WO2018097416A1 - Device and method for detecting beam misalignment in wireless communication system - Google Patents

Device and method for detecting beam misalignment in wireless communication system Download PDF

Info

Publication number
WO2018097416A1
WO2018097416A1 PCT/KR2017/002758 KR2017002758W WO2018097416A1 WO 2018097416 A1 WO2018097416 A1 WO 2018097416A1 KR 2017002758 W KR2017002758 W KR 2017002758W WO 2018097416 A1 WO2018097416 A1 WO 2018097416A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mismatch
communication system
period
measurement
Prior art date
Application number
PCT/KR2017/002758
Other languages
French (fr)
Korean (ko)
Inventor
정도영
손이빈
문정민
백인길
정준희
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170018714A external-priority patent/KR102588492B1/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN202310334549.3A priority Critical patent/CN116346186A/en
Priority to US16/464,509 priority patent/US11171705B2/en
Priority to CN201780073642.6A priority patent/CN110235387B/en
Priority to EP17874835.6A priority patent/EP3537625B1/en
Publication of WO2018097416A1 publication Critical patent/WO2018097416A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure generally relates to a wireless communication system, and more particularly, to an apparatus and method for detecting beam misalignment in a wireless communication system.
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G Network communication system or a Long Term Evolution (LTE) system (Post LTE) system.
  • LTE Long Term Evolution
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • 60 GHz 60 Gigabit
  • beamforming, massive array multiple input / output (Full-Dimensional MIMO, FD-MIMO) in 5G communication systems Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication system has evolved small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to device communication (D2D), wireless backhaul, moving network, cooperative communication, coordinated multi-points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to device communication
  • wireless backhaul moving network
  • cooperative communication coordinated multi-points (CoMP), and interference cancellation
  • FQAM Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation
  • SWSC sliding window superposition coding
  • ACM Advanced Coding Modulation
  • FBMC Filter Bank Multi Carrier
  • NOMA Non Orthogonal Multiple Access
  • SCMA Spar Code Multiple Access
  • the present disclosure provides an apparatus and method for effectively performing beamforming in a wireless communication system.
  • the present disclosure also provides an apparatus and method for using the best beam in a wireless communication system.
  • the present disclosure also provides an apparatus and method for detecting beam misalignment in a wireless communication system.
  • the present disclosure also provides an apparatus and method for resolving a beam mismatch situation in a wireless communication system.
  • the present disclosure also provides an apparatus and method for triggering intensive reference signal transmission for beam search in a wireless communication system.
  • the present disclosure also provides an apparatus and method for determining a serving beam based on a measurement pattern of transmission beams in a wireless communication system.
  • the present disclosure also provides an apparatus and method for determining a serving beam based on measured values of a sensor in a wireless communication system.
  • a method of operating a terminal in a wireless communication system may include: receiving a plurality of reference signals during a first period; receiving a plurality of reference signals during a second period; Determining whether there is a beam mismatch based on a first set of measurement values for the plurality of reference signals received during the period and a second set of measurement values for the plurality of reference signals received during the second period.
  • a method of operating a terminal in a wireless communication system may include: activating a receiving circuit to receive a signal during an on duration of a discontinuous operation mode, and a sleep; ) When the interval arrives, activating the reception circuit, activating the reception circuit to detect a beam mismatch after the first portion of the sleep interval elapses, and when the beam mismatch occurs, the sleep interval Activating the receiving circuit to recover the beam during the second portion of the circuit.
  • a terminal device may include a receiver configured to receive a plurality of reference signals during a first period and receive a plurality of reference signals during a second period, and received during the first period. And a controller for determining whether there is a beam mismatch based on a first set of measurement values for the plurality of reference signals and a second set of measurement values for the plurality of reference signals received during the second period.
  • a terminal device in a wireless communication system includes a receiver including a receiver circuit selectively activated during a discontinuous operation mode, and a controller controlling the receiver circuit.
  • the control unit during the on period of the discontinuous operation mode, to receive a signal, to activate the receiving circuit, when the sleep period arrives, deactivate the receiving circuit, after the first portion of the sleep period, Activate the receiving circuit to detect beam mismatch, and if the beam mismatch occurs, activate the receiving circuit to recover the beam during the second portion of the sleep period.
  • Apparatus and method according to various embodiments of the present disclosure enable more accurate determination of beam mismatch by detecting beam mismatch using measurement results for multiple beams.
  • FIG. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure.
  • 4A to 4C illustrate a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 5 illustrates a situation in which beam misalignment occurs in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 6 illustrates a method of operating a terminal in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 7A illustrates an operation method for beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 7B illustrates an example of beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
  • 8A illustrates an operation method for beam mismatch detection based on an order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
  • 8B illustrates an example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
  • 8C illustrates another example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
  • 8D illustrates a method of operation for grouping measured values in a wireless communication system according to various embodiments of the present disclosure.
  • 8E illustrates an example of beam mismatch detection based on an order of a group of measurement values in a wireless communication system according to various embodiments of the present disclosure.
  • FIG 9 illustrates a state transition diagram related to beam mismatch in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 10A illustrates an operation method for power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
  • 10B and 10C illustrate examples of power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
  • 11A and 11B illustrate transmission schemes of reference signals supported in a wireless communication system according to various embodiments of the present disclosure.
  • 11C illustrates signal exchange for a beam recovery procedure using intensive reference signal transmission in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 12A illustrates an operation method for recovering a beam using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 12B illustrates an operation method for recovering a beam using a previous measurement or using a new measurement in a wireless communication system according to various embodiments of the present disclosure.
  • 12C illustrates an example of beam recovery using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 13A illustrates an operation method for recovering a beam using sensor values in a wireless communication system according to various embodiments of the present disclosure.
  • 13B illustrates an example of a sensor value change according to movement in a wireless communication system according to various embodiments of the present disclosure.
  • 13C and 13D illustrate examples of installation of a sensor in a wireless communication system according to various embodiments of the present disclosure.
  • the present disclosure relates to an apparatus and method for detecting beam misalignment in a wireless communication system.
  • the present disclosure also relates to an apparatus and method for recovering a beam upon beam mismatch in a wireless communication system.
  • LTE long term evolution
  • LTE-A LTE-advanced
  • FIG. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 1 illustrates a base station 110, a terminal 120, and a terminal 130 as part of nodes using a wireless channel in a wireless communication system.
  • Base station 110 is a network infrastructure that provides wireless access to terminals 120 and 130.
  • the base station 110 has coverage defined as a certain geographic area based on the distance over which the signal can be transmitted.
  • the base station 110 includes an 'access point (AP)', 'eNodeB (eNB)', '5G generation node', 'wireless point', ' Transmission / reception point (TRP) ”and the like.
  • AP 'access point
  • eNB 'eNodeB
  • TRP Transmission / reception point
  • Each of the terminal 120 and the terminal 130 is a device used by a user and communicates with the base station 110 through a wireless channel. In some cases, at least one of the terminal 120 and the terminal 130 is a device for performing machine type communication (MTC) and may not be carried by a user.
  • MTC machine type communication
  • Each of the terminal 120 and the terminal 130 is a terminal other than a user equipment (UE), a mobile station, a subscriber station, a remote terminal, and a remote terminal.
  • UE user equipment
  • Wireless terminal ', or' user device 'or the like are examples of the terminal 120 and the terminal 130.
  • the base station 110, the terminal 120, and the terminal 130 may transmit and receive a radio signal in a millimeter wave (mmWave) band (eg, 28 GHz, 30 GHz, 60 GHz).
  • mmWave millimeter wave
  • the base station 110, the terminal 120, and the terminal 130 may perform beamforming.
  • beamforming includes transmit beamforming and receive beamforming. That is, the base station 110, the terminal 120, and the terminal 130 may give directivity to a transmission signal or a reception signal. To this end, the base station 110 and the terminals 120 and 130 may select the serving beams 112, 113, 121, and 131 through a beam search procedure.
  • FIG. 2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure.
  • the term 'herein' refers to a unit for processing at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
  • the base station 110 includes a wireless communication unit 210, a backhaul communication unit 220, a storage unit 230, and a control unit 240.
  • the wireless communication unit 210 performs functions for transmitting and receiving a signal through a wireless channel. For example, the wireless communication unit 210 performs a baseband signal and bit string conversion function according to the physical layer standard of the system. For example, during data transmission, the wireless communication unit 210 generates complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the wireless communication unit 210 restores the received bit string by demodulating and decoding the baseband signal. In addition, the wireless communication unit 210 up-converts the baseband signal into a radio frequency (RF) band signal, transmits the signal through an antenna, and downconverts the RF band signal received through the antenna into a baseband signal.
  • RF radio frequency
  • the wireless communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like.
  • the wireless communication unit 210 may include a plurality of transmission and reception paths.
  • the wireless communication unit 210 may include at least one antenna array composed of a plurality of antenna elements.
  • the wireless communication unit 210 may be composed of a digital unit and an analog unit, and the analog unit may include a plurality of sub-units according to operating power, operating frequency, and the like. It can be configured as.
  • the wireless communication unit 210 transmits and receives a signal as described above. Accordingly, the wireless communication unit 210 may be referred to as a 'transmitter', 'receiver' or 'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel are used to mean that the processing as described above is performed by the wireless communication unit 210.
  • the backhaul communication unit 220 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 220 converts a bit string transmitted from another base station 110 to another node, for example, another access node, another base station, an upper node, a core network, etc. into a physical signal, and converts the physical signal received from the other node into a bit. Convert to heat
  • the storage unit 230 stores data such as a basic program, an application program, and setting information for the operation of the base station 110.
  • the storage unit 230 may be configured as a volatile memory, a nonvolatile memory, or a combination of the volatile memory and the nonvolatile memory.
  • the storage unit 230 provides the stored data at the request of the controller 240.
  • the controller 240 controls overall operations of the base station. For example, the controller 240 transmits and receives a signal through the wireless communication unit 210 or through the backhaul communication unit 220. In addition, the controller 240 records and reads data in the storage 230. To this end, the controller 240 may include at least one processor. For example, the controller 240 may control the base station 110 to perform operations according to various embodiments described below.
  • FIG. 3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure.
  • the term 'herein' refers to a unit for processing at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
  • the terminal 120 includes a communication unit 310, a storage unit 320, and a control unit 330.
  • the communication unit 310 performs functions for transmitting and receiving a signal through a wireless channel.
  • the communicator 310 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system.
  • the communication unit 310 generates complex symbols by encoding and modulating a transmission bit string.
  • the communication unit 310 restores the received bit string by demodulating and decoding the baseband signal.
  • the communication unit 310 up-converts the baseband signal to an RF band signal and then transmits the signal through an antenna and downconverts the RF band signal received through the antenna to the baseband signal.
  • the communication unit 310 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like.
  • the communication unit 310 may include a plurality of transmission and reception paths. Further, the communicator 310 may include at least one antenna array composed of a plurality of antenna elements.
  • the wireless communication unit 210 may be composed of a digital circuit and an analog circuit (for example, radio frequency integrated circuit (RFIC)). Here, the digital circuit and the analog circuit can be implemented in one package.
  • the communication unit 310 may include a plurality of RF chains. In addition, the communicator 310 may perform beamforming.
  • the communication unit 310 transmits and receives a signal as described above. Accordingly, the communication unit 310 may be referred to as a 'transmitter', 'receiver' or 'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel are used by the communication unit 310 to mean that the above-described processing is performed.
  • the storage 320 stores data such as a basic program, an application program, and setting information for the operation of the terminal 120.
  • the storage unit 320 may be configured of a volatile memory, a nonvolatile memory, or a combination of the volatile memory and the nonvolatile memory.
  • the storage 320 provides the stored data according to a request of the controller 330.
  • the controller 330 controls the overall operations of the terminal 120. For example, the controller 330 transmits and receives a signal through the communication unit 310. In addition, the controller 330 records and reads data in the storage 320. To this end, the controller 330 may include at least one processor or a micro processor, or may be part of a processor. In addition, a part of the communication unit 310 and the control unit 330 may be referred to as a communication processor (CP). In particular, the controller 330 controls the terminal 120 to detect a beam mismatch and to perform a beam recovery procedure according to various embodiments described below. For example, the controller 330 may control the terminal to perform operations according to various embodiments described below.
  • CP communication processor
  • FIGS. 4A to 4C illustrate components for performing beamforming as part of the communication unit 210 of FIG. 2 or the communication unit 210 of FIG. 3.
  • the communication unit 210 or 310 includes an encoding and modulation unit 402, a digital beamforming unit 404, a plurality of transmission paths 406-1 to 406 -N, and an analog beamforming unit 408.
  • the encoder and modulator 402 performs channel encoding. For channel encoding, at least one of a low density parity check (LDPC) code, a convolution code, and a polar code may be used.
  • LDPC low density parity check
  • the encoder and modulator 402 generates modulation symbols by performing constellation mapping.
  • the digital beamforming unit 404 performs beamforming on a digital signal (eg, modulation symbols). To this end, the digital beamforming unit 404 multiplies the modulation symbols by beamforming weights.
  • the beamforming weights are used to change the magnitude and phase of the signal, and may be referred to as a 'precoding matrix', 'precoder', or the like.
  • the digital beamforming unit 404 outputs the digital beamformed modulation symbols in the plurality of transmission paths 406-1 through 406-N.
  • modulation symbols may be multiplexed, or the same modulation symbols may be provided in multiple transmission paths 406-1 to 406-N.
  • each of the plurality of transmission paths 406-1 to 406 -N may include an inverse fast fourier transform (IFFT) calculator, a cyclic prefix (CP) inserter, a DAC, and an upconverter.
  • the CP insertion unit is for an orthogonal frequency division multiplexing (OFDM) scheme and may be excluded when another physical layer scheme (for example, a filter bank multi-carrier (FBMC)) is applied. That is, the multiple transmission paths 406-1 through 406-N provide an independent signal processing process for multiple streams generated through digital beamforming. However, depending on the implementation manner, some of the components of the plurality of transmission paths 406-1 to 406-N may be used in common.
  • the analog beamforming unit 408 performs beamforming on the analog signal. To this end, the digital beamforming unit 404 multiplies the analog signals by beamforming weights. Here, beamforming weights are used to change the magnitude and phase of the signal. Specifically, according to the connection structure between the plurality of transmission paths 406-1 to 406-N and the antennas, the analog beamforming unit 408 may be configured as shown in FIG. 4B or 4C.
