WO2018099395A1 - 资源调度方法、装置及系统 - Google Patents

资源调度方法、装置及系统 Download PDF

Info

Publication number
WO2018099395A1
WO2018099395A1 PCT/CN2017/113557 CN2017113557W WO2018099395A1 WO 2018099395 A1 WO2018099395 A1 WO 2018099395A1 CN 2017113557 W CN2017113557 W CN 2017113557W WO 2018099395 A1 WO2018099395 A1 WO 2018099395A1
Authority
WO
WIPO (PCT)
Prior art keywords
rse
parameter
service
resource
specified
Prior art date
Application number
PCT/CN2017/113557
Other languages
English (en)
French (fr)
Inventor
张庆宏
安宏
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17876060.9A priority Critical patent/EP3550903B1/en
Publication of WO2018099395A1 publication Critical patent/WO2018099395A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a resource scheduling method, apparatus, and system.
  • the wireless communication technology to the third generation radio communication (3 rd generation wireless communication, abbreviated as 3G), generating a frequency division duplex (Frequency Division Duplexing, referred to as FDD) and time division duplex (Time Division Duplexing, abbreviated as TDD)
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • 2G 2nd Generation Wireless Communication
  • TDD time division duplexing
  • DL Downlink
  • the service volume is greater than that of the uplink (UL) traffic.
  • UL uplink
  • the uplink and downlink mutual benefit and smart antenna technology have more advantages than FDD.
  • FDD and TDD compete with each other. Together, promoted the advancement of wireless communication technology.
  • the fifth generation of wireless communication (5 th Generation Wireless Communication, referred to as 5G) and software-defined network (Software Defined Network, referred to as SDN)
  • 5G Fifth Generation Wireless Communication
  • SDN Software Defined Network
  • LTE Long Term Evolution
  • the embodiments of the present disclosure provide a resource scheduling method, apparatus, and system, to at least solve the problem that the existing resource scheduling method in the related art cannot meet the network requirement.
  • a resource scheduling method including: determining a wireless baseband and radio frequency capability supported by a specified user equipment UE; and acquiring a service traffic parameter corresponding to a to-be-processed service of a UE in a preset network element. a value of the parameter, where the service traffic parameter is used to identify the amount of data sent by the air interface to be processed for a preset time; and the determined wireless baseband and radio frequency capability, and the obtained parameter value are determined.
  • a radio scheduling element RSE for performing resource scheduling for the specified UE, where the RSE is a resource span and a quantity and/or a time domain symbol length and a data variable resource block; according to the determined RSE, Specifies the UE to perform resource scheduling.
  • the obtaining the parameter value of the service traffic parameter corresponding to the to-be-processed service of the UE in the preset network element includes: separately extracting, scanning, and determining each service in the to-be-processed service
  • the values of the two-group (T, B) (T r , B r ) are obtained, and the parameter values of the service flow parameters are obtained.
  • determining, according to the determined wireless baseband and radio frequency capability, and the obtained parameter value, determining the RSE for resource scheduling for the specified UE including: determining the wireless baseband and radio frequency capability according to the determined And determining the RSE set of the preset network element, and selecting one or more RSEs for performing resource scheduling for the specified UE from the RSE set.
  • selecting one or more RSEs for performing resource scheduling for the specified UE from the RSE set includes: determining an RSE subset of the RSE set, where the RSE subset is a Allocating the UE before the specified UE in the RSE set a set of RSEs other than the RSE; according to the parameter values of the service traffic parameters corresponding to the to-be-processed service of the specified UE, one or more of the RSE sub-collections are sequentially selected according to the occupied area of the physical resources.
  • An RSE for resource scheduling of the specified UE includes: determining an RSE subset of the RSE set, where the RSE subset is a Allocating the UE before the specified UE in the RSE set a set of RSEs other than the RSE; according to the parameter values of the service traffic parameters corresponding to the to-be-processed service of the specified UE, one or more of the RSE sub-collections are sequentially selected according to the occupied area of the physical resources.
  • the determined RSE set meets the following condition: the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and the time domain symbol length of each RSE in the RSE set is less than or equal to the corresponding to-be-processed service.
  • Business delay T the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and the time domain symbol length of each RSE in the RSE set is less than or equal to the corresponding to-be-processed service.
  • the RSE is determined by using: a frequency domain resource parameter for allocating a frequency domain resource, and a time domain resource parameter for allocating a time domain resource, where the frequency domain resource parameter includes: used for performing carrier
  • the span-adjusted single-carrier span parameter is used to identify a carrier number parameter of the number of carriers
  • the time domain resource parameter includes: a time domain single symbol span for performing time domain symbol length adjustment, and is used for identifying a time domain symbol The number of symbols for the number of parameters.
  • the wireless baseband and radio frequency capability includes at least one of the following: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Fifth Generation Wireless Communication 5G, and Narrowband Internet of Things NBiot.
  • a resource scheduling apparatus including: a first determining module, configured to determine a wireless baseband and radio frequency capability supported by a specified user equipment UE; and an acquiring module configured to acquire and preset a network a parameter value of the service traffic parameter corresponding to the to-be-processed service of the UE, where the service traffic parameter is used to represent the amount of data sent by the air interface to be processed in the preset time; the second determining module is set according to Determining the wireless baseband and radio frequency capabilities, and the obtained parameter values, determining a radio scheduling element RSE for resource scheduling for the designated UE, wherein the RSE is a carrier span and a quantity and/or a time domain a resource block with a variable length and a quantity; a scheduling module, configured to perform resource scheduling for the specified UE according to the determined RSE.
  • the acquiring module is further configured to separately extract each service in the to-be-processed service, and determine a value of a parameter binary group (T, B) corresponding to each service (T r , B r ), wherein the parameter binary group (T, B) is used to represent that the transmission service requires the air interface to send B-bit data in the T time, and the value of r is in the range of 0 to the preset value.
  • the preset value is a quantity of downlink and uplink services of the UE in the preset network element; and obtaining, according to the determined value (T r , B r ) of the parameter binary group (T, B) The parameter value of the traffic flow parameter.
  • the obtaining module includes: a determining unit, configured to determine, according to the determined wireless baseband and radio frequency capability, and the acquired parameter value, an RSE set of the preset network element; Selecting one or more RSEs for resource scheduling for the specified UE from the RSE set.
  • the selecting unit is further configured to determine an RSE subset of the RSE set, where the RSE subset is other than the RSE allocated in the RSE set except for the UE before the designated UE a set of RSEs; according to the parameter values of the service traffic parameters corresponding to the to-be-processed service of the specified UE, one or more of the RSE sub-collections are sequentially selected according to the occupied area of the physical resources.
  • a resource scheduling system includes: the resource scheduling apparatus according to any one of the preceding items.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • the storage medium is configured to store program code for performing the following steps: determining a wireless baseband and radio frequency capability supported by the specified user equipment UE; and obtaining a parameter value of a service traffic parameter corresponding to the to-be-processed service of the UE in the preset network element,
  • the service traffic parameter is used to identify the amount of data that is sent by the air interface to be processed in the preset time, and is determined according to the determined wireless baseband and radio frequency capability, and the obtained parameter value.
  • a radio scheduling element RSE that specifies a UE to perform resource scheduling, where the RSE is a resource span and a number and/or a time domain symbol length and a variable number of resource blocks; and the specified UE is performed according to the determined RSE.
  • Resource Scheduling specifies a UE to perform resource scheduling, where the RSE is a resource span and a number and/or a time domain symbol length and a variable number of resource blocks; and the specified UE is performed according to the determined RSE.
  • the storage medium is further configured to store program code for performing the following steps: obtaining the parameter value of the service flow parameter corresponding to the to-be-processed service of the UE in the preset network element, including: respectively Extracting various services in the processing service, and determining values (T r , B r ) of parameter bins (T, B) corresponding to each service, wherein the parameter bins ( T, B) is used to represent the transmission service request air interface to send B-bit data in the T time, the value of r is an integer ranging from 0 to a preset value, and the preset value is in the preset network element.
  • the number of downlink and uplink services of the UE obtaining the parameter value of the service traffic parameter according to the determined value (T r , B r ) of the parameter dual group (T, B).
  • the storage medium is further configured to store program code for: determining, according to the determined wireless baseband and radio frequency capabilities, and the obtained parameter values, for resource scheduling for the designated UE
  • the RSE includes: determining the RSE set of the preset network element according to the determined wireless baseband and radio frequency capability, and the obtained parameter value; selecting one or more selected from the RSE set for The RSE that specifies the UE to perform resource scheduling.
  • the storage medium is further configured to store program code for performing the step of: selecting one or more of the RSEs for resource scheduling for the specified UE from the set of RSEs comprises: determining the RSE a set of RSE sub-sets, where the RSE sub-set is a set of RSEs other than the RSEs that have been allocated to the UEs before the designated UEs in the RSE set, and corresponding to the to-be-processed services of the specified UEs
  • the parameter value of the service traffic parameter, in the RSE subset sequentially select one or more RSEs for resource scheduling of the specified UE according to the occupied area of the physical resources.
  • the storage medium is further configured to store program code for performing the following steps: the determined RSE set satisfies the condition that: the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, in the RSE set.
  • the time domain symbol length of each RSE is less than or equal to the service delay T of the corresponding service to be processed.
  • the storage medium is further configured to store program code for performing the following steps: the RSE is determined by: a frequency domain resource parameter for allocating frequency domain resources, and a time domain resource parameter for allocating time domain resources.
  • the frequency domain resource parameter includes: a single carrier span parameter for performing carrier span adjustment, a carrier number parameter for identifying the number of carriers, and the time domain resource parameter includes: used for performing time domain symbol length The adjusted time domain single symbol span and the number of symbols used to identify the number of time domain symbols.
