WO2018097543A1 - Flame detection apparatus and flame control method thereby - Google Patents

Flame detection apparatus and flame control method thereby Download PDF

Info

Publication number
WO2018097543A1
WO2018097543A1 PCT/KR2017/013049 KR2017013049W WO2018097543A1 WO 2018097543 A1 WO2018097543 A1 WO 2018097543A1 KR 2017013049 W KR2017013049 W KR 2017013049W WO 2018097543 A1 WO2018097543 A1 WO 2018097543A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
unit
optical fiber
image
imaging
Prior art date
Application number
PCT/KR2017/013049
Other languages
French (fr)
Korean (ko)
Inventor
김세원
권민준
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2018097543A1 publication Critical patent/WO2018097543A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Definitions

  • the present invention relates to a flame diagnosis apparatus and a flame control method thereof, and more particularly, flame diagnosis apparatuses capable of observing flames at various positions inside and outside the furnace by using optical fibers, and thus improving flame detection accuracy and flames thereof. It relates to a control method.
  • Flame monitoring and flame equivalence ratio measuring apparatus which is generally applied now can be largely divided into an exhaust gas measuring method and a light measuring method.
  • the exhaust gas measurement method there is an advantage that the measurement accuracy is high and the measurement through the absolute value is possible, but there is a disadvantage that the movement time and the measurement time of the exhaust gas occur.
  • the photo-measuring method there is an advantage in that there is almost no delay time as a method of directly measuring the flame, but there is a disadvantage that the absolute measurement accuracy is low.
  • the flame photometering system of the related art has a disadvantage in that the measurement region is limited by measuring the light intensity of the entire flame or by scanning only a linear region according to the measurement probe position.
  • the flame equivalence ratio refers to the ratio of fuel and air supplied for the flame, and the distribution of the flame equivalence ratio is very important for inferring and defining the state of the flame.
  • a sensor an air supply fan disposed on the first pipe communicating with the burner, prevents the temperature rise of the photodiode sensor due to the radiant heat of the flame transmitted through the observation window during combustion and is within the operating temperature range of the photodiode sensor. Flame of flame ore generated by the operation of the cooling device and the cooling plug to maintain the temperature
  • the air-fuel ratio control device for the signal is applied through a photo diode and a control unit for controlling the rotational speed of the air supply fan is disclosed.
  • An object of the present invention for solving the above problems is to provide a device for diagnosing a flame state by monitoring the flame in real time and at the same time grasping the flame structure.
  • an object of the present invention is to induce the lowest air-fuel ratio operation by using a flame diagnosis device, thereby enabling high efficiency operation in the entire combustion system.
  • An optical fiber unit including an optical fiber that receives incident flame-emitting light; An imaging unit for two-dimensional (2D) imaging the signal of the flame emission by the optical fiber unit; An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame; And a processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit, wherein the processor unit is included in the flame using light filtered by the optical filter unit.
  • the flame equivalence ratio is derived by analyzing the concentration distribution of the radicals, and the flame equivalent ratio distribution measurement is performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit.
  • the optical fiber unit may include a coupling unit provided in the furnace and coupled to a cradle capable of mounting the optical fiber, and the coupling unit may include a magnet.
  • a plurality of optical fiber units may be provided, and the image pickup unit may selectively image the signal of the flame emission from each optical fiber unit.
  • the imaging unit may be formed of a digital camera.
  • the processor unit may further include a display device configured to receive and express a radical concentration distribution obtained by data processing on the flame image in a contour form.
  • the optical filter unit may variably adjust a wavelength band of the filtered light.
  • a plurality of imaging units may be provided, and a plurality of optical filter units having different wavelength bands may be distributed and disposed one for each of the plurality of imaging units.
  • the optical fiber unit having an optical fiber that receives the incident light of the flame;
  • An imaging unit which images the signal of the flame emission by the optical fiber unit;
  • An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame;
  • a processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit;
  • a control unit which outputs a control signal according to the information processed by the processor unit;
  • a fuel controller configured to adjust a fuel amount supplied to a burner by receiving a control signal from the controller;
  • An air adjusting unit which receives a control signal from the control unit and adjusts the amount of air supplied to the burner;
  • a warning display unit displaying a warning by an abnormal flame detection signal of the processor unit.
  • the fuel control unit or the air control unit may include an actuator.
  • control unit may transmit a control signal to the fuel control unit and the air control unit by wire or wirelessly.
  • the configuration of the present invention for achieving the above object, (i) providing an optical filter unit between the optical fiber unit and the imaging unit; (ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit; (iii) obtaining flame image information by digitizing a histogram for each pixel of the flame image; (iv) processing the flame image information into a matrix of each pixel; And (v) receiving, by the processor unit, a radical concentration distribution obtained by processing the data on the flame image in a contour form, and expressing the radical concentration distribution in a contour form in a display device.
  • the configuration of the present invention for achieving the above object, (i) providing an optical filter unit between the optical fiber unit and the imaging unit; (ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit; (iii) a processor processing data for the flame image; (iv) outputting a control signal from a controller to a fuel controller or an air controller according to data processing of the processor unit of step (iii); (v) controlling the amount of fuel and the amount of air supplied to the burner by the fuel control unit and the air control unit by the control signal; And (vi) displaying a warning on the warning display unit by an abnormal flame detection signal of the processor unit.
  • the effect of the present invention by continuously analyzing the concentration distribution of the various radicals contained in the flame to collect and use the data about it, it is possible to monitor the flame in real time, at the same time flame structure by measuring the flame equivalent ratio distribution Can be measured.
  • the effect of the present invention it is possible to perform the measurement of the flame structure in real time, it is possible to control the automatic operation based on the data for this, it is possible to operate efficiently with the lowest air-fuel ratio, using an optical filter and an imaging device Its simple configuration makes it insensitive to changes in the environment, such as temperature and humidity.
  • 1 is a graph of the peak wavelength of OH, CH and C 2 radical light included in the flame emission according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a flame diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a flame diagnosis apparatus according to another embodiment of the present invention.
  • FIG. 4 is a block diagram of a flame control system using a flame diagnosis apparatus according to an embodiment of the present invention.
  • 5 is an actual image of a flame by flame equivalent ratio according to an embodiment of the present invention.
  • FIG. 6 is a contour graph of the distribution of CH radicals by flame equivalent ratio according to an embodiment of the present invention.
  • FIG. 8 is a graph of CH radical intensity according to flame equivalent ratio by image processing of a processor unit according to an exemplary embodiment of the present invention.
  • FIG 9 is a graph of C 2 radical intensity according to flame equivalent ratio by image processing of a processor unit according to an exemplary embodiment of the present invention.
  • the optical fiber unit having an optical fiber to recognize the incident light of the flame;
  • An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame;
  • a processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit, wherein the processor unit is included in the flame using light filtered by the optical filter unit.
  • the flame equivalence ratio is derived by analyzing the concentration distribution of the radicals, and the flame equivalent ratio distribution measurement is performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit.
  • Figure 1 is a graph of the peak wavelength of OH, CH and C 2 radical light included in the flame emission according to an embodiment of the present invention
  • Figure 2 is a block diagram of a flame diagnostic apparatus according to an embodiment of the present invention.
  • the flame diagnosis apparatus of the present invention the optical fiber unit 10 having an optical fiber for receiving the incident light recognition of the flame; An imaging unit 20 for two-dimensional (2D) imaging a signal of flame emission by the optical fiber unit 10; An optical filter unit 30 disposed between the optical fiber unit 10 and the image pickup unit 20 and configured to filter flame emission and pass only light having a predetermined wavelength band; And a processor unit 40 for performing information processing on the flame image obtained through the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30, and the processor unit 40 includes an optical filter
  • the flame equivalent ratio may be derived by analyzing the concentration distribution of radicals included in the flame using the light filtered by the unit 30.
  • the flame equivalent ratio distribution measurement may be performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit 10. This can be said that the equivalence ratio distribution measurement of the flame is possible.
  • the observation window is provided at a fixed position of the side wall of the furnace 60, and the flame is observed only through the observation window.
  • a plurality of furnaces are provided in the furnace 60.
  • the lens unit 61 may be provided, and the optical fiber unit 10 may be connected to each lens unit 61 to observe the flame at a plurality of positions.
  • a protective device and a lens are provided in the furnace 60 to protect the optical fiber from the flame, thereby preventing the flame from inside the furnace 60. You can also observe.
  • the flame diagnosis apparatus of the present invention can measure the difference in flame concentrations of the local portions of the flame at various positions by applying optical fibers, and thus various approaches to the flames. This enables accurate flame concentration measurement for each part of the flame, thereby improving the analysis performance of the flame state.
  • the optical fiber unit 10 may include a coupling unit 12 provided in the furnace 60 and coupled to a cradle 63 capable of mounting the optical fiber, and the coupling unit 12 may include a magnet.
  • the optical fiber unit 10 may recognize flame emission of light incident through the lens unit 61.
  • the cradle 63 and the coupling portion 12 may be coupled by a screw coupling method, but in order to quickly change the position of flame observation, the coupling portion 12 is provided with a magnet to facilitate coupling and decoupling and is coupled by the attraction force of the magnet.
  • the unit 12 and the metal holder 63 may be combined.
  • the flame luminescence may include OH lidalkal, CH radicals or C 2 radicals. Peaks may appear in a wavelength band for a specific chemical species in the ultraviolet region and the visible region of the flame emission spectrum.
  • OH-ridical, CH radical or C 2 radicals are the main species of the combustion reaction and have a high intensity of peaks in the ultraviolet region and the visible region.
  • the magnitude of the peak for each species of flame luminescence can be expressed by the concentration of each species radical and thus diagnose the flame state.
  • the present invention can be aimed at measuring the flame equivalent ratio distribution which induces the relationship between the self-luminescence intensity and the flame equivalent ratio of a specific chemical species radical by using the change in the concentration of the radical according to the change in the flame equivalent ratio.
  • FIG. 3 is a block diagram of a flame diagnosis apparatus according to another embodiment of the present invention.
  • the optical fiber unit 10 is provided in plural, and the imaging unit 20 may selectively image the signal of flame emission from each of the optical fiber units 10.
  • the single optical fiber unit 10 may be selectively coupled with one cradle 63 among the plurality of cradles 63, thereby performing observation of the flame at a plurality of positions.
  • a plurality of imaging units 20 coupled to each of the plurality of optical fiber units 10 may be provided to collect and image a flame light emitting signal simultaneously with respect to flames simultaneously observed in multiple directions.
  • the imaging unit 20 may be formed of a digital camera.
  • the imaging unit 20 a digital camera generally used may be used, and a system may be configured at a low cost, and the maintenance and repair may be easy due to a simple configuration.
  • the imaging unit 20 may continuously transmit the image of the flame to the processor unit 40 through real-time imaging.
  • the image pickup unit 20 may be an image pickup device, and may measure two-dimensional (2D) measurement to measure a local concentration difference of a flame even if the measurement device does not move separately.
  • 2D two-dimensional
  • the processor 40 may further include a display device 80 that receives and expresses a radical concentration distribution obtained by processing data on a flame image in a contour form.
  • the signal of flame light emission recognized by the optical fiber unit 10 is filtered by the optical filter unit 30, and the flame image formed by light of a specific wavelength with respect to specific radicals filtered by the optical filter unit 30 is displayed in real time.
  • the image is captured by the imaging unit 20 and transmitted to the processor unit 40, and the processor unit 40 processes data about the flame image and expresses the data on the display device 80 in a contour manner. Real-time monitoring of status and structure may be possible. The comparison between the actual image of the flame and the distribution image of a specific radical and its analysis will be described later.
  • a wide-angle lens may be further installed between the flame and the optical fiber unit 10 for monitoring and structural measurement of the flame in a wider area.
  • a wide-angle lens may be fixedly installed at the lens unit 61 provided in the furnace 60 or may be installed at the coupling part 12 of the optical fiber part 10.
  • the optical filter unit 30 may have a function of variably adjusting a wavelength band of light to be filtered.
  • a plurality of imaging units 20 may be provided, and a plurality of optical filter units 30 having different wavelength bands may be distributed and installed one for each of the plurality of imaging units 20.
  • each of the optical filter units 30 having a separate wavelength band is provided, information on a plurality of chemical species radicals can be obtained in a single device. Thereby, the precision of monitoring about a flame state and measuring about a flame structure can be improved.
  • complex monitoring and measurement can be performed by the plurality of optical fiber units 10 and the plurality of imaging units 20.
  • the optical filter unit 30 may be provided between the optical fiber unit and the imaging unit 20.
  • a flame image may be obtained using the optical fiber unit, the imaging unit 20, and the optical filter unit 30.
  • the processor 40 may process the data for the flame image.
  • the detailed data processing method is described in the data processing method for the flame image obtained by the flame diagnosis apparatus of the next stage.
  • the processor 40 may receive the radical concentration distribution obtained by processing the data on the flame image in the form of a contour and may be expressed in the display apparatus 80.
  • the structure of the flame can be accurately represented, and it is easy to data the image of the structure of the flame.
  • the radical intensity for each flame equivalent ratio may be represented by a graph by the image processing of the processor 40.
  • FIG. 4 is a block diagram of a flame control system using a flame diagnosis apparatus according to an embodiment of the present invention.
  • the flame control system using the flame diagnosis apparatus of the present invention includes an optical fiber unit 10 having an optical fiber that receives and recognizes flame emission; An imaging unit 20 for imaging a signal of flame emission by the optical fiber unit 10; An optical filter unit 30 disposed between the optical fiber unit 10 and the image pickup unit 20 and configured to filter flame emission and pass only light having a predetermined wavelength band; A processor unit 40 for performing information processing on the flame image obtained through the optical fiber unit 10, the image pickup unit 20, and the optical filter unit 30; A controller 70 which outputs a control signal based on the information processed by the processor 40; A fuel controller 100 which receives a control signal from the controller 70 and adjusts the amount of fuel supplied to the burner 62; An air control unit 110 which receives a control signal from the control unit 70 and adjusts the amount of air supplied to the burner 62; And a warning display unit 90 displaying a warning by an abnormal flame detection signal of the processor unit 40.
  • the fuel control unit 100 or the air control unit 110 may include an actuator.
  • the control unit 70 may transmit a control signal to the fuel control unit 100 and the air control unit 110 by wire or wirelessly.
  • the fuel control unit 100 and the air control unit 110 is formed of an actuator, and the control unit 70 wirelessly controls the fuel control unit 100 and the air control unit 110, the remote control using the Internet system Monitoring and measurement of flames may be possible.
  • the processor unit 40 compares the flame equivalent ratio value induced by the concentration distribution of specific radicals by the digitized data with the flame equivalent ratio distribution range set by the user (hereinafter referred to as reference data). When the flame equivalent ratio in real time deviates from the reference data, an error signal may be transmitted to the controller 70 for the corresponding error.
  • the control unit 70 may transmit a control signal to the fuel control unit 100 and the air control unit 110 so that an error does not occur with respect to the reference data.
  • the controller 70 may receive information from the fuel flow meter 101 or the air flow meter 111 to provide feedback about whether the flow rate is adjusted according to the control signal. Accordingly, the control of the fuel control unit 100 and the air control unit 110 can be performed in real time and continuously.
  • the processor unit 40 may be connected to the gas analyzer 50 to process information about gas analysis and transmit data to the controller 70.
  • the warning display unit 90 may use a rotating warning light or an LED warning light to visually recognize the warning.
  • the warning display unit 90 may use a siren or a digital alarm device, so as to acoustically recognize the warning.
  • the visual display device or the audio recognition device is described as the warning display unit 90, but is not necessarily limited thereto.
  • the processor unit 40 compares the flame equivalent ratio value induced by the concentration distribution of specific radicals by the digitized data with the flame equivalent ratio distribution range set by the user (hereinafter referred to as reference data). Thus, when the flame equivalent ratio value outside the reference data in real time, an error signal may be transmitted to the warning display unit 90 for the corresponding error.
  • the warning display unit 90 may perform a warning display by an error signal.
  • the optical filter unit 30 may be installed between the optical fiber unit 10 and the imaging unit 20.
  • a flame image may be obtained using the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30.
  • the step of converting the flame image to grayscale may be further included.
  • the brightness ratio between each pixel can be improved, making it easy to digitize the histogram for each pixel.
  • the flame image information may be obtained by digitizing a histogram for each pixel of the flame image.
  • the flame image information can be processed into a matrix of each pixel.
  • the flame image information can be digitized by processing the matrix of each pixel, and the average of numerical values of each pixel can be calculated and graphed separately for each equivalence ratio.
  • the average value of the numerical value of each pixel may correspond to the intensity value of the corresponding radical.
  • the processor 40 may receive the distribution of the radical concentration obtained by processing the data on the flame image in the form of a contour, and may express it in the form of the contour in the display device 80.
  • the intensity of the corresponding radical By the data processing method for the flame image obtained by the flame diagnosis device, it is possible to measure the intensity of the corresponding radical by the average value of the specific radical concentration distribution, the intensity of this specific radical may appear differentially by flame equivalent ratio have.
  • the intensity and the flame equivalent ratio of a specific radical are represented by a graph having a value correlated with each other. Accordingly, the intensity of the specific radical can be measured to derive the flame equivalent ratio value in real time.
  • the optical filter unit 30 may be installed between the optical fiber unit 10 and the imaging unit 20.
  • a flame image may be obtained using the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30.
  • the processor 40 may process data for the flame image.
  • the detailed data processing method is described in the data processing method for the flame image obtained by the flame diagnosis apparatus.
  • control unit 70 may output a control signal to the fuel control unit 100 or the air control unit 110.
  • the fuel control unit 100 and the air control unit 110 may adjust the amount of fuel and the air amount supplied to the burner 62 by the control signal.
  • the warning display unit 90 may display a warning by an abnormal flame detection signal of the processor unit 40.
  • FIG 5 is an actual image of the flame by the flame equivalent ratio according to an embodiment of the present invention
  • Figure 6 is a cantour (contour) graph of the distribution of CH radicals by flame equivalent ratio according to an embodiment of the present invention
  • Figure 7 Cantour (contour) graph of the distribution of C 2 radicals by flame equivalent ratio according to an embodiment of the present invention.
  • an optical filter unit 30 having a center wavelength of 432 nm was applied to CH radicals
  • an optical filter unit 30 having a center wavelength of 511 nm was applied to C 2 radicals.
  • CH radicals and C 2 radicals have a wavelength band in the visible light range and can be measured using all commonly used digital cameras.
  • similar results may be obtained for OH radicals (308 nm) through a digital camera to which no UV filter is applied.
  • a contour map of the distribution of CH radicals or a contour graph of the distribution of C 2 radicals represents the actual flame image. I could confirm it. In addition, it was confirmed that precise measurement is possible even for the flame structure, which is not easy to measure because the boundary is unclear in the actual flame image.
  • the flame diagnostic apparatus of the present invention it is possible to detect the change in the local concentration difference according to the change in the flame state (equivalent ratio), in particular, as shown in Figure 6, It was easy to see the change in the local high concentration radical region formed in the wake of the flame as it increased.
  • FIG. 8 is a graph of the CH radical intensity according to the flame equivalent ratio by the image processing of the processor unit 40 according to an embodiment of the present invention
  • FIG. 9 is a graph of the image processing of the processor unit 40 according to the embodiment of the present invention. It is a graph of C 2 radical intensity by flame equivalent ratio.
  • the image information of the flame according to the flame equivalent ratio set to the variable value is quantified through the data processing method for the flame image obtained by the flame diagnosis apparatus, and the resulting radical The relationship between intensity and flame equivalent ratio is expressed.
  • each radical intensity value has a specific value for each flame equivalent ratio, it is confirmed that the flame equivalent ratio value can be derived from the radical intensity value measured using the flame diagnostic apparatus of the present invention. It was.
  • control unit 70 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

