WO2018098838A1 - 电动清洁护理器具、用于该器具的压力报警方法及装置 - Google Patents

电动清洁护理器具、用于该器具的压力报警方法及装置 Download PDF

Info

Publication number
WO2018098838A1
WO2018098838A1 PCT/CN2016/108884 CN2016108884W WO2018098838A1 WO 2018098838 A1 WO2018098838 A1 WO 2018098838A1 CN 2016108884 W CN2016108884 W CN 2016108884W WO 2018098838 A1 WO2018098838 A1 WO 2018098838A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
current
0max
frequency
load
Prior art date
Application number
PCT/CN2016/108884
Other languages
English (en)
French (fr)
Inventor
戴晓国
徐振武
Original Assignee
上海携福电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海携福电器有限公司 filed Critical 上海携福电器有限公司
Priority to ES16922584T priority Critical patent/ES2870579T3/es
Priority to EP16922584.4A priority patent/EP3542754B1/en
Priority to JP2019529864A priority patent/JP7023958B2/ja
Priority to US16/462,191 priority patent/US11234803B2/en
Priority to CA3044725A priority patent/CA3044725C/en
Publication of WO2018098838A1 publication Critical patent/WO2018098838A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/221Control arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • A61C17/3409Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor characterized by the movement of the brush body
    • A61C17/3481Vibrating brush body, e.g. by using eccentric weights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/10For human or animal care
    • A46B2200/1066Toothbrush for cleaning the teeth or dentures
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K7/00Body washing or cleaning implements
    • A47K7/04Mechanical washing or cleaning devices, hand or mechanically, i.e. power operated