  • the storage medium is further configured to store program code for performing the following steps: the wireless baseband and radio frequency capabilities include at least one of: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Fifth Generation Wireless communication 5G, narrowband Internet of Things NBiot.
  • the wireless baseband and radio frequency capabilities include at least one of: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Fifth Generation Wireless communication 5G, narrowband Internet of Things NBiot.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the to-be-processed service is abstracted, the amount of data transmitted in the air interface corresponding to the corresponding preset time (that is, the foregoing traffic flow parameter) is converted, and the carrier span and the number and/or the time domain symbol length are designed.
  • a variable number of resource blocks that is, a radio scheduling element (RSE), which is used to determine resource scheduling for the UE by using a wireless baseband and radio frequency capability supported by the UE and parameter values corresponding to the to-be-processed service.
  • RSE can unify different wireless baseband and radio frequency capabilities, and realize dynamic control of time-frequency domain (time domain and frequency domain) resources. Therefore, it can solve the problem that the existing resource scheduling methods in the related technologies cannot meet the network requirements. Achieve the effect of dynamic control of time-frequency domain resources.
  • FIG. 1 is a block diagram showing a hardware structure of a base station of a resource scheduling method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a resource scheduling method in accordance with an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a time-frequency hybrid duplex resource scheduling method according to an alternative embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an RSE design of a time-frequency hybrid duplex resource scheduling method according to an alternative embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of RSE degradation to LTE RB in a time-frequency hybrid duplex resource scheduling method according to an alternative embodiment of the present disclosure
  • FIG. 6 is a diagram of a time-frequency hybrid duplex resource scheduling method according to an alternative embodiment of the present disclosure. Schematic diagram of resource allocation results
  • FIG. 7 is a schematic structural diagram of an LTE TDD frame according to an optional embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of LTE TDD time-frequency hybrid duplex resource scheduling method compatible with LTE resource allocation according to an optional embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an LTE FDD frame according to an alternative embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of a time-frequency hybrid duplex resource scheduling system according to an alternative embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of a resource scheduling apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a resource scheduling system in accordance with the present disclosure.
  • FIG. 1 is a hardware structural block diagram of a base station of a resource scheduling method according to an embodiment of the present disclosure.
  • base station 10 may include one or more (only one shown) processor 12 (processor 12 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), A memory 14 for storing data, and a transmission device 16 for communication functions.
  • processor 12 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA),
  • a memory 14 for storing data
  • a transmission device 16 for communication functions.
  • base station 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 14 can be used to store software programs and modules of application software, as embodied in the present disclosure
  • the program instruction/module corresponding to the resource scheduling method the processor 12 executes various functional applications and data processing by executing a software program and a module stored in the memory 14, that is, implementing the above method.
  • Memory 14 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 14 may further include memory remotely located relative to processor 12, which may be connected to base station 10 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 16 is for receiving or transmitting data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the base station 10.
  • the transmission device 16 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 16 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a resource scheduling method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 determining a wireless baseband and radio frequency capability supported by the designated UE
  • Step S204 the parameter value of the service traffic parameter corresponding to the to-be-processed service of the UE in the preset network element is obtained, where the service traffic parameter is used to represent the amount of data sent by the air interface to be processed in the preset time.
  • Step S206 determining, according to the determined wireless baseband and radio frequency capability, and the obtained parameter value, an RSE for performing resource scheduling for the specified UE, where the RSE is a carrier span and quantity and/or time a resource block of variable length and number of domain symbols;
  • Step S208 Perform resource scheduling for the designated UE according to the determined RSE.
  • the execution body of the foregoing steps may be a base station or other network side device, etc., but is not limited thereto.
  • each service in the processing service may be separately extracted, and the value of the parameter binary group (T, B) corresponding to each service is determined (T r , B r ), wherein the parameter two-group (T, B) is used to characterize that the transmission service requires the air interface to send B-bit data in the T time, u is the number of UEs to be processed, DL i and UL i respectively represent the number of downlink and uplink services included in the i-th pending UE; the value of the determined tuple (T, B) according to the determined parameters (T r , B r ), obtain the parameter value of the traffic flow parameter.
  • the extraction here is to abstract and extract the business, and to express the various types of business as a unified digital feature.
  • the RSE for performing resource scheduling for the specified UE may be determined as follows: the RSE set of the preset network element may be determined according to the determined wireless baseband and radio frequency capability, and the obtained parameter value; selecting from the RSE set One or more RSEs for resource scheduling for a given UE.
  • the designated UE is an LTE FDD UE, an LTE TDD UE, or a 5G UE
  • there may be only one element in the RSE set and the carrier span and the time domain symbol length of the RSE are set to be related to the LTE resource block in the related art.
  • Resource Block, RB for short is the same, which is convenient for compatibility with related LTE FDD/TDD technologies.
  • the available RSE set may be determined, and one or more RSEs are selected from the determined set of RSEs for resource scheduling for the designated UE.
  • one or more RSEs for resource scheduling of the specified UE may be selected from the RSE set in multiple manners, for example, according to parameter values of service traffic parameters corresponding to the to-be-processed service of the specified UE, from the RSE.
  • the RSE that satisfies the above-mentioned to-be-processed service transmission requirement is arbitrarily selected in the sub-set, wherein the RSE sub-set is a set of RSEs other than the RSE allocated to the UE before the designated UE in the RSE set.
  • the parameter value of the service traffic parameter corresponding to the to-be-processed service of the specified UE may be used in the RSE subset.
  • the occupied area of the physical resources is selected in order from small to one or more RSEs for resource scheduling of the designated UE.
  • the occupied area of physical resources refers to the area of the time-frequency domain resources occupied.
  • the determined RSE set may meet the following conditions: the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and the time domain symbol length of each RSE in the RSE set is less than or equal to the corresponding to-be-processed service.
  • Business delay T the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and the time domain symbol length of each RSE in the RSE set is less than or equal to the corresponding to-be-processed service.
  • the RSE can be determined by using two types of parameters, one is a frequency domain resource parameter for allocating a frequency domain resource, and the other is a time domain resource parameter for allocating a time domain resource;
  • the frequency domain resource parameter can include:
  • the single-carrier span parameter used for the carrier span adjustment is used to identify the number of carriers of the carrier number
  • the time domain resource parameter may include: a time-domain single-symbol span for performing time-domain symbol length adjustment, and is used for identification The number of symbols of the number of domain symbols.
  • the RSE can be defined as the form of a quad group: (Fs, Ts, C, R), denoted as RSE ij : (Fs i , Ts j , C i , R j ).
  • RSE ij includes C i carriers in the frequency domain, and the single carrier span is Fs i units (units are available in Hertz, Hz), and is included in the time domain.
  • the foregoing wireless baseband and radio frequency capability may include at least one of the following: LTE FDD, LTE TDD, 5G, Narrow Band Internet of Things (NBiot).
  • LTE FDD Long Term Evolution
  • LTE TDD Long Term Evolution
  • 5G Fifth Generation
  • NBiot Narrow Band Internet of Things
  • the same UE can support multiple different wireless baseband and radio frequency capabilities.
  • the RSE can be determined according to negotiation or according to the needs of the service type.
  • a time-frequency hybrid duplex resource scheduling method and system are provided, and a scalable time-frequency scheduling span is adopted.
  • the time-frequency hybrid duplex resource scheduling method provided in the optional embodiment of the present disclosure includes the following steps Step:
  • Step one the system wireless scheduling unit is designed to be initialized.
  • the system bandwidth be M (the unit can be Hertz, Hz), the system supports a total of m carrier span (width), and the symbol span (width) in n.
  • the Radio Scheduling Element is defined as: a quad (Fs, Ts, C, R), which is denoted as: RSE ij : (Fs i , Ts j , C i , R j ).
  • RSE ij frequency domain includes C i carriers
  • single carrier span is Fs i unit (unit can be Hertz, Hz)
  • time domain includes R j
  • the dynamic span of the carrier span can be realized.
  • the dynamic scaling of the time domain symbol length can be realized by selecting different Fs i , Ts j , C i , R j values.
  • Time domain and frequency domain dynamic control can be realized.
  • Step 2 UE type identification and UE service feature abstraction and extraction.
  • the system identifies the UE type according to the UE capability report. Specifically, it needs to be classified into LTE FDD UE, LTE TDD UE, 5G, and other new UEs according to the capabilities of the UE.
  • the system abstracts and extracts the UE service characteristics of the UE according to the network high-level arrival service and the UE reporting service, that is, obtains all the service states of all UEs by expressing the various types of services as a unified digital feature. .
  • the abstract result of defining each service of each UE is TB r , and TB r is a binary group (T r , B r ), where (T r , B r ) indicates that the service requires the air interface to be within T r s Send B r bits data, where
  • u is the number of UEs to be processed, and DL i and UL i respectively represent the number of DL and UL services included in the i th UE.
  • Step 3 The system selects an available RSE according to the determined UE type and service characteristics. set.
  • Fs i , Ts j , C i , R j are selected to determine the RSE.
  • the selection principle can be: satisfying as many UE service requirements as possible
  • the user satisfaction rate is maximized to satisfy as many TB r as possible: (T r , B r ).
  • the selected rule may also be such that the requirements of the UE with high priority and/or the service with high priority are satisfied as much as possible.
  • Fs i , Ts j , C i , R j , u1 should satisfy the following inequality groups:
  • the RSE set is determined by the values of Fs i , Ts j , C i , and R j .
  • step four the system performs final scheduling result generation and output.
