wave Velocity
  • AI Algmentation Index
  • the pulse wave shown in FIG. 10 is a user's n pulses, and n is an integer of 1 or more.
  • the pulse wave is a composite wave in which a forward wave generated by ejection of blood from the heart and a reflected wave generated from a blood vessel branch or a blood vessel diameter changing portion overlap.
  • P Fn is the magnitude of the peak of the pulse wave due to the forward wave of each pulse
  • P Rn is the peak of the pulse wave due to the reflection wave of each pulse magnitude
  • P Sn is the minimum value of the pulse wave for each pulse is there.
  • TPR is the interval between pulse peaks.
  • the index based on the pulse wave includes a quantified information obtained from the pulse wave.
  • PWV which is one of indices based on pulse waves
  • PWV is calculated based on the difference in propagation time of pulse waves measured at two test sites such as the upper arm and ankle and the distance between the two points.
  • PWV is acquired by synchronizing pulse waves (for example, the upper arm and ankle) at two points in the artery, and the difference in distance (L) between the two points is divided by the time difference (PTT) between the two points. Is calculated.
  • the reflected wave which is an index based on the pulse wave magnitude P R may calculate the magnitude of P Rn of the peak of the pulse wave due to the reflected wave, the P Rave averaged n times amount It may be calculated.
  • the time difference ⁇ t between the forward wave and the reflected wave of the pulse wave, which is one of the indicators based on the pulse wave may be calculated as a time difference ⁇ t n in a predetermined pulse, or ⁇ t obtained by averaging n time differences. You may calculate ave .
  • AI n is the AI for each pulse.
  • the pulse wave velocity PWV, the magnitude of the reflected wave P R , the time difference ⁇ t between the forward wave and the reflected wave, and AI change depending on the hardness of the blood vessel wall, and therefore are used to estimate the state of arteriosclerosis.
  • the pulse wave propagation speed PWV increases.
  • the vessel wall rigid size P R of the reflected wave increases.
  • the time difference ⁇ t between the forward wave and the reflected wave becomes small.
  • AI increases.
  • the biological information measuring apparatus 1 can estimate the state of arteriosclerosis and the blood fluidity (viscosity) using an index based on these pulse waves.
  • the biological information measuring apparatus 1 uses the change of the index based on the pulse wave acquired in the same subject site of the same subject and the period when the arteriosclerosis state does not substantially change (for example, within several days). Changes in fluidity can be estimated.
  • the blood fluidity indicates the ease of blood flow. For example, when the blood fluidity is low, the pulse wave propagation velocity PWV is small. For example, the low fluidity of the blood, the size P R of the reflected wave is reduced. For example, when the blood fluidity is low, the time difference ⁇ t between the forward wave and the reflected wave becomes large. For example, when blood fluidity is low, AI becomes small.
  • the biological information measuring apparatus 1 calculates the pulse wave velocity PWV, size P R of the reflected wave, the time difference ⁇ t between the forward and reflected waves, and the AI
  • the index based on the pulse wave is not limited to this.
  • the biological information measuring apparatus 1 may use posterior systolic blood pressure as an index based on pulse waves.
  • FIG. 11 is a diagram illustrating the time variation of the calculated AI.
  • the pulse wave was acquired for about 5 seconds using the biological information measuring device 1 including an angular velocity sensor.
  • the controller 10 calculated AI for each pulse from the acquired pulse wave, and further calculated an average value AI ave thereof.
  • the biological information measuring apparatus 1 acquires a pulse wave at a plurality of timings before and after a meal, and uses an average value of AI (hereinafter referred to as AI) as an example of an index based on the acquired pulse wave. Calculated.
  • the horizontal axis in FIG. 11 shows the passage of time with the first measurement time after meal being zero.
  • the vertical axis in FIG. 11 indicates the AI calculated from the pulse wave acquired at that time.
  • the biological information measuring apparatus 1 acquires a pulse wave before a meal, immediately after a meal, and every 30 minutes after a meal, and calculates a plurality of AIs based on each pulse wave.
  • the AI calculated from the pulse wave acquired before the meal was about 0.8. Compared to before the meal, the AI immediately after the meal was small, and the AI reached the minimum extreme value about 1 hour after the meal. The AI gradually increased until the measurement was completed 3 hours after the meal.
  • the biological information measuring apparatus 1 can estimate a change in blood fluidity from the calculated change in AI. For example, when the red blood cells, white blood cells, and platelets in the blood harden in a dumpling shape or the adhesive strength increases, the fluidity of blood decreases. For example, when the water content of plasma in blood decreases, blood fluidity decreases. These changes in blood fluidity change depending on the health condition of the subject such as the glycolipid state, heat stroke, dehydration, and hypothermia described below. Before the health condition of the subject becomes serious, the subject can know the change in fluidity of his / her blood using the biological information measuring apparatus 1 according to one embodiment. From the change in AI before and after the meal shown in FIG.
  • the biological information measuring device 1 may notify a state where the blood fluidity is low and a state where the blood fluidity is high. For example, the biological information measuring apparatus 1 may determine whether the blood fluidity is low or the blood fluidity is high based on the average value of AI at the actual age of the subject. The biological information measuring apparatus 1 may determine that the blood fluidity is high if the calculated AI is larger than the average value, and the blood fluidity is low if the calculated AI is smaller than the average value.
  • the biological information measuring apparatus 1 may determine, for example, the determination of a state where the blood fluidity is low and a state where the blood fluidity is high based on the AI before meal.
  • the biological information measuring device 1 may estimate the degree of low blood fluidity by comparing the AI after meal with the AI before meal.
  • the biological information measuring apparatus 1 can use, for example, AI before meal, that is, fasting AI, as an index of the blood vessel age (blood vessel hardness) of the subject.
  • the biological information measuring apparatus 1 calculates the change amount of the calculated AI based on the AI before the subject's meal, that is, the fasting AI, as a reference, and the blood vessel age (hardness of the blood vessel) of the subject.
  • the estimation error due to can be reduced.
  • the biological information measuring apparatus 1 can estimate a change in blood fluidity with higher accuracy.
  • FIG. 12 is a diagram showing the measurement results of the calculated AI and blood glucose level.
  • the pulse wave acquisition method and the AI calculation method are the same as those in the embodiment shown in FIG.
  • the vertical axis on the right side of FIG. 12 indicates the blood glucose level in the blood, and the vertical axis on the left side indicates the calculated AI.
  • the solid line in FIG. 12 shows the AI calculated from the acquired pulse wave, and the dotted line shows the measured blood glucose level.
  • the blood glucose level was measured immediately after acquiring the pulse wave.
  • the blood glucose level was measured using a blood glucose meter “Medisafefit” (registered trademark) manufactured by Terumo. Compared with the blood glucose level before the meal, the blood glucose level immediately after the meal is increased by about 20 mg / dl. The blood glucose level reached its maximum extreme value about 1 hour after the meal. Thereafter, the blood glucose level gradually decreased until the measurement was completed, and became approximately the same as the blood glucose level before the meal about 3 hours after the meal.
  • the blood glucose level after the pre-meal has a negative correlation with the AI calculated from the pulse wave.
  • the blood glucose level increases, red blood cells and platelets harden in the form of dumplings due to sugar in the blood, or the adhesive strength increases, and as a result, the blood fluidity may decrease.
  • the pulse wave velocity PWV may decrease.
  • the pulse wave propagation velocity PWV decreases, the time difference ⁇ t between the forward wave and the reflected wave may increase.
  • the time difference ⁇ t between the forward wave and the reflected wave increases, the size P R of the reflected wave with respect to the size P F of the forward wave may be less.
  • AI may be smaller. Since AI within several hours after a meal (3 hours in one embodiment) has a correlation with blood glucose level, the fluctuation of blood glucose level of the subject can be estimated by the fluctuation of AI. Further, if the blood glucose level of the subject is measured in advance and the correlation with the AI is acquired, the biological information measuring apparatus 1 can estimate the blood glucose level of the subject from the calculated AI.
  • the biological information measuring apparatus 1 can estimate the state of glucose metabolism of the subject based on the generation time of AI P that is the minimum extreme value of AI that is first detected after a meal.
  • the biological information measuring apparatus 1 estimates, for example, a blood glucose level as the state of sugar metabolism.
  • the biological information measuring device 1 can be estimated that the subject has an abnormal glucose metabolism (diabetic patient).
  • the biological information measuring apparatus 1 determines the subject's information.
  • the state of glucose metabolism can be estimated.
  • (AI B -AI P ) is a predetermined numerical value or higher (for example, 0.5 or higher), it can be estimated that the subject has an abnormal glucose metabolism (postprandial hyperglycemia patient).
  • FIG. 13 is a diagram showing the relationship between the calculated AI and blood glucose level.
  • the calculated AI and blood glucose level are acquired within 1 hour after a meal with a large fluctuation in blood glucose level.
  • the data in FIG. 13 includes a plurality of different post-meal data in the same subject.
  • the calculated AI and blood glucose level showed a negative correlation.
  • the correlation coefficient between the calculated AI and blood glucose level was 0.9 or more. For example, if the correlation between the calculated AI and the blood glucose level as shown in FIG. 13 is obtained for each subject in advance, the biological information measuring apparatus 1 determines the blood glucose level of the subject from the calculated AI. Can also be estimated.
  • FIG. 14 is a diagram showing measurement results of the calculated AI and triglyceride value.
  • the pulse wave acquisition method and the AI calculation method are the same as those in the embodiment shown in FIG.
  • the vertical axis on the right side of FIG. 14 indicates the neutral fat level in the blood, and the vertical axis on the left side indicates AI.
  • the solid line in FIG. 14 indicates the AI calculated from the acquired pulse wave, and the dotted line indicates the measured triglyceride value.
  • the neutral fat value was measured immediately after acquiring the pulse wave.
  • the neutral fat value was measured using a lipid measuring device “Pocket Lipid” manufactured by Techno Medica. Compared to the neutral fat value before meal, the maximum extreme value of the neutral fat value after meal is increased by about 30 mg / dl. About 2 hours after the meal, the neutral fat reached its maximum extreme value. Thereafter, the triglyceride value gradually decreased until the measurement was completed, and became approximately the same as the triglyceride value before the meal at about 3.5
  • the first minimum extreme value AI P1 was detected about 30 minutes after the meal
  • the second minimum extreme value AI P2 was detected about 2 hours after the meal.
  • the first minimum extreme value AI P1 detected about 30 minutes after the meal is due to the influence of the blood glucose level after the meal described above.
  • the second minimum extreme value AI P2 detected at about 2 hours after the meal is almost the same as the maximum extreme value of neutral fat detected at about 2 hours after the meal. From this, it can be estimated that the second minimum extreme value AI P2 detected after a predetermined time from the meal is due to the influence of neutral fat.
  • the triglyceride level after the pre-meal has a negative correlation with the AI calculated from the pulse wave, like the blood glucose level.
  • the minimum extreme value AI P2 of AI detected after a predetermined time from a meal (about 1.5 hours or more in one embodiment) is correlated with the triglyceride value
  • the subject is subject to fluctuations in AI.
  • the fluctuation of the triglyceride value can be estimated.
  • the biological information measuring apparatus 1 estimates the neutral fat value of the subject from the calculated AI. Can do.
  • the biological information measuring apparatus 1 can estimate the lipid metabolism state of the subject.
  • the biological information measuring apparatus 1 estimates a lipid value, for example, as the state of lipid metabolism.
  • the biological information measuring apparatus 1 determines that the subject is a lipid It can be estimated that this is a metabolic disorder (hyperlipidemic patient).
  • the biological information measuring apparatus 1 determines the subject.
  • the state of lipid metabolism can be estimated.
  • lipid metabolism abnormality for example, when (AI B -AI P2 ) is 0.5 or more, the biological information measuring apparatus 1 estimates that the subject has lipid metabolism abnormality (postprandial hyperlipidemia patient). it can.
  • the biological information measuring apparatus 1 according to the embodiment is based on the first minimum extreme value AI P1 detected earliest after a meal and the generation time thereof.
  • the state of sugar metabolism of a person can be estimated.
  • the biological information measuring apparatus 1 according to the embodiment includes a subject based on the second minimum extreme value AI P2 detected after a predetermined time after the first minimum extreme value AI P1 and the generation time thereof.
  • the state of lipid metabolism can be estimated.
  • the case of neutral fat has been described as an example of estimation of lipid metabolism, but the estimation of lipid metabolism is not limited to neutral fat.
  • the lipid value estimated by the biological information measuring device 1 includes, for example, total cholesterol, HDL cholesterol, LDL cholesterol, and the like. These lipid values show a tendency similar to that of the neutral fat described above.
  • FIG. 15 is a flowchart showing a procedure for estimating blood fluidity, sugar metabolism, and lipid metabolism based on AI. With reference to FIG. 15, the flow of blood fluidity and the estimation of the state of sugar metabolism and lipid metabolism by the biological information measuring apparatus 1 according to an embodiment will be described.
  • the biological information measuring apparatus 1 acquires the AI reference value of the subject as an initial setting (step S201).
  • the average AI estimated from the age of the subject may be used as the AI reference value, or the fasting AI of the subject acquired in advance may be used.
  • the biological information measuring apparatus 1 may use the AI determined to be before meals in steps S202 to S208 as the AI reference value, or may use the AI calculated immediately before the pulse wave measurement as the AI reference value. In this case, the biological information measuring apparatus 1 executes step S201 after steps S202 to S208.
  • the biological information measuring device 1 acquires a pulse wave (step S202). For example, the biological information measuring apparatus 1 determines whether or not a predetermined amplitude or more has been obtained for a pulse wave acquired during a predetermined measurement time (for example, 5 seconds). If the acquired pulse wave has a predetermined amplitude or more, the process proceeds to step S203. If a predetermined amplitude or more is not obtained, step S202 is repeated (these steps are not shown). In step S202, for example, when the biological information measuring apparatus 1 detects a pulse wave having a predetermined amplitude or more, the biological information measuring apparatus 1 automatically acquires the pulse wave.
  • a predetermined measurement time for example, 5 seconds
  • the biological information measuring apparatus 1 calculates AI as an index based on the pulse wave from the pulse wave acquired in step S202 and stores it in the storage unit 20 (step S203).
  • the biological information measuring device 1 may calculate the AI at a specific pulse.
  • the AI may be corrected by, for example, the pulse rate PR, the pulse pressure (P F -P S ), the body temperature, the temperature of the test site, and the like. It is known that both pulse and AI and pulse pressure and AI have a negative correlation, and temperature and AI have a positive correlation.
  • the biological information measuring apparatus 1 calculates a pulse and a pulse pressure in addition to the AI.
  • the biological information measuring apparatus 1 may be equipped with a temperature sensor together with the gyro sensor 12, and may acquire the temperature of the test site when acquiring the pulse wave in step S202.
  • the biological information measuring apparatus 1 corrects AI by substituting the acquired pulse, pulse pressure, temperature, and the like into a correction formula created in advance.
  • the biological information measuring device 1 compares the AI reference value acquired in step S201 with the AI calculated in step S203, and estimates the blood fluidity of the subject (step S204).
  • the calculated AI is larger than the AI reference value (in the case of YES)
  • the biological information measuring apparatus 1 notifies that the blood fluidity is high, for example (step S205).
  • the calculated AI is not larger than the AI reference value (in the case of NO)
  • the biological information measuring apparatus 1 notifies that blood fluidity is low, for example (step S206).
  • the biological information measuring apparatus 1 confirms with the subject whether or not to estimate the state of sugar metabolism and lipid metabolism (step S207).
  • the biological information measuring device 1 ends the process.
  • the biological information measuring apparatus 1 checks whether the calculated AI is acquired before or after a meal (step S208). If it is not after a meal (before a meal) (in the case of NO), the process returns to step S202 to acquire the next pulse wave. In the case of after eating (in the case of YES), the biological information measuring apparatus 1 stores the pulse wave acquisition time corresponding to the calculated AI (step S209).
  • step S210 when acquiring a pulse wave (in the case of NO at step S210), the process returns to step S202, and the biological information measuring device 1 acquires the next pulse wave.
  • the process proceeds to step S211 and subsequent steps, and the biological information measuring apparatus 1 estimates the sugar metabolism and lipid metabolism of the subject.
  • the biological information measuring apparatus 1 extracts the minimum extreme value and its time from the plurality of AIs calculated in Step S204 (Step S211). For example, when the AI as shown by the solid line in FIG. 14 is calculated, the biological information measuring apparatus 1 uses the first minimum extreme value AI P1 about 30 minutes after the meal and the second minimum value about 2 hours after the meal. The extreme value AI P2 is extracted.
  • the biological information measuring apparatus 1 estimates the sugar metabolism state of the subject from the first minimum extreme value AI P1 and the time (step S212). Furthermore, the biological information measuring apparatus 1 estimates the lipid metabolism state of the subject from the second minimum extreme value AI P2 and the time (step S213).
  • An example of estimating the state of sugar metabolism and lipid metabolism of the subject is the same as that in FIG.
  • the biological information measuring apparatus 1 notifies the estimation results of step S212 and step S213 (step S214), and ends the process shown in FIG.
  • the audio output unit 16 reports, for example, “normal sugar metabolism”, “suspected abnormal sugar metabolism”, “normal lipid metabolism”, “suspected abnormal lipid metabolism”, and the like. Further, the voice output unit 16 may notify advice such as “Let's consult a hospital” and “Let's review the diet”. Then, the biological information measuring device 1 ends the process shown in FIG.
  • the biological information measuring device 1 may include the audio output unit 16 that outputs sound. Further, instead of the notification of the sound output from the sound output unit 16 as described above, or together with the notification of the sound, a display notification may be displayed on the display unit 14. As described above, the biological information measuring apparatus 1 may include the display unit 14 that displays information related to the measurement process performed by the controller 10. The audio output unit 16 may output a sound indicating that the gyro sensor 12 detects a motion factor. Thereby, in the biological information measuring device 1, the user can easily and clearly know that the gyro sensor 12 is correctly detecting the motion factor.
  • the biological information measured by the biological information measuring device 1 may include information on at least one of the user's pulse wave, pulse, respiration, heartbeat, pulse wave propagation velocity, and blood flow.
  • the controller 10 is based on the biological information which the biological information measuring device 1 measures, and a user's physical condition, sleepiness, sleep, arousal state, psychological state, physical state, emotion, mind and body state, mental state, autonomic nerve, stress You may estimate the information regarding at least any one of a state, a consciousness state, a blood component, a sleep state, a respiratory state, and a blood pressure.
  • the “physical state” of the user is, for example, the presence or absence of symptoms such as heat stroke, fatigue, altitude sickness, diabetes, metabolic syndrome, the degree of these symptoms, and the presence or absence of signs of these symptoms, etc. It can be.
  • the blood component can be neutral fat, blood sugar level, or the like.
  • FIG. 16 is a diagram for explaining another usage mode of the biological information measuring apparatus 1 according to an embodiment.
  • FIG. 16 schematically shows a pregnant mother and fetus.
  • the biological information measuring device 1 according to the above-described embodiment has been described on the assumption that the biological information of the user is measured.
  • the biological information measuring device 1 according to the embodiment is not limited to such an application.
  • the biological information of the fetus can be measured together with the mother body by pressing the biological information measuring device 1 against the abdomen.
  • the biological information of the fetus can be measured by using the gyro sensor 12, such as detecting the fetal pulse.
  • the biological information measuring apparatus 1 measures the biological information of the fetus together with the biological information of the mother. For this reason, you may extract and utilize only the biological information of a fetus from the biological information which the biological information measuring device 1 measured. As described above, the biological information measured by the biological information measuring device 1 may be biological information of the user's fetus.
  • FIG. 17 is a schematic diagram illustrating a schematic configuration of a biological information measurement system according to an embodiment of the present disclosure.
  • the biological information measurement system 100 of one embodiment shown in FIG. 17 includes a first device 110, a second device 120, and a communication network.
  • the first device 110 detects a motion factor due to a fluctuation of the user's torso. For this reason, the first device 110 includes a gyro sensor 12.
  • the first device 110 includes a communication unit (which can be wired or wirelessly connected), and transmits the detected motion factor to the second device 120.
  • the second device 120 performs various calculations related to the measurement of biological information based on the received motion factor. Therefore, the second device 120 includes various necessary functional units including the controller 10.
  • FIG. 17 it is assumed that the first device 110 and the second device 120 are connected by wireless communication, but the biological information measurement system 100 is not limited to such a configuration.
  • the first device 110 and the second device 120 may be connected by a wired connection such as a predetermined cable.
  • the biological information measuring system 100 includes the first device 110 and the second device 120.
  • the first device 110 includes a gyro sensor 12.
  • the gyro sensor 12 detects a motion factor caused by the fluctuation of the user's torso in a state where the first device 110 is pressed against the user's torso.
  • the second device 120 includes the controller 10.
  • the second device 120 has an artificial intelligence function, a machine learning function, a deep learning function, and the like, and measures biological information using an algorithm obtained statistically based on the motion factor received from the first device 110. Such various calculations may be performed.
  • the biological information measuring device 1 and the biological information measuring system 100 have been described.
  • the embodiment of the present disclosure may be implemented as a biological information measuring method by the biological information measuring device 1 including the gyro sensor 12.
  • the gyro sensor 12 detects a motion factor resulting from the fluctuation of the user's torso while the biological information measuring device 1 is pressed against the user's torso.
  • the gyro sensor 12 may detect a motion factor processed as a self-control factor.
  • a measurement process of a user's biometric information is performed based on the motion factor detected in such a state.
  • the biological information measuring device 1 has been described as including the contact portion 40 and the support portion 50, but the biological information measuring device 1 may not include the support portion 50.
  • a part of the back surface of the housing 30 of the biological information measuring device 1 is in contact with the subject at a position different from the test site, so that the contact state of the contact portion 40 with respect to the test site is supported. .
  • the contact portion 40 is fixed to the biological information measuring device 1
  • the contact portion 40 does not necessarily have to be directly fixed to the biological information measuring device 1.
  • the abutting portion 40 may be fixed to a holder used by being fixed to the biological information measuring device 1.
  • the biological information measuring device 1 is realized as a mobile terminal device.
  • a mobile phone such as a smartphone will be described as an example of the mobile terminal device.
  • the second embodiment is not limited to a mobile phone such as a smartphone, and may be a feature phone type mobile phone, for example.
  • the embodiment of the present disclosure is not necessarily limited to a mobile phone, and may be various mobile terminal devices such as a tablet terminal, a remote control terminal for remotely operating an electronic device, a digital camera, and a notebook PC.
  • the embodiment of the present disclosure may be any portable terminal device having a function of measuring biological information.
  • FIG. 18 is a functional block diagram showing a schematic configuration of a mobile terminal device according to an embodiment.
  • the mobile terminal device 2 includes a controller 10, a power supply unit 11, a gyro sensor 12, a display unit 14, an audio output unit 16, a communication unit 17, a vibrator 18, and a storage unit 20. And.
  • the mobile terminal device 2 includes an operation key unit 22 and a microphone 24.
  • the controller 10 includes a processor that controls and manages the entire mobile terminal device 2 including each functional block of the mobile terminal device 2.
  • the controller 10 includes a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure and a program for measuring biological information of a subject.
  • a program is stored in a storage medium such as the storage unit 20, for example.
  • the controller 10 performs control for realizing various functions of the mobile terminal device 2. For example, when the mobile terminal device 2 is a smartphone, the controller 10 performs control for realizing a function related to a call or data communication and a function related to execution of each application program.
  • the power supply unit 11 includes a battery and supplies power to each unit of the mobile terminal device 2.
  • the portable terminal device 2 receives power supply from the power supply unit 11 or an external power supply during operation.
  • the gyro sensor 12 detects the displacement of the portable terminal device 2 as a motion factor by detecting the angular velocity of the portable terminal device 2.
  • the gyro sensor 12 is, for example, a three-axis vibration gyro sensor that detects an angular velocity from deformation of a structure due to Coriolis force acting on a vibrating arm.
  • this structure may be made of a piezoelectric material such as quartz or piezoelectric ceramic.
  • the gyro sensor 12 may be formed by MEMS (Micro Electro Mechanical Systems) technology using the structure as a material such as silicon.
  • the gyro sensor 12 may be another type of gyro sensor such as an optical gyro sensor.
  • the controller 10 can measure the orientation of the mobile terminal device 2 by integrating the angular velocity acquired by the gyro sensor 12 with respect to time.
  • the gyro sensor 12 is an angular velocity sensor, for example. However, the gyro sensor 12 is not limited to the angular velocity sensor.
  • the gyro sensor 12 may detect an angular displacement of the mobile terminal device 2 that is a motion factor.
  • the gyro sensor 12 detects a motion factor that is processed as a self-control factor. The motion factor detected by the gyro sensor 12 is transmitted to the controller 10.
  • the controller 10 acquires a motion factor from the gyro sensor 12.
  • the motion factor includes an index indicating the displacement of the mobile terminal device 2 based on the pulsation at the subject site of the subject.
  • the controller 10 generates a pulsation of the subject based on the motion factor.
  • the controller 10 measures biological information based on the subject's pulsation. Details of the measurement processing of biological information by the controller 10 will be described later.
  • the display unit 14 includes a display device such as a liquid crystal display, an organic EL panel (Organic Electro-Luminescence Panel), or an inorganic EL panel (Inorganic Electro-Luminescence panel).
  • the display unit 14 displays characters, images, symbols, graphics, and the like.
  • the display unit 14 may be configured with a touch screen display including not only a display function but also a touch screen function. In this case, the touch screen detects contact of the user's finger or stylus pen.
  • the touch screen can detect a position where a plurality of fingers, a stylus pen, or the like touches the touch screen.
  • the touch screen detection method may be any method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, and a load detection method.
  • a capacitance method a resistive film method
  • a surface acoustic wave method or an ultrasonic method
  • an infrared method an electromagnetic induction method
  • a load detection method a load detection method.
  • the voice output unit 16 notifies the user or the like by outputting sound.
  • the audio output unit 16 can be configured with an arbitrary speaker or the like.
  • the sound output unit 16 outputs the sound signal transmitted from the controller 10 as sound.
  • the user can hear the voice of the other party from the voice output unit 16 during a call using the mobile terminal device 2, for example. In this case, the user can listen to the other party's voice by placing the voice output unit 16 on his / her ear. Further, in the case of a usage mode such as a speakerphone, the user can listen to the voice of the other party even if the voice output unit 16 is not placed on the ear.
  • the communication unit 17 transmits and receives various data by performing wired communication or wireless communication with an external device.
  • the communication unit 17 can perform communication by connecting to a base station or the like in order to realize the telephone and / or data communication functions of the mobile terminal device 2.
  • the communication part 17 can transmit the measurement result etc. of the biometric information which the portable terminal device 2 measured to the external device, for example.
  • the communication part 17 can also communicate with the external apparatus which memorize
  • the vibrator 18 informs the user and the like by generating vibration and the like.
  • the vibrator 18 presents a tactile sensation to the user of the mobile terminal device 2 by generating vibration or the like at an arbitrary part of the mobile terminal device 2.
  • an arbitrary member such as an eccentric motor, a piezoelectric element (piezo element), or a linear vibrator can be employed.
  • the storage unit 20 stores various programs and data including application programs.
  • the storage unit 20 may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage unit 20 may include a plurality of types of storage media.
  • the storage unit 20 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a storage medium reader.
  • the storage unit 20 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
  • the storage unit 20 stores various information and a program for operating the mobile terminal device 2 and also functions as a work memory.
  • the storage unit 20 may store, for example, data detected by the gyro sensor 12 and measurement results of biological information.
  • the operation key unit 22 includes one or more operation keys that detect a user's operation input.
  • the operation key unit 22 can be configured by any key or button such as a push button switch or a slide switch. In a configuration in which all operations can be performed on the touch screen display, the operation key unit 22 is not necessarily a necessary element.
  • the microphone 24 detects sound and converts it into an audio signal.
  • the microphone 24 can be composed of any one that can detect sound.
  • the microphone 24 transmits the converted audio signal to the controller 10.
  • the controller 10 can transmit the received audio signal from, for example, the communication unit 17. Thereby, the user can transmit the voice input to the microphone 24 to the other party during a call using the mobile terminal device 2, for example.
  • the mobile terminal device 2 is not limited to the configuration illustrated in FIG.
  • the mobile terminal device 2 according to an embodiment includes a controller 10 and a gyro sensor 12 in order to measure biological information.
  • other components other than the controller 10 and the gyro sensor 12 may be omitted or other components may be added as necessary.
  • the portable terminal device 2 includes the controller 10 and the gyro sensor 12 in order to measure the biological information, but the portable terminal device 2 when the biological information is not measured does not include the gyro sensor 12 (not included). ) Can also be configured.
  • an external member such as a case or an attachment that can be attached to the mobile terminal device 2 may include the gyro sensor 12.
  • the portable terminal device 2 can measure biometric information at the subject site of the subject.
  • the test site may be, for example, the body of the test subject (user of the mobile terminal device 2), as will be described later.
  • the mobile terminal device 2 measures the biological information of the subject based on the fluctuation of the trunk that is the test site.
  • the biological information measured by the mobile terminal device 2 includes, for example, at least one of a blood component, a pulse wave, a pulse, and a pulse wave propagation speed.
  • the blood component includes, for example, a state of sugar metabolism and a state of lipid metabolism.