  • signals input to the analog beamforming unit 408 are transmitted through antennas through phase / magnitude conversion and amplification.
  • the signal of each path is transmitted through different antenna sets, that is, antenna arrays.
  • the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 412-1-1 through 412-1-M, and the amplifiers 414-. Amplified by 1-1 through 414-1-M, then transmitted via antennas.
  • signals input to the analog beamforming unit 408 are transmitted through antennas through phase / magnitude conversion and amplification.
  • the signal of each path is transmitted through the same antenna set, that is, the antenna array.
  • the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 412-1-1 through 412-1-M, and the amplifiers 414-.
  • the amplified signals are then summed by the summators 416-1-1 through 416-1-M based on the antenna element, so that they are transmitted via one antenna array and then transmitted via the antennas.
  • FIG. 4B illustrates an example in which an independent antenna array for each transmission path is used
  • FIG. 4C illustrates an example in which transmission paths share one antenna array.
  • some transmission paths may use an independent antenna array, and the other transmission paths may share one antenna array.
  • by applying a switchable structure between transmission paths and antenna arrays a structure that can be adaptively changed according to a situation may be used.
  • FIG. 5 illustrates a situation in which a beam mismatch occurs in a wireless communication system according to various embodiments of the present disclosure.
  • the base station 110 and the terminal 120 use an optimal beam as a serving beam through a beam search procedure.
  • rotation or relocation of the terminal 120 may occur.
  • the absolute direction of the beam also changes as the terminal 120 rotates or moves.
  • the beam of the terminal 120 may not be directed toward the base station 110. That is, the beam of the terminal 120 is no longer the optimal beam, and this state is referred to as 'beam mismatch' in the present disclosure.
  • the beam mismatch refers to a state in which the beam determined through the previous beam training procedure is no longer the optimal beam due to the rotation and movement of the terminal 120 or the change in the channel environment. If a beam mismatch occurs, a large loss of link budget can occur until a new optimal beam is found through the next beam training procedure. As a result, a state in which data transmission and reception is impossible may occur. For example, if the beam width is 15 °, a link budget loss of about 2 to 3 dB is expected when beam mismatch occurs within 7 °, and a link budget loss of about 10 to 20 dB is expected when beam mismatch occurs above 7 °. do.
  • the serving beam is an optimal beam, but communication quality may be degraded due to interference, fading, and the like. In other words, if only the communication quality or the channel quality is dependent, there is a possibility of a determination error for the beam mismatch. Accordingly, the present disclosure describes various embodiments for more accurately detecting beam mismatches.
  • 6 illustrates a method of operating a terminal in a wireless communication system according to various embodiments of the present disclosure. 6 illustrates an operation method for detecting a beam mismatch of the terminal 120.
  • a terminal receives reference signals beamformed into a plurality of transmit beams during a first period.
  • the first period is one of periods during which the base station repeatedly transmits reference signals for beam searching, and includes at least one time interval (eg, a subframe). That is, the base station sweeps reference signals periodically or on an event basis.
  • the terminal performs reception beamforming using at least one reception beam.
  • the terminal may obtain measurement values for each reception beam.
  • the measurement values may be referred to as 'RSRP (reference signal received power)' as a reception strength with respect to the reference signal.
  • the terminal may determine the serving reception beam.
  • the terminal receives the reference signal beamformed into a plurality of transmission beams during the second period.
  • the second period is one of periods in which the base station repeatedly transmits reference signals for beam searching, and arrives after the first period and at least one time period pass. That is, during the communication, when the base station transmits the reference signals arrives, the terminal receives the reference signals transmitted from the base station. In this case, the terminal performs reception beamforming using at least one reception beam. Accordingly, the terminal may acquire two different sets of measured values obtained in the period in which the serving beam is determined and in the period thereafter.
  • the terminal determines whether there is a beam mismatch based on the measured values obtained during the first period and the measured values obtained during the second period. That is, the terminal may determine whether a beam mismatch has occurred by comparing measurement value sets for at least one reception beam and two or more transmission beams obtained at different points in time.
  • the measured measured values may or may not include measured values for the serving beam.
  • the terminal determines the occurrence of the beam mismatch.
  • the rules for determining the existence of similarity may be variously defined. For example, the rule of similarity determination may be defined based on at least one of the measurement values themselves, the order of the measurement values, and statistics on the measurement values.
  • a beam mismatch may be detected based on measurement value sets for the same beam pairs obtained at two different viewpoints. Since the base station repeatedly sweeps the reference signals for various purposes, the terminal may perform the measurement without additional overhead. In this case, measurement values for comparison may be obtained only by measuring at least one reception beam.
  • the serving reception beam is determined by the measurement values obtained from the reference signals received in step 601.
  • step 601 may be performed.
  • the measured values compared in step 605 may be measured values measured at the time of determining the serving beam, or may be measured values measured from received reference signals (eg, reference signals received in step 601).
  • the measured measurement values include measurement values for at least one receive beam and a plurality of transmit beams. That is, beam mismatch detection may be performed using only one reception beam.
  • measurement values for one base station transmit beam and multiple terminal receive beams may be used for mismatch detection. That is, mismatch detection according to another embodiment may be performed using only one transmission beam.
  • 7A illustrates an operation method for beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure. 7A illustrates a method of operating the terminal 120.
  • the terminal receives reference signals using an arbitrary reception beam.
  • the terminal performs reception beamforming on reference signals using any reception beam.
  • the terminal receives the reference signals transmitted from the base station in any receive beam. In this case, the terminal receives all or part of the reference signals transmitted during the full sweep period.
  • the terminal acquires pattern information of the measurement values. That is, the terminal measures the reception strength of the reference signals received in step 701 and stores the pattern of the measured values.
  • the pattern of measurement values may be defined as the relative magnitude relationship of the measurement values, that is, the ratio of the remaining measurement values to one measurement value.
  • the pattern of measurement values may be defined as an order of transmission beams arranged in ascending or descending order of the measurement values. In this case, the measured values are determined for each reception beam.
  • the pattern of measurement values is referred to as a 'measurement pattern'.
  • step 705 the terminal determines whether a previously obtained measurement pattern of the reception beam exists. In other words, the terminal determines whether another measurement pattern acquired before the measurement pattern obtained in step 703 is stored for the reception beam used in step 701. If the previously obtained measurement pattern does not exist, the terminal returns to step 701.
  • step 707 the terminal compares two measurement patterns of the same reception beam. That is, the terminal compares the measurement pattern obtained in step 703 and the previously measured measurement pattern.
  • the terminal determines whether the similarity between the measurement patterns is less than the threshold. Similarity may be variously defined according to a specific embodiment. For example, the similarity may be determined based on at least one of a difference between ratio values for the same transmission beam and an order of ratio values constituting each measurement pattern.
  • step 711 the terminal determines occurrence of beam mismatch. In other words, the terminal determines that the current serving beam is not the optimal beam. On the other hand, if the similarity is greater than or equal to the threshold, the terminal determines that no beam mismatch occurs, and returns to step 701.
  • FIG. 7B illustrates an example of beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 receives reference signals using a plurality of receive beams.
  • the terminal 120 acquires a plurality of measurement patterns including the measurement pattern 712 and the measurement pattern 714.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 acquires a measurement pattern 722 for at least one reception beam.
  • the terminal 120 compares the measurement pattern 722 and the measurement pattern 714.
  • the measurement pattern 714 and the measurement pattern 722 show different patterns.
  • the terminal may determine that the similarity is smaller than the threshold, and may declare a beam mismatch.
  • channel degradation that is, beam mismatch
  • the measurement pattern is used without rescanning the optimal beam, it is possible to determine whether there is a beam mismatch in a very fast time.
  • the terminal declares a beam mismatch due to a change of a measurement pattern.
  • the terminal may declare the beam mismatch only when the change of the measurement pattern is repeated a certain number of times. In this case, even when the number of transmission beams used by the base station is small, the accuracy of beam mismatch detection can be improved.
  • the terminal may determine the change of the measurement pattern in stages according to two or more criteria.
  • embodiments of determining the change of the measurement pattern will be described with reference to FIGS. 8A to 8E.
  • 8A illustrates an operation method for beam mismatch detection based on an order of measurement values in a wireless communication system according to various embodiments of the present disclosure. 8A illustrates a method of operating the terminal 120.
  • the terminal receives beamformed reference signals.
  • the terminal performs reception beamforming using at least one reception beam.
  • the terminal holds a set of measurement values for at least one reception beam prior to step 801.
  • the terminal obtains another set of measurement values for the at least one reception beam.
  • the present disclosure will be described based on measurement value sets for one receive beam.
  • the terminal calculates a measured value change amount. That is, the terminal calculates a difference value between two sets of measured values.
  • the change amount may be defined in various ways.
  • the amount of change may be the sum or average of the difference between the measured values for each transmission beam. In this case, at least one of the maximum value and the minimum value among the measured values may be excluded when calculating the sum or the average.
  • the amount of change may be determined as in Equation 1.
  • Equation 1 ⁇ X t is the difference between the t th measurement value and the t-1 th measurement value, X t is the t th measurement value, Is the mean of the difference between the measured values, and N is the number of measured values used to determine the mean.
  • step 805 the terminal determines whether the amount of change is greater than a threshold. If the amount of change is greater than the threshold, it means that the measurement pattern is likely to change.
  • step 807 the terminal initializes a counter for the change of the measurement pattern.
  • the counter for changing the measurement pattern is a variable for counting how many measurement pattern changes have occurred. Thereafter, the terminal returns to step 801.
  • a counter for measuring pattern change is referred to as a 'measurement pattern change counter'.
  • the terminal compares the order of the measured values. Specifically, the terminal arranges the transmission beams in ascending or descending order according to the magnitude of the measurement values included in the two measurement value sets, and confirms that the order of the aligned transmission beams is identical. That is, the terminal checks whether the transmission beams having the largest measurement value are the same and the transmission beams having the second largest measurement value are the same in the two measurement value sets.
  • the terminal determines whether the order of the measured values has changed. If the order of the measurement values has not changed, that is, if the order of the measurement values is the same, the terminal initializes the measurement pattern change counter in step 807 and returns to step 801.
  • step 813 the terminal increments the measurement pattern change counter. That is, the terminal determines that a change in the measurement pattern has occurred, and records the number of changes.
  • the terminal determines that the measurement pattern change counter is greater than or equal to the threshold. That is, to declare a beam mismatch when a certain number of measurement pattern changes occur, the terminal compares the measurement pattern change counter with a threshold. However, when the threshold is set to 1, the beam mismatch may be declared only by one measurement pattern change. If the measurement pattern change counter is smaller than the threshold, the terminal initializes the measurement pattern change counter in step 807 and returns to step 801.
  • the terminal determines the beam mismatch. That is, the terminal determines that a beam mismatch has occurred.
  • FIG. 8B illustrates a situation where a beam mismatch occurs
  • FIG. 8C illustrates a situation where a beam mismatch occurs.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 receives reference signals using a plurality of receive beams.
  • the terminal 120 acquires a measurement value set 812.
  • the base station 110 transmits repeatedly beamformed reference signals.
  • the terminal 120 obtains the measured value set 822.
  • the measured value set 812 and the measured value set 822 differ in the amount of change.
  • the order of the measured values in the measured value set 812 is '2-3-1-5-6-4', and the order of the measured values in the measured value set 822 is '5-6-4-2-3-1' As such, the orders are different. Therefore, since the amount of change is larger than the threshold and the order is different, an inconsistency is declared.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 receives reference signals using a plurality of receive beams.
  • the terminal 120 acquires a set of measurement values 814.
  • the base station 110 transmits repeatedly beamformed reference signals.
  • the terminal 120 obtains the measured value set 824.
  • the measured value set 814 and the measured value set 824 differ in the amount of change.
  • the order of the measured values in the measured value set 814 is '2-1-3-5-6-4' and the order of the measured values in the measured value set 824 is '2-1-3-5-6-4' As such, the orders are the same. Thus, although the amount of change is greater than the threshold, i.e., the offsets are different, due to the same order, no beam mismatch is declared.
  • a beam mismatch which is not a cause of interference or paging, may be detected. Furthermore, implementation and determination accuracy may be secured through two-step determination in consideration of the change amount and order of the measurement values. Moreover, due to the introduction of the pattern change counter, accuracy can be ensured even when the transmission beam of the base station is small.
  • 8D illustrates a method of operation for grouping measured values in a wireless communication system according to various embodiments of the present disclosure. 8D illustrates an operation method of the terminal 120.
  • the terminal receives beamformed reference signals.
  • the terminal performs reception beamforming using at least one reception beam.
  • the terminal obtains another set of measurement values for at least one receive beam.
  • the present disclosure will be described based on measurement value sets for one receive beam.
  • the terminal arranges the transmission beams based on the measured value. That is, the terminal identifies a transmission beam corresponding to the largest measured value, a transmission beam corresponding to the second largest measured value, and the like. Accordingly, the transmission beams are arranged in the order of magnitude of the measured values.
  • the terminal checks whether the difference between the measured values is less than the threshold. That is, the terminal determines whether the difference between the measurement values is smaller than the threshold value for each of the beam beam pairs having the adjacent order among the aligned transmission beams.
  • the threshold may be adjusted based on a measurement error or randomness with respect to the reference signal.
  • step 857 the UE sets the same rank by grouping the corresponding transmission beam pairs. At this time, three or more transmission beams may be set to the same rank according to a difference from the measured value of the next transmission beam.
  • the terminal sets a lower order of priority. That is, the terminal sets two transmission beams in the corresponding transmission beam pair to different ranks.
  • FIG. 8E illustrates an example of beam mismatch detection based on an order of a group of measurement values in a wireless communication system according to various embodiments of the present disclosure.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 receives reference signals using a plurality of receive beams.
  • the terminal 120 acquires the measurement value set 816.
  • the base station 110 transmits repeatedly beamformed reference signals.
  • the terminal 120 obtains the measured value set 826.
  • the measured value set 816 and the measured value set 826 show a difference in the amount of change.
  • the order of the measured values in the measured value set 816 is '2-1-3-5-6-4', and the order of the measured values in the measured value set 826 is '2-3-1-5-6-4' As such, the orders are different. However, since the difference between the measured values of the transmission beam # 1 and the transmission beam # 3 is smaller than the threshold value, the transmission beam # 1 and the transmission beam # 3 are grouped to have the same rank. In this case, the order difference between '1-3' and '3-1' does not affect the determination of the measurement pattern change. Thus, no beam mismatch is declared. This can prevent erroneous determination of beam mismatch due to the reversed order due to measurement error or randomness.