Definitions

  • the present invention relates to an electric cleaning care appliance, and to a pressure alarm method and a pressure alarm apparatus for the same.
  • a cleaning care implement includes a handle having a handle housing with a power supply portion for providing power to various portions of the cleaning care implement for controlling cleaning, as described in another applicant's patent application PCT/CN2015/071696.
  • the driver includes a transducer, a drive coil, and a drive coil core disposed in the drive coil.
  • the permanent magnet distributed on the transducer is subjected to the reaction force of the electromagnetic force to drive the transducer to reciprocate and rotate at the frequency of the alternating current, thereby driving the assembly to the transducer.
  • the cleaning element carrier on the drive shaft and the cleaning element distributed on the cleaning element carrier are reciprocatingly rotated to effect a cleaning action.
  • the transducer, the cleaning element and the cleaning element carrier having a solid natural frequency f, the current driving the drive coil having a frequency f 0, f, and f 0 is very close to the solid, usually to satisfy 0.85f 0 ⁇ f Solid ⁇ 1.05f 0 , the electromagnetic force between the drive coil and the transducer allows the transducer, the cleaning element carrier and the cleaning element to be in a resonant state, thereby achieving higher mechanical efficiency.
  • the invention patent with the authorization number CN 101346106 B discloses an adaptive drive system for the use of current values for personal care appliances, during which the stator current is continuously measured and normalized while the appliance is in actual use, and then The operating frequency is adjusted in a small range to produce the desired match between the operating frequency and the resonant frequency to achieve an optimum operating frequency. That is to say, it can dynamically adjust the drive frequency value in a certain frequency range during use to maintain dynamic efficiency, thereby maintaining high efficiency during the life of the appliance. As described in the paragraphs [0031], [0032], the diagram of FIG.
  • FIG. 3 includes a plot of amplitude versus operating frequency for a plurality of loads (shown as group 50) to And a plot of average stator current versus frequency for those same loads (shown as group 52).
  • the load range is 0-250 grams in 25 grams increments.
  • the unloaded state is line 54, which has the highest swing, while the line representing the other extreme of 250 grams of full load is line 58, which has the lowest swing.
  • line 60 has the largest swing in both directions, while line 62 with the smallest swing in both directions represents the change in current with frequency for a maximum load of 250 grams.
  • the plurality of load lines between the loaded and unloaded lines are between the minimum and maximum loads and represent a plurality of different loads.
  • Line 66 in Figure 3 represents a flat load curve having an amplitude of 11°, and each black dot represents an operating frequency of 11° amplitude generated at a plurality of load values between 0-250 grams and in increments of 25 grams.
  • the increase in the load causes the frequency corresponding to the maximum amplitude to shift toward the small value of the frequency.
  • the intersection of group 54 and line 66 represents the maximum amplitude point in the unloaded state.
  • the intersection of group 58 and line 66 represents the maximum amplitude point in the state of 250 gram full load.
  • the operating frequency corresponding to the intersection of group 54 and line 66 is greater than the operating frequency corresponding to the intersection of group 58 and line 66.
  • an electric toothbrush having a pressure sensor comprising: for determining the pressure exerted on the user's teeth by the bristles of the toothbrush by direct force measurement System for determining a pressure exerted on a user's teeth by the bristles of the toothbrush by dynamic force measurement; and a processing system responsive to determining by the direct force measurement and the dynamic force measurement The pressure to adjust the pre-established amount of pressure indicative of excessive bristle force.
  • the present invention is an improvement over the patent application PCT/CN2015/071696. It is an object of the present invention to provide an electric cleaning care appliance that is low in cost, reliable in performance, and fully functional. Another object of the present invention is to provide a pressure alarm method for the electric cleaning care implement. It is still another object of the present invention to provide a pressure alarm device for the electric cleaning care appliance.
  • the electric cleaning care implement comprises: a handle having a handle housing with a power supply portion for supplying power to various parts of the cleaning care appliance, for controlling the opening or closing of the cleaning care appliance, and various working modes. a control portion, a trigger portion for starting or closing the operation of the cleaning care appliance, and a driver for converting input electrical energy into a mechanical energy output, the driver including a transducer, a driving coil, a driving coil core disposed in the driving coil, when driving When the coil is connected with alternating current, the permanent magnet distributed on the transducer is subjected to the reaction force of the electromagnetic force to drive the transducer to reciprocate the frequency of the alternating current, thereby driving the assembly shaft to the transducer.
  • the cleaning element performs a reciprocating rotary motion.
  • the transducer includes at least two transducer elastic members that participate in the resonant motion in a bending strain characteristic and are symmetrically distributed on the left and right sides of the longitudinal axis of the drive shaft, and the left and right side transducer elastic members have an angle of 180°.
  • the bending section coefficients and lengths are approximately equal such that the deflection of the left transducer elastic member and the deflection amplitude of the right transducer elastic member are approximately equal and the deflection directions are opposite.
  • the angle between the longitudinal axis of the cleaning element and the normal to the plane of the transducer spring is between 0° and 60°.
  • the frequency of the alternating current in the drive coil is a fixed value equal to f 0max -n, and n is a fixed value in the range of -0.3 (f 0max -f 0min ) to 0.85 (f 0max -f 0min ), where f 0max
  • the drive coil current frequency corresponding to the maximum value of the average voltage across the current sense resistor, f 0min is the drive coil current frequency corresponding to the minimum value of the average voltage across the current sense resistor.
  • the numerical difference between the bending section coefficient and the length of the left and right side transducer elastic members is less than 10%, so that the difference between the deflection of the left transducer elastic member and the deflection of the right transducer elastic member is less than 10%.
  • the angle between the longitudinal axis of the cleaning element and the normal to the plane of the transducer spring may be 0° ⁇ angle ⁇ 30°, preferably the angle is equal to 0°.
  • the thickness of the left and right side transducer elastic members along the normal direction of the transducer elastic member plane is smaller than 1/10 of the width of the left and right side transducer elastic members in a direction approximately parallel to the longitudinal axis of the drive shaft.
  • the deflection of the transducer elastic member is ⁇ 1 , set the direction
  • the deflection of the transducer elastic member, which is approximately perpendicular to the longitudinal axis of the drive shaft and whose vector direction is perpendicular to the plane of the transducer spring, is ⁇ 2 , then ⁇ 1 is approximately 1/1000 of ⁇ 2 .
  • the pressure alarm method for the electric cleaning care appliance provided by the present invention comprises the following steps:
  • step 3 From the average voltage on the current detecting resistor at different frequencies recorded in step 2), select and record the driving coil current frequency f 0max and the current detecting resistor corresponding to the maximum value of the average voltage on the current detecting resistor The minimum value of the average voltage on the drive coil current frequency f 0min ;
  • the pressure alarm mode can use sound and / or light and / or mechanical vibration mode.
  • Adjusting an angle normal to the longitudinal axis of the cleaning member and the transducer may include a planar resilient member is adjusted so that the angle between the natural frequency f with a solid load is applied to the transducer increases the force on the cleaning element increases.
  • the method further comprises controlling pressure alarm natural frequency f with a solid load transducer varies acting force on the rate of increase of the cleaning element, such that the angle between the longitudinal axis of the transducer and the elastic member of the plane of the cleaning element method little larger, then change the natural frequency f is fixed with the load application can vary force on the cleaning element increases the rate, the larger the angle between the longitudinal axis of the resilient member and the transducer elements of the plane of the cleaning method, the change It can vary the natural frequency f is fixed with the load acting on the cleaning element the smaller the rate of increase of force.
  • the load value for resonating the transducer and the driving force can be selected by selecting the value of n, and the smaller the value of n, the larger the load value for resonating the transducer and the driving force.
  • the H-bridge circuit wherein the program of the microchip processor IC stores f 0max -n, and f 0max -n corresponding to the selected n value is used as a fixed frequency f 0 of the current flowing in the driving coil, wherein -0.3(f 0max -f 0min ) ⁇ n ⁇ 0.85(f 0max -f 0min ), f 0max is the drive coil current frequency corresponding to the maximum value of the average voltage across the current sense resistor, and f 0min is the current sense resistor
  • the minimum value of the average voltage corresponds to the drive coil current frequency, and prestores the average value of the power supply voltage under the alarm load U L source and the average voltage U LR25 on the current sense resistor R 25
  • the alarm component can be a buzzer device and/or a light emitting device and/or a mechanical vibration device.
  • the present invention creatively incorporated increases with increasing load transducer natural frequency f of the solid idea that a state under load increases, the natural frequency f of the transducer increases the overall solid, the overall area of the transducer to the resonator frequency is The value direction is offset.
  • the load influence is negligible solid natural frequency f of the transducer pair.
  • the frequency f is fixed at a rate that varies with the force acting on the cleaning element by the load, and once the fixed drive frequency is set, the drive frequency does not change during operation of the cleaning appliance, such that the amplitude of the cleaning element is small to large
  • the driving coil current value is monotonously decreasing from high to low, so that the personal electric cleaning care device can obtain higher mechanical efficiency, smaller working current and less energy consumption under reasonable load.
  • the maximum cleaning element amplitude, the best cleaning effect, and the amplitude can be reduced to protect the gum after the load exceeds a reasonable value, and the structure is simple and the cost is low.
  • Figure 1 is a partially cutaway side elevational view of the electric cleaning care implement of the present invention
  • FIG 2 is a schematic view of the driver of the cleaning care appliance shown in Figure 1;
  • Figure 3 is a graph showing the relationship between the current and the driving frequency and the amplitude versus the driving frequency of the cleaning care appliance of the present invention obtained by experiments under different loads;
  • Figure 4 is a graph showing the relationship between current and load at different driving frequencies of the cleaning care implement of the present invention obtained through experiments;
  • Figure 5 is a graph showing the amplitude versus load of the cleaning care implement of the present invention at different driving frequencies as obtained by experiments;
  • Figure 6 is a flow chart of a pressure alarm method for the cleaning care appliance of the present invention.
  • Figure 7 is a schematic diagram of the circuit portion of the pressure alarm device of the present invention.
  • Q 21 -Q 24 is a transistor
  • IC is a programmable microchip processor
  • I/O is the different input/output interface of the IC
  • L is the drive coil inductance
  • R 21 -R 24 are resistors
  • R 25 is a current detecting resistor
  • U R25 is the voltage across the current sense resistor R 25
  • f solid 1 is the natural frequency of the resonant system when the load is No. 1
  • f solid 2 is the natural frequency of the resonant system when the load is 2
  • f solid 3 is the natural frequency of the resonant system when the load is No. 3
  • I 0 is the average current of the drive coil when no-load
  • I 1 is the current of the drive coil when the load is No. 1, and the load is equivalent to the gravity load represented by 150 g mass in the present invention.
  • the current of the driving coil when I 2 is the load No. 2 is equivalent to the gravity load represented by the mass of 300 g in the present invention.
  • the current of the driving coil when I 3 is the load No. 3 is equivalent to the gravity load represented by the mass of 400 g in the present invention.
  • a 0 is the amplitude of the cleaning element when no-load
  • a 1 is 1, the cleaning element load amplitude
  • a 2 is the amplitude of the cleaning element when the load is No. 2.
  • a 3 is the amplitude of the cleaning element when the load is No. 3.
  • f 0max is the driving frequency corresponding to the driving coil current reaching the maximum value in the resonance region at no load
  • f 0min is the driving frequency corresponding to the minimum value of driving coil current in the resonance region when no load is applied
  • f 1max is the driving frequency corresponding to the maximum value of the driving coil current in the resonance region when the load is No. 1
  • f 1min is the driving frequency corresponding to the minimum value of the drive coil current in the resonance region when the load is No. 1
  • f 2max is the driving frequency corresponding to the maximum value of the driving coil current in the resonance region when the load is 2
  • f 2min is the driving frequency corresponding to the minimum value of the drive coil current in the resonance region when the load is 2
  • f 3max is the driving frequency corresponding to the maximum value of the driving coil current in the resonance region when the load is No. 3
  • f 3min is the driving frequency corresponding to the minimum value of the driving coil current in the resonance region when the load is No. 3
  • L 1 is the longitudinal axis of the cleaning element
  • L 2 is the longitudinal axis of the drive shaft
  • M is the plane of the transducer elastic member, which is the plane on the transducer elastic member and simultaneously coupled to the transducer elastic member fixing member and the transducer transmission arm
  • 109 is a rechargeable battery
  • 112 is the left side bracket of the drive
  • an exemplary embodiment of the present invention will be described in more detail with an electric toothbrush as a typical example of the electric cleaning care implement of the present invention, with reference to the accompanying drawings.
  • an electric toothbrush is exemplified below, the present invention is not limited thereto.
  • the present invention is also applicable to electric razors, electric cleansers, electric showers, and the like for personal electric cleaning care appliances.
  • the electric toothbrush illustrated in Figures 1 and 2 includes a handle having a handle housing 105 that houses a power supply portion for providing power to various portions of the cleaning care implement, A control portion for controlling various operating modes of the cleaning care appliance and opening or closing of the cleaning care appliance, a triggering portion for starting or closing the operation of the cleaning care appliance, and a driver 110 for converting the input electrical energy into mechanical energy output.
  • the driver 110 includes a transducer, a drive coil 214, a drive coil core 215 disposed in the drive coil 214, a driver left side bracket 112 for supporting the driver 110, and a driver right side bracket (not shown) including a cleaning element A carrier and a cleaning assembly of cleaning elements (i.e., bristles) 3 distributed over the cleaning element carrier.
  • the cleaning assembly is detachably coupled to the drive shaft 111.
  • the transducer includes a drive shaft 111 inserted into the cleaning assembly; at least one transducer spring fastener 224 fastened to the left and right brackets of the driver; at least two of which are disposed on the left and right sides with respect to the longitudinal axis L 2 of the drive shaft Upper and lower permanent magnets 216, 217, 218, 219; respective permanent magnet brackets 227, 228, 229, 230 for fixing the permanent magnets 216, 217, 218, 219; and permanent magnet brackets 227, 228 , 229, 230 left and right transducer drive arms 225, 226 fixed to the drive shaft 111; and at least two left transducer elastics respectively disposed on the left and right sides of the longitudinal axis L 2 of the drive shaft Piece 222 and right transducer elastic member 223.
  • One ends of the left and right transducer elastic members 222, 223 are respectively fixed to the transducer elastic member fixing member 224, and the other ends of the left and right transducer elastic members 222, 223 are respectively driven by the corresponding transducers.
  • the arms 225, 226 are fixed.
  • the left and right permanent magnets are independent of each other, and the magnetic pole polarity of one side permanent magnet in the direction toward the driving coil is S pole or N pole, and the magnetic pole polarity of the other side permanent magnet in the direction of the driving coil and the one side permanent magnet
  • the magnetic poles are opposite in polarity, and the left and right permanent magnets 216, 217, 218, 219 are disposed such that their internal magnetic field lines and the longitudinal axis of the driving coil core are respectively greater than 45° and less than 135°, left,
  • the right permanent magnets 216, 217, 218, 219 are movable relative to the transducer spring fixture 224.
  • the moving directions of the left and right permanent magnets 216 , 217 , 218 , 219 and the longitudinal axis of the driving coil core are approximately parallel, that is, the angle between the two is greater than 170 ° and less than 190 ° or greater than -10 ° and less than 10 °.
  • the transducer elastic members 222, 223 mainly participate in the resonant motion with bending strain characteristics.
  • the transducer may be provided with two transducer elastic members 222 and 223 which are symmetrically distributed on the left and right sides of the longitudinal axis L 2 of the drive shaft, and the clips of the left and right side transducer elastic members 222 and 223
  • the angle is 180°, and the left transducer elastic member 222 and the right transducer elastic member 223 can be disposed such that their bending section coefficients and lengths are approximately equal, and the numerical difference is less than 10%, so that the left transducer
  • the deflection of the elastic member 222 and the deflection amplitude of the right transducer elastic member 223 are approximately equal, the amplitude difference is less than 10%, and the deflection direction is opposite.
  • the thickness of the left and right side transducer elastic members 222, 223 in the normal direction of the transducer elastic member plane M is smaller than the width of the left and right side transducer elastic members 222, 223 in the direction approximately parallel to the drive shaft axis L 2 /10.
  • the exemplary electric toothbrush of the present invention includes at least two transducer elastic members, which are a left transducer elastic member 222 and a right transducer elastic member 223, respectively, using a bending strain of the elastic member material.
  • the driving frequency of the transducer is acting force f 0, into a resonance state. That is, when the drive coil 214 in the handle housing 105 flows through an alternating current of frequency f 0 , the electromagnetic force generated by the drive coil 214 and acting on the transducer causes the transducer to be in a resonant state.
  • the average voltage on the current detecting resistor R 25 at no-load can be measured by the I/O 25 , thereby measuring the average current on the current detecting resistor R 25 at no-load, that is, the no-load can be measured by the I/O 25
  • the average current of the coil 214 is driven.
  • the "approximation” can be considered that the error of the angle between the longitudinal axis L 1 of the cleaning member 3 and the plane M of the left and right side transducer elastic members is less than 15°.