  • the state of glucose metabolism includes, for example, blood glucose level.
  • the state of lipid metabolism includes, for example, a lipid value. Lipid levels include neutral fat, total cholesterol, HDL (High Density Lipoprotein) cholesterol, LDL (Low Density Lipoprotein) cholesterol, and the like.
  • the portable terminal device 2 acquires a subject's pulse wave as biological information, and measures biological information such as blood components based on the acquired pulse wave.
  • FIG. 19 is a schematic perspective view showing the external appearance of the mobile terminal device 2 according to an embodiment.
  • the mobile terminal device 2 according to the embodiment can be configured as a mobile terminal device such as a relatively small mobile phone.
  • the mobile terminal device 2 is not limited to a mobile terminal device such as a mobile phone.
  • the mobile terminal device 2 may be incorporated in any other portable electronic device.
  • FIG. 19A is a diagram showing the front side of the mobile terminal device 2.
  • FIG. 19B is a diagram illustrating the back side of the mobile terminal device 2, that is, a diagram illustrating a state in which the mobile terminal device 2 illustrated in FIG.
  • the mobile terminal device 2 includes a housing 30 whose external shape is substantially rectangular.
  • the mobile terminal device 2 includes a display unit 14, an audio output unit 16, an operation key unit 22, and a microphone 24 on the front side.
  • the display unit 14 can display information related to the measurement process of the mobile terminal device 2. For this reason, the user etc. can confirm the condition, only measuring the display of the display part 14, measuring biometric information. Moreover, the user etc. can also confirm the result of having measured biometric information only by seeing the display of the display part 14. Furthermore, the user or the like can check whether or not the biological information is correctly measured only by looking at the display on the display unit 14. In addition, the display unit 14 may display information such as time.
  • the voice output unit 16 When the mobile terminal device 2 functions as a mobile phone, the voice output unit 16 outputs the voice of the other party. Moreover, when measuring biological information using the portable terminal device 2, the audio output unit 16 outputs sound when the portable terminal device 2 starts measuring biological information or when the measurement is completed. The user is notified that the measurement has started or completed. Furthermore, the audio output unit 16 may output a sound for notifying the user that the measurement is continuing. The user or the like can confirm whether or not the biological information is correctly measured by the sound output from the sound output unit 16.
  • the operation key unit 22 is configured by operation keys 22A, 22B, and 22C in the example shown in FIG.
  • the operation key unit 22 is not limited to the number and arrangement of the keys, and various numbers and arrangements can be adopted according to the specifications of the mobile terminal device 2 and the like.
  • the operation key portion 22 is disposed only on the front side of the mobile terminal device 2, but may be disposed on the side surface or the back surface side of the mobile terminal device 2 body. Good.
  • the operation key unit 22 may be a switch such as a button for starting measurement of biological information.
  • the microphone 24 detects the voice of the user or the like mainly when the mobile terminal device 2 functions as a mobile phone.
  • the mobile terminal device 2 functions as a mobile phone.
  • FIG. 19A only one microphone 24 is arranged on the front side of the mobile terminal device 2, but various numbers and arrangements are adopted according to the specifications of the mobile terminal device 2. be able to.
  • the mobile terminal device 2 has a contact portion 40 and a support portion 50 on the back side.
  • the contact portion 40 and the support portion 50 form substantially the same plane as the back surface of the housing 30.
  • at least one of the contact portion 40 and the support portion 50 may be a member protruding from the back side of the housing 30.
  • the contact portion 40 and the support portion 50 are fixed to the mobile terminal device 2 on the back surface of the housing 30.
  • At least one of the contact part 40 and the support part 50 may be provided so as not to be detachable from the mobile terminal device 2, for example.
  • At least one of the contact part 40 and the support part 50 may be configured to be detachable from the mobile terminal device 2, for example.
  • the contact portion 40 and the support portion 50 are fixed on the back side of the housing 30 so as to extend linearly along the short side direction of the back surface.
  • the length of the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 may be shorter than the length of the short side of the back surface of the housing 30, for example. Further, the length relationship between the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 can be determined as appropriate.
  • the length of the contact portion 40 in the short side direction on the back surface of the housing 30 may be shorter or longer than the length of the support portion 50 in the short side direction on the back surface of the housing 30.
  • the length of the contact portion 40 in the short side direction on the back surface of the housing 30 and the length of the support portion 50 in the short side direction on the back surface of the housing 30 may be the same.
  • the abutting portion 40 abuts on the test site when the biological information is measured by the mobile terminal device 2. That is, the contact part 40 contacts the torso of the subject or the periphery thereof, for example, when measuring biological information. Further, as shown in FIG. 19B, the gyro sensor 12 is attached to the back side of the contact portion 40. In the example shown in FIG. 19B, since the gyro sensor 12 is installed inside the housing 30, the gyro sensor 12 is indicated by a broken line.
  • the contact part 40 and the gyro sensor 12 may be configured as separate members, or may be configured as one and the same member.
  • the support unit 50 contacts the subject at a position different from the contact unit 40 when biological information is measured by the mobile terminal device 2.
  • the support part 50 contacts the subject's torso at a position different from the contact part 40, for example.
  • the support part 50 supports the contact state of the contact part 40 with respect to the test site by contacting the subject.
  • the mobile terminal device 2 may include a plurality of support portions 50.
  • the plurality of support parts 50 are arranged in a straight line, for example.
  • the contact portion 40 and the support portion 50 (and the housing 30) are configured so that the variation of the test portion that contacts the contact portion 40 is appropriately transmitted to the gyro sensor 12. Details of the contact mode of the contact portion 40 and the support portion 50 to the test site will be described later.
  • the mobile terminal device 2 is not limited to the structure illustrated in FIG. As described above, in the mobile terminal device 2 according to the embodiment, other components other than the controller 10 and the gyro sensor 12 are appropriately omitted or other components are added as necessary. Also good.
  • a case, a holder, an attachment, or the like that allows the mobile terminal device 2 to be mounted on the user's belt or waistband is prepared separately. May be.
  • the portable terminal device 2 shown in FIG. 19 it is necessary for the subject himself / herself to fix the portable terminal device 2 to the body of the subject using his / her hand.
  • the portable terminal device 2 can be fixed to the body of the subject when measuring biological information. Therefore, in this case, it is not necessary for the subject himself / herself to fix the portable terminal device 2 to the body of the subject using his / her hand.
  • a mode in which the portable terminal device 2 is mounted on a belt or a waistband of the user using such a case, a holder, or an attachment will be described later.
  • the mobile terminal device 2 acquires a motion factor in a state where the contact portion 40 fixed to the mobile terminal device 2 is in contact with the test site, and measures biological information based on the acquired motion factor.
  • the mobile terminal device 2 may acquire the motion factor in a state where the support unit 50 fixed to the mobile terminal device 2 is in contact with the subject at a position different from the test site.
  • the mobile terminal device 2 In measuring biometric information, the mobile terminal device 2 is ready for biometric information measurement processing based on, for example, an input operation by a subject.
  • the state in which measurement processing of biological information is possible refers to a state in which an application for measuring biological information is activated, for example.
  • the subject makes the measurement process of the biological information possible and starts acquisition of the motion factor by the mobile terminal device 2.
  • the portable terminal device 2 measures biological information based on the fluctuation of the user's torso.
  • the gyro sensor 12 can detect a change in the user's torso in a state where the mobile terminal device 2 is pressed against the body including the chest or abdomen of the user. In this way, the gyro sensor 12 detects a motion factor resulting from a change in the user's torso.
  • FIG. 20 is a diagram illustrating an example of a motion factor acquisition mode by the mobile terminal device 2.
  • FIG. 20A is a diagram illustrating an example in which the mobile terminal device 2 includes the gyro sensor 12 (for example, built in the main body).
  • FIG. 20B is a diagram illustrating an example in which the main body of the mobile terminal device 2 does not include the gyro sensor 12 and a member such as an external case or attachment includes the gyro sensor 12.
  • 20A and 20B show a cross section of a part including the aorta in a living body such as a human body.
  • 20A and 20B show a state in which the back side of the housing 30 of the mobile terminal device 2 shown in FIG. 19 is in contact with the test site of the living body. Therefore, as shown in FIGS. 20A and 20B, the contact part 40 and the support part 50 are in contact with the test site on the surface of the living body (skin).
  • the test site on the surface of the living body is the torso of the user.
  • the aorta shown in FIGS. 20A and 20B may be the thoracic aorta shown in FIG. 4 or the abdominal aorta.
  • the subject presses the portable terminal device 2 against the trunk and causes the portable terminal device 2 to acquire a motion factor.
  • the contact portion 40 contacts the test site.
  • the support unit 50 is placed on the body of the subject at a position different from the contact unit 40. Abut.
  • the mobile terminal device 2 when the mobile terminal device 2 is pressed in the direction of the arrow P at the position of the arrow P and brought into contact with the trunk, the mobile terminal device 2 It is displaced according to the movement of the blood vessel expansion and contraction based on the pulsation of the person.
  • the mobile terminal device 2 has an upper end that is not pressed in the direction of the arrow P in the side view, as indicated by an arrow Q in FIGS. 20A and 20B, with the support portion 50 in contact with the body as a fulcrum. Displace so that the side rotates.
  • Such a displacement is usually a vibration-like displacement in which the reciprocation of a partial rotational motion is repeated.
  • the gyro sensor 12 included in the mobile terminal device 2 acquires the pulse wave of the subject by detecting the displacement of the mobile terminal device 2.
  • the pulse wave is obtained by capturing a change in the volume of the blood vessel caused by the inflow of blood as a waveform from the body surface.
  • the gyro sensor 12 detects a motion factor due to the fluctuation of the user's torso.
  • the gyro sensor 12 detects a motion factor due to a change in the user's torso in a state where the mobile terminal device 2 is pressed against the user's torso.
  • the controller 10 performs measurement processing of the user's biological information based on the motion factor detected by the gyro sensor 12 in this way.
  • the user's torso may include the user's abdomen or chest.
  • body was shown in FIG. 20 (A) and FIG.20 (B), the example of the fluctuation
  • the fluctuation of the user's torso may include not only the fluctuation caused by the movement of the user's blood vessel but also at least one of the fluctuation caused by the user's breathing and the fluctuation caused by the user's body movement.
  • the user's blood vessel may also include the user's aorta.
  • the user's aorta may include at least one of the user's abdominal aorta and thoracic aorta.
  • a large amount of blood constantly flows.
  • the portable terminal device 2 by measuring the user's aorta as a measurement target, it is possible to measure biological information stably with high accuracy.
  • the gyro sensor 12 is pressed against the user's torso via the elastic member 19, so that it becomes easy to follow the fluctuation of the user's torso. Therefore, the portable terminal device 2 can measure biometric information stably with high accuracy.
  • the elastic member 19 may be any member that generates an elastic force, such as a spring, rubber, flexible resin, one using hydraulic pressure, one using air pressure, one using water pressure, or the like. is there.
  • the support portion 50 shown in FIG. 20B connects the housing on which the gyro sensor 12 is installed and the housing on which the gyro sensor 12 is not installed. As shown in FIG. 20B, the housing on which the gyro sensor 12 is installed has a mechanism that can move around the support portion 50 relative to the housing on which the gyro sensor 12 is not installed. Yes.
  • the portable terminal device 2 shown in FIG. 20B can be configured not to incorporate the gyro sensor 12 in the main body.
  • an external member such as an attachment including the gyro sensor 12 and the contact portion 40 illustrated in FIG. 20B may be attached to the mobile terminal device 2 via the support portion 50.
  • a detection signal detected by the gyro sensor 12 may be supplied to the controller 10 of the mobile terminal device 2 via the support unit 50, for example.
  • the mobile terminal device 2 includes the gyro sensor 12, the user can measure biological information from the top of the clothes while wearing the clothes. That is, according to the mobile terminal device 2, the user does not need to undress when measuring biological information. Moreover, according to the portable terminal device 2, the user does not need to make a measuring device touch a skin directly. For this reason, according to the portable terminal device 2, measurement of biological information can be performed easily.
  • the conventional acceleration sensor is not suitable for use as a pulse wave sensor because of its large noise.
  • a small acceleration sensor built into a device such as a small terminal is not common when measuring low frequencies around 1 Hz, such as pulse waves and respiration.
  • a large acceleration sensor is required for such purposes.
  • the gyro sensor 12 is used for measuring biological information.
  • a gyro sensor generally has little noise during measurement. Since the gyro sensor constantly vibrates (in the case of the vibration type gyro sensor), noise can be reduced due to the structure.
  • the gyro sensor 12 that can be incorporated in the small housing 30 can be employed.
  • FIG. 21 is a diagram illustrating an example of measuring biological information using the mobile terminal device 2.
  • the gyro sensor 12 built in the mobile terminal device 2 is indicated by a broken line.
  • FIG. 21A shows an example in which biological information is measured using the mobile terminal device 2 as shown in FIG.
  • biological information can be measured.
  • the gyro sensor 12 When the portable terminal device 2 is pressed using a hand or the like, the gyro sensor 12 does not press the position of the gyro sensor 12 as shown in FIG. You may do it. In this case, the position without the gyro sensor 12, that is, the vicinity of the lower end of the mobile terminal device 2 shown in FIG. On the back side in the vicinity of the lower end of the mobile terminal device 2 shown in FIG. 19A, there is a support portion 50 shown in FIG.
  • the user can freely change the test site with which the contact portion 40 of the portable terminal device 2 comes into contact.
  • the movement of the thoracic aorta may be easily detected by moving the mobile terminal device 2 to the upper body side a little.
  • the mobile terminal device 2 may be moved to the lower body side to make it easier to detect the movement of the abdominal aorta.
  • the user of the portable terminal device 2 can search for the position of the test site where the measurement of the biological information can be satisfactorily performed and measure the biological information with high accuracy.
  • FIG. 21 (B) shows an example using a case, a holder, an attachment, or the like that allows the mobile terminal device 2 to be attached to a belt or a waistband as described above.
  • the portable terminal device 2 when the user wears the belt 60 or the waistband 62, the portable terminal device 2 is attached to the user's belt 60 or waist using a case, a holder, an attachment, or the like. It can be attached to the band 62 or the like.
  • a case, a holder, an attachment, or the like can be appropriately configured as an external member that allows the mobile terminal device 2 to be attached to the belt 60 or the waistband 62 of the user.
  • the user adjusts the position to which the contact portion 40 of the mobile terminal device 2 contacts to some extent by adjusting the position where the belt 60 or the waistband 62 presses the mobile terminal device 2. be able to. Therefore, the user of the portable terminal device 2 can search for the position of the test site where the measurement of the biological information can be performed satisfactorily and can measure the biological information with high accuracy.
  • a part of the mobile terminal device 2 is pressed against the user's torso, and at least a part other than a part of the mobile terminal device 2 is the belt 60 or waist of the user's clothes. It may be pressed against the band 62.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • FIG. 21C shows an example in which the mobile terminal device 2 shown in FIG. In the example shown in FIG. 21C, it becomes easier to detect the movement of the abdominal aorta than in the examples shown in FIGS. 21A and 21B.
  • the user presses the contact portion 40 of the mobile terminal device 2 against the test site by using a hand or the like, or by using the belt 60 or the waistband 62.
  • a part of the mobile terminal device 2 is pressed against the lower abdomen side of the user's torso, and at least a part other than a part of the mobile terminal device 2 is lower than the lower abdomen side. It may be pressed against the head side of the user's torso.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • FIG. 22 is a diagram illustrating another example of measuring biological information using the mobile terminal device 2, as in FIG. 21. Also in FIG. 22, the gyro sensor 12 built in the portable terminal device 2 is indicated by a broken line.
  • the biological information may be measured with the mobile terminal device 2 in the horizontal direction.
  • the position of the gyro sensor 12 is not pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily. You may do it.
  • the position where the gyro sensor 12 is not present that is, the vicinity of the end of the mobile terminal device 2 on the side where the support unit 50 exists may be pressed using a hand or the like.
  • the gyro sensor 12 is close to the center line M of the torso, the movement of the thoracic aorta or the abdominal aorta can be detected well.
  • the orientation of the mobile terminal device 2 may be reversed from that shown in FIG.
  • the gyro sensor 12 contacts the side surface of the trunk, that is, the vicinity of the flank.
  • a position where the gyro sensor 12 is not provided, that is, the vicinity of the end of the mobile terminal device 2 on the side where the support unit 50 exists may be pressed using a hand or the like.
  • a part of the portable terminal device 2 is pressed against the side surface of the user's torso, and at least a part other than a part of the portable terminal device 2 is a side surface of the user's torso. It may be pressed to the center M side of the trunk rather than the side.
  • the gyro sensor 12 may detect a motion factor.
  • the controller 10 may perform a measurement process based on the motion factor thus detected.
  • the mobile terminal device 2 performs a pulse wave measurement process in a state in which the contact portion 40 is in contact with the test site.
  • the pulse wave measurement process by the mobile terminal device 2 can be performed in the same manner as in the first embodiment, based on a principle similar to that of the biological information measuring device 1 according to the first embodiment described above. Therefore, a more detailed description of the pulse wave measurement process by the band terminal device 2 is omitted.
  • the portable terminal device 2 may include an audio output unit 16 that outputs a sound related to a measurement process performed by the controller 10 as in the biological information measuring device 1 according to the first embodiment. Further, instead of the notification of the sound output from the sound output unit 16 as described above, or together with the notification of the sound, a display notification may be displayed on the display unit 14. As described above, the mobile terminal device 2 may include the display unit 14 that displays information related to the measurement process performed by the controller 10. The audio output unit 16 may output a sound indicating that the gyro sensor 12 detects a motion factor. Thereby, in the mobile terminal device 2, the user can easily and clearly know that the gyro sensor 12 is correctly detecting the motion factor.
  • the biological information measured by the mobile terminal device 2 may include information on at least one of the user's pulse wave, pulse, respiration, heartbeat, pulse wave velocity, and blood flow. .
  • the controller 10 is based on the biological information measured by the mobile terminal device 2, so that the user's physical condition, drowsiness, sleep, wakefulness, psychological state, physical state, emotion, psychosomatic state, mental state.
  • Information regarding at least one of a state, an autonomic nerve, a stress state, a conscious state, a blood component, a sleep state, a respiratory state, and a blood pressure may be estimated.
  • the “physical state” of the user is, for example, the presence or absence of symptoms such as heat stroke, fatigue, altitude sickness, diabetes, metabolic syndrome, the degree of these symptoms, and the presence or absence of signs of these symptoms, etc. It can be.
  • the blood component can be neutral fat, blood sugar level, or the like.
  • the portable terminal device 2 according to the embodiment described above has been described on the assumption that the biological information of the user himself / herself is measured.
  • the mobile terminal device 2 according to an embodiment is not limited to such an application.
  • the biological information of the fetus can be measured together with the mother by pressing the mobile terminal device 2 against the abdomen, as in the first embodiment.
  • the mobile terminal device 2 according to the second embodiment by using the gyro sensor 12, it is possible to measure fetal biological information such as detecting the fetal pulse.
  • the mobile terminal device 2 can configure a biological information measurement system, as in the example illustrated in FIG.
  • the biological information measurement system 100 according to the embodiment illustrated in FIG. 17 includes a mobile terminal device 2 as the first device 110, an external device as the second device 120, and a communication network.
  • Other points can be implemented in the same manner as in the first embodiment described with reference to FIG. 17, and thus a more detailed description is omitted.
  • the mobile terminal device 2 and the biological information measurement system 100 are described.
  • the embodiment of the present disclosure may be implemented as a biological information measurement method by the mobile terminal device 2 including the gyro sensor 12.
  • the gyro sensor 12 detects a motion factor resulting from the fluctuation of the user's torso while the portable terminal device 2 is pressed against the user's torso.
  • the gyro sensor 12 detects a motion factor processed as a self-control factor.
  • a measurement process of a user's biometric information is performed based on the motion factor detected in such a state.
  • the mobile terminal device 2 has been described as including the contact portion 40 and the support portion 50, but the mobile terminal device 2 may not include the support portion 50.
  • a part of the back surface of the housing 30 of the mobile terminal device 2 contacts the subject at a position different from the test site, so that the contact state of the contact portion 40 with the test site is supported.
  • the contact portion 40 is fixed to the mobile terminal device 2 .
  • the contact portion 40 does not necessarily have to be directly fixed to the mobile terminal device 2.
  • the contact portion 40 may be fixed to a holder that is used by being fixed to the mobile terminal device 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A biological information measurement device 1 comprises a gyro sensor 12 that detects fluctuations in the torso of a user, and a controller 10 that performs a process of measuring biological information of the user on the basis of the fluctuations detected once the biological information measurement device 1 is being pressed against the torso of the user.

Description

生体情報測定装置、生体情報測定方法、及び生体情報測定システムBiological information measuring device, biological information measuring method, and biological information measuring system 関連出願の相互参照Cross-reference of related applications
 本出願は、日本国特許出願2016-233300号(2016年11月30日出願)および日本国特許出願2017-011248号(2017年1月25日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2016-233300 (filed on Nov. 30, 2016) and Japanese Patent Application No. 2017-011248 (filed on Jan. 25, 2017). The entire disclosure of the application is hereby incorporated by reference.
 本開示は、生体情報測定装置、生体情報測定方法、及び生体情報測定システムに関する。 The present disclosure relates to a biological information measuring device, a biological information measuring method, and a biological information measuring system.
 従来、被検者の手首等の被検部位から生体情報を測定する電子機器が知られている。例えば、特許文献1には、被検者が手首に装着することにより、被検者の脈拍を測定する電子機器が記載されている。 Conventionally, electronic devices that measure biological information from a test site such as a wrist of a test subject are known. For example, Patent Document 1 describes an electronic device that measures the pulse of a subject when the subject wears the wrist.
特開2002-360530号公報JP 2002-360530 A
 一態様の生体情報測定装置は、ジャイロセンサと、コントローラとを備える。前記ジャイロセンサは、使用者の胴体の変動を検知する。前記コントローラは、前記生体情報測定装置が前記胴体に押し当てられている状態で検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行う。 The biological information measuring device according to one aspect includes a gyro sensor and a controller. The gyro sensor detects a change in a user's torso. The controller performs a measurement process of the user's biological information based on the change detected in a state where the biological information measuring device is pressed against the trunk.
 一態様の生体情報測定方法は、ジャイロセンサを備える生体情報測定装置による生体情報測定方法であって、検知するステップと、測定処理を行うステップとを含む。前記検知するステップは、前記生体情報測定装置が使用者の胴体に押し当てられている状態で、前記胴体の変動を前記ジャイロセンサにより検知する。前記測定処理を行うステップは、前記状態で検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行う。 The biological information measuring method according to one aspect is a biological information measuring method by a biological information measuring device including a gyro sensor, and includes a detecting step and a measurement process. The detecting step detects the fluctuation of the trunk with the gyro sensor in a state where the biological information measuring device is pressed against the trunk of the user. The step of performing the measurement process performs a measurement process of the user's biological information based on the variation detected in the state.
 一態様の生体情報測定システムは、第1の装置及び第2の装置を備える。前記第1の装置は、前記第1の装置が使用者の胴体に押し当てられている状態で、前記胴体の変動を検知するジャイロセンサを備える。前記第2の装置は、前記状態で検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行うコントローラを備える。 The biological information measurement system according to one aspect includes a first device and a second device. The first device includes a gyro sensor that detects a change in the body while the first device is pressed against a user's body. The second device includes a controller that performs a measurement process of the user's biological information based on the variation detected in the state.
本開示の第1実施形態に係る生体情報測定装置の概略構成を示す機能ブロック図である。It is a functional block diagram showing a schematic structure of a living body information measuring device concerning a 1st embodiment of this indication. 第1実施形態に係る生体情報測定装置の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the biological information measuring device which concerns on 1st Embodiment. 第1実施形態に係る生体情報測定装置の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the biological information measuring device which concerns on 1st Embodiment. 人体内の大動脈を概略的に示す図である。It is a figure which shows roughly the aorta in a human body. 第1実施形態における被検部位と当接部との当接状態の一例を示す図である。It is a figure which shows an example of the contact state of the to-be-tested part and contact part in 1st Embodiment. 第1実施形態に係る生体情報測定装置の使用態様を示す図である。It is a figure which shows the usage condition of the biological information measuring device which concerns on 1st Embodiment. 第1実施形態に係る生体情報測定装置の使用態様を示す図である。It is a figure which shows the usage condition of the biological information measuring device which concerns on 1st Embodiment. 図1の生体情報測定装置による脈波の測定処理について説明するための模式図である。It is a schematic diagram for demonstrating the measurement process of the pulse wave by the biological information measuring device of FIG. 図1の生体情報測定装置による脈波の測定処理の手順を示すフロー図である。It is a flowchart which shows the procedure of the measurement process of the pulse wave by the biometric information measuring apparatus of FIG. センサで取得された脈波の一例を示す図である。It is a figure which shows an example of the pulse wave acquired with the sensor. 算出されたAIの時間変動を示す図である。It is a figure which shows the time fluctuation | variation of calculated AI. 算出されたAIと血糖値の測定結果を示す図である。It is a figure which shows the measurement result of calculated AI and a blood glucose level. 算出されたAIと血糖値の関係を示す図である。It is a figure which shows the relationship between calculated AI and a blood glucose level. 算出されたAIと中性脂肪値の測定結果を示す図である。It is a figure which shows the measurement result of calculated AI and a triglyceride value. 血液の流動性並びに糖代謝及び脂質代謝の状態を推定する手順を示すフロー図である。It is a flowchart which shows the procedure which estimates the fluidity | liquidity of blood, and the state of glucose metabolism and lipid metabolism. 第1実施形態に係る生体情報測定装置の使用態様を示す図である。It is a figure which shows the usage condition of the biological information measuring device which concerns on 1st Embodiment. 第1実施形態に係る生体情報測定システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a living body information measuring system concerning a 1st embodiment. 本開示の第2実施形態に係る携帯端末装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the portable terminal device which concerns on 2nd Embodiment of this indication. 第2実施形態に係る携帯端末装置の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the portable terminal device which concerns on 2nd Embodiment. 第2実施形態における被検部位と当接部との当接状態の一例を示す図である。It is a figure which shows an example of the contact state of the to-be-tested part and contact part in 2nd Embodiment. 第2実施形態に係る携帯端末装置の使用態様を示す図である。It is a figure which shows the usage condition of the portable terminal device which concerns on 2nd Embodiment. 第2実施形態に係る携帯端末装置の使用態様を示す図である。It is a figure which shows the usage condition of the portable terminal device which concerns on 2nd Embodiment.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る生体情報測定装置の概略構成を示す機能ブロック図である。図1に示すように、生体情報測定装置1は、コントローラ10と、電源部11と、ジャイロセンサ12と、表示部14と、音声出力部16と、通信部17と、バイブレータ18と、記憶部20とを備えている。
(First embodiment)
FIG. 1 is a functional block diagram showing a schematic configuration of the biological information measuring apparatus according to the first embodiment. As shown in FIG. 1, the biological information measuring apparatus 1 includes a controller 10, a power supply unit 11, a gyro sensor 12, a display unit 14, an audio output unit 16, a communication unit 17, a vibrator 18, and a storage unit. 20.
 コントローラ10は、生体情報測定装置1の各機能ブロックをはじめとして、生体情報測定装置1の全体を制御及び管理するプロセッサを含む。コントローラ10は、制御手順を規定したプログラム及び被検者の生体情報を測定するプログラムを実行するCPU(Central Processing Unit)等のプロセッサを含む。このようなプログラムは、例えば記憶部20等の記憶媒体に格納される。 The controller 10 includes a processor that controls and manages the entire biological information measuring apparatus 1 including each functional block of the biological information measuring apparatus 1. The controller 10 includes a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure and a program for measuring biological information of a subject. Such a program is stored in a storage medium such as the storage unit 20, for example.
 電源部11は、バッテリーを含み、生体情報測定装置1の各部に電源を供給する。生体情報測定装置1は、動作時には、電源部11、又は外部の電源から、電力の供給を受ける。 The power supply unit 11 includes a battery and supplies power to each unit of the biological information measuring apparatus 1. The biological information measuring device 1 is supplied with electric power from the power supply unit 11 or an external power supply during operation.
 ジャイロセンサ12は、生体情報測定装置1の角速度を検出することにより、生体情報測定装置1の変位をモーションファクタとして検出する。ジャイロセンサ12は、例えば振動したアームに作用するコリオリ力による構造体の変形から角速度を検出する3軸タイプの振動ジャイロセンサである。ここで、この構造体は、例えば水晶、又は圧電セラミックス等の圧電材料を素材としてもよい。また、ジャイロセンサ12は、構造体をシリコン等の素材として、MEMS(Micro Electro Mechanical Systems)技術で形成されてもよい。また、ジャイロセンサ12は、光学式ジャイロセンサなどのような、他の方式のジャイロセンサであってもよい。コントローラ10は、ジャイロセンサ12により取得された角速度を1回時間積分することにより、生体情報測定装置1の向きを測定することができる。 The gyro sensor 12 detects the displacement of the biological information measuring device 1 as a motion factor by detecting the angular velocity of the biological information measuring device 1. The gyro sensor 12 is, for example, a three-axis vibration gyro sensor that detects an angular velocity from deformation of a structure due to Coriolis force acting on a vibrating arm. Here, this structure may be made of a piezoelectric material such as quartz or piezoelectric ceramic. The gyro sensor 12 may be formed by MEMS (Micro Electro Mechanical Systems) technology using the structure as a material such as silicon. The gyro sensor 12 may be another type of gyro sensor such as an optical gyro sensor. The controller 10 can measure the orientation of the biological information measuring device 1 by integrating the angular velocity acquired by the gyro sensor 12 with respect to time.