  • the RSE can be selected as small as possible, and the number of RSEs can be increased, thereby increasing the flexibility of the RSE allocation location, adapting to discontinuous distribution, and satisfying the service requirements of the UE, and saving spectrum resources.
  • selecting the RSE as small as possible means that the multiplication result of the four elements included in the quad (Fs i , Ts j , C i , R j ) is the smallest, that is, Fs i *Ts j *C i * When R j is the smallest (Fs i , Ts j , C i , R j ), where [*] indicates multiplication.
  • the uplink and downlink services may use different RSEs. Different services on the same link (DL or UL) of the same UE need to use the same RSE, or a single UE uses the same RSE in a single processing.
  • the number of RSEs N satisfies the inequality: B r *T r ⁇ N*Fs i *Ts j *C i *R j *Q m is the minimum N.
  • the N RSE locations on the basis of satisfying BT r , can be allocated in a distributed manner to obtain the diversity gain in the time-frequency domain.
  • Example 1 Compatibility with prior art LTE TDD UEs
  • FIG. 3 is a flowchart of a time-frequency hybrid duplex resource scheduling method according to an alternative embodiment of the present disclosure. As shown in FIG. 3, the method includes the following steps:
  • step S302 the system wireless scheduling unit is designed to be initialized.
  • the system bandwidth be M (in Hertz, Hz).
  • the system supports a total of m carrier spans (width) and symbol spans (width) in n.
  • the RSE is defined as: a quad (Fs, Ts, C, R), denoted as: RSE ij : (Fs i , Ts j , C i , R j ) (as shown in Figure 4).
  • the dynamic span of the carrier span can be realized.
  • the dynamic scaling of the time domain symbol length can be realized by selecting different Fs i , Ts j , C i , R j values.
  • Time domain and frequency domain dynamic control can be realized.
  • Step S304 UE type identification and UE service feature abstraction and extraction.
  • the system identifies the UE type according to the UE capability report. Specifically, it needs to be classified into LTE FDD UE, LTE TDD UE, 5G, and other new UEs according to the capabilities of the UE.
  • the system abstracts and extracts the UE service characteristics of the UE according to the network high-level arrival service and the UE reporting service, that is, obtains all the service states of all UEs by expressing the various types of services as a unified digital feature. .
  • each service of each UE is TB r
  • TB r is a binary group (T r , B r ), where (T r , B r ) indicates that the service requires the air interface to be within T r s
  • Send B r bits data where u is the number of UEs to be processed, and DL i and UL i respectively represent the number of DL and UL services included in the i th UE;
  • Step S306 the system selects an available RSE set according to the determined UE type and service characteristics.
  • the result is identified according to the foregoing UE type.
  • Fs i LTE carrier span
  • Ts j LTE symbol span
  • C i LTE single resource block ( Resource Block, abbreviated as RB)
  • R j the subcarrier span included in the LTE single RB
  • RSE k LTE_RB.
  • the TDD special subframe can be regarded as a combination of an uplink subframe and a downlink subframe with a smaller number of symbols than a regular subframe, and the symbol number and symbol span can also be realized by special values of Ts j and C i . .
  • step S308 the system performs final scheduling result generation and output.
  • the system generates the final scheduling result and outputs the result of the last total resource allocation (as shown in Figure 6).
  • the TDD radio frame structure in the LTE is implemented by the resource allocation form (quad) unique to the alternative embodiment of the present disclosure, and the full compatibility with the forward technology is implemented, specifically:
  • the virtual bandwidth and the virtual uplink and downlink subframes are dynamically divided in the spectrum range supported by the UE, and the virtual bandwidth and the virtual uplink and downlink subframe division are all in units of RSU k determined in the foregoing steps.
  • the virtual bandwidth and the virtual uplink and downlink subframe division are defined when the UE needs to be allocated, and the allocated bandwidth is shared by all UEs.
  • the UE uses the unused bandwidth in the virtual bandwidth according to its processing priority, and the allocation is completed.
  • the resources will be identified as occupied, and the bandwidth of the occupied state cannot be allocated to other UEs.
  • the allocation of UE resources can be realized by using the resource allocation mode of the existing LTE TDD, and the example ends.
  • Steps S302 to S304 are the same as in the example 1.
  • step S306 the system selects an available RSE set according to the determined UE type and service characteristics:
  • step S308 the system performs final scheduling result generation and output:
  • the FDD radio frame structure in the LTE is implemented by using the unique resource allocation format of the present example, and the full compatibility of the forward technology is implemented in the present example, specifically:
  • the virtual bandwidth and the virtual uplink and downlink subframes are dynamically divided in the spectrum range supported by the UE, and the virtual bandwidth and the virtual uplink and downlink subframe division are all determined by the RSE k determined in the foregoing steps;
  • Dynamically dividing the virtual bandwidth means that the UE is allocated when the UE needs it, and the allocated bandwidth is shared by all the UEs.
  • the UE uses the unused bandwidth in the virtual bandwidth according to its processing priority, and the allocated resources are identified. For the occupied state, the bandwidth of the occupied state cannot be allocated to other UEs.
  • the resource allocation mode of the existing LTE FDD can be used to allocate the UE resources. This example ends.
  • Steps S302 to S304 are the same as in the example 1.
  • step S306 the system selects an available RSE set according to the determined UE type and service characteristics:
  • step S308 the system performs final scheduling result generation and output:
  • the virtual downlink bandwidth and the uplink bandwidth are dynamically divided within the spectrum range supported by the UE, and the division and allocation of the virtual bandwidth are all in units of the RSE k determined in the foregoing steps.
  • Dynamically dividing the virtual bandwidth means that the UE divides the bandwidth when needed, and the bandwidth is divided. All UEs are shared, and the UE uses the unused bandwidth in the virtual bandwidth according to its processing priority. The allocated resources are identified as occupied, and the occupied state bandwidth cannot be allocated to other UEs.
  • the allocation of UE resources can be realized by using the resource allocation mode of the existing NBiot, and this embodiment ends.
  • Example 4 Processing of 5G and new UEs
  • Steps S302 to S304 are the same as in the example 1.
  • step S306 the system selects an available RSE set according to the determined UE type and service characteristics:
  • Fs i , Ts j , C i , R j are selected to determine the RSE.
  • the selection principle can be: satisfying as many UE service requirements as possible
  • the user satisfaction rate is maximized to satisfy as many TB r as possible: (T r , B r ).
  • the selected rule may also be such that the requirements of the UE with high priority and/or the service with high priority are satisfied as much as possible.
  • Fs i , Ts j , C i , R j , u1 should satisfy the following inequality groups:
  • the RSE set is determined by the values of Fs i , Ts j , C i , and R j .
  • step S308 the system performs final scheduling result generation and output:
  • the RSE can be selected as small as possible, and the number of RSEs can be increased, thereby increasing the flexibility of the RSE allocation location, adapting to discontinuous distribution, and satisfying the service requirements of the UE, and saving spectrum resources;
  • selecting the RSE as small as possible means that the multiplication result of the four elements included in the quad (Fs i , Ts j , C i , R j ) is the smallest, that is, Fs i *Ts j *C i * When R j is the smallest (Fs i , Ts j , C i , R j ).
  • the uplink and downlink services may use different RSEs. Different services on the same link (DL or UL) of the same UE need to use the same RSE, or a single UE uses the same RSE in a single processing.
  • the number of RSEs N satisfies the inequality: B r *T r ⁇ N*Fs i *Ts j *C i *R j *Q m is the minimum N.
  • the N RSE locations on the basis of satisfying BT r , can be allocated in a distributed manner to obtain the diversity gain in the time-frequency domain.
  • Example 5 Scene processing for coexistence of multiple types
  • Steps S302 to S304 are the same as in the example 1.
  • Step S306 is the same as Example 4.
  • step S308 the system performs final scheduling result generation and output:
  • the LTE FDD/TDD UE and the NBiot/eMTC UE generally support limited bandwidth or occupy less than 5G UEs, and the RSE selection limit is more, the RSE specification is preferentially determined for the UE. Grid and location, other with the same instance 4.
  • time-frequency hybrid duplex resource scheduling system provided in the optional embodiment of the present disclosure is combined with a specific example.
  • FIG. 10 is a structural block diagram of a time-frequency hybrid duplex resource scheduling system according to an alternative embodiment of the present disclosure. As shown in FIG. 10, the system includes:
  • the RSE initialization module 102 is used for system RSE initialization.
  • the RSE initialization module 102 can be used to generate an RSE set supported by the system for RSE design.
  • the system bandwidth be M (in Hertz, Hz), the system supports a total of m carrier span (width), and the symbol span (width) in n;
  • the system wireless scheduling unit is defined as: a quad (Fs, Ts, C, R), denoted as: RSE ij : (Fs i , Ts j , C i , R j ).
  • the meanings and relationships of Fs i , Ts j , C i , and R j are as follows: the RSE ij frequency domain includes C i carriers, the single carrier span is Fs i units (in Hertz, Hz), and the time domain includes R j
  • the dynamic span of the carrier span can be realized.
  • the dynamic scaling of the time domain symbol length can be realized by selecting different Fs i , Ts j , C i , R j values.
  • Time domain and frequency domain dynamic control can be realized.
  • the object input module 104 is processed for system processing object input.
  • the system identifies the UE type according to the UE capability report. Specifically, it needs to be classified into LTE FDD UE, LTE TDD UE, NB-iot UE, 5G, and other new UEs according to the capabilities of the UE.
  • the system abstracts and extracts the UE service characteristics of the UE according to the network high-level arrival service and the UE reporting service, that is, obtains all the service states of all UEs by expressing the various types of services as a unified digital feature. .
  • the abstract result of defining each service of each UE is TB r
  • TB r is a binary group (T r , B r ), where (T r , B r ) indicates that the service requires the air interface to be within T r s
  • Send B r bits data where u is the number of UEs to be processed, and DL i and UL i respectively represent the number of DL and UL services included in the i th UE.
  • the RSE set determination module 106 is configured to determine an RSE set.
  • the system identifies the UE type as shown in FIG. 4.
  • the system can select Fs i , Ts j , C i , R j to determine RSE based on the following principles: satisfying as many UE service requirements as possible. Maximize user satisfaction and meet as many TB r as possible: (T r , B r ). The principle of selection may also be such that the requirements of high priority UEs and/or high priority services are met as much as possible.
  • Fs i , Ts j , C i , R j , u1 should satisfy the following inequality groups:
  • the RSE set is determined by the values of Fs i , Ts j , C i , and R j .
  • the scheduling process and result output module 108 is configured to determine an RSE specification, an RSE number, and an RSE location distribution of each UE.
  • the RSE can be selected as small as possible, and the number of RSEs can be increased, thereby increasing the flexibility of the RSE allocation location, adapting to discontinuous distribution, and satisfying the service requirements of the UE, and saving spectrum resources. ;
  • selecting the RSE as small as possible means that the multiplication result of the four elements included in the quad (Fs i , Ts j , C i , R j ) is the smallest, that is, Fs i *Ts j *C i * When R j is the smallest (Fs i , Ts j , C i , R j ).