One embodiment of the present invention provides a flame detection apparatus capable of observing flames at various positions inside and outside a furnace by means of an optical fiber to improve the accuracy of flame observation, and a flame control method thereby. A flame detection apparatus according to an embodiment of the present invention comprises: an optical fiber unit having an optical fiber for receiving and recognizing flame chemiluminescence; an imaging unit for converting a signal of the flame chemiluminescence by the optical fiber unit into a two-dimensional (2D) image; an optical filter unit, provided between the optical fiber unit and the imaging unit, for filtering the flame chemiluminescence to only pass light having a predetermined wavelength band; and a processor unit for performing information processing on the flame image acquired through the optical fiber unit, the image pickup unit, and the optical filter unit.

Description

화염 진단 장치 및 이에 의한 화염 제어방법Flame diagnosis device and flame control method
본 발명은 화염 진단 장치 및 이에 의한 화염 제어방법 에 관한 것으로, 더욱 상세하게는 광파이버를 이용하여 노 외부와 내부의 다양한 위치에서 화염 관측이 가능하여 화염 관측의 정밀도가 향상된 화염 진단 장치 및 이에 의한 화염 제어방법에 관한 것이다. The present invention relates to a flame diagnosis apparatus and a flame control method thereof, and more particularly, flame diagnosis apparatuses capable of observing flames at various positions inside and outside the furnace by using optical fibers, and thus improving flame detection accuracy and flames thereof. It relates to a control method.
에너지 고갈 문제와 환경문제로 최근 고효율 저공해 연소시스템에 대한 관심이 증대되고 있다. 이에 따라, 고효율 저공해 연소시스템을 위한 버너 및 해당 버너의 효율적인 운전방식에 대한 연구 등, 보다 근본적인 관점에서 상당히 많은 연구와 개발이 진행되고 있다. Due to energy depletion and environmental issues, interest in high efficiency low pollution combustion systems has recently increased. Accordingly, a great deal of research and development is being conducted from a more fundamental point of view, such as a burner for a high efficiency low pollution combustion system and a study on an efficient operation method of the burner.
현재 일반적으로 적용되는 화염 감시 및 화염당량비 계측 장치는, 크게 배기가스계측방식과 광계측방식으로 나눌 수 있다. 배기가스계측방식의 경우, 계측 정밀도가 높고 절대값을 통한 계측이 가능하다는 장점이 있으나, 배기가스의 이동시간과 계측시간의 지연이 발생한다는 단점이 있다. 그리고, 광계측방식의 경우, 화염을 직접 계측하는 방식으로서 지연시간이 거의 없다는 장점이 있지만, 절대적인 계측 정밀도는 낮다는 단점이 있다. Flame monitoring and flame equivalence ratio measuring apparatus which is generally applied now can be largely divided into an exhaust gas measuring method and a light measuring method. In the case of the exhaust gas measurement method, there is an advantage that the measurement accuracy is high and the measurement through the absolute value is possible, but there is a disadvantage that the movement time and the measurement time of the exhaust gas occur. In the case of the photo-measuring method, there is an advantage in that there is almost no delay time as a method of directly measuring the flame, but there is a disadvantage that the absolute measurement accuracy is low.
그리고, 종래기술의 화염 광계측 시스템은, 화염 전체의 광 강도를 계측하거나, 계측 프로브 위치에 따른 직선영역(Line strength)만 스캔하여 계측영역이 제한된다는 단점이 있다. In addition, the flame photometering system of the related art has a disadvantage in that the measurement region is limited by measuring the light intensity of the entire flame or by scanning only a linear region according to the measurement probe position.
한편, 일반적인 화염의 상태를 대표하는 변수로 화염당량비가 있다. 화염당량비는 화염을 위해 공급되는 연료와 공기의 비율을 의미하며, 이러한 화염당량비의 분포는 화염의 상태를 유추하고 정의하기에 매우 중요한 요소이다.On the other hand, there is a flame equivalent ratio as a variable representing a general flame state. The flame equivalence ratio refers to the ratio of fuel and air supplied for the flame, and the distribution of the flame equivalence ratio is very important for inferring and defining the state of the flame.
대한민국 등록특허 제10-1340952호(발명의 명칭: 포토다이오드센서를 포함하는 공연비 제어장치 및 제어방법, 이하 종래기술1이라 한다.)에서는, 가정용 보일러에 사용되는 중공의 버너 및 상기 버너의 하부에 위치하는 연소실로 구성된 구성비 제어모듈, 상기 연소실의 일측에 위치하는 관측창, 상기 버너와 상기 연소실이 접하는 곳에 위치하는 점화플러그, 상기 관측창을 향하도록 상기 연소실의 상기 관측창 외부에 배치되는 포토다이오드센서, 상기 버너와 연통하는 제 1 파이프 상에 배치되는 급기팬, 연소시 상기 관측창을 통해 전달되는 화염의 복사열에 의한 상기 포토다이오드센서의 온도상승을 방지하고 상기 포토다이오드센서의 작동온도 범위 내의 온도를 유지시키기 위한 냉각장치 및 상기 점화플러그의 동작에 의해 발생하는 화염광의 화염 광신호가 포토다이오드를 통해 인가되어 급기팬의 회전속도를 제어하는 제어부를 포함하는 공연비 제어장치가 개시되어 있다.In Republic of Korea Patent No. 10-1340952 (name of the invention: air-fuel ratio control apparatus and control method including a photodiode sensor, hereinafter referred to as the prior art 1), the hollow burner used in the domestic boiler and the lower portion of the burner A component ratio control module composed of a combustion chamber located therein, an observation window positioned at one side of the combustion chamber, an ignition plug located at a position where the burner and the combustion chamber contact each other, and a photodiode disposed outside the observation window of the combustion chamber facing the observation window. A sensor, an air supply fan disposed on the first pipe communicating with the burner, prevents the temperature rise of the photodiode sensor due to the radiant heat of the flame transmitted through the observation window during combustion and is within the operating temperature range of the photodiode sensor. Flame of flame ore generated by the operation of the cooling device and the cooling plug to maintain the temperature The air-fuel ratio control device for the signal is applied through a photo diode and a control unit for controlling the rotational speed of the air supply fan is disclosed.
선행기술문헌: 대한민국 등록특허 제10-1340952호Prior art document: Korean Patent No. 10-1340952
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 실시간으로 화염을 감시함과 동시에 화염 구조를 파악하여 화염 상태를 진단하는 장치를 제공하는 것이다.An object of the present invention for solving the above problems is to provide a device for diagnosing a flame state by monitoring the flame in real time and at the same time grasping the flame structure.
그리고, 본 발명의 목적은, 화염 진단 장치를 이용하여 최저의 공연비 운전을 유도하며 이에 따라 전체 연소 시스템에서 고효율 운전이 가능하도록 하는 것이다.In addition, an object of the present invention is to induce the lowest air-fuel ratio operation by using a flame diagnosis device, thereby enabling high efficiency operation in the entire combustion system.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부; 상기 광파이버부에 의한 상기 화염자발광의 신호를 이차원(2D) 이미지화하는 촬상부; 상기 광파이버부와 상기 촬상부 사이에 설치되고, 상기 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부; 및 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부;를 포함하고, 상기 프로세서부는 상기 광학필터부에 의해 필터링된 광을 이용해서 화염에 포함된 라디칼의 농도분포를 분석하여 화염당량비를 도출하며, 상기 광파이버부에 의한 상기 화염자발광의 인식으로 화염라디칼의 국부적 농도 차이에 대한 계측을 통해 화염당량비 분포 계측이 수행되는 것을 특징으로 한다. An optical fiber unit including an optical fiber that receives incident flame-emitting light; An imaging unit for two-dimensional (2D) imaging the signal of the flame emission by the optical fiber unit; An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame; And a processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit, wherein the processor unit is included in the flame using light filtered by the optical filter unit. The flame equivalence ratio is derived by analyzing the concentration distribution of the radicals, and the flame equivalent ratio distribution measurement is performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit.
본 발명의 실시 예에 있어서, 상기 광파이버부는 노에 구비되고 상기 광파이버를 거치할 수 있는 거치대에 결합하는 결합부를 포함하고, 상기 결합부는 자석을 구비할 수 있다.In an embodiment of the present disclosure, the optical fiber unit may include a coupling unit provided in the furnace and coupled to a cradle capable of mounting the optical fiber, and the coupling unit may include a magnet.
본 발명의 실시 예에 있어서, 상기 광파이버부는 복수 개 구비되고, 상기 촬상부가 각각의 광파이버부로부터 상기 화염자발광의 신호를 선택적으로 이미지화할 수 있다.In an embodiment of the present disclosure, a plurality of optical fiber units may be provided, and the image pickup unit may selectively image the signal of the flame emission from each optical fiber unit.
본 발명의 실시 예에 있어서, 상기 촬상부는, 디지털카메라로 형성될 수 있다.In an embodiment of the present disclosure, the imaging unit may be formed of a digital camera.
본 발명의 실시 예에 있어서, 상기 프로세서부가 상기 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 표현하는 디스플레이장치를 더 포함할 수 있다. In an exemplary embodiment of the present disclosure, the processor unit may further include a display device configured to receive and express a radical concentration distribution obtained by data processing on the flame image in a contour form.
본 발명의 실시 예에 있어서, 상기 광학필터부는, 필터링되는 광의 파장 대역을 가변적으로 조절할 수 있다. In an embodiment of the present disclosure, the optical filter unit may variably adjust a wavelength band of the filtered light.
