WO2018099453A1 - 富氧膜组件和冷藏冷冻装置 - Google Patents

富氧膜组件和冷藏冷冻装置 Download PDF

Info

Publication number
WO2018099453A1
WO2018099453A1 PCT/CN2017/114200 CN2017114200W WO2018099453A1 WO 2018099453 A1 WO2018099453 A1 WO 2018099453A1 CN 2017114200 W CN2017114200 W CN 2017114200W WO 2018099453 A1 WO2018099453 A1 WO 2018099453A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
ribs
rich
membrane module
wide
Prior art date
Application number
PCT/CN2017/114200
Other languages
English (en)
French (fr)
Inventor
王磊
毕云龙
王英星
刘浩泉
辛若武
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018099453A1 publication Critical patent/WO2018099453A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation

Definitions

  • the present invention relates to the field of gas separation technology, and in particular to an oxygen-rich membrane module and a refrigerating and freezing device therewith.
  • the refrigerator is a kind of refrigeration equipment that maintains a constant low temperature, and is also a civilian product that keeps food or other items at a constant low temperature and cold state.
  • the refrigerator is a kind of refrigeration equipment that maintains a constant low temperature, and is also a civilian product that keeps food or other items at a constant low temperature and cold state.
  • vacuum preservation or an additional deoxidation device is generally used for low oxygen preservation.
  • the operation of vacuum preservation is usually cumbersome and inconvenient to use; and the deoxidation device usually uses an electrolyte or the like for oxygen removal, the device is complicated and the oxygen removal effect is not obvious.
  • the modified atmosphere preservation technology generally refers to a technique for prolonging the storage life of a food by adjusting the gas atmosphere (gas composition ratio or gas pressure) of the enclosed space in which the storage is located, and the basic principle is: in a certain closed space.
  • a gas atmosphere different from the normal air component is obtained by various adjustment methods to suppress physiological and biochemical processes and microbial activities leading to spoilage of the stored matter (usually the foodstuff).
  • the modified atmosphere preservation will be specifically directed to a modified atmosphere preservation technique that adjusts the proportion of gas components.
  • normal air components include (by volume percent, hereinafter the same): about 78% nitrogen, about 21% oxygen, about 0.939% rare gases ( ⁇ , ⁇ , argon, krypton, xenon, ⁇ ), 0.031% of carbon dioxide, and 0.03% of other gases and impurities (eg, ozone, nitrogen monoxide, nitrogen dioxide, water vapor, etc.).
  • a nitrogen-rich and oxygen-poor fresh gas atmosphere is generally obtained by filling a closed space with a nitrogen-enriched gas to reduce the oxygen content.
  • the nitrogen-enriched gas refers to a gas having a nitrogen content exceeding the nitrogen content in the above-mentioned normal air, for example, the nitrogen content thereof may be 95% to 99% or even higher; and the nitrogen-rich and oxygen-poor preservation
  • the gas atmosphere refers to a gas atmosphere in which the nitrogen content exceeds the above-mentioned nitrogen content in the normal air and the oxygen content is lower than the oxygen content in the above-mentioned normal air.
  • modified atmosphere preservation technology dates back to 1821 when German biologists discovered that fruits and vegetables could reduce metabolism at low oxygen levels. But until now, due to the large size and high cost of nitrogen-making equipment traditionally used for gas-conditioning preservation, the technology is basically limited to use in various large-scale professional storage (the storage capacity is generally at least 30 tons). . It can be said that the appropriate gas regulation technology and corresponding equipment can economically reduce and quiet the air-conditioning system, making it suitable for home or individual users. It is a constant desire of technicians in the field of atmosphere preservation and preservation. A technical problem that can be successfully solved.
  • a further object of the first aspect of the present invention is to provide an oxygen-rich membrane module that is small in volume, high in strength, and has a significant oxygen scavenging effect.
  • An object of the second aspect of the present invention is to overcome at least one of the deficiencies of existing refrigerators, and to provide a refrigerating and freezing apparatus which creatively proposes to use oxygen-rich membrane modules to discharge oxygen in a space of air into the space, thereby
  • the atmosphere in the space is rich in nitrogen and oxygen to promote food preservation.
  • the gas atmosphere reduces the oxygen content of the fruits and vegetables, reduces the aerobic respiration of fruits and vegetables, and ensures the basic respiration and prevents anaerobic respiration of fruits and vegetables. In order to achieve the purpose of long-term preservation of fruits and vegetables.
  • an oxygen-rich membrane module comprising:
  • a support frame having first and second surfaces parallel to each other, and formed to extend over the first surface, extend over the second surface, and extend through the support frame to communicate the first a plurality of gas flow channels having a surface and the second surface, the plurality of gas flow channels collectively forming an oxygen-rich gas collection chamber;
  • Two oxygen-rich film layers are respectively disposed on the first surface and the second surface of the support frame, each of the oxygen-rich film layers being disposed such that oxygen in a space flow around the oxygen-rich membrane module is relative to Nitrogen enters the oxygen-rich gas collection chamber more through the oxygen-rich membrane layer.
  • the support frame includes a bleed hole in communication with the plurality of gas flow passages to allow oxygen-rich gas in the oxygen-rich gas collection chamber to be output.
  • the support frame further includes:
  • first ribs disposed longitudinally spaced apart from the inside of the bezel and extending in a lateral direction, one side surface of the plurality of first ribs forming the first surface;
  • the plurality of first ribs include: a plurality of first wide ribs spaced apart from each other, and a plurality of first narrow ribs disposed between two adjacent first wide ribs;
  • the plurality of second ribs include: a plurality of second wide ribs spaced apart from each other, and a plurality of second narrow ribs disposed between adjacent ones of the second wide ribs;
  • Each of the first wide ribs is recessed inwardly from a side surface on which the first surface is formed to form a first groove;
  • Each of the second wide ribs is recessed inwardly from a side surface on which the second surface is formed to form a second groove.
  • a portion of the surface of each of the first wide ribs facing away from the first surface extends toward the second rib to be flush with the second surface and is flat from the second surface
  • the portion of the surface is recessed inwardly to form a third trench; wherein the third trench communicates with a portion where the second trench intersects to form a cross trench;
  • a portion of the plurality of second wide ribs at least one of the second wide ribs facing away from the second surface extends toward the first rib to be flush with the first surface, and The partial surface flushed with the first surface is recessed inward to form a fourth trench; wherein the fourth trench communicates with a portion where the first trench intersects to form a cross trench.
  • the number of the first wide ribs is two, and each of the second wide ribs is divided into three equal parts in the longitudinal direction;
  • the number of the second wide rib plates is four or more, which are arranged at equal intervals in the lateral direction;
  • the air vent is disposed on a lateral side of the frame in a longitudinal middle portion of the frame.
  • a side surface of the plurality of second narrow ribs adjacent to the air venting hole forming the second surface is formed with a groove extending in the lateral direction and aligned with the center of the air venting hole to enlarge the The amount of intake air in the air vent.
  • the two sides of the circumferential inner side of the frame are respectively indented flush with the first surface and the second surface to respectively form mounting grooves on both side surfaces of the frame, each of the rich An oxygen film layer is embedded in one of the mounting grooves;
  • the two side surfaces of the frame are respectively recessed at a periphery of the mounting groove to form a loop groove for filling the sealant to seally mount each of the oxygen-rich film layers in one of the mounting grooves. in.
  • the edge of one side surface of the first rib forming the first surface forms a chamfer
  • the edge of one side surface of the second rib forming the second surface forms a chamfer.
  • a refrigerating and freezing apparatus comprising:
  • tank body wherein the tank body defines a storage space, and the storage space is provided with an atmosphere preservation space;
  • An air pump whose inlet end communicates with the oxygen-rich gas collecting chamber of the oxygen-rich membrane module via a pipeline to pump gas permeating into the oxygen-rich gas collecting chamber to the outside of the modified atmosphere .
  • the oxygen-rich membrane module of the present invention is specifically designed to form a plurality of gas flow passages extending over the first surface, extending over the second surface, and extending through the support frame to communicate the first surface and the second surface, respectively. And the plurality of gas flow channels collectively form an oxygen-rich gas collecting chamber, and by providing an oxygen-rich film layer on the first surface and the second surface of the support frame, thereby providing a multi-channel oxygen-rich gas collecting chamber Flat type oxygen-rich membrane module.
  • the support frame of the present invention is provided with a plurality of first ribs extending longitudinally and extending in the lateral direction inside the frame and a plurality of laterally spaced and longitudinally extending one side surfaces of the plurality of first ribs
  • the second ribs thus ensure the continuity of the air flow passage on the one hand, and greatly reduce the volume of the support frame on the other hand, and greatly enhance the strength of the support frame.