  • 9 illustrates a state transition diagram related to beam mismatch in a wireless communication system according to various embodiments of the present disclosure.
  • 9 illustrates a state transition diagram of a beam mismatch determination procedure incorporating a two-step measurement pattern change in consideration of the amount of change and the order of change.
  • the state is in beam aligned state 910. If the amount of change in the measurement values exceeds the threshold, the state transitions to a measurement value changed state 920. In the measurement value change state 920, if the sequence change is determined, the state transitions to the measurement pattern changed state 930. At this time, even if the measurement pattern change occurs in consecutive periods below the threshold number, the measurement pattern change state 930 is maintained. Within successive periods below the threshold number, if no order change is determined, the state transitions to measurement value change 920. Also, within successive periods below the threshold number, if the amount of change is below the threshold or if out of order is determined, the state transitions to beam alignment state 910.
  • the state transitions to a beam misaligned state 940.
  • the beam mismatch state 940 if the beam mismatch is recovered, the state returns to the beam alignment state 910.
  • the beam mismatch can be detected.
  • the determination result of the beam mismatch can be used in various ways.
  • the determination of the beam mismatch may be utilized for power control of the receiver of the terminal 120.
  • the determination of the beam mismatch may be used for power control when operating in a discontinuous reception (DRX) mode.
  • the DRX mode may turn off and sleep hardware of a physical layer while maintaining a connected state, that is, an active state, in a higher layer (eg, a radio resoure control (RRC) layer). It is an operation mode which temporarily deactivates all or part of the receiving circuit by controlling in a manner such as (sleep).
  • the on duration and the sleep duration are repeated according to a DRX cycle or a DRX period.
  • the terminal 120 receives a signal transmitted from the base station 110 by activating the receiving circuit in the on period, and deactivates the receiving circuit in the sleep period.
  • activation may be referred to as wake up and inactivation may be referred to as sleep.
  • the terminal 120 transmits feedback on a preferred beam to the base station 110 at least once.
  • the base station 110 may transmit downlink scheduling information.
  • the terminal may control the subsequent operation state according to the determination of whether there is a beam mismatch. Accordingly, the present disclosure will be described with reference to FIGS. 10A, 10B, and 10C according to an embodiment of control of a reception circuit according to a result of beam mismatch detection while operating in the DRX mode.
  • 10A illustrates an operation method for power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
  • 10A illustrates an operation method of the terminal 120.
  • step 1001 the terminal enters a discontinuous operation mode (eg, a DRX mode).
  • a discontinuous operation mode eg, a DRX mode
  • the DRX mode is entered under the control of the base station. That is, the terminal receives a message instructing to enter the DRX mode from the base station. Accordingly, the terminal operates the on period and the sleep period according to the DRX cycle. During the sleep period, the terminal may deactivate all or part of the receiving circuit.
  • the UE determines whether there is a beam mismatch during the sleep period.
  • the terminal may perform beam measurement. That is, the terminal temporarily activates the receiving circuit during the sleep period and receives beamformed reference signals transmitted from the base station. That is, the terminal determines whether the beam mismatch occurs by comparing the newly measured values with the measured values obtained before entering the previous on interval or the DRX mode. For example, the terminal may determine whether there is a beam mismatch according to one of the various embodiments described above.
  • the terminal may determine whether there is a beam mismatch using a sensor provided in the terminal. In order to determine whether there is a beam mismatch using the sensor, the terminal checks whether the terminal has rotated or moved after the previous beam search. In this case, the timing of determining whether there is a beam mismatch is a predetermined time from the on interval, and the predetermined time is greater than or equal to a time required for performing beam recovery, that is, a time required for beam realignment.
  • the terminal checks whether a beam mismatch occurs. If it is determined that a beam mismatch occurs, in step 1007, the terminal performs a beam recovery procedure.
  • the beam recovery procedure may be performed in various ways according to a specific embodiment. For example, as a beam recovery procedure, the terminal may perform a beam search procedure. Alternatively, the terminal may perform a beam recovery procedure according to various embodiments described below.
  • step 1009 the terminal maintains a sleep state until the on-interval arrives.
  • the arrival of the on period means a time point considering the time required for normalization of the receiving circuit. That is, since the beams are aligned without mismatching of the beams, no additional beam recovery procedure is required. Therefore, the terminal can reduce power consumption by keeping the receiving circuit in an inactive state for the remaining sleep period.
  • 10B and 10C illustrate examples of power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 10B illustrates a case of determining whether there is a beam mismatch based on beam measurement.
  • the terminal 120 enters a sleep period and deactivates the receiving circuit.
  • the terminal temporarily activates the receiving circuit and detects the beam mismatch before time 1002 by ⁇ t from the next on period.
  • the operating state of the receiving circuit for a period of time 1002 may vary.
  • the terminal 120 when beam mismatch occurs, the terminal 120 performs a beam recovery procedure.
  • the beam recovery procedure may include measurements for the beams. However, in some embodiments, the beam may be recovered based on past beam measurement results or sensor values, without measuring the beams.
  • the terminal 120 detecting the beam mismatch may maintain the sleep state after recovering the beam.
  • the terminal 120 when a beam recovery procedure based on beam measurement is performed, if beam recovery is completed before the on-interval arrives, the terminal 120 may maintain a sleep state for the remaining sleep period.
  • a sleep period capable of inactivating the receiving circuit during the DRX mode may be used more effectively. That is, according to the quick beam mismatch determination, the terminal may secure a longer sleep period. In this case, when it is determined that the beam mismatch occurs, the terminal performs a beam recovery procedure for the remaining period of the sleep period.
  • the present disclosure describes various embodiments for beam recovery.
  • the base station 110 sweeps reference signals on a periodic or event basis for beam searching of the terminal 120.
  • the base station 110 may support at least two reference signal transmission schemes.
  • reference signal transmission schemes are the same as those of FIGS. 11A and 11B.
  • 11A and 11B illustrate transmission schemes of reference signals supported in a wireless communication system according to various embodiments of the present disclosure.
  • FIG. 11A illustrates a reference signal transmission scheme for beam searching of a plurality of terminals including the terminal 120.
  • the base station 110 sweeps all transmission beams of the base station 110, and the sweep of all transmission beams is repeatedly performed.
  • the reference signal may be referred to as 'beam reference signal (BRS)'.
  • the terminal 120 may receive the reference signals using different reception beams for each sweep, thereby performing measurement on all combinations of the transmission beam and the reception beam.
  • Reference signal transmission in the same manner as in FIG. 11A may be performed periodically.
  • the base station 110 transmits reference signals for the terminal 120 during a specific time period (eg, a subframe).
  • the reference signal may be referred to as a beam refinement reference signal (BRRS).
  • the downlink period in the time interval is allocated for the reference signal (eg, BRRS) in addition to the control channel (eg, a physical downlink control channel (PDCCH)).
  • the reference signal may be repeated many times (for example, four times) within one symbol.
  • the base station 110 may sweep all the transmission beams, or only some of the transmission beams. Reference signal transmission in the same manner as in FIG. 11B may be performed by a request of the terminal 120.
  • FIGS. 11A and 11B two or more reference signal transmission schemes may be supported.
  • 11A may be performed for a plurality of terminals, but the time required is long.
  • the method as shown in FIG. 11B may be performed within a short time, but data may not be transmitted during the corresponding time period. Therefore, using the detection of the beam mismatch, the two reference signal transmission techniques described above may be operated as shown in FIG. 11C.
  • 11C illustrates signal exchange for a beam recovery procedure using intensive reference signal transmission in a wireless communication system according to various embodiments of the present disclosure.
  • 11C illustrates a signal exchange between the base station 110 and the terminal 120.
  • the base station 110 transmits reference signals.
  • Reference signals are swept N times and transmitted on at least one subframe.
  • the terminal 120 performs reception beamforming using at least one reception beam for each sweep. Accordingly, the terminal 120 may select the optimal beam as the serving beam.
  • the serving beam includes a serving transmission beam of the base station 110 and a serving receiving beam of the terminal 120.
  • the terminal 120 transmits beam feedback indicating the serving beam to the base station 110.
  • the beam feedback may indicate the serving transmission beam of the base station 110.
  • the beam feedback includes identification information of the serving transmission beam, and the identification information may be referred to as a 'beam selection index (BSI)'.
  • BBI 'beam selection index
  • the terminal 120 detects a beam mismatch.
  • the terminal 120 performs measurement on at least one reception beam, compares the measured values with previously obtained measured values, and detects a beam mismatch based on a comparison result.
  • the terminal 120 may detect a beam mismatch according to one of the various embodiments described above. Accordingly, the beam recovery procedure proceeds as follows.
  • the terminal 120 transmits a BRRS request to the base station 110.
  • the terminal 120 transmits a message requesting transmission of reference signals specific to the terminal 120 to the base station 110. That is, the terminal 120 triggers a beam recovery procedure.
  • the base station 110 transmits BRRS allocation information.
  • the base station 110 repeatedly transmits reference signals, that is, BRRSs. Accordingly, the terminal 120 may determine the optimal beam again.
  • the terminal 120 transmits a BRRS feedback for notifying the serving beam to the base station 110.
  • the beam mismatch situation may be eliminated.
  • beam recovery may be performed by the terminal-specific intensive reference signal transmission. That is, detection of beam mismatch can be used as a condition of intensive reference signal transmission such as BRRS.
  • FIG. 11B requires a shorter time than the scheme of FIG. 11A, the time for transmitting repetitive reference signals for measurement is still required. Thus, the procedure for recovering the beam in a shorter time is described below with reference to FIGS. 12A-12C.
  • 12A illustrates an operation method for recovering a beam using previous measurement results in a wireless communication system according to various embodiments of the present disclosure. 12A illustrates a method of operating the terminal 120.
  • the UE detects a beam mismatch.
  • the terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result. For example, the terminal may detect a beam mismatch according to one of the various embodiments described above.
  • the terminal identifies a previous measurement pattern similar to the current measurement pattern. That is, the terminal checks the past measurement pattern that is similar to the measurement pattern obtained when determining the beam mismatch in step 1201, that is, the beam mismatch will not be declared when compared with the current measurement pattern. That is, the terminal stores information about past measurement patterns and can search for it.
  • the terminal uses the serving beam at the time of acquiring the confirmed previous measurement pattern. If the measurement patterns are similar, it can be expected that the optimal beam will be the same. Accordingly, the terminal sets the serving beam at the time when the measurement pattern similar to the current measurement pattern is present as the current serving beam.
  • the serving beam when acquiring the previous measurement pattern may be a beam selected based on a measurement result corresponding to the previous measurement pattern, or may be a beam selected through beam recovery after the beam mismatch is determined by the previous measurement pattern.
  • the terminal may determine whether the use of the previous serving beam is still valid. For example, the terminal may determine the validity based on the time elapsed from the acquisition time of the previous measurement pattern.
  • the beam may be recovered without additional beam searching.
  • additional beam search may be considered together.
  • 12B illustrates an operation method for recovering a beam using a previous measurement or using a new measurement in a wireless communication system according to various embodiments of the present disclosure. 12B illustrates an operation method of the terminal 120.
  • the UE detects a beam mismatch.
  • the terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result. For example, the terminal may detect a beam mismatch according to one of the various embodiments described above.
  • step 1253 the terminal checks whether a previous measurement pattern similar to the current measurement pattern exists. That is, the terminal checks the past measurement pattern similar to the measurement pattern obtained when determining the beam mismatch, that is, the beam mismatch will not be declared when compared with the current measurement pattern. That is, the terminal stores information about past measurement patterns and corresponding beams, and may search for them using the measurement pattern.
  • the terminal sets the beam corresponding to the previous measurement pattern as the serving beam. If the measurement patterns are similar, it can be expected that the optimal beam will be the same. Accordingly, without additional beam searching, the terminal reuses the serving beam at the time when the measurement pattern similar to the current measurement pattern was shown. In other words, the terminal sets the serving beam determined when acquiring the previous measurement pattern as the current serving beam.
  • the terminal performs a beam recovery procedure based on the beam search.
  • the terminal may request transmission of reference signals to the base station.
  • the UE may perform a beam recovery procedure according to the embodiment described with reference to FIG. 11C.
  • step 1259 the terminal stores measurement pattern information and beam information. That is, the terminal stores the measurement result obtained in step 1257. The stored measurement results can then be used for detection of beam mismatch. The stored measurement results can also be used for beam recovery in the event of beam mismatch later.
  • the terminal establishes a valid time window. Selecting the serving beam by the similarity of the measurement pattern is possible on the premise of the similarity of the position of the terminal. Therefore, if the relative position with respect to the base station is changed as the terminal moves, even a beam corresponding to the same or similar measurement pattern may not be an optimal beam. Therefore, the validity of past measurement records is limited and the validity period is managed through the valid time window.
  • the valid time window may be defined as a fixed value or dynamically adjusted based on an environment (eg, a moving speed) of the terminal.
  • the terminal sets the beam determined through the beam recovery procedure as the serving beam. That is, the terminal sets the optimal beam selected in step 1257 as the serving beam.
  • the terminal may transmit feedback information indicating the serving transmission beam of the base station.
  • the terminal communicates using the serving beam. Specifically, the terminal receives the data signal transmitted from the base station using the serving reception beam.
  • the reception of the data signal includes decoding and decoding.
  • step 1267 the terminal determines whether the beam mismatch is recovered.
  • the terminal determines whether the serving beam set in step 1255 or step 1261 is an optimal beam, that is, provides sufficient channel quality to perform communication.
  • Recovery of beam mismatch can be determined in various ways. For example, the terminal may determine whether the beam mismatch is recovered based on whether the decoding of the received data signal is successful. If the beam mismatch is recovered, the terminal returns to step 1251.
  • step 1269 the terminal deletes the corresponding measurement pattern information and beam information. That is, even though the serving beam set in step 1255 or step 1261 is not set, the beam mismatch is not recovered, which means that the measurement result is unreliable. Therefore, since the measurement result cannot be used for later beam mismatch determination or recovery, the terminal discards the measurement result.
  • FIG. 12C illustrates an example of beam recovery using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
  • the base station 110 repeatedly transmits beamformed reference signals.
  • the terminal 120 receives reference signals using a plurality of receive beams.
  • the terminal 120 obtains a plurality of measurement results including the measurement result 1212 corresponding to the reception beam 1262.