본 발명의 실시 예에 있어서, 상기 촬상부는 복수 개 설치되고, 파장 대역이 서로 다른 복수 개의 상기 광학필터부가 복수 개의 상기 촬상부 각각에 대해 하나씩 분배되어 설치될 수 있다. In an exemplary embodiment of the present invention, a plurality of imaging units may be provided, and a plurality of optical filter units having different wavelength bands may be distributed and disposed one for each of the plurality of imaging units.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부; 상기 광파이버부에 의한 상기 화염자발광의 신호를 이미지화하는 촬상부; 상기 광파이버부와 상기 촬상부 사이에 설치되고, 상기 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부; 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부; 상기 프로세서부에서 처리된 정보에 의해 제어신호를 출력하는 제어부; 상기 제어부로부터 제어신호를 입력 받아 버너에 공급되는 연료량을 조절하는 연료조절부; 상기 제어부로부터 제어신호를 입력 받아 상기 버너에 공급되는 공기량을 조절하는 공기조절부; 및 상기 프로세서부의 이상(abnormal)화염 감지 신호에 의해 경고를 표시하는 경고표시부;를 포함한다.The configuration of the present invention for achieving the above object, the optical fiber unit having an optical fiber that receives the incident light of the flame; An imaging unit which images the signal of the flame emission by the optical fiber unit; An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame; A processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit; A control unit which outputs a control signal according to the information processed by the processor unit; A fuel controller configured to adjust a fuel amount supplied to a burner by receiving a control signal from the controller; An air adjusting unit which receives a control signal from the control unit and adjusts the amount of air supplied to the burner; And a warning display unit displaying a warning by an abnormal flame detection signal of the processor unit.
본 발명의 실시 예에 있어서, 상기 연료조절부 또는 상기 공기조절부는, 엑추에이터를 포함할 수 있다.In an embodiment of the present invention, the fuel control unit or the air control unit may include an actuator.
본 발명의 실시 예에 있어서, 상기 제어부는, 상기 연료조절부 및 상기 공기조절부로 유선 또는 무선으로 제어신호를 송신할 수 있다.In an embodiment of the present disclosure, the control unit may transmit a control signal to the fuel control unit and the air control unit by wire or wirelessly.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, (i) 광파이버부와 촬상부 사이에 광학필터부를 설치하는 단계; (ii) 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 이용하여 화염이미지를 획득하는 단계; (iii) 상기 화염이미지의 각 픽셀에 대한 히스토그램(histogram)을 디지털화하여 화염이미지정보를 획득하는 단계; (iv) 상기 화염이미지정보를 각 픽셀의 매트릭스로 처리하는 단계; 및 (v) 프로세서부가 상기 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 디스플레이장치에서 칸투어(contour) 형태로 표현하는 단계;를 포함한다. The configuration of the present invention for achieving the above object, (i) providing an optical filter unit between the optical fiber unit and the imaging unit; (ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit; (iii) obtaining flame image information by digitizing a histogram for each pixel of the flame image; (iv) processing the flame image information into a matrix of each pixel; And (v) receiving, by the processor unit, a radical concentration distribution obtained by processing the data on the flame image in a contour form, and expressing the radical concentration distribution in a contour form in a display device.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, (i) 광파이버부와 촬상부 사이에 광학필터부를 설치하는 단계; (ii) 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 이용하여 화염이미지를 획득하는 단계; (iii) 프로세서부가 상기 화염이미지에 대한 데이터를 처리하는 단계; (iv) 상기 (iii)단계의 상기 프로세서부의 데이터 처리에 따라, 제어부에서 연료조절부 또는 공기조절부로 제어신호를 출력하는 단계; (v) 상기 제어신호에 의해, 상기 연료조절부 및 상기 공기조절부가 버너로 공급되는 연료량과 공기량을 조절하는 단계; 및 (vi) 상기 프로세서부의 이상(abnormal)화염 감지 신호에 의해 경고표시부에서 경고를 표시하는 단계;를 포함한다. The configuration of the present invention for achieving the above object, (i) providing an optical filter unit between the optical fiber unit and the imaging unit; (ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit; (iii) a processor processing data for the flame image; (iv) outputting a control signal from a controller to a fuel controller or an air controller according to data processing of the processor unit of step (iii); (v) controlling the amount of fuel and the amount of air supplied to the burner by the fuel control unit and the air control unit by the control signal; And (vi) displaying a warning on the warning display unit by an abnormal flame detection signal of the processor unit.
상기와 같은 구성에 따른 본 발명의 효과는, 관측창이 필수적인 기존의 광계측 시스템과 다르게, 노 외부와 내부의 다양한 위치에서 화염의 당량비 분포에 대해 관측이 가능하여 화염 관측의 정밀도가 향상된다는 것이다.The effect of the present invention according to the configuration as described above, unlike the conventional optical measurement system in which the observation window is required, it is possible to observe the equivalence ratio distribution of the flame at various locations outside and inside the furnace to improve the accuracy of flame observation.
또한, 본 발명의 효과는, 지속적으로 화염에 포함된 여러 라디칼의 농도 분포를 분석하여 그에 대한 데이터를 수집하여 이용하므로, 실시간으로 화염을 감시할 수 있고, 동시에 화염당량비 분포의 측정을 통한 화염 구조의 계측을 수행할 수 있다는 것이다.In addition, the effect of the present invention, by continuously analyzing the concentration distribution of the various radicals contained in the flame to collect and use the data about it, it is possible to monitor the flame in real time, at the same time flame structure by measuring the flame equivalent ratio distribution Can be measured.
그리고, 본 발명의 효과는, 실시간으로 화염 구조의 계측을 수행할 수 있어, 이에 대한 데이터를 기반으로 자동 운전 제어가 가능하여 최저의 공연비를 갖는 효율적인 운전이 가능하고, 광학필터와 촬상장치를 사용하는 단순한 구성을 가져 기온이나 습도 등의 주변환경 변화에 민감하지 않다는 것이다. In addition, the effect of the present invention, it is possible to perform the measurement of the flame structure in real time, it is possible to control the automatic operation based on the data for this, it is possible to operate efficiently with the lowest air-fuel ratio, using an optical filter and an imaging device Its simple configuration makes it insensitive to changes in the environment, such as temperature and humidity.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다. The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 실시 예에 따른 화염자발광에 포함된 OH, CH 및 C2라디칼 광 파장 피크값에 대한 그래프이다. 1 is a graph of the peak wavelength of OH, CH and C 2 radical light included in the flame emission according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 화염 진단 장치의 구성도이다. 2 is a block diagram of a flame diagnosis apparatus according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시 예에 따른 화염 진단 장치의 구성도이다. 3 is a block diagram of a flame diagnosis apparatus according to another embodiment of the present invention.
도4는 본 발명의 실시 예에 따른 화염 진단 장치를 이용한 화염 제어 시스템 구성도이다.4 is a block diagram of a flame control system using a flame diagnosis apparatus according to an embodiment of the present invention.
도5는 본 발명의 실시 예에 따른 화염당량비별 화염의 실제 이미지이다. 5 is an actual image of a flame by flame equivalent ratio according to an embodiment of the present invention.
도6은 본 발명의 실시 예에 따른 화염당량비별 CH라디칼의 분포에 대한 칸투어(contour) 그래프이다.6 is a contour graph of the distribution of CH radicals by flame equivalent ratio according to an embodiment of the present invention.
도7은 본 발명의 실시 예에 따른 화염당량비별 C2라디칼의 분포에 대한 칸투어(contour) 그래프이다.7 is a contour graph of the distribution of C 2 radicals according to flame equivalent ratios according to an embodiment of the present invention.
도8은 본 발명의 실시 예에 따른 프로세서부의 이미지처리에 의한 화염당량비별 CH라디칼 강도의 그래프이다.8 is a graph of CH radical intensity according to flame equivalent ratio by image processing of a processor unit according to an exemplary embodiment of the present invention.
도9는 본 발명의 실시 예에 따른 프로세서부의 이미지처리에 의한 화염당량비별 C2라디칼 강도의 그래프이다.9 is a graph of C 2 radical intensity according to flame equivalent ratio by image processing of a processor unit according to an exemplary embodiment of the present invention.
본 발명의 가장 바람직한 실시예는, 화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부; 상기 광파이버부에 의한 상기 화염자발광의 신호를 이차원(2D) 이미지화하는 촬상부; 상기 광파이버부와 상기 촬상부 사이에 설치되고, 상기 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부; 및 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부;를 포함하고, 상기 프로세서부는 상기 광학필터부에 의해 필터링된 광을 이용해서 화염에 포함된 라디칼의 농도분포를 분석하여 화염당량비를 도출하며, 상기 광파이버부에 의한 상기 화염자발광의 인식으로 화염라디칼의 국부적 농도 차이에 대한 계측을 통해 화염당량비 분포 계측이 수행되는 것을 특징으로 한다. The most preferred embodiment of the present invention, the optical fiber unit having an optical fiber to recognize the incident light of the flame; An imaging unit for two-dimensional (2D) imaging the signal of the flame emission by the optical fiber unit; An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame; And a processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit, wherein the processor unit is included in the flame using light filtered by the optical filter unit. The flame equivalence ratio is derived by analyzing the concentration distribution of the radicals, and the flame equivalent ratio distribution measurement is performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다. Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명에 대하여 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 화염자발광에 포함된 OH, CH 및 C2라디칼 광 파장 피크값에 대한 그래프이고, 도 2는 본 발명의 실시 예에 따른 화염 진단 장치의 구성도이다.1 is a graph of the peak wavelength of OH, CH and C 2 radical light included in the flame emission according to an embodiment of the present invention, Figure 2 is a block diagram of a flame diagnostic apparatus according to an embodiment of the present invention.
도 2에서 보는 바와 같이, 본 발명의 화염 진단 장치는, 화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부(10); 광파이버부(10)에 의한 화염자발광의 신호를 이차원(2D) 이미지화하는 촬상부(20); 광파이버부(10)와 촬상부(20) 사이에 설치되고, 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부(30); 및 광파이버부(10), 촬상부(20)와 광학필터부(30)를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부(40);를 포함하고, 프로세서부(40)는 광학필터부(30)에 의해 필터링된 광을 이용해서 화염에 포함된 라디칼의 농도분포를 분석하여 화염당량비를 도출할 수 있다. As shown in Figure 2, the flame diagnosis apparatus of the present invention, the optical fiber unit 10 having an optical fiber for receiving the incident light recognition of the flame; An imaging unit 20 for two-dimensional (2D) imaging a signal of flame emission by the optical fiber unit 10; An optical filter unit 30 disposed between the optical fiber unit 10 and the image pickup unit 20 and configured to filter flame emission and pass only light having a predetermined wavelength band; And a processor unit 40 for performing information processing on the flame image obtained through the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30, and the processor unit 40 includes an optical filter The flame equivalent ratio may be derived by analyzing the concentration distribution of radicals included in the flame using the light filtered by the unit 30.