  • the driving coil 214 of the electric toothbrush When the driving coil 214 of the electric toothbrush is not energized, the end surface of the cleaning element 3 is not subjected to the load, and the left and right side transducer elastic members 122, 123 are not subjected to force in a direction substantially perpendicular to the plane M of the transducer elastic member, at this time
  • the angle between the side transducer elastic members 222, 223 is approximately 180 degrees.
  • the driving frequency of the driver 110 of the electric toothbrush is fixed to f 0 .
  • the driving force is derived from the electromagnetic force generated by the energized conductor in the magnetic field (ie, NBl ⁇ ), and the magnetic field lines generated by the inductance L and the direction of motion of the permanent magnet on the transducer are approximately parallel, so the magnetic force generated by the driving coil inductance L is almost No effect on the motion of the permanent magnet. From the above mathematical formula, it can be deduced that the current of the driving coil 214 in the resonance region will have two inflection points. The first inflection point appears when the ⁇ is small, the current is the smallest, and the second inflection point appears at a slightly larger ⁇ , and the current is the largest. .
  • the resonance region depending on the drive frequency f 0 of the transducer natural frequency f of the solid and the driving coil 214 the current in the solid usually when f satisfy 0.85f 0 ⁇ f Solid ⁇ 1.05f 0, the transducer 130 is driven from The electromagnetic force of the coil 214 is driven to be in a resonant state. Therefore, when the f- solid becomes large, the resonant region of the driver will shift toward the direction of the large frequency. When f is fixed , the resonant region of the driver will shift toward the small value of the frequency.
  • the vibration in the resonance region lags behind the driving force.
  • the left and right side transducer elastic members 222, 223 mainly participate in the resonance motion with the bending strain characteristics, which are symmetrically distributed on the left and right sides of the longitudinal axis L 2 of the drive shaft, and the clip therebetween
  • the angle is 180°, and is set such that the bending section coefficient and the length are approximately equal, and the thickness of the left and right side transducer elastic members 222, 223 along the normal direction of the transducer elastic member M is smaller than the axis thereof is approximately parallel to the driving shaft axis. 1/10 of the width in the L 2 direction.
  • the armature reaction of the driving coil to the electromagnetic force of the permanent magnet comes only from the cutting action of the moving magnetic field on the energizing conductor (NBl ⁇ ), and the minimum current location in the resonant region due to damping and hysteresis effects, etc.
  • the corresponding frequency is slightly less than the frequency corresponding to the maximum amplitude of the transducer 130 and is also slightly less than the frequency corresponding to the maximum amplitude of the cleaning element 3.
  • the driving frequency at the minimum current of the driving coil in the resonance region is f 0min . It is known from a large number of experiments that the driving frequency corresponding to the maximum amplitude of the cleaning element 3 under no-load is in the range of f 0min +5Hz to f 0min +12Hz.
  • the drive frequency f 0max corresponding to the maximum drive coil current in the resonant region is approximately 20 to 40 Hz greater than f 0min .
  • the frequency f 0 of the alternating current of the driving coil can be fixed to f 0max -n where -0.3(f 0max -f 0min ) ⁇ n ⁇ 0.85(f 0max -f 0min ), and f 0max is the current detecting resistor
  • the drive coil current frequency corresponding to the maximum value of the average voltage, f 0min is the drive coil current frequency corresponding to the minimum value of the average voltage on the current sense resistor.
  • n 10 Hz
  • f 0min 250 Hz
  • the end surface of the cleaning member 3 is not a load is applied, the cleaning element longitudinal axis L 1 of 3 approximately perpendicular to the left and right side transducer elastic member plane M, drive shaft axis L 2 is approximately parallel to the plane M of the left and right side transducer elastic members.
  • the thickness of the left and right side transducer elastic members 222, 223 along the normal direction of the transducer elastic member M is smaller than that of the left and right side transducer elastic members 222, 223 in the direction approximately parallel to the drive shaft axis L 2 1/10 of the width; the left and right brackets of the driver are fixed in the handle housing 105, the transducer elastic member fixing member 224 and the left and right brackets of the driver have no relative movement, and the left and right transducer transmission arms 225, The 226 is movable relative to the transducer spring fastener 224, the left and right transducer actuator arms 225, 226 and the drive shaft 111 are fixed, the drive shaft 111 and the cleaning assembly 3 are detachably coupled together, thus the cleaning element 3 When a load is applied to the end face, it can be seen from the force analysis that the transducer elastic member fixing member 224 bears part or all of the pressure exerted on the cleaning member 3 by the load, and the left and right transducer elastic
  • the deflection of the left and right transducer elastic members 222, 223 formed by the load applied to the end face of the cleaning member 3 corresponds to shortening the length of the cantilever of the elastic members during bending strain and/or increasing the cantilever
  • the thickness, the change in the physical quantity, will increase the spring stiffness coefficient K in the bending strain mode corresponding to the left and right transducer elastic members 222, 223.
  • the natural frequency of the transducer is fixed to the ratio
  • the pressure in the direction perpendicular to the longitudinal axis L 1 of the cleaning member 3 is equivalent to increasing the damping coefficient of the resonance system, and thus the driver resonance region is slightly shifted toward the small frequency direction.
  • the above pressure will form a torque in the direction of the longitudinal axis L 2 of the drive shaft at the junction of the transducer elastic members 222, 223 and the transducer elastic member fixing member 224, but since the cleaning member 3 is generally elastic. Nylon yarn, and the force or moment is poorly transmitted in the bending direction of the nylon yarn, and the distance from the point of application of the pressure to the junction of the transducer elastic member fixing member 224 and the transducer elastic members 222, 223 is very large. small, so the impact on the torque transducer natural frequency f of the solid is very limited, even negligible.
  • the width of the transducer elastic members 222, 223 in the direction of the longitudinal axis L 2 of the drive shaft is set to be larger than the thickness of the transducer elastic members 222, 223 in the normal direction of the plane M of the transducer elastic member. Ten times more.
  • the deflection of the transducer elastic members 222, 223 is formed.
  • ⁇ 1 the direction of the transducer elastic members 222, 223, which is approximately perpendicular to the longitudinal axis L 2 of the drive shaft and whose vector direction is perpendicular to the plane M of the transducer elastic member, is ⁇ 2 , then ⁇ 1 It is 1/1000 of ⁇ 2 .
  • the cleaning member 3 When the cleaning member 3 is supported on a pressure transducer in a direction perpendicular to the plane of the resilient member Method M, the load has little influence on the natural frequency f of the transducer solid.
  • the cleaning member 3 since the cleaning member 3 is generally made of elastomeric material (such as nylon), the effect of the force transmission direction L 1 of the cleaning member 3 along the longitudinal axis of the cleaning member is much better than the cleaning element in a direction perpendicular to the longitudinal direction of the axis L 1 The effect of the force on the transmission.
  • the cleaning member 3 to the longitudinal axis L 1 and the angle transducer the size of the elastic member to the normal plane M Effect of changing the natural frequency f with a solid load acting on the force transducer cleaning element 3 becomes large to increase the degree of ( rate).
  • May be an angle normal to the cleaning element 3 is arranged with its longitudinal axis L 1 and the transducer elastic member plane M is 0 ° -60 °, preferably 0 ° ⁇ angle ⁇ 30 °, more preferably The angle is equal to 0°.
  • the angle between the longitudinal axis L 1 of the cleaning element 3 and the normal direction of the plane of the transducer elastic member M is 60°, the force transmitted to the normal direction of the plane M of the transducer elastic member is minimized, so the load force is made minimum transducer elastic member spring rate of the bending strain at 222 and 223 K corresponding to the pattern larger at least, the natural frequency f of the transducer with the load acting on the solid increases the force on the cleaning element 3 becomes large extent (rate Minimal). Therefore, in the present invention, by properly arranging the normal angle L 1 of the cleaning member 3 and the normal angle of the plane M of the transducer elastic member, the natural frequency of the transducer f is increased with the load acting on the cleaning member 3.
  • the longitudinal axis L 1 of the cleaning element 3 and the normal of the plane M of the transducer elastic member the larger the smaller the angle, the transducer natural frequency f varies solid with the load acting force on the cleaning element increases the rate of 3.
  • the cleaning element 3 is mainly composed of nylon wire
  • the mechanical properties of the nylon wire in the compression direction are much better than those of the nylon wire in the bending direction, so the tooth cleaning element (nylon wire) 3
  • the pressure is transmitted primarily along the longitudinal axis of the cleaning element.
  • tooth cleaning elements resistance mainly in a plane perpendicular to the longitudinal axis of L 1 in the cleaning element 3.
  • the cleaning member 3 is generally made of elastomeric material (e.g., nylon), a transfer effect to its longitudinal axis L force the cleaning member 3 substantially in a direction parallel better than the effect of a force transmission direction perpendicular thereto in the direction of the longitudinal axis L, so that the resistance between the cleaning elements 3 and a cleaning object fixing effect transducer natural frequency f can be ignored, so that the cleaning element can be applied
  • the magnitude of the pressure on the longitudinal axis L 1 is monitored.
  • Fig. 3 is a graph showing the relationship between the current I and the driving frequency f and the amplitude A and the driving frequency f of the cleaning care implement of the present invention obtained by experiments, wherein the abscissa indicates the driving frequency and the ordinate indicates the ordinate. The nominal value of current and amplitude.
  • the frequency f at the maximum amplitude of the cleaning element 3 is fixed 2 (see the curve shown by the icon point " ⁇ ") larger than the maximum amplitude of the cleaning element 3 when a load of 150 gram is applied to the end face of the cleaning member 3
  • the frequency f at the solid is 1 , that is, the larger the applied load, the larger the natural frequency of the transducer becomes, and the increased load applied may cause the resonant region to shift toward the direction of the large frequency.
  • f 0min 250 Hz
  • f 0max f 0min + 25 Hz
  • the frequency f 0 of the drive coil alternating current is fixed at 265 Hz.
  • the amplitude of the cleaning element 3 is also rapidly increased (A 2 >A 1 >A 0 ), and since the minimum value of the driving coil current of the resonant system appears at f Min , increasing the load causes f min to move toward the direction of the large frequency, so that f min is closer to the driving frequency. Therefore, when the resonant system tends to resonate from weak resonance to resonance, the average value of the current of the driving coil is changed from large to small. Also evident from FIG.
  • the load value corresponding to the large inflection point (about 450 gram force) is greater than the load value (about 300 gram force) corresponding to the inflection point of the cleaning element amplitude A from large to small, and the difference between the load values is about 150 gram force.
  • the natural frequency of the transducer is fixed to be equal to the driving frequency f 0 to resonate, and the load value corresponding to the inflection point of the current value of the driving coil is changed.
  • the resonance point frequency of the resonance system corresponds to a load applied to the cleaning element 3 by 400 gram force (see the icon point " ⁇ " in FIGS. 4 and 5).
  • the current of the drive coil from the small to large inflection point will appear in a load (not shown) corresponding to a force exerting more than about 550 grams on the cleaning element 3.
  • the resonance point frequency of the resonant system corresponds to a load exerting less than 300 gram force on the cleaning element 3 (see the curves shown by the icon point " ⁇ " in Figures 4 and 5),
  • the current of the driving coil will appear from a small and large turning point to a load corresponding to the cleaning element 3 applying less than 550 gram force, at which time the resonance point (amplitude maximum point) frequency of the resonant system corresponds to 150 grams applied to the cleaning element 3.
  • the current of the drive coil from the small to large inflection point will appear at a load corresponding to the application of the 300 gram force on the cleaning element.
  • n can range from -0.3 (f 0max -f 0min ) to 0.85 (f 0max -f 0min ), preferably -0.1(f 0max -f 0min ) ⁇ n ⁇ 0.4(f 0max -f 0min More preferably, it is 0 ⁇ n ⁇ 0.4 (f 0max - f 0min ).
  • the transducer elastic member can be made as the load pressure applied to the cleaning member 3 increases.
  • the natural frequency f is solid and large, and the larger the load pressure is, the larger the f solid is.
  • the above purpose can be achieved by selecting 0° ⁇ ⁇ angle ⁇ 60°.
  • 0° ⁇ ⁇ angle ⁇ 30°, more preferably ⁇ 0°, and further, by reasonably selecting the frequency f 0max -n of the alternating current in the drive coil, it is possible to achieve no load on the cleaning element 3 from loading to loading.
  • the transducer resonant system resonates from a weak resonance. It is also possible to select -0.3 (f 0max - f 0min ) ⁇ n ⁇ 0.85 (f 0max - f 0min ).
  • the driving frequency of the cleaning care device is constant during the operation, so that the amplitude of the cleaning element 3 is from small to large, and the driving coil current value is monotonously decreased from high to low, so that the personal electric cleaning care device can be guaranteed under a reasonable load. Get higher mechanical efficiency, smaller operating current, lower energy consumption, maximum cleaning element amplitude, and best cleaning results.
  • the selection of the above reasonable load value can be realized by selecting the value of n in f 0max -n.
  • This process can also provide reliable protection for the gums.
  • a reasonable value such as 300 grams force
  • the above structure can obtain high efficiency and large amplitude under a reasonable load, and can reduce the amplitude to protect the gum after the load exceeds a reasonable value, and has a simple structure and low cost.
  • the present invention also provides a pressure alarm method for a cleaning care appliance as described above.
  • Figure 6 shows the steps of the method. As shown in FIG. 6, the pressure alarm method for the cleaning care appliance as described above includes the following steps:
  • the current sense resistor R 25 Detecting the average voltage U LR25 on the current sense resistor R 25 in series with the drive coil 214 at different frequencies in the resonant frequency range of the cleaning care appliance. For example, in the resonant frequency range, the current frequency of the driving coil is gradually increased by the same time interval ⁇ t (for example, 1 second) and the same frequency difference ⁇ f (such as 1 Hz), and the measured and recorded corresponding to different frequencies.
  • the current sense resistor R 25 has an average voltage U LR25 .
  • the resonant frequency range of the transducer is about 243 Hz-300 Hz
  • the frequency of the drive coil current in the first second is 243 Hz
  • the average voltage across the current detecting resistor R 25 at 243 Hz is measured and recorded.
  • U LR252 which is cycled in sequence until the detection of the entire resonant frequency range is completed.
  • the drive coil current has a frequency in the fifty-eighth seconds to 300Hz, the average voltage 25 measured and recorded at a frequency of 300Hz current detection resistor R U LR2558;
  • the drive coil current frequency f corresponding to the maximum value of the average voltage on the current detecting resistor R 25 is selected and recorded. 0max and the minimum value of the average voltage across the current sense resistor R 25 corresponding to the drive coil current frequency f 0min ;
  • f 0max is the drive coil current corresponding to the maximum value of the average voltage on the current detecting resistor R 25 ;
  • the average value of the power supply voltage under the pre-stored alarm load U L source and the average voltage U LR25 on the current sense resistor R 25 are programmed in the programmable microchip processor IC, for example, on the end face of the cleaning element 3
  • the alarm load (such as 300 gram force), the load is applied, the IC leads f 0max -n (where n is a selected fixed value) as the current of the fixed frequency f0 flows through the drive coil, and the I/O 25 is in a short time.
  • the voltage on the current detecting resistor R 25 is detected multiple times, and the average voltage U LR25 under the alarm load on the current detecting resistor R 25 is measured , and the IC is simultaneously in a short time (for example, within 3 seconds). repeatedly detecting the power supply voltage, measure an average value of the power source voltage U L corresponding to the program power source voltage U L and the average current detection resistor R in the average voltage U LR25 25 under load will be stored in the warning IC in;
  • the pressure alarm can be in the form of sound and / or light and / or vibration mode, after which the IC continues to detect the U NR25 and U N sources , when (U N source / U L source ) ⁇ U NR25 > U LR25 , cancel the pressure alarm signal Output, and vice versa, maintain a pressure alarm and cycle accordingly.
  • the pressure alarm device provided by the present invention for implementing the method includes a detection, acquisition and alarm circuit and an alarm component (not shown).
  • the detection, acquisition, and alarm circuit includes a power supply, a programmable microchip processor IC, and an H-bridge circuit formed of transistors for coupling the power supply and the drive coil 214.
  • the program of the microchip processor IC stores f 0max -n, and f 0max -n corresponding to the selected n value is used as the fixed frequency f 0 of the current flowing in the driving coil 214, where -0.3(f 0max - f 0min ) ⁇ n ⁇ 0.85 (f 0max - f 0min ), f 0max is the drive coil current frequency corresponding to the maximum value of the average voltage on the current detecting resistor R 25 , and f 0min is the average voltage on the current detecting resistor R 25
  • the minimum value corresponds to the drive coil current frequency, and the average value of the power supply voltage under the alarm load U L source and the average voltage U LR25 on the current sense resistor R 25 are prestored .
  • the programmable microchip processor IC outputs a square wave of fixed frequency f 0 to drive the H-bridge circuit and is used to pre- store the average value of the supply voltage U L source under the alarm load and the average voltage U LR25 on the current sense resistor R 25 .
  • the microchip processor IC outputs a square wave having a fixed frequency f 0 to drive the H-bridge circuit, thereby flowing an alternating current of a fixed frequency f 0 on the driving coil 214, and the alternating current flows back to the power source via the current detecting resistor R 25 .
  • the resistance of the current detecting resistor R 25 is fixed, and the magnitude of the voltage U R25 on the current detecting resistor R 25 reflects the magnitude of the current flowing through the current detecting resistor R 25 , and the current detecting resistor R 25 is connected in series with the H-bridge circuit and The power supply, that is, one end of the current detecting resistor R 25 is coupled to the negative pole of the power supply, and the other end of the current detecting resistor R 25 is coupled to the current exit end of the H-bridge circuit and coupled to the A/D conversion port I/O 25 of the microchip processor IC. Used to detect the voltage on the I/O25 conversion port.
  • the microchip processor IC can detect the current flowing through the driving coil 214 in real time.
  • the current detecting resistor R 25 usually has a small resistance value.
  • the current detecting resistor of the present invention may have a resistance value of about 0.1 ⁇ .
  • the alarm component can be a buzzer device and/or a light emitting device and/or a mechanical vibrating component.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushes (AREA)