  • the uplink and downlink services may use different RSEs. Different services on the same link (DL or UL) of the same UE need to use the same RSE, or a single UE uses the same RSE in a single processing.
  • the number of RSEs N satisfies the inequality: B r *T r ⁇ N*Fs i *Ts j *C i *R j *Q m is the minimum N.
  • the N RSE locations on the basis of satisfying TB r , can be allocated in a distributed manner to obtain the diversity gain in the time-frequency domain.
  • the traditional TDD adopts a fixed uplink and downlink sequence.
  • the data transmission and reception needs to wait for a fixed time.
  • the processing time is poor.
  • the fixed uplink and downlink resource ratio cannot adapt to the flexibility of the service change.
  • the download service has a large demand for DL resources.
  • the service has a large demand for UL resources, and the resource requirements of the video call and other services are completely symmetrical; the fixed resource ratio of TDD cannot flexibly adapt to the diversity of user behavior, resulting in waste of resources.
  • the traditional FDD transmission and reception can be performed simultaneously, the equal bandwidth of the uplink and the downlink also has the diversity of resources and user service behavior, resulting in waste of resources.
  • an effective matching of user service behaviors, service requirements, and system resources can be realized, organic integration of TDD and FDD is realized, and effective compatibility with existing terminals is achieved, and UE differences are effectively shielded.
  • a resource scheduling apparatus is further provided, which is used to implement the foregoing embodiments and optional implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 11 is a structural block diagram of a resource scheduling apparatus according to an embodiment of the present disclosure. As shown in FIG. 11, the apparatus includes:
  • the first determining module 112 is configured to determine a wireless baseband and radio frequency capability supported by the designated UE;
  • the obtaining module 114 is connected to the first determining module 112, and is configured to obtain a parameter value of a service traffic parameter corresponding to the to-be-processed service of the UE in the preset network element, where the service traffic parameter is used to identify the air interface to be processed for the pending service request.
  • the second determining module 116 is connected to the obtaining module 114, and configured to determine, according to the determined wireless baseband and radio frequency capability, and the obtained parameter value, an RSE for performing resource scheduling for the specified UE, where the RSE is the carrier span and the quantity. And/or resource blocks of variable length and number of time domain symbols;
  • the scheduling module 118 is connected to the second determining module 116, and is set to be based on the determined RSE. Resource scheduling for the specified UE.
  • the obtaining module 114 is further configured to extract, for each service in the service to be processed, and determine a value of the parameter set (T, B) corresponding to each service (T r , B r ), wherein the parameter binary group (T, B) is used to represent that the transmission service requires the air interface to send B-bit data in the T time, and the value of r is an integer ranging from 0 to a preset value, and the preset value is The number of services of the downlink and uplink of the UE in the network element is preset; and the parameter value of the service traffic parameter is obtained according to the value (T r , B r ) of the determined parameter binary group (T, B).
  • the obtaining module 114 may be configured to: determine, according to the determined wireless baseband and radio frequency capability, and the obtained parameter value, determine an RSE set of the preset network element; and the selecting unit is connected to the determining unit, and is configured to One or more RSEs for resource scheduling for the specified UE are selected from the RSE set.
  • the foregoing selecting unit may be further configured to determine an RSE subset of the RSE set, where the RSE subset is a set of RSEs other than the RSE allocated by the UE before the designated UE in the RSE set; according to the specified UE
  • the parameter value of the service traffic parameter corresponding to the to-be-processed service, in the RSE subset sequentially selects one or more RSEs for resource scheduling of the specified UE according to the occupied area of the physical resources.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 12 is a schematic diagram of a resource scheduling system according to the present disclosure. As shown in FIG. 12, the resource scheduling system includes: the resource scheduling device 112 in any of the foregoing.
  • Also provided in an embodiment of the present disclosure is a storage medium including a stored program, wherein the program is executed to perform the method of any of the above.
  • the foregoing storage medium may be configured to be stored for execution.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the parameter values of the service traffic parameters corresponding to the to-be-processed service of the UE in the preset network element include:
  • the preset value is the downlink and uplink of the UE in the preset network element. Number of businesses;
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining an RSE for resource scheduling for a specified UE according to the determined wireless baseband and radio frequency capabilities, and the obtained parameter values includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Selecting one or more RSEs for resource scheduling for a specified UE from the RSE set includes:
  • the storage medium is further configured to store program code for performing the following steps: the determined RSE set satisfies the following condition: the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and each of the RSE sets The time domain symbol length of the RSE is less than or equal to the service delay T of the corresponding service to be processed.
  • the storage medium is further configured to store program code for performing the following steps: the RSE is determined by: a frequency domain resource parameter for allocating frequency domain resources, and a time domain resource parameter for allocating time domain resources;
  • the frequency domain resource parameter includes: a single carrier span parameter for performing carrier span adjustment, a carrier number parameter for identifying the number of carriers, and the time domain resource parameter includes: a time domain single for performing time domain symbol length adjustment The symbol span, and the number of symbols used to identify the number of time domain symbols.
  • the storage medium is further configured to store program code for performing the following steps: the wireless baseband and radio frequency capabilities include at least one of: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Fifth Generation Wireless Communication 5G, narrowband Internet of Things NBiot.
  • the wireless baseband and radio frequency capabilities include at least one of: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Fifth Generation Wireless Communication 5G, narrowband Internet of Things NBiot.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs: determining, according to the stored program code in the storage medium, the wireless baseband and radio frequency capability supported by the specified user equipment, and acquiring the to-be-processed service of the UE in the preset network element.
  • Parameter value of the traffic flow parameter where the traffic flow is referenced The number is used to represent the amount of data sent by the air interface required to transmit the to-be-processed service within a preset time; determining the radio scheduling element RSE for resource scheduling for the specified UE according to the determined wireless baseband and radio frequency capability, and the obtained parameter value,
  • the RSE is a resource block whose carrier span and quantity and/or time domain symbol length and quantity are variable; according to the determined RSE, resource scheduling is performed for the designated UE.
  • the processor performs, according to the stored program code in the storage medium, the parameter value of the service traffic parameter corresponding to the to-be-processed service of the UE in the preset network element, including:
  • the various services are extracted to determine the values (T r , B r ) of the parameter sets (T, B) corresponding to each service, wherein the parameter sets (T, B) are used for characterization
  • the transmission service requires the air interface to send T-bit data in the B time.
  • the value of r is an integer ranging from 0 to the preset value.
  • the preset value is the number of downlink and uplink services of the UE in the preset network element.
  • the values of the parameter two-group (T, B) (T r , B r ) are used to obtain the parameter values of the traffic flow parameters.
  • the processor performs, according to the stored program code in the storage medium, determining, according to the determined wireless baseband and radio frequency capability, and the obtained parameter value, the RSE for performing resource scheduling for the specified UE, including And determining, according to the determined wireless baseband and radio frequency capabilities, and the obtained parameter values, determining an RSE set of the preset network element; and selecting one or more RSEs for performing resource scheduling for the specified UE from the RSE set.
  • the processor performs, according to the stored program code in the storage medium, selecting one or more RSEs for resource scheduling for the specified UE from the RSE set includes: determining an RSE sub of the RSE set. a set, where the RSE sub-set is a set of RSEs other than the RSEs that have been allocated to the UEs before the designated UEs in the RSE set; and the parameter values of the service traffic parameters corresponding to the to-be-processed services of the specified UE are in the RSE subset
  • One or more RSEs for resource scheduling of the specified UE are sequentially selected according to the occupied area of the physical resources.
  • the processor performs, according to the stored program code in the storage medium, that the determined RSE set meets the following condition: the total frequency domain resource occupied by the RSE in the RSE set is less than or equal to the system bandwidth, and the RSE The time domain symbol length of each RSE in the set is less than or It is equal to the service delay T of the corresponding pending service.
  • the processor performs, according to the stored program code in the storage medium, the RSE is determined by using: a frequency domain resource parameter for allocating a frequency domain resource, and a time domain for allocating the time domain resource.
  • the resource parameter includes: a single-carrier span parameter used for performing carrier span adjustment, a carrier number parameter for identifying the number of carriers, and a time domain resource parameter including: for performing time-domain symbol length adjustment. The time domain single symbol span and the number of symbols used to identify the number of time domain symbols.
  • the processor is executed according to the stored program code in the storage medium: the wireless baseband and the radio frequency capability include at least one of the following: Long Term Evolution LTE Frequency Division Duplex FDD, LTE Time Division Duplex TDD, Five generations of wireless communication 5G, narrowband Internet of Things NBiot.
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure relates to the field of communications, and provides a resource scheduling method, apparatus, and system, which abstracts a service to be processed, converts it into a data amount of data transmitted in an air interface corresponding to a preset time, and designs a carrier span and quantity and/or Or a resource block with a variable length and a number of time domain symbols, and determining, by using a radio baseband and radio frequency capability supported by the UE and a parameter value corresponding to the service to be processed, an RSE for resource scheduling for the UE, which may be used for different wireless basebands and radio frequencies.
  • the ability to unify and realize the dynamic control of time-frequency domain resources solves the problem that the existing resource scheduling methods in the related technologies cannot meet the network requirements, and achieve the effect of dynamic control of time-frequency domain resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种资源调度方法、装置及系统,其中,该方法包括:确定指定用户设备UE所支持的无线基带和射频能力;获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;根据确定的所述RSE,为所述指定UE进行资源调度。通过本公开,解决了相关技术中已有的资源调度方法存在不能满足网络需求的问题,达到了时频域资源动态控制的效果。