그리고, 광파이버부(10)에 의한 화염자발광의 인식으로 화염라디칼의 국부적 농도 차이에 대한 계측을 통해 화염당량비 분포 계측이 수행될 수 있다. 이는 화염의 당량비 분포 계측이 가능함을 말할 수 있다.In addition, the flame equivalent ratio distribution measurement may be performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit 10. This can be said that the equivalence ratio distribution measurement of the flame is possible.
기존의 광계측 시스템에서는 노(furnace)(60)의 측벽의 고정된 위치에 관측창이 구비되고, 이러한 관측창을 통해서만 화염을 관찰하였으나, 본 발명의 화염 진단 장치에서는, 노(60)에 복수 개의 렌즈부(61)를 구비시키고 각 렌즈부(61)에 광파이버부(10)를 연결하여 복수 개의 위치에서 화염을 관찰할 수 있다.In the conventional photometering system, the observation window is provided at a fixed position of the side wall of the furnace 60, and the flame is observed only through the observation window. However, in the flame diagnosis apparatus of the present invention, a plurality of furnaces are provided in the furnace 60. The lens unit 61 may be provided, and the optical fiber unit 10 may be connected to each lens unit 61 to observe the flame at a plurality of positions.
또한, 노(60) 측벽에 구비된 렌즈부(61)를 통해서뿐만 아니라, 노(60) 내부에 광파이버를 화염으로부터 보호할 수 있는 보호장비와 렌즈를 마련하여, 노(60) 내부에서 화염을 관찰할 수도 있다. In addition, through the lens unit 61 provided on the side wall of the furnace 60, a protective device and a lens are provided in the furnace 60 to protect the optical fiber from the flame, thereby preventing the flame from inside the furnace 60. You can also observe.
기존의 화염 감시 시스템이 상당한 크기의 관측창이 필요한 반면, 본 발명의 화염 진단 장치는 광학파이버를 적용함으로써 다양한 위치에서 화염의 국부적인 부분에 대한 화염 농도 차이를 계측할 수 있으므로, 화염에 대한 다양한 접근이 가능하고 화염의 각 부분에 대한 정밀한 화염 농도 계측이 가능하여 화염상태에 대한 분석 성능이 향상될 수 있다. While the conventional flame monitoring system requires a considerable size of observation window, the flame diagnosis apparatus of the present invention can measure the difference in flame concentrations of the local portions of the flame at various positions by applying optical fibers, and thus various approaches to the flames. This enables accurate flame concentration measurement for each part of the flame, thereby improving the analysis performance of the flame state.
광파이버부(10)는 노(60)에 구비되고 광파이버를 거치할 수 있는 거치대(63)에 결합하는 결합부(12)를 포함하고, 결합부(12)는 자석을 구비할 수 있다. The optical fiber unit 10 may include a coupling unit 12 provided in the furnace 60 and coupled to a cradle 63 capable of mounting the optical fiber, and the coupling unit 12 may include a magnet.
광파이버부(10)의 결합부(12)를 거치대(63)에 결합하면, 광파이버부(10)는 렌즈부(61)를 통해 입사되는 화염자발광을 인식할 수 있다. When the coupling portion 12 of the optical fiber unit 10 is coupled to the holder 63, the optical fiber unit 10 may recognize flame emission of light incident through the lens unit 61.
거치대(63)와 결합부(12)는 나사 결합 방식으로 결합할 수 있으나, 신속한 화염 관찰 위치 변경을 위해서는 결합과 결합 해제가 용이하도록 결합부(12)에 자석이 구비되어 자석의 인력에 의해 결합부(12)와 금속 재질의 거치대(63)가 결합할 수 있다. The cradle 63 and the coupling portion 12 may be coupled by a screw coupling method, but in order to quickly change the position of flame observation, the coupling portion 12 is provided with a magnet to facilitate coupling and decoupling and is coupled by the attraction force of the magnet. The unit 12 and the metal holder 63 may be combined.
도 1에서 보는 바와 같이, 화염자발광에는 OH리다칼, CH라디칼 또는 C2라디칼이 포함될 수 있다. 화염자발광의 파장 대역 중 자외선영역과 가시광영역에서는 소정의 화학종에 대한 파장대에서 피크가 나타날 수 있다. OH리다칼, CH라디칼 또는 C2라디칼은 연소반응의 주요한 화학종으로서 자외선영역과 가시광영역에서 피크의 강도가 크다. 이러한 화염자발광의 각 화학종에 대한 피크의 크기는 각 화학종 라디칼의 농도로 나타낼 수 있으며 그에 따라 화염 상태를 진단할 수 있다. 본 발명은, 상기한 라디칼의 농도가 화염당량비의 변화에 따라 변화하는 것을 이용하여, 특정 화학종 라디칼의 자발광 강도와 화염당량비의 관계를 유도하는 화염당량비 분포의 계측을 목적으로 할 수 있다.As shown in FIG. 1, the flame luminescence may include OH lidalkal, CH radicals or C 2 radicals. Peaks may appear in a wavelength band for a specific chemical species in the ultraviolet region and the visible region of the flame emission spectrum. OH-ridical, CH radical or C 2 radicals are the main species of the combustion reaction and have a high intensity of peaks in the ultraviolet region and the visible region. The magnitude of the peak for each species of flame luminescence can be expressed by the concentration of each species radical and thus diagnose the flame state. The present invention can be aimed at measuring the flame equivalent ratio distribution which induces the relationship between the self-luminescence intensity and the flame equivalent ratio of a specific chemical species radical by using the change in the concentration of the radical according to the change in the flame equivalent ratio.
도 3은 본 발명의 다른 실시 예에 따른 화염 진단 장치의 구성도이다.3 is a block diagram of a flame diagnosis apparatus according to another embodiment of the present invention.
도 3에서 보는 바와 같이, 광파이버부(10)는 복수 개 구비되고, 촬상부(20)가 각각의 광파이버부(10)로부터 화염자발광의 신호를 선택적으로 이미지화할 수 있다. As shown in FIG. 3, the optical fiber unit 10 is provided in plural, and the imaging unit 20 may selectively image the signal of flame emission from each of the optical fiber units 10.
단일의 광파이버부(10)는 복수 개의 거치대(63) 중 선택적으로 하나의 거치대(63)와 결합할 수 있고, 이에 따라 복수 개의 위치에서 화염에 대한 관찰을 수행할 수 있다.The single optical fiber unit 10 may be selectively coupled with one cradle 63 among the plurality of cradles 63, thereby performing observation of the flame at a plurality of positions.
다만, 화염 관찰의 환경 특성 상 광파이버부(10)의 이동이 용이하지 않은 상황이 있을 수 있고, 이러한 경우 복수 개의 광파이버부(10)가 복수 개의 거치대(63)에 결합하여 복수 개의 위치에 동시에 화염에 대한 관찰을 수행할 수 있다.However, there may be a situation where the movement of the optical fiber unit 10 is not easy due to the environmental characteristics of the flame observation, in which case the plurality of optical fiber units 10 are coupled to the plurality of cradles 63 to simultaneously flame at multiple positions. Observations can be made.
이 때, 다각 방향에서 동시에 관찰된 화염에 대해 복합적으로 분석을 수행할 수 있다. 또는, 광신호제어부(11)에서 복수 개의 광파이버부(10) 중 선택되는 광파이버부(10)의 화염자발광 신호만 촬상부(20)로 전달하여, 전달된 화염자발광의 신호가 촬상부(20)에서 이미지화되도록 할 수 있다. At this time, it is possible to perform a complex analysis on the flames simultaneously observed in multiple directions. Alternatively, only the flame emitter signal of the optical fiber unit 10 selected from the plurality of optical fiber units 10 is transferred from the optical signal controller 11 to the image pickup unit 20, so that the transmitted signal of flame light emission is transferred to the image pickup unit ( 20) can be imaged.
다각 방향에서 동시에 관찰된 화염에 대해 동시에 화염자발광 신호를 수집하여 이미지화하기 위해 복수 개의 광파이버부(10) 각각에 결합하는 복수 개의 촬상부(20)가 마련될 수 있다. A plurality of imaging units 20 coupled to each of the plurality of optical fiber units 10 may be provided to collect and image a flame light emitting signal simultaneously with respect to flames simultaneously observed in multiple directions.
촬상부(20)는, 디지털카메라로 형성될 수 있다. The imaging unit 20 may be formed of a digital camera.
촬상부(20)로 일반적으로 사용하는 디지털카메라를 사용할 수 있어, 저렴한 비용으로 시스템을 구성할 수 있고, 단순한 구성으로 인해 유지 및 보수가 용이할 수 있다. 그리고, 촬상부(20)는 실시간 촬상을 통해 지속적으로 화염의 이미지를 프로세서부(40)로 전송할 수 있다.As the imaging unit 20, a digital camera generally used may be used, and a system may be configured at a low cost, and the maintenance and repair may be easy due to a simple configuration. In addition, the imaging unit 20 may continuously transmit the image of the flame to the processor unit 40 through real-time imaging.
그리고, 촬상부(20)는 이미지 촬상장치로써, 이차원(2D) 계측을 수행하여 계측 장치가 별도로 이동하지 않아도 화염의 국부적 농도 차이의 계측이 가능할 수 있다.In addition, the image pickup unit 20 may be an image pickup device, and may measure two-dimensional (2D) measurement to measure a local concentration difference of a flame even if the measurement device does not move separately.
프로세서부(40)가 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 표현하는 디스플레이장치(80)를 더 포함할 수 있다. The processor 40 may further include a display device 80 that receives and expresses a radical concentration distribution obtained by processing data on a flame image in a contour form.
광파이버부(10)에 인식된 화염자발광의 신호는 광학필터부(30)에 의해 필터링되고, 광학필터부(30)를 통해 필터링된 특정 라디칼에 대한 특정 파장의 광에 의해 형성된 화염이미지는 실시간으로 촬상부(20)에서 촬상되어 프로세서부(40)로 전송되고, 프로세서부(40)에서 화염이미지에 대한 데이터를 처리하여 디스플레이장치(80)에 칸투어(contour) 방식으로 표현함으로서, 화염의 상태 및 구조에 대해 실시간 감시가 가능할 수 있다. 화염의 실제 이미지와 특정 라디칼의 분포이미지의 비교 및 그에 대한 분석은 후단에 설명하기로 한다.The signal of flame light emission recognized by the optical fiber unit 10 is filtered by the optical filter unit 30, and the flame image formed by light of a specific wavelength with respect to specific radicals filtered by the optical filter unit 30 is displayed in real time. The image is captured by the imaging unit 20 and transmitted to the processor unit 40, and the processor unit 40 processes data about the flame image and expresses the data on the display device 80 in a contour manner. Real-time monitoring of status and structure may be possible. The comparison between the actual image of the flame and the distribution image of a specific radical and its analysis will be described later.