  • the beam mismatch is determined, and through the beam recovery procedure, the terminal 120 selects the beam # k as the serving beam.
  • the base station 110 transmits repeatedly beamformed reference signals.
  • the terminal 120 acquires the measurement pattern 1222 for at least one reception beam.
  • the terminal 120 determines occurrence of a beam mismatch and confirms a previous measurement pattern similar to the measurement pattern 1222.
  • the measurement pattern 1212 acquired in the period 1210 is similar to the measurement pattern 1222. Accordingly, the terminal 120 sets the beam #k, which has been selected through the recovery procedure by the beam mismatch declaration in the period 1210, as the serving beam without the beam search.
  • beam recovery may be performed without a beam searching procedure.
  • present disclosure will be described below with reference to FIGS. 13A to 13D to describe another embodiment of recovering a beam without beam searching.
  • 13A illustrates an operation method for recovering a beam using sensor values in a wireless communication system according to various embodiments of the present disclosure. 13A illustrates an operation method of the terminal 120.
  • the UE detects beam mismatch detection.
  • the terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result.
  • the terminal may detect a beam mismatch according to one of the various embodiments described above.
  • the terminal determines a movement amount using a sensor value.
  • the sensor value is a value representing a physical change obtained by at least one sensor capable of measuring rotation and displacement of the terminal.
  • at least one of a gyro sensor, an acceleration sensor, a compass sensor, a gravity sensor, and a G-sensor may be used to determine the degree of movement.
  • the terminal determines a new serving beam based on the degree of movement.
  • the terminal determines the rotation / movement of the antenna based on the degree of movement, that is, how much the terminal rotates and how much the terminal moves, and selects a new serving beam capable of compensating the amount of rotation / movement of the antenna.
  • the coordinates 1302 (X1, Y1, Z1) in the main gain direction of the current serving beam reflect the degree of movement (dX, dY, dZ) measured by the sensor.
  • the terminal may select a beam having a direction most similar to the new main gain direction as the serving beam.
  • beam mismatch detection in step 1301 is performed using measured values for reference signals according to the various embodiments described above.
  • detection of the beam mismatch may also be performed based on the sensor value.
  • the terminal may declare a beam mismatch.
  • the beam mismatch may be detected based on the sensor value as well as the measured value for the reference signals. In this case, even when the activity level of the sensor is not accurately measured, if the change of the measurement pattern is used together, the beam mismatch can be detected more accurately.
  • the installation position of the sensor may affect accuracy.
  • the degree of movement obtained through the sensor value may be different from that of the antenna.
  • the structure as shown in Figure 13c or 13d may be applied.
  • 13C and 13D illustrate examples of installation of a sensor in a wireless communication system according to various embodiments of the present disclosure.
  • the terminal includes an AP 1310, a baseband (BB) circuit 1320, an RFIC 1330, and an antenna 1340, and a sensor 1350 is installed in the RFIC 1330.
  • BB baseband
  • the path loss is large, so that the RFIC 1330 may be disposed to approach the antenna 1340. Therefore, when the sensor 1350 is installed in the RFIC 1330, the sensor 1350 is physically installed close to the antenna 1340.
  • the degree of movement determined based on the measured values measured by the sensor 1350 may be treated as the degree of movement of the antenna 1340.
  • the sensor 1350 may be an additional component for measuring the movement of the antenna 1340, which is separate from the sensor used for other purposes.
  • the terminal includes an AP 1310, a BB circuit 1320, an RFIC 1330, and an antenna 1340, and includes a sensor 1350 and a sensor hub 1360.
  • the structure of FIG. 13D does not specify the position of the sensor 1350.
  • the AP 1310 or another processor performs calibration on the degree of movement by using information on the installation position of the sensor 1350 and the installation position of the antenna 1340, and sets a compensation value. Therefore, the terminal may compensate for the sensor value measured by the sensor 1350 or the new direction coordinate determined from the sensor value based on the compensation value, and then use the value for the antenna.
  • a computer-readable storage medium for storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in an electronic device.
  • One or more programs include instructions that cause an electronic device to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
  • Such programs may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory (EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs) or other forms It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations. In addition, each configuration memory may be included in plural.
  • non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM electrically erasable programmable read only memory
  • CD-ROM compact disc-ROM
  • DVDs digital versatile discs
  • It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations.
  • each configuration memory may be included in plural.
  • the program may be configured through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port.
  • a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.

Abstract

Disclosed is a fifth generation (5G) or pre-5G communication system for supporting a data transmission rate higher than that of a fourth generation (4G) communication system such as long term evolution (LTE). The purpose of the disclosure is to detect beam misalignment in a wireless communication system, and a terminal operation method comprises the steps of: receiving multiple reference signals for a first period; receiving multiple reference signals for a second period; and determining whether a beam is misaligned, on the basis of a first measurement value set for the multiple reference signals received for the first period and a second measurement value set for the multiple reference signals received for the second period. The study has been performed under the support of the "Government-wide Giga KOREA Business" of the Ministry of Science, ICT and Future Planning.

Description

무선 통신 시스템에서 빔 불일치를 탐지하기 위한 장치 및 방법Apparatus and method for detecting beam mismatch in wireless communication system
본 개시(disclosure)는 일반적으로 무선 통신 시스템에 관한 것으로, 보다 구체적으로 무선 통신 시스템에서 빔 불일치(beam misalignment)를 탐지하기 위한 장치 및 방법에 관한 것이다.The present disclosure generally relates to a wireless communication system, and more particularly, to an apparatus and method for detecting beam misalignment in a wireless communication system.
본 연구는 미래창조과학부 '범부처 Giga KOREA 사업'의 지원을 받아 수행하였다.This study was supported by the Ministry of Science, ICT and Future Planning 'Giga KOREA Project'.
4G(4th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE(Long Term Evolution) 시스템 이후(Post LTE) 시스템이라 불리어지고 있다.4G (4 th generation) to meet the traffic demand in the radio data communication system increases since the commercialization trend, efforts to develop improved 5G (5 th generation) communication system, or pre-5G communication system have been made. For this reason, a 5G communication system or a pre-5G communication system is called a Beyond 4G Network communication system or a Long Term Evolution (LTE) system (Post LTE) system.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.In order to achieve high data rates, 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band). In order to mitigate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, beamforming, massive array multiple input / output (Full-Dimensional MIMO, FD-MIMO) in 5G communication systems Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network, cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(Device to Device communication, D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다. In addition, in order to improve the network of the system, 5G communication system has evolved small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to device communication (D2D), wireless backhaul, moving network, cooperative communication, coordinated multi-points (CoMP), and interference cancellation The development of such technology is being done.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation, ACM) 방식인 FQAM(Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation) 및 SWSC(Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(Non Orthogonal Multiple Access), 및 SCMA(Sparse Code Multiple Access) 등이 개발되고 있다.In addition, in 5G systems, Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation (FQAM) and sliding window superposition coding (SWSC), Advanced Coding Modulation (ACM), and Filter Bank Multi Carrier (FBMC), an advanced access technology ), Non Orthogonal Multiple Access (NOMA), Spar Code Multiple Access (SCMA), and the like are being developed.
상술한 바와 같은 논의를 바탕으로, 본 개시(disclosure)는, 무선 통신 시스템에서 효과적으로 빔포밍을 수행하기 위한 장치 및 방법을 제공한다.Based on the discussion as described above, the present disclosure provides an apparatus and method for effectively performing beamforming in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 최적의(best) 빔을 사용하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for using the best beam in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 빔 불일치(beam misalignment)을 탐지하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for detecting beam misalignment in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 빔 불일치 상황을 해소하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for resolving a beam mismatch situation in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 빔 탐색(beam search)을 위한 집중적인 기준 신호 송신을 트리거링(trigerring)하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for triggering intensive reference signal transmission for beam search in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 송신 빔들의 측정 패턴에 기초하여 서빙 빔(serving beam)을 결정하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for determining a serving beam based on a measurement pattern of transmission beams in a wireless communication system.
또한, 본 개시는, 무선 통신 시스템에서 센서의 측정 값에 기초하여 서빙 빔을 결정하기 위한 장치 및 방법을 제공한다.The present disclosure also provides an apparatus and method for determining a serving beam based on measured values of a sensor in a wireless communication system.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 단말의 동작 방법은, 제1 기간 동안 다수의 기준 신호들을 수신하는 과정과, 제2 기간 동안 다수의 기준 신호들을 수신하는 과정과, 상기 제1 기간 동안 수신된 다수의 기준 신호들에 대한 제1 측정 값 집합 및 제2 기간 동안 수신된 다수의 기준 신호들에 대한 제2 측정 값 집합에 기초하여 빔 불일치 여부를 판단하는 과정을 포함한다.According to various embodiments of the present disclosure, a method of operating a terminal in a wireless communication system may include: receiving a plurality of reference signals during a first period; receiving a plurality of reference signals during a second period; Determining whether there is a beam mismatch based on a first set of measurement values for the plurality of reference signals received during the period and a second set of measurement values for the plurality of reference signals received during the second period.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 단말의 동작 방법은, 불연속 동작 모드의 온(on) 구간(duration) 동안, 신호를 수신하기 위해, 수신 회로를 활성화하는 과정과, 슬립(sleep) 구간이 도래하면, 상기 수신 회로를 불활성화하는 과정과, 상기 슬립 구간의 제1 부분 경과 후, 빔 불일치를 탐지하기 위해 수신 회로를 활성화하는 과정과, 상기 빔 불일치가 발생하면, 상기 슬립 구간의 제2 부분 동안 빔을 회복하기 위해 상기 수신 회로를 활성화하는 과정을 포함한다.According to various embodiments of the present disclosure, a method of operating a terminal in a wireless communication system may include: activating a receiving circuit to receive a signal during an on duration of a discontinuous operation mode, and a sleep; ) When the interval arrives, activating the reception circuit, activating the reception circuit to detect a beam mismatch after the first portion of the sleep interval elapses, and when the beam mismatch occurs, the sleep interval Activating the receiving circuit to recover the beam during the second portion of the circuit.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 단말 장치는, 제1 기간 동안 다수의 기준 신호들을 수신하고, 제2 기간 동안 다수의 기준 신호들을 수신하는 수신부와, 상기 제1 기간 동안 수신된 다수의 기준 신호들에 대한 제1 측정 값 집합 및 제2 기간 동안 수신된 다수의 기준 신호들에 대한 제2 측정 값 집합에 기초하여 빔 불일치 여부를 판단하는 제어부를 포함한다.According to various embodiments of the present disclosure, in a wireless communication system, a terminal device may include a receiver configured to receive a plurality of reference signals during a first period and receive a plurality of reference signals during a second period, and received during the first period. And a controller for determining whether there is a beam mismatch based on a first set of measurement values for the plurality of reference signals and a second set of measurement values for the plurality of reference signals received during the second period.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 단말 장치는, 불연속 동작 모드 동안 선택적으로 활성화되는 수신 회로를 포함하는 수신부와, 상기 수신 회로를 제어하는 제어부를 포함한다. 여기서, 상기 제어부는, 불연속 동작 모드의 온 구간 동안, 신호를 수신하기 위해, 수신 회로를 활성화하고, 슬립 구간이 도래하면, 상기 수신 회로를 불활성화하고, 상기 슬립 구간의 제1 부분 경과 후, 빔 불일치를 탐지하기 위해 수신 회로를 활성화하고, 상기 빔 불일치가 발생하면, 상기 슬립 구간의 제2 부분 동안 빔을 회복하기 위해 상기 수신 회로를 활성화한다.According to various embodiments of the present disclosure, a terminal device in a wireless communication system includes a receiver including a receiver circuit selectively activated during a discontinuous operation mode, and a controller controlling the receiver circuit. Here, the control unit, during the on period of the discontinuous operation mode, to receive a signal, to activate the receiving circuit, when the sleep period arrives, deactivate the receiving circuit, after the first portion of the sleep period, Activate the receiving circuit to detect beam mismatch, and if the beam mismatch occurs, activate the receiving circuit to recover the beam during the second portion of the sleep period.
본 개시의 다양한 실시 예들에 따른 장치 및 방법은, 다수의 빔들에 대한 측정 결과를 이용하여 빔 불일치를 탐지함으로써, 보다 정확한 빔 불일치의 판단을 가능하게 한다.Apparatus and method according to various embodiments of the present disclosure enable more accurate determination of beam mismatch by detecting beam mismatch using measurement results for multiple beams.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.
도 2는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 구성을 도시한다. 2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure.
도 3은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 구성을 도시한다. 3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure.
도 4a 내지 4c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다.4A to 4C illustrate a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.
도 5는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치(beam misalignment)가 발생하는 상황을 도시한다.5 illustrates a situation in which beam misalignment occurs in a wireless communication system according to various embodiments of the present disclosure.
도 6은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 동작 방법을 도시한다.6 illustrates a method of operating a terminal in a wireless communication system according to various embodiments of the present disclosure.
도 7a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 패턴에 기초한 빔 불일치 탐지를 위한 동작 방법을 도시한다.7A illustrates an operation method for beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
도 7b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 패턴에 기초한 빔 불일치 탐지의 예를 도시한다.7B illustrates an example of beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
도 8a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지를 위한 동작 방법을 도시한다.8A illustrates an operation method for beam mismatch detection based on an order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
도 8b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지의 예를 도시한다.8B illustrates an example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
도 8c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지의 다른 예를 도시한다.8C illustrates another example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure.
도 8d는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 그룹화를 위한 동작 방법을 도시한다.8D illustrates a method of operation for grouping measured values in a wireless communication system according to various embodiments of the present disclosure.
도 8e는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값 그룹의 순서에 기초한 빔 불일치 탐지의 예를 도시한다.8E illustrates an example of beam mismatch detection based on an order of a group of measurement values in a wireless communication system according to various embodiments of the present disclosure.
도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치와 관련된 상태 천이도를 도시한다.9 illustrates a state transition diagram related to beam mismatch in a wireless communication system according to various embodiments of the present disclosure.
도 10a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치 탐지에 기초한 전력 제어를 위한 동작 방법을 도시한다.10A illustrates an operation method for power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
도 10b 및 도 10c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치 탐지에 기초한 전력 제어의 예들을 도시한다.10B and 10C illustrate examples of power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
도 11a 및 도 11b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 지원되는 기준 신호의 전송 방식들을 도시한다.11A and 11B illustrate transmission schemes of reference signals supported in a wireless communication system according to various embodiments of the present disclosure.