 ジャイロセンサ12は、例えば角速度センサである。ただし、ジャイロセンサ12は、角速度センサに限られない。ジャイロセンサ12は、モーションファクタである生体情報測定装置1の角度変位を検出できればよい。ジャイロセンサ12が検知したモーションファクタは、コントローラ10に送信される。 The gyro sensor 12 is an angular velocity sensor, for example. However, the gyro sensor 12 is not limited to the angular velocity sensor. The gyro sensor 12 only needs to detect the angular displacement of the biological information measuring apparatus 1 that is a motion factor. The motion factor detected by the gyro sensor 12 is transmitted to the controller 10.
 コントローラ10は、ジャイロセンサ12からモーションファクタを取得する。モーションファクタは、被検者の被検部位における脈動に基づく生体情報測定装置1の変位を示す指標を含む。コントローラ10は、モーションファクタに基づいて、被検者の脈動を生成する。コントローラ10は、被検者の脈動に基づいて、生体情報を測定する。コントローラ10による生体情報の測定処理の詳細については、後述する。 The controller 10 acquires a motion factor from the gyro sensor 12. The motion factor includes an index indicating the displacement of the biological information measuring device 1 based on the pulsation at the subject site of the subject. The controller 10 generates a pulsation of the subject based on the motion factor. The controller 10 measures biological information based on the subject's pulsation. Details of the measurement processing of biological information by the controller 10 will be described later.
 表示部14は、液晶ディスプレイ(Liquid Crystal Display)、有機ELパネル(Organic Electro-Luminescence Panel)、又は無機ELパネル(Inorganic Electro-Luminescence panel)等の表示デバイスを備える。表示部14は、文字、画像、記号又は図形等を表示する。また、表示部14は、表示機能のみならず、タッチスクリーンの機能も含むタッチスクリーンディスプレイで構成してもよい。この場合、タッチスクリーンは、使用者の指又はスタイラスペン等の接触を検出する。タッチスクリーンは、複数の指、又はスタイラスペン等がタッチスクリーンに接触した位置を検出することができる。タッチスクリーンの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式(又は超音波方式)、赤外線方式、電磁誘導方式、及び荷重検出方式等の任意の方式でよい。静電容量方式では、指、又はスタイラスペン等の接触及び接近を検出することができる。 The display unit 14 includes a display device such as a liquid crystal display, an organic EL panel (Organic Electro-Luminescence Panel), or an inorganic EL panel (Inorganic Electro-Luminescence panel). The display unit 14 displays characters, images, symbols, graphics, and the like. The display unit 14 may be configured with a touch screen display including not only a display function but also a touch screen function. In this case, the touch screen detects contact of the user's finger or stylus pen. The touch screen can detect a position where a plurality of fingers, a stylus pen, or the like touches the touch screen. The touch screen detection method may be any method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, and a load detection method. In the capacitive method, contact and approach of a finger or a stylus pen can be detected.
 音声出力部16は、音を出力することで、使用者等に情報を報知する。音声出力部16は、任意のスピーカ等で構成することができる。音声出力部16は、コントローラ10から送信される音信号を音として出力する。 The voice output unit 16 notifies the user or the like by outputting sound. The audio output unit 16 can be configured with an arbitrary speaker or the like. The sound output unit 16 outputs the sound signal transmitted from the controller 10 as sound.
 通信部17は、外部装置と有線通信又は無線通信を行うことにより、各種データの送受信を行う。通信部17は、例えば生体情報測定装置1が測定した生体情報の測定結果等を、外部装置に送信することができる。また、通信部17は、健康状態を管理するために被検者の生体情報を記憶する外部装置と通信を行うこともできる。 The communication unit 17 transmits and receives various data by performing wired communication or wireless communication with an external device. The communication unit 17 can transmit, for example, a measurement result of biological information measured by the biological information measuring device 1 to an external device. Moreover, the communication part 17 can also communicate with the external device which memorize | stores a subject's biometric information, in order to manage a health condition.
 バイブレータ18は、振動などを発生することで、使用者等に情報を報知する。バイブレータ18は、生体情報測定装置1の任意の部位に振動などを発生することにより、生体情報測定装置1の使用者に対して触感を呈示する。バイブレータ18は、振動を発生するものであれば、例えば偏心モータ、圧電素子(ピエゾ素子)、又はリニアバイブレータのような任意の部材を採用することができる。 The vibrator 18 informs the user and the like by generating vibration and the like. The vibrator 18 presents a tactile sensation to the user of the biological information measuring device 1 by generating vibration or the like at an arbitrary part of the biological information measuring device 1. As long as the vibrator 18 generates vibration, an arbitrary member such as an eccentric motor, a piezoelectric element (piezo element), or a linear vibrator can be employed.
 記憶部20は、アプリケーションプログラムをはじめとする各種プログラム及びデータを記憶する。記憶部20は、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的(non-transitory)な記憶媒体を含んでよい。記憶部20は、複数の種類の記憶媒体を含んでよい。記憶部20は、メモリカード、光ディスク、又は光磁気ディスク等の可搬の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。記憶部20は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでよい。記憶部20は、各種情報及び生体情報測定装置1を動作させるためのプログラム等を記憶するとともに、ワークメモリとしても機能する。記憶部20は、例えば、ジャイロセンサ12が検知したデータ、及び生体情報の測定結果などを記憶してもよい。 The storage unit 20 stores various programs and data including application programs. The storage unit 20 may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage unit 20 may include a plurality of types of storage media. The storage unit 20 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a storage medium reader. The storage unit 20 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory). The storage unit 20 stores various information and programs for operating the biological information measuring apparatus 1 and also functions as a work memory. The storage unit 20 may store, for example, data detected by the gyro sensor 12 and measurement results of biological information.
 本開示の一実施形態に係る生体情報測定装置1は、図1に示した構成に限定されない。一実施形態に係る生体情報測定装置1は、コントローラ10及びジャイロセンサ12を含む。したがって、一実施形態に係る生体情報測定装置1において、必要に応じて、適宜、コントローラ10及びジャイロセンサ12以外の他の構成要素を省略したり、その他の構成要素を追加してもよい。 The biological information measuring apparatus 1 according to an embodiment of the present disclosure is not limited to the configuration illustrated in FIG. The biological information measuring apparatus 1 according to an embodiment includes a controller 10 and a gyro sensor 12. Therefore, in the biological information measuring apparatus 1 according to the embodiment, other components other than the controller 10 and the gyro sensor 12 may be omitted as appropriate, or other components may be added as necessary.
 生体情報測定装置1は、被検者の被検部位において生体情報を測定する。被検部位は、後述するように、例えば被検者(生体情報測定装置1の使用者)の胴体であってよい。生体情報測定装置1は、被検部位である胴体の変動に基づいて、被検者の生体情報を測定する。 The biological information measuring apparatus 1 measures biological information at a test site of a subject. As will be described later, the test site may be, for example, the body of a test subject (user of the biological information measuring device 1). The biological information measuring apparatus 1 measures the biological information of the subject based on the fluctuation of the trunk that is the subject site.
 生体情報測定装置1が測定する生体情報は、例えば、血液成分、脈波、脈拍及び脈波伝搬速度の少なくともいずれかを含む。血液成分は、例えば糖代謝の状態及び脂質代謝の状態を含む。糖代謝の状態は、例えば血糖値を含む。脂質代謝の状態は、例えば脂質値を含む。脂質値は、中性脂肪、総コレステロール、HDL(High Density Lipoprotein)コレステロール及びLDL(Low Density Lipoprotein)コレステロール等を含む。生体情報測定装置1は、例えば、被検者の脈波を生体情報として取得し、取得した脈波に基づいて、血液成分等の生体情報を測定する。 The biological information measured by the biological information measuring device 1 includes, for example, at least one of a blood component, a pulse wave, a pulse, and a pulse wave propagation velocity. The blood component includes, for example, a state of sugar metabolism and a state of lipid metabolism. The state of glucose metabolism includes, for example, blood glucose level. The state of lipid metabolism includes, for example, a lipid value. Lipid levels include neutral fat, total cholesterol, HDL (High Density Lipoprotein) cholesterol, LDL (Low Density Lipoprotein) cholesterol, and the like. The biological information measuring apparatus 1 acquires, for example, a subject's pulse wave as biological information, and measures biological information such as blood components based on the acquired pulse wave.
 図2は、一実施形態に係る生体情報測定装置1の外観を示す概略斜視図である。一実施形態に係る生体情報測定装置1は、例えば図1に示すように、比較的小型の専用端末装置として構成することができる。しかしながら、生体情報測定装置1は、専用端末装置に限定されない。例えば、生体情報測定装置1は、他の任意の電子機器に組み込まれてもよい。 FIG. 2 is a schematic perspective view showing an appearance of the biological information measuring apparatus 1 according to an embodiment. The biological information measuring device 1 according to an embodiment can be configured as a relatively small dedicated terminal device, for example, as shown in FIG. However, the biological information measuring device 1 is not limited to a dedicated terminal device. For example, the biological information measuring device 1 may be incorporated in any other electronic device.
 図2(A)は、生体情報測定装置1の正面側を示す図である。図2(B)は、生体情報測定装置1の裏面側を示す図、すなわち図2(A)に示した生体情報測定装置1を裏返した状態を示す図である。 FIG. 2A is a diagram showing the front side of the biological information measuring apparatus 1. FIG. 2B is a diagram showing the back side of the biological information measuring device 1, that is, a diagram showing a state in which the biological information measuring device 1 shown in FIG.
 図2に示すように、生体情報測定装置1は、外観形状が概略長方形状をなすハウジング30を備える。図2(A)に示すように、生体情報測定装置1は、正面側に、表示部14と、音声出力部16とを有する。表示部14は、生体情報測定装置1の測定処理に関する情報を表示する。その他、表示部14には、例えば時刻などの情報を表示させてもよい。音声出力部16は、生体情報測定装置1が生体情報の測定を開始する際及び当該測定が完了した際などに音を出力して、測定が開始又は完了した旨を使用者に報知する。また、音声出力部16は、測定が継続している旨を使用者に報知するための音を出力してもよい。その他、生体情報測定装置1は、生体情報の測定を開始するためのボタンのようなスイッチ等を有してもよい。 As shown in FIG. 2, the biological information measuring apparatus 1 includes a housing 30 whose external shape is substantially rectangular. As shown in FIG. 2A, the biological information measuring apparatus 1 includes a display unit 14 and an audio output unit 16 on the front side. The display unit 14 displays information related to the measurement process of the biological information measuring device 1. In addition, the display unit 14 may display information such as time. The audio output unit 16 outputs a sound when the biological information measuring device 1 starts measuring biological information or when the measurement is completed, and notifies the user that the measurement is started or completed. Moreover, the audio | voice output part 16 may output the sound for alert | reporting to a user that the measurement is continuing. In addition, the biological information measuring apparatus 1 may include a switch such as a button for starting measurement of biological information.
 図2(B)に示すように、生体情報測定装置1は、背面側に、当接部40と、支持部50とを有する。図2(B)に示す例においては、当接部40及び支持部50は、ハウジング30の背面とほぼ同一の平面を形成している。しかしながら、当接部40及び支持部50の少なくともいずれかは、ハウジング30の背面側から突出する部材としてもよい。図2(B)に示すように、当接部40及び支持部50は、ハウジング30の背面において、生体情報測定装置1に対して固定されている。当接部40及び支持部50の少なくともいずれかは、例えば生体情報測定装置1に対して着脱不可能に備えられていてもよい。当接部40及び支持部50の少なくともいずれかは、例えば生体情報測定装置1に対して着脱可能に構成されていてもよい。 As shown in FIG. 2 (B), the biological information measuring apparatus 1 has a contact part 40 and a support part 50 on the back side. In the example shown in FIG. 2B, the contact portion 40 and the support portion 50 form a plane that is substantially the same as the back surface of the housing 30. However, at least one of the contact portion 40 and the support portion 50 may be a member protruding from the back side of the housing 30. As shown in FIG. 2B, the contact portion 40 and the support portion 50 are fixed to the biological information measuring device 1 on the back surface of the housing 30. At least one of the contact part 40 and the support part 50 may be provided so as not to be detachable from the biological information measuring device 1, for example. At least one of the contact part 40 and the support part 50 may be configured to be detachable from the biological information measuring apparatus 1, for example.
 当接部40及び支持部50は、ハウジング30の背面側において、当該背面の短辺方向に沿って直線状に延在するように固定されている。ハウジング30の背面の短辺方向における、当接部40及び支持部50の長さは、例えばハウジング30の背面の短辺の長さよりも短くてよい。また、ハウジング30の背面の短辺方向における、当接部40と支持部50との長さの関係は、適宜定めることができる。例えば、ハウジング30背面の短辺方向における当接部40の長さは、ハウジング30背面の短辺方向における支持部50の長さよりも短くてもよく、又は長くてもよい。また、ハウジング30背面の短辺方向における当接部40の長さと、ハウジング30背面の短辺方向における支持部50の長さとは、同じでもよい。 The contact portion 40 and the support portion 50 are fixed on the back side of the housing 30 so as to extend linearly along the short side direction of the back surface. The length of the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 may be shorter than the length of the short side of the back surface of the housing 30, for example. Further, the length relationship between the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 can be determined as appropriate. For example, the length of the contact portion 40 in the short side direction on the back surface of the housing 30 may be shorter or longer than the length of the support portion 50 in the short side direction on the back surface of the housing 30. Further, the length of the contact portion 40 in the short side direction on the back surface of the housing 30 and the length of the support portion 50 in the short side direction on the back surface of the housing 30 may be the same.
 当接部40は、生体情報測定装置1により生体情報が測定される際に、被検部位に当接する。すなわち、当接部40は、生体情報の測定時に、例えば被検者の胴体又はその周辺に当接する。また、図2(B)に示すように、当接部40の裏側には、ジャイロセンサ12が取り付けられている。図2(B)に示す例においては、ジャイロセンサ12はハウジング30の内部に設置されているため、ジャイロセンサ12を破線で示してある。当接部40とジャイロセンサ12とは、別の部材として構成してもよいし、1つの同じ部材として構成してもよい。 The abutting portion 40 abuts on the test site when the biological information is measured by the biological information measuring device 1. That is, the contact part 40 contacts the torso of the subject or the periphery thereof, for example, when measuring biological information. In addition, as shown in FIG. 2B, the gyro sensor 12 is attached to the back side of the contact portion 40. In the example shown in FIG. 2B, since the gyro sensor 12 is installed inside the housing 30, the gyro sensor 12 is indicated by a broken line. The contact part 40 and the gyro sensor 12 may be configured as separate members, or may be configured as one and the same member.
 支持部50は、生体情報測定装置1により生体情報が測定される際に、当接部40とは異なる位置で被検者に当接する。支持部50は、例えば当接部40とは異なる位置で被検者の胴体に当接する。支持部50は、被検者に当接することにより、当接部40の被検部位に対する当接状態を支持する。なお、生体情報測定装置1は、支持部50を複数備えていてもよい。複数の支持部50は、例えば、直線状に配置される。当接部40及び支持部50(並びにハウジング30)は、当接部40に当接する被検部位の変動が、適切にジャイロセンサ12に伝達するように構成する。当接部40及び支持部50による被検部位への当接態様の詳細については、後述する。 The support unit 50 contacts the subject at a position different from the contact unit 40 when the biological information is measured by the biological information measuring device 1. The support part 50 contacts the subject's torso at a position different from the contact part 40, for example. The support part 50 supports the contact state of the contact part 40 with respect to the test site by contacting the subject. The biological information measuring apparatus 1 may include a plurality of support parts 50. The plurality of support parts 50 are arranged in a straight line, for example. The contact portion 40 and the support portion 50 (and the housing 30) are configured so that the variation of the test portion that contacts the contact portion 40 is appropriately transmitted to the gyro sensor 12. Details of the contact mode of the contact portion 40 and the support portion 50 to the test site will be described later.
 本開示の一実施形態に係る生体情報測定装置1は、図2に示した構造に限定されない。上述のように、一実施形態に係る生体情報測定装置1において、必要に応じて、適宜、コントローラ10及びジャイロセンサ12以外の他の構成要素を省略したり、その他の構成要素を追加してもよい。 The biological information measuring apparatus 1 according to an embodiment of the present disclosure is not limited to the structure shown in FIG. As described above, in the biological information measuring apparatus 1 according to an embodiment, other components other than the controller 10 and the gyro sensor 12 may be omitted or other components may be added as necessary. Good.
 例えば、図3に示すように、生体情報測定装置1を使用者の胴体に固定するために、ベルト60又はウエストバンド62を備えてもよい。図3においては、ベルト60又はウエストバンド62の一部のみを示し、その他の部分は省略してある。実際には、ベルト60又はウエストバンド62は、使用者の胴体に巻き付けて使用できる程度の長さにする。図3(A)は、図2(A)に示した生体情報測定装置1に、ベルト60又はウエストバンド62を装着した状態を示している。また、図3(B)は、図2(B)に示した生体情報測定装置1に、ベルト60又はウエストバンド62を装着した状態を示している。 For example, as shown in FIG. 3, a belt 60 or a waistband 62 may be provided to fix the biological information measuring apparatus 1 to the user's torso. In FIG. 3, only a part of the belt 60 or the waistband 62 is shown, and the other parts are omitted. Actually, the belt 60 or the waistband 62 is made long enough to be wound around the user's torso. FIG. 3A shows a state in which a belt 60 or a waistband 62 is attached to the biological information measuring apparatus 1 shown in FIG. FIG. 3B shows a state where the belt 60 or the waistband 62 is attached to the biological information measuring device 1 shown in FIG.
 図2に示した生体情報測定装置1を用いて生体情報を測定する場合、被検者自らが手などを用いて、生体情報測定装置1を被検者の胴体に固定する必要がある。これに対し、図3に示す生体情報測定装置1を用いて生体情報を測定する場合は、ベルト60又はウエストバンド62を用いて、生体情報測定装置1を被検者の胴体に固定することができる。したがって、この場合、被検者自らが手などを用いて、生体情報測定装置1を被検者の胴体に固定する必要はない。ベルト60又はウエストバンド62を用いて、生体情報測定装置1を被検者の胴体に固定する態様については、さらに後述する。 When measuring biological information using the biological information measuring apparatus 1 shown in FIG. 2, it is necessary for the subject himself / herself to fix the biological information measuring apparatus 1 to the body of the subject using his / her hand. On the other hand, when measuring biological information using the biological information measuring device 1 shown in FIG. 3, the biological information measuring device 1 may be fixed to the body of the subject using the belt 60 or the waistband 62. it can. Therefore, in this case, it is not necessary for the subject himself / herself to fix the biological information measuring device 1 to the torso of the subject using his / her hand. A mode in which the biological information measuring apparatus 1 is fixed to the body of the subject using the belt 60 or the waistband 62 will be described later.
 次に、生体情報測定装置1による生体情報の測定処理について説明する。生体情報測定装置1は、生体情報測定装置1に固定された当接部40が被検部位に当接した状態でモーションファクタを取得し、取得したモーションファクタに基づいて、生体情報を測定する。生体情報測定装置1は、生体情報測定装置1に固定された支持部50が被検部位とは異なる位置で被検者に当接した状態で、モーションファクタを取得してよい。 Next, a measurement process of biological information by the biological information measuring apparatus 1 will be described. The biological information measuring device 1 acquires a motion factor in a state where the contact portion 40 fixed to the biological information measuring device 1 is in contact with the test site, and measures the biological information based on the acquired motion factor. The biological information measuring apparatus 1 may acquire the motion factor in a state where the support unit 50 fixed to the biological information measuring apparatus 1 is in contact with the subject at a position different from the test site.
 生体情報の測定にあたり、生体情報測定装置1は、例えば被検者による入力操作に基づき、生体情報の測定処理が可能な状態になる。生体情報の測定処理が可能な状態とは、例えば生体情報を測定するためのアプリケーションが起動された状態等をいう。被検者は、生体情報の測定処理を可能な状態にして、生体情報測定装置1によるモーションファクタの取得を開始させる。 In measuring biological information, the biological information measuring apparatus 1 is in a state where measurement processing of biological information can be performed based on, for example, an input operation by a subject. The state in which measurement processing of biological information is possible refers to a state in which an application for measuring biological information is activated, for example. The subject makes measurement processing of biological information possible and starts acquisition of a motion factor by the biological information measuring device 1.
 次に、生体情報測定装置1が使用者の生体情報を測定する原理について、さらに説明する。生体情報測定装置1は、使用者の胴体の変動に基づいて、生体情報を測定する。図4は、人体内の構造を概略的に示す図である。図4は、人体の一部の内部構造を、概略的に示している。また、図4は、特に、人体内の心臓及び大動脈の一部を概略的に示している。 Next, the principle by which the biological information measuring device 1 measures the user's biological information will be further described. The biological information measuring device 1 measures biological information based on the fluctuation of the user's torso. FIG. 4 is a diagram schematically showing the structure in the human body. FIG. 4 schematically shows the internal structure of a part of the human body. FIG. 4 also schematically shows in particular a part of the heart and aorta in the human body.
 人体内の血液は、心臓から送出された後、血管を経て人体の各部に供給される。図4に示すように、人体内において、心臓から送出される血液の一部は、胸部大動脈を通過してから、腹部大動脈を通過する。心臓から胸部大動脈又は腹部大動脈に血液が送出されると、これらの血管が収縮などの変動をきたす。このような変動は、使用者の体内を伝わり、使用者の胴体をも変動させる。したがって、生体情報測定装置1が使用者の胸部又は腹部を含む胴体に押し当てられた状態で、ジャイロセンサ12は、使用者の胴体の変動を検出することができる。このようにして、ジャイロセンサ12は、使用者の胴体の変動に起因するモーションファクタを検知する。 The blood in the human body is delivered from the heart and then supplied to each part of the human body via blood vessels. As shown in FIG. 4, in the human body, a part of blood delivered from the heart passes through the thoracic aorta and then passes through the abdominal aorta. When blood is delivered from the heart to the thoracic or abdominal aorta, these blood vessels undergo fluctuations such as contraction. Such fluctuations propagate through the user's body and also fluctuate the user's torso. Therefore, the gyro sensor 12 can detect the fluctuation of the user's torso while the biological information measuring device 1 is pressed against the torso including the chest or abdomen of the user. In this way, the gyro sensor 12 detects a motion factor resulting from a change in the user's torso.
 図5は、生体情報測定装置1によるモーションファクタの取得態様の一例を示す図である。 FIG. 5 is a diagram illustrating an example of a motion factor acquisition mode by the biological information measuring apparatus 1.
 図5(A)及び図5(B)は、例えば人体のような生体において、大動脈を含む部位の断面を示してある。また、図5(A)及び図5(B)は、図2に示した生体情報測定装置1のハウジング30の背面側を、生体の被検部位に当接させている状態を示している。したがって、図5(A)及び図5(B)に示すように、当接部40及び支持部50は、それぞれ生体表面(皮膚)の被検部位に当接している。ここで、生体表面の被検部位は、一実施形態においては、使用者の胴体とする。また、図5(A)及び図5(B)に示す大動脈とは、図4に示した胸部大動脈としてもよいし、腹部大動脈としてもよい。 5A and 5B show a cross section of a part including the aorta in a living body such as a human body. 5A and 5B show a state in which the back side of the housing 30 of the biological information measuring device 1 shown in FIG. 2 is in contact with the test site of the living body. Therefore, as shown in FIGS. 5A and 5B, the contact part 40 and the support part 50 are in contact with the test site on the surface of the living body (skin). Here, in one embodiment, the test site on the surface of the living body is the torso of the user. Further, the aorta shown in FIGS. 5A and 5B may be the thoracic aorta shown in FIG. 4 or the abdominal aorta.
 被検者は、図5(A)及び図5(B)に示すように、生体情報測定装置1を胴体に押し当てて、生体情報測定装置1にモーションファクタを取得させる。図5(A)及び図5(B)に示すように、生体情報測定装置1と使用者の胴体との接触状態において、当接部40が被検部位に当接する。また、図5(A)及び図5(B)に示すように、生体情報測定装置1によるモーションファクタの取得状態において、支持部50は、当接部40とは異なる位置で被検者の胴体に当接する。 As shown in FIGS. 5 (A) and 5 (B), the subject presses the biological information measuring device 1 against the trunk and causes the biological information measuring device 1 to acquire a motion factor. As shown in FIGS. 5 (A) and 5 (B), in the contact state between the biological information measuring device 1 and the user's torso, the contact portion 40 contacts the test site. 5A and 5B, in the motion factor acquisition state by the biological information measuring device 1, the support unit 50 is located at a position different from the contact unit 40, and the torso of the subject. Abut.
 図5(A)及び図5(B)に示すように、生体情報測定装置1を矢印Pの位置で矢印Pの方向に押し当てて胴体に当接させた場合、生体情報測定装置1は、被検者の脈動に基づく血管の拡張及び収縮の動きに応じて変位する。生体情報測定装置1は、胴体に当接する支持部50を支点として、図5(A)及び図5(B)において矢印Qで示すように、側面視において、矢印Pの方向に押し当てていない上端側が回転するように変位する。このような変位は、通常、部分的な回転運動の往復が反復する振動のような変位となる。生体情報測定装置1が備えるジャイロセンサ12は、生体情報測定装置1の変位を検出することにより、被検者の脈波を取得する。脈波とは、血液の流入によって生じる血管の容積時間変化を体表面から波形としてとらえたものである。 As shown in FIGS. 5A and 5B, when the biological information measuring device 1 is pressed in the direction of the arrow P at the position of the arrow P and brought into contact with the trunk, the biological information measuring device 1 It is displaced according to the movement of the expansion and contraction of the blood vessel based on the pulsation of the subject. The biological information measuring device 1 is not pressed in the direction of the arrow P in the side view as shown by the arrow Q in FIGS. 5A and 5B with the support portion 50 that contacts the body as a fulcrum. Displace so that the upper end side rotates. Such a displacement is usually a vibration-like displacement in which the reciprocation of a partial rotational motion is repeated. The gyro sensor 12 included in the biological information measuring device 1 acquires the pulse wave of the subject by detecting the displacement of the biological information measuring device 1. The pulse wave is obtained by capturing a change in the volume of the blood vessel caused by the inflow of blood as a waveform from the body surface.
 このように、一実施形態に係る生体情報測定装置1において、ジャイロセンサ12は、使用者の胴体の変動に起因するモーションファクタを検知する。このジャイロセンサ12は、生体情報測定装置1が使用者の胴体に押し当てられている状態で、使用者の胴体の変動に起因するモーションファクタを検知する。そして、コントローラ10は、このようにしてジャイロセンサ12によって検知されたモーションファクタに基づいて、使用者の生体情報の測定処理を行う。 As described above, in the biological information measuring apparatus 1 according to the embodiment, the gyro sensor 12 detects a motion factor due to the fluctuation of the user's torso. The gyro sensor 12 detects a motion factor caused by the fluctuation of the user's torso in a state where the biological information measuring apparatus 1 is pressed against the user's torso. The controller 10 performs measurement processing of the user's biological information based on the motion factor detected by the gyro sensor 12 in this way.
 ここで、使用者の胴体は、使用者の腹部又は胸部を含んでもよい。また、使用者の胴体の変動は、図5(A)及び図5(B)においては、使用者の血管の動きにより生じる変動の例を示したが、これに限定されない。使用者の胴体の変動は、使用者の血管の動きにより生じる変動のみならず、使用者の呼吸により生じる変動、及び使用者の体動により生じる変動の少なくともいずれかを含んでよい。また、使用者の血管は、使用者の大動脈を含んでよい。また、使用者の大動脈は、使用者の腹部大動脈及び胸部大動脈の少なくともいずれかを含んでよい。大動脈のような大型の血管においては、絶えず多量の血液が流れている。このため、生体情報測定装置1においては、使用者の大動脈を計測の対象とすることにより、高い精度で安定して、生体情報の測定を行うことができる。 Here, the user's torso may include the user's abdomen or chest. Moreover, although the fluctuation | variation of a user's trunk | drum showed the example of the fluctuation | variation produced by a user's blood vessel movement in FIG. 5 (A) and FIG. The fluctuation of the user's torso may include not only the fluctuation caused by the movement of the user's blood vessel but also at least one of the fluctuation caused by the user's breathing and the fluctuation caused by the user's body movement. The user's blood vessel may also include the user's aorta. The user's aorta may include at least one of the user's abdominal aorta and thoracic aorta. In large blood vessels such as the aorta, a large amount of blood constantly flows. Therefore, the biological information measuring apparatus 1 can measure biological information stably with high accuracy by using the user's aorta as a measurement target.