보다 넓은 영역에서 화염에 대한 감시 및 구조계측을 위해 화염과 광파이버부(10) 사이에 광각렌즈(wide-angle lens)가 더 설치될 수 있다.A wide-angle lens may be further installed between the flame and the optical fiber unit 10 for monitoring and structural measurement of the flame in a wider area.
광각렌즈(wide-angle lens)는 노(60)에 구비된 렌즈부(61)에 고정적으로 설치되거나 광파이버부(10)의 결합부(12)에 설치될 수도 있다.A wide-angle lens may be fixedly installed at the lens unit 61 provided in the furnace 60 or may be installed at the coupling part 12 of the optical fiber part 10.
광학필터부(30)는, 필터링되는 광의 파장 대역을 가변적으로 조절하는 기능을 구비할 수 있다. The optical filter unit 30 may have a function of variably adjusting a wavelength band of light to be filtered.
이에 따라, 라디칼의 종류를 달리 하여 감시 및 계측을 실시하는 경우, 광학필터부(30)를 교체하는 과정 없이, 필터링되는 광의 파장 대역을 제어신호로 변경하여, 변경된 파장 대역에 맞는 라디칼의 농도 분포에 대한 데이터를 수집할 수 있다.Accordingly, when monitoring and measuring by different kinds of radicals, without changing the optical filter unit 30, by changing the wavelength band of the filtered light to a control signal, the concentration distribution of radicals in accordance with the changed wavelength band Collect data for
촬상부(20)는 복수 개 설치되고, 파장 대역이 서로 다른 복수 개의 광학필터부(30)가 복수 개의 촬상부(20) 각각에 대해 하나씩 분배되어 설치될 수 있다. A plurality of imaging units 20 may be provided, and a plurality of optical filter units 30 having different wavelength bands may be distributed and installed one for each of the plurality of imaging units 20.
촬상부(20)가 복수 개 설치되고, 그 각각에 별개의 파장 대역을 가지는 광학필터부(30)를 설치하는 경우, 복수 개의 화학종 라디칼에 대한 정보를 단일 장치에서 획득할 수 있다. 이에 따라, 화염 상태에 대한 감시 및 화염 구조에 대한 계측의 정밀도를 향상시킬 수 있다. When a plurality of imaging units 20 are provided, and each of the optical filter units 30 having a separate wavelength band is provided, information on a plurality of chemical species radicals can be obtained in a single device. Thereby, the precision of monitoring about a flame state and measuring about a flame structure can be improved.
이에 따라, 복수 개의 광파이버부(10)와 복수 개의 촬상부(20)에 의해 복합적인 감시 및 계측이 수행될 수 있다. Accordingly, complex monitoring and measurement can be performed by the plurality of optical fiber units 10 and the plurality of imaging units 20.
이하, 화염 진단 방법에 대해 설명하기로 한다.Hereinafter, a flame diagnosis method will be described.
첫째 단계에서, 광학파이버부와 촬상부(20) 사이에 광학필터부(30)를 설치할 수 있다. In the first step, the optical filter unit 30 may be provided between the optical fiber unit and the imaging unit 20.
둘째 단계에서, 광학파이버부와 촬상부(20) 및 광학필터부(30)를 이용하여 화염이미지를 획득할 수 있다.In the second step, a flame image may be obtained using the optical fiber unit, the imaging unit 20, and the optical filter unit 30.
셋째 단계에서, 프로세서부(40)에서 화염이미지에 대한 데이터를 처리할 수 있다.In a third step, the processor 40 may process the data for the flame image.
상세한 데이터 처리 방법에 대해서는, 후단의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법에 기재되어 있다.The detailed data processing method is described in the data processing method for the flame image obtained by the flame diagnosis apparatus of the next stage.
프로세서부(40)가 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 디스플레이장치(80)에서 표현될 수 있다.The processor 40 may receive the radical concentration distribution obtained by processing the data on the flame image in the form of a contour and may be expressed in the display apparatus 80.
이에 따라, 실시간의 화염의 상태 및 구조에 대해 관찰이 가능하고, 화염의 구조가 정밀하게 표현될 수 있으며, 이러한 화염의 구조에 대한 이미지를 데이터화하기 용이할 수 있다.Accordingly, it is possible to observe the state and structure of the flame in real time, the structure of the flame can be accurately represented, and it is easy to data the image of the structure of the flame.
다섯째 단계에서, 프로세서부(40)의 이미지처리에 의해 화염당량비별 라디칼 강도를 그래프로 표현할 수 있다.In a fifth step, the radical intensity for each flame equivalent ratio may be represented by a graph by the image processing of the processor 40.
이하, 본 발명의 화염 진단 장치를 이용한 화염 제어 시스템에 대해 설명하기로 한다. Hereinafter, a flame control system using the flame diagnosis device of the present invention will be described.
도 4는 본 발명의 실시 예에 따른 화염 진단 장치를 이용한 화염 제어 시스템 구성도이다. 4 is a block diagram of a flame control system using a flame diagnosis apparatus according to an embodiment of the present invention.
도 4에서 보는 바와 같이, 본 발명의 화염 진단 장치를 이용한 화염 제어 시스템은, 화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부(10); 광파이버부(10)에 의한 화염자발광의 신호를 이미지화하는 촬상부(20); 광파이버부(10)와 촬상부(20) 사이에 설치되고, 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부(30); 광파이버부(10), 촬상부(20)와 광학필터부(30)를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부(40); 프로세서부(40)에서 처리된 정보에 의해 제어신호를 출력하는 제어부(70); 제어부(70)로부터 제어신호를 입력 받아 버너(62)에 공급되는 연료량을 조절하는 연료조절부(100); 제어부(70)로부터 제어신호를 입력 받아 버너(62)에 공급되는 공기량을 조절하는 공기조절부(110); 및 프로세서부(40)의 이상(abnormal)화염 감지 신호에 의해 경고를 표시하는 경고표시부(90);를 포함할 수 있다. As shown in FIG. 4, the flame control system using the flame diagnosis apparatus of the present invention includes an optical fiber unit 10 having an optical fiber that receives and recognizes flame emission; An imaging unit 20 for imaging a signal of flame emission by the optical fiber unit 10; An optical filter unit 30 disposed between the optical fiber unit 10 and the image pickup unit 20 and configured to filter flame emission and pass only light having a predetermined wavelength band; A processor unit 40 for performing information processing on the flame image obtained through the optical fiber unit 10, the image pickup unit 20, and the optical filter unit 30; A controller 70 which outputs a control signal based on the information processed by the processor 40; A fuel controller 100 which receives a control signal from the controller 70 and adjusts the amount of fuel supplied to the burner 62; An air control unit 110 which receives a control signal from the control unit 70 and adjusts the amount of air supplied to the burner 62; And a warning display unit 90 displaying a warning by an abnormal flame detection signal of the processor unit 40.
연료조절부(100) 또는 공기조절부(110)는, 엑추에이터를 포함할 수 있다. The fuel control unit 100 or the air control unit 110 may include an actuator.
제어부(70)는, 연료조절부(100) 및 공기조절부(110)로 유선 또는 무선으로 제어신호를 송신할 수 있다. The control unit 70 may transmit a control signal to the fuel control unit 100 and the air control unit 110 by wire or wirelessly.
연료조절부(100)와 공기조절부(110)가 엑추에이터로 형성되고, 제어부(70)에서 연료조절부(100) 및 공기조절부(110)를 무선으로 제어하면, 인터넷 시스템을 이용하여 원격으로 화염에 대한 감시 및 계측이 가능할 수 있다.When the fuel control unit 100 and the air control unit 110 is formed of an actuator, and the control unit 70 wirelessly controls the fuel control unit 100 and the air control unit 110, the remote control using the Internet system Monitoring and measurement of flames may be possible.
프로세서부(40)는, 상기의 디지털화된 데이터에 의해 특정 라디칼의 농도 분포에 의해 유도된 화염당량비 값을 사용자가 설정한 화염당량비 분포 범위(이하, 레퍼런스데이터(reference data)라 한다.)와 비교하여, 실시간의 화염당량비 값이 레퍼런스데이터를 벗어나는 경우, 해당 오차에 대해 제어부(70)로 에러신호를 전송할 수 있다. 제어부(70)는 레퍼런스데이터에 대해 오차가 발생하지 않도록 연료조절부(100) 및 공기조절부(110)에 제어신호를 송신할 수 있다. 그리고, 제어부(70)는 연료유량계(101) 또는 공기유량계(111)로부터 정보를 수신하여 제어신호에 따라 유량이 조절되고 있는지 피드백을 할 수 있다. 이에 따라, 연료조절부(100) 및 공기조절부(110)에 대한 제어는 실시간이며 지속적으로 수행될 수 있다. The processor unit 40 compares the flame equivalent ratio value induced by the concentration distribution of specific radicals by the digitized data with the flame equivalent ratio distribution range set by the user (hereinafter referred to as reference data). When the flame equivalent ratio in real time deviates from the reference data, an error signal may be transmitted to the controller 70 for the corresponding error. The control unit 70 may transmit a control signal to the fuel control unit 100 and the air control unit 110 so that an error does not occur with respect to the reference data. In addition, the controller 70 may receive information from the fuel flow meter 101 or the air flow meter 111 to provide feedback about whether the flow rate is adjusted according to the control signal. Accordingly, the control of the fuel control unit 100 and the air control unit 110 can be performed in real time and continuously.
프로세서부(40)는 가스분석기(50)와 연결되어, 가스분석에 대한 정보를 처리하여 제어부(70)로 데이터 송신할 수 있다.The processor unit 40 may be connected to the gas analyzer 50 to process information about gas analysis and transmit data to the controller 70.
경고표시부(90)는 회전 경광등 또는 LED경광등을 사용하여, 시각적으로 경고를 인식하도록 할 수 있다. 또한, 경고표시부(90)는 사이렌 또는 디지컬알람장치를 사용하여, 청각적으로 경고를 인식하도록 할 수 있다.The warning display unit 90 may use a rotating warning light or an LED warning light to visually recognize the warning. In addition, the warning display unit 90 may use a siren or a digital alarm device, so as to acoustically recognize the warning.
본 발명의 실시 예에서는, 경고표시부(90)로 시각적 인식 장치 또는 청각적 인식 장치를 설명하고 있으나, 반드시 이에 한정되는 것은 아니다. In the embodiment of the present invention, the visual display device or the audio recognition device is described as the warning display unit 90, but is not necessarily limited thereto.
프로세서부(40)는, 상기의 디지털화된 데이터에 의해 특정 라디칼의 농도 분포에 의해 유도된 화염당량비 값을 사용자가 설정한 화염당량비 분포 범위(이하, 레퍼런스데이터(reference data)라 한다.)와 비교하여, 실시간의 화염당량비 값이 레퍼런스데이터를 벗어나는 경우, 해당 오차에 대해 경고표시부(90)로 에러신호를 전송할 수 있다. 경고표시부(90)는 에러신호에 의해 경고표시를 수행할 수 있다.The processor unit 40 compares the flame equivalent ratio value induced by the concentration distribution of specific radicals by the digitized data with the flame equivalent ratio distribution range set by the user (hereinafter referred to as reference data). Thus, when the flame equivalent ratio value outside the reference data in real time, an error signal may be transmitted to the warning display unit 90 for the corresponding error. The warning display unit 90 may perform a warning display by an error signal.