Description

资源调度方法、装置及系统 技术领域
本公开涉及通信领域,具体而言,涉及一种资源调度方法、装置及系统。
背景技术
无线通信技术发展到第三代无线通信(3rd generation wireless communication,简称为3G),产生了频分双工(Frequency Division Duplexing,简称为FDD)和时分双工(Time Division Duplexing,简称为TDD)两种主流双工技术。其中FDD从第二代无线通信(2nd Generation Wireless Communication,简称为2G)演进而来,其前向兼容性更好,产业链也更为成熟,作为后来者的TDD更能适应传统下行链路(Downlink,简称为DL)业务量大于上行链路(Uplink,简称为UL)业务量的用户行为,其上下行互益性和智能天线技术相对FDD有更多优势,FDD与TDD相互竞争相互借鉴,共同促进了无线通信技术的进步。
随着行业进一步发展,如高清视频通话、朋友圈视频和图片分享等新业务频繁涌现,传统的关于DL业务大于UL业务的认识已不再适用。传统的TDD和FDD系统UL/DL资源静态规划,与用户业务多样性和动态性的矛盾越发明显;由此带来的业务需求和资源分配之间的失配,资源浪费也越发明显。
与此同时,第五代无线通信(5th Generation Wireless Communication,简称为5G)和软件定义网络(Software Defined Network,简称为SDN)对网络底层兼容性和一致性提出了新的要求,未来主流技术倾向于不区分制式,或多制式兼容,或底层技术屏蔽化,并能前向兼容现有长期演进(Long Term Evolution,简称为LTE)FDD/TDD技术。
因此,相关技术中已有的资源调度方法存在不能满足网络需求的问 题。
发明内容
本公开实施例提供了一种资源调度方法、装置及系统,以至少解决相关技术中已有的资源调度方法存在不能满足网络需求的问题。
根据本公开的一个实施例,提供了一种资源调度方法,包括:确定指定用户设备UE所支持的无线基带和射频能力;获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数据可变的资源块;根据确定的所述RSE,为所述指定UE进行资源调度。
可选地,获取与所述预设网元中UE的待处理业务对应的所述业务流量参数的所述参数值包括:分别对所述待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,所述参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,所述预设值为所述预设网元中UE下行和上行的业务数量;根据确定的所述参数二元组(T,B)的取值(Tr,Br),获取所述业务流量参数的参数值。
可选地,根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的所述RSE包括:根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定所述预设网元的RSE集合;从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的RSE。
可选地,从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的所述RSE包括:确定所述RSE集合的RSE子集合,其中,所述RSE子集合为所述RSE集合中除已经为所述指定UE之前的UE分配 的RSE以外的RSE构成的集合;根据所述指定UE的待处理业务对应的业务流量参数的参数值,在所述RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为所述指定UE进行资源调度的RSE。
可选地,确定的所述RSE集合满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或者等于对应的待处理业务的业务时延T。
可选地,所述RSE通过以下参数确定:用于分配频域资源的频域资源参数,用于分配时域资源的时域资源参数;其中,所述频域资源参数包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,所述时域资源参数包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。
可选地,所述无线基带和射频能力包括以下至少之一:长期演进LTE频分双工FDD,LTE时分双工TDD,第五代无线通信5G,窄带物联网NBiot。
根据本公开的另一个实施例,提供了一种资源调度装置,包括:第一确定模块,设置为确定指定用户设备UE所支持的无线基带和射频能力;获取模块,设置为获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;第二确定模块,设置为根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;调度模块,设置为根据确定的所述RSE,为所述指定UE进行资源调度。
可选地,所述获取模块,还设置为分别对所述待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,所述参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,所述预设值为所述预设 网元中UE下行和上行的业务数量;根据确定的所述参数二元组(T,B)的取值(Tr,Br),获取所述业务流量参数的参数值。
可选地,所述获取模块包括:确定单元,设置为根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定所述预设网元的RSE集合;选择单元,设置为从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的RSE。
可选地,所述选择单元,还设置为确定所述RSE集合的RSE子集合,其中,所述RSE子集合为所述RSE集合中除已经为所述指定UE之前的UE分配的RSE以外的RSE构成的集合;根据所述指定UE的待处理业务对应的业务流量参数的参数值,在所述RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为所述指定UE进行资源调度的所述RSE。
根据本公开的又一个实施例,还提供了一种资源调度系统。该资源调度系统包括:前述中任一项所述资源调度装置。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。该存储介质设置为存储用于执行以下步骤的程序代码:确定指定用户设备UE所支持的无线基带和射频能力;获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;根据确定的所述RSE,为所述指定UE进行资源调度。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:获取与所述预设网元中UE的待处理业务对应的所述业务流量参数的所述参数值包括:分别对所述待处理业务中的各项业务进行提取,确定与各项业务 对应的参数二元组(T,B)的取值(Tr,Br),其中,所述参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,所述预设值为所述预设网元中UE下行和上行的业务数量;根据确定的所述参数二元组(T,B)的取值(Tr,Br),获取所述业务流量参数的参数值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的所述RSE包括:根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定所述预设网元的RSE集合;从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的RSE。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的所述RSE包括:确定所述RSE集合的RSE子集合,其中,所述RSE子集合为所述RSE集合中除已经为所述指定UE之前的UE分配的RSE以外的RSE构成的集合;根据所述指定UE的待处理业务对应的业务流量参数的参数值,在所述RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为所述指定UE进行资源调度的RSE。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:确定的所述RSE集合满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或者等于对应的待处理业务的业务时延T。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述RSE通过以下参数确定:用于分配频域资源的频域资源参数,用于分配时域资源的时域资源参数;其中,所述频域资源参数包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,所述时域资源参数包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述无线基带和射频能力包括以下至少之一:长期演进LTE频分双工FDD,LTE时分双工TDD,第五代无线通信5G,窄带物联网NBiot。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开,由于将待处理业务进行了抽象,转换为对应的预设时间内在空口发送数据的数据量(也就是前述业务流量参数),并设计了载波跨度及数量和/或时域符号长度及数量可变的资源块,即无线调度元素(radio scheduleing Element,简称为RSE),通过UE所支持的无线基带和射频能力以及待处理业务对应的参数值,确定用于为UE进行资源调度的RSE,可以对不同无线基带和射频能力进行统一,实现时频域(时域和频域)资源的动态控制,因此,可以解决相关技术中已有的资源调度方法存在不能满足网络需求的问题,达到时频域资源动态控制的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种资源调度方法的基站的硬件结构框图;
图2是根据本公开实施例的资源调度方法的流程图;
图3是根据本公开实施例可选实施例的时频混合双工资源调度方法的流程图;
图4是根据本公开实施例可选实施例的时频混合双工资源调度方法的RSE设计示意图;
图5是根据本公开实施例可选实施例的时频混合双工资源调度方法的RSE退化为LTE RB示意图;
图6是根据本公开实施例可选实施例的时频混合双工资源调度方法的 资源分配结果示意图;
图7是根据本公开实施例可选实施例的LTE TDD帧结构示意图;
图8是根据本公开实施例可选实施例的LTE TDD时频混合双工资源调度方法兼容LTE资源分配示意图;
图9是根据本公开实施例可选实施例的LTE FDD帧结构示意图;
图10是根据本公开可选实施例的时频混合双工资源调度系统的结构框图;
图11是根据本公开实施例的资源调度装置的结构框图;
图12是根据本公开的资源调度系统的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在基站、计算机终端或者类似的网络侧设备中执行。以运行在基站上为例,图1是本公开实施例的一种资源调度方法的基站的硬件结构框图。如图1所示,基站10可以包括一个或多个(图中仅示出一个)处理器12(处理器12可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器14、以及用于通信功能的传输装置16。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,基站10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器14可用于存储应用软件的软件程序以及模块,如本公开实施 例中的资源调度方法对应的程序指令/模块,处理器12通过运行存储在存储器14内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器14可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器14可进一步包括相对于处理器12远程设置的存储器,这些远程存储器可以通过网络连接至基站10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置16用于经由一个网络接收或者发送数据。上述的网络具体实例可包括基站10的通信供应商提供的无线网络。在一个实例中,传输装置16包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置16可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述基站的资源调度方法,图2是根据本公开实施例的资源调度方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定指定UE所支持的无线基带和射频能力;
步骤S204,获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;
步骤S206,根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;
步骤S208,根据确定的所述RSE,为所述指定UE进行资源调度。
通过上述步骤,通过UE所支持的无线基带和射频能力以及待处理业务对应的业务流量参数的参数值,确定用于为UE进行资源调度的载波跨度及数量和/或时域符号长度及数量可变的资源块,解决了相关技术中已有 的资源调度方法存在不能满足网络需求的问题,实现了时频域资源的动态控制。
可选地,上述步骤的执行主体可以为基站或者其他网络侧设备等,但不限于此。
可选地,可以采用如下方式获取上述参数值:可以分别对待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,
Figure PCTCN2017113557-appb-000001
u为待处理的UE数,DLi和ULi分别表示第i个待处理的UE包含的下行和上行的业务数量;根据确定的参数二元组(T,B)的取值(Tr,Br),获取业务流量参数的参数值。这里的提取是对业务进行抽象与提取,将类型多样的业务表现为统一的数字特征。