 また、図5(B)に示すように、ジャイロセンサ12は、弾性部材19を介して使用者の胴体に押し当てられることで、使用者の胴体の変動に追従することが容易となる。そのため、生体情報測定装置1は、高い精度で安定して、生体情報の測定を行うことができる。ここで、弾性部材19は、弾性力を生じる任意のものであればよく、例えば、バネ、ゴム、可撓性樹脂、油圧を利用したもの、空気圧を利用したもの、水圧を利用したものなどである。図5(B)に示す支持部50は、ジャイロセンサ12が設置された方のハウジングと、ジャイロセンサ12が設置されていない方のハウジングとを接続している。図5(B)に示すように、ジャイロセンサ12が設置された方のハウジングは、ジャイロセンサ12が設置されていない方のハウジングに対して、支持部50を軸として可動な機構を有している。 Also, as shown in FIG. 5B, the gyro sensor 12 is pressed against the user's torso via the elastic member 19, so that it becomes easy to follow the fluctuation of the user's torso. Therefore, the biological information measuring device 1 can measure biological information stably with high accuracy. Here, the elastic member 19 may be any member that generates an elastic force, such as a spring, rubber, flexible resin, one using hydraulic pressure, one using air pressure, one using water pressure, or the like. is there. The support portion 50 shown in FIG. 5B connects the housing on which the gyro sensor 12 is installed and the housing on which the gyro sensor 12 is not installed. As shown in FIG. 5B, the housing on which the gyro sensor 12 is installed has a mechanism that is movable around the support portion 50 relative to the housing on which the gyro sensor 12 is not installed. Yes.
 生体情報測定装置1は、ジャイロセンサ12を備えることにより、使用者は着衣のまま、衣服の上から生体情報を測定することができる。すなわち、生体情報測定装置1によれば、使用者は、生体情報を測定する際に脱衣する必要はなくなる。また、生体情報測定装置1によれば、使用者は、測定装置を肌に直に触れさせる必要もない。このため、生体情報測定装置1によれば、生体情報の測定を手軽に行うことができる。 The biological information measuring apparatus 1 includes the gyro sensor 12 so that the user can measure biological information from above the clothes while wearing the clothes. That is, according to the biological information measuring device 1, the user does not need to undress when measuring biological information. Moreover, according to the biological information measuring device 1, the user does not need to touch the measuring device directly to the skin. For this reason, according to the biological information measuring device 1, measurement of biological information can be performed easily.
 従来の加速度センサは、ノイズが大きいため、脈波センサとしての利用に適しているとは言い難い。特に、脈波及び呼吸のような、1Hz前後の低周波数の測定を目的とする場合、小型の端末のような装置に内蔵するような小型の加速度センサは一般的ではない。通常、このような目的には、大型の加速度センサが必要になる。 The conventional acceleration sensor is not suitable for use as a pulse wave sensor because of its large noise. In particular, a small acceleration sensor built into a device such as a small terminal is not common when measuring low frequencies around 1 Hz, such as pulse waves and respiration. Usually, a large acceleration sensor is required for such purposes.
 これに対し、生体情報測定装置1においては、生体情報の測定にジャイロセンサ12を用いる。ジャイロセンサは、一般的に測定の際のノイズが少ない。ジャイロセンサは、常時振動しているため(振動型ジャイロセンサの場合)、構造上、ノイズを低減させることができる。また、一実施形態に係る生体情報測定装置1においては、小型のハウジング30に内蔵可能なジャイロセンサ12を採用することができる。 On the other hand, in the biological information measuring apparatus 1, the gyro sensor 12 is used for measuring biological information. A gyro sensor generally has little noise during measurement. Since the gyro sensor constantly vibrates (in the case of the vibration type gyro sensor), noise can be reduced due to the structure. Moreover, in the biological information measuring device 1 according to the embodiment, the gyro sensor 12 that can be incorporated in the small housing 30 can be employed.
 次に、一実施形態に係る生体情報測定装置1の使用態様を説明する。図6は、生体情報測定装置1を用いて生体情報を測定する例を示す図である。図6においては、生体情報測定装置1に内蔵されたジャイロセンサ12を、破線により示してある。 Next, a usage mode of the biological information measuring apparatus 1 according to an embodiment will be described. FIG. 6 is a diagram illustrating an example of measuring biological information using the biological information measuring apparatus 1. In FIG. 6, the gyro sensor 12 built in the biological information measuring apparatus 1 is indicated by a broken line.
 図6(A)は、図2に示したような、ベルト60又はウエストバンド62を装着していない生体情報測定装置1を用いた例を示してある。図6(A)に示すように、生体情報測定装置1がベルト60又はウエストバンド62を有さない場合、使用者自らが手などを用いて、生体情報測定装置1の当接部40を被検部位に押し当てて、生体情報を測定する。 FIG. 6 (A) shows an example using the biological information measuring apparatus 1 without the belt 60 or the waistband 62 as shown in FIG. As shown in FIG. 6A, when the biological information measuring apparatus 1 does not have the belt 60 or the waistband 62, the user himself / herself uses the hand or the like to cover the contact portion 40 of the biological information measuring apparatus 1. Biometric information is measured by pressing against the test site.
 手などを用いて生体情報測定装置1を押し当てる際、ジャイロセンサ12が血管の動きを良好に検出できるようにするため、図6(A)に示すように、ジャイロセンサ12の位置は押し当てないようにしてもよい。この場合、ジャイロセンサ12のない位置、すなわち、図2(A)に示した生体情報測定装置1の下端の近傍を押し当てるようにしてもよい。図2(A)に示した生体情報測定装置1の下端の近傍の裏側には、図2(B)に示した支持部50が存在する。 When the biological information measuring apparatus 1 is pressed using a hand or the like, the position of the gyro sensor 12 is pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily as shown in FIG. It may not be possible. In this case, a position where the gyro sensor 12 is not provided, that is, the vicinity of the lower end of the biological information measuring apparatus 1 shown in FIG. On the back side in the vicinity of the lower end of the biological information measuring apparatus 1 shown in FIG. 2 (A), there is a support portion 50 shown in FIG. 2 (B).
 手などを用いて生体情報測定装置1を押し当てる場合、使用者は、生体情報測定装置1の当接部40が当接する被検部位を自在に変更することができる。例えば、生体情報測定装置1をもう少し上半身側に移動させて、胸部大動脈の動きを検出し易くしてもよい。また、例えば、生体情報測定装置1をもう少し下半身側に移動させて、腹部大動脈の動きを検出し易くしてもよい。このように、生体情報測定装置1の使用者は、生体情報の測定が良好に行える被検部位の位置を探して、高い精度で生体情報の測定を行うことができる。 When the biological information measuring device 1 is pressed using a hand or the like, the user can freely change the test site with which the contact portion 40 of the biological information measuring device 1 contacts. For example, the biological information measuring device 1 may be moved to the upper body side to make it easier to detect the movement of the thoracic aorta. Further, for example, the biological information measuring device 1 may be moved to the lower body side to make it easier to detect the movement of the abdominal aorta. Thus, the user of the biological information measuring device 1 can search for the position of the test site where the biological information can be measured satisfactorily and can measure the biological information with high accuracy.
 図6(B)は、図3に示したような、ベルト60又はウエストバンド62を装着している生体情報測定装置1を用いた例を示してある。図6(B)に示すように、生体情報測定装置1がベルト60又はウエストバンド62を有する場合、生体情報を測定する際に、使用者自らが生体情報測定装置1の当接部40を被検部位に押し当てる必要はなくなる。また、この場合、使用者は、ベルト60又はウエストバンド62が生体情報測定装置1を押し当てる位置を調整することで、生体情報測定装置1の当接部40が当接する被検部位を、ある程度変更することができる。したがって、生体情報測定装置1の使用者は、生体情報の測定が良好に行える被検部位の位置を探して、高い精度で生体情報の測定を行うことができる。 FIG. 6B shows an example using the biological information measuring apparatus 1 on which the belt 60 or the waistband 62 as shown in FIG. 3 is attached. As shown in FIG. 6B, when the biological information measuring device 1 has the belt 60 or the waistband 62, the user himself / herself covers the contact portion 40 of the biological information measuring device 1 when measuring the biological information. There is no need to press against the test site. Further, in this case, the user adjusts the position where the belt 60 or the waistband 62 presses against the biological information measuring device 1, so that the test site where the contact portion 40 of the biological information measuring device 1 comes into contact is adjusted to some extent. Can be changed. Therefore, the user of the biological information measuring device 1 can search for the position of the test site where the measurement of the biological information can be satisfactorily performed and measure the biological information with high accuracy.
 このように、一実施形態において、生体情報測定装置1の一部が使用者の胴体に押し当てられ、且つ、生体情報測定装置1の一部以外の少なくとも一部が使用者の衣服のベルト60又はウエストバンド62に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検出されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of the biological information measuring device 1 is pressed against the user's torso, and at least a part other than a part of the biological information measuring device 1 is a belt 60 of the user's clothes. Alternatively, it may be pressed against the waistband 62. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 図6(C)は、図6(A)に示した生体情報測定装置1の向きを上下反対にして用いた例を示してある。図6(C)に示す例においては、図6(A)及び図6(B)に示した例に比べて、腹部大動脈の動きを検出し易くなる。この場合、使用者は、生体情報を測定する際に、手などを用いるか、又は、ベルト60又はウエストバンド62を用いて、生体情報測定装置1の当接部40を被検部位に押し当てる。 FIG. 6C shows an example in which the biological information measuring apparatus 1 shown in FIG. In the example shown in FIG. 6C, it becomes easier to detect the movement of the abdominal aorta than in the examples shown in FIGS. 6A and 6B. In this case, when measuring the biological information, the user presses the contact portion 40 of the biological information measuring device 1 against the test site using a hand or the like, or using the belt 60 or the waistband 62. .
 このように、一実施形態において、生体情報測定装置1の一部が使用者の胴体の下腹部側に押し当てられ、且つ、生体情報測定装置1の一部以外の少なくとも一部が下腹部側よりも使用者の胴体の頭部側に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検知されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of the biological information measuring device 1 is pressed against the lower abdomen side of the user's torso, and at least a part other than a part of the biological information measuring device 1 is on the lower abdomen side. Rather, it may be pressed against the head side of the user's torso. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 図7は、図6と同じく、体情報測定装置1を用いて生体情報を測定する他の例を示す図である。図7においても、生体情報測定装置1に内蔵されたジャイロセンサ12を、破線により示してある。 FIG. 7 is a diagram showing another example of measuring biological information using the body information measuring apparatus 1 as in FIG. Also in FIG. 7, the gyro sensor 12 built in the biological information measuring apparatus 1 is indicated by a broken line.
 図7(A)に示すように、体情報測定装置1を横方向にして生体情報を測定してもよい。図7(A)に示す状態において、手などを用いて生体情報測定装置1を押し当てる際、ジャイロセンサ12が血管の動きを良好に検出できるようにするため、ジャイロセンサ12の位置は押し当てないようにしてもよい。この場合、ジャイロセンサ12のない位置、すなわち、支持部50の存在する側の生体情報測定装置1の端部近傍を、手などを用いて押し当てるようにしてもよい。この場合、ジャイロセンサ12は、胴体の中心線Mに近くなるため、胸部大動脈又は腹部大動脈の動きを良好に検出することができる。 As shown in FIG. 7A, the biological information may be measured with the body information measuring device 1 in the horizontal direction. In the state shown in FIG. 7A, when the biological information measuring apparatus 1 is pressed using a hand or the like, the position of the gyro sensor 12 is pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily. It may not be possible. In this case, the position where the gyro sensor 12 is not present, that is, the vicinity of the end of the biological information measuring device 1 on the side where the support unit 50 exists may be pressed using a hand or the like. In this case, since the gyro sensor 12 is close to the center line M of the torso, the movement of the thoracic aorta or the abdominal aorta can be detected well.
 また、図7(B)に示すように、体情報測定装置1の向きを図7(A)に示した場合とは逆にしてもよい。この場合、ジャイロセンサ12は、胴体の側面すなわち脇腹の近傍に当接する。また、この場合、ジャイロセンサ12のない位置、すなわち、支持部50の存在する側の生体情報測定装置1の端部近傍を、手などを用いて押し当てるようにしてもよい。 Further, as shown in FIG. 7B, the orientation of the body information measuring device 1 may be reversed from the case shown in FIG. 7A. In this case, the gyro sensor 12 contacts the side surface of the trunk, that is, the vicinity of the flank. In this case, the position where the gyro sensor 12 is not provided, that is, the vicinity of the end of the biological information measuring device 1 on the side where the support unit 50 exists may be pressed using a hand or the like.
 このように、一実施形態において、生体情報測定装置1の一部が使用者の胴体の側面側に押し当てられ、且つ、生体情報測定装置1の一部以外の少なくとも一部が使用者の胴体の側面側よりも胴体の中心M側に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検知されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of living body information measuring device 1 is pressed against the side of a user's torso, and at least a part other than a part of living body information measuring device 1 is a user's torso. It may be pressed against the center M side of the trunk rather than the side surface of the body. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 生体情報測定装置1は、当接部40が被検部位に当接された状態において、脈波の測定処理を行う。図8は、生体情報測定装置1による脈波の測定処理について説明するための模式図である。図9は、生体情報測定装置1による脈波の測定処理の手順を示すフロー図である。図8において、横軸は時間を示し、縦軸は、ジャイロセンサ12である角速度センサの脈波に基づく出力(rad/秒)を模式的に示すものである。図8では、角速度センサの出力は、各脈波のピークのみを示している。 The biological information measuring apparatus 1 performs a pulse wave measurement process in a state in which the contact portion 40 is in contact with the test site. FIG. 8 is a schematic diagram for explaining a pulse wave measurement process by the biological information measuring apparatus 1. FIG. 9 is a flowchart showing the procedure of pulse wave measurement processing by the biological information measuring apparatus 1. In FIG. 8, the horizontal axis represents time, and the vertical axis schematically represents the output (rad / second) based on the pulse wave of the angular velocity sensor that is the gyro sensor 12. In FIG. 8, the output of the angular velocity sensor shows only the peak of each pulse wave.
 被検者は、時刻tにおいて、生体情報測定装置1に対して脈波測定処理を開始するための所定の入力操作を行ったとする。すなわち、生体情報測定装置1は、時刻tにおいて生体情報の測定処理が可能な状態となり、脈波の測定処理を開始したとする。被検者は、脈波測定処理を開始するための所定の入力操作を行った後、図6に示したように、当接部40を被検部位に当接させる。 A subject at time t 0, and performs a predetermined input operation for starting the pulse wave measurement processing on the biometric information measuring apparatus 1. In other words, it is assumed that the biological information measuring apparatus 1 is ready to perform the biological information measurement process at time t 0 and starts the pulse wave measurement process. After performing a predetermined input operation for starting the pulse wave measurement process, the subject brings the contact portion 40 into contact with the test site as shown in FIG.
 生体情報測定装置1では、コントローラ10が、脈波測定処理を開始すると、被検者の血管の脈動に応じたジャイロセンサ12の出力を検出する。測定開始直後の所定期間(図8における時刻tから時刻tまで)は、被検者が当接部40を被検部位に接触させる位置を調整させること等により、ジャイロセンサ12の出力が安定しない。この期間は脈波を正確に取得できない。そのため、生体情報測定装置1は、この期間に測定された脈波を、例えば生体情報である血液成分の測定に使用しなくてもよい。生体情報測定装置1は、例えば、この期間に測定された脈波を記憶部20に記憶しなくてもよい。 In the biological information measuring apparatus 1, when the controller 10 starts the pulse wave measurement process, the controller 10 detects the output of the gyro sensor 12 according to the blood vessel pulsation of the subject. During a predetermined period immediately after the start of measurement (from time t 0 to time t 1 in FIG. 8), the output of the gyro sensor 12 is adjusted, for example, by adjusting the position where the subject contacts the contact portion 40 with the site to be examined. Not stable. During this period, the pulse wave cannot be acquired accurately. Therefore, the biological information measuring apparatus 1 does not have to use the pulse wave measured during this period, for example, for measuring blood components that are biological information. For example, the biological information measuring apparatus 1 may not store the pulse wave measured during this period in the storage unit 20.
 コントローラ10は、脈波測定処理の開始後、所定回数連続して安定した脈波を検出したか否かを判定する(図9のステップS101)。所定回数は、図8に示す例では4回であるが、これに限られない。また、安定した脈波は、例えば、各脈波のピーク出力のばらつき及び/又は各脈波のピーク同士の間隔のばらつきが、所定の誤差範囲内となる脈波をいう。ピーク同士の間隔における所定の誤差範囲は、例えば±150msecであるが、これに限られない。図8に示す例では、コントローラ10が、時刻tから時刻tまで、各脈波のピーク同士の間隔のばらつきが4回連続で±150msec以内となる脈波を検出した場合の例を示している。 After starting the pulse wave measurement process, the controller 10 determines whether or not a stable pulse wave has been detected for a predetermined number of times (step S101 in FIG. 9). The predetermined number of times is four in the example shown in FIG. 8, but is not limited to this. A stable pulse wave is a pulse wave in which, for example, variations in peak output of each pulse wave and / or variations in intervals between peaks of each pulse wave are within a predetermined error range. The predetermined error range in the interval between peaks is, for example, ± 150 msec, but is not limited thereto. In the example shown in FIG. 8, an example is shown in which the controller 10 detects a pulse wave in which the variation in the interval between the peaks of each pulse wave is within four consecutive times within ± 150 msec from time t 1 to time t 2. ing.
 コントローラ10は、脈波測定処理の開始後、所定回数連続して安定した脈波を検出したと判定した場合(図9のステップS101のYes)、脈波の取得を開始する(ステップS102)。すなわち、コントローラ10は、血液成分を測定するために使用する脈波を取得する。脈波取得開始時刻は、例えば図8では時刻tである。コントローラ10は、このようにして取得した脈波を記憶部20に記憶してもよい。生体情報測定装置1は、このように所定回数連続して安定した脈波を検出したと判定した場合に脈波の取得を開始するため、実際には被検者が生体情報測定装置1を接触させていない場合等における、誤検出を防止しやすくなる。 If the controller 10 determines that a stable pulse wave has been detected for a predetermined number of times after the start of the pulse wave measurement process (Yes in step S101 in FIG. 9), the controller 10 starts acquiring the pulse wave (step S102). That is, the controller 10 acquires a pulse wave used for measuring a blood component. Pulse wave acquisition start time is the time t 3 in FIG. 8, for example. The controller 10 may store the pulse wave acquired in this way in the storage unit 20. Since the biological information measuring apparatus 1 starts acquiring pulse waves when it is determined that a stable pulse wave has been detected for a predetermined number of times in this manner, the subject actually touches the biological information measuring apparatus 1. This makes it easier to prevent erroneous detection in the case of not doing so.
 コントローラ10は、脈波の取得を開始した後、脈波取得の終了条件が満たされると、脈波の取得を終了する。終了条件は、脈波の取得を開始した後、例えば所定時間が経過した場合であってもよい。終了条件は、例えば、所定の脈拍数分の脈波を取得した場合であってもよい。なお終了条件は、これに限られず他の条件が適宜設定されてもよい。図8に示す例では、コントローラ10は、時刻t3から所定時間(例えば8秒又は15秒)経過後の時刻tにおいて脈波の取得を終了する。これにより、図9に示すフローは終了する。 After starting the acquisition of the pulse wave, the controller 10 ends the acquisition of the pulse wave when the pulse wave acquisition end condition is satisfied. The end condition may be, for example, a case where a predetermined time has elapsed after starting the acquisition of the pulse wave. The end condition may be, for example, a case where pulse waves for a predetermined pulse rate are acquired. The termination condition is not limited to this, and other conditions may be set as appropriate. In the example shown in FIG. 8, the controller 10, from the time t 3 a predetermined time (e.g. 8 seconds or 15 seconds) to end the acquisition of the pulse wave at the time t 4 after the passage. As a result, the flow shown in FIG. 9 ends.
 なお、コントローラ10は、脈波測定処理の開始後、所定回数連続して安定した脈波を検出していないと判定した場合(図9のステップS101のNo)、脈波測定処理を開始するための所定の入力操作を行ってから所定時間経過したか否かを判定する(ステップS103)。 If the controller 10 determines that a stable pulse wave has not been detected continuously a predetermined number of times after the start of the pulse wave measurement process (No in step S101 in FIG. 9), the controller 10 starts the pulse wave measurement process. It is determined whether or not a predetermined time has elapsed since the predetermined input operation was performed (step S103).
 脈波測定処理を開始するための所定の入力操作を行ってから所定時間(例えば30秒)経過していないとコントローラ10が判定した場合(ステップS103のNo)、図9に示すフローは、ステップS101に移行する。 When the controller 10 determines that a predetermined time (for example, 30 seconds) has not elapsed since the predetermined input operation for starting the pulse wave measurement process has been performed (No in step S103), the flow illustrated in FIG. The process proceeds to S101.
 一方、コントローラ10は、脈波測定処理を開始するための所定の入力操作を行ってから所定時間経過しても、安定した脈波を検出できない場合(ステップS103のYes)、自動的に測定処理を終了(タイムアウト)して、図9のフローを終了する。 On the other hand, if the controller 10 cannot detect a stable pulse wave even after a predetermined time has elapsed after performing a predetermined input operation for starting the pulse wave measurement process (Yes in step S103), the measurement process is automatically performed. Is terminated (timed out), and the flow of FIG. 9 is terminated.
 図10は、生体情報測定装置1を用いて被検部位(胴体)で取得された脈波の一例を示す図である。図10は、ジャイロセンサ12を脈動の検知手段として用いた場合のものである。図10は、ジャイロセンサ12である角速度センサで取得された角速度を積分したものである。図10において、横軸は時間、縦軸は角度を表す。取得された脈波は、例えば被検者の体動が原因のノイズを含む場合があるので、DC(Direct Current)成分を除去するフィルタによる補正を行い、脈動成分のみを抽出してもよい。 FIG. 10 is a diagram illustrating an example of a pulse wave acquired at a test site (body) using the biological information measuring apparatus 1. FIG. 10 shows a case where the gyro sensor 12 is used as a pulsation detecting means. FIG. 10 is obtained by integrating the angular velocities acquired by the angular velocity sensor that is the gyro sensor 12. In FIG. 10, the horizontal axis represents time, and the vertical axis represents angle. Since the acquired pulse wave may include noise caused by the body movement of the subject, for example, correction by a filter that removes a DC (Direct Current) component may be performed to extract only the pulsation component.
 生体情報測定装置1は、取得された脈波から、脈波に基づく指標を算出し、脈波に基づく指標を用いて、血液成分を測定する。取得された脈波から、脈波に基づく指標を算出する方法を、図10を用いて説明する。脈波の伝播は、心臓から押し出された血液による拍動が、動脈の壁、又は血液を伝わる現象である。心臓から押し出された血液による拍動は、前進波として手足の末梢まで届き、その一部は血管の分岐部、血管径の変化部等で反射され反射波として戻ってくる。脈波に基づく指標は、例えば、前進波の脈波伝播速度PWV(Pulse Wave Velocity)、脈波の反射波の大きさPR、脈波の前進波と反射波との時間差Δt、脈波の前進波と反射波との大きさの比で表されるAI(Augmentation Index)等である。 The biological information measuring apparatus 1 calculates an index based on the pulse wave from the acquired pulse wave, and measures a blood component using the index based on the pulse wave. A method of calculating an index based on the pulse wave from the acquired pulse wave will be described with reference to FIG. The propagation of the pulse wave is a phenomenon in which the pulsation caused by the blood pushed out of the heart is transmitted through the wall of the artery or the blood. The pulsation caused by the blood pushed out of the heart reaches the periphery of the limb as a forward wave, and a part of the pulsation is reflected by the branching portion of the blood vessel, the blood vessel diameter changing portion, etc., and returns as a reflected wave. The index based on the pulse wave includes, for example, the pulse wave propagation velocity PWV (Pulse Wave Velocity) of the forward wave, the magnitude PR of the reflected wave of the pulse wave, the time difference Δt between the forward wave and the reflected wave of the pulse wave, and the forward wave wave AI (Augmentation Index) expressed by the ratio of the magnitude of the wave and the reflected wave.
 図10に示す脈波は、利用者のn回分の脈拍であり、nは1以上の整数である。脈波は、心臓からの血液の駆出により生じた前進波と、血管分岐、又は血管径の変化部から生じた反射波とが重なりあった合成波である。図10において、PFnは脈拍毎の前進波による脈波のピークの大きさ、PRnは脈拍毎の反射波による脈波のピークの大きさ、PSnは脈拍毎の脈波の最小値である。また、図10において、TPRは脈拍のピークの間隔である。 The pulse wave shown in FIG. 10 is a user's n pulses, and n is an integer of 1 or more. The pulse wave is a composite wave in which a forward wave generated by ejection of blood from the heart and a reflected wave generated from a blood vessel branch or a blood vessel diameter changing portion overlap. In FIG. 10, P Fn is the magnitude of the peak of the pulse wave due to the forward wave of each pulse, P Rn is the peak of the pulse wave due to the reflection wave of each pulse magnitude, P Sn is the minimum value of the pulse wave for each pulse is there. In FIG. 10, TPR is the interval between pulse peaks.
 脈波に基づく指標とは、脈波から得られる情報を定量化したものを含む。例えば、脈波に基づく指標の一つであるPWVは、上腕と足首等、2点の被検部位で測定された脈波の伝播時間差と2点間の距離とに基づいて算出される。具体的には、PWVは、動脈の2点における脈波(例えば上腕と足首)を同期させて取得し、2点の距離の差(L)を2点の脈波の時間差(PTT)で除して算出される。例えば、脈波に基づく指標の一つである反射波の大きさPは、反射波による脈波のピークの大きさPRnを算出してもよいし、n回分を平均化したPRaveを算出してもよい。例えば、脈波に基づく指標の一つである脈波の前進波と反射波との時間差Δtは、所定の脈拍における時間差Δtを算出してもよいし、n回分の時間差を平均化したΔtaveを算出してもよい。例えば、脈波に基づく指標の一つであるAIは、反射波の大きさを前進波の大きさで除したものであり、AI=(PRn-PSn)/(PFn-PSn)で表わされる。AIは脈拍毎のAIである。AIは、例えば、脈波の測定を数秒間行い、脈拍毎のAI(n=1~nの整数)の平均値AIaveを算出し、脈波に基づく指標としてもよい。 The index based on the pulse wave includes a quantified information obtained from the pulse wave. For example, PWV, which is one of indices based on pulse waves, is calculated based on the difference in propagation time of pulse waves measured at two test sites such as the upper arm and ankle and the distance between the two points. Specifically, PWV is acquired by synchronizing pulse waves (for example, the upper arm and ankle) at two points in the artery, and the difference in distance (L) between the two points is divided by the time difference (PTT) between the two points. Is calculated. For example, the reflected wave which is an index based on the pulse wave magnitude P R may calculate the magnitude of P Rn of the peak of the pulse wave due to the reflected wave, the P Rave averaged n times amount It may be calculated. For example, the time difference Δt between the forward wave and the reflected wave of the pulse wave, which is one of the indicators based on the pulse wave, may be calculated as a time difference Δt n in a predetermined pulse, or Δt obtained by averaging n time differences. You may calculate ave . For example, AI, which is one of indices based on pulse waves, is obtained by dividing the magnitude of the reflected wave by the magnitude of the forward wave, and AI n = (P Rn −P Sn ) / (P Fn −P Sn ). AI n is the AI for each pulse. For example, AI may measure the pulse wave for several seconds, calculate an average value AI ave of AI n (n = 1 to n) for each pulse, and use it as an index based on the pulse wave.
 脈波伝播速度PWV、反射波の大きさP、前進波と反射波との時間差Δt、及びAIは、血管壁の硬さに依存して変化するため、動脈硬化の状態の推定に用いることができる。例えば、血管壁が硬いと、脈波伝播速度PWVは大きくなる。例えば、血管壁が硬いと、反射波の大きさPは大きくなる。例えば、血管壁が硬いと、前進波と反射波との時間差Δtは小さくなる。例えば、血管壁が硬いと、AIは大きくなる。さらに、生体情報測定装置1は、これらの脈波に基づく指標を用いて、動脈硬化の状態を推定できると共に、血液の流動性(粘性)を推定することができる。特に、生体情報測定装置1は、同一被検者の同一被検部位、及び動脈硬化の状態がほぼ変化しない期間(例えば数日間内)において取得された脈波に基づく指標の変化から、血液の流動性の変化を推定することができる。ここで血液の流動性とは、血液の流れやすさを示し、例えば、血液の流動性が低いと、脈波伝播速度PWVは小さくなる。例えば、血液の流動性が低いと、反射波の大きさPは小さくなる。例えば、血液の流動性が低いと、前進波と反射波との時間差Δtは大きくなる。例えば、血液の流動性が低いと、AIは小さくなる。 The pulse wave velocity PWV, the magnitude of the reflected wave P R , the time difference Δt between the forward wave and the reflected wave, and AI change depending on the hardness of the blood vessel wall, and therefore are used to estimate the state of arteriosclerosis. Can do. For example, if the blood vessel wall is hard, the pulse wave propagation speed PWV increases. For example, the vessel wall rigid, size P R of the reflected wave increases. For example, if the blood vessel wall is hard, the time difference Δt between the forward wave and the reflected wave becomes small. For example, if the blood vessel wall is hard, AI increases. Furthermore, the biological information measuring apparatus 1 can estimate the state of arteriosclerosis and the blood fluidity (viscosity) using an index based on these pulse waves. In particular, the biological information measuring apparatus 1 uses the change of the index based on the pulse wave acquired in the same subject site of the same subject and the period when the arteriosclerosis state does not substantially change (for example, within several days). Changes in fluidity can be estimated. Here, the blood fluidity indicates the ease of blood flow. For example, when the blood fluidity is low, the pulse wave propagation velocity PWV is small. For example, the low fluidity of the blood, the size P R of the reflected wave is reduced. For example, when the blood fluidity is low, the time difference Δt between the forward wave and the reflected wave becomes large. For example, when blood fluidity is low, AI becomes small.