  • the above structure of the support frame ensures that the oxygen-rich film layer can obtain sufficient support, and can maintain a good flatness even in the case of a large negative pressure inside the oxygen-rich gas collecting chamber, thereby ensuring the oxygen-rich membrane module. The service life.
  • the present invention further enhances the strength of the support frame by providing a plurality of first wide ribs and a plurality of second wide ribs, further ensuring sufficient support of the oxygen-rich film layer. And, the present invention further by the first wide rib and the first The surface of the two wide ribs is provided with a groove structure to prevent gas blockage and increase the gas conduction rate under the condition that the negative pressure inside the oxygen-rich gas collecting chamber is large, thereby improving the oxygen separation effect of the oxygen-rich membrane module.
  • the present invention expands the suction hole by forming a groove extending in the lateral direction and aligned with the center of the suction hole on a side surface of the plurality of second narrow ribs adjacent to the suction hole formed on the second surface
  • the amount of intake air further increases the air conduction rate, thereby further enhancing the oxygen separation effect of the oxygen-rich membrane module.
  • the present invention can realize the installation of the oxygen-rich film layer on the frame conveniently, quickly and reliably by forming the mounting groove and the loop groove on the frame of the support frame, and ensuring the airtightness of the oxygen-rich membrane module. .
  • the refrigerating and freezing device of the invention has an oxygen-rich membrane module and an air pump, and the air pump can make the inner pressure of the oxygen-rich membrane smaller than the outside pressure, thereby forming a gas atmosphere rich in nitrogen and oxygen in the atmosphere of the modified atmosphere to facilitate food preservation.
  • the gas atmosphere reduces the oxygen content of the fruit and vegetable storage space, reduces the aerobic respiration of fruits and vegetables, and ensures the basic respiration, preventing the fruits and vegetables from performing anaerobic respiration, thereby achieving the purpose of long-term preservation of fruits and vegetables.
  • FIG. 1 is a schematic structural view of an oxygen-rich membrane module in accordance with one embodiment of the present invention.
  • Figure 2 is a schematic exploded view of the oxygen-rich membrane module of Figure 1;
  • Figure 3 is a schematic structural view of the support frame shown in Figure 2;
  • Figure 4 is an enlarged schematic view of the area A in Figure 3;
  • Figure 5 is a schematic structural view of the support frame shown in Figure 2 viewed from another angle;
  • Figure 6 is an enlarged schematic view of a region B in Figure 5;
  • Figure 7 is a schematic cross-sectional view taken along line C-C of Figure 5;
  • Figure 8 is a schematic layout configuration diagram of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • Figure 9 is a schematic structural view of the refrigerating and freezing apparatus shown in Figure 8 viewed from another angle;
  • Figure 10 is a schematic partial structural view of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • Figure 11 is a schematic exploded view of the structure shown in Figure 10.
  • an oxygen-rich membrane module 100 in accordance with an embodiment of the present invention may generally include a support frame 110 and an oxygen-rich membrane layer 120 disposed on the support frame 110.
  • the oxygen-rich film layer 120 may comprise one or more layers of oxygen-rich film.
  • Oxygen-rich membranes are permeable to all gases, except that different gases have different degrees of penetration. Gas permeation through the oxygen-rich membrane is a complex process. The permeation mechanism is generally that the gas molecules are first adsorbed onto the surface of the oxygen-rich membrane, then diffused in the oxygen-rich membrane, and finally desorbed from the other side of the oxygen-rich membrane. .
  • the oxygen-rich membrane separation technique relies on the difference in dissolution and diffusion coefficients of different gases in the oxygen-rich membrane to achieve gas separation.
  • a gas having a relatively high penetration rate such as oxygen, hydrogen, helium, hydrogen sulfide, carbon dioxide or the like is passed through the oxygen-rich membrane.
  • the gas-enriched membrane is enriched on the permeate side, and a gas having a relatively slow permeation rate such as nitrogen, carbon monoxide or the like is retained on the retained side of the oxygen-rich membrane to be enriched to achieve the purpose of the mixed gas separation.
  • FIG. 3 is a schematic structural view of the support frame 110 shown in FIG. 2;
  • FIG. 4 is an enlarged schematic view of the A area of FIG. 3; and
  • FIG. 5 is a schematic structural view of the support frame 110 shown in FIG. 2 from another angle;
  • Figure 6 is an enlarged schematic view of a region B in Figure 5;
  • Figure 7 is a schematic cross-sectional view taken along line CC of Figure 5.
  • the support frame 110 has a first surface 111 and a second surface 112 that are parallel to each other.
  • the support frame 110 is formed with a plurality of air flow passages 113 extending over the first surface 111, extending over the second surface 112, and penetrating the support frame 110 to communicate the first surface 111 and the second surface 112.
  • the plurality of airflow passages 113 include a plurality of first airflow passages extending on the first surface 111, a plurality of second airflow passages extending on the second surface 112, and through the support frame 110 to communicate with the first A plurality of third airflow passages of the surface 111 and the second surface 112.
  • the support frame 110 is formed with a plurality of first air flow passages extending on the first surface 111 and a plurality of second air flow passages extending on the second surface 112, and the first air flow passage and the second air flow passage The channels are connected by a third air flow passage. All of the gas flow passages 113 together form an oxygen-rich gas collection chamber.
  • the number of the oxygen-rich film layers 120 is two, and the two oxygen-rich film layers 120 are respectively laid on the first surface 111 and the second surface 112 of the support frame 110.
  • the oxygen-rich membrane layer 120 is configured such that oxygen in the space gas stream surrounding the oxygen-enriched membrane module 100 passes through the oxygen-enriched membrane layer 120 more into the oxygen-rich gas collection chamber relative to the nitrogen therein.
  • the support frame 110 includes a bleed hole 101 in communication with the aforementioned plurality of gas flow passages 113 to allow the oxygen-rich gas in the oxygen-rich gas collection chamber to be output.
  • the oxygen-rich gas collection chamber is in a negative pressure state, so that oxygen in the air outside the oxygen-rich membrane module 100 continuously passes through the oxygen-rich membrane layer 120 to enter the oxygen-rich gas.
  • the chamber is collected such that the outside air of the oxygen-enriched membrane module 100 forms a nitrogen-rich atmosphere.
  • the support frame 110 can be generally rectangular in shape as a whole.
  • the support frame 110 can include a bezel 102, a plurality of first ribs 1110, and a plurality of second ribs 1120.
  • the plurality of first ribs 1110 are longitudinally spaced apart from the inside of the bezel 102 and extend in the lateral direction, and one side surface of the plurality of first ribs 1110 forms a first surface 111.
  • a plurality of second ribs 1120 in the plurality of first ribs The other side surface of the 1110 is laterally spaced and extends in the longitudinal direction, and a side surface of the plurality of second ribs 1120 away from the first rib 1110 forms a second surface 112.
  • the plurality of second ribs 1120 are disposed on one side surface of the plurality of first ribs 1110.
  • the surfaces of the plurality of first ribs 1110 and the plurality of second ribs 1120 are respectively formed with a first surface 111 and a second surface 112; that is, the plurality of first ribs 1110 and the plurality of second ribs
  • the opposite surfaces of the plate 1120 form a first surface 111; the surfaces of the plurality of second ribs 1120 and the plurality of first ribs 1110 opposite each other form a second surface 112.
  • the plurality of air flow passages 113 are formed between the adjacent first ribs 1110, between the adjacent second ribs 1120, and between the adjacent first ribs 1110 and the second ribs 1120.
  • a gap between two adjacent first ribs 1110 forms a first air flow passage extending on the first surface 111
  • a gap between two adjacent second ribs 1120 is formed on the second surface 112.
  • the upper airflow passage extending upward, the gap between the adjacent first ribs 1110 and the second ribs 1120 forms a third airflow passage that penetrates the first surface 111 and the second surface 112 through the support frame 110. That is, the intersecting structure formed by all of the first ribs 1110 and all of the second ribs 1120 forms the aforementioned plurality of air flow passages 113.
  • the one side surface and the other side surface of the plurality of first ribs 1110 refer to two surfaces of the first rib 1110 that are neither facing the lateral direction nor facing the longitudinal direction; that is, the first One side surface and the other side surface of one rib 1110 refer to two surfaces of the first rib 1110 that are neither directed toward the direction in which they extend nor toward the direction in which they are arranged.
  • one side surface and the other side surface of the plurality of second ribs 1120 respectively refer to two surfaces of the second rib 1120 that are neither facing laterally nor toward the longitudinal direction; that is, the second One side surface and the other side surface of the rib 1120 refer to two surfaces of the second rib 1120 which are neither directed toward the direction in which they extend nor toward the direction in which they are arranged.