도 11c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 집중적인 기준 신호 전송을 이용한 빔 회복 절차를 위한 신호 교환을 도시한다.11C illustrates signal exchange for a beam recovery procedure using intensive reference signal transmission in a wireless communication system according to various embodiments of the present disclosure.
도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용하여 빔을 회복하기 위한 동작 방법을 도시한다.12A illustrates an operation method for recovering a beam using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
도 12b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용하거나 새로운 측정을 이용하여 빔을 회복하기 위한 동작 방법을 도시한다.12B illustrates an operation method for recovering a beam using a previous measurement or using a new measurement in a wireless communication system according to various embodiments of the present disclosure.
도 12c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용한 빔 회복의 예를 도시한다.12C illustrates an example of beam recovery using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
도 13a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 센서 값을 이용하여 빔을 회복하기 위한 동작 방법을 도시한다.13A illustrates an operation method for recovering a beam using sensor values in a wireless communication system according to various embodiments of the present disclosure.
도 13b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 움직임에 따른 센서 값 변화의 예를 도시한다.13B illustrates an example of a sensor value change according to movement in a wireless communication system according to various embodiments of the present disclosure.
도 13c 및 도 13d는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 센서의 설치 예들을 도시한다.13C and 13D illustrate examples of installation of a sensor in a wireless communication system according to various embodiments of the present disclosure.
본 개시에서 사용되는 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 개시에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 개시에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 개시에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 개시에서 정의된 용어일지라도 본 개시의 실시 예들을 배제하도록 해석될 수 없다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the scope of other embodiments. Singular expressions may include plural expressions unless the context clearly indicates otherwise. The terms used herein, including technical or scientific terms, may have the same meaning as commonly understood by one of ordinary skill in the art as described in the present disclosure. Among the terms used in the present disclosure, terms defined in the general dictionary may be interpreted as having the same or similar meaning as the meaning in the context of the related art, and ideally or excessively formal meanings are not clearly defined in the present disclosure. Not interpreted as In some cases, even if terms are defined in the present disclosure, they may not be interpreted to exclude embodiments of the present disclosure.
이하에서 설명되는 본 개시의 다양한 실시 예들에서는 하드웨어적인 접근 방법을 예시로서 설명한다. 하지만, 본 개시의 다양한 실시 예들에서는 하드웨어와 소프트웨어를 모두 사용하는 기술을 포함하고 있으므로, 본 개시의 다양한 실시 예들이 소프트웨어 기반의 접근 방법을 제외하는 것은 아니다.In various embodiments of the present disclosure described below, a hardware approach will be described as an example. However, various embodiments of the present disclosure include a technology using both hardware and software, and thus various embodiments of the present disclosure do not exclude a software-based approach.
이하 본 개시는 무선 통신 시스템에서 빔 불일치(beam misalignment)를 탐지하기 위한 장치 및 방법에 관한 것이다. 또한, 본 개시는 무선 통신 시스템에서 빔 불일치 시 빔을 회복(recovery)하기 위한 장치 및 방법에 관한 것이다.The present disclosure relates to an apparatus and method for detecting beam misalignment in a wireless communication system. The present disclosure also relates to an apparatus and method for recovering a beam upon beam mismatch in a wireless communication system.
이하 설명에서 사용되는 신호를 지칭하는 용어, 채널을 지칭하는 용어, 제어 정보를 지칭하는 용어, 네트워크 객체(network entity)들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.Terms used to describe signals used in the following description, terms referring to channels, terms referring to control information, terms referring to network entities, terms referring to components of devices, and the like are provided for convenience of description. It is illustrated. Thus, the present disclosure is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
또한, 본 개시는, 일부 통신 규격(예: LTE(long term evolution) 시스템과 LTE-A(LTE-advanced))에서 사용되는 용어들을 이용하여 다양한 실시 예들을 설명하지만, 이는 설명을 위한 예시일 뿐이다. 본 개시의 다양한 실시 예들은, 다른 통신 시스템에서도, 용이하게 변형되어 적용될 수 있다.In addition, the present disclosure describes various embodiments using terms used in some communication standards (eg, long term evolution (LTE) system and LTE-advanced (LTE-A)), but this is only an example for description. . Various embodiments of the present disclosure may be easily modified and applied to other communication systems.
도 1은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다. 도 1은 무선 통신 시스템에서 무선 채널을 이용하는 노드(node)들의 일부로서, 기지국 110, 단말 120, 단말 130을 예시한다. 1 illustrates a wireless communication system according to various embodiments of the present disclosure. FIG. 1 illustrates a base station 110, a terminal 120, and a terminal 130 as part of nodes using a wireless channel in a wireless communication system.
기지국 110은 단말들 120, 130에게 무선 접속을 제공하는 네트워크 인프라스트럭쳐(infrastructure)이다. 기지국 110은 신호를 송신할 수 있는 거리에 기초하여 일정한 지리적 영역으로 정의되는 커버리지(coverage)를 가진다. 기지국 110은 기지국(base station) 외에 '액세스 포인트(access point, AP)', '이노드비(eNodeB, eNB)', '5G 노드(5th generation node)', '무선 포인트(wireless point)', '송수신 포인트(transmission/reception point, TRP)' 등으로 지칭될 수 있다. Base station 110 is a network infrastructure that provides wireless access to terminals 120 and 130. The base station 110 has coverage defined as a certain geographic area based on the distance over which the signal can be transmitted. In addition to the base station, the base station 110 includes an 'access point (AP)', 'eNodeB (eNB)', '5G generation node', 'wireless point', ' Transmission / reception point (TRP) ”and the like.
단말 120 및 단말 130 각각은 사용자에 의해 사용되는 장치로서, 기지국 110과 무선 채널을 통해 통신을 수행한다. 경우에 따라, 단말 120 및 단말 130 중 적어도 하나는 기계 타입 통신(machine type communication, MTC)을 수행하는 장치로서, 사용자에 의해 휴대되지 아니할 수 있다. 단말 120 및 단말 130 각각은 단말(terminal) 외 '사용자 장비(user equipment, UE)', '이동국(mobile station)', '가입자국(subscriber station)', '원격 단말(remote terminal)', '무선 단말(wireless terminal)', 또는 '사용자 장치(user device)' 등으로 지칭될 수 있다.Each of the terminal 120 and the terminal 130 is a device used by a user and communicates with the base station 110 through a wireless channel. In some cases, at least one of the terminal 120 and the terminal 130 is a device for performing machine type communication (MTC) and may not be carried by a user. Each of the terminal 120 and the terminal 130 is a terminal other than a user equipment (UE), a mobile station, a subscriber station, a remote terminal, and a remote terminal. Wireless terminal ', or' user device 'or the like.
기지국 110, 단말 120, 단말 130은 밀리미터 파(mmWave) 대역(예: 28GHz, 30GHz, 60GHz)에서 무선 신호를 송신 및 수신할 수 있다. 이때, 채널 이득의 향상을 위해, 기지국 110, 단말 120, 단말 130은 빔포밍(beamforming)을 수행할 수 있다. 여기서, 빔포밍은 송신 빔포밍 및 수신 빔포밍을 포함한다. 즉, 기지국 110, 단말 120, 단말 130은 송신 신호 또는 수신 신호에 방향성(directivity)을 부여할 수 있다. 이를 위해, 기지국 110 및 단말들 120, 130은 빔 탐색(beam search) 절차를 통해 서빙(serving) 빔들 112, 113, 121, 131을 선택할 수 있다. The base station 110, the terminal 120, and the terminal 130 may transmit and receive a radio signal in a millimeter wave (mmWave) band (eg, 28 GHz, 30 GHz, 60 GHz). In this case, in order to improve the channel gain, the base station 110, the terminal 120, and the terminal 130 may perform beamforming. Here, beamforming includes transmit beamforming and receive beamforming. That is, the base station 110, the terminal 120, and the terminal 130 may give directivity to a transmission signal or a reception signal. To this end, the base station 110 and the terminals 120 and 130 may select the serving beams 112, 113, 121, and 131 through a beam search procedure.
도 2는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 구성을 도시한다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure. Used below '… Wealth, The term 'herein' refers to a unit for processing at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
도 2를 참고하면, 기지국 110은 무선통신부 210, 백홀통신부 220, 저장부 230, 제어부 240를 포함한다.Referring to FIG. 2, the base station 110 includes a wireless communication unit 210, a backhaul communication unit 220, a storage unit 230, and a control unit 240.
무선통신부 210은 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행한다. 예를 들어, 무선통신부 210은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 무선통신부 210은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 무선통신부 210은 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 또한, 무선통신부 210은 기저대역 신호를 RF(radio frequency) 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. The wireless communication unit 210 performs functions for transmitting and receiving a signal through a wireless channel. For example, the wireless communication unit 210 performs a baseband signal and bit string conversion function according to the physical layer standard of the system. For example, during data transmission, the wireless communication unit 210 generates complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the wireless communication unit 210 restores the received bit string by demodulating and decoding the baseband signal. In addition, the wireless communication unit 210 up-converts the baseband signal into a radio frequency (RF) band signal, transmits the signal through an antenna, and downconverts the RF band signal received through the antenna into a baseband signal.
이를 위해, 무선통신부 210은 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 또한, 무선통신부 210은 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 무선통신부 210은 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)를 포함할 수 있다. 하드웨어의 측면에서, 무선통신부(210)는 디지털 유닛(digital unit) 및 아날로그 유닛(analog unit)으로 구성될 수 있으며, 아날로그 유닛은 동작 전력, 동작 주파수 등에 따라 다수의 서브 유닛(sub-unit)들로 구성될 수 있다.To this end, the wireless communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. In addition, the wireless communication unit 210 may include a plurality of transmission and reception paths. Furthermore, the wireless communication unit 210 may include at least one antenna array composed of a plurality of antenna elements. In terms of hardware, the wireless communication unit 210 may be composed of a digital unit and an analog unit, and the analog unit may include a plurality of sub-units according to operating power, operating frequency, and the like. It can be configured as.
무선통신부 210은 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 무선통신부 210은 '송신부', '수신부' 또는 '송수신부'로 지칭될 수 있다. 또한, 이하 설명에서, 무선 채널을 통해 수행되는 송신 및 수신은 무선통신부 210에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.The wireless communication unit 210 transmits and receives a signal as described above. Accordingly, the wireless communication unit 210 may be referred to as a 'transmitter', 'receiver' or 'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel are used to mean that the processing as described above is performed by the wireless communication unit 210.
백홀통신부 220은 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 백홀통신부 220은 기지국 110에서 다른 노드, 예를 들어, 다른 접속 노드, 다른 기지국, 상위 노드, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.The backhaul communication unit 220 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 220 converts a bit string transmitted from another base station 110 to another node, for example, another access node, another base station, an upper node, a core network, etc. into a physical signal, and converts the physical signal received from the other node into a bit. Convert to heat
저장부 230은 기지국 110의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부 230은 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부 230은 제어부 240의 요청에 따라 저장된 데이터를 제공한다.The storage unit 230 stores data such as a basic program, an application program, and setting information for the operation of the base station 110. The storage unit 230 may be configured as a volatile memory, a nonvolatile memory, or a combination of the volatile memory and the nonvolatile memory. The storage unit 230 provides the stored data at the request of the controller 240.
제어부 240은 기지국의 전반적인 동작들을 제어한다. 예를 들어, 제어부 240은 무선통신부 210를 통해 또는 백홀통신부 220을 통해 신호를 송신 및 수신한다. 또한, 제어부 240은 저장부 230에 데이터를 기록하고, 읽는다. 이를 위해, 제어부 240은 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부 240은 기지국 110이 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다.The controller 240 controls overall operations of the base station. For example, the controller 240 transmits and receives a signal through the wireless communication unit 210 or through the backhaul communication unit 220. In addition, the controller 240 records and reads data in the storage 230. To this end, the controller 240 may include at least one processor. For example, the controller 240 may control the base station 110 to perform operations according to various embodiments described below.
도 3은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 구성을 도시한다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure. Used below '… Wealth, The term 'herein' refers to a unit for processing at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
도 3을 참고하면, 단말 120은 통신부 310, 저장부 320, 제어부 330를 포함한다.Referring to FIG. 3, the terminal 120 includes a communication unit 310, a storage unit 320, and a control unit 330.
통신부 310은 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행한다. 예를 들어, 통신부 310은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 통신부 310은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 통신부 310은 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 또한, 통신부 310은 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 통신부 310은 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. The communication unit 310 performs functions for transmitting and receiving a signal through a wireless channel. For example, the communicator 310 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the communication unit 310 generates complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the communication unit 310 restores the received bit string by demodulating and decoding the baseband signal. In addition, the communication unit 310 up-converts the baseband signal to an RF band signal and then transmits the signal through an antenna and downconverts the RF band signal received through the antenna to the baseband signal. For example, the communication unit 310 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like.
또한, 통신부 310은 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 통신부 310은 다수의 안테나 요소들로 구성된 적어도 하나의 안테나 어레이를 포함할 수 있다. 하드웨어의 측면에서, 무선통신부(210)는 디지털 회로 및 아날로그 회로(예: RFIC(radio frequency integrated circuit))로 구성될 수 있다. 여기서, 디지털 회로 및 아날로그 회로는 하나의 패키지로 구현될 수 있다. 또한, 통신부 310은 다수의 RF 체인들을 포함할 수 있다. 나아가, 통신부 310은 빔포밍을 수행할 수 있다. In addition, the communication unit 310 may include a plurality of transmission and reception paths. Further, the communicator 310 may include at least one antenna array composed of a plurality of antenna elements. In terms of hardware, the wireless communication unit 210 may be composed of a digital circuit and an analog circuit (for example, radio frequency integrated circuit (RFIC)). Here, the digital circuit and the analog circuit can be implemented in one package. In addition, the communication unit 310 may include a plurality of RF chains. In addition, the communicator 310 may perform beamforming.
통신부 310은 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 통신부 310은 '송신부', '수신부' 또는 '송수신부'로 지칭될 수 있다. 또한, 이하 설명에서 무선 채널을 통해 수행되는 송신 및 수신은 통신부 310에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.The communication unit 310 transmits and receives a signal as described above. Accordingly, the communication unit 310 may be referred to as a 'transmitter', 'receiver' or 'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel are used by the communication unit 310 to mean that the above-described processing is performed.