Abstract

一种电动清洁护理器具、用于该器具的压力报警方法及装置,其中该器具的换能器弹性件(222、223)以弯曲应变特性参与谐振运动且对称地分布在驱动轴纵向轴线(L2)的左右两侧,其抗弯截面系数和长度近似相等,挠度幅值近似相等且挠曲方向相反,其中,清洁元件的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角为0°-60°;驱动线圈(214)中交变电流的频率为等于f 0max-n的固定值,n为-0.3(f0max-f0min)至0.85(f0max-f0min)的范围中的某一固定值,f0max为电流检测电阻上的平均电压的最大值所对应的驱动线圈(214)电流频率,f0min为电流检测电阻上的平均电压的最小值所对应的驱动线圈(214)电流频率,致使该护理器具的机械效率更高且结构简单、成本低廉。

Description

电动清洁护理器具、用于该器具的压力报警方法及装置 技术领域
本发明涉及一种电动清洁护理器具,本发明还涉及用于该清洁护理器具的压力报警方法及压力报警装置。
背景技术
在电动清洁护理器具(以下简称清洁护理器具)中,常采用谐振驱动系统来驱动清洁元件作旋转运动,以便按期望的高效率进行操作。如本申请人的另一专利申请PCT/CN2015/071696所述,清洁护理器具包括具有手柄外壳的手柄,手柄外壳内部装有用以向清洁护理器具的各个部分提供电力的电源部分、用以控制清洁护理器具的各种工作模式以及该清洁护理器具的开启或关闭的控制部分、用以启动或关闭所述清洁护理器具运转的触发部分和将输入电能转换为机械能输出的驱动器。所述驱动器包括换能器、驱动线圈、设置在所述驱动线圈中的驱动线圈铁芯。当驱动线圈通以交变电流i时,分布在换能器上的永磁体受到电磁力的反作用力而驱动换能器以交变电流的频率进行往复旋转运动,从而带动装配到换能器的驱动轴上的清洁元件载体和分布于清洁元件载体上的清洁元件作往复旋转运动,以实现清洁动作。在所述结构中,换能器、清洁元件载体和清洁元件具有固有频率f,驱动线圈中的电流具有驱动频率f0,f和f0非常接近,通常使其满足0.85f0<f<1.05f0,驱动线圈和换能器之间的电磁力可使换能器、清洁元件载体和清洁元件处于谐振状态,从而能获得较高的机械效率。
授权公告号为CN 101346106 B的发明专利披露了一种用于个人护理器具的使用电流值的自适应驱动系统,在器具寿命期间,在器具处于实际使用时,连续测量和标准化定子电流,然后在小范围内调节操作频率,以便在操作频率和共振频率之间产生期望的匹配,从而获得最佳操作频率。也就是说,其在使用过程中可以变化地选择一定频率范围中的驱动频率值而进行动态调节,从而在器具寿命期间保持高效率。如说明书[0031]、[0032]段所述,图3的示图包括对于多个负载(示出为组50)的幅度与操作频率的曲线,以 及对于那些相同负载(示出为组52)的平均定子电流与频率的曲线。在该特定情况中,负载范围为0-250克,以25克递增。在幅度与频率的情况中,未加载的状态为线54,其具有最高的摆幅,而表示250克全负载的另一极端的线是线58,其具有最低的摆幅。对于平均定子电流与频率值,线60在两个方向上都具有最大摆幅,而在两个方向上都具有最小摆幅的线62表示对于250克最大负载的随频率的电流改变。被加载的和未被加载的线(幅度和电流两者)之间的多条负载线位于最小和最大负载之间,并且表示多个不同负载。图3中的直线66表示具有幅度11°的平坦负载曲线,而各黑点表示在0-250克之间并以25克为增量的多个负载值处产生的11°幅度的操作频率。
因此,从直线66可以看出,负载的加大使得最大幅度对应的频率向频率小值方向偏移。例如,组54和直线66交点代表未加载的状态下的最大振幅点。组58和直线66交点代表250克全负载的状态下的最大振幅点。组54和直线66交点所对应的操作频率大于组58和直线66交点所对应的操作频率。
在申请公布号为CN 104883997 A的发明专利申请中,披露了一种具有压力传感器的电动牙刷,该牙刷包括:用于通过直接力测量而确定由所述牙刷的刷毛施加在用户牙齿上的压力的系统;用于通过动态力测量而确定由所述牙刷的刷毛施加在用户牙齿上的压力的系统;和处理系统,该处理系统响应于通过所述直接力测量和所述动态力测量所确定的压力来调整指示过度刷毛力的压力的预先建立量。
发明内容
本发明是对专利申请PCT/CN2015/071696的改进。本发明的目的为提供一种成本低廉、性能可靠、功能齐全的电动清洁护理器具。本发明的另一目的为提供一种用于所述电动清洁护理器具的压力报警方法。本发明的再一目的为提供一种用于所述电动清洁护理器具的压力报警装置。
本发明所提供的电动清洁护理器具包括:具有手柄外壳的手柄,手柄外壳内装有用以向清洁护理器具的各部分提供电力的电源部分、用以控制清洁护理器具开启或关闭以及各种工作模式的控制部分、用以启动或关闭清洁护理器具运转的触发部分和将输入电能转换为机械能输出的驱动器,驱动器包 括换能器、驱动线圈、设置在所述驱动线圈中的驱动线圈铁芯,当驱动线圈通以交变电流时,分布在换能器上的永磁体受到电磁力的反作用力而驱动换能器以交变电流的频率进行往复旋转运动,从而带动装配到换能器的驱动轴上的清洁元件作往复旋转运动。换能器包括至少两个换能器弹性件,它们以弯曲应变特性参与谐振运动且对称地分布在驱动轴纵向轴线的左右两侧,左右侧换能器弹性件的夹角为180°,其抗弯截面系数和长度近似相等,从而使得左侧换能器弹性件的挠度和右侧换能器弹性件的挠度幅值近似相等且挠曲方向相反。清洁元件的纵向轴线和换能器弹性件平面的法向的夹角为0°-60°。驱动线圈中交变电流的频率为等于f0max-n的固定值,n为-0.3(f0max-f0min)至0.85(f0max-f0min)的范围中的某一固定值,其中f0max为电流检测电阻上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻上的平均电压的最小值所对应的驱动线圈电流频率。
左右侧换能器弹性件的抗弯截面系数和长度的数值差小于10%,从而使得左侧换能器弹性件的挠度和右侧换能器弹性件的挠度幅值差小于10%。
清洁元件的纵向轴线和换能器弹性件平面的法向的夹角可以为0°≤夹角≤30°,优选该夹角等于0°。
左右侧换能器弹性件沿换能器弹性件平面的法向的厚度小于该左右侧换能器弹性件沿近似平行于驱动轴纵向轴线方向上的宽度的1/10。
在驱动力的大小和作用点相同的情况下,若方向近似平行于驱动轴纵向轴线且矢量方向处于换能器弹性件平面中的力形成的换能器弹性件的挠度为ξ1,设方向近似垂直于驱动轴纵向轴线且矢量方向处于垂直于换能器弹性件平面中的力形成的换能器弹性件的挠度为ξ2,则ξ1约为ξ2的1/1000。
本发明所提供的用于所述电动清洁护理器具的压力报警方法,包括以下步骤:
1)选取所述清洁护理器具中的左右侧换能器弹性件的抗弯截面系数和长度近似相等,使得左、右两侧换能器弹性件的挠度的幅值近似相等且挠曲方向相反,并调节清洁元件的纵向轴线和换能器弹性件平面的法向的夹角至0°-60°;
2)检测所述清洁护理器具在谐振频率范围内不同频率对应的与驱动线圈串联的电流检测电阻上的平均电压;
3).从步骤2)所记录的不同频率时的电流检测电阻上的平均电压中, 选出并记录电流检测电阻上的平均电压的最大值所对应的驱动线圈电流频率f0max和电流检测电阻上的平均电压的最小值所对应的驱动线圈电流频率f0min
4).设置f0max-n并将f0max-n储存于所述IC的程序中,以选定的n值所对应的f0max-n作为驱动线圈中流过的电流的固定频率f0,其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻上的平均电压的最小值所对应的驱动线圈电流频率;
5).预存报警负载下的电源电压的平均值和电流检测电阻上的平均电压于可编程的微芯片处理器IC的程序中;
6).所述电动清洁护理用具工作时,采集当前负载对应的电流检测电阻上的电压值UNR25及当前的电源电压值UN源
7).比较所述当前负载对应的电流检测电阻上的电压值UNR25和预存于可编程的微芯片处理器IC中的报警负载下的电源电压的平均值UL源,若(UN源/UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警。
压力报警方式可以采用声音和/或灯光和/或机械振动模式。
调节清洁元件的纵向轴线和换能器弹性件平面的法向的夹角可以包括将该夹角调节为使得换能器固有频率f随负载作用于清洁元件上的力增加而变大。
所述压力报警方法还包括控制换能器固有频率f随负载作用于清洁元件上的力增加而变化的速率,使得清洁元件的纵向轴线和换能器弹性件平面的法向的夹角越小,则换能器固有频率f随负载作用于清洁元件上的力增加而变化的速率越大,清洁元件的纵向轴线和换能器弹性件平面的法向的夹角越大,则换能器固有频率f随负载作用于清洁元件上的力增加而变化的速率越小。
使换能器和驱动力共振的负载值可以通过选取n的数值而选择,n值越小,则对应的使换能器和驱动力共振的负载值越大。
本发明所提供的实现所述方法的压力报警装置包括检测、采集和报警电路及报警部件,所述电路包括电源、可编程的微芯片处理器IC和由晶体管构成的用以联结电源和驱动线圈的H桥电路,所述微芯片处理器IC的程序 中储存有f0max-n,以选定的n值所对应的f0max-n作为驱动线圈中流过的电流的固定频率f0,其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻上的平均电压的最小值所对应的驱动线圈电流频率,并预存有报警负载下的电源电压的平均值UL源和电流检测电阻R25上的平均电压ULR25,该可编程的微芯片处理器IC输出固定频率为f0的方波以驱动H桥电路,若(UN /UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警。
所述报警部件可以是蜂鸣器件和/或发光器件和/或机械振动器件。
本发明创造性地引入随负载增加而增大换能器固有频率f的构思,使在负载增大的状态下,换能器固有频率f总体变大,换能器谐振区域总体向频率大值方向偏移。而当负载在清洁元件3上的压力方向垂直于换能弹性件平面M的法向时,负载对换能器固有频率f的影响可以忽略。通过合理调节清洁元件的纵向轴线和换能器弹性件平面的法向的夹角,使得换能器固有频率f随负载作用于清洁元件上的力增加而变大且可以控制换能器固有频率f随负载作用于清洁元件上的力增加而变化的速率,而一旦设定了此固定的驱动频率,则在清洁护理器具工作期间该驱动频率不变,使得清洁元件的振幅从小到大,同时使驱动线圈电流值从高到低呈单调下降趋势,从而既可以在合理负载下,保证所述个人电动清洁护理器具获得更高的机械效率、更小的工作电流、更小的能耗、最大的清洁元件振幅、最好的清洁效果,又可以在负载超过合理值后,降低振幅以保护牙龈,而且结构简单、成本低廉。
附图说明
图1为本发明的电动清洁护理用具的局部剖切侧向示意图;
图2为图1所示清洁护理器具的驱动器示意图;
图3示出了通过实验得出的本发明的清洁护理器具在不同负载下电流与驱动频率的关系曲线以及振幅与驱动频率的关系曲线;
图4示出了通过实验得出的本发明的清洁护理器具在不同驱动频率下电流与负载的关系曲线;
图5示出了通过实验得出的本发明的清洁护理器具在不同驱动频率下振幅与负载的关系曲线;
图6为本发明的用于所述清洁护理器具的压力报警方法流程图;
图7为本发明的压力报警装置电路部分的原理图。
主要附图标记说明
Q21-Q24为晶体管
IC为可编程的微芯片处理器
I/O为IC的不同输入/输出接口
L为驱动线圈电感
R21-R24为电阻
R25为电流检测电阻
UR25为电流检测电阻R25上的电压
f0为驱动频率
f固0为空载时的谐振系统固有频率
f固1为1号负载时的谐振系统固有频率
f固2为2号负载时的谐振系统固有频率
f固3为3号负载时的谐振系统固有频率
I0为空载时驱动线圈的平均电流
I1为1号负载时的驱动线圈的电流,在本发明中该负载等同于150g质量所代表的重力负载
I2为2号负载时的驱动线圈的电流,在本发明中等同于300g质量所代表的重力负载
I3为3号负载时的驱动线圈的电流,在本发明中等同于400g质量所代表的重力负载
A0为空载时清洁元件的振幅
A1为1号负载时清洁元件的振幅
A2为2号负载时清洁元件的振幅
A3为3号负载时清洁元件的振幅
f0max为空载时在谐振区域中驱动线圈电流达到最大值所对应的驱动频率
f0min为空载时在谐振区域中驱动线圈电流达到最小值所对应的驱动频率
f1max为1号负载时在谐振区域中驱动线圈电流达到最大值所对应的驱动 频率
f1min为1号负载时在谐振区域中驱动线圈电流达到最小值所对应的驱动频率
f2max为2号负载时在谐振区域中驱动线圈电流达到最大值所对应的驱动频率
f2min为2号负载时在谐振区域中驱动线圈电流达到最小值所对应的驱动频率
f3max为3号负载时在谐振区域中驱动线圈电流达到最大值所对应的驱动频率
f3min为3号负载时在谐振区域中驱动线圈电流达到最小值所对应的驱动频率
L1为清洁元件纵向轴线
L2为驱动轴纵向轴线
M为换能器弹性件平面,该平面为处于换能器弹性件上并同时联结到换能器弹性件固定件和换能器传动臂的平面
2为驱动轴
3为清洁元件
103为密封件
104为开关按钮
105为手柄外壳
106为开关
107为控制电路线路板
108为充电线圈
109为充电电池
110为驱动器
111为驱动轴
112为驱动器左侧支架
127为紧固螺丝
214为驱动线圈
215为驱动线圈铁芯
216为换能器上部左侧永磁体
217为换能器下部左侧永磁体
218为换能器下部右侧永磁体
219为换能器上部右侧永磁体
222为换能器左侧换能器弹性件
223为换能器右侧换能器弹性件
224为换能器的换能器弹性件固定件
225为换能器左侧传动臂
226为换能器右侧传动臂
227为换能器上部左侧永磁体支架
228为换能器下部左侧永磁体支架
229为换能器上部右侧永磁体支架
230为换能器下部右侧永磁体支架
具体实施方式
下文以电动牙刷作为本发明的电动清洁护理器具的典型例子,并结合附图更详细地描述本发明的示例性实施例。虽然下面以电动牙刷为例进行解释说明,但本发明不限于此。本发明也可适用于电动剃须刀、电动洁面器、电动沐浴器等用于个人的电动清洁护理器具。
在全部附图中,类似的附图标记表示相似的部件。