  • the support frame 110 of the present invention is provided with a plurality of first ribs 1110 extending in the longitudinal direction and extending in the lateral direction inside the frame 102 and laterally spaced and longitudinally extending on one side surface of the plurality of first ribs 1110.
  • the plurality of second ribs 1120 ensure the continuity of the air flow passage 113 on the one hand, and greatly reduce the volume of the support frame 110 on the other hand, and greatly enhance the strength of the support frame 110.
  • the above structure of the support frame 110 ensures that the oxygen-rich film layer 120 can obtain sufficient support, and can maintain a good flatness even when the negative pressure inside the oxygen-rich gas collecting chamber is large, thereby ensuring oxygen enrichment.
  • the service life of the membrane module 100 is provided with a plurality of first ribs 1110 extending in the longitudinal direction and extending in the lateral direction inside the frame 102 and laterally spaced and longitudinally extending on one side surface of the plurality of first ribs 1110.
  • the plurality of first ribs 1110 can include a plurality of first narrow ribs 1111 and a plurality of first wide ribs 1112.
  • a plurality of first wide ribs 1112 are spaced apart, and a plurality of first narrow ribs 1111 are disposed between adjacent two first wide ribs 1112.
  • the plurality of second ribs 1120 may include a plurality of second narrow ribs 1121 and a plurality of second wide ribs 1122, and the plurality of second wide ribs 1122 are spaced apart, adjacent to the two second wide ribs 1122 A plurality of second narrow ribs 1121 are disposed therebetween.
  • width and “narrow” herein are relative, that is, the width of the first wide rib 1112 is wider than the width of the first narrow rib 1111, specifically, the first wide rib
  • the width of the plate 1112 may be about 2 to 3 times the width of the first narrow rib 1111; the second wide rib
  • the width of the 1122 is wider than the width of the second narrow rib 1121.
  • the width of the second wide rib 1122 may be about 2 to 3 times the width of the second narrow rib 1121.
  • the present invention further enhances the strength of the support frame 110 by providing a plurality of first wide ribs 1112 and a plurality of second wide ribs 1122.
  • each of the first wide ribs 1112 is recessed inwardly from a side surface on which the first surface 111 is formed to form a first trench 12; each second wide rib 1122 forms a second surface therefrom One side surface of 112 is recessed inward to form a second groove 22.
  • the first trench 12 faces the first surface 111
  • the second trench 22 faces the second surface 112
  • the first trench 12 and the second trench 22 are mutually Do not interfere.
  • the present invention improves the internal network by providing a groove structure on the surfaces of the first wide rib 1112 and the second wide rib 1122, thereby ensuring that the thickness of the support frame 110 is small (or small).
  • the connectivity of the lattice structure Therefore, even in the case where the negative pressure inside the oxygen-rich gas collecting chamber is large, gas blocking can be prevented and the gas guiding rate can be increased.
  • the first trench 12 can be formed over the entire length of the first wide rib 1112; the second trench 22 is formed over the entire length of the second wide rib 1122. In an alternative embodiment, the first trench 12 may also be formed only on one or more sections of the first wide rib 1112; or formed on one or more sections of the second wide rib 1122 Two grooves 22.
  • a portion of the surface of each first wide rib 1112 that faces away from the first surface 111 extends toward the second rib 1120 to be flush with the second surface 112 and is flush with the second surface 112.
  • the portion of the surface is recessed inwardly to form a third trench 14; the third trench 14 communicates with a portion where the second trench 22 intersects to form a cross trench 23.
  • a portion of the plurality of second wide ribs 1122 facing away from the second surface 112 extends toward the first rib 1110 to be flush with the first surface 111 and from the first surface 111
  • the portion of the flush surface is recessed inwardly to form a fourth groove 25; wherein the portion where the fourth groove 25 intersects the first groove 12 communicates to form the cross groove 13.
  • one side surface of the first wide rib 1112 forms a first surface 111, and the aforementioned partial surface of the other side forms a second surface 112; one side surface of the second wide rib 1122 forms a second surface 112, the aforementioned partial surface of the other side forms the first surface 111.
  • the present invention provides a groove structure on both side surfaces of the first wide rib 1112 and/or the second wide rib 1122, and the one side groove of the first wide rib 1112 intersects the second groove 22 The parts are connected to communicate with a portion of the second wide rib 1122 that intersects with the first groove 12, thereby further improving the connectivity of the mesh structure, which is more advantageous for gas drainage and preventing gas blockage.
  • the first wide ribs 1112 can be two in number, which generally divides each second wide rib 1122 into three equal divisions in the longitudinal direction. Ten or so first narrow ribs 1111 may be disposed between two adjacent first wide ribs 1112.
  • the number of the second wide ribs 1122 is four or more, which are arranged at equal intervals in the lateral direction.
  • the number of second wide ribs 1122 is preferably ten, as shown in FIG.
  • the number of the second wide ribs 1122 in which the fourth grooves 25 are formed is four, as shown in FIG. Two are located in the middle of the frame 102, and two are located on the lateral sides of the frame 102, respectively. 4 to 6 second narrow ribs 1121 may be disposed between two adjacent second wide ribs 1122.
  • the air vent 101 may be disposed to communicate with both the first airflow passage extending over the first surface 111 and the second airflow passage extending over the second surface 112.
  • the center of the air vent 101 is in the same plane as the interface between the first rib 1110 and the second rib 1120 to facilitate the circulation of the gas path inside the oxygen-rich gas collecting chamber.
  • the air vent 101 may be disposed on a lateral side of the bezel 102 in the longitudinal middle portion of the bezel 102. This arrangement is equivalent to pumping air from the center of the oxygen-rich membrane module 100, which facilitates uniform gas permeability of the oxygen-rich membrane layer 120.
  • the air vent 101 may be a stepped hole or a stepped hole to ensure airtightness of the joint portion when it is connected to the air pump through the hose.
  • a side surface of the plurality of second narrow ribs 1121 adjacent to the air vent 101 forming the second surface 112 is formed with a groove 21 extending in the lateral direction and aligned with the center of the air vent 101 to enlarge the air vent
  • the intake air amount of 101 further increases the air conduction rate, thereby further enhancing the oxygen separation effect of the oxygen-rich membrane module 100.
  • the edge of one side surface of the first rib 1110 forming the first surface 111 forms a chamfer; the edge of the one surface of the second rib 1120 forming the second surface 112 forms a chamfer, thereby reducing the number
  • the contact area between the rib 1110 and the second rib 1120 and the oxygen-rich film layer 120 further enhances the gas flow inside the oxygen-rich gas collecting chamber.
  • the circumferentially inner side surfaces of the frame 102 are respectively recessed flush with the first surface 111 and the second surface 112 to form a mounting groove 114 on each side surface of the frame 102, each rich The oxygen film layer 120 is embedded in a mounting groove 114.
  • Both side surfaces of the bezel 102 are respectively recessed in the periphery of the mounting recess 114 to form a loop groove 115 for filling the sealant 130 to sealingly mount the oxygen-rich film layer 120 in the mounting recess 114.
  • the airtightness of 100 allows a sufficient pressure difference to be formed inside and outside the oxygen-rich film layer 120.
  • the sealant should ensure food grade standards, that is, the sealant does not produce odor and harmful volatile substances.
  • the oxygen-rich film layer 120 may be pre-fixed in the mounting groove 114 with a double-sided adhesive 140, and then a ring of sealant is filled in the ring groove 115. 130 to sealingly mount the oxygen-rich film layer 120 in the mounting groove 114.
  • the plurality of first ribs 1110 and the plurality of second ribs 1120 may be a single piece; in an alternative embodiment, the plurality of second ribs 1120 may be combined with the foregoing plurality of A rib 1110 may also be a separate plate member, and the plurality of second ribs 1120 may be adhered to the inner side surfaces of the plurality of first ribs 1110, for example.
  • the support frame 110 can be made of plastic.
  • the support frame 110 is preferably integrally injection molded from plastic.
  • the oxygen-enriched membrane module 100 of the present invention is mainly used to achieve separation of air components, by which the content of oxygen or nitrogen or carbon dioxide in the air can be adjusted and applied to different applications (for example; an oxygen-rich environment; a ventilator or Fresh or keep alive or oxygen-rich water, low-oxygen environment; modified atmosphere or flame retardant environment; nitrogen-rich environment; rich carbon dioxide environment, etc.). Since the oxygen-rich membrane module 100 of the embodiment of the present invention is small in volume, it is very suitable for food preservation of a refrigerator.
  • the present invention also provides a refrigerating and freezing apparatus.