 一実施形態では、脈波に基づく指標の一例として、生体情報測定装置1が、脈波伝播速度PWV、反射波の大きさP、前進波と反射波との時間差Δt、及びAIを算出する例を示したが、脈波に基づく指標はこれに限ることはない。例えば、生体情報測定装置1は、脈波に基づく指標として、後方収縮期血圧を用いてもよい。 In one embodiment, as an example of an index based on the pulse wave, the biological information measuring apparatus 1 calculates the pulse wave velocity PWV, size P R of the reflected wave, the time difference Δt between the forward and reflected waves, and the AI Although an example is shown, the index based on the pulse wave is not limited to this. For example, the biological information measuring apparatus 1 may use posterior systolic blood pressure as an index based on pulse waves.
 図11は、算出されたAIの時間変動を示す図である。一実施形態では、脈波は、角速度センサを備えた生体情報測定装置1を用いて約5秒間取得された。コントローラ10は、取得された脈波から脈拍毎のAIを算出し、さらにこれらの平均値AIaveを算出した。一実施形態では、生体情報測定装置1は、食事前及び食事後の複数のタイミングで脈波を取得し、取得された脈波に基づく指標の一例としてAIの平均値(以降AIとする)を算出した。図11の横軸は、食事後の最初の測定時間を0として、時間の経過を示す。図11の縦軸は、その時間に取得された脈波から算出されたAIを示す。 FIG. 11 is a diagram illustrating the time variation of the calculated AI. In one embodiment, the pulse wave was acquired for about 5 seconds using the biological information measuring device 1 including an angular velocity sensor. The controller 10 calculated AI for each pulse from the acquired pulse wave, and further calculated an average value AI ave thereof. In one embodiment, the biological information measuring apparatus 1 acquires a pulse wave at a plurality of timings before and after a meal, and uses an average value of AI (hereinafter referred to as AI) as an example of an index based on the acquired pulse wave. Calculated. The horizontal axis in FIG. 11 shows the passage of time with the first measurement time after meal being zero. The vertical axis in FIG. 11 indicates the AI calculated from the pulse wave acquired at that time.
 生体情報測定装置1は、食事前、食事直後、及び食事後30分毎に脈波を取得し、それぞれの脈波に基づいて複数のAIを算出した。食事前に取得された脈波から算出されたAIは約0.8であった。食事前に比較して、食事直後のAIは小さくなり、食事後約1時間でAIは最小の極値となった。食事後3時間で測定を終了するまで、AIは徐々に大きくなった。 The biological information measuring apparatus 1 acquires a pulse wave before a meal, immediately after a meal, and every 30 minutes after a meal, and calculates a plurality of AIs based on each pulse wave. The AI calculated from the pulse wave acquired before the meal was about 0.8. Compared to before the meal, the AI immediately after the meal was small, and the AI reached the minimum extreme value about 1 hour after the meal. The AI gradually increased until the measurement was completed 3 hours after the meal.
 生体情報測定装置1は、算出されたAIの変化から、血液の流動性の変化を推定することができる。例えば血液中の赤血球、白血球、血小板が団子状に固まる、又は粘着力が大きくなると、血液の流動性は低くなる。例えば、血液中の血漿の含水率が小さくなると、血液の流動性は低くなる。これらの血液の流動性の変化は、例えば、後述する糖脂質状態、熱中症、脱水症、及び低体温等の被検者の健康状態によって変化する。被検者の健康状態が重篤化する前に、被検者は、一実施形態の生体情報測定装置1を用いて、自らの血液の流動性の変化を知ることができる。図11に示す食事前後のAIの変化から、食事後に血液の流動性が低くなったこと、及び、食事後約1時間で最も血液の流動性は低くなったこと、及び、その後徐々に血液の流動性が高くなったことが推定できる。生体情報測定装置1は、血液の流動性が低い状態と、血液の流動性が高い状態とを報知してもよい。例えば、生体情報測定装置1は、血液の流動性が低い状態と血液の流動性が高い状態との判定を、被検者の実年齢におけるAIの平均値を基準にして行ってもよい。生体情報測定装置1は、算出されたAIが平均値より大きければ血液の流動性が高い状態、算出されたAIが平均値より小さければ血液の流動性が低い状態と判定してもよい。生体情報測定装置1は、例えば、血液の流動性が低い状態と血液の流動性が高い状態との判定を、食事前のAIを基準にして判定してもよい。生体情報測定装置1は、食事後のAIを食事前のAIと比較して血液の流動性が低い状態の度合いを推定してもよい。生体情報測定装置1は、例えば、食事前のAIすなわち空腹時のAIを、被検者の血管年齢(血管の硬さ)の指標として用いることができる。生体情報測定装置1は、例えば、被検者の食事前のAIすなわち空腹時のAIを基準として、算出されたAIの変化量を算出すれば、被検者の血管年齢(血管の硬さ)による推定誤差を少なくすることができる。生体情報測定装置1は、血液の流動性の変化をより精度よく推定することができる。 The biological information measuring apparatus 1 can estimate a change in blood fluidity from the calculated change in AI. For example, when the red blood cells, white blood cells, and platelets in the blood harden in a dumpling shape or the adhesive strength increases, the fluidity of blood decreases. For example, when the water content of plasma in blood decreases, blood fluidity decreases. These changes in blood fluidity change depending on the health condition of the subject such as the glycolipid state, heat stroke, dehydration, and hypothermia described below. Before the health condition of the subject becomes serious, the subject can know the change in fluidity of his / her blood using the biological information measuring apparatus 1 according to one embodiment. From the change in AI before and after the meal shown in FIG. 11, the blood fluidity was low after the meal, the blood fluidity was the lowest about 1 hour after the meal, and then gradually It can be estimated that the fluidity has increased. The biological information measuring device 1 may notify a state where the blood fluidity is low and a state where the blood fluidity is high. For example, the biological information measuring apparatus 1 may determine whether the blood fluidity is low or the blood fluidity is high based on the average value of AI at the actual age of the subject. The biological information measuring apparatus 1 may determine that the blood fluidity is high if the calculated AI is larger than the average value, and the blood fluidity is low if the calculated AI is smaller than the average value. The biological information measuring apparatus 1 may determine, for example, the determination of a state where the blood fluidity is low and a state where the blood fluidity is high based on the AI before meal. The biological information measuring device 1 may estimate the degree of low blood fluidity by comparing the AI after meal with the AI before meal. The biological information measuring apparatus 1 can use, for example, AI before meal, that is, fasting AI, as an index of the blood vessel age (blood vessel hardness) of the subject. For example, the biological information measuring apparatus 1 calculates the change amount of the calculated AI based on the AI before the subject's meal, that is, the fasting AI, as a reference, and the blood vessel age (hardness of the blood vessel) of the subject. The estimation error due to can be reduced. The biological information measuring apparatus 1 can estimate a change in blood fluidity with higher accuracy.
 図12は、算出されたAIと血糖値の測定結果を示す図である。脈波の取得方法及びAIの算出方法は、図11に示した実施形態と同じである。図12の右側の縦軸は血中の血糖値を示し、左側の縦軸は算出されたAIを示す。図12の実線は、取得された脈波から算出されたAIを示し、点線は測定された血糖値を示す。血糖値は、脈波取得直後に測定された。血糖値は、テルモ社製の血糖測定器「メディセーフフィット」(登録商標)を用いて測定された。食事前の血糖値と比べて、食事直後の血糖値は約20mg/dl上昇している。食事後約1時間で血糖値は最大の極値となった。その後、測定を終了するまで、血糖値は徐々に小さくなり、食事後約3時間でほぼ食事前の血糖値と同じになった。 FIG. 12 is a diagram showing the measurement results of the calculated AI and blood glucose level. The pulse wave acquisition method and the AI calculation method are the same as those in the embodiment shown in FIG. The vertical axis on the right side of FIG. 12 indicates the blood glucose level in the blood, and the vertical axis on the left side indicates the calculated AI. The solid line in FIG. 12 shows the AI calculated from the acquired pulse wave, and the dotted line shows the measured blood glucose level. The blood glucose level was measured immediately after acquiring the pulse wave. The blood glucose level was measured using a blood glucose meter “Medisafefit” (registered trademark) manufactured by Terumo. Compared with the blood glucose level before the meal, the blood glucose level immediately after the meal is increased by about 20 mg / dl. The blood glucose level reached its maximum extreme value about 1 hour after the meal. Thereafter, the blood glucose level gradually decreased until the measurement was completed, and became approximately the same as the blood glucose level before the meal about 3 hours after the meal.
 図12に示す通り、食前食後の血糖値は、脈波から算出されたAIと負の相関がある。血糖値が高くなると、血液中の糖により赤血球及び血小板が団子状に固まり、又は粘着力が強くなり、その結果血液の流動性は低くなることがある。血液の流動性が低くなると、脈波伝播速度PWVは小さくなることがある。脈波伝播速度PWVが小さくなると、前進波と反射波との時間差Δtは大きくなることがある。前進波と反射波との時間差Δtが大きくなると、前進波の大きさPに対して反射波の大きさPは小さくなることがある。前進波の大きさPに対して反射波の大きさPが小さくなると、AIは小さくなることがある。食事後数時間内(一実施形態では3時間)のAIは、血糖値と相関があることから、AIの変動により、被検者の血糖値の変動を推定することができる。また、あらかじめ被検者の血糖値を測定し、AIとの相関を取得しておけば、生体情報測定装置1は、算出されたAIから被検者の血糖値を推定することができる。 As shown in FIG. 12, the blood glucose level after the pre-meal has a negative correlation with the AI calculated from the pulse wave. As the blood glucose level increases, red blood cells and platelets harden in the form of dumplings due to sugar in the blood, or the adhesive strength increases, and as a result, the blood fluidity may decrease. When blood fluidity decreases, the pulse wave velocity PWV may decrease. When the pulse wave propagation velocity PWV decreases, the time difference Δt between the forward wave and the reflected wave may increase. When the time difference Δt between the forward wave and the reflected wave increases, the size P R of the reflected wave with respect to the size P F of the forward wave may be less. If the size P R of the reflected wave is small relative to the size P F of the forward wave, AI may be smaller. Since AI within several hours after a meal (3 hours in one embodiment) has a correlation with blood glucose level, the fluctuation of blood glucose level of the subject can be estimated by the fluctuation of AI. Further, if the blood glucose level of the subject is measured in advance and the correlation with the AI is acquired, the biological information measuring apparatus 1 can estimate the blood glucose level of the subject from the calculated AI.
 食事後に最初に検出されるAIの最小極値であるAIの発生時間に基づいて、生体情報測定装置1は被検者の糖代謝の状態を推定できる。生体情報測定装置1は、糖代謝の状態として、例えば血糖値を推定する。糖代謝の状態の推定例として、例えば食事後に最初に検出されるAIの最小極値AIが所定時間以上(例えば食後約1.5時間以上)経ってから検出される場合、生体情報測定装置1は、被検者が糖代謝異常(糖尿病患者)であると推定できる。 The biological information measuring apparatus 1 can estimate the state of glucose metabolism of the subject based on the generation time of AI P that is the minimum extreme value of AI that is first detected after a meal. The biological information measuring apparatus 1 estimates, for example, a blood glucose level as the state of sugar metabolism. As an estimate example of the state of glucose metabolism, for example if the minimum extreme value AI P of AI which is first detected after meal is detected at a later predetermined time (e.g., after a meal to about 1.5 or more hours), the biological information measuring device 1 can be estimated that the subject has an abnormal glucose metabolism (diabetic patient).
 食事前のAIであるAIと、食事後に最初に検出されるAIの最小極値であるAIとの差(AI-AI)に基づいて、生体情報測定装置1は被検者の糖代謝の状態を推定できる。糖代謝の状態の推定例として、例えば(AI-AI)が所定数値以上(例えば0.5以上)の場合、被検者は糖代謝異常(食後高血糖患者)であると推定できる。 Based on the difference (AI B −AI P ) between AI B , which is the AI before the meal, and AI P , which is the minimum extreme value of AI first detected after the meal, the biological information measuring apparatus 1 determines the subject's information. The state of glucose metabolism can be estimated. As an estimation example of the state of glucose metabolism, for example, when (AI B -AI P ) is a predetermined numerical value or higher (for example, 0.5 or higher), it can be estimated that the subject has an abnormal glucose metabolism (postprandial hyperglycemia patient).
 図13は、算出されたAIと血糖値との関係を示す図である。算出されたAIと血糖値とは、血糖値の変動が大きい食事後1時間以内に取得されたものである。図13のデータは、同一被検者における異なる複数の食事後のデータを含む。図13に示す通り、算出されたAIと血糖値とは負の相関を示した。算出されたAIと血糖値との相関係数は0.9以上であった。例えば、図13に示すような算出されたAIと血糖値との相関を、あらかじめ被検者毎に取得しておけば、生体情報測定装置1は、算出されたAIから被検者の血糖値を推定することもできる。 FIG. 13 is a diagram showing the relationship between the calculated AI and blood glucose level. The calculated AI and blood glucose level are acquired within 1 hour after a meal with a large fluctuation in blood glucose level. The data in FIG. 13 includes a plurality of different post-meal data in the same subject. As shown in FIG. 13, the calculated AI and blood glucose level showed a negative correlation. The correlation coefficient between the calculated AI and blood glucose level was 0.9 or more. For example, if the correlation between the calculated AI and the blood glucose level as shown in FIG. 13 is obtained for each subject in advance, the biological information measuring apparatus 1 determines the blood glucose level of the subject from the calculated AI. Can also be estimated.
 図14は、算出されたAIと中性脂肪値の測定結果を示す図である。脈波の取得方法及びAIの算出方法は、図11に示した実施形態と同じである。図14の右側の縦軸は血中の中性脂肪値を示し、左側の縦軸はAIを示す。図14の実線は、取得された脈波から算出されたAIを示し、点線は測定された中性脂肪値を示す。中性脂肪値は、脈波取得直後に測定した。中性脂肪値は、テクノメディカ社製の脂質測定装置「ポケットリピッド」を用いて測定された。食事前の中性脂肪値と比較して、食事後の中性脂肪値の最大極値は約30mg/dl上昇している。食事後約2時間後に中性脂肪は最大の極値となった。その後、測定を終了するまで、中性脂肪値は徐々に小さくなり、食事後約3.5時間でほぼ食事前の中性脂肪値と同じになった。 FIG. 14 is a diagram showing measurement results of the calculated AI and triglyceride value. The pulse wave acquisition method and the AI calculation method are the same as those in the embodiment shown in FIG. The vertical axis on the right side of FIG. 14 indicates the neutral fat level in the blood, and the vertical axis on the left side indicates AI. The solid line in FIG. 14 indicates the AI calculated from the acquired pulse wave, and the dotted line indicates the measured triglyceride value. The neutral fat value was measured immediately after acquiring the pulse wave. The neutral fat value was measured using a lipid measuring device “Pocket Lipid” manufactured by Techno Medica. Compared to the neutral fat value before meal, the maximum extreme value of the neutral fat value after meal is increased by about 30 mg / dl. About 2 hours after the meal, the neutral fat reached its maximum extreme value. Thereafter, the triglyceride value gradually decreased until the measurement was completed, and became approximately the same as the triglyceride value before the meal at about 3.5 hours after the meal.
 これに対し、算出されたAIの最小極値は、食事後約30分で第1の最小極値AIP1が検出され、食事後約2時間で第2の最小極値AIP2が検出された。食事後約30分で検出された第1の最小極値AIP1は、前述した食後の血糖値の影響によるものであると推定できる。食事後約2時間で検出された第2の最小極値AIP2は、食事後約2時間で検出された中性脂肪の最大極値とその発生時間がほぼ一致している。このことから、食事から所定時間以降に検出される第2の最小極値AIP2は中性脂肪の影響によるものであると推定できる。食前食後の中性脂肪値は、血糖値と同じように、脈波から算出されたAIと負の相関があることがわかった。特に食事から所定時間以降(一実施形態では約1.5時間以降)に検出されるAIの最小極値AIP2は、中性脂肪値と相関があることから、AIの変動により、被検者の中性脂肪値の変動を推定することができる。また、あらかじめ被検者の中性脂肪値を測定し、AIとの相関を取得しておけば、生体情報測定装置1は、算出されたAIから被検者の中性脂肪値を推定することができる。 On the other hand, as for the calculated minimum extreme value of AI, the first minimum extreme value AI P1 was detected about 30 minutes after the meal, and the second minimum extreme value AI P2 was detected about 2 hours after the meal. . It can be estimated that the first minimum extreme value AI P1 detected about 30 minutes after the meal is due to the influence of the blood glucose level after the meal described above. The second minimum extreme value AI P2 detected at about 2 hours after the meal is almost the same as the maximum extreme value of neutral fat detected at about 2 hours after the meal. From this, it can be estimated that the second minimum extreme value AI P2 detected after a predetermined time from the meal is due to the influence of neutral fat. It was found that the triglyceride level after the pre-meal has a negative correlation with the AI calculated from the pulse wave, like the blood glucose level. In particular, since the minimum extreme value AI P2 of AI detected after a predetermined time from a meal (about 1.5 hours or more in one embodiment) is correlated with the triglyceride value, the subject is subject to fluctuations in AI. The fluctuation of the triglyceride value can be estimated. Further, if the neutral fat value of the subject is measured in advance and the correlation with AI is acquired, the biological information measuring apparatus 1 estimates the neutral fat value of the subject from the calculated AI. Can do.
 食事後所定時間以降に検出される第2の最小極値AIP2の発生時間に基づいて、生体情報測定装置1は被検者の脂質代謝の状態を推定できる。生体情報測定装置1は、脂質代謝の状態として、例えば脂質値を推定する。脂質代謝の状態の推定例として、例えば第2の最小極値AIP2が食事後所定時間以上(例えば4時間以上)経ってから検出される場合、生体情報測定装置1は、被検者が脂質代謝異常(高脂血症患者)であると推定できる。 Based on the occurrence time of the second minimum extreme value AI P2 detected after a predetermined time after the meal, the biological information measuring apparatus 1 can estimate the lipid metabolism state of the subject. The biological information measuring apparatus 1 estimates a lipid value, for example, as the state of lipid metabolism. As an estimation example of the state of lipid metabolism, for example, when the second minimum extreme value AIP2 is detected after a predetermined time or more (for example, 4 hours or more) after a meal, the biological information measuring apparatus 1 determines that the subject is a lipid It can be estimated that this is a metabolic disorder (hyperlipidemic patient).
 食事前のAIであるAIと、食事後所定時間以降に検出される第2の最小極値AIP2との差(AI-AIP2)に基づいて、生体情報測定装置1は被検者の脂質代謝の状態を推定できる。脂質代謝異常の推定例として、例えば(AI-AIP2)が0.5以上の場合、生体情報測定装置1は、被検者が脂質代謝異常(食後高脂血症患者)であると推定できる。 Based on the difference (AI B −AI P2 ) between AI B , which is the AI before the meal, and the second minimum extreme value AI P2 detected after a predetermined time after the meal, the biological information measuring apparatus 1 determines the subject. The state of lipid metabolism can be estimated. As an estimation example of lipid metabolism abnormality, for example, when (AI B -AI P2 ) is 0.5 or more, the biological information measuring apparatus 1 estimates that the subject has lipid metabolism abnormality (postprandial hyperlipidemia patient). it can.
 また、図12乃至図14で示した測定結果から、一実施形態の生体情報測定装置1は、食事後に最も早く検出される第1の最小極値AIP1及びその発生時間に基づいて、被検者の糖代謝の状態を推定することができる。さらに、一実施形態の生体情報測定装置1は、第1の最小極値AIP1の後で所定時間以降に検出される第2の最小極値AIP2及びその発生時間に基づいて、被検者の脂質代謝の状態を推定することができる。 Further, from the measurement results shown in FIGS. 12 to 14, the biological information measuring apparatus 1 according to the embodiment is based on the first minimum extreme value AI P1 detected earliest after a meal and the generation time thereof. The state of sugar metabolism of a person can be estimated. Furthermore, the biological information measuring apparatus 1 according to the embodiment includes a subject based on the second minimum extreme value AI P2 detected after a predetermined time after the first minimum extreme value AI P1 and the generation time thereof. The state of lipid metabolism can be estimated.
 一実施形態では脂質代謝の推定例として中性脂肪の場合を説明したが、脂質代謝の推定は中性脂肪に限られない。生体情報測定装置1が推定する脂質値は、例えば総コレステロール、HDLコレステロール及びLDLコレステロール等を含む。これらの脂質値は、上述の中性脂肪の場合と同じような傾向を示す。 In one embodiment, the case of neutral fat has been described as an example of estimation of lipid metabolism, but the estimation of lipid metabolism is not limited to neutral fat. The lipid value estimated by the biological information measuring device 1 includes, for example, total cholesterol, HDL cholesterol, LDL cholesterol, and the like. These lipid values show a tendency similar to that of the neutral fat described above.
 図15は、AIに基づいて血液の流動性並びに糖代謝及び脂質代謝の状態を推定する手順を示すフロー図である。図15を用いて、一実施形態に係る生体情報測定装置1による血液の流動性、並びに糖代謝及び脂質代謝の状態の推定の流れを説明する。 FIG. 15 is a flowchart showing a procedure for estimating blood fluidity, sugar metabolism, and lipid metabolism based on AI. With reference to FIG. 15, the flow of blood fluidity and the estimation of the state of sugar metabolism and lipid metabolism by the biological information measuring apparatus 1 according to an embodiment will be described.
 図15に示すように、生体情報測定装置1は、初期設定として、被検者のAI基準値を取得する(ステップS201)。AI基準値は、被検者の年齢から推定される平均的なAIを用いてもよいし、事前に取得された被検者の空腹時のAIを用いてもよい。また、生体情報測定装置1は、ステップS202~S208において食前と判断されたAIをAI基準値としてもよいし、脈波測定直前に算出されたAIをAI基準値としてもよい。この場合、生体情報測定装置1は、ステップS202~S208より後にステップS201を実行する。 As shown in FIG. 15, the biological information measuring apparatus 1 acquires the AI reference value of the subject as an initial setting (step S201). The average AI estimated from the age of the subject may be used as the AI reference value, or the fasting AI of the subject acquired in advance may be used. In addition, the biological information measuring apparatus 1 may use the AI determined to be before meals in steps S202 to S208 as the AI reference value, or may use the AI calculated immediately before the pulse wave measurement as the AI reference value. In this case, the biological information measuring apparatus 1 executes step S201 after steps S202 to S208.
 続いて、生体情報測定装置1は、脈波を取得する(ステップS202)。例えば生体情報測定装置1は、所定の測定時間(例えば、5秒間)に取得された脈波について、所定の振幅以上が得られたか否かを判定する。取得された脈波について、所定の振幅以上が得られたら、ステップS203に進む。所定の振幅以上が得られなかったら、ステップS202を繰り返す(これらのステップは図示せず)。ステップS202において、例えば生体情報測定装置1は、所定の振幅以上の脈波を検出すると、自動で脈波を取得する。 Subsequently, the biological information measuring device 1 acquires a pulse wave (step S202). For example, the biological information measuring apparatus 1 determines whether or not a predetermined amplitude or more has been obtained for a pulse wave acquired during a predetermined measurement time (for example, 5 seconds). If the acquired pulse wave has a predetermined amplitude or more, the process proceeds to step S203. If a predetermined amplitude or more is not obtained, step S202 is repeated (these steps are not shown). In step S202, for example, when the biological information measuring apparatus 1 detects a pulse wave having a predetermined amplitude or more, the biological information measuring apparatus 1 automatically acquires the pulse wave.
 生体情報測定装置1は、ステップS202で取得された脈波から、脈波に基づく指標としてAIを算出し記憶部20に記憶する(ステップS203)。生体情報測定装置1は、所定の脈拍数(例えば、3拍分)毎のAI(n=1~nの整数)から平均値AIaveを算出して、これをAIとしてもよい。あるいは、生体情報測定装置1は、特定の脈拍におけるAIを算出してもよい。 The biological information measuring apparatus 1 calculates AI as an index based on the pulse wave from the pulse wave acquired in step S202 and stores it in the storage unit 20 (step S203). The biological information measuring apparatus 1 may calculate an average value AI ave from AI n (n = 1 to n) for each predetermined pulse rate (for example, for 3 beats), and use this as AI. Alternatively, the biological information measuring device 1 may calculate the AI at a specific pulse.
 AIは、例えば脈拍数PR、脈圧(P-P)、体温、被検部位の温度等によって補正されてもよい。脈拍とAI及び脈圧とAIは共に負の相関があり、温度とAIとは正の相関があることが知られている。補正を行う際には、例えばステップS203において、生体情報測定装置1はAIに加え脈拍、脈圧を算出する。例えば、生体情報測定装置1は、ジャイロセンサ12とともに温度センサを搭載し、ステップS202における脈波の取得の際に、被検部位の温度を取得してもよい。事前に作成された補正式に、取得された脈拍、脈圧、温度等を代入することにより、生体情報測定装置1はAIを補正する。 The AI may be corrected by, for example, the pulse rate PR, the pulse pressure (P F -P S ), the body temperature, the temperature of the test site, and the like. It is known that both pulse and AI and pulse pressure and AI have a negative correlation, and temperature and AI have a positive correlation. When performing the correction, for example, in step S203, the biological information measuring apparatus 1 calculates a pulse and a pulse pressure in addition to the AI. For example, the biological information measuring apparatus 1 may be equipped with a temperature sensor together with the gyro sensor 12, and may acquire the temperature of the test site when acquiring the pulse wave in step S202. The biological information measuring apparatus 1 corrects AI by substituting the acquired pulse, pulse pressure, temperature, and the like into a correction formula created in advance.
 続いて、生体情報測定装置1は、ステップS201で取得されたAI基準値とステップS203で算出されたAIとを比較して、被検者の血液の流動性を推定する(ステップS204)。算出されたAIがAI基準値より大きい場合(YESの場合)、血液の流動性は高いと推定される。この場合、生体情報測定装置1は例えば血液の流動性が高いことを報知する(ステップS205)。算出されたAIがAI基準値より大きくない場合(NOの場合)、血液の流動性は低いと推定される。この場合、生体情報測定装置1は例えば血液の流動性が低いことを報知する(ステップS206)。 Subsequently, the biological information measuring device 1 compares the AI reference value acquired in step S201 with the AI calculated in step S203, and estimates the blood fluidity of the subject (step S204). When the calculated AI is larger than the AI reference value (in the case of YES), it is estimated that the blood fluidity is high. In this case, the biological information measuring apparatus 1 notifies that the blood fluidity is high, for example (step S205). When the calculated AI is not larger than the AI reference value (in the case of NO), it is estimated that the blood fluidity is low. In this case, the biological information measuring apparatus 1 notifies that blood fluidity is low, for example (step S206).
 続いて、生体情報測定装置1は、糖代謝及び脂質代謝の状態を推定するか否かを被検者に確認する(ステップS207)。ステップS207で糖代謝及び脂質代謝を推定しない場合(NOの場合)、生体情報測定装置1は処理を終了する。ステップS207で糖代謝及び脂質代謝を推定する場合(YESの場合)、生体情報測定装置1は、算出されたAIが食前、食後いずれかに取得されたものかを確認する(ステップS208)。食後ではない(食前)場合(NOの場合)、ステップS202に戻り、次の脈波を取得する。食後の場合(YESの場合)、生体情報測定装置1は、算出されたAIに対応する脈波の取得時間を記憶する(ステップS209)。続いて脈波を取得する場合(ステップS210のNOの場合)、ステップS202に戻り、生体情報測定装置1は次の脈波を取得する。脈波測定を終了する場合(ステップS210のYESの場合)ステップS211以降に進み、生体情報測定装置1は被検者の糖代謝及び脂質代謝の状態の推定を行う。 Subsequently, the biological information measuring apparatus 1 confirms with the subject whether or not to estimate the state of sugar metabolism and lipid metabolism (step S207). When sugar metabolism and lipid metabolism are not estimated in step S207 (in the case of NO), the biological information measuring device 1 ends the process. In the case where sugar metabolism and lipid metabolism are estimated in step S207 (in the case of YES), the biological information measuring apparatus 1 checks whether the calculated AI is acquired before or after a meal (step S208). If it is not after a meal (before a meal) (in the case of NO), the process returns to step S202 to acquire the next pulse wave. In the case of after eating (in the case of YES), the biological information measuring apparatus 1 stores the pulse wave acquisition time corresponding to the calculated AI (step S209). Then, when acquiring a pulse wave (in the case of NO at step S210), the process returns to step S202, and the biological information measuring device 1 acquires the next pulse wave. When the pulse wave measurement is finished (in the case of YES at step S210), the process proceeds to step S211 and subsequent steps, and the biological information measuring apparatus 1 estimates the sugar metabolism and lipid metabolism of the subject.