이하, 본 발명의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법에 대해 설명하기로 한다. Hereinafter, a data processing method for a flame image obtained by the flame diagnosis apparatus of the present invention will be described.
첫째 단계에서, 광파이버부(10)와 촬상부(20) 사이에 광학필터부(30)를 설치할 수 있다.In the first step, the optical filter unit 30 may be installed between the optical fiber unit 10 and the imaging unit 20.
둘째 단계에서, 광파이버부(10), 촬상부(20)와 광학필터부(30)를 이용하여 화염이미지를 획득할 수 있다. In the second step, a flame image may be obtained using the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30.
첫째 단계와 둘째 단계 사이에, 화염이미지를 회색조로 변환하는 단계가 더 포함될 수 있다. Between the first and second steps, the step of converting the flame image to grayscale may be further included.
화염이미지를 회색조로 변환함으로서, 각 픽셀 간 명도비를 향상시켜, 각 픽셀에 대한 히스토그램(histogram)을 디지털화하는데 용이할 수 있다.By converting the flame image to grayscale, the brightness ratio between each pixel can be improved, making it easy to digitize the histogram for each pixel.
셋째 단계에서, 화염이미지의 각 픽셀에 대한 히스토그램(histogram)을 디지털화하여 화염이미지정보를 획득할 수 있다. In a third step, the flame image information may be obtained by digitizing a histogram for each pixel of the flame image.
넷째 단계에서, 화염이미지정보를 각 픽셀의 매트릭스로 처리할 수 있다.In a fourth step, the flame image information can be processed into a matrix of each pixel.
화염이미지정보를 각 픽셀의 매트릭스로 처리하여 수치화할 수 있고, 각 픽셀의 수치 값에 대한 평균을 산정하고 각 당량비별로 구분하여 그래프화할 수 있다. 이 때, 각 픽셀의 수치 값에 대한 평균 값이 해당 라디칼의 강도 값에 해당할 수 있다.The flame image information can be digitized by processing the matrix of each pixel, and the average of numerical values of each pixel can be calculated and graphed separately for each equivalence ratio. In this case, the average value of the numerical value of each pixel may correspond to the intensity value of the corresponding radical.
다섯째 단계에서, 프로세서부(40)가 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 디스플레이장치(80)에서 칸투어(contour) 형태로 표현할 수 있다.In a fifth step, the processor 40 may receive the distribution of the radical concentration obtained by processing the data on the flame image in the form of a contour, and may express it in the form of the contour in the display device 80.
상기의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법에 의해, 특정 라디칼 농도 분포의 평균 값에 의한 해당 라디칼의 강도를 측정할 수 있고, 이러한 특정 라디칼의 강도는 화염당량비별로 차등되게 나타날 수 있다. 특정 라디칼의 강도와 화염당량비는 서로 상관되는 수치를 가져 그래프로 표현되고, 이에 따라, 특정 라디칼의 강도를 측정하여 실시간의 화염당량비 값을 도출할 수 있다.By the data processing method for the flame image obtained by the flame diagnosis device, it is possible to measure the intensity of the corresponding radical by the average value of the specific radical concentration distribution, the intensity of this specific radical may appear differentially by flame equivalent ratio have. The intensity and the flame equivalent ratio of a specific radical are represented by a graph having a value correlated with each other. Accordingly, the intensity of the specific radical can be measured to derive the flame equivalent ratio value in real time.
이하, 본 발명의 화염 진단 장치에 의한 화염 제어방법에 대해 설명하기로 한다. Hereinafter, a flame control method by the flame diagnosis apparatus of the present invention will be described.
첫째 단계에서, 광파이버부(10)와 촬상부(20) 사이에 광학필터부(30)를 설치할 수 있다.In the first step, the optical filter unit 30 may be installed between the optical fiber unit 10 and the imaging unit 20.
둘째 단계에서, 광파이버부(10), 촬상부(20)와 광학필터부(30)를 이용하여 화염이미지를 획득할 수 있다. In the second step, a flame image may be obtained using the optical fiber unit 10, the imaging unit 20, and the optical filter unit 30.
셋째 단계에서, 프로세서부(40)가 화염이미지에 대한 데이터를 처리할 수 있다. In a third step, the processor 40 may process data for the flame image.
상세한 데이터 처리 방법에 대해서는, 상기의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법에 기재되어 있다.The detailed data processing method is described in the data processing method for the flame image obtained by the flame diagnosis apparatus.
넷째 단계에서, 셋째 단계의 프로세서부(40)의 데이터 처리에 따라, 제어부(70)에서 연료조절부(100) 또는 공기조절부(110)로 제어신호를 출력할 수 있다.In a fourth step, according to the data processing of the processor unit 40 of the third step, the control unit 70 may output a control signal to the fuel control unit 100 or the air control unit 110.
다섯째 단계에서, 제어신호에 의해, 연료조절부(100) 및 공기조절부(110)가 버너(62)로 공급되는 연료량과 공기량을 조절할 수 있다. In a fifth step, the fuel control unit 100 and the air control unit 110 may adjust the amount of fuel and the air amount supplied to the burner 62 by the control signal.
여섯째 단계에서, 프로세서부(40)의 이상(abnormal)화염 감지 신호에 의해 경고표시부(90)에서 경고를 표시할 수 있다. In a sixth step, the warning display unit 90 may display a warning by an abnormal flame detection signal of the processor unit 40.
도5는 본 발명의 실시 예에 따른 화염당량비별 화염의 실제 이미지이며, 도6은 본 발명의 실시 예에 따른 화염당량비별 CH라디칼의 분포에 대한 칸투어(contour) 그래프이고, 도7은 본 발명의 실시 예에 따른 화염당량비별 C2라디칼의 분포에 대한 칸투어(contour) 그래프이다.5 is an actual image of the flame by the flame equivalent ratio according to an embodiment of the present invention, Figure 6 is a cantour (contour) graph of the distribution of CH radicals by flame equivalent ratio according to an embodiment of the present invention, Figure 7 Cantour (contour) graph of the distribution of C 2 radicals by flame equivalent ratio according to an embodiment of the present invention.
도6의 경우, CH라디칼을 대상으로 중심파장 432㎚의 광학필터부(30)를 적용하였고, 도7의 경우, C2라디칼을 대상으로 중심파장 511㎚의 광학필터부(30)를 적용하였다.In the case of FIG. 6, an optical filter unit 30 having a center wavelength of 432 nm was applied to CH radicals, and in FIG. 7, an optical filter unit 30 having a center wavelength of 511 nm was applied to C 2 radicals. .
CH라디칼과 C2라디칼은 가시광선 영역의 파장 대역을 가져, 일반적으로 사용되는 모든 디지털카메라를 이용하여 계측이 가능하다. 또한, UV필터가 적용되지 않은 디지털카메라를 통해 OH라디칼(308㎚)에 대하여 유사한 결과의 획득이 가능할 수 있다.CH radicals and C 2 radicals have a wavelength band in the visible light range and can be measured using all commonly used digital cameras. In addition, similar results may be obtained for OH radicals (308 nm) through a digital camera to which no UV filter is applied.
도5, 도6 및 도7에서 보는 바와 같이, CH라디칼의 분포에 대한 칸투어(contour) 그래프 또는 C2라디칼의 분포에 대한 칸투어(contour) 그래프의 형태가 실제 화염이미지의 형태를 표현함을 확인할 수 있었다. 그리고, 실제 화염이미지에서는 경계가 불명확하여 계측이 용이하지 않은 화염 구조에 대해서도 정밀한 계측이 가능함을 확인하였다. As shown in Figs. 5, 6, and 7, a contour map of the distribution of CH radicals or a contour graph of the distribution of C 2 radicals represents the actual flame image. I could confirm it. In addition, it was confirmed that precise measurement is possible even for the flame structure, which is not easy to measure because the boundary is unclear in the actual flame image.
또한, 도 6 및 도 7에서 보는 바와 같이, 본 발명의 화염 진단 장치는, 화염상태(당량비) 변화에 따라 국부적 농도차가 변화하는 것을 감지할 수 있으며, 특히, 도 6에서 보는 바와 같이, 당량비가 증가함에 따라 화염의 후류에 형성되는 국부적 고농도 라디칼 영역의 변화를 쉽게 확인할 수 있었다.In addition, as shown in Figure 6 and 7, the flame diagnostic apparatus of the present invention, it is possible to detect the change in the local concentration difference according to the change in the flame state (equivalent ratio), in particular, as shown in Figure 6, It was easy to see the change in the local high concentration radical region formed in the wake of the flame as it increased.
도8은 본 발명의 실시 예에 따른 프로세서부(40)의 이미지처리에 의한 화염당량비별 CH라디칼 강도의 그래프이고, 도9는 본 발명의 실시 예에 따른 프로세서부(40)의 이미지처리에 의한 화염당량비별 C2라디칼 강도의 그래프이다.8 is a graph of the CH radical intensity according to the flame equivalent ratio by the image processing of the processor unit 40 according to an embodiment of the present invention, and FIG. 9 is a graph of the image processing of the processor unit 40 according to the embodiment of the present invention. It is a graph of C 2 radical intensity by flame equivalent ratio.
도8 및 도9의 그래프는, 변수 값으로 설정된 각 화염당량비에 의한 화염의 이미지 정보를, 상기의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법을 통해 수치화하고, 그 결과 도출된 라디칼의 강도와 화염당량비의 관계를 표현한 것이다. 8 and 9, the image information of the flame according to the flame equivalent ratio set to the variable value is quantified through the data processing method for the flame image obtained by the flame diagnosis apparatus, and the resulting radical The relationship between intensity and flame equivalent ratio is expressed.
도8 및 도9에서 보는 바와 같이, 각 라디칼 강도 값은 각 화염당량비별로 특정한 값을 갖게 되므로, 본 발명인 화염 진단 장치를 이용하여 측정한 라디칼 강도 값에 의해 화염당량비 값을 도출할 수 있음을 확인하였다.As shown in Figures 8 and 9, since each radical intensity value has a specific value for each flame equivalent ratio, it is confirmed that the flame equivalent ratio value can be derived from the radical intensity value measured using the flame diagnostic apparatus of the present invention. It was.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
<부호의 설명><Description of the code>
10 : 광파이버부10: optical fiber part
11 : 광신호제어부11: optical signal controller
12 : 결합부12: coupling part
20 : 촬상부20: imaging unit
30 : 광학필터부30: optical filter unit
40 : 프로세서부40: processor unit
50 : 가스분석기50: gas analyzer
60 : 노60: no
61 : 렌즈부61: lens unit
62 : 버너62: burner
63 : 거치대63: holder
70 : 제어부70: control unit
80 : 디스플레이장치80: display device
90 : 경고표시부90: warning display
100 : 연료조절부100: fuel control unit
101 : 연료유량계101: fuel flow meter
110 : 공기조절부110: air conditioner
111 : 공기유량계 111: air flow meter