为了清楚起见,在本说明书中采用了表述空间相对位置的词语,如“上”、“下”、“左”、“右”、“横向”等来简单描述如图所示的一个元件或特征与另一元件(一或多个)或特征(一或多个)的相互关系,其中,“上”、“下”是相对于清洁元件纵向轴线而言的,接近清洁元件的一端定义为“上”,与“上”相对的一端(即,远离清洁元件的一端)定义为“下”;“左”和“右”是相对于驱动轴纵向轴线而言的,面向相应视图沿垂直于驱动轴纵向轴线的方向在驱动轴纵向轴线的左侧定义为“左”,其右侧定义为“右”;“横向”是指垂直于驱动轴纵向轴线的方向。
此外,本申请中使用的词汇“和/或”包括所列出的一或多个相关联的词汇中的任一个和所有组合。
作为本发明的电动清洁护理器具的一个示例,图1和图2示出的电动牙刷包括具有手柄外壳105的手柄,手柄外壳内部装有用以向清洁护理用具的 各个部分提供电力的电源部分、用以控制清洁护理用具的各种工作模式以及清洁护理用具的开启或关闭的控制部分、用以启动或关闭清洁护理用具运转的触发部分和将输入的电能转换为机械能输出的驱动器110。驱动器110包括换能器、驱动线圈214、设置在驱动线圈214中的驱动线圈铁芯215、用于支承该驱动器110的驱动器左侧支架112和驱动器右侧支架(未示出)、包括清洁元件载体和分布在清洁元件载体上的清洁元件(即刷毛)3的清洁组件。清洁组件与驱动轴111可拆卸地联接在一起。换能器包括插入清洁组件的驱动轴111;至少一个紧固于驱动器左、右侧支架的换能器弹性件固定件224;至少两个相对于驱动轴纵向轴线L2分别布置在左右两侧的上、下永磁体216、217、218、219;用于固联所述永磁体216、217、218、219的相应的永磁体支架227、228、229、230;与永磁体支架227、228、229、230固联并与驱动轴111固联的左、右侧换能器传动臂225、226;以及至少两个分别设置在驱动轴纵向轴线L2左右两侧的左侧换能器弹性件222和右侧换能器弹性件223。左、右侧换能器弹性件222、223的一端分别与换能器弹性件固定件224固联,左、右侧换能器弹性件222、223的另一端分别与相应的换能器传动臂225、226固联。左、右侧永磁体相互独立,一侧永磁体在朝向驱动线圈方向的磁极极性为S极或N极,另一侧永磁体在朝向驱动线圈方向的磁极极性与所述一侧永磁体的磁极极性相反,左、右侧永磁体216、217、218、219被设置成使得它们的内部磁力线方向和驱动线圈铁芯纵向轴线方向的夹角分别大于45°且小于135°,左、右侧永磁体216、217、218、219可相对于换能器弹性件固定件224移动。当驱动线圈214通过频率为f0的交变电流时,左、右侧永磁体216、217、218、219的运动方向和驱动线圈铁芯纵向轴线方向近似平行,即二者的夹角大于170°且小于190°或大于-10°且小于10°。
在本发明中,换能器弹性件222、223主要以弯曲应变特性参与谐振运动。作为示例之一,换能器可以设有两个换能器弹性件222和223,它们对称地分布在驱动轴纵向轴线L2的左右两侧,左右侧换能器弹性件222和223的夹角为180°,可以将左侧换能器弹性件222和右侧换能器弹性件223设置为使得它们的抗弯截面系数和长度近似相等,数值差小于10%,使得左侧换能器弹性件222的挠度和右侧换能器弹性件223的挠度幅值近似相等,幅值差小于10%,且挠曲方向相反。此外,左右侧换能器弹性件222、223沿 换能器弹性件平面M法向的厚度小于左右侧换能器弹性件222、223沿近似平行于驱动轴轴线L2方向上的宽度的1/10。
如前所述,本发明的示例性电动牙刷至少包括两个换能器弹性件,它们分别为左侧换能器弹性件222和右侧换能器弹性件223,利用弹性件材料的弯曲应变构成具有固有振动频率f的换能器,当换能器的固有频率f近似于驱动频率f0时,换能器在驱动频率为f0的作用力的作用下,进入谐振状态。也就是说,手柄外壳105中的驱动线圈214流过频率为f0的交变电流时,驱动线圈214产生并作用在换能器上的电磁力使得换能器处于谐振状态。
下面分别分析本发明的示例性电动牙刷空载时驱动线圈214上的电流大小和电流频率的关系,以及对应的清洁元件(即刷毛)3的振幅和驱动线圈电流频率的关系。在空载状态,电动牙刷的清洁元件3上无负载(空载)。I0为空载时流过驱动线圈214的平均电流,I0等同于空载时电流检测电阻R25上的平均电流。也就是说,可以通过I/O25测出空载时电流检测电阻R25上的平均电压,从而测算出空载时电流检测电阻R25上的平均电流,即可以通过I/O25测出空载时驱动线圈214的平均电流。
如图1,2所示,清洁元件(刷毛)3的纵向轴线L1近似垂直于左右侧换能器弹性件平面M。此处,“近似”可以认为,清洁元件3的纵向轴线L1与左右侧换能器弹性件平面M的夹角的误差小于15°。当电动牙刷的驱动线圈214尚未通电时,清洁元件3的端面没有承受负载,左右侧换能器弹性件122,123在近似垂直于换能器弹性件平面M方向上没有受力,此时左右侧换能器弹性件222、223之间的夹角约为180度。电动牙刷的驱动器110的驱动频率固定为f0
依照电压平衡方程:
Figure PCTCN2016108884-appb-000001
式中,通过驱动线圈214的电流表达式为IM cosωt,E为电源(电池)电动势,ω=2πf0
Figure PCTCN2016108884-appb-000002
为线圈切割磁力线的速度滞后于电流的相位角。
显然:
Figure PCTCN2016108884-appb-000003
LIMsinωt的有效值可简化为
Figure PCTCN2016108884-appb-000004
依照振动原理
Figure PCTCN2016108884-appb-000005
在谐振状态趋向于零。
驱动力来自处于磁场中的通电导体产生的电磁力(即NBlυ),而由电感L产生的磁力线和换能器上的永磁体的运动方向近似平行,所以,由驱动线圈电感L产生的磁力几乎对永磁体的运动无影响。由上面的数学式可推出驱动线圈214在谐振区域的电流将出现两个拐点,第一个拐点出现在ω较小时,此时电流最小,第二拐点出现在ω略大处,此时电流最大。所述谐振区域取决于换能器的固有频率f和驱动线圈214中电流的驱动频率f0,通常当f满足0.85f0<f<1.05f0时,换能器130被来自驱动线圈214的电磁力驱动而处于谐振状态。所以,当f变大时,驱动器的谐振区域将向频率大值方向偏移,当f变小时,驱动器的谐振区域将向频率小值方向偏移。
依振动原理可知,谐振区域中的振动滞后于驱动力。在本发明中,如前所述,左右侧换能器弹性件222、223主要以弯曲应变特性参与谐振运动,它们对称地分布在驱动轴纵向轴线L2的左右两侧,二者间的夹角为180°,且被设置为其抗弯截面系数和长度近似相等,左右侧换能器弹性件222、223沿换能器弹性件平面M法向的厚度小于其沿近似平行于驱动轴轴线L2方向上的宽度的1/10。在这种情况下,驱动线圈对永磁体的电磁力产生的电枢反应只来自运动磁场对通电导体的切割作用(NBlυ),由于阻尼作用和磁滞效应等原因,在谐振区域中最小电流处所对应的频率略小于换能器130最大振幅处所对应的频率,亦略小于清洁元件3的最大振幅处所对应的频率。若设谐振区域中驱动线圈的最小电流处的驱动频率为f0min,经大量实验得知,空载下,清洁元件3的最大振幅处所对应的驱动频率在f0min+5Hz至f0min+12Hz范围内,谐振区域中的最大驱动线圈电流处所对应的驱动频率f0max约比f0min大20至40Hz。因此,可以将驱动线圈交变电流的频率f0固定为f0max-n其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻上的平均电压的最小值所对应的驱动线圈电流频率。例如,可选取n=10Hz,f0min=250Hz,f0max=f0min+25Hz。
如上所述,当电动牙刷的驱动线圈214尚未通电时,在清洁元件3端面上未施加负载,清洁元件3的纵向轴线L1近似垂直于左右侧换能器弹性件平面M,驱动轴轴线L2近似平行于左右侧换能器弹性件平面M。在本例中、左右侧换能器弹性件222、223沿换能器弹性件平面M法向的厚度小于左右侧换能器弹性件222、223沿近似平行于驱动轴轴线L2方向上的宽度的1/10; 驱动器左、右侧支架固联在手柄外壳105中,换能器弹性件固定件224和驱动器左、右侧支架无相对运动,左、右侧换能器传动臂225、226可相对换能器弹性件固定件224运动,左、右换能器传动臂225、226和驱动轴111固联,驱动轴111和清洁组件3可拆卸地联接在一起,因此在清洁元件3的端面上施加负载时,通过受力分析可知,换能器弹性件固定件224承担由负载施加在清洁元件3上的部分或全部压力,左、右侧换能器弹性件222、223和换能器弹性件固定件224的联结区域受到压力,由于换能器弹性件固定件224静止不动,所以施加的负载对应在清洁元件3上的压力经传递使左、右侧换能器弹性件222、223在靠近换能器传动臂225、226的一侧发生挠曲,挠曲的方向相反于负载施加于清洁元件3的压力的方向。施加在清洁元件3的端面的负载所形成的左、右侧换能器弹性件222、223的挠曲,相当于缩短了这些弹性件在弯曲应变时的悬臂的长度和/或增加了悬臂的厚度,此物理量的变化将增大左、右侧换能器弹性件222、223对应的弯曲应变模式下的弹簧劲度系数K。负载在清洁元件3上所对应的压力越大,则左、右侧换能器弹性件222、223对应的弯曲应变模式下的弹簧劲度系数K变得越大。依振动原理可知,换能器固有频率f正比于
Figure PCTCN2016108884-appb-000006
负载在清洁元件3上所对应的压力越大,则换能器的固有频率f越大,驱动器谐振区域朝向频率大值方向偏移越多。
当负载在清洁元件3上所形成的压力的方向垂直于清洁元件3的纵向轴线L1且近似垂直于驱动轴纵向轴线L2时,该压力传递到换能器弹性件222、223上的矢量落在换能器弹性件平面M中,当压力方向近似垂直于驱动轴纵向轴线L2时,此压力不能导致左、右侧换能器弹性件222、223对应的弯曲应变模式下的弹簧劲度系数K变化。此时负载沿垂直于清洁元件3纵向轴线L1的方向上的压力等同于增大谐振系统的阻尼系数,因此驱动器谐振区域向频率小值方向略微偏移。当然,上述压力会在换能器弹性件222、223和换能器弹性件固定件224结合处形成矢量方向为驱动轴纵向轴线L2方向的转矩,但由于清洁元件3通常采用具有弹性的尼龙丝,而所述力或力矩在尼龙丝的弯曲方向上的传递效果很差,而且压力作用点到换能器弹性件固定件224和换能器弹性件222、223的结合处的距离很小,所以上述转矩对换能器固有频率f的影响十分有限,甚至可以忽略。
当负载在清洁元件3上所形成的压力的方向垂直于清洁元件纵向轴线 L1且近似平行于驱动轴纵向轴线L2时,所述压力传递到换能器弹性件222、223上的矢量将落在弹性件平面M中,该压力方向近似平行于驱动轴纵向轴线L2。在本发明中,将换能器弹性件222、223沿驱动轴纵向轴线L2方向的宽度设置为大于换能器弹性件222、223沿换能器弹性件平面M的法向方向的厚度约十倍以上。在驱动力的大小和作用点相同的情况下,若方向近似平行于驱动轴纵轴线L2且矢量方向处于换能器弹性件平面M中的力形成的换能器弹性件222、223的挠度为ξ1,方向近似垂直于驱动轴纵向轴线L2且矢量方向处于垂直于换能器弹性件平面M中的力形成的换能器弹性件222、223的挠度为ξ2,则ξ1约为ξ2的1/1000。因此,当负载在清洁元件3上所形成的压力的方向垂直于清洁元件纵向轴线L1且近似平行于驱动轴纵向轴线L2时,所施加的压力对换能器固有频率f的影响十分有限,可忽略不计。此压力还会在换能器弹性件222、223和换能器弹性件固定件224结合处形成矢量方向处于换能器弹性件平面M内并近似垂直于驱动轴纵向轴线L2的转矩,此转矩将导致换能器弹性件222、223扭转,但不影响换能器在弯曲应变下的固有频率f
显然,当负载作用在清洁元件3上的压力的方向平行于换能器弹性件平面M的法向时,随着负载增大换能器固有频率f的值将明显增大,从而使换能器谐振区域向固有频率大值方向的偏移更明显。另一方面,负载增大也能导致换能器谐振系统的等效阻尼系数变大,使换能器谐振系统的固有频率f略微变小。在本发明中,创造性地引入随负载增加而增大换能器固有频率f的构思,使在负载增大的状态下,换能器固有频率f总体变大,换能器谐振区域总体向频率大值方向偏移。而当负载在清洁元件3上的压力方向垂直于换能弹性件平面M的法向时,负载对换能器固有频率f几乎没有影响。如前所述,由于清洁元件3通常由弹性材料(如尼龙丝)制成,清洁元件3沿清洁元件纵向轴线L1方向的力的传递效果大大好于沿垂直于清洁元件纵向轴线L1方向上的力的传递效果。另外,清洁元件3纵向轴线L1和换能器弹性件平面M的法向的夹角大小,影响换能器固有频率f随负载作用于清洁元件3上的力增加而变大的程度(速率)。可将清洁元件3设置为使其纵向轴线L1和换能器弹性件平面M的法向的夹角为0°-60°,优选为0°≤夹角≤30°,更为优选的是夹角等于0°。在夹角取值范围为0°-60°时,当清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角为0°时, 负载力传递到换能器弹性件平面M的法向力最大,因此负载力使换能器弹性件222、223对应的弯曲应变模式下的弹簧劲度系数K变大最多,换能器固有频率f随负载作用于清洁元件3上的力增加而变大的程度最大(速率最大)。当清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角为60°时,负载力传递到换能器弹性件平面M的法向的力最小,因此负载力使换能器弹性件222、223对应的弯曲应变模式下的弹簧劲度系数K变大最少,换能器固有频率f随负载作用于清洁元件3上的力增加而变大的程度最小(速率最小)。因此,在本发明中通过合理布置清洁元件3的纵向轴线L1和换能器弹性件平面M的法向夹角,使得换能器固有频率f随负载作用于清洁元件3上的力增加而变大且可以控制换能器固有频率f随负载作用于清洁元件3上的力增加而变化的速率,清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角越小,则换能器固有频率f随负载作用于清洁元件3上的力增加而变化的速率越大。清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角越大,则换能器固有频率f随负载作用于清洁元件3上的力增加而变化的速率越小。从而可以提高电动清洁护理器具的机械效率。