 続いて、生体情報測定装置1は、ステップS204で算出された複数のAIから、最小極値とその時間を抽出する(ステップS211)。例えば、図14の実線で示すようなAIが算出された場合、生体情報測定装置1は、食事後約30分の第1の最小極値AIP1、及び食事後約2時間の第2の最小極値AIP2を抽出する。 Subsequently, the biological information measuring apparatus 1 extracts the minimum extreme value and its time from the plurality of AIs calculated in Step S204 (Step S211). For example, when the AI as shown by the solid line in FIG. 14 is calculated, the biological information measuring apparatus 1 uses the first minimum extreme value AI P1 about 30 minutes after the meal and the second minimum value about 2 hours after the meal. The extreme value AI P2 is extracted.
 続いて、生体情報測定装置1は、第1の最小極値AIP1とその時間から、被検者の糖代謝の状態を推定する(ステップS212)。さらに、生体情報測定装置1は、第2の最小極値AIP2とその時間から、被検者の脂質代謝の状態を推定する(ステップS213)。被検者の糖代謝及び脂質代謝の状態の推定例は、前述の図14と同一であるので省略する。 Subsequently, the biological information measuring apparatus 1 estimates the sugar metabolism state of the subject from the first minimum extreme value AI P1 and the time (step S212). Furthermore, the biological information measuring apparatus 1 estimates the lipid metabolism state of the subject from the second minimum extreme value AI P2 and the time (step S213). An example of estimating the state of sugar metabolism and lipid metabolism of the subject is the same as that in FIG.
 続いて、生体情報測定装置1は、ステップS212及びステップS213の推定結果を報知し(ステップS214)、図15に示す処理を終了する。音声出力部16は、例えば「糖代謝は正常です」、「糖代謝異常が疑われます」、「脂質代謝は正常です」、「脂質代謝異常が疑われます」等の報知を行う。また、音声出力部16は「病院で受診しましょう」、「食生活を見直しましょう」等のアドバイスを報知してもよい。そして、生体情報測定装置1は、図15に示す処理を終了する。 Subsequently, the biological information measuring apparatus 1 notifies the estimation results of step S212 and step S213 (step S214), and ends the process shown in FIG. The audio output unit 16 reports, for example, “normal sugar metabolism”, “suspected abnormal sugar metabolism”, “normal lipid metabolism”, “suspected abnormal lipid metabolism”, and the like. Further, the voice output unit 16 may notify advice such as “Let's consult a hospital” and “Let's review the diet”. Then, the biological information measuring device 1 ends the process shown in FIG.
 このように、生体情報測定装置1は、音を出力する音声出力部16を備えてもよい。また、上述のような音声出力部16から出力する音声の報知に代えて、又は当該音声の報知とともに、表示による報知を表示部14に表示してもよい。このように、生体情報測定装置1は、コントローラ10が行う測定処理に関する情報を表示する表示部14を備えてもよい。また、音声出力部16は、ジャイロセンサ12がモーションファクタを検知していることを示す音を出力してもよい。これにより、生体情報測定装置1において、ジャイロセンサ12が正しくモーションファクタを検知していることを、使用者が容易かつ明確に知ることができる。 Thus, the biological information measuring device 1 may include the audio output unit 16 that outputs sound. Further, instead of the notification of the sound output from the sound output unit 16 as described above, or together with the notification of the sound, a display notification may be displayed on the display unit 14. As described above, the biological information measuring apparatus 1 may include the display unit 14 that displays information related to the measurement process performed by the controller 10. The audio output unit 16 may output a sound indicating that the gyro sensor 12 detects a motion factor. Thereby, in the biological information measuring device 1, the user can easily and clearly know that the gyro sensor 12 is correctly detecting the motion factor.
 以上のように、生体情報測定装置1が測定する生体情報は、使用者の脈波、脈拍、呼吸、鼓動、脈波伝搬速度、及び血流量の少なくともいずれかに関する情報を含んでよい。 As described above, the biological information measured by the biological information measuring device 1 may include information on at least one of the user's pulse wave, pulse, respiration, heartbeat, pulse wave propagation velocity, and blood flow.
 また、コントローラ10は、生体情報測定装置1が測定する生体情報に基づいて、使用者の体調、眠気、眠り、覚醒状態、心理状態、身体状態、感情、心身状態、精神状態、自律神経、ストレス状態、意識状態、血液成分、睡眠状態、呼吸状態、及び血圧の少なくともいずれかに関する情報を推定してもよい。ここで、使用者の「身体状態」とは、例えば、熱中症、疲労度、高山病、糖尿病、メタボリックシンドロームなどの症状の有無、これらの症状の程度、及び、これらの症状の兆候の有無などとすることができる。また、血液成分とは、中性脂肪、血糖値などとすることができる。 Moreover, the controller 10 is based on the biological information which the biological information measuring device 1 measures, and a user's physical condition, sleepiness, sleep, arousal state, psychological state, physical state, emotion, mind and body state, mental state, autonomic nerve, stress You may estimate the information regarding at least any one of a state, a consciousness state, a blood component, a sleep state, a respiratory state, and a blood pressure. Here, the “physical state” of the user is, for example, the presence or absence of symptoms such as heat stroke, fatigue, altitude sickness, diabetes, metabolic syndrome, the degree of these symptoms, and the presence or absence of signs of these symptoms, etc. It can be. Further, the blood component can be neutral fat, blood sugar level, or the like.
 次に、一実施形態に係る生体情報測定装置1の他の使用態様について説明する。 Next, another usage mode of the biological information measuring apparatus 1 according to an embodiment will be described.
 図16は、一実施形態に係る生体情報測定装置1の他の使用態様を説明する図である。図16は、妊娠中の母体及び胎児を概略的に示している。上述した一実施形態に係る生体情報測定装置1は、使用者本人の生体情報を測定することを想定して説明した。しかしながら、一実施形態に係る生体情報測定装置1は、このような用途に限定されない。 FIG. 16 is a diagram for explaining another usage mode of the biological information measuring apparatus 1 according to an embodiment. FIG. 16 schematically shows a pregnant mother and fetus. The biological information measuring device 1 according to the above-described embodiment has been described on the assumption that the biological information of the user is measured. However, the biological information measuring device 1 according to the embodiment is not limited to such an application.
 図16に示すように、生体情報測定装置1を腹部に押し当てることで、母体とともに胎児の生体情報を測定することもできる。一般的に、妊娠初期(例えば妊娠4~11週頃)の胎児は、非常に小さいため、心音そのものを直接聴くことは非常に困難である。したがって、この時期には、胎児の心拍を確認するためには、エコー等を使用することが多い。しかしながら、一実施形態に係る生体情報測定装置1によれば、ジャイロセンサ12を用いることにより、胎児の脈拍を検出する等、胎児の生体情報の測定を行うことができる。 As shown in FIG. 16, the biological information of the fetus can be measured together with the mother body by pressing the biological information measuring device 1 against the abdomen. In general, since the fetus in the early stage of pregnancy (for example, around 4 to 11 weeks of pregnancy) is very small, it is very difficult to listen directly to the heart sound itself. Therefore, at this time, echo or the like is often used to confirm the fetal heartbeat. However, according to the biological information measuring apparatus 1 according to the embodiment, the biological information of the fetus can be measured by using the gyro sensor 12, such as detecting the fetal pulse.
 図16に示すような使用態様においては、生体情報測定装置1は、胎児の生体情報を、母体の生体情報と共に測定することになる。このため、生体情報測定装置1が測定した生体情報から、胎児の生体情報のみを抽出して利用してもよい。このように、生体情報測定装置1が測定する生体情報は、使用者の胎児の生体情報としてもよい。 In the usage mode as shown in FIG. 16, the biological information measuring apparatus 1 measures the biological information of the fetus together with the biological information of the mother. For this reason, you may extract and utilize only the biological information of a fetus from the biological information which the biological information measuring device 1 measured. As described above, the biological information measured by the biological information measuring device 1 may be biological information of the user's fetus.
 図17は、本開示の一実施形態に係る生体情報測定システムの概略構成を示す模式図である。図17に示した一実施形態の生体情報測定システム100は、第1の装置110と、第2の装置120と、通信ネットワークを含む。 FIG. 17 is a schematic diagram illustrating a schematic configuration of a biological information measurement system according to an embodiment of the present disclosure. The biological information measurement system 100 of one embodiment shown in FIG. 17 includes a first device 110, a second device 120, and a communication network.
 生体情報測定システム100においては、第1の装置110は、使用者の胴体の変動に起因するモーションファクタを検知する。このため、第1の装置110は、ジャイロセンサ12を備えている。そして、第1の装置110は(有線又は無線接続可能な)通信部を備え、検知したモーションファクタを、第2の装置120に送信する。そして、生体情報測定システム100においては、第2の装置120は、受信したモーションファクタに基づいて、生体情報の測定に係る各種の演算を行う。このため、第2の装置120は、コントローラ10をはじめとする、各種の必要な機能部を備えている。図17においては、第1の装置110と第2の装置120とは、無線通信により接続されることを想定しているが、生体情報測定システム100は、このような構成に限定されない。例えば、第1の装置110と第2の装置120との間は、所定のケーブルなどで、有線により接続してもよい。 In the biological information measuring system 100, the first device 110 detects a motion factor due to a fluctuation of the user's torso. For this reason, the first device 110 includes a gyro sensor 12. The first device 110 includes a communication unit (which can be wired or wirelessly connected), and transmits the detected motion factor to the second device 120. In the biological information measurement system 100, the second device 120 performs various calculations related to the measurement of biological information based on the received motion factor. Therefore, the second device 120 includes various necessary functional units including the controller 10. In FIG. 17, it is assumed that the first device 110 and the second device 120 are connected by wireless communication, but the biological information measurement system 100 is not limited to such a configuration. For example, the first device 110 and the second device 120 may be connected by a wired connection such as a predetermined cable.
 このように、生体情報測定システム100は、第1の装置110及び第2の装置120を備えている。第1の装置110は、ジャイロセンサ12を備えている。ここで、ジャイロセンサ12は、第1の装置110が使用者の胴体に押し当てられている状態で、使用者の胴体の変動に起因するモーションファクタを検知する。また、第2の装置120は、コントローラ10を備えている。なお、第2の装置120は、人工知能機能、機械学習機能、ディープラーニング機能などを備え、第1の装置110から受信したモーションファクタに基づいて、統計的に得られるアルゴリズムにより生体情報の測定に係る各種の演算を行っても良い。 As described above, the biological information measuring system 100 includes the first device 110 and the second device 120. The first device 110 includes a gyro sensor 12. Here, the gyro sensor 12 detects a motion factor caused by the fluctuation of the user's torso in a state where the first device 110 is pressed against the user's torso. The second device 120 includes the controller 10. The second device 120 has an artificial intelligence function, a machine learning function, a deep learning function, and the like, and measures biological information using an algorithm obtained statistically based on the motion factor received from the first device 110. Such various calculations may be performed.
 本開示を完全かつ明瞭に開示するためにいくつかの実施例に関し記載してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。また、いくつかの実施形態に示した各要件は、自由に組み合わせが可能である。 In order to fully and clearly disclose the present disclosure, several embodiments have been described. However, the appended claims should not be limited to the above-described embodiments, but all modifications and alternatives that can be created by those skilled in the art within the scope of the basic matters shown in this specification. Should be configured to embody such a configuration. Each requirement shown in some embodiments can be freely combined.
 例えば、本開示においては、生体情報測定装置1及び生体情報測定システム100について説明した。しかしながら、本開示の実施形態は、ジャイロセンサ12を備える生体情報測定装置1による生体情報測定方法として実施されてもよい。この場合、当該方法においては、生体情報測定装置1が使用者の胴体に押し当てられている状態で、使用者の胴体の変動に起因するモーションファクタをジャイロセンサ12により検知する。ここで、ジャイロセンサ12は、セルフコントロールファクタとして処理されるモーションファクタを検知してもよい。また、当該方法においては、このような状態で検知されたモーションファクタに基づいて、使用者の生体情報の測定処理を行う。 For example, in the present disclosure, the biological information measuring device 1 and the biological information measuring system 100 have been described. However, the embodiment of the present disclosure may be implemented as a biological information measuring method by the biological information measuring device 1 including the gyro sensor 12. In this case, in the method, the gyro sensor 12 detects a motion factor resulting from the fluctuation of the user's torso while the biological information measuring device 1 is pressed against the user's torso. Here, the gyro sensor 12 may detect a motion factor processed as a self-control factor. Moreover, in the said method, a measurement process of a user's biometric information is performed based on the motion factor detected in such a state.
 また、例えば、上記実施形態では、生体情報測定装置1が当接部40と支持部50とを備えるとして説明したが、生体情報測定装置1は、支持部50を備えなくてもよい。この場合、生体情報測定装置1のハウジング30の背面の一部が被検部位とは異なる位置で被検者に当接することにより、当接部40の被検部位に対する当接状態が支持される。 For example, in the above-described embodiment, the biological information measuring device 1 has been described as including the contact portion 40 and the support portion 50, but the biological information measuring device 1 may not include the support portion 50. In this case, a part of the back surface of the housing 30 of the biological information measuring device 1 is in contact with the subject at a position different from the test site, so that the contact state of the contact portion 40 with respect to the test site is supported. .
 上記実施形態では、当接部40が生体情報測定装置1に固定される場合について説明したが、当接部40は、必ずしも生体情報測定装置1に直接的に固定されていなくてもよい。当接部40は、生体情報測定装置1に固定して用いられる保持具に固定されてもよい。 In the above embodiment, the case where the contact portion 40 is fixed to the biological information measuring device 1 has been described, but the contact portion 40 does not necessarily have to be directly fixed to the biological information measuring device 1. The abutting portion 40 may be fixed to a holder used by being fixed to the biological information measuring device 1.
(第2実施形態)
 次に、本開示の第2実施形態について、図面を参照して詳細に説明する。第2実施形態は、上述した第1実施形態に係る生体情報測定装置1を、携帯端末装置として実現するものである。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described in detail with reference to the drawings. In the second embodiment, the biological information measuring device 1 according to the first embodiment described above is realized as a mobile terminal device.
 以下説明する第2実施形態においては、携帯端末装置の一例として、スマートフォンのような携帯電話を想定して説明する。しかしながら、第2実施形態は、スマートフォンのような携帯電話に限定されるものではなく、例えばフィーチャーフォンタイプの携帯電話としてもよい。また、本開示の実施形態は、必ずしも携帯電話に限定されず、例えばタブレット端末、電子機器を遠隔操作するリモコン端末、デジタルカメラ、およびノートPCなど、各種の携帯端末装置とすることができる。要するに、本開示の実施形態は、生体情報を測定する機能を備える任意の携帯端末装置とすることができる。 In the second embodiment described below, a mobile phone such as a smartphone will be described as an example of the mobile terminal device. However, the second embodiment is not limited to a mobile phone such as a smartphone, and may be a feature phone type mobile phone, for example. In addition, the embodiment of the present disclosure is not necessarily limited to a mobile phone, and may be various mobile terminal devices such as a tablet terminal, a remote control terminal for remotely operating an electronic device, a digital camera, and a notebook PC. In short, the embodiment of the present disclosure may be any portable terminal device having a function of measuring biological information.
 図18は、一実施形態に係る携帯端末装置の概略構成を示す機能ブロック図である。図18に示すように、携帯端末装置2は、コントローラ10と、電源部11と、ジャイロセンサ12と、表示部14と、音声出力部16と、通信部17と、バイブレータ18と、記憶部20とを備えている。また、携帯端末装置2は、操作キー部22と、マイク24とを備えている。 FIG. 18 is a functional block diagram showing a schematic configuration of a mobile terminal device according to an embodiment. As illustrated in FIG. 18, the mobile terminal device 2 includes a controller 10, a power supply unit 11, a gyro sensor 12, a display unit 14, an audio output unit 16, a communication unit 17, a vibrator 18, and a storage unit 20. And. In addition, the mobile terminal device 2 includes an operation key unit 22 and a microphone 24.
 コントローラ10は、携帯端末装置2の各機能ブロックをはじめとして、携帯端末装置2の全体を制御及び管理するプロセッサを含む。コントローラ10は、制御手順を規定したプログラム及び被検者の生体情報を測定するプログラムを実行するCPU(Central Processing Unit)等のプロセッサを含む。このようなプログラムは、例えば記憶部20等の記憶媒体に格納される。また、コントローラ10は、携帯端末装置2が有する各種機能を実現するための制御を行う。例えば、携帯端末装置2がスマートフォンの場合、コントローラ10は、通話又はデータ通信に関する機能、及び各アプリケーションプログラムの実行に関する機能を実現するための制御を行う。 The controller 10 includes a processor that controls and manages the entire mobile terminal device 2 including each functional block of the mobile terminal device 2. The controller 10 includes a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure and a program for measuring biological information of a subject. Such a program is stored in a storage medium such as the storage unit 20, for example. Further, the controller 10 performs control for realizing various functions of the mobile terminal device 2. For example, when the mobile terminal device 2 is a smartphone, the controller 10 performs control for realizing a function related to a call or data communication and a function related to execution of each application program.
 電源部11は、バッテリーを含み、携帯端末装置2の各部に電源を供給する。携帯端末装置2は、動作時には、電源部11、又は外部の電源から、電力の供給を受ける。 The power supply unit 11 includes a battery and supplies power to each unit of the mobile terminal device 2. The portable terminal device 2 receives power supply from the power supply unit 11 or an external power supply during operation.
 ジャイロセンサ12は、携帯端末装置2の角速度を検出することにより、携帯端末装置2の変位をモーションファクタとして検出する。ジャイロセンサ12は、例えば振動したアームに作用するコリオリ力による構造体の変形から角速度を検出する3軸タイプの振動ジャイロセンサである。ここで、この構造体は、例えば水晶、又は圧電セラミックス等の圧電材料を素材としてもよい。また、ジャイロセンサ12は、構造体をシリコン等の素材として、MEMS(Micro Electro Mechanical Systems)技術で形成されてもよい。また、ジャイロセンサ12は、光学式ジャイロセンサなどのような、他の方式のジャイロセンサであってもよい。コントローラ10は、ジャイロセンサ12により取得された角速度を1回時間積分することにより、携帯端末装置2の向きを測定することができる。 The gyro sensor 12 detects the displacement of the portable terminal device 2 as a motion factor by detecting the angular velocity of the portable terminal device 2. The gyro sensor 12 is, for example, a three-axis vibration gyro sensor that detects an angular velocity from deformation of a structure due to Coriolis force acting on a vibrating arm. Here, this structure may be made of a piezoelectric material such as quartz or piezoelectric ceramic. The gyro sensor 12 may be formed by MEMS (Micro Electro Mechanical Systems) technology using the structure as a material such as silicon. The gyro sensor 12 may be another type of gyro sensor such as an optical gyro sensor. The controller 10 can measure the orientation of the mobile terminal device 2 by integrating the angular velocity acquired by the gyro sensor 12 with respect to time.
 ジャイロセンサ12は、例えば角速度センサである。ただし、ジャイロセンサ12は、角速度センサに限られない。ジャイロセンサ12は、モーションファクタである携帯端末装置2の角度変位を検出してもよい。ジャイロセンサ12は、セルフコントロールファクタとして処理されるモーションファクタを検知する。ジャイロセンサ12が検知したモーションファクタは、コントローラ10に送信される。 The gyro sensor 12 is an angular velocity sensor, for example. However, the gyro sensor 12 is not limited to the angular velocity sensor. The gyro sensor 12 may detect an angular displacement of the mobile terminal device 2 that is a motion factor. The gyro sensor 12 detects a motion factor that is processed as a self-control factor. The motion factor detected by the gyro sensor 12 is transmitted to the controller 10.
 コントローラ10は、ジャイロセンサ12からモーションファクタを取得する。モーションファクタは、被検者の被検部位における脈動に基づく携帯端末装置2の変位を示す指標を含む。コントローラ10は、モーションファクタに基づいて、被検者の脈動を生成する。コントローラ10は、被検者の脈動に基づいて、生体情報を測定する。コントローラ10による生体情報の測定処理の詳細については、後述する。 The controller 10 acquires a motion factor from the gyro sensor 12. The motion factor includes an index indicating the displacement of the mobile terminal device 2 based on the pulsation at the subject site of the subject. The controller 10 generates a pulsation of the subject based on the motion factor. The controller 10 measures biological information based on the subject's pulsation. Details of the measurement processing of biological information by the controller 10 will be described later.
 表示部14は、液晶ディスプレイ(Liquid Crystal Display)、有機ELパネル(Organic Electro-Luminescence Panel)、又は無機ELパネル(Inorganic Electro-Luminescence panel)等の表示デバイスを備える。表示部14は、文字、画像、記号又は図形等を表示する。また、表示部14は、表示機能のみならず、タッチスクリーンの機能も含むタッチスクリーンディスプレイで構成してもよい。この場合、タッチスクリーンは、使用者の指又はスタイラスペン等の接触を検出する。タッチスクリーンは、複数の指、又はスタイラスペン等がタッチスクリーンに接触した位置を検出することができる。タッチスクリーンの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式(又は超音波方式)、赤外線方式、電磁誘導方式、及び荷重検出方式等の任意の方式でよい。静電容量方式では、指、又はスタイラスペン等の接触及び接近を検出することができる。 The display unit 14 includes a display device such as a liquid crystal display, an organic EL panel (Organic Electro-Luminescence Panel), or an inorganic EL panel (Inorganic Electro-Luminescence panel). The display unit 14 displays characters, images, symbols, graphics, and the like. The display unit 14 may be configured with a touch screen display including not only a display function but also a touch screen function. In this case, the touch screen detects contact of the user's finger or stylus pen. The touch screen can detect a position where a plurality of fingers, a stylus pen, or the like touches the touch screen. The touch screen detection method may be any method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, and a load detection method. In the capacitive method, contact and approach of a finger or a stylus pen can be detected.
 音声出力部16は、音を出力することで、使用者等に情報を報知する。音声出力部16は、任意のスピーカ等で構成することができる。音声出力部16は、コントローラ10から送信される音信号を音として出力する。使用者は、例えば携帯端末装置2を用いて通話している最中に、音声出力部16から通話相手の音声を聞くことができる。この場合、使用者は、音声出力部16を耳に当てるようにすることで、通話相手の音声を聞くことができる。また、スピーカフォンのような使用態様とする場合には、使用者は、音声出力部16を耳に当てていなくても、通話相手の音声を聞くことができる。 The voice output unit 16 notifies the user or the like by outputting sound. The audio output unit 16 can be configured with an arbitrary speaker or the like. The sound output unit 16 outputs the sound signal transmitted from the controller 10 as sound. The user can hear the voice of the other party from the voice output unit 16 during a call using the mobile terminal device 2, for example. In this case, the user can listen to the other party's voice by placing the voice output unit 16 on his / her ear. Further, in the case of a usage mode such as a speakerphone, the user can listen to the voice of the other party even if the voice output unit 16 is not placed on the ear.
 通信部17は、外部装置と有線通信又は無線通信を行うことにより、各種データの送受信を行う。通信部17は、携帯端末装置2の通話及び/又はデータ通信の機能を実現するために、基地局などと接続して通信を行うことができる。また、通信部17は、例えば携帯端末装置2が測定した生体情報の測定結果等を、外部装置に送信することができる。さらに、通信部17は、健康状態を管理するために被検者の生体情報を記憶する外部装置と通信を行うこともできる。 The communication unit 17 transmits and receives various data by performing wired communication or wireless communication with an external device. The communication unit 17 can perform communication by connecting to a base station or the like in order to realize the telephone and / or data communication functions of the mobile terminal device 2. Moreover, the communication part 17 can transmit the measurement result etc. of the biometric information which the portable terminal device 2 measured to the external device, for example. Furthermore, the communication part 17 can also communicate with the external apparatus which memorize | stores a subject's biometric information, in order to manage a health condition.
 バイブレータ18は、振動などを発生することで、使用者等に情報を報知する。バイブレータ18は、携帯端末装置2の任意の部位に振動などを発生することにより、携帯端末装置2の使用者に対して触感を呈示する。バイブレータ18は、振動を発生するものであれば、例えば偏心モータ、圧電素子(ピエゾ素子)、又はリニアバイブレータのような任意の部材を採用することができる。 The vibrator 18 informs the user and the like by generating vibration and the like. The vibrator 18 presents a tactile sensation to the user of the mobile terminal device 2 by generating vibration or the like at an arbitrary part of the mobile terminal device 2. As long as the vibrator 18 generates vibration, an arbitrary member such as an eccentric motor, a piezoelectric element (piezo element), or a linear vibrator can be employed.
 記憶部20は、アプリケーションプログラムをはじめとする各種プログラム及びデータを記憶する。記憶部20は、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的(non-transitory)な記憶媒体を含んでよい。記憶部20は、複数の種類の記憶媒体を含んでよい。記憶部20は、メモリカード、光ディスク、又は光磁気ディスク等の可搬の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。記憶部20は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでよい。記憶部20は、各種情報及び携帯端末装置2を動作させるためのプログラム等を記憶するとともに、ワークメモリとしても機能する。記憶部20は、例えば、ジャイロセンサ12が検知したデータ、及び生体情報の測定結果などを記憶してもよい。 The storage unit 20 stores various programs and data including application programs. The storage unit 20 may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage unit 20 may include a plurality of types of storage media. The storage unit 20 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a storage medium reader. The storage unit 20 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory). The storage unit 20 stores various information and a program for operating the mobile terminal device 2 and also functions as a work memory. The storage unit 20 may store, for example, data detected by the gyro sensor 12 and measurement results of biological information.
 操作キー部22は、使用者の操作入力を検出する1つ以上の操作キーで構成される。操作キー部22は、例えば押しボタンスイッチまたはスライドスイッチなど、任意のキー又はボタンなどで構成することができる。また、全ての操作がタッチスクリーンディスプレイで行うことができる構成においては、操作キー部22は、必ずしも必要な要素ではない。 The operation key unit 22 includes one or more operation keys that detect a user's operation input. The operation key unit 22 can be configured by any key or button such as a push button switch or a slide switch. In a configuration in which all operations can be performed on the touch screen display, the operation key unit 22 is not necessarily a necessary element.
 マイク24は、音を検出して音声信号に変換する。マイク24は、音を検出するものであれば、任意のもので構成することができる。マイク24は、変換した音声信号をコントローラ10に送信する。コントローラ10は、受信した音声信号を、例えば通信部17から送信することができる。これにより、使用者は、例えば携帯端末装置2を用いて通話している最中、マイク24に入力した音声を通話相手に送信することができる。 The microphone 24 detects sound and converts it into an audio signal. The microphone 24 can be composed of any one that can detect sound. The microphone 24 transmits the converted audio signal to the controller 10. The controller 10 can transmit the received audio signal from, for example, the communication unit 17. Thereby, the user can transmit the voice input to the microphone 24 to the other party during a call using the mobile terminal device 2, for example.
 本開示の一実施形態に係る携帯端末装置2は、図18に示した構成に限定されない。一実施形態に係る携帯端末装置2は、生体情報を測定するために、コントローラ10及びジャイロセンサ12を備える。一実施形態に係る携帯端末装置2において、必要に応じて、適宜、コントローラ10及びジャイロセンサ12以外の他の構成要素を省略したり、その他の構成要素を追加してもよい。また、携帯端末装置2は、生体情報を測定するために、コントローラ10及びジャイロセンサ12を備えるが、生体情報を測定しない時の携帯端末装置2は、ジャイロセンサ12を備えない(内蔵していない)構成とすることもできる。この場合、例えば、携帯端末装置2に装着可能なケース又はアタッチメントのような外部の部材が、ジャイロセンサ12を備えるようにしてもよい。 The mobile terminal device 2 according to an embodiment of the present disclosure is not limited to the configuration illustrated in FIG. The mobile terminal device 2 according to an embodiment includes a controller 10 and a gyro sensor 12 in order to measure biological information. In the mobile terminal device 2 according to the embodiment, other components other than the controller 10 and the gyro sensor 12 may be omitted or other components may be added as necessary. In addition, the portable terminal device 2 includes the controller 10 and the gyro sensor 12 in order to measure the biological information, but the portable terminal device 2 when the biological information is not measured does not include the gyro sensor 12 (not included). ) Can also be configured. In this case, for example, an external member such as a case or an attachment that can be attached to the mobile terminal device 2 may include the gyro sensor 12.
 携帯端末装置2は、被検者の被検部位において生体情報を測定することができる。被検部位は、後述するように、例えば被検者(携帯端末装置2の使用者)の胴体であってよい。携帯端末装置2は、被検部位である胴体の変動に基づいて、被検者の生体情報を測定する。 The portable terminal device 2 can measure biometric information at the subject site of the subject. The test site may be, for example, the body of the test subject (user of the mobile terminal device 2), as will be described later. The mobile terminal device 2 measures the biological information of the subject based on the fluctuation of the trunk that is the test site.