Claims (12)

  1. 화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부;An optical fiber unit including an optical fiber that receives incident flame-emitting light;
    상기 광파이버부에 의한 상기 화염자발광의 신호를 이차원(2D) 이미지화하는 촬상부;An imaging unit for two-dimensional (2D) imaging the signal of the flame emission by the optical fiber unit;
    상기 광파이버부와 상기 촬상부 사이에 설치되고, 상기 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부; 및An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission; And
    상기 광파이버부, 상기 촬상부와 상기 광학필터부를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부;를 포함하고, And a processor unit configured to perform information processing on the flame image obtained through the optical fiber unit, the imaging unit, and the optical filter unit.
    상기 프로세서부는 상기 광학필터부에 의해 필터링된 광을 이용해서 화염에 포함된 라디칼의 농도분포를 분석하여 화염당량비를 도출하며,The processor unit derives a flame equivalent ratio by analyzing a concentration distribution of radicals included in the flame by using the light filtered by the optical filter unit,
    상기 광파이버부에 의한 상기 화염자발광의 인식으로 화염라디칼의 국부적 농도 차이에 대한 계측을 통해 화염당량비 분포 계측이 수행되는 것을 특징으로 하는 화염 진단 장치.Flame diagnosis apparatus characterized in that the flame equivalent ratio distribution measurement is performed by measuring the local concentration difference of the flame radicals by the recognition of the flame emission by the optical fiber unit.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 광파이버부는 노에 구비되고 상기 광파이버를 거치할 수 있는 거치대에 결합하는 결합부를 포함하고, 상기 결합부는 자석을 구비하는 것을 특징으로 하는 화염 진단 장치.The optical fiber unit is provided in the furnace and includes a coupling portion coupled to the cradle to mount the optical fiber, the coupling portion is characterized in that the flame diagnosis device.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 광파이버부는 복수 개 구비되고, 상기 촬상부가 각각의 광파이버부로부터 상기 화염자발광의 신호를 선택적으로 이미지화하는 것을 특징으로 하는 화염 진단 장치.The optical fiber unit is provided with a plurality, the image pickup unit is a flame diagnostic apparatus, characterized in that for selectively imaging the signal of the flame emission from each optical fiber unit.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 촬상부는, 디지털카메라로 형성되는 것을 특징으로 하는 화염 진단 장치.And the imaging unit is formed of a digital camera.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 프로세서부가 상기 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 표현하는 디스플레이장치를 더 포함하는 것을 특징으로 하는 화염 진단 장치.And a display device for receiving and expressing, in the form of a contour, a radical concentration distribution obtained by the processor unit in the data processing for the flame image.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 광학필터부는, 필터링되는 광의 파장 대역을 가변적으로 조절하는 것을 특징으로 하는 화염 진단 장치.The optical filter unit, the flame diagnostic apparatus, characterized in that for adjusting the wavelength band of the filtered light variably.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 촬상부는 복수 개 설치되고, 파장 대역이 서로 다른 복수 개의 상기 광학필터부가 복수 개의 상기 촬상부 각각에 대해 하나씩 분배되어 설치되는 것을 특징으로 하는 화염 진단 장치.And a plurality of the imaging units, and a plurality of the optical filter units having different wavelength bands are distributed one by one for each of the plurality of imaging units.
  8. 청구항 1의 화염 진단 장치를 이용한 화염 제어 시스템에 있어서,In the flame control system using the flame diagnosis device of claim 1,
    화염자발광을 입사 받아 인식하는 광파이버를 구비하는 광파이버부;An optical fiber unit including an optical fiber that receives incident flame-emitting light;
    상기 광파이버부에 의한 상기 화염자발광의 신호를 이미지화하는 촬상부;An imaging unit which images the signal of the flame emission by the optical fiber unit;
    상기 광파이버부와 상기 촬상부 사이에 설치되고, 상기 화염자발광을 필터링하여 소정의 파장 대역을 가지는 광만 통과시키는 광학필터부;An optical filter unit disposed between the optical fiber unit and the image pickup unit and configured to pass the light having a predetermined wavelength band by filtering the flame emission of the flame;
    상기 광파이버부, 상기 촬상부와 상기 광학필터부를 통해 획득한 화염이미지에 대한 정보 처리를 수행하는 프로세서부;A processor unit configured to perform information processing on the flame image acquired through the optical fiber unit, the imaging unit, and the optical filter unit;
    상기 프로세서부에서 처리된 정보에 의해 제어신호를 출력하는 제어부;A control unit which outputs a control signal according to the information processed by the processor unit;
    상기 제어부로부터 제어신호를 입력 받아 버너에 공급되는 연료량을 조절하는 연료조절부; A fuel controller configured to adjust a fuel amount supplied to a burner by receiving a control signal from the controller;
    상기 제어부로부터 제어신호를 입력 받아 상기 버너에 공급되는 공기량을 조절하는 공기조절부; 및An air adjusting unit which receives a control signal from the control unit and adjusts the amount of air supplied to the burner; And
    상기 프로세서부의 이상(abnormal)화염 감지 신호에 의해 경고를 표시하는 경고표시부;를 포함하는 것을 특징으로 하는 화염 진단 장치를 이용한 화염 제어 시스템.And a warning display unit displaying a warning by an abnormal flame detection signal of the processor unit.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 연료조절부 또는 상기 공기조절부는, 엑추에이터를 포함하는 것을 특징으로 하는 화염 진단 장치를 이용한 화염 제어 시스템.The fuel control unit or the air control unit, the flame control system using a flame diagnostic apparatus, characterized in that it comprises an actuator.
  10. 청구항 8에 있어서,The method according to claim 8,
    상기 제어부는, 상기 연료조절부 및 상기 공기조절부로 유선 또는 무선으로 제어신호를 송신하는 것을 특징으로 하는 화염 진단 장치를 이용한 화염 제어 시스템.The control unit, the flame control system using a flame diagnostic apparatus, characterized in that for transmitting the control signal to the fuel control unit and the air control unit by wire or wireless.
  11. 청구항 1의 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법에 있어서,In the data processing method for the flame image obtained by the flame diagnosis apparatus of claim 1,
    (i) 광파이버부와 촬상부 사이에 광학필터부를 설치하는 단계;(i) providing an optical filter unit between the optical fiber unit and the imaging unit;
    (ii) 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 이용하여 화염이미지를 획득하는 단계;(ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit;
    (iii) 상기 화염이미지의 각 픽셀에 대한 히스토그램(histogram)을 디지털화하여 화염이미지정보를 획득하는 단계; (iii) obtaining flame image information by digitizing a histogram for each pixel of the flame image;
    (iv) 상기 화염이미지정보를 각 픽셀의 매트릭스로 처리하는 단계; 및(iv) processing the flame image information into a matrix of each pixel; And
    (v) 프로세서부가 상기 화염이미지에 대한 데이터 처리로 획득한 라디칼 농도 분포를 칸투어(contour) 형태로 수신하여 디스플레이장치에서 칸투어(contour) 형태로 표현하는 단계;를 포함하는 것을 특징으로 하는 화염 진단 장치에서 획득한 화염이미지에 대한 데이터 처리 방법.and (v) receiving, by the processor unit, the radical concentration distribution obtained by processing the data on the flame image in the form of a contour and expressing it in the form of a contour on the display device. Data processing method for flame images acquired by the diagnostic device.
  12. 청구항 1의 화염 진단 장치에 의한 화염 제어방법에 있어서, In the flame control method by the flame diagnosis device of claim 1,
    (i) 광파이버부와 촬상부 사이에 광학필터부를 설치하는 단계;(i) providing an optical filter unit between the optical fiber unit and the imaging unit;
    (ii) 상기 광파이버부, 상기 촬상부와 상기 광학필터부를 이용하여 화염이미지를 획득하는 단계;(ii) acquiring a flame image by using the optical fiber unit, the imaging unit, and the optical filter unit;
    (iii) 프로세서부가 상기 화염이미지에 대한 데이터를 처리하는 단계;(iii) a processor processing data for the flame image;
    (iv) 상기 (iii)단계의 상기 프로세서부의 데이터 처리에 따라, 제어부에서 연료조절부 또는 공기조절부로 제어신호를 출력하는 단계; (iv) outputting a control signal from a controller to a fuel controller or an air controller according to data processing of the processor unit of step (iii);
    (v) 상기 제어신호에 의해, 상기 연료조절부 및 상기 공기조절부가 버너로 공급되는 연료량과 공기량을 조절하는 단계; 및(v) controlling the amount of fuel and the amount of air supplied to the burner by the fuel control unit and the air control unit by the control signal; And
    (vi) 상기 프로세서부의 이상(abnormal)화염 감지 신호에 의해 경고표시부에서 경고를 표시하는 단계;를 포함하는 것을 특징으로 하는 화염 진단 장치에 의한 화염 제어방법. (vi) displaying a warning in the warning display unit by an abnormal flame detection signal of the processor unit; and controlling the flame by the flame diagnosis apparatus.
PCT/KR2017/013049 2016-11-28 2017-11-16 Flame detection apparatus and flame control method thereby WO2018097543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160159517A KR101782052B1 (en) 2016-11-28 2016-11-28 An apparatus for monitoring the flame and a method for controlling the flame
KR10-2016-0159517 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097543A1 true WO2018097543A1 (en) 2018-05-31