在使用电动牙刷清洁牙齿的过程中,由于清洁元件3主要由尼龙丝构成,尼龙丝在压缩方向的力学性能大大好于尼龙丝在弯曲方向的力学性能,因此牙齿对清洁元件(尼龙丝)3的压力主要沿清洁元件纵向轴线方向传递。在清洁牙齿过程中,牙齿对清洁元件的阻力主要分布在垂直于清洁元件3的纵向轴线L1的方向的平面中。如上所述,在本发明中,通过适当选择弹性件的弯曲应变、清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角等,使得负载作用在清洁元件3上的压力的增加导致换能器固有频率f变大,而且由于清洁元件3通常由弹性材料(如尼龙丝)制成,清洁元件3沿平行于其纵向轴线L1方向的力的传递效果大大好于沿垂直于其纵向轴线L1方向上的力的传递效果,从而清洁元件3和被清洁对象之间的阻力对换能器固有频率f的影响可以忽略,从而可以对施加在清洁元件纵向轴线L1上的压力大小进行监测。
图3示出了通过实验得出的本发明的清洁护理器具在不同负载下电流I与驱动频率f的关系曲线以及振幅A与驱动频率f的关系曲线,其中横坐标表示驱动频率,纵坐标表示电流和振幅的标称值。如图3所示,清洁元件纵 向轴线L1平行于换能器弹性件平面M的法向,在清洁元件3的端面上施加150克负载时,清洁元件3的最大振幅处的频率f固1(参见以图标点“■”示出的曲线)大于空载时清洁元件3的最大振幅处的频率f固0(参见以图标点“◆”示出的曲线),在清洁元件3的端面上施加300克负载时,清洁元件3的最大振幅处的频率f固2(参见以图标点“▲”示出的曲线)大于在清洁元件3的端面上施加150克负载时清洁元件3的最大振幅处的频率f固1,也就是说,施加的负载越大,换能器固有频率变得越大,施加的负载增加可导致谐振区域向频率大值方向偏移。如前所述示例中,f0min=250Hz,f0max=f0min+25Hz,驱动线圈交变电流的频率f0固定为265Hz。实验得出,空载时清洁元件3在f0min+5Hz=255Hz处出现最大振幅A0(参见以图标点“*”示出的曲线),当在清洁元件3的端面上施加150克力的负载时,f1min=255Hz,f1max=280Hz,此时清洁元件最大振幅A1(参见以图标点“●”示出的曲线)出现在f1min+5Hz=260Hz处,当在清洁元件3的端面上施加300克力的负载时,f2min=260Hz,f2max=285Hz,此时清洁元件最大振幅A2(参见以图标点“+”示出的曲线)出现在f2min+5Hz=265Hz处,同样还显示了400克力负载的数据[400克力负载下的清洁元件最大振幅为A3(参见无图标点的曲线)]。从上面的实验数据得知,当清洁元件纵向轴线L1平行于换能器弹性件平面M的法向时,随着施加在清洁元件3的端面上的负载增加,换能器弹性件222、223的固有频率f变大,负载增加越多,换能器弹性件222、223的固有频率f变大越多,即清洁元件3的端面上的负载的增加可使换能器弹性件222、223的谐振区域朝频率增大的方向偏移。如图3的实验曲线所示,驱动线圈的电流频率被设定为固定值f0max-n=265Hz,(n=10),在不同负载下,谐振状态下换能器固有频率f对应于清洁元件3最大振幅处的频率分别为:f固0=255Hz;f固1=260Hz;f固2=265Hz;f固3=270Hz;显然,在负载从0克力(空载)逐渐增加到300克力或更大的过程中,谐振系统从弱谐振逐渐趋于共振,同时谐振系统的机械效率快速提升。由于机械效率的提升快于加大负载时产生的阻尼效应,因此清洁元件3的振幅也在快速提升(A2>A1>A0),又由于谐振系统的驱动线圈电流最小值出现在fmin,增加负载使fmin向频率大值的方向移动,使fmin更接近驱动频率,因此谐振系统从弱谐振趋向于共振时,驱动线圈的电流平均值由大变小。由图3同样得知,当施加于清洁元件3的端面的负载达到400克力时,f固3(270Hz)大于负载为300 克时的驱动线圈交变电流的固定频率f固2(265HZ),谐振系统从共振趋向于弱谐振,随着负载继续加大,谐振系统趋向于更弱的谐振直至不产生振动,因而,在逐渐加大负载的过程中,驱动线圈电流在某一频率下出现拐点,驱动线圈电流将再由小变大,实验证明,所述电流拐点出现在施加约450克力的负载处(未示出),而且在加大负载的过程中,驱动线圈电流由小变大的拐点所对应的负载值(约450克力)大于清洁元件振幅A由大变小的拐点所对应的负载值(约300克力),两者负载值之差约为150克力。
图4和图5分别示出了通过实验得出的本发明的清洁护理器具在不同驱动频率下电流与负载的关系曲线及在不同驱动频率下振幅与负载的关系曲线。如图4(其横坐标表示负载(克力),纵坐标表示电流标称值)和图5(其横坐标表示负载(克力),纵坐标表示振幅标称值)所示,改变驱动线圈的电流频率设定值f0max-n Hz,可以选择在施加不同的负载力的作用下使谐振系统实现共振,即通过调整驱动线圈的电流频率设定值中的n值,可以选择不同负载力使换能器固有频率f等于驱动频率f0而共振,同时改变驱动线圈的电流值拐点对应的负载值。如4和5所示,如果选择n=-5Hz,则谐振系统的共振点频率对应到清洁元件3上施加400克力的负载处(参见图4和5中以图标点“●”示出的曲线),同时,驱动线圈的电流由小变大的拐点将出现在对应于在清洁元件3上施加大于550克左右的力的负载(未示出)。如果选择n>10,例如n=15,则谐振系统的共振点频率对应于清洁元件3上施加小于300克力的负载(参见图4和5中以图标点“■”示出的曲线),同时驱动线圈的电流由小变大的拐点将出现在对应于清洁元件3上施加小于550克力的负载,此时谐振系统的共振点(振幅最大点)频率对应于清洁元件3上施加150克力的负载处,同时驱动线圈的电流由小变大的拐点将出现在对应于清洁元件上施加300克力的负载处。图4和5中以图标点“◆”、“▲”、“×”、“*”示出的曲线分别表示选择n=20、n=10、n=5、n=0时电流与负载的相应关系及在振幅与负载的相应关系。
经大量实验得出,n的范围可以为-0.3(f0max-f0min)至0.85(f0max-f0min),优选-0.1(f0max-f0min)≤n≤0.4(f0max-f0min),更优选为0≤n≤0.4(f0max-f0min)。
综上所述,通过合理配置清洁元件纵向轴线L1和换能器弹性件平面M的法向的夹角θ,随着施加在清洁元件3上的负载压力增大可以使换能器弹性件固有频率f变大,负载压力越大,则f越大,选择0°≤θ角≤60° 可以达到上述目的。优选0°≤θ角≤30°,更为优选的是θ=0°,此外,通过合理选择驱动线圈中交变电流的频率f0max-n,可以实现在清洁元件3上从空载到加载至某一合理负载(如300克力)时,换能器谐振系统从弱谐振达到共振。还可以选择-0.3(f0max-f0min)≤n≤0.85(f0max-f0min)。优选-0.1(f0max-f0min)≤n≤0.4(f0max-f0min),更优选为0≤n≤0.4(f0max-f0min),一旦设定了此固定的驱动频率,则在清洁护理器具工作期间驱动频率不变,使得清洁元件3的振幅从小到大,同时使驱动线圈电流值从高到低呈单调下降趋势,从而可以在合理负载下,保证所述个人电动清洁护理器具获得更高的机械效率、更小的工作电流、更小的能耗、最大的清洁元件振幅、最好的清洁效果。
实验证明,当施加在清洁元件3上的负载继续增加而超过合理值时,换能器谐振系统将从共振趋向弱谐振直至不产生振动,清洁元件3的振幅又从大变小,同时驱动线圈电流继续单调下降直到电流出现由小变大的拐点后,驱动线圈电流才再次变大。通过对f0max-n中的n值的选择,可以实现在清洁元件3上从空载到加载至某一合理负载(如300克力)时,换能器谐振系统从弱谐振达到共振,使得清洁元件3的振幅从小到大,同时使驱动线圈电流值从高到低呈单调下降趋势。也就是说可以通过对f0max-n中的n值的选择,实现对上述合理负载值的选择,n值越小,则对应的所述合理负载值越大。此过程还可以为牙龈提供可靠的保护,当施加在清洁元件3上的负载压力大于合理值(比如300克力)时,清洁元件3的振幅将降低,且负载越大,振幅越小,从而可有效保护牙龈免受伤害。
因此上述结构既可以在合理负载下获得高效率、大振幅,又可以在负载超过合理值后,降低振幅以保护牙龈,而且结构简单、成本低廉。
本发明还提供了用于如上所述的清洁护理器具的压力报警方法。图6示出了该方法的步骤。如图6所示,用于如上所述的清洁护理器具的压力报警方法包括以下步骤:
1)选取所述清洁护理器具中的左右侧换能器弹性件222,223的抗弯截面系数和长度近似相等,使得左、右侧换能器弹性件222,223的挠度的幅值近似相等且挠曲方向相反,并调节清洁元件3的纵向轴线L1和换能器弹性件平面M的法向的夹角至0°-60°;
2)检测所述清洁护理器具在谐振频率范围内不同频率对应的与驱动线圈214串联的电流检测电阻R25上的平均电压ULR25。例如,在谐振频率范围 内,使驱动线圈的电流频率以相同的时间间隔Δt(如1秒钟)、相同的频率差Δf(如1Hz)逐渐增加地步进,测出和记录对应于不同频率时的电流检测电阻R25上的平均电压ULR25。如本例中,换能器的谐振频率范围约为243Hz-300Hz,驱动线圈电流在第一秒钟内的频率为243Hz,测出和记录在243Hz频率下的电流检测电阻R25上的平均电压ULR251,经时间间隔Δt(1秒)后,驱动线圈电流在第二秒钟内的频率为244Hz(Δf=1Hz),测出和记录在244Hz频率下的电流检测电阻R25上的平均电压ULR252,依次循环直到完成整个谐振频率范围内的检测。例如,驱动线圈中的电流在第五十八秒钟内的频率为300Hz,测出和记录在300Hz频率下的电流检测电阻R25上的平均电压ULR2558
3)从步骤2)所记录的不同频率时的电流检测电阻R25上的平均电压ULR25中,选出并记录电流检测电阻R25上的平均电压的最大值所对应的驱动线圈电流频率f0max和电流检测电阻R25上的平均电压的最小值所对应的驱动线圈电流频率f0min
4)设置f0max-n并将f0max-n储存于所述可编程的微芯片处理器IC的程序中,以选定的n值所对应的f0max-n作为驱动线圈214中流过的电流的固定频率f0,其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻R25上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻R25上的平均电压的最小值所对应的驱动线圈电流频率;
5)预存报警负载下的电源电压的平均值UL源和电流检测电阻R25上的平均电压ULR25于可编程的微芯片处理器IC的程序中,例如,在清洁元件3的端面预置报警负载(比如300克力),施加此负载,IC引导f0max-n(此时n为选定的某一固定值)作为固定频率f0的电流流过驱动线圈,I/O25在短时间内(如3秒钟内)多次检测电流检测电阻R25上的电压,测算出电流检测电阻R25上在报警负载下的平均电压ULR25,IC同时在短时间内(如3秒钟内)多次检测电源电压,测算出对应的电源电压的平均值UL源,将所述报警负载下的电源电压平均值UL源和电流检测电阻R25上的平均电压ULR25储存于IC的程序中;
6)所述电动清洁护理用具工作时,通过I/O25持续地检测当前的电流检测电阻R25上的电压UNR25的值以及当前电源电压值UN源,采集当前负载对应的电流检测电阻R25上的电压值UNR25及当前的电源电压值UN源
7)比较所述当前负载对应的电流检测电阻R25上的电压值UNR25和预存于可编程的微芯片处理器IC中的报警负载下的电源电压的平均值UL源,若(UN源/UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警,例如,利用可编程的微芯片处理器IC可以将当前负载对应的驱动线圈电流值和预存在IC中的报警负载下的驱动线圈电流值进行比较,将(UN源/UL源)×UNR25和ULR25比较,其中,UL源为步骤5)中检测时的电源电压值,UN源为当前检测中的电源电压值,若(UN源/UL源)×UNR25>ULR25,则意味着施加于清洁元件3上的负载小于报警负载,此时不进行压力报警,即无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则意味着施加于清洁元件3上的负载大于报警负载,此时输出压力报警信号,进行压力报警。
压力报警的方式可采用声音和/或灯光和/或振动模式,之后IC继续检测UNR25和UN源,当(UN源/UL源)×UNR25>ULR25时,取消压力报警信号输出,反之维持压力报警,依此循环。
本发明所提供的实现所述方法的压力报警装置包括检测、采集和报警电路以及报警部件(图中未示出)。所述检测、采集和报警电路包括电源、可编程的微芯片处理器IC和由晶体管构成的用以联结电源和驱动线圈214的H桥电路。微芯片处理器IC的程序中储存有f0max-n,以选定的n值所对应的f0max-n作为驱动线圈214中流过的电流的固定频率f0,其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻R25上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻R25上的平均电压的最小值所对应的驱动线圈电流频率,并预存有报警负载下的电源电压的平均值UL源和电流检测电阻R25上的平均电压ULR25。可编程的微芯片处理器IC输出固定频率为f0的方波以驱动H桥电路并用于预存报警负载下的电源电压的平均值UL源和电流检测电阻R25上的平均电压ULR25。图7为本发明的压力报警装置电路部分的原理图,如图7所示,本例中,采用四个晶体管Q21-Q24构成H桥电路用以联结电源和驱动线圈214,可编程的微芯片处理器IC输出固定频率为f0的方波以驱动H桥电路,从而在驱动线圈214上流过固定频率为f0的交变电流,交变电流经由电流检测电阻R25流回电源。在上述电路中,电流检测电阻R25的阻值固定,电流检测电阻R25上的电压UR25大小 反映了流经电流检测电阻R25上的电流大小,电流检测电阻R25串联H桥电路和电源,即电流检测电阻R25的一端联结到电源的负极,电流检测电阻R25的另一端联结到H桥电路的电流出口端并且联结到微芯片处理器IC的A/D转换口I/O25,用来检测I/O25转换口上的电压大小。若(UN源/UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警。显然通过上述电路设置,微芯片处理器IC可实时检测到流过驱动线圈214的电流大小。为了减小因电流检测电阻R25串入驱动线圈H桥电路而对驱动线圈电功率产生的影响,通常电流检测电阻R25采用小阻值。本发明中电流检测电阻的电阻值可以约为0.1Ω。报警部件可以是蜂鸣器件和/或发光器件和/或机械振动部件。
借助上述方法和装置,当负载超过合理范围时,可以提供简单、可靠的压力报警。