 携帯端末装置2が測定する生体情報は、例えば、血液成分、脈波、脈拍及び脈波伝搬速度の少なくともいずれかを含む。血液成分は、例えば糖代謝の状態及び脂質代謝の状態を含む。糖代謝の状態は、例えば血糖値を含む。脂質代謝の状態は、例えば脂質値を含む。脂質値は、中性脂肪、総コレステロール、HDL(High Density Lipoprotein)コレステロール及びLDL(Low Density Lipoprotein)コレステロール等を含む。携帯端末装置2は、例えば、被検者の脈波を生体情報として取得し、取得した脈波に基づいて、血液成分等の生体情報を測定する。 The biological information measured by the mobile terminal device 2 includes, for example, at least one of a blood component, a pulse wave, a pulse, and a pulse wave propagation speed. The blood component includes, for example, a state of sugar metabolism and a state of lipid metabolism. The state of glucose metabolism includes, for example, blood glucose level. The state of lipid metabolism includes, for example, a lipid value. Lipid levels include neutral fat, total cholesterol, HDL (High Density Lipoprotein) cholesterol, LDL (Low Density Lipoprotein) cholesterol, and the like. For example, the portable terminal device 2 acquires a subject's pulse wave as biological information, and measures biological information such as blood components based on the acquired pulse wave.
 図19は、一実施形態に係る携帯端末装置2の外観を示す概略斜視図である。一実施形態に係る携帯端末装置2は、例えば図19に示すように、比較的小型の携帯電話などの携帯端末装置として構成することができる。しかしながら、携帯端末装置2は、携帯電話のような携帯端末装置に限定されない。例えば、携帯端末装置2は、他の任意の携帯可能な電子機器に組み込まれてもよい。 FIG. 19 is a schematic perspective view showing the external appearance of the mobile terminal device 2 according to an embodiment. For example, as shown in FIG. 19, the mobile terminal device 2 according to the embodiment can be configured as a mobile terminal device such as a relatively small mobile phone. However, the mobile terminal device 2 is not limited to a mobile terminal device such as a mobile phone. For example, the mobile terminal device 2 may be incorporated in any other portable electronic device.
 図19(A)は、携帯端末装置2の正面側を示す図である。図19(B)は、携帯端末装置2の裏面側を示す図、すなわち図19(A)に示した携帯端末装置2を裏返した状態を示す図である。 FIG. 19A is a diagram showing the front side of the mobile terminal device 2. FIG. 19B is a diagram illustrating the back side of the mobile terminal device 2, that is, a diagram illustrating a state in which the mobile terminal device 2 illustrated in FIG.
 図19に示すように、携帯端末装置2は、外観形状が概略長方形状をなすハウジング30を備える。図19(A)に示すように、携帯端末装置2は、正面側に、表示部14と、音声出力部16と、操作キー部22と、マイク24とを有する。表示部14は、携帯端末装置2の測定処理に関する情報を表示することができる。このため、使用者などは、表示部14の表示を見るだけで、生体情報を測定しながら、その状況を確認することができる。また、使用者などは、表示部14の表示を見るだけで、生体情報を測定した結果も確認することができる。さらに、使用者などは、表示部14の表示を見るだけで、生体情報が正しく測定されているか否かも確認することができる。その他、表示部14には、例えば時刻などの情報を表示させてもよい。 As shown in FIG. 19, the mobile terminal device 2 includes a housing 30 whose external shape is substantially rectangular. As shown in FIG. 19A, the mobile terminal device 2 includes a display unit 14, an audio output unit 16, an operation key unit 22, and a microphone 24 on the front side. The display unit 14 can display information related to the measurement process of the mobile terminal device 2. For this reason, the user etc. can confirm the condition, only measuring the display of the display part 14, measuring biometric information. Moreover, the user etc. can also confirm the result of having measured biometric information only by seeing the display of the display part 14. Furthermore, the user or the like can check whether or not the biological information is correctly measured only by looking at the display on the display unit 14. In addition, the display unit 14 may display information such as time.
 携帯端末装置2が携帯電話として機能する際には、音声出力部16は、通話相手の音声を出力する。また、携帯端末装置2を用いて生体情報を測定する際は、音声出力部16は、携帯端末装置2が生体情報の測定を開始する際及び当該測定が完了した際などに音を出力して、測定が開始又は完了した旨を使用者に報知する。さらに、音声出力部16は、測定が継続している旨を使用者に報知するための音を出力してもよい。使用者などは、音声出力部16から出力される音声により、生体情報が正しく測定されているか否かを確認することができる。 When the mobile terminal device 2 functions as a mobile phone, the voice output unit 16 outputs the voice of the other party. Moreover, when measuring biological information using the portable terminal device 2, the audio output unit 16 outputs sound when the portable terminal device 2 starts measuring biological information or when the measurement is completed. The user is notified that the measurement has started or completed. Furthermore, the audio output unit 16 may output a sound for notifying the user that the measurement is continuing. The user or the like can confirm whether or not the biological information is correctly measured by the sound output from the sound output unit 16.
 操作キー部22は、図19(A)に示す例においては、操作キー22A,22B,22Cにより構成されている。操作キー部22は、このようなキーの個数及び配置に限定されるものではなく、携帯端末装置2の仕様などに応じて種々の個数及び配置を採用することができる。例えば、図19(A)に示す例においては、操作キー部22は、携帯端末装置2の正面側のみに配置されているが、携帯端末装置2本体の側面側又は裏面側に配置してもよい。携帯端末装置2において、操作キー部22は、生体情報の測定を開始するためのボタンのようなスイッチとしてもよい。 The operation key unit 22 is configured by operation keys 22A, 22B, and 22C in the example shown in FIG. The operation key unit 22 is not limited to the number and arrangement of the keys, and various numbers and arrangements can be adopted according to the specifications of the mobile terminal device 2 and the like. For example, in the example shown in FIG. 19A, the operation key portion 22 is disposed only on the front side of the mobile terminal device 2, but may be disposed on the side surface or the back surface side of the mobile terminal device 2 body. Good. In the mobile terminal device 2, the operation key unit 22 may be a switch such as a button for starting measurement of biological information.
 マイク24は、上述したように、主に携帯端末装置2が携帯電話として機能する際に、使用者などの音声を検出する。図19(A)に示す例においては、マイク24は、携帯端末装置2の正面側に1つのみ配置されているが、携帯端末装置2の仕様などに応じて種々の個数及び配置を採用することができる。 As described above, the microphone 24 detects the voice of the user or the like mainly when the mobile terminal device 2 functions as a mobile phone. In the example shown in FIG. 19A, only one microphone 24 is arranged on the front side of the mobile terminal device 2, but various numbers and arrangements are adopted according to the specifications of the mobile terminal device 2. be able to.
 図19(B)に示すように、携帯端末装置2は、背面側に、当接部40と、支持部50とを有する。図19(B)に示す例においては、当接部40及び支持部50は、ハウジング30の背面とほぼ同一の平面を形成している。しかしながら、当接部40及び支持部50の少なくともいずれかは、ハウジング30の背面側から突出する部材としてもよい。図19(B)に示すように、当接部40及び支持部50は、ハウジング30の背面において、携帯端末装置2に対して固定されている。当接部40及び支持部50の少なくともいずれかは、例えば携帯端末装置2に対して着脱不可能に備えられていてもよい。当接部40及び支持部50の少なくともいずれかは、例えば携帯端末装置2に対して着脱可能に構成されていてもよい。 As shown in FIG. 19B, the mobile terminal device 2 has a contact portion 40 and a support portion 50 on the back side. In the example shown in FIG. 19B, the contact portion 40 and the support portion 50 form substantially the same plane as the back surface of the housing 30. However, at least one of the contact portion 40 and the support portion 50 may be a member protruding from the back side of the housing 30. As shown in FIG. 19B, the contact portion 40 and the support portion 50 are fixed to the mobile terminal device 2 on the back surface of the housing 30. At least one of the contact part 40 and the support part 50 may be provided so as not to be detachable from the mobile terminal device 2, for example. At least one of the contact part 40 and the support part 50 may be configured to be detachable from the mobile terminal device 2, for example.
 当接部40及び支持部50は、ハウジング30の背面側において、当該背面の短辺方向に沿って直線状に延在するように固定されている。ハウジング30の背面の短辺方向における、当接部40及び支持部50の長さは、例えばハウジング30の背面の短辺の長さよりも短くてよい。また、ハウジング30の背面の短辺方向における、当接部40と支持部50との長さの関係は、適宜定めることができる。例えば、ハウジング30背面の短辺方向における当接部40の長さは、ハウジング30背面の短辺方向における支持部50の長さよりも短くてもよく、又は長くてもよい。また、ハウジング30背面の短辺方向における当接部40の長さと、ハウジング30背面の短辺方向における支持部50の長さとは、同じでもよい。 The contact portion 40 and the support portion 50 are fixed on the back side of the housing 30 so as to extend linearly along the short side direction of the back surface. The length of the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 may be shorter than the length of the short side of the back surface of the housing 30, for example. Further, the length relationship between the contact portion 40 and the support portion 50 in the short side direction of the back surface of the housing 30 can be determined as appropriate. For example, the length of the contact portion 40 in the short side direction on the back surface of the housing 30 may be shorter or longer than the length of the support portion 50 in the short side direction on the back surface of the housing 30. Further, the length of the contact portion 40 in the short side direction on the back surface of the housing 30 and the length of the support portion 50 in the short side direction on the back surface of the housing 30 may be the same.
 当接部40は、携帯端末装置2により生体情報が測定される際に、被検部位に当接する。すなわち、当接部40は、生体情報の測定時に、例えば被検者の胴体又はその周辺に当接する。また、図19(B)に示すように、当接部40の裏側には、ジャイロセンサ12が取り付けられている。図19(B)に示す例においては、ジャイロセンサ12はハウジング30の内部に設置されているため、ジャイロセンサ12を破線で示してある。当接部40とジャイロセンサ12とは、別の部材として構成してもよいし、1つの同じ部材として構成してもよい。 The abutting portion 40 abuts on the test site when the biological information is measured by the mobile terminal device 2. That is, the contact part 40 contacts the torso of the subject or the periphery thereof, for example, when measuring biological information. Further, as shown in FIG. 19B, the gyro sensor 12 is attached to the back side of the contact portion 40. In the example shown in FIG. 19B, since the gyro sensor 12 is installed inside the housing 30, the gyro sensor 12 is indicated by a broken line. The contact part 40 and the gyro sensor 12 may be configured as separate members, or may be configured as one and the same member.
 支持部50は、携帯端末装置2により生体情報が測定される際に、当接部40とは異なる位置で被検者に当接する。支持部50は、例えば当接部40とは異なる位置で被検者の胴体に当接する。支持部50は、被検者に当接することにより、当接部40の被検部位に対する当接状態を支持する。なお、携帯端末装置2は、支持部50を複数備えていてもよい。複数の支持部50は、例えば、直線状に配置される。当接部40及び支持部50(並びにハウジング30)は、当接部40に当接する被検部位の変動が、適切にジャイロセンサ12に伝達するように構成する。当接部40及び支持部50による被検部位への当接態様の詳細については、後述する。 The support unit 50 contacts the subject at a position different from the contact unit 40 when biological information is measured by the mobile terminal device 2. The support part 50 contacts the subject's torso at a position different from the contact part 40, for example. The support part 50 supports the contact state of the contact part 40 with respect to the test site by contacting the subject. Note that the mobile terminal device 2 may include a plurality of support portions 50. The plurality of support parts 50 are arranged in a straight line, for example. The contact portion 40 and the support portion 50 (and the housing 30) are configured so that the variation of the test portion that contacts the contact portion 40 is appropriately transmitted to the gyro sensor 12. Details of the contact mode of the contact portion 40 and the support portion 50 to the test site will be described later.
 本開示の一実施形態に係る携帯端末装置2は、図19に示した構造に限定されない。上述のように、一実施形態に係る携帯端末装置2において、必要に応じて、適宜、コントローラ10及びジャイロセンサ12構成要素以外の他の構成要素を省略したり、その他の構成要素を追加してもよい。 The mobile terminal device 2 according to an embodiment of the present disclosure is not limited to the structure illustrated in FIG. As described above, in the mobile terminal device 2 according to the embodiment, other components other than the controller 10 and the gyro sensor 12 are appropriately omitted or other components are added as necessary. Also good.
 例えば、後述のように、携帯端末装置2を使用者の胴体に固定するために、使用者のベルト又はウエストバンドなどに携帯端末装置2を装着可能にするケース若しくはホルダ又はアタッチメントなどを別途用意してもよい。図19に示した携帯端末装置2を用いて生体情報を測定する場合、被検者自らが手などを用いて、携帯端末装置2を被検者の胴体に固定する必要がある。これに対し、前述のケース若しくはホルダ又はアタッチメントなどを用いれば、生体情報を測定する際に、携帯端末装置2を被検者の胴体に固定することができる。したがって、この場合、被検者自らが手などを用いて、携帯端末装置2を被検者の胴体に固定する必要はない。このようなケース若しくはホルダ又はアタッチメントなどを用いて、使用者のベルト又はウエストバンドなどに携帯端末装置2を装着する態様については、さらに後述する。 For example, as described later, in order to fix the mobile terminal device 2 to the user's torso, a case, a holder, an attachment, or the like that allows the mobile terminal device 2 to be mounted on the user's belt or waistband is prepared separately. May be. When measuring biological information using the portable terminal device 2 shown in FIG. 19, it is necessary for the subject himself / herself to fix the portable terminal device 2 to the body of the subject using his / her hand. On the other hand, if the above-described case, holder, attachment, or the like is used, the portable terminal device 2 can be fixed to the body of the subject when measuring biological information. Therefore, in this case, it is not necessary for the subject himself / herself to fix the portable terminal device 2 to the body of the subject using his / her hand. A mode in which the portable terminal device 2 is mounted on a belt or a waistband of the user using such a case, a holder, or an attachment will be described later.
 次に、携帯端末装置2による生体情報の測定処理について説明する。携帯端末装置2は、携帯端末装置2に固定された当接部40が被検部位に当接した状態でモーションファクタを取得し、取得したモーションファクタに基づいて、生体情報を測定する。携帯端末装置2は、携帯端末装置2に固定された支持部50が被検部位とは異なる位置で被検者に当接した状態で、モーションファクタを取得してよい。 Next, a measurement process of biological information by the mobile terminal device 2 will be described. The mobile terminal device 2 acquires a motion factor in a state where the contact portion 40 fixed to the mobile terminal device 2 is in contact with the test site, and measures biological information based on the acquired motion factor. The mobile terminal device 2 may acquire the motion factor in a state where the support unit 50 fixed to the mobile terminal device 2 is in contact with the subject at a position different from the test site.
 生体情報の測定にあたり、携帯端末装置2は、例えば被検者による入力操作に基づき、生体情報の測定処理が可能な状態になる。生体情報の測定処理が可能な状態とは、例えば生体情報を測定するためのアプリケーションが起動された状態等をいう。被検者は、生体情報の測定処理を可能な状態にして、携帯端末装置2によるモーションファクタの取得を開始させる。 In measuring biometric information, the mobile terminal device 2 is ready for biometric information measurement processing based on, for example, an input operation by a subject. The state in which measurement processing of biological information is possible refers to a state in which an application for measuring biological information is activated, for example. The subject makes the measurement process of the biological information possible and starts acquisition of the motion factor by the mobile terminal device 2.
 次に、携帯端末装置2が使用者の生体情報を測定する原理について、さらに説明する。携帯端末装置2は、使用者の胴体の変動に基づいて、生体情報を測定する。図4において説明したのと同じく、携帯端末装置2が使用者の胸部又は腹部を含む胴体に押し当てられた状態で、ジャイロセンサ12は、使用者の胴体の変動を検出することができる。このようにして、ジャイロセンサ12は、使用者の胴体の変動に起因するモーションファクタを検知する。 Next, the principle by which the mobile terminal device 2 measures the user's biological information will be further described. The portable terminal device 2 measures biological information based on the fluctuation of the user's torso. As described in FIG. 4, the gyro sensor 12 can detect a change in the user's torso in a state where the mobile terminal device 2 is pressed against the body including the chest or abdomen of the user. In this way, the gyro sensor 12 detects a motion factor resulting from a change in the user's torso.
 図20は、携帯端末装置2によるモーションファクタの取得態様の一例を示す図である。図20(A)は、携帯端末装置2がジャイロセンサ12を備える(例えば本体に内蔵する)例を示す図である。図20(B)は、携帯端末装置2の本体がジャイロセンサ12を内蔵せず、外部のケース又はアタッチメントのような部材がジャイロセンサ12を備える例を示す図である。 FIG. 20 is a diagram illustrating an example of a motion factor acquisition mode by the mobile terminal device 2. FIG. 20A is a diagram illustrating an example in which the mobile terminal device 2 includes the gyro sensor 12 (for example, built in the main body). FIG. 20B is a diagram illustrating an example in which the main body of the mobile terminal device 2 does not include the gyro sensor 12 and a member such as an external case or attachment includes the gyro sensor 12.
 図20(A)及び図20(B)は、例えば人体のような生体において、大動脈を含む部位の断面を示してある。また、図20(A)及び図20(B)は、図19に示した携帯端末装置2のハウジング30の背面側を、生体の被検部位に当接させている状態を示している。したがって、図20(A)及び図20(B)に示すように、当接部40及び支持部50は、それぞれ生体表面(皮膚)の被検部位に当接している。ここで、生体表面の被検部位は、一実施形態においては、使用者の胴体とする。また、図20(A)及び図20(B)に示す大動脈とは、図4に示した胸部大動脈としてもよいし、腹部大動脈としてもよい。 20A and 20B show a cross section of a part including the aorta in a living body such as a human body. 20A and 20B show a state in which the back side of the housing 30 of the mobile terminal device 2 shown in FIG. 19 is in contact with the test site of the living body. Therefore, as shown in FIGS. 20A and 20B, the contact part 40 and the support part 50 are in contact with the test site on the surface of the living body (skin). Here, in one embodiment, the test site on the surface of the living body is the torso of the user. In addition, the aorta shown in FIGS. 20A and 20B may be the thoracic aorta shown in FIG. 4 or the abdominal aorta.
 被検者は、図20(A)及び図20(B)に示すように、携帯端末装置2を胴体に押し当てて、携帯端末装置2にモーションファクタを取得させる。図20(A)及び図20(B)に示すように、携帯端末装置2と使用者の胴体との接触状態において、当接部40が被検部位に当接する。また、図20(A)及び図20(B)に示すように、携帯端末装置2によるモーションファクタの取得状態において、支持部50は、当接部40とは異なる位置で被検者の胴体に当接する。 As shown in FIGS. 20A and 20B, the subject presses the portable terminal device 2 against the trunk and causes the portable terminal device 2 to acquire a motion factor. As shown in FIGS. 20A and 20B, in the contact state between the portable terminal device 2 and the user's torso, the contact portion 40 contacts the test site. As shown in FIGS. 20A and 20B, in the motion factor acquisition state by the mobile terminal device 2, the support unit 50 is placed on the body of the subject at a position different from the contact unit 40. Abut.
 図20(A)及び図20(B)に示すように、携帯端末装置2を矢印Pの位置で矢印Pの方向に押し当てて胴体に当接させた場合、携帯端末装置2は、被検者の脈動に基づく血管の拡張及び収縮の動きに応じて変位する。携帯端末装置2は、胴体に当接する支持部50を支点として、図20(A)及び図20(B)において矢印Qで示すように、側面視において、矢印Pの方向に押し当てていない上端側が回転するように変位する。このような変位は、通常、部分的な回転運動の往復が反復する振動のような変位となる。携帯端末装置2が備えるジャイロセンサ12は、携帯端末装置2の変位を検出することにより、被検者の脈波を取得する。脈波とは、血液の流入によって生じる血管の容積時間変化を体表面から波形としてとらえたものである。 As shown in FIGS. 20A and 20B, when the mobile terminal device 2 is pressed in the direction of the arrow P at the position of the arrow P and brought into contact with the trunk, the mobile terminal device 2 It is displaced according to the movement of the blood vessel expansion and contraction based on the pulsation of the person. The mobile terminal device 2 has an upper end that is not pressed in the direction of the arrow P in the side view, as indicated by an arrow Q in FIGS. 20A and 20B, with the support portion 50 in contact with the body as a fulcrum. Displace so that the side rotates. Such a displacement is usually a vibration-like displacement in which the reciprocation of a partial rotational motion is repeated. The gyro sensor 12 included in the mobile terminal device 2 acquires the pulse wave of the subject by detecting the displacement of the mobile terminal device 2. The pulse wave is obtained by capturing a change in the volume of the blood vessel caused by the inflow of blood as a waveform from the body surface.
 このように、一実施形態に係る携帯端末装置2において、ジャイロセンサ12は、使用者の胴体の変動に起因するモーションファクタを検知する。このジャイロセンサ12は、携帯端末装置2が使用者の胴体に押し当てられている状態で、使用者の胴体の変動に起因するモーションファクタを検知する。そして、コントローラ10は、このようにしてジャイロセンサ12によって検知されたモーションファクタに基づいて、使用者の生体情報の測定処理を行う。 As described above, in the mobile terminal device 2 according to the embodiment, the gyro sensor 12 detects a motion factor due to the fluctuation of the user's torso. The gyro sensor 12 detects a motion factor due to a change in the user's torso in a state where the mobile terminal device 2 is pressed against the user's torso. The controller 10 performs measurement processing of the user's biological information based on the motion factor detected by the gyro sensor 12 in this way.
 ここで、使用者の胴体は、使用者の腹部又は胸部を含んでもよい。また、使用者の胴体の変動は、図20(A)及び図20(B)においては、使用者の血管の動きにより生じる変動の例を示したが、これに限定されない。使用者の胴体の変動は、使用者の血管の動きにより生じる変動のみならず、使用者の呼吸により生じる変動、及び使用者の体動により生じる変動の少なくともいずれかを含んでよい。また、使用者の血管は、使用者の大動脈を含んでよい。また、使用者の大動脈は、使用者の腹部大動脈及び胸部大動脈の少なくともいずれかを含んでよい。大動脈のような大型の血管においては、絶えず多量の血液が流れている。このため、携帯端末装置2においては、使用者の大動脈を計測の対象とすることにより、高い精度で安定して、生体情報の測定を行うことができる。 Here, the user's torso may include the user's abdomen or chest. Moreover, although the fluctuation | variation of a user's trunk | body was shown in FIG. 20 (A) and FIG.20 (B), the example of the fluctuation | variation produced by a user's blood vessel movement was shown, However, It is not limited to this. The fluctuation of the user's torso may include not only the fluctuation caused by the movement of the user's blood vessel but also at least one of the fluctuation caused by the user's breathing and the fluctuation caused by the user's body movement. The user's blood vessel may also include the user's aorta. The user's aorta may include at least one of the user's abdominal aorta and thoracic aorta. In large blood vessels such as the aorta, a large amount of blood constantly flows. For this reason, in the portable terminal device 2, by measuring the user's aorta as a measurement target, it is possible to measure biological information stably with high accuracy.
 また、図20(B)に示すように、ジャイロセンサ12は、弾性部材19を介して使用者の胴体に押し当てられることで、使用者の胴体の変動に追従することが容易となる。そのため、携帯端末装置2は、高い精度で安定して、生体情報の測定を行うことができる。ここで、弾性部材19は、弾性力を生じる任意のものであればよく、例えば、バネ、ゴム、可撓性樹脂、油圧を利用したもの、空気圧を利用したもの、水圧を利用したものなどである。図20(B)に示す支持部50は、ジャイロセンサ12が設置された方のハウジングと、ジャイロセンサ12が設置されていない方のハウジングとを接続している。図20(B)に示すように、ジャイロセンサ12が設置された方のハウジングは、ジャイロセンサ12が設置されていない方のハウジングに対して、支持部50を軸として可動な機構を有している。 Also, as shown in FIG. 20B, the gyro sensor 12 is pressed against the user's torso via the elastic member 19, so that it becomes easy to follow the fluctuation of the user's torso. Therefore, the portable terminal device 2 can measure biometric information stably with high accuracy. Here, the elastic member 19 may be any member that generates an elastic force, such as a spring, rubber, flexible resin, one using hydraulic pressure, one using air pressure, one using water pressure, or the like. is there. The support portion 50 shown in FIG. 20B connects the housing on which the gyro sensor 12 is installed and the housing on which the gyro sensor 12 is not installed. As shown in FIG. 20B, the housing on which the gyro sensor 12 is installed has a mechanism that can move around the support portion 50 relative to the housing on which the gyro sensor 12 is not installed. Yes.
 上述したように、図20(B)に示す携帯端末装置2は、本体にジャイロセンサ12を内蔵しない構成とすることができる。この場合、図20(B)に示すジャイロセンサ12および当接部40を備えるアタッチメントのような外部の部材が、支持部50を介して携帯端末装置2に装着されるようにしてもよい。このような構成においては、ジャイロセンサ12が検出する検出信号が、例えば支持部50を介するなどして、携帯端末装置2のコントローラ10に供給されるようにしてもよい。 As described above, the portable terminal device 2 shown in FIG. 20B can be configured not to incorporate the gyro sensor 12 in the main body. In this case, an external member such as an attachment including the gyro sensor 12 and the contact portion 40 illustrated in FIG. 20B may be attached to the mobile terminal device 2 via the support portion 50. In such a configuration, a detection signal detected by the gyro sensor 12 may be supplied to the controller 10 of the mobile terminal device 2 via the support unit 50, for example.
 携帯端末装置2は、ジャイロセンサ12を備えることにより、使用者は着衣のまま、衣服の上から生体情報を測定することができる。すなわち、携帯端末装置2によれば、使用者は、生体情報を測定する際に脱衣する必要はなくなる。また、携帯端末装置2によれば、使用者は、測定装置を肌に直に触れさせる必要もない。このため、携帯端末装置2によれば、生体情報の測定を手軽に行うことができる。 Since the mobile terminal device 2 includes the gyro sensor 12, the user can measure biological information from the top of the clothes while wearing the clothes. That is, according to the mobile terminal device 2, the user does not need to undress when measuring biological information. Moreover, according to the portable terminal device 2, the user does not need to make a measuring device touch a skin directly. For this reason, according to the portable terminal device 2, measurement of biological information can be performed easily.
 従来の加速度センサは、ノイズが大きいため、脈波センサとしての利用に適しているとは言い難い。特に、脈波及び呼吸のような、1Hz前後の低周波数の測定を目的とする場合、小型の端末のような装置に内蔵するような小型の加速度センサは一般的ではない。通常、このような目的には、大型の加速度センサが必要になる。 The conventional acceleration sensor is not suitable for use as a pulse wave sensor because of its large noise. In particular, a small acceleration sensor built into a device such as a small terminal is not common when measuring low frequencies around 1 Hz, such as pulse waves and respiration. Usually, a large acceleration sensor is required for such purposes.
 これに対し、携帯端末装置2においては、生体情報の測定にジャイロセンサ12を用いる。ジャイロセンサは、一般的に測定の際のノイズが少ない。ジャイロセンサは、常時振動しているため(振動型ジャイロセンサの場合)、構造上、ノイズを低減させることができる。また、一実施形態に係る携帯端末装置2においては、小型のハウジング30に内蔵可能なジャイロセンサ12を採用することができる。 On the other hand, in the portable terminal device 2, the gyro sensor 12 is used for measuring biological information. A gyro sensor generally has little noise during measurement. Since the gyro sensor constantly vibrates (in the case of the vibration type gyro sensor), noise can be reduced due to the structure. In the mobile terminal device 2 according to the embodiment, the gyro sensor 12 that can be incorporated in the small housing 30 can be employed.
 次に、一実施形態に係る携帯端末装置2の使用態様を説明する。図21は、携帯端末装置2を用いて生体情報を測定する例を示す図である。図21においては、携帯端末装置2に内蔵されたジャイロセンサ12を、破線により示してある。 Next, a usage mode of the mobile terminal device 2 according to an embodiment will be described. FIG. 21 is a diagram illustrating an example of measuring biological information using the mobile terminal device 2. In FIG. 21, the gyro sensor 12 built in the mobile terminal device 2 is indicated by a broken line.
 図21(A)は、図19に示したような携帯端末装置2を用いて生体情報を測定する例を示してある。図21(A)に示すように、携帯端末装置2を用いて生体情報を測定する場合、使用者自らが手などを用いて、携帯端末装置2の当接部40を被検部位に押し当てて、生体情報を測定することができる。 FIG. 21A shows an example in which biological information is measured using the mobile terminal device 2 as shown in FIG. As shown in FIG. 21A, when measuring biological information using the mobile terminal device 2, the user himself / herself presses the contact portion 40 of the mobile terminal device 2 against the test site using a hand or the like. Thus, biological information can be measured.
 手などを用いて携帯端末装置2を押し当てる際、ジャイロセンサ12が血管の動きを良好に検出できるようにするため、図21(A)に示すように、ジャイロセンサ12の位置は押し当てないようにしてもよい。この場合、ジャイロセンサ12のない位置、すなわち、図19(A)に示した携帯端末装置2の下端の近傍を押し当てるようにしてもよい。図19(A)に示した携帯端末装置2の下端の近傍の裏側には、図19(B)に示した支持部50が存在する。 When the portable terminal device 2 is pressed using a hand or the like, the gyro sensor 12 does not press the position of the gyro sensor 12 as shown in FIG. You may do it. In this case, the position without the gyro sensor 12, that is, the vicinity of the lower end of the mobile terminal device 2 shown in FIG. On the back side in the vicinity of the lower end of the mobile terminal device 2 shown in FIG. 19A, there is a support portion 50 shown in FIG.