可选地,可以采用如下方式确定用于为指定UE进行资源调度的RSE:可以根据确定的无线基带和射频能力,以及获取的参数值,确定预设网元的RSE集合;从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE。例如,在指定UE为LTE FDD UE、LTE TDD UE或者5G UE的情况下,RSE集合中的元素可以只有一个,将该RSE的载波跨度以及时域符号长度设置为与相关技术中的LTE资源块(Resource Block,简称为RB)相同,便于与相关的LTE FDD/TDD技术的兼容性。在指定UE为其他新型UE的情况下,可以确定可用的RSE集合,从确定的RSE集合中选择一个或多个RSE,用于为指定UE进行资源调度。
可选地,可以通过多种方式从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE,例如,可以根据指定UE的待处理业务对应的业务流量参数的参数值,从RSE子集合中任意选择满足上述待处理业务传输需求的RSE,其中,RSE子集合为RSE集合中除已经为指定UE之前的UE分配的RSE以外的RSE构成的集合。又例如,可以根据指定UE的待处理业务对应的业务流量参数的参数值,在该RSE子集合中按照 物理资源的占用面积由小到的顺序依次选择一个或多个为指定UE进行资源调度的RSE。物理资源的占用面积是指占用的时频域资源面积。
可选地,确定的RSE集合可以满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或者等于对应的待处理业务的业务时延T。
可选地,RSE可以通过两类参数确定,一类是用于分配频域资源的频域资源参数,一类是用于分配时域资源的时域资源参数;频域资源参数可以包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,时域资源参数可以包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。例如,RSE可以定义为如下四元组的形式:(Fs,Ts,C,R),记为RSEij:(Fsi,Tsj,Ci,Rj)。其中,Fsi、Tsj、Ci、Rj的含义及关系为:RSEij在频域包含Ci个载波,单载波跨度为Fsi单位(单位为可以赫兹,Hz),在时域包含Rj个符号单符号跨度为Tsj单位(单位可以为秒,s),其中C和R为大于0的整数,Fsi和Tsj为大于0的实数;其中,i=1,2…m;j=1,2…n,m为系统支持的载波跨度种类,n为系统支持符号跨度种类。
可选地,上述无线基带和射频能力可以包括以下至少之一:LTE FDD,LTE TDD,5G,窄带物联网(Narrow Band Internet of Things,简称为NBiot)。同一个UE可以支持多种不同的无线基带和射频能力,在这种情况下,可以根据协商或者根据业务类型的需要确定RSE。
基于上述实施例及可选实施方式,为说明方案的整个流程交互,在本可选实施例中,提供了一种时频混合双工资源调度方法及系统,采用可缩放的时频调度跨度,实现TDD和FDD的灵活选择,根据终端能力(4G TDD/FDD等)、UE业务需求自适应地选择时频域粒度和资源,从而实现TDD和FDD的兼容;通过UE业务需求抽象和系统匹配实现业务和控制分离,为上述视频粒度和资源分配提供必要依据。
本公开可选实施例中提供的时频混合双工资源调度方法,包括以下步 骤:
步骤一,系统无线调度单元设计初始化。
设,系统带宽为M(单位可以为赫兹,Hz),系统共计支持m种载波跨度(宽度),n中符号跨度(宽度)。
系统无线调度单元(Radio Scheduling Element,简称为RSE)定义为:四元组(Fs,Ts,C,R),记为:RSEij:(Fsi,Tsj,Ci,Rj)。其中,Fsi、Tsj、Ci、Rj的含义及关系为:RSEij频域包含Ci个载波,单载波跨度为Fsi单位(单位可以为赫兹,Hz),时域包含Rj个符号单符号跨度为Tsj单位(单位为秒,s),其中C和R为大于0的整数,Fsi和Tsj为大于0的实数;其中,i=1,2…m;j=1,2…n。
通过对Fsi的选择和控制可以实现载波跨度的动态缩放,通过对Tsj的选择和控制可以实现时域符号长度的动态缩放,通过选择不同的Fsi、Tsj、Ci、Rj值,可实现时域和频域动态控制。
步骤二,UE类型识别和UE业务特性抽象与提取。
系统根据UE能力上报,对UE类型进行识别。具体地,需要根据UE的能力将其分类为LTE FDD UE,LTE TDD UE,5G及其他新型UE。
系统根据网络高层到达业务和UE上报业务,对UE的UE业务特性进行抽象与提取,也就是说,要通过将类型多样的业务表现为统一的数字特征,也即,获取所有UE的所有业务状态。
定义每个UE的每项业务的抽象结果为TBr,TBr为一个二元组(Tr,Br),其中,(Tr,Br)表示该业务要求空口必须在Trs内发送Brbits数据,其中,
Figure PCTCN2017113557-appb-000002
u为待处理的UE数,DLi和ULi分别表示第i个UE包含的DL和UL的业务数量。
步骤三,系统根据确定的上述UE类型和业务特性,选择可用的RSE 集。
可以通过Fsi、Tsj、Ci、Rj值的选择,实现对LTE资源分配单元的兼容,即,令Fsi=LTE载波跨度、Tsj=LTE符号跨度、Ci=LTE单个RB包含的OFDM符号数、Rj=LTE单RB包含的子载波跨度,则RSUk=LTE_RB。本步骤结束。
对于5G及其他新型UE,根据其TBr:(Tr,Br),选择Fsi、Tsj、Ci、Rj确定RSE,选择原则可以为:满足尽可能多的UE业务需求,实现用户满意率最大化,满足尽可能多的TBr:(Tr,Br)。选择的规则还可以为,尽可能满足优先级高的UE和/或优先级高的业务的需求。
若系统带宽充沛时,应满足所有TBr:(Tr,Br),即,满足以下不等式方程组的Fsi、Tsj、Ci、Rj值组合构成可用的RSE集:
Figure PCTCN2017113557-appb-000003
如系统带宽不足时,设最多可以满足u1个UE的业务需求,则Fsi、Tsj、Ci、Rj、u1应满足如下不等式组:
Figure PCTCN2017113557-appb-000004
RSE集由Fsi、Tsj、Ci、Rj的取值确定。
步骤四,系统进行最终调度结果生成及输出。
确定每个UE的RSE规格、RSE数量、RSE位置分布。
首先,确定RSE规格:
在步骤三提供的RSE集合内可以选择尽可能小的RSE,增加RSE的数量,进而增加RSE分配位置的灵活性,能够适应不连续分布,满足UE业务需求的基础上,节省频谱资源。
其中,选择尽可能小的RSE是指,四元组(Fsi,Tsj,Ci,Rj)所包含的4个元素相乘结果最小,即,使得Fsi*Tsj*Ci*Rj最小时(Fsi,Tsj,Ci,Rj),其中,[*]表示相乘。
对于单UE,上下行业务可以采用不同的RSE,同一UE的同一链路(DL或UL)上不同业务需要采用相同的RSE,或者,单UE单次处理采用同一RSE。
然后,确定RSE数量和位置。
RSE数量N满足不等式:Br*Tr≤N*Fsi*Tsj*Ci*Rj*Qm的最小N。
N个RSE位置,在满足BTr的基础上,分配可采取分散分配的方式,以获取时频域上的分集增益。
下面结合具体的实例对本公开可选实施例中所提供的视频混合双工资源调度方法做进一步的详细描述。
实例1:对现有技术LTE TDD UE的兼容,
图3是根据本公开实施例可选实施例的时频混合双工资源调度方法的流程图,如图3所示,该方法包括如下步骤:
步骤S302,系统无线调度单元设计初始化。
设,系统带宽为M(单位为赫兹,Hz),系统共计支持m种载波跨度(宽度),n中符号跨度(宽度)。
RSE定义为:四元组(Fs,Ts,C,R),记为:RSEij:(Fsi,Tsj,Ci,Rj)(如图4所示)。其中,Fsi、Tsj、Ci、Rj的含义及关系为:RSEij频域包含Ci个载波,单载波跨度为Fsi单位(单位为赫兹,Hz),时域包含Rj个符号单符号跨度为Tsj单位(单位为秒,s),其中C和R为大于0的整数,Fsi和Tsj为大于0的实数;其中,i=1,2…m;j=1,2…n。
通过对Fsi的选择和控制可以实现载波跨度的动态缩放,通过对Tsj的选择和控制可以实现时域符号长度的动态缩放,通过选择不同的Fsi、Tsj、Ci、Rj值,可实现时域和频域动态控制。
步骤S304,UE类型识别和UE业务特性抽象与提取。
系统根据UE能力上报,对UE类型进行识别。具体地,需要根据UE的能力将其分类为LTE FDD UE,LTE TDD UE,5G及其他新型UE。
系统根据网络高层到达业务和UE上报业务,对UE的UE业务特性进行抽象与提取,也就是说,要通过将类型多样的业务表现为统一的数字特征,也即,获取所有UE的所有业务状态。
定义每个UE的每项业务的抽象结果为TBr,TBr为一个二元组(Tr,Br),其中,(Tr,Br)表示该业务要求空口必须在Trs内发送Brbits数据,其中,
Figure PCTCN2017113557-appb-000005
u为待处理的UE数,DLi和ULi分别表示第i个UE包含的DL和UL的业务数量;
步骤S306,系统根据确定的上述UE类型和业务特性,选择可用的RSE集。
如图5所示,对于LTE FDD UE和TDD UE,根据前述UE类型识别结果。通过Fsi、Tsj、Ci、Rj值的选择,实现对LTE资源分配单元的兼容,即,令Fsi=LTE载波跨度、Tsj=LTE符号跨度、Ci=LTE单个资源块(Resource Block,简称为RB)包含的OFDM符号数、Rj=LTE单RB包含的子载波跨度,则RSEk=LTE_RB。
TDD特殊子帧此处可以视其为一个符号数量少于常规子帧的上行子帧和下行子帧的组合,其符号数和符号跨度同样可以通过、Tsj和Ci的特殊取值予以实现。
本步骤结束。
步骤S308,系统进行最终调度结果生成及输出。
系统生成最终调度结果,并将最后总的资源分配的结果(如图6所示)输出。
结合图7和8,以及表1所示,
表1上下行配比表
Figure PCTCN2017113557-appb-000006
通过本公开可选实施例特有的资源分配形式(四元组)实现对LTE中的TDD无线帧结构,实现对前向技术的全兼容,具体为:
对于LTE TDD UE,在该UE支持的频谱范围内,动态划分虚拟的带宽和虚拟上下行子帧,虚拟带宽和虚拟上下行子帧划分均以上述步骤确定的RSUk为单位。
虚拟带宽和虚拟上下行子帧划分是指,在UE需要的时候才予以划分,且划分带宽为所有UE共享,UE根据其处理优先级在虚拟带宽内按需使用尚未被使用的带宽,分配完毕的资源会被标识为已占用状态,已占用状态的带宽不能被分配给其他UE。
在此基础上,采用现有LTE TDD的资源分配方式即可实现UE资源的分配,本实例结束。
实例2:对现有技术LTE FDD UE的兼容,
步骤S302至步骤S304与实例1中相同。
关于步骤S306,系统根据确定的UE类型和业务特性,选择可用的RSE集:
如图5所示,对于LTE FDD UE,根据前述UE类型识别结果,可以通过Fsi、Tsj、Ci、Rj值选择,实现对LTE资源分配单元的兼容,即,令 Fsi=LTE载波跨度、Tsj=LTE符号跨度、Ci=LTE单个RB包含的OFDM符号数、Rj=LTE单RB包含的子载波跨度,则RSEk=LTE_RB。
关于步骤S308,系统进行最终调度结果生成及输出:
如图8,图9所示,通过本实例的特有的资源分配形式实现对LTE中的FDD无线帧结构,实现本实例对前向技术的全兼容,具体为:
对于LTE FDD UE,在该UE支持的频谱范围内,动态划分虚拟的带宽和虚拟上下行子帧,虚拟带宽和虚拟上下行子帧划分均以上述步骤确定的RSEk为单位;
动态划分虚拟带宽是指,在UE需要的时候才予以划分,且划分带宽为所有UE共享,UE根据其处理优先级在虚拟带宽内按需使用尚未被使用的带宽,分配完毕的资源会被标识为已占用状态,已占用状态的带宽不能被分配给其他UE。
在此基础上采用现有LTE FDD的资源分配方式即可实现UE资源的分配,本实例结束。
实例3:对NBiot等其它现有技术的兼容,
步骤S302至步骤S304与实例1中相同。
关于步骤S306,系统根据确定的UE类型和业务特性,选择可用的RSE集:
本实例通过Fsi、Tsj、Ci、Rj值选择,实现对NBiot等其它现有技术的兼容,即,令Fsi=NBiot载波跨度、Tsj=NBiot符号跨度、Ci=NBiot单个RB包含的OFDM符号数、Rj=NBiot单RB包含的子载波跨度,则RSEk=NBiot_RB。
关于步骤S308,系统进行最终调度结果生成及输出:
对于NBiot UE,在该UE支持的频谱范围内,动态划分虚拟的下行带宽和上行带宽,虚拟带宽的划分和分配均以上述步骤确定的RSEk为单位。
动态划分虚拟带宽是指,UE需要的时候才予以划分,且划分带宽为 所有UE共享,UE根据其处理优先级在虚拟带宽内按需使用尚未被使用的带宽,分配完毕的资源会被标识为已占用状态,已占用状态的带宽不能被分配给其他UE。
在此基础上采用现有NBiot的资源分配方式即可实现UE资源的分配,本实施例结束。
实例4:对5G及新型UE的处理,
步骤S302至步骤S304与实例1中相同。
关于步骤S306,系统根据确定的UE类型和业务特性,选择可用的RSE集:
如图5所示,对于LTE FDD UE和TDD UE,根据前述UE类型识别结果,可以通过Fsi、Tsj、Ci、Rj值选择,实现对LTE资源分配单元的兼容,即,令Fsi=LTE载波跨度、Tsj=LTE符号跨度、Ci=LTE单个RB包含的OFDM符号数、Rj=LTE单RB包含的子载波跨度,则RSEk=LTE_RB。
对于5G及其他新型UE,根据其TBr:(Tr,Br),选择Fsi、Tsj、Ci、Rj确定RSE,选择原则可以为:满足尽可能多的UE业务需求,实现用户满意率最大化,满足尽可能多的TBr:(Tr,Br)。选择的规则还可以为,尽可能满足优先级高的UE和/或优先级高的业务的需求。
若系统带宽充沛时,应满足所有TBr:(Tr,Br)。即,满足以下不等式方程组的Fsi、Tsj、Ci、Rj值组合构成可用的RSE集:
Figure PCTCN2017113557-appb-000007
如系统带宽不足时,设最多可以满足u1个UE的业务需求,则Fsi、Tsj、Ci、Rj、u1应满足如下不等式组:
Figure PCTCN2017113557-appb-000008
RSE集由Fsi、Tsj、Ci、Rj的取值确定。
对于步骤S308,系统进行最终调度结果生成及输出:
确定每个UE的RSE规格、RSE数量、RSE位置分布。
首先,确定RSE规格:
在步骤三提供的RSE集合内可以选择尽可能小的RSE,增加RSE的数量,进而增加RSE分配位置的灵活性,能够适应不连续分布,满足UE业务需求的基础上,节省频谱资源;
其中,选择尽可能小的RSE是指,四元组(Fsi,Tsj,Ci,Rj)所包含的4个元素相乘结果最小,即,使得Fsi*Tsj*Ci*Rj最小时(Fsi,Tsj,Ci,Rj)。
对于单UE,上下行业务可以采用不同的RSE,同一UE的同一链路(DL或UL)上不同业务需要采用相同的RSE,或者,单UE单次处理采用同一RSE。