저장부 320은 단말 120의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부 320은 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부 320은 제어부 330의 요청에 따라 저장된 데이터를 제공한다.The storage 320 stores data such as a basic program, an application program, and setting information for the operation of the terminal 120. The storage unit 320 may be configured of a volatile memory, a nonvolatile memory, or a combination of the volatile memory and the nonvolatile memory. The storage 320 provides the stored data according to a request of the controller 330.
제어부 330은 단말 120의 전반적인 동작들을 제어한다. 예를 들어, 제어부 330은 통신부 310를 통해 신호를 송신 및 수신한다. 또한, 제어부 330은 저장부 320에 데이터를 기록하고, 읽는다. 이를 위해, 제어부 330은 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부일 수 있다. 또한, 통신부 310의 일부 및 제어부 330은 CP(communication processor)라 지칭될 수 있다. 특히, 제어부 330은 후술되는 다양한 실시 예들에 따라 단말 120이 빔 불일치를 탐지하고, 빔 회복 절차를 수행하도록 제어한다. 예를 들어, 제어부 330은 단말이 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다. The controller 330 controls the overall operations of the terminal 120. For example, the controller 330 transmits and receives a signal through the communication unit 310. In addition, the controller 330 records and reads data in the storage 320. To this end, the controller 330 may include at least one processor or a micro processor, or may be part of a processor. In addition, a part of the communication unit 310 and the control unit 330 may be referred to as a communication processor (CP). In particular, the controller 330 controls the terminal 120 to detect a beam mismatch and to perform a beam recovery procedure according to various embodiments described below. For example, the controller 330 may control the terminal to perform operations according to various embodiments described below.
도 4a 내지 4c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다. 도 4a 내지 4c는 도 2의 통신부 210 또는 도 3의 통신부 210의 상세한 구성에 대한 예를 도시한다. 구체적으로, 도 4a 내지 4c는 도 2의 통신부 210 또는 도 3의 통신부 210의 일부로서, 빔포밍을 수행하기 위한 구성요소들을 예시한다.4A to 4C illustrate a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure. 4A to 4C illustrate examples of detailed configurations of the communication unit 210 of FIG. 2 or the communication unit 210 of FIG. 3. Specifically, FIGS. 4A to 4C illustrate components for performing beamforming as part of the communication unit 210 of FIG. 2 or the communication unit 210 of FIG. 3.
도 4a를 참고하면, 통신부 210 또는 310는 부호화 및 변조부 402, 디지털 빔포밍부 404, 다수의 송신 경로들 406-1 내지 406-N, 아날로그 빔포밍부 408을를 포함한다. Referring to FIG. 4A, the communication unit 210 or 310 includes an encoding and modulation unit 402, a digital beamforming unit 404, a plurality of transmission paths 406-1 to 406 -N, and an analog beamforming unit 408.
부호화 및 변조부 402는 채널 인코딩을 수행한다. 채널 인코딩을 위해, LDPC(low density parity check) 코드, 컨볼루션(convoluation) 코드, 폴라(polar) 코드 중 적어도 하나가 사용될 수 있다. 부호화 및 변조부 402는 성상도 맵핑(constellation mapping)을 수행함으로써 변조 심벌들을 생성한다.The encoder and modulator 402 performs channel encoding. For channel encoding, at least one of a low density parity check (LDPC) code, a convolution code, and a polar code may be used. The encoder and modulator 402 generates modulation symbols by performing constellation mapping.
디지털 빔포밍부 404은는 디지털 신호(예: 변조 심벌들)에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부 404은는 변조 심벌들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용되며, '프리코딩 행렬(precoding matrix)', '프리코더(precoder)' 등으로 지칭될 수 있다. 디지털 빔포밍부 404는 다수의 송신 경로들 406-1 내지 406-N로 디지털 빔포밍된 변조 심벌들을 출력한다. 이때, MIMO(multiple input multiple output) 전송 기법에 따라, 변조 심벌들은 다중화되거나, 다수의 송신 경로들 406-1 내지 406-N로 동일한 변조 심벌들이 제공될 수 있다.The digital beamforming unit 404 performs beamforming on a digital signal (eg, modulation symbols). To this end, the digital beamforming unit 404 multiplies the modulation symbols by beamforming weights. Here, the beamforming weights are used to change the magnitude and phase of the signal, and may be referred to as a 'precoding matrix', 'precoder', or the like. The digital beamforming unit 404 outputs the digital beamformed modulation symbols in the plurality of transmission paths 406-1 through 406-N. In this case, according to a multiple input multiple output (MIMO) transmission scheme, modulation symbols may be multiplexed, or the same modulation symbols may be provided in multiple transmission paths 406-1 to 406-N.
다수의 송신 경로들 406-1 내지 406-N은 디지털 빔포밍된 디지털 신호들을 아날로그 신호로 변환한다. 이를 위해, 다수의 송신 경로들 406-1 내지 406-N 각각은 IFFT(inverse fast fourier transform) 연산부, CP(cyclic prefix) 삽입부, DAC, 상향 변환부를 포함할 수 있다. CP 삽입부는 OFDM(orthogonal frequency division multiplexing) 방식을 위한 것으로, 다른 물리 계층 방식(예: FBMC(filter bank multi-carrier))이 적용되는 경우 제외될 수 있다. 즉, 다수의 송신 경로들 406-1 내지 406-N은 디지털 빔포밍을 통해 생성된 다수의 스트림(stream)들에 대하여 독립된 신호처리 프로세스를 제공한다. 단, 구현 방식에 따라, 다수의 송신 경로들 406-1 내지 406-N의 구성요소들 중 일부는 공용으로 사용될 수 있다.Multiple transmission paths 406-1 through 406-N convert digital beamformed digital signals into analog signals. To this end, each of the plurality of transmission paths 406-1 to 406 -N may include an inverse fast fourier transform (IFFT) calculator, a cyclic prefix (CP) inserter, a DAC, and an upconverter. The CP insertion unit is for an orthogonal frequency division multiplexing (OFDM) scheme and may be excluded when another physical layer scheme (for example, a filter bank multi-carrier (FBMC)) is applied. That is, the multiple transmission paths 406-1 through 406-N provide an independent signal processing process for multiple streams generated through digital beamforming. However, depending on the implementation manner, some of the components of the plurality of transmission paths 406-1 to 406-N may be used in common.
아날로그 빔포밍부 408은는 아날로그 신호에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부 404는은 아날로그 신호들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용된다. 구체적으로, 다수의 송신 경로들 406-1 내지 406-N 및 안테나들 간 연결 구조에 따라, 아날로그 빔포밍부 408은는 도 4b 또는 도 4c와 같이 구성될 수 있다.The analog beamforming unit 408 performs beamforming on the analog signal. To this end, the digital beamforming unit 404 multiplies the analog signals by beamforming weights. Here, beamforming weights are used to change the magnitude and phase of the signal. Specifically, according to the connection structure between the plurality of transmission paths 406-1 to 406-N and the antennas, the analog beamforming unit 408 may be configured as shown in FIG. 4B or 4C.
도 4b를 참고하면, 아날로그 빔포밍부 408로 입력된 신호들은 위상/크기 변환, 증폭의 연산을 거쳐, 안테나들을 통해 송신된다. 이때, 각 경로의 신호는 서로 다른 안테나 집합들 즉, 안테나 어레이들을 통해 송신된다. 첫번째 경로를 통해 입력된 신호의 처리를 살펴보면, 신호는 위상/크기 변환부들 412-1-1 내지 412-1-M에 의해 서로 다른 또는 동일한 위상/크기를 가지는 신호열로 변환되고, 증폭기들 414-1-1 내지 414-1-M에 의해 증폭된 후, 안테나들을 통해 송신된다.Referring to FIG. 4B, signals input to the analog beamforming unit 408 are transmitted through antennas through phase / magnitude conversion and amplification. At this time, the signal of each path is transmitted through different antenna sets, that is, antenna arrays. Looking at the processing of the signal input through the first path, the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 412-1-1 through 412-1-M, and the amplifiers 414-. Amplified by 1-1 through 414-1-M, then transmitted via antennas.
도 4c를 참고하면, 아날로그 빔포밍부 408로 입력된 신호들은 위상/크기 변환, 증폭의 연산을 거쳐, 안테나들을 통해 송신된다. 이때, 각 경로의 신호는 동일한 안테나 집합, 즉, 안테나 어레이를 통해 송신된다. 첫번째 경로를 통해 입력된 신호의 처리를 살펴보면, 신호는 위상/크기 변환부들 412-1-1 내지 412-1-M에 의해 서로 다른 또는 동일한 위상/크기를 가지는 신호열로 변환되고, 증폭기들 414-1-1 내지 414-1-M에 의해 증폭된다. 그리고, 하나의 안테나 어레이를 통해 송신되도록, 증폭된 신호들은 안테나 요소를 기준으로 합산부들 416-1-1 내지 416-1-M에 의해 합산된 후, 안테나들을 통해 송신된다.Referring to FIG. 4C, signals input to the analog beamforming unit 408 are transmitted through antennas through phase / magnitude conversion and amplification. At this time, the signal of each path is transmitted through the same antenna set, that is, the antenna array. Looking at the processing of the signal input through the first path, the signal is converted into signal sequences having different or the same phase / magnitude by the phase / magnitude converters 412-1-1 through 412-1-M, and the amplifiers 414-. Amplified by 1-1 to 414-1-M. The amplified signals are then summed by the summators 416-1-1 through 416-1-M based on the antenna element, so that they are transmitted via one antenna array and then transmitted via the antennas.
도 4b는 송신 경로 별 독립적 안테나 어레이가 사용되는 예를, 도 4c 송신 경로들이 하나의 안테나 어레이를 공유하는 예를 나타낸다. 그러나, 다른 실시 예에 따라, 일부 송신 경로들은 독립적 안테나 어레이를 사용하고, 나머지 송신 경로들은 하나의 안테나 어레이를 공유할 수 있다. 나아가, 또 다른 실시 예에 따라, 송신 경로들 및 안테나 어레이들 간 스위치 가능한(switchable) 구조를 적용함으로써, 상황에 따라 적응적으로 변화할 수 있는 구조가 사용될 수 있다.4B illustrates an example in which an independent antenna array for each transmission path is used, and FIG. 4C illustrates an example in which transmission paths share one antenna array. However, according to another embodiment, some transmission paths may use an independent antenna array, and the other transmission paths may share one antenna array. Furthermore, according to another embodiment, by applying a switchable structure between transmission paths and antenna arrays, a structure that can be adaptively changed according to a situation may be used.
도 5는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치가 발생하는 상황을 도시한다.5 illustrates a situation in which a beam mismatch occurs in a wireless communication system according to various embodiments of the present disclosure.
도 5를 참고하면, 기지국 110 및 단말 120은 빔 탐색 절차를 통해 최적의 빔을 서빙 빔으로서 사용한다. 이때, 단말 120의 회전(rotation) 또는 이동(relocation)이 발생할 수 있다. 이 경우, 단말 120에 설정된 빔의 방향이 변화하지 아니하면, 단말 120의 회전 또는 이동에 따라 빔의 절대적인 방향도 함께 변화한다. 이로 인해, 단말 120의 빔은 기지국 110을 향하지 아니하게 될 수 있다. 즉, 단말 120의 빔은 더 이상 최적의 빔이 아니며, 본 개시에서 이러한 상태는 '빔 불일치'라 지칭된다.Referring to FIG. 5, the base station 110 and the terminal 120 use an optimal beam as a serving beam through a beam search procedure. In this case, rotation or relocation of the terminal 120 may occur. In this case, if the direction of the beam set in the terminal 120 does not change, the absolute direction of the beam also changes as the terminal 120 rotates or moves. For this reason, the beam of the terminal 120 may not be directed toward the base station 110. That is, the beam of the terminal 120 is no longer the optimal beam, and this state is referred to as 'beam mismatch' in the present disclosure.
전술한 바와 같이, 빔 불일치는 이전 빔 훈련(training) 절차를 통해 결정된 빔이 단말 120의 회전 및 움직임 또는 채널환경의 변화로 인해 더 이상 최적의 빔이 아닌 상태를 의미한다. 빔 불일치가 발생하면, 다음 빔 훈련 절차를 통해 새로운 최적의 빔을 찾기 전까지 링크 버짓(link budget)의 큰 손실이 발생할 수 있다. 이로 인해, 데이터의 송수신이 불가한 상태가 발생할 수 있다. 예를 들어, 빔폭(beam width)가 15°인 경우, 7°이내의 빔 불일치 발생 시 약 2 내지 3dB의 링크 버짓 손실이, 7°이상의 빔 불일치 발생 시 약 10 내지 20dB의 링크 버짓 손실이 예상된다.As described above, the beam mismatch refers to a state in which the beam determined through the previous beam training procedure is no longer the optimal beam due to the rotation and movement of the terminal 120 or the change in the channel environment. If a beam mismatch occurs, a large loss of link budget can occur until a new optimal beam is found through the next beam training procedure. As a result, a state in which data transmission and reception is impossible may occur. For example, if the beam width is 15 °, a link budget loss of about 2 to 3 dB is expected when beam mismatch occurs within 7 °, and a link budget loss of about 10 to 20 dB is expected when beam mismatch occurs above 7 °. do.
도 5와 같은 빔 불일치가 발생한 경우, 서빙 빔을 적절히 변경하지 아니하면, 통신 품질에 저하가 발생한다. 그러나, 통신 품질의 저하가 반드시 빔 불일치를 의미하는 것은 아니다. 예를 들어, 서빙 빔은 최적의 빔이지만, 간섭, 페이딩(fading) 등으로 인해 통신 품질이 저하될 수 있다. 즉, 통신 품질 또는 채널 품질에만 의존하는 경우, 빔 불일치에 대한 판단 오류 가능성이 존재한다. 따라서, 이하 본 개시는 빔 불일치를 보다 정확히 탐지하기 위한 다양한 실시 예들을 설명한다.When the beam mismatch as shown in FIG. 5 occurs, if the serving beam is not changed properly, a decrease in communication quality occurs. However, deterioration in communication quality does not necessarily mean beam mismatch. For example, the serving beam is an optimal beam, but communication quality may be degraded due to interference, fading, and the like. In other words, if only the communication quality or the channel quality is dependent, there is a possibility of a determination error for the beam mismatch. Accordingly, the present disclosure describes various embodiments for more accurately detecting beam mismatches.
도 6은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 동작 방법을 도시한다. 도 6은 단말 120의 빔 불일치 탐지를 위한 동작 방법을 예시한다.6 illustrates a method of operating a terminal in a wireless communication system according to various embodiments of the present disclosure. 6 illustrates an operation method for detecting a beam mismatch of the terminal 120.