  • 8 is a schematic structural view of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic structural view of the refrigerating and freezing apparatus shown in FIG. 8 from another angle
  • FIG. 10 is a view of a refrigerating and freezing apparatus shown in FIG. 8 according to an embodiment of the present invention.
  • Fig. 11 is a schematic exploded view of the structure shown in Fig. 10.
  • the refrigerating and freezing apparatus according to the embodiment of the present invention may include a casing 200, a door body (not shown), an oxygen-rich membrane module 100, an air pump 41, and a refrigeration system.
  • a storage space 211 and a compressor compartment 240 are defined in the casing 200.
  • the case 200 may include a liner 210 within which a storage space 211 is defined.
  • the door body is rotatably mounted to the box body 200 and configured to open or close the storage space 211 defined by the box body 200.
  • a storage container is disposed in the storage space 211, and the storage container has a modified atmosphere.
  • the atmosphere fresh-keeping space can be a closed space or an approximately closed space.
  • the storage container is preferably a drawer assembly.
  • the storage container can include a drawer body 220 and a drawer body 230.
  • the drawer cylinder 220 can have a forward opening and is disposed within the storage space 211.
  • the drawer body 230 is slidably disposed in the drawer body 220 to operatively withdraw and insert the drawer body 220 outwardly from the forward opening of the drawer body 220.
  • the refrigeration system may be a refrigeration cycle system composed of a compressor, a condenser, a throttle device, and an evaporator.
  • the compressor can be mounted in the compressor block 240.
  • the evaporator is configured to provide cooling directly or indirectly into the storage space 211.
  • the space around the oxygen-rich membrane module 100 is in communication with the atmosphere-preserving space.
  • the oxygen in the air of the modified atmosphere can pass through the oxygen-rich membrane layer 120 more into the oxygen-rich gas collection chamber relative to the nitrogen therein.
  • An air pump 41 can be disposed within the compressor block 240 to take full advantage of the compressor bed 240 space. The air pump 41 does not occupy other places, so the extra volume of the refrigerating and freezing device is not increased, and the structure of the refrigerating and freezing device can be made compact.
  • the inlet end of the air pump 41 is in communication with the oxygen-enriched gas collection chamber of the oxygen-rich membrane assembly 100 via line 50 to evacuate gas that has passed through the oxygen-enriched gas collection chamber to the outside of the storage container.
  • the air pump 41 is pumped outward to make the pressure of the oxygen-rich gas collection chamber smaller than the pressure of the surrounding space of the oxygen-rich membrane module 100. Further, the oxygen in the space surrounding the oxygen-rich membrane module 100 can be made. Enter the oxygen-rich gas collection chamber. Since the air-conditioning space is in communication with the space around the oxygen-enriched membrane module 100, the air in the atmosphere can enter the space around the oxygen-rich membrane module 100, thereby allowing oxygen in the air in the atmosphere to enter the oxygen-rich gas. The chamber is collected to obtain a gas atmosphere rich in nitrogen and oxygen in the atmosphere of the modified atmosphere to facilitate food preservation. In some embodiments, as shown in FIGS.
  • the oxygen-rich membrane module 100 can be disposed on the barrel wall of the drawer cylinder 220, preferably horizontally disposed on the top wall of the drawer cylinder 220.
  • a receiving cavity 221 is disposed in the top wall of the drawer cylinder 220 to accommodate the oxygen-rich membrane module 100.
  • At least one first venting hole 222 and at least one second venting hole 223 communicating with the accommodating cavity 221 are defined in a wall surface between the accommodating cavity 221 of the drawer cylinder 220 and the air-conditioning space.
  • the first vent hole 222 is spaced apart from the second vent hole 223 to communicate the accommodating cavity 211 and the atmosphere preservation space at different positions, respectively.
  • the first vent hole 222 and the second vent hole 223 are both small holes, and the number may be plural.