然后,确定RSE数量和位置。
RSE数量N满足不等式:Br*Tr≤N*Fsi*Tsj*Ci*Rj*Qm的最小N。
N个RSE位置,在满足BTr的基础上,分配可采取分散分配的方式,以获取时频域上的分集增益。
实例5:对多种类型共存的场景处理,
步骤S302至步骤S304与实例1中相同。
步骤S306,与实例4相同。
关于步骤S308,系统进行最终调度结果生成及输出:
由于LTE FDD/TDD UE、NBiot/eMTC UE通常支持带宽有限或者占用较之5G UE较少,且RSE选择限制较多,优先为上述UE确定RSE规 格和位置,其他同实例4。
下面结合具体的实例对本公开可选实施例中提供的时频混合双工资源调度系统。
实例6:时频混合双工资源调度系统,
图10是根据本公开可选实施例的时频混合双工资源调度系统的结构框图,如图10所示,该系统包括:
RSE初始化模块102,用于系统RSE初始化。
RSE初始化模块102可以用于生成本系统支持的RSE集合,进行RSE设计。
设,系统带宽为M(单位为赫兹,Hz),系统共计支持m种载波跨度(宽度),n中符号跨度(宽度);
系统无线调度单元定义为:四元组(Fs,Ts,C,R),记为:RSEij:(Fsi,Tsj,Ci,Rj)。其中,Fsi、Tsj、Ci、Rj的含义及关系为:RSEij频域包含Ci个载波,单载波跨度为Fsi单位(单位为赫兹,Hz),时域包含Rj个符号单符号跨度为Tsj单位(单位为秒,s),其中C和R为大于0的整数,Fsi和Tsj为大于0的实数;其中,i=1,2…m;j=1,2…n;
通过对Fsi的选择和控制可以实现载波跨度的动态缩放,通过对Tsj的选择和控制可以实现时域符号长度的动态缩放,通过选择不同的Fsi、Tsj、Ci、Rj值,可实现时域和频域动态控制。
处理对象输入模块104,用于系统处理对象输入。
系统根据UE能力上报,对UE类型进行识别。具体地,需要根据UE的能力将其分类为LTE FDD UE,LTE TDD UE,NB-iot UE,5G及其他新型UE。
系统根据网络高层到达业务和UE上报业务,对UE的UE业务特性进行抽象与提取,也就是说,要通过将类型多样的业务表现为统一的数字特征,也即,获取所有UE的所有业务状态。
定义每个UE的每项业务的抽象结果为TBr,TBr为一个二元组(Tr,Br),其中,(Tr,Br)表示该业务要求空口必须在Trs内发送Brbits数据,其中,
Figure PCTCN2017113557-appb-000009
u为待处理的UE数,DLi和ULi分别表示第i个UE包含的DL和UL的业务数量。
RSE集确定模块106,用于确定RSE集。
对于LTE FDD UE和TDD UE,系统对于UE类型识别结果如图4所示。
本系统可以通过Fsi、Tsj、Ci、Rj值的选择,实现对LTE资源分配单元的兼容,即,令Fsi=LTE载波跨度、Tsj=LTE符号跨度、Ci=LTE单个RB包含的OFDM符号数、Rj=LTE单RB包含的子载波跨度,则RSEk=LTE_RB。
对于5G及其他新型UE,根据其TBr:(Tr,Br),本系统可以基于以下原则选择Fsi、Tsj、Ci、Rj确定RSE:满足尽可能多的UE业务需求,实现用户满意率最大化,满足尽可能多的TBr:(Tr,Br)。选择的原则还可以为,尽可能满足优先级高的UE和/或优先级高的业务的需求。
若系统带宽充沛时,应满足所有TBr:(Tr,Br)。即,满足以下不等式方程组的Fsi、Tsj、Ci、Rj值组合构成可用的RSE集:
Figure PCTCN2017113557-appb-000010
如系统带宽不足时,设最多可以满足u1个UE的业务需求,则Fsi、Tsj、Ci、Rj、u1应满足如下不等式组:
Figure PCTCN2017113557-appb-000011
RSE集由Fsi、Tsj、Ci、Rj的取值确定。
调度处理及结果输出模块108,用于确定每个UE的RSE规格、RSE数量、RSE位置分布。
首先,确定RSE规格:
在RSE集确定模块106提供的RSE集合内可以选择尽可能小的RSE,增加RSE的数量,进而增加RSE分配位置的灵活性,能够适应不连续分布,满足UE业务需求的基础上,节省频谱资源;
其中,选择尽可能小的RSE是指,四元组(Fsi,Tsj,Ci,Rj)所包含的4个元素相乘结果最小,即,使得Fsi*Tsj*Ci*Rj最小时(Fsi,Tsj,Ci,Rj)。
对于单UE,上下行业务可以采用不同的RSE,同一UE的同一链路(DL或UL)上不同业务需要采用相同的RSE,或者,单UE单次处理采用同一RSE。
然后,确定RSE数量和位置。
RSE数量N满足不等式:Br*Tr≤N*Fsi*Tsj*Ci*Rj*Qm的最小N。
N个RSE位置,在满足TBr的基础上,分配可采取分散分配的方式,以获取时频域上的分集增益。
传统的TDD采用固定的上下行时序,数据收发都需要等待固定时机进行,处理时效性较差,固定上下行资源配比不能适应业务变化的灵活性,如下载业务对DL资源需求较大,上传业务对UL资源需求较大,而视频通话等业务上下资源需求完全对称;TDD的固定资源配比无法灵活的适配用户行为的多样性,造成资源浪费。传统的FDD收发虽然可以同时进行,但上下行带宽相等方式,同样存在资源与用户业务行为的多样性,带来资源的浪费。
通过本公开可选实施例的上述技术方案,能够实现用户业务行为、业务需求、系统资源的有效匹配,实现TDD和FDD的有机统一,并做到对现有终端的有效兼容,有效屏蔽UE差异,实现UE能力、业务需求、系统资源的灵活动态高效匹配与整合,并兼顾对技术和设备的前向兼容性,可以解决相关技术中5G及未来SDN技术要求,在做好对现有技术兼容的 基础上,弱化网络底层差异,实现无线通信多种制式的统一。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种资源调度装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本公开实施例的资源调度装置的结构框图,如图11所示,该装置包括:
第一确定模块112,设置为确定指定UE所支持的无线基带和射频能力;
获取模块114,连接至上述第一确定模块112,设置为获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;
第二确定模块116,连接至上述获取模块114,设置为根据确定的无线基带和射频能力,以及获取的参数值,确定用于为指定UE进行资源调度的RSE,其中,RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;
调度模块118,连接至上述第二确定模块116,设置为根据确定的RSE, 为指定UE进行资源调度。
可选地,获取模块114,还可以设置为分别对待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,预设值为预设网元中UE下行和上行的业务数量;根据确定的参数二元组(T,B)的取值(Tr,Br),获取业务流量参数的参数值。
可选地,获取模块114可以包括:确定单元,设置为根据确定的无线基带和射频能力,以及获取的参数值,确定预设网元的RSE集合;选择单元,与上述确定单元相连,设置为从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE。
可选地,上述选择单元,还可以设置为确定RSE集合的RSE子集合,其中,RSE子集合为RSE集合中除已经为指定UE之前的UE分配的RSE以外的RSE构成的集合;根据指定UE的待处理业务对应的业务流量参数的参数值,在RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为指定UE进行资源调度的RSE。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中还提供了一种资源调度系统,图12是根据本公开的资源调度系统的示意图,如图12所示,该资源调度系统包括:前述任一项中的资源调度装置112。
实施例4
本公开的实施例中还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以 下步骤的程序代码:
S1,确定指定用户设备UE所支持的无线基带和射频能力;
S2,获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;
S3,根据确定的无线基带和射频能力,以及获取的参数值,确定用于为指定UE进行资源调度的无线调度元素RSE,其中,RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;
S4,根据确定的RSE,为指定UE进行资源调度
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
获取与预设网元中UE的待处理业务对应的业务流量参数的参数值包括:
S1,分别对待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,预设值为预设网元中UE下行和上行的业务数量;
S2,根据确定的参数二元组(T,B)的取值(Tr,Br),获取业务流量参数的参数值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
根据确定的无线基带和射频能力,以及获取的参数值,确定用于为指定UE进行资源调度的RSE包括:
S1,根据确定的无线基带和射频能力,以及获取的参数值,确定预设网元的RSE集合;
S2,从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE包括:
S1,确定RSE集合的RSE子集合,其中,RSE子集合为RSE集合中除已经为指定UE之前的UE分配的RSE以外的RSE构成的集合;
S2,根据指定UE的待处理业务对应的业务流量参数的参数值,在RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为指定UE进行资源调度的RSE。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:确定的RSE集合满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或者等于对应的待处理业务的业务时延T。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:RSE通过以下参数确定:用于分配频域资源的频域资源参数,用于分配时域资源的时域资源参数;其中,频域资源参数包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,时域资源参数包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:无线基带和射频能力包括以下至少之一:长期演进LTE频分双工FDD,LTE时分双工TDD,第五代无线通信5G,窄带物联网NBiot。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定指定用户设备UE所支持的无线基带和射频能力;获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,业务流量参 数用于表征传输待处理业务要求空口在预设时间内发送的数据量;根据确定的无线基带和射频能力,以及获取的参数值,确定用于为指定UE进行资源调度的无线调度元素RSE,其中,RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;根据确定的RSE,为指定UE进行资源调度。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:获取与预设网元中UE的待处理业务对应的业务流量参数的参数值包括:分别对待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,参数二元组(T,B)用于表征传输业务要求空口在B时间内发送T比特的数据,r的取值为0至预设值的区间内的整数,预设值为预设网元中UE下行和上行的业务数量;根据确定的参数二元组(T,B)的取值(Tr,Br),获取业务流量参数的参数值。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据确定的无线基带和射频能力,以及获取的参数值,确定用于为指定UE进行资源调度的RSE包括:根据确定的无线基带和射频能力,以及获取的参数值,确定预设网元的RSE集合;从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:从RSE集合中选择一个或多个用于为指定UE进行资源调度的RSE包括:确定RSE集合的RSE子集合,其中,RSE子集合为RSE集合中除已经为指定UE之前的UE分配的RSE以外的RSE构成的集合;根据指定UE的待处理业务对应的业务流量参数的参数值,在RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为指定UE进行资源调度的RSE。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定的RSE集合满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或 者等于对应的待处理业务的业务时延T。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:RSE通过以下参数确定:用于分配频域资源的频域资源参数,用于分配时域资源的时域资源参数;其中,频域资源参数包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,时域资源参数包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:无线基带和射频能力包括以下至少之一:长期演进LTE频分双工FDD,LTE时分双工TDD,第五代无线通信5G,窄带物联网NBiot。
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的可选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开涉及通信领域,提供了一种资源调度方法、装置及系统,将待处理业务进行了抽象,转换为对应的预设时间内在空口发送数据的数据量,并设计了载波跨度及数量和/或时域符号长度及数量可变的资源块,通过UE所支持的无线基带和射频能力以及待处理业务对应的参数值,确定用于为UE进行资源调度的RSE,可以对不同无线基带和射频能力进行统一,实现时频域资源的动态控制,解决了相关技术中已有的资源调度方法存在不能满足网络需求的问题,达到时频域资源动态控制的效果。