도 6을 참고하면, 601 단계에서, 단말은 제1 기간(period) 동안 다수의 송신 빔들로 빔포밍된 기준 신호들을 수신한다. 여기서, 제1 기간은 기지국이 빔 탐색을 위해 기준 신호들을 반복적으로 송신하는 기간들 중 하나로서, 적어도 하나의 시간 구간(time interval)(예: 서브프레임)을 포함한다. 즉, 기지국은 주기적으로 또는 이벤트 기반으로 기준 신호들을 스윕(sweep)한다. 이때, 단말은 적어도 하나의 수신 빔을 이용하여 수신 빔포밍을 수행한다. 이에 따라, 단말은 수신 빔 별 측정 값들을 획득할 수 있다. 여기서, 측정 값들은 기준 신호에 대한 수신 세기로서, 'RSRP(reference signal received power)'라 지칭될 수 있다. 측정 값들을 이용하여, 단말은 서빙 수신 빔을 결정할 수 있다. Referring to FIG. 6, in step 601, a terminal receives reference signals beamformed into a plurality of transmit beams during a first period. Here, the first period is one of periods during which the base station repeatedly transmits reference signals for beam searching, and includes at least one time interval (eg, a subframe). That is, the base station sweeps reference signals periodically or on an event basis. In this case, the terminal performs reception beamforming using at least one reception beam. Accordingly, the terminal may obtain measurement values for each reception beam. Here, the measurement values may be referred to as 'RSRP (reference signal received power)' as a reception strength with respect to the reference signal. Using the measurement values, the terminal may determine the serving reception beam.
이후, 603 단계에서, 단말은 제2 기간 동안 다수의 송신 빔들로 빔포밍된 기준 신호들을 수신한다. 여기서, 제2 기간은 기지국이 빔 탐색을 위해 기준 신호들을 반복적으로 송신하는 기간들 중 하나로서, 제1 기간과 적어도 하나의 시간 구간이 경과 후 도래한다. 즉, 통신을 수행하는 중, 기지국이 기준 신호들을 송신하는 기간이 도래하면, 단말은 기지국에서 송신된 기준 신호들을 수신한다. 이때, 단말은 적어도 하나의 수신 빔을 이용하여 수신 빔포밍을 수행한다. 이에 따라, 단말은 서빙 빔을 결정한 기간 및 그 이후 기간에서의 얻어진 서로 다른 2개의 측정 값 집합들을 획득할 수 있다.Then, in step 603, the terminal receives the reference signal beamformed into a plurality of transmission beams during the second period. Here, the second period is one of periods in which the base station repeatedly transmits reference signals for beam searching, and arrives after the first period and at least one time period pass. That is, during the communication, when the base station transmits the reference signals arrives, the terminal receives the reference signals transmitted from the base station. In this case, the terminal performs reception beamforming using at least one reception beam. Accordingly, the terminal may acquire two different sets of measured values obtained in the period in which the serving beam is determined and in the period thereafter.
이어, 605 단계에서, 단말은 제1 기간 동안 획득된 측정 값들 및 제2 기간 동안 획득된 측정 값들에 기초하여 빔 불일치 여부를 판단한다. 즉, 단말은 서로 다른 시점들에서 얻어진 적어도 하나의 수신 빔 및 둘 이상의 송신 빔들에 대한 측정 값 집합들을 비교함으로써, 빔 불일치가 발생하였는지 판단할 수 있다. 여기서, 비교되는 측정 값들은 서빙 빔에 대한 측정 값을 포함하거나, 포함하지 아니할 수 있다. 이때, 측정 값 집합들 간 유사성이 없는 경우, 단말은 빔 불일치의 발생을 판단한다. 여기서, 유사성의 존부를 판단하기 위한 규칙은 다양하게 정의될 수 있다. 예를 들어, 유사성 판단의 규칙은 측정 값들 자체, 측정 값들의 순서, 측정 값들에 대한 통계 중 적어도 하나에 기초하여 정의될 수 있다.In operation 605, the terminal determines whether there is a beam mismatch based on the measured values obtained during the first period and the measured values obtained during the second period. That is, the terminal may determine whether a beam mismatch has occurred by comparing measurement value sets for at least one reception beam and two or more transmission beams obtained at different points in time. Here, the measured measured values may or may not include measured values for the serving beam. At this time, if there is no similarity between the measurement value sets, the terminal determines the occurrence of the beam mismatch. Here, the rules for determining the existence of similarity may be variously defined. For example, the rule of similarity determination may be defined based on at least one of the measurement values themselves, the order of the measurement values, and statistics on the measurement values.
도 6을 참고하여 설명한 실시 예에 따라, 서로 다른 두 시점들에서 얻어진 동일한 빔 쌍(pair)들에 대한 측정 값 집합들에 기초하여 빔 불일치가 탐지될 수 있다. 기지국은 다양한 목적을 위해 반복적으로 기준 신호들을 스윕하기 때문에, 단말은 추가적인 오버헤드 없이 측정을 수행할 수 있다. 이때, 적어도 하나의 수신 빔에 대한 측정만으로 비교를 위한 측정 값들이 얻어질 수 있다.According to the embodiment described with reference to FIG. 6, a beam mismatch may be detected based on measurement value sets for the same beam pairs obtained at two different viewpoints. Since the base station repeatedly sweeps the reference signals for various purposes, the terminal may perform the measurement without additional overhead. In this case, measurement values for comparison may be obtained only by measuring at least one reception beam.
도 6의 실시 예에서, 601 단계에서 수신된 기준 신호들로부터 얻어진 측정 값들에 의해 서빙 수신 빔이 결정된다. 그러나, 다른 실시 예에 따라, 서빙 빔이 이미 결정된 상황에서, 601 단계가 수행될 수 있다. 이 경우, 605 단계에서 비교되는 측정 값들은 서빙 빔 결정 시 측정된 측정 값들이거나, 또는 이후 수신된 기준 신호들(예: 601 단계에서 수신된 기준 신호들)로부터 측정된 측정 값들일 수 있다.In the embodiment of FIG. 6, the serving reception beam is determined by the measurement values obtained from the reference signals received in step 601. However, according to another embodiment, in a situation where the serving beam is already determined, step 601 may be performed. In this case, the measured values compared in step 605 may be measured values measured at the time of determining the serving beam, or may be measured values measured from received reference signals (eg, reference signals received in step 601).
도 6의 실시 예에서, 비교되는 측정 값들은 적어도 하나의 수신 빔 및 다수의 송신 빔들에 대한 측정 값들을 포함한다. 즉, 빔 불일치 탐지는 하나의 수신 빔만을 이용하여 수행될 수 있다. 그러나, 다른 실시 예에 따라, 하나의 기지국 송신 빔 및 다수의 단말 수신 빔들에 대한 측정 값들이 불일치 탐지를 위해 사용될 수 있다. 즉, 다른 실시 예에 따른 불일치 탐지는 하나의 송신 빔만을 이용하여 수행될 수 있다. 후술되는 다양한 실시 예들은 설명의 편의를 위해 적어도 하나의 수신 빔 및 다수의 송신 빔들이 사용되는 것을 전제로 설명되나, 실시 예들은 다수의 수신 빔들이 사용되는 경우에도 용이하게 적용될 수 있다.In the embodiment of FIG. 6, the measured measurement values include measurement values for at least one receive beam and a plurality of transmit beams. That is, beam mismatch detection may be performed using only one reception beam. However, according to another embodiment, measurement values for one base station transmit beam and multiple terminal receive beams may be used for mismatch detection. That is, mismatch detection according to another embodiment may be performed using only one transmission beam. The various embodiments described below are described on the premise that at least one receive beam and a plurality of transmit beams are used for convenience of description, but the embodiments can be easily applied even when a plurality of receive beams are used.
도 7a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 패턴에 기초한 빔 불일치 탐지를 위한 동작 방법을 도시한다. 도 7a는 단말 120의 동작 방법을 예시한다.7A illustrates an operation method for beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure. 7A illustrates a method of operating the terminal 120.
도 7a를 참고하면, 701 단계에서, 단말은 임의의 수신 빔을 이용하여 기준 신호들을 수신한다. 다시 말해, 단말은 임의의 수신 빔을 이용하여 기준 신호들에 대한 수신 빔포밍을 수행한다. 특정한 빔 풀 스윕 기간(beam full sweep period) 내에서, 단말은 임의의 수신 빔으로 기지국에서 송신되는 기준 신호들을 수신한다. 이때, 단말은 풀 스윕 기간 내 송신되는 기준 신호들 전부 또는 일부를 수신한다. Referring to FIG. 7A, in step 701, the terminal receives reference signals using an arbitrary reception beam. In other words, the terminal performs reception beamforming on reference signals using any reception beam. Within a specific beam full sweep period, the terminal receives the reference signals transmitted from the base station in any receive beam. In this case, the terminal receives all or part of the reference signals transmitted during the full sweep period.
703 단계에서, 단말은 측정 값들의 패턴 정보를 획득한다. 즉, 단말은 701 단계에서 수신된 기준 신호들의 수신 세기를 측정하고, 측정 값들의 패턴을 저장한다. 여기서, 측정 값들의 패턴은 측정 값들의 상대적 크기 관계, 즉, 하나의 측정 값에 대한 나머지 측정 값들의 비율로서 정의될 수 있다. 또는, 측정 값들의 패턴은 측정 값들의 오름차순 또는 내림차순으로 정렬된 송신 빔들의 순서로서 정의될 수 있다. 이때, 측정 값들이 패턴은 수신 빔 별로 결정된다. 이하, 측정 값들의 패턴은 '측정 패턴'으로 지칭된다.In step 703, the terminal acquires pattern information of the measurement values. That is, the terminal measures the reception strength of the reference signals received in step 701 and stores the pattern of the measured values. Here, the pattern of measurement values may be defined as the relative magnitude relationship of the measurement values, that is, the ratio of the remaining measurement values to one measurement value. Alternatively, the pattern of measurement values may be defined as an order of transmission beams arranged in ascending or descending order of the measurement values. In this case, the measured values are determined for each reception beam. Hereinafter, the pattern of measurement values is referred to as a 'measurement pattern'.
705 단계에서, 단말은 현재 수신 빔의 기 획득된 측정 패턴이 존재하는지 판단한다. 다시 말해, 단말은 701 단계에서 사용된 수신 빔에 대한, 703 단계에서 획득된 측정 패턴보다 앞서 획득된 다른 측정 패턴이 저장되어 있는지 판단한다. 만일, 기 획득된 측정 패턴이 존재하지 아니하면, 단말은 701 단계로 되돌아간다. In step 705, the terminal determines whether a previously obtained measurement pattern of the reception beam exists. In other words, the terminal determines whether another measurement pattern acquired before the measurement pattern obtained in step 703 is stored for the reception beam used in step 701. If the previously obtained measurement pattern does not exist, the terminal returns to step 701.
반면, 기 획득된 측정 패턴이 존재하면, 707 단계에서, 단말은 동일 수신 빔의 2개 측정 패턴들을 비교한다. 즉, 단말은 703 단계에서 획득된 측정 패턴 및 이전에 획득된 측정된 측정 패턴을 비교한다. On the other hand, if there is a previously obtained measurement pattern, in step 707, the terminal compares two measurement patterns of the same reception beam. That is, the terminal compares the measurement pattern obtained in step 703 and the previously measured measurement pattern.
709 단계에서, 단말은 측정 패턴들 간 유사도가 임계치보다 작은지 판단한다. 유사도는 구체적인 실시 예에 따라 다양하게 정의될 수 있다. 예를 들어, 유사도는 동일한 송신 빔에 대한 비율 값들 간 차이, 각 측정 패턴을 구성하는 비율 값들의 순서 중 적어도 하나에 기초하여 결정될 수 있다. In step 709, the terminal determines whether the similarity between the measurement patterns is less than the threshold. Similarity may be variously defined according to a specific embodiment. For example, the similarity may be determined based on at least one of a difference between ratio values for the same transmission beam and an order of ratio values constituting each measurement pattern.
만일, 유사도가 임계치보다 작으면, 711단계에서, 단말은 빔 불일치의 발생을 판단한다. 다시 말해, 단말은 현재 서빙 빔이 최적의 빔이 아님을 판단한다. 반면, 유사도가 임계치보다 크거나 같으면, 단말은 빔 불일치가 발생하지 아니함을 판단하고, 701 단계로 되돌아간다.If the similarity is smaller than the threshold, in step 711, the terminal determines occurrence of beam mismatch. In other words, the terminal determines that the current serving beam is not the optimal beam. On the other hand, if the similarity is greater than or equal to the threshold, the terminal determines that no beam mismatch occurs, and returns to step 701.
도 7a를 참고하여 설명한 실시 예의 구체적인 예가 이하 도 7b를 참고하여 설명된다. 도 7b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 패턴에 기초한 빔 불일치 탐지의 예를 도시한다.A specific example of the embodiment described with reference to FIG. 7A is described below with reference to FIG. 7B. 7B illustrates an example of beam mismatch detection based on a measurement pattern in a wireless communication system according to various embodiments of the present disclosure.
도 7b를 참고하면, n번째 풀 스윕 기간 710 동안, 기지국 110은 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 다수의 수신 빔들을 이용하여 기준 신호들을 수신한다. 기간 710 동안, 단말 120은 측정 패턴 712 및 측정 패턴 714를 포함한 다수의 측정 패턴들을 획득한다. 이후, n+1 번째 풀 스윕 기간 720 동안, 기지국 110은 다시 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 적어도 하나의 수신 빔에 대한 측정 패턴 722를 획득한다. 이때, 측정 패턴 722와 동일한 수신 빔에 대한 측정 패턴 714가 존재하므로, 단말 120은 측정 패턴 722 및 측정 패턴 714를 비교한다. 도 7b의 예시의 경우, 측정 패턴 714 및 측정 패턴 722는 서로 다른 패턴을 보인다. 이 경우, 단말은 유사도가 임계치보다 작다고 판단하고, 빔 불일치를 선언할 수 있다.Referring to FIG. 7B, during the nth full sweep period 710, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 receives reference signals using a plurality of receive beams. During the period 710, the terminal 120 acquires a plurality of measurement patterns including the measurement pattern 712 and the measurement pattern 714. Subsequently, during the n + 1 th full sweep period 720, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 acquires a measurement pattern 722 for at least one reception beam. In this case, since the measurement pattern 714 for the same reception beam as the measurement pattern 722 exists, the terminal 120 compares the measurement pattern 722 and the measurement pattern 714. In the example of FIG. 7B, the measurement pattern 714 and the measurement pattern 722 show different patterns. In this case, the terminal may determine that the similarity is smaller than the threshold, and may declare a beam mismatch.