  • the refrigerating and freezing device may further include a fan 60 disposed in the accommodating chamber 221, configured to cause the gas in the conditioned space to pass through the first pass.
  • the air hole 222 enters the accommodating cavity 221, and the gas in the accommodating cavity 221 enters the air-conditioning space through the second vent hole 223.
  • the fan 60 is preferably a centrifugal fan disposed at the first venting opening 222 in the accommodating chamber 221. That is, the centrifugal fan is located above the at least one first vent 222 and the air inlet is facing the first vent 222.
  • the air outlet of the centrifugal fan can face the oxygen-rich membrane module 100.
  • the oxygen-rich membrane module 100 is disposed over the at least one second vent 223 and such that each oxygen-rich membrane layer 120 of the oxygen-enriched membrane module 100 is parallel to the top wall of the barrel 22.
  • the first ventilation hole 222 is disposed at the front of the top wall, and the second ventilation hole 223 is disposed at the rear of the top wall. That is, the centrifugal fan is disposed at the front of the accommodating chamber 221, and the oxygen-rich membrane module 100 is disposed at the rear of the accommodating chamber 221.
  • the top wall of the drawer cylinder 220 includes a main plate portion 224 and a cover portion 225.
  • the upper surface of the main plate portion 224 forms a recessed groove, and the cover portion 225 is covered in the recessed groove to form the receiving cavity 221.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种富氧膜组件(100),包括:支撑框架(110),其具有相互平行的第一表面(111)和第二表面(112),且形成有分别在第一表面(111)、第二表面(112)上延伸并贯穿支撑框架(110)且连通第一表面(111)与第二表面(112)的多个气流通道(113),多个气流通道(113)共同形成富氧气体收集腔;和两个富氧膜层(120),分别铺设在支撑框架(110)的第一表面(111)和第二表面(112)上,每个富氧膜层(120)配置成使得富氧膜组件(100)周围空间气流中的氧气相对于其中的氮气更多地透过富氧膜层(120)进入富氧气体收集腔。

Description

富氧膜组件和冷藏冷冻装置
本申请要求了申请日为2016年12月02日,申请号为201611097449.X,发明名称为“富氧膜组件和冷藏冷冻装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及气体分离技术领域,特别是涉及一种富氧膜组件和具有其的冷藏冷冻装置。
背景技术
冰箱是保持恒定低温的一种制冷设备,也是一种使食物或其他物品保持恒定低温冷态的民用产品。随着生活品质的提高,消费者对储存食品的保鲜的要求也越来越高,特别是对食物的色泽、口感等的要求也越来越高。因此,储存的食物也应当保证在储存期间,食物的色泽、口感、新鲜程度等尽可能的保持不变。
在冰箱的保鲜技术中,氧与冰箱中食品的氧化作用、呼吸作用都密切相关。食品的呼吸越慢,食品的氧化作用越低,保鲜时间也就越长。降低空气中的氧气含量,对食品保鲜具有明显的作用。
目前,为了降低冰箱中氧气的含量,现有技术中通常利用真空保鲜或者额外设置脱氧装置进行低氧保鲜。然而,真空保鲜的操作通常较为繁琐,使用十分不便;而脱氧装置通常利用电解质等进行除氧,装置较为复杂且除氧效果并不明显。
气调保鲜技术一般性地是指通过调节储存物所处封闭空间的气体氛围(气体成分比例或气体压力)的方式来来延长食品贮藏寿命的技术,其基本原理为:在一定的封闭空间内,通过各种调节方式得到不同于正常空气成分的气体氛围,以抑制导致储存物(通常为食材)腐败变质的生理生化过程及微生物的活动。特别地,在本申请中,所讨论的气调保鲜将专门针对于对气体成分比例进行调节的气调保鲜技术。
本领域技术人员均知晓,正常空气成分包括(按体积百分比计,下文同):约78%的氮气,约21%的氧气,约0.939%的稀有气体(氦、氖、氩、氪、氙、氡)、0.031%的二氧化碳,以及0.03%的其他气体和杂质(例如,臭氧、一氧化氮、二氧化氮、水蒸气等)。在气调保鲜领域,通常采用向封闭空间充入富氮气体来降低氧气含量的方式来获得富氮贫氧的保鲜气体氛围。这里,本领域技术人员均知晓,富氮气体是指氮气含量超过上述正常空气中氮气含量的气体,例如其中的氮气含量可为95%~99%,甚至更高;而富氮贫氧的保鲜气体氛围是指氮气含量超过上述正常空气中氮气含量、氧气含量低于上述正常空气中氧气含量的气体氛围。
气调保鲜技术的历史虽然可追溯到1821年德国生物学家发现水果蔬菜在低氧水平时能减少代谢作用开始。但直到目前为止,由于传统上用于气调保鲜的制氮设备体积庞大、成本高昂,导致该技术基本上还是局限于使用在各种大型的专业贮藏库上(储藏容量一般至少30吨以上)。可以说,采用何种适当的气体调节技术和相应装置才可能经济地将气调系统小型化、静音化,使其适用于家庭或个人用户,是气调保鲜领域技术人员一直渴望解决但始终未 能成功解决的技术难题。
发明内容
本发明第一方面的一个目的是针对现有技术存在的上述缺陷,提供一种富氧膜组件,其适于应用在冷藏冷冻装置内部,以降低冷藏冷冻装置储物空间中的氧气含量。
本发明第一方面一个进一步的目的是要提供一种体积小、强度高、且除氧效果明显的富氧膜组件。
本发明第二方面的一个目的旨在克服现有冰箱的至少一个缺陷,提供一种冷藏冷冻装置,其创造性地提出了利用富氧膜组件将一空间内空气中的氧气排出该空间,从而在该空间内获得富氮贫氧以利于食物保鲜的气体氛围,该气体氛围通过降低果蔬保存空间内氧气的含量,降低果蔬有氧呼吸的强度,同时保证基础的呼吸作用,防止果蔬进行无氧呼吸,从而达到果蔬长期保鲜的目的。
根据本发明的第一方面,提供了一种富氧膜组件,其包括:
支撑框架,其具有相互平行的第一表面和第二表面,且形成有分别在所述第一表面上延伸、在所述第二表面上延伸,以及贯穿所述支撑框架以连通所述第一表面与所述第二表面的多个气流通道,所述多个气流通道共同形成富氧气体收集腔;和
两个富氧膜层,分别铺设在所述支撑框架的第一表面和第二表面上,每个所述富氧膜层配置成使得所述富氧膜组件周围空间气流中的氧气相对于其中的氮气更多地透过所述富氧膜层进入所述富氧气体收集腔。
可选地,所述支撑框架包括与所述多个气流通道连通的抽气孔,以允许所述富氧气体收集腔中的富氧气体被输出。
可选地,所述支撑框架还包括:
边框;
在所述边框内部沿纵向间隔设置且沿横向延伸的多个第一肋板,所述多个第一肋板的一侧表面形成所述第一表面;以及
在所述多个第一肋板的另一侧表面沿横向间隔设置且沿纵向延伸的多个第二肋板,所述多个第二肋板的远离所述第一肋板的一侧表面形成所述第二表面,
其中相邻的所述第一肋板之间、相邻的所述第二肋板之间、以及相邻的所述第一肋板与所述第二肋板之间的间隙形成所述多个气流通道。
可选地,所述多个第一肋板包括:间隔设置的多个第一宽肋板,相邻两个所述第一宽肋板之间设置多个第一窄肋板;
所述多个第二肋板包括:间隔设置的多个第二宽肋板,相邻两个所述第二宽肋板之间设置多个第二窄肋板;其中
每个所述第一宽肋板自其形成所述第一表面的一侧表面向内凹陷形成第一沟槽;
每个所述第二宽肋板自其形成所述第二表面的一侧表面向内凹陷形成第二沟槽。
可选地,每个所述第一宽肋板的背离所述第一表面的部分表面朝所述第二肋板延伸至与所述第二表面平齐,且自与所述第二表面平齐的所述部分表面向内凹陷形成第三沟槽;其中所述第三沟槽与所述第二沟槽交叉的部位连通以形成十字沟槽;和/或
所述多个第二宽肋板中至少一个第二宽肋板的背离所述第二表面的部分表面朝所述第一肋板延伸至与所述第一表面平齐,且自与所述第一表面平齐的所述部分表面向内凹陷形成第四沟槽;其中所述第四沟槽与所述第一沟槽交叉的部位连通以形成十字沟槽。
可选地,所述第一宽肋板的数量为两个,其在纵向上将每个所述第二宽肋板分成三等分;
所述第二宽肋板的数量为四个以上,其等间隔地沿横向排列;
所述抽气孔在所述边框的纵向中部设置于所述边框的横向一侧。
可选地,邻近所述抽气孔的多个第二窄肋板的形成所述第二表面的一侧表面上形成有沿横向延伸且与所述抽气孔中心对准的凹槽,以扩大所述抽气孔的进气量。
可选地,所述边框周向内侧的两侧表面分别内陷与所述第一表面和第二表面平齐,以在所述边框的两侧表面分别形成安装凹槽,每个所述富氧膜层嵌入一个所述安装凹槽中;