Claims (15)

  1. 一种电动清洁护理器具,包括:具有手柄外壳(105)的手柄,手柄外壳(105)内装有用以向清洁护理器具的各部分提供电力的电源部分、用以控制清洁护理器具开启或关闭以及各种工作模式的控制部分、用以启动或关闭清洁护理器具运转的触发部分和将输入电能转换为机械能输出的驱动器(110),该驱动器(110)包括换能器、驱动线圈(214)、设置在所述驱动线圈(214)中的驱动线圈铁芯(215),当驱动线圈(214)通以交变电流时,分布在换能器上的永磁体(216,217,218,219)受到电磁力的反作用力而驱动换能器以交变电流的频率进行往复旋转运动,从而带动装配到换能器的驱动轴(111)上的清洁元件(3)作往复旋转运动,其中,所述换能器包括至少两个换能器弹性件(222,223),它们以弯曲应变特性参与谐振运动且对称地分布在驱动轴纵向轴线(L2)的左右两侧,左右侧换能器弹性件(222,223)的夹角为180°,其抗弯截面系数和长度近似相等,从而使得左侧换能器弹性件(222)的挠度和右侧换能器弹性件(223)的挠度幅值近似相等且挠曲方向相反,其中,所述清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角为0°-60°;所述驱动线圈(214)中交变电流的频率为等于f0max-n的固定值,n为-0.3(f0max-f0min)至0.85(f0max-f0min)的范围中的某一固定值,其中f0max为电流检测电阻(R25)上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻(R25)上的平均电压的最小值所对应的驱动线圈电流频率。
  2. 如权利要求1所述电动清洁护理器具,其中,所述左右侧换能器弹性件(222,223)的抗弯截面系数和长度的数值差小于10%,从而使得左侧换能器弹性件(222)的挠度和右侧换能器弹性件(223)的挠度幅值差小于10%。
  3. 如权利要求1所述电动清洁护理器具,其中,所述清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角为0°≤夹角≤30°。
  4. 如权利要求3所述电动清洁护理器具,其中,所述清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角等于0°。
  5. 如权利要求1所述电动清洁护理器具,其中,所述左右侧换能器弹性 件(222,223)沿换能器弹性件平面(M)的法向的厚度小于该左右侧换能器弹性件(222,223)沿近似平行于驱动轴纵向轴线方向(L2)上的宽度的1/10。
  6. 如权利要求1所述电动清洁护理器具,其中,在驱动力的大小和作用点相同的情况下,若方向近似平行于驱动轴纵向轴线(L2)且矢量方向处于换能器弹性件平面(M)中的力形成的换能器弹性件的挠度为ξ1,方向近似垂直于驱动轴纵向轴线(L2)且矢量方向处于垂直于换能器弹性件平面(M)中的力形成的换能器弹性件的挠度为ξ2,则ξ1约为ξ2的1/1000。
  7. 如权利要求1所述电动清洁护理器具,其中,-0.1(f0max-f0min)≤n≤0.4(f0max-f0min)。
  8. 如权利要求1或7所述电动清洁护理器具,其中,0≤n≤0.4(f0max-f0min)。
  9. 一种用于如权利要求1-8中任一项所述电动清洁护理器具的压力报警方法,包括以下步骤:
    1)选取清洁护理器具中的左右侧换能器弹性件(222,223)的抗弯截面系数和长度近似相等,使得左侧换能器弹性件(222)的挠度和右侧换能器弹性件的挠度(223)的幅值近似相等且挠曲方向相反,并调节清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角至0°-60°;
    2)检测清洁护理器具在谐振频率范围内不同频率对应的与驱动线圈(214)串联的电流检测电阻(R25)上的平均电压(ULR25);
    3)从步骤2)所记录的不同频率时的电流检测电阻(R25)上的平均电压(ULR25)中,选出并记录电流检测电阻(R25)上的平均电压的最大值所对应的驱动线圈电流频率(f0max)和电流检测电阻(R25)上的平均电压的最小值所对应的驱动线圈电流频率(f0min);
    4)设置f0max-n并将f0max-n储存于可编程的微芯片处理器(IC)的程序中,以选定的n值所对应的f0max-n作为驱动线圈(214)中流过的电流的固定频率(f0),其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻(R25)上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻(R25)上的平均电压的最小值所对应的驱动线圈电流频率;
    5)预存报警负载下的电源电压的平均值(UL源)和电流检测电阻(R25)上的平均电压(ULR25)于可编程的微芯片处理器(IC)的程序中;
    6)采集电动清洁护理用具工作时的当前负载对应的电流检测电阻(R25)上的电压值(UNR25)及当前的电源电压值(UN源);
    7)比较所述当前负载对应的电流检测电阻(R25)上的电压值(UNR25)和预存于可编程的微芯片处理器(IC)中的报警负载下的电源电压的平均值(UL源),若(UN源/UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警。
  10. 如权利要求9所述的压力报警方法,其中,所述压力报警方式采用声音和/或灯光和/或机械振动模式。
  11. 如权利要求9所述的压力报警方法,其中,所述调节清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角包括将该夹角调节为使得换能器固有频率(f)随负载作用于清洁元件(3)上的力增加而变大。
  12. 如权利要求9所述的压力报警方法,还包括控制换能器固有频率(f)随负载作用于清洁元件(3)上的力增加而变化的速率,使得清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角越小,则换能器固有频率(f)随负载作用于清洁元件(3)上的力增加而变化的速率越大,清洁元件(3)的纵向轴线(L1)和换能器弹性件平面(M)的法向的夹角越大,则换能器固有频率(f)随负载作用于清洁元件(3)上的力增加而变化的速率越小。
  13. 如权利要求9所述的压力报警方法,其中使换能器和驱动力共振的负载值通过选取n的数值而选择,n值越小,则对应的使换能器和驱动力共振的负载值越大。
  14. 一种实现如权利要求9-13中任一项所述方法的压力报警装置,其中,包括检测、采集和报警电路及报警部件,所述电路包括电源、可编程的微芯片处理器(IC)和由晶体管构成的用以联结电源和驱动线圈(214)的H桥电路,所述微芯片处理器(IC)的程序中储存有f0max-n,以选定的n值所对应的f0max-n作为驱动线圈(214)中流过的电流的固定频率(f0),其中,-0.3(f0max-f0min)≤n≤0.85(f0max-f0min),f0max为电流检测电阻(R25)上的平均电压的最大值所对应的驱动线圈电流频率,f0min为电流检测电阻(R25)上的平均电压的最小值所对应的驱动线圈电流频率,并预存有报警负载下的 电源电压的平均值(UL源)和电流检测电阻(R25)上的平均电压(ULR25),该微芯片处理器(IC)输出固定频率为f0的方波以驱动H桥电路,若(UN /UL源)×UNR25>ULR25,无报警信号输出或终止当前的压力报警信号输出;若(UN源/UL源)×UNR25≤ULR25,则输出压力报警信号并报警。
  15. 如权利要求14所述的压力报警装置,其中,所述报警部件是蜂鸣器件和/或发光器件和/或机械振动器件。
PCT/CN2016/108884 2016-12-02 2016-12-07 电动清洁护理器具、用于该器具的压力报警方法及装置 WO2018098838A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES16922584T ES2870579T3 (es) 2016-12-02 2016-12-07 Aparato eléctrico para limpiar y proporcionar cuidado
EP16922584.4A EP3542754B1 (en) 2016-12-02 2016-12-07 Electrical appliance for cleaning and providing care
JP2019529864A JP7023958B2 (ja) 2016-12-02 2016-12-07 電動クリーニングケア用具、当該用具に用いられる圧力アラーム方法及び装置
US16/462,191 US11234803B2 (en) 2016-12-02 2016-12-07 Electric cleaning and care appliance, pressure alarming method and apparatus for the appliance
CA3044725A CA3044725C (en) 2016-12-02 2016-12-07 Electric cleaning and care applicance, pressure alarming method and apparatus for the appliance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611096268.5 2016-12-02
CN201611096268.5A CN106618776B (zh) 2016-12-02 2016-12-02 电动清洁护理器具、用于该器具的压力报警方法及装置