Claims (14)

  1. 一种资源调度方法,包括:
    确定指定用户设备UE所支持的无线基带和射频能力;
    获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;
    根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;
    根据确定的所述RSE,为所述指定UE进行资源调度。
  2. 根据权利要求1所述的方法,其中,获取与所述预设网元中UE的待处理业务对应的所述业务流量参数的所述参数值包括:
    分别对所述待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,所述参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,所述预设值为所述预设网元中UE下行和上行的业务数量;
    根据确定的所述参数二元组(T,B)的取值(Tr,Br),获取所述业务流量参数的所述参数值。
  3. 根据权利要求2所述的方法,其中,根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的所述RSE包括:
    根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定所述预设网元的RSE集合;
    从所述RSE集合中选择一个或多个用于为所述指定UE进行资源 调度的RSE。
  4. 根据权利要求3所述的方法,其中,从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的所述RSE包括:
    确定所述RSE集合的RSE子集合,其中,所述RSE子集合为所述RSE集合中除已经为所述指定UE之前的UE分配的RSE以外的RSE构成的集合;
    根据所述指定UE的待处理业务对应的业务流量参数的参数值,在所述RSE子集合中按照物理资源的占用面积由小到的顺序依次选择一个或多个为所述指定UE进行资源调度的RSE。
  5. 根据权利要求3所述的方法,其中,确定的所述RSE集合满足以下条件为:RSE集合中的RSE占用的总频域资源小于或者等于系统带宽,RSE集合中各RSE的时域符号长度小于或者等于对应的待处理业务的业务时延T。
  6. 根据权利要求1所述的方法,其中,所述RSE通过以下参数确定:用于分配频域资源的频域资源参数,用于分配时域资源的时域资源参数;其中,所述频域资源参数包括:用于进行载波跨度调整的单载波跨度参数,用于标识载波个数的载波个数参数,所述时域资源参数包括:用于进行时域符号长度调整的时域单符号跨度,以及用于标识时域符号个数的符号个数参数。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述无线基带和射频能力包括以下至少之一:长期演进LTE频分双工FDD,LTE时分双工TDD,第五代无线通信5G,窄带物联网NBiot。
  8. 一种资源调度装置,包括:
    第一确定模块,设置为确定指定用户设备UE所支持的无线基带和射频能力;
    获取模块,设置为获取与预设网元中UE的待处理业务对应的业务流量参数的参数值,其中,所述业务流量参数用于表征传输待处理业务要求空口在预设时间内发送的数据量;
    第二确定模块,设置为根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定用于为所述指定UE进行资源调度的无线调度元素RSE,其中,所述RSE为载波跨度及数量和/或时域符号长度及数量可变的资源块;
    调度模块,设置为根据确定的所述RSE,为所述指定UE进行资源调度。
  9. 根据权利要求8所述的装置,其中,所述获取模块,还设置为分别对所述待处理业务中的各项业务进行提取,确定与各项业务对应的参数二元组(T,B)的取值(Tr,Br),其中,所述参数二元组(T,B)用于表征传输业务要求空口在T时间内发送B比特的数据,r的取值为0至预设值的区间内的整数,所述预设值为所述预设网元中UE下行和上行的业务数量;根据确定的所述参数二元组(T,B)的取值(Tr,Br),获取所述业务流量参数的参数值。
  10. 根据权利要求9所述的装置,其中,所述获取模块包括:
    确定单元,设置为根据确定的所述无线基带和射频能力,以及获取的所述参数值,确定所述预设网元的RSE集合;
    选择单元,设置为从所述RSE集合中选择一个或多个用于为所述指定UE进行资源调度的RSE。
  11. 根据权利要求10所述的装置,其中,所述选择单元,还设置为确定所述RSE集合的RSE子集合,其中,所述RSE子集合为所述RSE集合中除已经为所述指定UE之前的UE分配的RSE以外的RSE构成的集合;根据所述指定UE的待处理业务对应的业务流量参数的参数值,在所述RSE子集合中按照物理资源的占用面积由小到 的顺序依次选择一个或多个为所述指定UE进行资源调度的所述RSE。
  12. 一种资源调度系统,包括:权利要求8至11中任一项所述资源调度装置。
  13. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
  14. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
PCT/CN2017/113557 2016-12-01 2017-11-29 资源调度方法、装置及系统 WO2018099395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17876060.9A EP3550903B1 (en) 2016-12-01 2017-11-29 Resource scheduling method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611091416.4A CN108135031B (zh) 2016-12-01 2016-12-01 资源调度方法、装置及系统
CN201611091416.4 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018099395A1 true WO2018099395A1 (zh) 2018-06-07

Family

ID=62241162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113557 WO2018099395A1 (zh) 2016-12-01 2017-11-29 资源调度方法、装置及系统

Country Status (3)

Country Link
EP (1) EP3550903B1 (zh)
CN (1) CN108135031B (zh)
WO (1) WO2018099395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040474A (zh) * 2019-06-04 2020-12-04 华为技术有限公司 射频能力配置方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451589B (zh) * 2018-12-28 2022-08-12 中国移动通信集团江苏有限公司 Lte载波调度方法、装置、设备及计算机存储介质
CN110786030B (zh) * 2019-09-20 2022-07-15 北京小米移动软件有限公司 通信方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法
CN102740484A (zh) * 2011-04-02 2012-10-17 中兴通讯股份有限公司 一种资源调度方法、用户设备、基站及系统
CN103427937A (zh) * 2012-05-18 2013-12-04 电信科学技术研究院 一种终端能力信息的上报方法及装置
WO2016019581A1 (zh) * 2014-08-08 2016-02-11 华为技术有限公司 终端设备能力上报方法和装置
CN105491557A (zh) * 2014-09-15 2016-04-13 中兴通讯股份有限公司 一种实现能力开放的系统、方法及能力开放平台
CN105580466A (zh) * 2014-08-30 2016-05-11 华为技术有限公司 一种天线信息的发送、接收方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217362A1 (en) * 2006-03-20 2007-09-20 Nokia Corporation Amended control for resource allocation in a radio access network
CN101754229B (zh) * 2008-11-28 2012-10-24 京信通信系统(中国)有限公司 载波信道动态调度的通信覆盖系统
US9276710B2 (en) * 2009-12-21 2016-03-01 Qualcomm Incorporated Method and apparatus for resource allocation with carrier extension
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
CN102438314B (zh) * 2011-10-17 2014-04-16 电信科学技术研究院 一种传输控制信息的方法、系统及设备
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN103857054B (zh) * 2014-03-12 2017-06-20 天津大学 长期演进系统媒体访问控制层中复用与调度联合处理方法
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
US20170251465A1 (en) * 2015-03-09 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740484A (zh) * 2011-04-02 2012-10-17 中兴通讯股份有限公司 一种资源调度方法、用户设备、基站及系统
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法
CN103427937A (zh) * 2012-05-18 2013-12-04 电信科学技术研究院 一种终端能力信息的上报方法及装置
WO2016019581A1 (zh) * 2014-08-08 2016-02-11 华为技术有限公司 终端设备能力上报方法和装置
CN105580466A (zh) * 2014-08-30 2016-05-11 华为技术有限公司 一种天线信息的发送、接收方法和设备
CN105491557A (zh) * 2014-09-15 2016-04-13 中兴通讯股份有限公司 一种实现能力开放的系统、方法及能力开放平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550903A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040474A (zh) * 2019-06-04 2020-12-04 华为技术有限公司 射频能力配置方法及装置
CN112040474B (zh) * 2019-06-04 2021-12-03 华为技术有限公司 射频能力配置方法及装置

Also Published As

Publication number Publication date
CN108135031A (zh) 2018-06-08
EP3550903B1 (en) 2021-05-26
EP3550903A1 (en) 2019-10-09
EP3550903A4 (en) 2019-11-27
CN108135031B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN107872891B (zh) 资源调度方法、装置、网络设备及终端
CN109802758A (zh) 管理在新无线电中的搜索空间之间的控制信道盲搜索
CN104285389B (zh) 时分双工(tdd)上行链路-下行链路(ul-dl)配置管理的方法、系统和装置
WO2018228500A1 (zh) 一种调度信息传输方法及装置
CN109474384A (zh) 通信方法、终端设备和网络设备
CN108141326A (zh) 基于qos参数的多载波模式的动态选择
CN109076522A (zh) 向无线设备许可资源
CN107431605A (zh) 在无线通信网络中传递控制数据
JP7408825B2 (ja) サーチスペースのモニタリング方法及び機器
CN109699063B (zh) 一种抢占指示信令的处理和发送方法、终端和基站
WO2018201756A1 (zh) 长pucch的资源调度、传输方法及装置、设备及存储介质
CN108811154A (zh) 数据包传输方法和设备
WO2018099395A1 (zh) 资源调度方法、装置及系统
CN109076564A (zh) 一种空口资源分配方法及网络设备
CN107872892A (zh) 一种无线资源分配方法及装置
CN108810972A (zh) 通信方法、终端设备和网络设备
KR20220115997A (ko) 무선 데이터 송신 스케줄링을 위한 시스템 및 방법
US10959255B2 (en) Method and apparatus for allocating uplink resources
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
CN109391417A (zh) 传输下行控制信息的方法、装置和系统
CN106550460A (zh) 一种非对称载波聚合中进行上行调度方法和设备
EP3466169B1 (en) Method and apparatus for frequency selective scheduling in ofdma based wlans
WO2016184166A1 (zh) 载波聚合带宽分配的方法及装置
CN112996114B (zh) 资源调度方法、装置、设备及存储介质
CN111699710B (zh) 一种信息指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876060

Country of ref document: EP

Effective date: 20190701