所述边框的两侧表面分别在所述安装凹槽的周边内陷形成一圈环线槽,用于填充密封胶,以将每个所述富氧膜层密封地安装在一个所述安装凹槽中。
可选地,所述第一肋板形成所述第一表面的一侧表面的边缘形成倒角;
所述第二肋板形成所述第二表面的一侧表面的边缘形成倒角。
根据本发明的第二方面,提供了一种冷藏冷冻装置,其包括:
箱体,所述箱体内限定有储物空间,所述储物空间内设置有气调保鲜空间;
前述任一项所述的富氧膜组件;和
抽气泵,其进口端经由管路与所述富氧膜组件的所述富氧气体收集腔连通,以将透入所述富氧气体收集腔内的气体抽排到所述气调保鲜空间外部。
本发明的富氧膜组件通过将支撑框架特别地设计为形成有分别在第一表面上延伸、在第二表面上延伸,以及贯穿支撑框架以连通第一表面与第二表面的多个气流通道,且使该多个气流通道共同形成富氧气体收集腔,并通过在支撑框架的第一表面和第二表面设置富氧膜层,从而提供了一种具有多通道的富氧气体收集腔的平板型富氧膜组件。
进一步地,本发明的支撑框架通过在其边框内部设置沿纵向间隔且沿横向延伸的多个第一肋板和在多个第一肋板的一侧表面沿横向间隔且沿纵向延伸的多个第二肋板,从而一方面保证了气流通道的连贯性,另一方面大大缩小了支撑框架的体积,并且极大地增强了支撑框架的强度。此外,支撑框架的上述结构保证了富氧膜层能够获得足够的支撑,即使在富氧气体收集腔内部负压较大的情况下也能够始终保持较好的平整度,保证了富氧膜组件的使用寿命。
进一步地,本发明通过设置多个第一宽肋板和多个第二宽肋板,进一步增强了支撑框架的强度,进一步保证富氧膜层获得足够的支撑。并且,本发明通过进一步在第一宽肋板和第 二宽肋板的表面设置沟槽结构,以在富氧气体收集腔内部负压较大的情况下,防止气体阻断,增加导气率,从而提升了富氧膜组件的氧气分离效果。
进一步地,本发明通过在邻近抽气孔的多个第二窄肋板的形成第二表面的一侧表面上形成有沿横向延伸且与抽气孔中心对准的凹槽,从而扩大了抽气孔的进气量,进一步增加了导气率,从而进一步提升富氧膜组件的氧气分离效果。
进一步地,本发明通过在支撑框架的边框上形成安装凹槽和环线槽,从而可实现将富氧膜层方便、快捷、可靠地安装在框架上,并保证了富氧膜组件的气密性。
本发明的冷藏冷冻装置因为具有富氧膜组件和抽气泵,抽气泵可使富氧膜内侧压力小于外侧压力,从而可使气调保鲜空间内形成富氮贫氧以利于食物保鲜的气体氛围,该气体氛围通过降低果蔬保存空间内氧气的含量,降低果蔬有氧呼吸的强度,同时保证基础的呼吸作用,防止果蔬进行无氧呼吸,从而达到果蔬长期保鲜的目的。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的富氧膜组件的示意性结构图;
图2是图1所示富氧膜组件的示意性分解图;
图3是图2所示支撑框架的示意性结构图;
图4是图3中的A区域的放大示意图;
图5是从另一角度观察图2所示支撑框架的示意性结构图;
图6是图5中的B区域的放大示意图;
图7是沿图5中的剖切线C-C截取的示意性剖视图;
图8是根据本发明一个实施例的冷藏冷冻装置的示意性布局结构图;
图9是从另一角度观察图8所示冷藏冷冻装置的示意性结构图;
图10是根据本发明一个实施例的冷藏冷冻装置的示意性局部结构图;
图11是图10所示结构的示意性分解图。
具体实施方式
图1是根据本发明一个实施例的富氧膜组件100的示意性结构图;图2是图1所示富氧膜组件100的示意性分解图。参见图1和图2,根据本发明实施例的富氧膜组件100一般性地可包括:支撑框架110和设置在支撑框架110上的富氧膜层120。
本发明实施例中,富氧膜层120可以包括一层或多层的富氧膜。富氧膜对于所有气体都是可以渗透的,只是不同气体具有不同的渗透程度。气体透过富氧膜是一个复杂的过程,其透过机制一般是气体分子首先被吸附到富氧膜的表面溶解,然后在富氧膜中扩散,最后从富氧膜的另一侧解吸出来。富氧膜分离技术依靠不同气体在富氧膜中溶解和扩散系数的差异来实现气体的分离。当混合气体在一定的驱动力(富氧膜两侧的压力差或压力比)作用下,渗透速率相当快的气体如氧气、氢气、氦气、硫化氢、二氧化碳等透过富氧膜后,在富氧膜的渗透侧被富集,而渗透速率相对慢的气体如氮气、一氧化碳等被滞留在富氧膜的滞留侧被富集从而达到混合气体分离的目的。
图3是图2所示支撑框架110的示意性结构图;图4是图3中的A区域的放大示意图;图5是从另一角度观察图2所示支撑框架110的示意性结构图;图6是图5中的B区域的放大示意图;图7是沿图5中的剖切线C-C截取的示意性剖视图。参见图3至图7,支撑框架110具有相互平行的第一表面111和第二表面112。支撑框架110形成有分别在第一表面111上延伸、在第二表面112上延伸,以及贯穿支撑框架110以连通第一表面111和第二表面112的多个气流通道113。也就是说,该多个气流通道113包括在第一表面111上延伸的多个第一气流通道、在第二表面112上延伸的多个第二气流通道、以及贯穿支撑框架110以连通第一表面111和第二表面112的多个第三气流通道。或者也可以理解为,支撑框架110形成有在第一表面111上延伸的多个第一气流通道和在第二表面112上延伸的多个第二气流通道,且第一气流通道与第二气流通道之间通过第三气流通道连通。所有的气流通道113共同形成富氧气体收集腔。
富氧膜层120的数量为两个,两个富氧膜层120分别铺设在支撑框架110的第一表面111和第二表面112上。富氧膜层120配置成使得富氧膜组件100周围空间气流中的氧气相对于其中的氮气更多地透过富氧膜层120进入富氧气体收集腔。
在一些实施例中,支撑框架110包括与前述多个气流通道113连通的抽气孔101,以允许富氧气体收集腔中的富氧气体被输出。随着富氧气体收集腔中的富氧气体被输出,富氧气体收集腔中处于负压状态,因此富氧膜组件100外侧空气中的氧气会持续透过富氧膜层120进入富氧气体收集腔中,从而使富氧膜组件100外侧空气形成富氮气氛。
在一些实施例中,支撑框架110整体上可大致呈矩形框架。
在一些实施例中,支撑框架110可包括:边框102,多个第一肋板1110以及多个第二肋板1120。前述多个第一肋板1110在边框102内部沿纵向间隔设置且沿横向延伸,且前述多个第一肋板1110的一侧表面形成第一表面111。多个第二肋板1120在前述多个第一肋板 1110的另一侧表面沿横向间隔设置且沿纵向延伸,且前述多个第二肋板1120的远离第一肋板1110的一侧表面形成第二表面112。也就是说,前述多个第二肋板1120设置在前述多个第一肋板1110的一侧表面上。前述多个第一肋板1110和前述多个第二肋板1120相背的表面分别形成第一表面111和第二表面112;即,前述多个第一肋板1110和前述多个第二肋板1120相背的表面形成第一表面111;前述多个第二肋板1120和前述多个第一肋板1110相背的表面形成第二表面112。相邻的第一肋板1110之间、相邻的第二肋板1120之间、以及相邻的第一肋板1110与第二肋板1120之间的间隙形成前述多个气流通道113。其中,两个相邻的第一肋板1110之间的间隙形成在第一表面111上延伸的第一气流通道,两个相邻的第二肋板1120之间的间隙形成在第二表面112上延伸的第二气流通道,相邻的第一肋板1110与第二肋板1120之间的间隙形成贯穿支撑框架110连通第一表面111和第二表面112的第三气流通道。即,由所有第一肋板1110和所有第二肋板1120形成的交叉结构形成前述多个气流通道113。
在本文中,多个第一肋板1110的一侧表面和另一侧表面分别是指第一肋板1110的既不朝向横向也不朝向纵向的相背离的两个表面;也就是说,第一肋板1110的一侧表面和另一侧表面分别是指第一肋板1110的既不朝向其延伸方向也不朝向其排列方向的两个表面。相应地,多个第二肋板1120的一侧表面和另一侧表面分别是指第二肋板1120的既不朝向横向也不朝向纵向的相背离的两个表面;也就是说,第二肋板1120的一侧表面和另一侧表面分别是指第二肋板1120的既不朝向其延伸方向也不朝向其排列方向的两个表面。
本发明的支撑框架110通过在其边框102内部设置沿纵向间隔且沿横向延伸的多个第一肋板1110和在前述多个第一肋板1110的一侧表面沿横向间隔且沿纵向延伸的多个第二肋板1120,从而一方面保证了气流通道113的连贯性,另一方面大大缩小了支撑框架110的体积,并且极大地增强了支撑框架110的强度。此外,支撑框架110的上述结构保证了富氧膜层120能够获得足够的支撑,即使在富氧气体收集腔内部负压较大的情况下也能够始终保持较好的平整度,保证了富氧膜组件100的使用寿命。在进一步的实施例中,前述多个第一肋板1110可包括:多个第一窄肋板1111和多个第一宽肋板1112。其中多个第一宽肋板1112间隔设置,相邻两个第一宽肋板1112之间设置多个第一窄肋板1111。前述多个第二肋板1120可包括:多个第二窄肋板1121和多个第二宽肋板1122,多个第二宽肋板1122间隔设置,相邻两个第二宽肋板1122之间设置多个第二窄肋板1121。本领域技术人员容易理解,此处的“宽”“窄”是相对而言的,即第一宽肋板1112的宽度比第一窄肋板1111的宽度要宽,具体地,第一宽肋板1112的宽度可为第一窄肋板1111的宽度的2~3倍左右;第二宽肋板 1122的宽度比第二窄肋板1121的宽度要宽,具体地,第二宽肋板1122的宽度可为第二窄肋板1121的宽度的2~3倍左右。本发明通过设置多个第一宽肋板1112和多个第二宽肋板1122,进一步增强了支撑框架110的强度。
在一些实施例中,每个第一宽肋板1112自其形成第一表面111的一侧表面向内凹陷以形成第一沟槽12;每个第二宽肋板1122自其形成第二表面112的一侧表面向内凹陷形成第二沟槽22。本领域技术人员可以理解,在这样的实施例中,第一沟槽12朝向第一表面111,第二沟槽22朝向第二表面112,第一沟槽12和第二沟槽22之间互不干涉。本发明通过在第一宽肋板1112和第二宽肋板1122的表面设置沟槽结构,从而在保证支撑框架110的厚度很小(或者说体积很小)的前提下,提高了其内部网格结构的连通性。从而即使在富氧气体收集腔内部负压较大的情况下,也可防止气体阻断,增加导气率。
在一些实施例中,可在第一宽肋板1112的整个长度上均形成第一沟槽12;在第二宽肋板1122的整个长度上均形成第二沟槽22。在替代性实施例中,也可仅在第一宽肋板1112的一个或多个区段上形成第一沟槽12;或在第二宽肋板1122的一个或多个区段上形成第二沟槽22。