 手などを用いて携帯端末装置2を押し当てる場合、使用者は、携帯端末装置2の当接部40が当接する被検部位を自在に変更することができる。例えば、携帯端末装置2をもう少し上半身側に移動させて、胸部大動脈の動きを検出し易くしてもよい。また、例えば、携帯端末装置2をもう少し下半身側に移動させて、腹部大動脈の動きを検出し易くしてもよい。このように、携帯端末装置2の使用者は、生体情報の測定が良好に行える被検部位の位置を探して、高い精度で生体情報の測定を行うことができる。 When the portable terminal device 2 is pressed using a hand or the like, the user can freely change the test site with which the contact portion 40 of the portable terminal device 2 comes into contact. For example, the movement of the thoracic aorta may be easily detected by moving the mobile terminal device 2 to the upper body side a little. Further, for example, the mobile terminal device 2 may be moved to the lower body side to make it easier to detect the movement of the abdominal aorta. As described above, the user of the portable terminal device 2 can search for the position of the test site where the measurement of the biological information can be satisfactorily performed and measure the biological information with high accuracy.
 図21(B)は、上述したような、ベルト又はウエストバンドに携帯端末装置2を装着可能にするケース若しくはホルダ又はアタッチメントなどを用いた例を示している。図21(B)に示すように、使用者がベルト60又はウエストバンド62などを着用している場合、ケース若しくはホルダ又はアタッチメントなどを用いて、携帯端末装置2を、使用者のベルト60又はウエストバンド62などに装着することができる。このようなケース若しくはホルダ又はアタッチメントなどは、携帯端末装置2を使用者のベルト60又はウエストバンド62などに装着可能にする外部部材として、適宜構成することができる。 FIG. 21 (B) shows an example using a case, a holder, an attachment, or the like that allows the mobile terminal device 2 to be attached to a belt or a waistband as described above. As shown in FIG. 21B, when the user wears the belt 60 or the waistband 62, the portable terminal device 2 is attached to the user's belt 60 or waist using a case, a holder, an attachment, or the like. It can be attached to the band 62 or the like. Such a case, a holder, an attachment, or the like can be appropriately configured as an external member that allows the mobile terminal device 2 to be attached to the belt 60 or the waistband 62 of the user.
 このようにすれば、生体情報を測定する際に、使用者自らが携帯端末装置2の当接部40を被検部位に押し当てる必要はなくなる。また、この場合、使用者は、ベルト60又はウエストバンド62が携帯端末装置2を押し当てる位置を調整することで、携帯端末装置2の当接部40が当接する被検部位を、ある程度変更することができる。したがって、携帯端末装置2の使用者は、生体情報の測定が良好に行える被検部位の位置を探して、高い精度で生体情報の測定を行うことができる。 This makes it unnecessary for the user to press the contact portion 40 of the portable terminal device 2 against the test site when measuring biological information. Further, in this case, the user adjusts the position to which the contact portion 40 of the mobile terminal device 2 contacts to some extent by adjusting the position where the belt 60 or the waistband 62 presses the mobile terminal device 2. be able to. Therefore, the user of the portable terminal device 2 can search for the position of the test site where the measurement of the biological information can be performed satisfactorily and can measure the biological information with high accuracy.
 このように、一実施形態において、携帯端末装置2の一部が使用者の胴体に押し当てられ、且つ、携帯端末装置2の一部以外の少なくとも一部が使用者の衣服のベルト60又はウエストバンド62に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検出されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of the mobile terminal device 2 is pressed against the user's torso, and at least a part other than a part of the mobile terminal device 2 is the belt 60 or waist of the user's clothes. It may be pressed against the band 62. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 図21(C)は、図21(A)に示した携帯端末装置2の向きを上下反対にして用いた例を示してある。図21(C)に示す例においては、図21(A)及び図21(B)に示した例に比べて、腹部大動脈の動きを検出し易くなる。この場合、使用者は、生体情報を測定する際に、手などを用いるか、又は、ベルト60又はウエストバンド62を用いて、携帯端末装置2の当接部40を被検部位に押し当てる。 FIG. 21C shows an example in which the mobile terminal device 2 shown in FIG. In the example shown in FIG. 21C, it becomes easier to detect the movement of the abdominal aorta than in the examples shown in FIGS. 21A and 21B. In this case, when measuring the biological information, the user presses the contact portion 40 of the mobile terminal device 2 against the test site by using a hand or the like, or by using the belt 60 or the waistband 62.
 このように、一実施形態において、携帯端末装置2の一部が使用者の胴体の下腹部側に押し当てられ、且つ、携帯端末装置2の一部以外の少なくとも一部が下腹部側よりも使用者の胴体の頭部側に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検知されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of the mobile terminal device 2 is pressed against the lower abdomen side of the user's torso, and at least a part other than a part of the mobile terminal device 2 is lower than the lower abdomen side. It may be pressed against the head side of the user's torso. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 図22は、図21と同じく、携帯端末装置2を用いて生体情報を測定する他の例を示す図である。図22においても、携帯端末装置2に内蔵されたジャイロセンサ12を、破線により示してある。 FIG. 22 is a diagram illustrating another example of measuring biological information using the mobile terminal device 2, as in FIG. 21. Also in FIG. 22, the gyro sensor 12 built in the portable terminal device 2 is indicated by a broken line.
 図22(A)に示すように、携帯端末装置2を横方向にして生体情報を測定してもよい。図22(A)に示す状態において、手などを用いて携帯端末装置2を押し当てる際、ジャイロセンサ12が血管の動きを良好に検出できるようにするため、ジャイロセンサ12の位置は押し当てないようにしてもよい。この場合、ジャイロセンサ12のない位置、すなわち、支持部50の存在する側の携帯端末装置2の端部近傍を、手などを用いて押し当てるようにしてもよい。この場合、ジャイロセンサ12は、胴体の中心線Mに近くなるため、胸部大動脈又は腹部大動脈の動きを良好に検出することができる。 As shown in FIG. 22A, the biological information may be measured with the mobile terminal device 2 in the horizontal direction. In the state shown in FIG. 22A, when the portable terminal device 2 is pressed using a hand or the like, the position of the gyro sensor 12 is not pressed so that the gyro sensor 12 can detect the movement of the blood vessel satisfactorily. You may do it. In this case, the position where the gyro sensor 12 is not present, that is, the vicinity of the end of the mobile terminal device 2 on the side where the support unit 50 exists may be pressed using a hand or the like. In this case, since the gyro sensor 12 is close to the center line M of the torso, the movement of the thoracic aorta or the abdominal aorta can be detected well.
 また、図22(B)に示すように、携帯端末装置2の向きを図22(A)に示した場合とは逆にしてもよい。この場合、ジャイロセンサ12は、胴体の側面すなわち脇腹の近傍に当接する。また、この場合、ジャイロセンサ12のない位置、すなわち、支持部50の存在する側の携帯端末装置2の端部近傍を、手などを用いて押し当てるようにしてもよい。 Also, as shown in FIG. 22B, the orientation of the mobile terminal device 2 may be reversed from that shown in FIG. In this case, the gyro sensor 12 contacts the side surface of the trunk, that is, the vicinity of the flank. In this case, a position where the gyro sensor 12 is not provided, that is, the vicinity of the end of the mobile terminal device 2 on the side where the support unit 50 exists may be pressed using a hand or the like.
 このように、一実施形態において、携帯端末装置2の一部が使用者の胴体の側面側に押し当てられ、且つ、携帯端末装置2の一部以外の少なくとも一部が使用者の胴体の側面側よりも胴体の中心M側に押し当てられてよい。このような状態で、ジャイロセンサ12は、モーションファクタを検知してよい。コントローラ10は、このようにして検知されたモーションファクタに基づいて、測定処理を行ってよい。 Thus, in one embodiment, a part of the portable terminal device 2 is pressed against the side surface of the user's torso, and at least a part other than a part of the portable terminal device 2 is a side surface of the user's torso. It may be pressed to the center M side of the trunk rather than the side. In such a state, the gyro sensor 12 may detect a motion factor. The controller 10 may perform a measurement process based on the motion factor thus detected.
 携帯端末装置2は、当接部40が被検部位に当接された状態において、脈波の測定処理を行う。携帯端末装置2による脈波の測定処理は、上述した第1実施形態に係る生体情報測定装置1と類似の原理に基づいて、第1実施形態と同じく行うことができる。したがって、帯端末装置2による脈波の測定処理のより詳細な説明は省略する。 The mobile terminal device 2 performs a pulse wave measurement process in a state in which the contact portion 40 is in contact with the test site. The pulse wave measurement process by the mobile terminal device 2 can be performed in the same manner as in the first embodiment, based on a principle similar to that of the biological information measuring device 1 according to the first embodiment described above. Therefore, a more detailed description of the pulse wave measurement process by the band terminal device 2 is omitted.
 本実施形態に係る携帯端末装置2は、第1実施形態に係る生体情報測定装置1と同じく、コントローラ10が行う測定処理に関する音を出力する音声出力部16を備えてもよい。また、上述のような音声出力部16から出力する音声の報知に代えて、又は当該音声の報知とともに、表示による報知を表示部14に表示してもよい。このように、携帯端末装置2は、コントローラ10が行う測定処理に関する情報を表示する表示部14を備えてもよい。また、音声出力部16は、ジャイロセンサ12がモーションファクタを検知していることを示す音を出力してもよい。これにより、携帯端末装置2において、ジャイロセンサ12が正しくモーションファクタを検知していることを、使用者が容易かつ明確に知ることができる。 The portable terminal device 2 according to the present embodiment may include an audio output unit 16 that outputs a sound related to a measurement process performed by the controller 10 as in the biological information measuring device 1 according to the first embodiment. Further, instead of the notification of the sound output from the sound output unit 16 as described above, or together with the notification of the sound, a display notification may be displayed on the display unit 14. As described above, the mobile terminal device 2 may include the display unit 14 that displays information related to the measurement process performed by the controller 10. The audio output unit 16 may output a sound indicating that the gyro sensor 12 detects a motion factor. Thereby, in the mobile terminal device 2, the user can easily and clearly know that the gyro sensor 12 is correctly detecting the motion factor.
 また、第1実施形態と同じく、携帯端末装置2が測定する生体情報は、使用者の脈波、脈拍、呼吸、鼓動、脈波伝搬速度、及び血流量の少なくともいずれかに関する情報を含んでよい。 Similarly to the first embodiment, the biological information measured by the mobile terminal device 2 may include information on at least one of the user's pulse wave, pulse, respiration, heartbeat, pulse wave velocity, and blood flow. .
 また、第1実施形態と同じく、コントローラ10は、携帯端末装置2が測定する生体情報に基づいて、使用者の体調、眠気、眠り、覚醒状態、心理状態、身体状態、感情、心身状態、精神状態、自律神経、ストレス状態、意識状態、血液成分、睡眠状態、呼吸状態、及び血圧の少なくともいずれかに関する情報を推定してもよい。ここで、使用者の「身体状態」とは、例えば、熱中症、疲労度、高山病、糖尿病、メタボリックシンドロームなどの症状の有無、これらの症状の程度、及び、これらの症状の兆候の有無などとすることができる。また、血液成分とは、中性脂肪、血糖値などとすることができる。 Further, as in the first embodiment, the controller 10 is based on the biological information measured by the mobile terminal device 2, so that the user's physical condition, drowsiness, sleep, wakefulness, psychological state, physical state, emotion, psychosomatic state, mental state. Information regarding at least one of a state, an autonomic nerve, a stress state, a conscious state, a blood component, a sleep state, a respiratory state, and a blood pressure may be estimated. Here, the “physical state” of the user is, for example, the presence or absence of symptoms such as heat stroke, fatigue, altitude sickness, diabetes, metabolic syndrome, the degree of these symptoms, and the presence or absence of signs of these symptoms, etc. It can be. Further, the blood component can be neutral fat, blood sugar level, or the like.
 上述した一実施形態に係る携帯端末装置2は、使用者本人の生体情報を測定することを想定して説明した。しかしながら、一実施形態に係る携帯端末装置2は、このような用途に限定されない。 The portable terminal device 2 according to the embodiment described above has been described on the assumption that the biological information of the user himself / herself is measured. However, the mobile terminal device 2 according to an embodiment is not limited to such an application.
 例えば図16に示したように、第1実施形態と同じく、携帯端末装置2を腹部に押し当てることで、母体とともに胎児の生体情報を測定することもできる。第2実施形態に係る携帯端末装置2によれば、ジャイロセンサ12を用いることにより、胎児の脈拍を検出する等、胎児の生体情報の測定を行うことができる。 For example, as shown in FIG. 16, the biological information of the fetus can be measured together with the mother by pressing the mobile terminal device 2 against the abdomen, as in the first embodiment. According to the mobile terminal device 2 according to the second embodiment, by using the gyro sensor 12, it is possible to measure fetal biological information such as detecting the fetal pulse.
 また、本開示の一実施形態に係る携帯端末装置2は、図17に示した例と同じく、生体情報測定システムを構成することができる。この場合、図17に示した一実施形態の生体情報測定システム100は、第1の装置110としての携帯端末装置2と、第2の装置120としての外部装置と、通信ネットワークを含む。その他の点については、図17において説明した第1実施形態と同じく実施することができるため、より詳細な説明は省略する。 Also, the mobile terminal device 2 according to an embodiment of the present disclosure can configure a biological information measurement system, as in the example illustrated in FIG. In this case, the biological information measurement system 100 according to the embodiment illustrated in FIG. 17 includes a mobile terminal device 2 as the first device 110, an external device as the second device 120, and a communication network. Other points can be implemented in the same manner as in the first embodiment described with reference to FIG. 17, and thus a more detailed description is omitted.
 上述した説明においては、携帯端末装置2及び生体情報測定システム100について記述した。しかしながら、本開示の実施形態は、ジャイロセンサ12を備える携帯端末装置2による生体情報測定方法として実施されてもよい。この場合、当該方法においては、携帯端末装置2が使用者の胴体に押し当てられている状態で、使用者の胴体の変動に起因するモーションファクタをジャイロセンサ12により検知する。ここで、ジャイロセンサ12は、セルフコントロールファクタとして処理されるモーションファクタを検知する。また、当該方法においては、このような状態で検知されたモーションファクタに基づいて、使用者の生体情報の測定処理を行う。 In the above description, the mobile terminal device 2 and the biological information measurement system 100 are described. However, the embodiment of the present disclosure may be implemented as a biological information measurement method by the mobile terminal device 2 including the gyro sensor 12. In this case, in the method, the gyro sensor 12 detects a motion factor resulting from the fluctuation of the user's torso while the portable terminal device 2 is pressed against the user's torso. Here, the gyro sensor 12 detects a motion factor processed as a self-control factor. Moreover, in the said method, a measurement process of a user's biometric information is performed based on the motion factor detected in such a state.
 また、例えば、上記実施形態では、携帯端末装置2が当接部40と支持部50とを備えるとして説明したが、携帯端末装置2は、支持部50を備えなくてもよい。この場合、携帯端末装置2のハウジング30の背面の一部が被検部位とは異なる位置で被検者に当接することにより、当接部40の被検部位に対する当接状態が支持される。 For example, in the above-described embodiment, the mobile terminal device 2 has been described as including the contact portion 40 and the support portion 50, but the mobile terminal device 2 may not include the support portion 50. In this case, a part of the back surface of the housing 30 of the mobile terminal device 2 contacts the subject at a position different from the test site, so that the contact state of the contact portion 40 with the test site is supported.
 上記実施形態では、当接部40が携帯端末装置2に固定される場合について説明したが、当接部40は、必ずしも携帯端末装置2に直接的に固定されていなくてもよい。当接部40は、携帯端末装置2に固定して用いられる保持具に固定されてもよい。 In the above embodiment, the case where the contact portion 40 is fixed to the mobile terminal device 2 has been described. However, the contact portion 40 does not necessarily have to be directly fixed to the mobile terminal device 2. The contact portion 40 may be fixed to a holder that is used by being fixed to the mobile terminal device 2.
 1 生体情報測定装置
 2 携帯端末装置
 10 コントローラ
 11 電源部
 12 ジャイロセンサ
 14 表示部
 16 音声出力部
 17 通信部
 18 バイブレータ
 19 弾性部材
 20 記憶部
 30 ハウジング
 40 当接部
 50 支持部
 60 ベルト
 62 ウエストバンド
 100 生体情報測定システム
 110 第1の装置
 120 第2の装置
DESCRIPTION OF SYMBOLS 1 Biological information measuring device 2 Portable terminal device 10 Controller 11 Power supply part 12 Gyro sensor 14 Display part 16 Audio | voice output part 17 Communication part 18 Vibrator 19 Elastic member 20 Memory | storage part 30 Housing 40 Contact part 50 Support part 60 Belt 62 Waistband 100 Biological information measurement system 110 First device 120 Second device

Claims (19)

  1.  生体情報測定装置であって、
     使用者の胴体の変動を検知するジャイロセンサと、
     前記生体情報測定装置が前記胴体に押し当てられている状態で検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行うコントローラと、
    を備える生体情報測定装置。
    A biological information measuring device,
    A gyro sensor that detects fluctuations in the user's torso,
    A controller that performs a measurement process of the user's biological information based on the variation detected in a state where the biological information measuring device is pressed against the body;
    A biological information measuring device comprising:
  2.  前記胴体は、前記使用者の腹部又は胸部を含む、
    請求項1に記載の生体情報測定装置。
    The torso includes the user's abdomen or chest.
    The biological information measuring device according to claim 1.
  3.  前記変動は、前記使用者の血管の動きにより生じる変動、前記使用者の呼吸により生じる変動、及び前記使用者の体動により生じる変動の少なくともいずれか1つを含む、
    請求項1又は2に記載の生体情報測定装置。
    The variation includes at least one of a variation caused by movement of the user's blood vessels, a variation caused by the user's breathing, and a variation caused by the user's body movement.
    The biological information measuring device according to claim 1 or 2.
  4.  前記血管は、前記使用者の大動脈を含む、
    請求項3に記載の生体情報測定装置。
    The blood vessel includes the user's aorta,
    The biological information measuring device according to claim 3.
  5.  前記大動脈は、前記使用者の腹部大動脈及び胸部大動脈の少なくともいずれか1つを含む、
    請求項4に記載の生体情報測定装置。
    The aorta includes at least one of the user's abdominal aorta and thoracic aorta,
    The biological information measuring device according to claim 4.
  6.  前記生体情報は、前記使用者の脈波、脈拍、呼吸、鼓動、脈波伝搬速度、及び血流量の少なくともいずれか1つに関する情報を含む、
    請求項1乃至5のいずれか1項に記載の生体情報測定装置。
    The biological information includes information on at least one of the user's pulse wave, pulse, respiration, heartbeat, pulse wave velocity, and blood flow.
    The biological information measuring device according to any one of claims 1 to 5.
  7.  前記コントローラは、前記生体情報に基づいて、前記使用者の体調、眠気、眠り、覚醒状態、心理状態、身体状態、感情、心身状態、精神状態、自律神経、ストレス状態、意識状態、血液成分、睡眠状態、呼吸状態、及び血圧の少なくともいずれか1つに関する情報を推定する、
    請求項1乃至6のいずれか1項に記載の生体情報測定装置。
    The controller is based on the biological information, the user's physical condition, drowsiness, sleep, wakefulness, psychological state, physical state, emotion, psychosomatic state, mental state, autonomic nerve, stress state, consciousness state, blood component, Estimating information on at least one of sleep state, respiratory state, and blood pressure;
    The biological information measuring device according to any one of claims 1 to 6.
  8.  前記コントローラは、前記生体情報測定装置の一部が前記胴体に押し当てられ、且つ、前記一部以外の少なくとも一部が前記使用者の衣服のウエストバンド又はベルトに押し当てられている状態で検知された前記変動に基づいて、前記測定処理を行う、
    請求項1乃至7のいずれか1項に記載の生体情報測定装置。
    The controller is detected in a state where a part of the biological information measuring device is pressed against the body and at least a part other than the part is pressed against a waist band or a belt of the user's clothes. Performing the measurement process based on the variation
    The biological information measuring device according to any one of claims 1 to 7.
  9.  前記コントローラは、前記生体情報測定装置の一部が前記胴体の側面側に押し当てられ、且つ、前記一部以外の少なくとも一部が前記側面側よりも前記胴体の中心側に押し当てられた状態で検知された前記変動に基づいて、前記測定処理を行う、
    請求項1乃至7のいずれか1項に記載の生体情報測定装置。
    The controller has a state in which a part of the biological information measuring device is pressed against the side of the body and at least a part other than the part is pressed toward the center of the body rather than the side. Performing the measurement process based on the variation detected in
    The biological information measuring device according to any one of claims 1 to 7.
  10.  前記コントローラは、前記生体情報測定装置の一部が前記胴体の下腹部側に押し当てられ、且つ、前記一部以外の少なくとも一部が前記下腹部側よりも前記胴体の頭部側に押し当てられた状態で検知された前記変動に基づいて、前記測定処理を行う、
    請求項1乃至7のいずれか1項に記載の生体情報測定装置。
    In the controller, a part of the biological information measuring device is pressed against the lower abdomen side of the trunk, and at least a part other than the part is pressed toward the head side of the trunk rather than the lower abdomen side. Performing the measurement process based on the variation detected in the detected state;
    The biological information measuring device according to any one of claims 1 to 7.
  11.  前記生体情報は、前記使用者の胎児の生体情報である、
    請求項1乃至10のいずれか1項に記載の生体情報測定装置。
    The biological information is biological information of the user's fetus,
    The biological information measuring device according to any one of claims 1 to 10.
  12.  前記測定処理に関する情報を表示する表示部を備える、
    請求項1乃至11のいずれか1項に記載の生体情報測定装置。
    A display unit for displaying information on the measurement process;
    The biological information measuring device according to any one of claims 1 to 11.
  13.  前記変動が前記ジャイロセンサにより検知されていることを示す音を出力する音声出力部を備える、
    請求項1乃至12のいずれか1項に記載の生体情報測定装置。
    An audio output unit that outputs a sound indicating that the fluctuation is detected by the gyro sensor;
    The biological information measuring device according to any one of claims 1 to 12.
  14.  弾性部材を介して前記胴体に押し当てられる、
    請求項1乃至13のいずれか1項に記載の生体情報測定装置。
    Pressed against the body through an elastic member,
    The biological information measuring device according to any one of claims 1 to 13.
  15.  前記ジャイロセンサは、セルフコントロールファクタとして処理されるモーションファクタを検知し、
     前記コントローラは、前記使用者の胴体の変動に起因して検知された前記モーションファクタに基づいて、前記使用者の生体情報の測定処理を行う、
    請求項1乃至14いずれか1項に記載の生体情報測定装置。
    The gyro sensor detects a motion factor processed as a self-control factor,
    The controller performs a measurement process of the user's biological information based on the motion factor detected due to a change in the user's torso.
    The biological information measuring device according to any one of claims 1 to 14.
  16.  ジャイロセンサを備える生体情報測定装置による生体情報測定方法であって、
     前記生体情報測定装置が使用者の胴体に押し当てられている状態で、前記胴体の変動をジャイロセンサにより検知し、
     検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行う、
    生体情報測定方法。
    A biological information measuring method by a biological information measuring device including a gyro sensor,
    In a state where the biological information measuring device is pressed against a user's torso, a change in the torso is detected by a gyro sensor,
    Based on the detected variation, a measurement process of the user's biological information is performed.
    Biological information measurement method.
  17.  前記ジャイロセンサは、セルフコントロールファクタとして処理されるモーションファクタを検知し、
     前記変動に起因して検知された前記モーションファクタに基づいて、前記使用者の生体情報の測定処理を行う、
    請求項16に記載の生体情報測定方法。
    The gyro sensor detects a motion factor processed as a self-control factor,
    Based on the motion factor detected due to the fluctuation, performs a measurement process of the user's biological information,
    The biological information measuring method according to claim 16.
  18.  第1の装置及び第2の装置を備える生体情報測定システムであって、
     前記第1の装置は、前記第1の装置が使用者の胴体に押し当てられている状態で、前記胴体の変動を検知するジャイロセンサを備え、
     前記第2の装置は、検知された前記変動に基づいて、前記使用者の生体情報の測定処理を行うコントローラを備える、
    生体情報測定システム。
    A biological information measuring system comprising a first device and a second device,
    The first device includes a gyro sensor that detects a change in the body while the first device is pressed against a user's body.
    The second device includes a controller that performs a measurement process of the user's biological information based on the detected variation.
    Biological information measurement system.
  19.  前記ジャイロセンサは、セルフコントロールファクタとして処理されるモーションファクタを検知し、
     前記コントローラは、前記変動に起因して検知された前記モーションファクタに基づいて、前記使用者の生体情報の測定処理を行う、
    請求項18に記載の生体情報測定システム。
    The gyro sensor detects a motion factor processed as a self-control factor,
    The controller performs a measurement process of the user's biological information based on the motion factor detected due to the variation.
    The biological information measuring system according to claim 18.
PCT/JP2017/006411 2016-11-30 2017-02-21 Biological information measurement device, biological information measurement method, and biological information measurement system WO2018100755A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-233300 2016-11-30
JP2016233300A JP2018089000A (en) 2016-11-30 2016-11-30 Biological information measuring device, biological information measuring method, and biological information measuring system
JP2017-011248 2017-01-25
JP2017011248A JP6228326B1 (en) 2017-01-25 2017-01-25 Portable terminal device, biological information measuring method, and biological information measuring system

Publications (1)

Publication Number Publication Date
WO2018100755A1 true WO2018100755A1 (en) 2018-06-07

Family

ID=62242186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006411 WO2018100755A1 (en) 2016-11-30 2017-02-21 Biological information measurement device, biological information measurement method, and biological information measurement system

Country Status (1)

Country Link
WO (1) WO2018100755A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038871A (en) * 2018-11-19 2021-06-25 京瓷株式会社 Electronic device
CN113226160A (en) * 2018-12-25 2021-08-06 京瓷株式会社 Electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016151A1 (en) * 2006-08-04 2008-02-07 Tokyo Metropolitan Organization For Medical Research Fetal movement information processing device and fetal movement information processing method
JP2008229092A (en) * 2007-03-22 2008-10-02 Equos Research Co Ltd Personal digital assistant
WO2008149558A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Apparatus control device and apparatus control method
WO2014171465A1 (en) * 2013-04-16 2014-10-23 京セラ株式会社 Device, device control method and control program, and system
JP2016530049A (en) * 2013-09-13 2016-09-29 株式会社村田製作所 Heart monitoring system
WO2016174839A1 (en) * 2015-04-28 2016-11-03 京セラ株式会社 Electronic device and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016151A1 (en) * 2006-08-04 2008-02-07 Tokyo Metropolitan Organization For Medical Research Fetal movement information processing device and fetal movement information processing method
JP2008229092A (en) * 2007-03-22 2008-10-02 Equos Research Co Ltd Personal digital assistant
WO2008149558A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Apparatus control device and apparatus control method
WO2014171465A1 (en) * 2013-04-16 2014-10-23 京セラ株式会社 Device, device control method and control program, and system
JP2016530049A (en) * 2013-09-13 2016-09-29 株式会社村田製作所 Heart monitoring system
WO2016174839A1 (en) * 2015-04-28 2016-11-03 京セラ株式会社 Electronic device and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038871A (en) * 2018-11-19 2021-06-25 京瓷株式会社 Electronic device
EP3884854A4 (en) * 2018-11-19 2022-12-28 Kyocera Corporation Electronic machine
US11594118B2 (en) 2018-11-19 2023-02-28 Kyocera Corporation Electronic device
CN113226160A (en) * 2018-12-25 2021-08-06 京瓷株式会社 Electronic device

Similar Documents

Publication Publication Date Title
JP6648249B2 (en) Electronic equipment and systems
WO2018198708A1 (en) Holding instrument, measurement device, and measurement method
EP3566036B1 (en) Blood pressure measurement system using force resistive sensor array
JP6228326B1 (en) Portable terminal device, biological information measuring method, and biological information measuring system
JP6636872B2 (en) Electronic equipment and estimation system
WO2017175608A1 (en) Electronic equipment and estimating system
JP6789142B2 (en) Clothing, biometric information measurement method, and biometric information measurement system
TW201438663A (en) Physiology signal sensing device
JP6745696B2 (en) Electronic device, program and control method
JP6815399B2 (en) Electronics and estimation system
JP2023164654A (en) Electronic equipment, system, and program
WO2018100755A1 (en) Biological information measurement device, biological information measurement method, and biological information measurement system
US11594118B2 (en) Electronic device
JP6762375B2 (en) Vehicle equipment, biometric information measurement method, and biometric information measurement system
JP2018114115A (en) Equipment for amusement device, amusement device, biological information measurement method, and biological information measurement system
JP6909343B2 (en) Electronics, programs and control methods
JP2018089000A (en) Biological information measuring device, biological information measuring method, and biological information measuring system
WO2021039318A1 (en) Electronic device
WO2022154019A1 (en) Electronic device
JP7367242B2 (en) Electronic equipment, estimation system, estimation method and estimation program
JP2019058345A (en) Biological information measuring device and biological information measuring method
JP2020044393A (en) Electronic apparatus and estimation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875927

Country of ref document: EP

Kind code of ref document: A1