Family

ID=60036184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013049 WO2018097543A1 (en) 2016-11-28 2017-11-16 Flame detection apparatus and flame control method thereby

Country Status (2)

Country Link
KR (1) KR101782052B1 (en)
WO (1) WO2018097543A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119096B1 (en) * 2018-03-19 2020-06-05 한국생산기술연구원 Low NOx combustion device through air supply control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111398A (en) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk Measuring apparatus for self-luminescence from flame
JP2010286487A (en) * 2009-06-15 2010-12-24 General Electric Co <Ge> Optical sensor for controlling combustion
KR20130072405A (en) * 2011-12-22 2013-07-02 한국생산기술연구원 An air-fuel ratio controller including photodiode sensor and control method
JP2014115167A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Defect detector for stud weld zone
KR20150049269A (en) * 2013-10-29 2015-05-08 한국생산기술연구원 Air-fuel ratio control apparatus and method using photo diode sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111398A (en) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk Measuring apparatus for self-luminescence from flame
JP2010286487A (en) * 2009-06-15 2010-12-24 General Electric Co <Ge> Optical sensor for controlling combustion
KR20130072405A (en) * 2011-12-22 2013-07-02 한국생산기술연구원 An air-fuel ratio controller including photodiode sensor and control method
JP2014115167A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Defect detector for stud weld zone
KR20150049269A (en) * 2013-10-29 2015-05-08 한국생산기술연구원 Air-fuel ratio control apparatus and method using photo diode sensor

Also Published As

Publication number Publication date
KR101782052B1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2017155265A1 (en) Multispectral imaging device
WO2018190478A1 (en) Intelligent flame detection device and method using infrared thermography
WO2014163375A1 (en) Method for inspecting for foreign substance on substrate
WO2012067422A2 (en) Device and method for measuring temperature using infrared array sensors
WO2020189904A1 (en) Steelmaking-continuous casting process equipment control and state analysis method using laser vibration measurement, and system using same
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2011059127A1 (en) Infrared sensor and sensing method using the same
JP2002527769A (en) Method and apparatus for monitoring an optical system having a front lens disposed directly in a combustion chamber
WO2017039171A1 (en) Laser processing device and laser processing method
GB2205396A (en) Tension tester
US8094301B2 (en) Video and thermal imaging system for monitoring interiors of high temperature reaction vessels
US20090289178A1 (en) Device and method for processing and/or analyzing image information representing radiation
US4756684A (en) Combustion monitor method for multi-burner boiler
WO2018097543A1 (en) Flame detection apparatus and flame control method thereby
WO2020246745A1 (en) Plasma oes diagnosis window system, method for correcting plasma oes value, and window for plasma oes diagnosis
WO2011021831A2 (en) Apparatus and method for detecting a corona
WO2019088370A1 (en) Device for inspecting large area high speed object
KR101743670B1 (en) A system of monitoring and measuring the flame with optical filters and imaging devices and a method for monitoring and measuring the flame
JP2003344166A (en) In-furnace monitoring system for measuring temperature
WO2024043403A1 (en) Semiconductor wafer defect inspection device and defect inspection method
WO2023033563A1 (en) Water quality inspection device
WO2018062963A2 (en) Method for evaluating fluid flow characteristics of lens-free cmos optical array sensor package module having flow channel
WO2020159165A1 (en) Infrared stereo camera
WO2021187953A1 (en) Hazardous material measurement apparatus and hazardous material analysis system using same
JPS60187608A (en) Apparatus for monitoring condition in front of blast furnace tuyere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874445

Country of ref document: EP

Kind code of ref document: A1