在进一步的实施例中,每个第一宽肋板1112的背离第一表面111的部分表面朝第二肋板1120延伸至与第二表面112平齐,且自与第二表面112平齐的该部分表面向内凹陷形成第三沟槽14;第三沟槽14与第二沟槽22交叉的部位连通以形成十字沟槽23。前述多个第二宽肋板1122中至少一个第二宽肋板1122的背离第二表面112的部分表面朝第一肋板1110延伸至与第一表面111平齐,且自与第一表面111平齐的该部分表面向内凹陷形成第四沟槽25;其中第四沟槽25与第一沟槽12交叉的部位连通以形成十字沟槽13。在这样的实施例中,第一宽肋板1112的一侧表面形成第一表面111,另一侧的前述部分表面形成第二表面112;第二宽肋板1122的一侧表面形成第二表面112,另一侧的前述部分表面形成第一表面111。本发明通过在第一宽肋板1112和/或第二宽肋板1122的两侧表面均设置沟槽结构,且使第一宽肋板1112的一侧沟槽与第二沟槽22交叉的部位连通,使第二宽肋板1122的一侧沟槽与第一沟槽12交叉的部位连通,从而进一步提升了网格结构的连通性,更加有利于气体疏导,防止气体阻断。
在具体的实施例中,第一宽肋板1112的数量可为两个,其在纵向上大致将每个第二宽肋板1122分成三等分。两个相邻的第一宽肋板1112之间可设置10个左右的第一窄肋板1111。第二宽肋板1122的数量为四个以上,其等间隔地沿横向排列。第二宽肋板1122的数量优选为十个,如图3所示。其中形成第四沟槽25的第二宽肋板1122的数量为四个,如图5所示, 两个位于边框102的中部,两个分别位于边框102的横向两侧。两个相邻的第二宽肋板1122之间可设置4~6个左右的第二窄肋板1121。
抽气孔101可设置成与在第一表面111上延伸的第一气流通道和在第二表面112上延伸的第二气流通道均连通。优选地,抽气孔101中心与第一肋板1110和第二肋板1120的交界面处于同一平面,以利于富氧气体收集腔内部气路的流通。
抽气孔101可在边框102的纵向中部设置于边框102的横向一侧。这样设置相当于从富氧膜组件100的中部抽气,有利于富氧膜层120均匀透气。抽气孔101可为台阶孔或者说阶梯孔,以在其通过软管与抽气泵连接时,保证连接部位的气密性。
参见图3,邻近抽气孔101的多个第二窄肋板1121的形成第二表面112的一侧表面上形成有沿横向延伸且与抽气孔101中心对准的凹槽21,以扩大抽气孔101的进气量,进一步增加了导气率,从而进一步提升富氧膜组件100的氧气分离效果。
在一些实施例中,第一肋板1110形成第一表面111的一侧表面的边缘形成倒角;第二肋板1120形成第二表面112的一侧表面的边缘形成倒角,从而可缩小第一肋板1110和第二肋板1120与富氧膜层120之间的接触面积,进一步增强富氧气体收集腔内部的气体流动性。
在一些实施例中,边框102周向内侧的两侧表面分别内陷与第一表面111和第二表面112平齐,以在边框102的两侧表面分别形成一个安装凹槽114,每个富氧膜层120嵌入一个安装凹槽114中。边框102的两侧表面分别在安装凹槽114的周边内陷形成一圈环线槽115,用于填充密封胶130,以将富氧膜层120密封地安装在安装凹槽114中。本发明通过在支撑框架110的边框102上形成安装凹槽114和环线槽115,从而可实现将富氧膜层120方便、快捷、可靠地安装在支撑框架110上,并保证了富氧膜组件100的气密性,使富氧膜层120内外可以形成足够的压力差。当本发明实施例的富氧膜组件100用于冰箱食品保鲜中时,密封胶要保证食品级标准,即保证密封胶不产生异味及有害挥发性物质。
在一些实施例中,参见图2,为了进一步方便安装,可先用一圈双面胶140将富氧膜层120预固定在安装凹槽114中,之后在环线槽115中填充一圈密封胶130,以将富氧膜层120密封地安装在安装凹槽114中。
在优选的实施例中,前述多个第一肋板1110和前述多个第二肋板1120可为一体件;在替代性实施例中,前述多个第二肋板1120可与前述多个第一肋板1110也可分别为单独的板件,前述多个第二肋板1120例如粘设在前述多个第一肋板1110的内侧表面。
在本发明实施例中,由于支撑框架110的特殊结构可保证其具有足够的强度,因此支撑框架110可由塑料制成。支撑框架110优选由塑料整体注塑成型。
本发明的富氧膜组件100主要用于实现空气组分的分离,通过该组件可以调整空气中氧气或氮气或二氧化碳的含量,进而应用于不同的应用场合(例如;富氧环境;呼吸机或生鲜保活或富氧水等,低氧环境;气调保鲜或阻燃环境;富氮环境;富二氧化碳环境等)。由于本发明实施例的富氧膜组件100体积较小,故十分适合用于冰箱的食品保鲜。
因此,本发明还提供了一种冷藏冷冻装置。图8是根据本发明一个实施例的冷藏冷冻装置的示意性结构图,图9是从另一角度观察图8所示冷藏冷冻装置的示意性结构图;图10是根据本发明一个实施例的冷藏冷冻装置的示意性局部结构图;图11是图10所示结构的示意性分解图。如图8至图11所示,本发明实施例的冷藏冷冻装置可包括箱体200、门体(图中未示出)、富氧膜组件100、抽气泵41和制冷系统。
箱体200内限定有储物空间211和压缩机仓240。具体地,箱体200可包括内胆210,内胆210内限定出储物空间211。门体可转动安装于箱体200,配置成打开或关闭箱体200限定的储物空间211。进一步地,储物空间211内设置有储物容器,储物容器内具有气调保鲜空间。气调保鲜空间可为密闭型空间或近似密闭型空间。储物容器优选为抽屉组件。储物容器可包括抽屉筒体220和抽屉本体230。抽屉筒体220可具有前向开口,且设置于储物空间211内。抽屉本体230可滑动地设置于抽屉筒体220,以从抽屉筒体220的前向开口可操作地向外抽出和向内插入抽屉筒体220。
制冷系统可为由压缩机、冷凝器、节流装置和蒸发器等构成的制冷循环系统。压缩机可安装于压缩机仓240内。蒸发器配置成直接或间接地向储物空间211内提供冷量。
富氧膜组件100周围空间与气调保鲜空间连通。气调保鲜空间的空气中的氧气可相对于其中的氮气更多地透过富氧膜层120进入富氧气体收集腔。抽气泵41可设置于压缩机仓240内,以充分利用压缩机仓240空间。抽气泵41不额外占用其他地方,因此不会增大冷藏冷冻装置的额外体积,可使冷藏冷冻装置的结构紧凑。抽气泵41的进口端经由管路50与富氧膜组件100的富氧气体收集腔连通,以将透入富氧气体收集腔内的气体抽排到储物容器外。
在该实施例中,抽气泵41向外抽气,可使富氧气体收集腔的压力小于富氧膜组件100的周围空间的压力,进一步地,可使富氧膜组件100周围空间内的氧气进入富氧气体收集腔。由于气调保鲜空间与富氧膜组件100周围空间连通,气调保鲜空间内的空气会进入富氧膜组件100周围空间,因此也可使气调保鲜空间内的空气中的氧气进入富氧气体收集腔,从而在气调保鲜空间内获得富氮贫氧以利于食物保鲜的气体氛围。在一些实施例中,如图10和图11所示,富氧膜组件100可设置于抽屉筒体220的筒体壁上,优选地水平地设置于抽屉筒体220的顶壁。具体地,抽屉筒体220的顶壁内设置有容纳腔221,以容置富氧膜组件100。 抽屉筒体220的容纳腔221与气调保鲜空间之间的壁面上开设有与容纳腔221连通的至少一个第一通气孔222和至少一个第二通气孔223。第一通气孔222与第二通气孔223间隔开,以分别在不同位置连通容纳腔211与气调保鲜空间。第一通气孔222和第二通气孔223均为小孔,且数量均可为多个。
在一些实施例中,为了促使气调保鲜空间与容纳腔221内的气体流动,冷藏冷冻装置还可包括风机60,设置于容纳腔221内,配置成促使气调保鲜空间的气体经由第一通气孔222进入容纳腔221,且使容纳腔221内的气体经由第二通气孔223进入气调保鲜空间。风机60优选为离心风机,设置于容纳腔221内第一通气孔222处。也就是说,离心风机位于至少一个第一通气孔222的上方,且进风口正对于第一通气孔222。离心风机的出气口可朝向富氧膜组件100。富氧膜组件100设置于至少一个第二通气孔223的上方且使得富氧膜组件100的每个富氧膜层120平行于筒体22的顶壁。第一通气孔222设置于顶壁前部,第二通气孔223设置于顶壁后部。即,离心风机设置于容纳腔221的前部,富氧膜组件100设置于容纳腔221的后部。
进一步地,抽屉筒体220的顶壁包括主板部224和盖板部225,主板部224的上表面形成凹陷槽,盖板部225盖设于凹陷槽,以形成容纳腔221。
本领域技术人员应该理解,本发明实施例中所称的“横向”、“纵向”等用于表示方位或位置关系的用语是以图1至图6所示的富氧膜组件100或支撑框架110为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种富氧膜组件,其特征在于,包括:
    支撑框架,其具有相互平行的第一表面和第二表面,且形成有分别在所述第一表面上延伸、在所述第二表面上延伸,以及贯穿所述支撑框架以连通所述第一表面与所述第二表面的多个气流通道,所述多个气流通道共同形成富氧气体收集腔;和
    两个富氧膜层,分别铺设在所述支撑框架的第一表面和第二表面上,每个所述富氧膜层配置成使得所述富氧膜组件周围空间气流中的氧气相对于其中的氮气更多地透过所述富氧膜层进入所述富氧气体收集腔。
  2. 根据权利要求1所述的富氧膜组件,其特征在于,
    所述支撑框架包括与所述多个气流通道连通的抽气孔,以允许所述富氧气体收集腔中的富氧气体被输出。
  3. 根据权利要求2所述的富氧膜组件,其特征在于,所述支撑框架还包括:
    边框;
    在所述边框内部沿纵向间隔设置且沿横向延伸的多个第一肋板,所述多个第一肋板的一侧表面形成所述第一表面;以及
    在所述多个第一肋板的另一侧表面沿横向间隔设置且沿纵向延伸的多个第二肋板,所述多个第二肋板的远离所述第一肋板的一侧表面形成所述第二表面,
    其中相邻的所述第一肋板之间、相邻的所述第二肋板之间、以及相邻的所述第一肋板与所述第二肋板之间的间隙形成所述多个气流通道。
  4. 根据权利要求3所述的富氧膜组件,其特征在于,
    所述多个第一肋板包括:间隔设置的多个第一宽肋板,相邻两个所述第一宽肋板之间设置多个第一窄肋板;
    所述多个第二肋板包括:间隔设置的多个第二宽肋板,相邻两个所述第二宽肋板之间设置多个第二窄肋板;其中
    每个所述第一宽肋板自其形成所述第一表面的一侧表面向内凹陷形成第一沟槽;
    每个所述第二宽肋板自其形成所述第二表面的一侧表面向内凹陷形成第二沟槽。