Publications (1)

Publication Number Publication Date
WO2018098838A1 true WO2018098838A1 (zh) 2018-06-07

Family

ID=58814237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108884 WO2018098838A1 (zh) 2016-12-02 2016-12-07 电动清洁护理器具、用于该器具的压力报警方法及装置

Country Status (7)

Country Link
US (1) US11234803B2 (zh)
EP (1) EP3542754B1 (zh)
JP (1) JP7023958B2 (zh)
CN (1) CN106618776B (zh)
CA (1) CA3044725C (zh)
ES (1) ES2870579T3 (zh)
WO (1) WO2018098838A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106618776B (zh) 2016-12-02 2018-12-14 上海携福电器有限公司 电动清洁护理器具、用于该器具的压力报警方法及装置
EP3734808B1 (en) * 2019-05-02 2021-12-08 Braun GmbH Personal hygiene device
CN112006800A (zh) 2019-05-29 2020-12-01 上海携福电器有限公司 声波类电动清洁护理器具、用于该类器具的压力报警装置
CN111189572A (zh) * 2020-01-13 2020-05-22 深圳市东至西科技有限公司 一种电动牙刷冲刷力检测电路及检测方法
CN113558513A (zh) * 2021-07-30 2021-10-29 湖州师范学院 一种瘫痪病人护理用医疗冲洗装置
CN116032089A (zh) * 2021-10-27 2023-04-28 科西嘉(上海)智能科技有限公司 清洁护理用具及其换能装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084707A1 (en) * 2000-12-28 2002-07-04 Tang Man Chiu Vibrating toothbrush
JP2003210495A (ja) * 2002-01-18 2003-07-29 Matsushita Electric Works Ltd 電動歯ブラシ
CN1792023A (zh) * 2003-05-16 2006-06-21 松下电工株式会社 转动驱动致动器以及使用该转动驱动致动器的电动牙刷
CN101346106A (zh) 2005-12-22 2009-01-14 皇家飞利浦电子股份有限公司 用于个人护理器具的使用电流值的自适应驱动系统
CN104617732A (zh) * 2015-01-28 2015-05-13 上海携福电器有限公司 个人清洁护理用具
CN104883997A (zh) 2012-12-28 2015-09-02 皇家飞利浦有限公司 用于通过刷毛动作确定牙齿上的压力负载的力和动态负载测量的组合
DE102014007361A1 (de) * 2014-05-21 2015-11-26 Anton Blank Magnetische Federn für einen Resonanzmotor
CN105227036A (zh) * 2015-10-29 2016-01-06 上海携福电器有限公司 用于个人的电动清洁护理器具的可调电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19937209A1 (de) 1999-01-29 2000-08-10 Hans Richter Antriebsvorrichtung
JP5168087B2 (ja) 2008-10-31 2013-03-21 ミツミ電機株式会社 アクチュエータ及びこれを用いた電動歯ブラシ
WO2012023120A2 (en) 2010-08-19 2012-02-23 Braun Gmbh Resonant motor unit and electric device with resonant motor unit
CN103876849B (zh) * 2012-12-21 2017-05-31 高露洁-棕榄公司 具有压力传感器的口腔护理器具及其形成方法
CN103876450B (zh) * 2012-12-21 2016-04-27 高露洁-棕榄公司 具有压力传感器的口腔护理器具及其形成方法
US10463460B2 (en) * 2015-01-28 2019-11-05 Shanghai Shift Electrics Co., Ltd. Personal cleaning care appliance
WO2016119137A1 (zh) * 2015-01-28 2016-08-04 上海携福电器有限公司 一种清洁器件
CN104617704B (zh) * 2015-01-28 2017-06-27 上海携福电器有限公司 一种清洁器件
CN106037973B (zh) * 2016-06-06 2018-03-23 北京希澈科技有限公司 一种电动牙刷的控制方法和装置
CN106618776B (zh) 2016-12-02 2018-12-14 上海携福电器有限公司 电动清洁护理器具、用于该器具的压力报警方法及装置
CN206548628U (zh) * 2016-12-02 2017-10-13 上海携福电器有限公司 电动清洁护理器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084707A1 (en) * 2000-12-28 2002-07-04 Tang Man Chiu Vibrating toothbrush
JP2003210495A (ja) * 2002-01-18 2003-07-29 Matsushita Electric Works Ltd 電動歯ブラシ
CN1792023A (zh) * 2003-05-16 2006-06-21 松下电工株式会社 转动驱动致动器以及使用该转动驱动致动器的电动牙刷
CN101346106A (zh) 2005-12-22 2009-01-14 皇家飞利浦电子股份有限公司 用于个人护理器具的使用电流值的自适应驱动系统
CN104883997A (zh) 2012-12-28 2015-09-02 皇家飞利浦有限公司 用于通过刷毛动作确定牙齿上的压力负载的力和动态负载测量的组合
DE102014007361A1 (de) * 2014-05-21 2015-11-26 Anton Blank Magnetische Federn für einen Resonanzmotor
CN104617732A (zh) * 2015-01-28 2015-05-13 上海携福电器有限公司 个人清洁护理用具
CN105227036A (zh) * 2015-10-29 2016-01-06 上海携福电器有限公司 用于个人的电动清洁护理器具的可调电路

Also Published As

Publication number Publication date
CN106618776B (zh) 2018-12-14
US11234803B2 (en) 2022-02-01
EP3542754A1 (en) 2019-09-25
CA3044725A1 (en) 2018-06-07
US20190328498A1 (en) 2019-10-31
ES2870579T3 (es) 2021-10-27
CN106618776A (zh) 2017-05-10
EP3542754B1 (en) 2021-02-17
EP3542754A4 (en) 2019-11-13
CA3044725C (en) 2021-02-09
JP7023958B2 (ja) 2022-02-22
JP2020501649A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2018098838A1 (zh) 电动清洁护理器具、用于该器具的压力报警方法及装置
US9427294B2 (en) Method for operating an electric appliance and electric appliance
JP5951767B2 (ja) パーソナルケアデバイス
EP2826596A2 (en) Impact rotation tool and impact rotation tool attachment
US20180145576A1 (en) Vibration motor for an electric hand-held appliance
KR102444630B1 (ko) 개인 위생 장치
JP2018510686A (ja) アクチュエータの非線形性及び動的な駆動調整による自己適応型調整を有するパーソナルケア機器並びにその方法
EP3960124B1 (en) Acoustic wave type electric cleaning and care appliance with pressure alarm device
CN206548628U (zh) 电动清洁护理器具
CN211067129U (zh) 声波类电动清洁护理器具、用于该类器具的压力报警装置
EP2420201A1 (en) Method for detecting the mechanical load on a vibratory mechanism
CN115603539A (zh) 清洁护理用具及其换能装置和压力报警机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3044725

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019529864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922584

Country of ref document: EP

Effective date: 20190618