  5. 根据权利要求4所述的富氧膜组件,其特征在于,
    每个所述第一宽肋板的背离所述第一表面的部分表面朝所述第二肋板延伸至与所述第二表面平齐,且自与所述第二表面平齐的所述部分表面向内凹陷形成第三沟槽;其中所述第 三沟槽与所述第二沟槽交叉的部位连通以形成十字沟槽;和/或
    所述多个第二宽肋板中至少一个第二宽肋板的背离所述第二表面的部分表面朝所述第一肋板延伸至与所述第一表面平齐,且自与所述第一表面平齐的所述部分表面向内凹陷形成第四沟槽;其中所述第四沟槽与所述第一沟槽交叉的部位连通以形成十字沟槽。
  6. 根据权利要求5所述的富氧膜组件,其特征在于,
    所述第一宽肋板的数量为两个,其在纵向上将每个所述第二宽肋板分成三等分;
    所述第二宽肋板的数量为四个以上,其等间隔地沿横向排列;
    所述抽气孔在所述边框的纵向中部设置于所述边框的横向一侧。
  7. 根据权利要求6所述的富氧膜组件,其特征在于,
    邻近所述抽气孔的多个第二窄肋板的形成所述第二表面的一侧表面上形成有沿横向延伸且与所述抽气孔中心对准的凹槽,以扩大所述抽气孔的进气量。
  8. 根据权利要求3所述的富氧膜组件,其特征在于,
    所述边框周向内侧的两侧表面分别内陷与所述第一表面和第二表面平齐,以在所述边框的两侧表面分别形成安装凹槽,每个所述富氧膜层嵌入一个所述安装凹槽中;
    所述边框的两侧表面分别在所述安装凹槽的周边内陷形成一圈环线槽,用于填充密封胶,以将每个所述富氧膜层密封地安装在一个所述安装凹槽中。
  9. 根据权利要求3所述的富氧膜组件,其特征在于,
    所述第一肋板形成所述第一表面的一侧表面的边缘形成倒角;
    所述第二肋板形成所述第二表面的一侧表面的边缘形成倒角。
  10. 一种冷藏冷冻装置,其特征在于,包括:
    箱体,所述箱体内限定有储物空间,所述储物空间内设置有气调保鲜空间;
    根据权利要求1至9中任一项所述的富氧膜组件,其周围空间与所述气调保鲜空间连通;和
    抽气泵,其进口端经由管路与所述富氧膜组件的所述富氧气体收集腔连通,以将透入所述富氧气体收集腔内的气体抽排到所述气调保鲜空间外部。
PCT/CN2017/114200 2016-12-02 2017-12-01 富氧膜组件和冷藏冷冻装置 WO2018099453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611097449.X 2016-12-02
CN201611097449.XA CN106766563B (zh) 2016-12-02 2016-12-02 富氧膜组件和冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2018099453A1 true WO2018099453A1 (zh) 2018-06-07

Family

ID=58884050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114200 WO2018099453A1 (zh) 2016-12-02 2017-12-01 富氧膜组件和冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN106766563B (zh)
WO (1) WO2018099453A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771870A1 (en) * 2019-07-31 2021-02-03 Electrolux Appliances Aktiebolag Filter cartridge for a filter assembly, filter assembly and domestic appliance with a filter assemly
CN113446798A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 保鲜装置及冰箱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766563B (zh) * 2016-12-02 2019-12-24 青岛海尔股份有限公司 富氧膜组件和冷藏冷冻装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257208A (ja) * 2004-03-12 2005-09-22 Toshiba Corp 冷蔵庫
CN201251336Y (zh) * 2008-07-01 2009-06-03 河南新飞电器有限公司 膜降氧气调保鲜冰箱
CN101766321A (zh) * 2008-12-30 2010-07-07 苏州三星电子有限公司 超长期保鲜系统
JP2015094553A (ja) * 2013-11-13 2015-05-18 株式会社東芝 減酸素装置と冷蔵庫
CN106766563A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 富氧膜组件和冷藏冷冻装置
CN206362070U (zh) * 2016-12-02 2017-07-28 青岛海尔股份有限公司 富氧膜组件和冷藏冷冻装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608114Y (zh) * 2003-04-10 2004-03-31 海尔科化工程塑料国家工程研究中心股份有限公司 一种平板式富氧膜组件
CN2697545Y (zh) * 2004-04-05 2005-05-04 声宝股份有限公司 改良的冰箱保鲜结构
JP6071356B2 (ja) * 2012-09-14 2017-02-01 東芝ライフスタイル株式会社 減酸素装置および冷蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257208A (ja) * 2004-03-12 2005-09-22 Toshiba Corp 冷蔵庫
CN201251336Y (zh) * 2008-07-01 2009-06-03 河南新飞电器有限公司 膜降氧气调保鲜冰箱
CN101766321A (zh) * 2008-12-30 2010-07-07 苏州三星电子有限公司 超长期保鲜系统
JP2015094553A (ja) * 2013-11-13 2015-05-18 株式会社東芝 減酸素装置と冷蔵庫
CN106766563A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 富氧膜组件和冷藏冷冻装置
CN206362070U (zh) * 2016-12-02 2017-07-28 青岛海尔股份有限公司 富氧膜组件和冷藏冷冻装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771870A1 (en) * 2019-07-31 2021-02-03 Electrolux Appliances Aktiebolag Filter cartridge for a filter assembly, filter assembly and domestic appliance with a filter assemly
WO2021018597A3 (en) * 2019-07-31 2021-04-08 Electrolux Appliances Aktiebolag Filter cartridge for a filter assembly, filter assembly and domestic appliance with a filter assembly
CN113446798A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 保鲜装置及冰箱

Also Published As

Publication number Publication date
CN106766563A (zh) 2017-05-31
CN106766563B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2018099464A1 (zh) 空气分离装置和冷藏冷冻装置
KR102209649B1 (ko) 기체 조절 신선도 유지 물품 저장 장치
CN106582216B (zh) 空气分离装置和冷藏冷冻装置
WO2018099374A1 (zh) 冰箱
WO2018099471A1 (zh) 冷藏冷冻设备
WO2018099460A1 (zh) 抽气泵组件和冷藏冷冻装置
CN106813443B (zh) 冷藏冷冻设备
WO2018099457A1 (zh) 抽气泵组件和冷藏冷冻装置
WO2018099466A1 (zh) 抽气泵组件和冷藏冷冻装置
CN107062746B (zh) 冷藏冷冻装置
WO2018099373A1 (zh) 冰箱
WO2018099453A1 (zh) 富氧膜组件和冷藏冷冻装置
WO2018099449A1 (zh) 抽气泵组件和冷藏冷冻装置
WO2019128717A1 (zh) 冷藏冷冻装置
WO2018099458A1 (zh) 抽气泵组件和冷藏冷冻装置
WO2018161918A1 (zh) 冷藏冷冻装置及其抽屉组件
CN106642913B (zh) 冷藏冷冻装置
WO2018103730A1 (zh) 冷藏冷冻装置及其气调保鲜储物信息的输出方法
WO2018099450A1 (zh) 抽气泵组件和冷藏冷冻装置
CN106679275B (zh) 冷藏冷冻装置
CN206362070U (zh) 富氧膜组件和冷藏冷冻装置
CN206350980U (zh) 空气分离装置和冷藏冷冻装置
CN106679278B (zh) 冷藏冷冻装置
CN206355797U (zh) 空气分离装置和冷藏冷冻装置
CN106839585B (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877033

Country of ref document: EP

Kind code of ref document: A1