도 7a 및 도 7b를 참고하여 설명한 실시 예에 따라, 간섭 또는 페이징이 원인이 아닌 채널 열화, 즉, 빔 불일치의 탐지가 가능하다. 또한, 최적의 빔의 재탐색 없이 측정 패턴을 이용하므로, 매우 빠른 시간 내에 빔 불일치 여부가 판단될 수 있다. According to the exemplary embodiment described with reference to FIGS. 7A and 7B, it is possible to detect channel degradation, that is, beam mismatch, not caused by interference or paging. In addition, since the measurement pattern is used without rescanning the optimal beam, it is possible to determine whether there is a beam mismatch in a very fast time.
도 7a 및 도 7b의 실시 예에서, 단말은 측정 패턴의 변경으로 인해 빔 불일치를 선언한다. 그러나, 다른 실시 예에 따라, 보다 정확한 빔 불일치의 탐지를 위해, 단말은 측정 패턴의 변경이 일정 횟수 반복되는 경우에 한해 빔 불일치를 선언할 수 있다. 이 경우, 기지국에서 사용하는 송신 빔의 개수가 적은 경우에도, 빔 불일치 탐지의 정확도가 향상될 수 있다. In the embodiments of FIGS. 7A and 7B, the terminal declares a beam mismatch due to a change of a measurement pattern. However, according to another embodiment, for more accurate detection of the beam mismatch, the terminal may declare the beam mismatch only when the change of the measurement pattern is repeated a certain number of times. In this case, even when the number of transmission beams used by the base station is small, the accuracy of beam mismatch detection can be improved.
추가적으로, 보다 정확한 빔 불일치의 탐지를 위해, 단말은 둘 이상의 기준들에 따라 단계적으로 측정 패턴의 변경을 판단할 수 있다. 이하 도 8a 내지 도 8e를 참고하여, 단계적으로 측정 패턴의 변경을 판단하는 실시 예들이 설명된다.In addition, for more accurate detection of the beam mismatch, the terminal may determine the change of the measurement pattern in stages according to two or more criteria. Hereinafter, embodiments of determining the change of the measurement pattern will be described with reference to FIGS. 8A to 8E.
도 8a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지를 위한 동작 방법을 도시한다. 도 8a는 단말 120의 동작 방법을 예시한다.8A illustrates an operation method for beam mismatch detection based on an order of measurement values in a wireless communication system according to various embodiments of the present disclosure. 8A illustrates a method of operating the terminal 120.
도 8a를 참고하면, 801 단계에서, 단말은 빔포밍된 기준 신호들을 수신한다. 이때, 단말은 적어도 하나의 수신 빔을 이용하여 수신 빔포밍을 수행한다. 이때, 단말은 801 단계에 앞서 적어도 하나의 수신 빔에 대한 측정 값 집합을 보유하고 있다. 그리고, 801 단계에서 수신되는 기준 신호들을 이용하여, 단말은 적어도 하나의 수신 빔에 대한 다른 측정 값 집합을 획득한다. 이하 설명의 편의를 위해, 본 개시는 하나의 수신 빔에 대한 측정 값 집합들을 기준으로 설명한다.Referring to FIG. 8A, in step 801, the terminal receives beamformed reference signals. In this case, the terminal performs reception beamforming using at least one reception beam. In this case, the terminal holds a set of measurement values for at least one reception beam prior to step 801. And, using the reference signals received in step 801, the terminal obtains another set of measurement values for the at least one reception beam. For convenience of description below, the present disclosure will be described based on measurement value sets for one receive beam.
이어, 803 단계에서, 단말은 측정 값 변화량을 계산한다. 즉, 단말은 2개의 측정 값 집합들 간 차이 값을 계산한다. 여기서, 변화량은 다양하게 정의될 수 있다. 일 예로, 변화량은 각 송신 빔에 대한 측정 값들의 차이의 합 또는 평균일 수 있다. 이때, 측정 값들 중 최대 값 및 최소 값 중 적어도 하나는 합 또는 평균 계산 시 제외될 수 있다. 예를 들어, 변화량은 <수학식 1>과 같이 결정될 수 있다.Subsequently, in step 803, the terminal calculates a measured value change amount. That is, the terminal calculates a difference value between two sets of measured values. Here, the change amount may be defined in various ways. As an example, the amount of change may be the sum or average of the difference between the measured values for each transmission beam. In this case, at least one of the maximum value and the minimum value among the measured values may be excluded when calculating the sum or the average. For example, the amount of change may be determined as in Equation 1.
Figure PCTKR2017002758-appb-I000001
Figure PCTKR2017002758-appb-I000001
<수학식 1>에서, ΔXt는 t번째 측정 값 및 t-1번째 측정 값의 차이, Xt는 t번째 측정 값,
Figure PCTKR2017002758-appb-I000002
는 측정 값 차이의 평균, N은 평균 결정에 사용되는 측정 값들의 개수를 의미한다.
In Equation 1, ΔX t is the difference between the t th measurement value and the t-1 th measurement value, X t is the t th measurement value,
Figure PCTKR2017002758-appb-I000002
Is the mean of the difference between the measured values, and N is the number of measured values used to determine the mean.
이후, 805 단계에서, 단말은 변화량이 임계치보다 큰지 판단한다. 변화량이 임계치보다 큼은, 측정 패턴이 변경될 가능성이 있음을 의미한다.In step 805, the terminal determines whether the amount of change is greater than a threshold. If the amount of change is greater than the threshold, it means that the measurement pattern is likely to change.
만일, 변화량이 임계치보다 작거나 같으면, 807 단계에서, 단말은 측정 패턴의 변경에 대한 카운터(counter)를 초기화한다. 측정 패턴의 변경에 대한 카운터는 몇 회의 측정 패턴 변경이 발생하였는지를 세기 위한 변수이다. 이후, 단말은 801 단계로 되돌아간다. 이하, 측정 패턴 변화에 대한 카운터는 '측정 패턴 변경 카운터'라 지칭된다.If the amount of change is less than or equal to the threshold, in step 807, the terminal initializes a counter for the change of the measurement pattern. The counter for changing the measurement pattern is a variable for counting how many measurement pattern changes have occurred. Thereafter, the terminal returns to step 801. Hereinafter, a counter for measuring pattern change is referred to as a 'measurement pattern change counter'.
반면, 변화량이 임계치보다 크면, 809 단계에서, 단말은 측정 값들의 순서를 비교한다. 구체적으로, 단말은 2개의 측정 값 집합들에 포함된 측정 값들의 크기에 따라 오름차순 또는 내림차순으로 송신 빔들을 정렬하고, 정렬된 송신 빔들의 순서가 일치하는지 확인한다. 즉, 단말은, 2개의 측정 값 집합들에서, 가장 큰 측정 값을 가지는 송신 빔들이 동일한지, 그리고 두 번째 큰 측정 값을 가지는 송신 빔들이 동일한지 확인한다.On the other hand, if the amount of change is greater than the threshold, in step 809, the terminal compares the order of the measured values. Specifically, the terminal arranges the transmission beams in ascending or descending order according to the magnitude of the measurement values included in the two measurement value sets, and confirms that the order of the aligned transmission beams is identical. That is, the terminal checks whether the transmission beams having the largest measurement value are the same and the transmission beams having the second largest measurement value are the same in the two measurement value sets.
이어, 811 단계에서, 단말은 측정 값들의 순서가 변화하였는지 확인한다. 만일, 측정 값들의 순서가 변화하지 아니하였으면, 다시 말해, 측정 값들의 순서가 동일하면, 단말은 807 단계에서 측정 패턴 변경 카운터를 초기화하고, 801 단계로 되돌아간다.In operation 811, the terminal determines whether the order of the measured values has changed. If the order of the measurement values has not changed, that is, if the order of the measurement values is the same, the terminal initializes the measurement pattern change counter in step 807 and returns to step 801.
반면, 측정 값들의 순서가 변화하였으면, 813 단계에서, 단말은 측정 패턴 변경 카운터를 증가시킨다. 즉, 단말은 측정 패턴의 변경이 발생하였음을 판단하고, 변경 횟수를 기록한다. On the other hand, if the order of the measurement values has changed, in step 813, the terminal increments the measurement pattern change counter. That is, the terminal determines that a change in the measurement pattern has occurred, and records the number of changes.
이어, 815 단계에서, 단말은 측정 패턴 변경 카운터가 임계치보다 크거나 같은 판단한다. 즉, 일정 횟수의 측정 패턴 변경이 발생한 때 빔 불일치를 선언하기 위해, 단말은 측정 패턴 변경 카운터와 임계치를 비교한다. 단, 임계치가 1로 설정된 경우, 1회의 측정 패턴 변화만으로 빔 불일치가 선언될 수 있다. 만일, 측정 패턴 변경 카운터가 임계치보다 작으면, 단말은 807 단계에서 측정 패턴 변경 카운터를 초기화하고, 801 단계로 되돌아간다.In operation 815, the terminal determines that the measurement pattern change counter is greater than or equal to the threshold. That is, to declare a beam mismatch when a certain number of measurement pattern changes occur, the terminal compares the measurement pattern change counter with a threshold. However, when the threshold is set to 1, the beam mismatch may be declared only by one measurement pattern change. If the measurement pattern change counter is smaller than the threshold, the terminal initializes the measurement pattern change counter in step 807 and returns to step 801.
반면, 측정 패턴 변경 카운터가 임계치보다 크거나 같으면, 817 단계에서, 단말은 빔 불일치를 판단한다. 즉, 단말은 빔 불일치가 발생하였음을 판단한다.On the other hand, if the measurement pattern change counter is greater than or equal to the threshold, in step 817, the terminal determines the beam mismatch. That is, the terminal determines that a beam mismatch has occurred.
도 8a를 참고하여 설명한 실시 예의 구체적인 예가 이하 도 8b를 참고하여 설명된다. 도 8b는 빔 불일치가 발생한 상황을, 도 8c는 빔 불일치가 발생하지 아니한 상황을 예시한다.A specific example of the embodiment described with reference to FIG. 8A will now be described with reference to FIG. 8B. FIG. 8B illustrates a situation where a beam mismatch occurs, and FIG. 8C illustrates a situation where a beam mismatch occurs.
도 8b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지의 예를 도시한다. 도 8b를 참고하면, n번째 풀 스윕 기간 810 동안, 기지국 110은 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 다수의 수신 빔들을 이용하여 기준 신호들을 수신한다. 기간 810 동안, 단말 120은 측정 값 집합 812를 획득한다. 이후, n+1 번째 풀 스윕 기간 820 동안, 기지국 110은 다시 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 측정 값 집합 822를 획득한다. 측정 값 집합 812 및 측정 값 집합 822는 변화량에서 차이를 보인다. 그리고, 측정 값 집합 812 내의 측정 값들의 순서는 '2-3-1-5-6-4'이고, 측정 값 집합 822 내의 측정 값들의 순서는 '5-6-4-2-3-1'으로서, 순서들이 상이하다. 따라서, 변화량이 임계치보다 크고, 순서가 다르므로, 불일치가 선언된다.8B illustrates an example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure. Referring to FIG. 8B, during the nth full sweep period 810, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 receives reference signals using a plurality of receive beams. During the period 810, the terminal 120 acquires a measurement value set 812. Thereafter, during the n + 1 th full sweep period 820, the base station 110 transmits repeatedly beamformed reference signals. At this time, the terminal 120 obtains the measured value set 822. The measured value set 812 and the measured value set 822 differ in the amount of change. The order of the measured values in the measured value set 812 is '2-3-1-5-6-4', and the order of the measured values in the measured value set 822 is '5-6-4-2-3-1' As such, the orders are different. Therefore, since the amount of change is larger than the threshold and the order is different, an inconsistency is declared.
도 8c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 순서에 기초한 빔 불일치 탐지의 다른 예를 도시한다. 도 8c를 참고하면, n번째 풀 스윕 기간 810 동안, 기지국 110은 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 다수의 수신 빔들을 이용하여 기준 신호들을 수신한다. 기간 810 동안, 단말 120은 측정 값 집합 814를 획득한다. 이후, n+1 번째 풀 스윕 기간 820 동안, 기지국 110은 다시 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 측정 값 집합 824를 획득한다. 측정 값 집합 814 및 측정 값 집합 824는 변화량에서 차이를 보인다. 그러나, 측정 값 집합 814 내의 측정 값들의 순서는 '2-1-3-5-6-4'이고, 측정 값 집합 824 내의 측정 값들의 순서는 '2-1-3-5-6-4'로서, 순서들이 동일하다. 따라서, 변화량이 임계치보다 크지만, 즉, 오프셋(offset)이 다르지만, 동일한 순서로 인해, 빔 불일치가 선언되지 아니한다.8C illustrates another example of beam mismatch detection based on the order of measurement values in a wireless communication system according to various embodiments of the present disclosure. Referring to FIG. 8C, during the nth full sweep period 810, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 receives reference signals using a plurality of receive beams. During the period 810, the terminal 120 acquires a set of measurement values 814. Thereafter, during the n + 1 th full sweep period 820, the base station 110 transmits repeatedly beamformed reference signals. At this time, the terminal 120 obtains the measured value set 824. The measured value set 814 and the measured value set 824 differ in the amount of change. However, the order of the measured values in the measured value set 814 is '2-1-3-5-6-4' and the order of the measured values in the measured value set 824 is '2-1-3-5-6-4' As such, the orders are the same. Thus, although the amount of change is greater than the threshold, i.e., the offsets are different, due to the same order, no beam mismatch is declared.
도 8a 내지 도 8c를 참고하여 설명한 실시 예에 따라, 간섭 또는 페이징의 원인이 아닌, 빔 불일치가 탐지될 수 있다. 나아가, 측정 값들 변화량 및 순서를 고려하는 2 단계의 판단을 통해, 구현성 및 판단 정확도가 확보될 수 있다. 더욱이, 패턴 변경 카운터의 도입으로 인해, 기지국의 송신 빔이 적은 경우에도 정확도가 확보될 수 있다. According to the embodiment described with reference to FIGS. 8A to 8C, a beam mismatch, which is not a cause of interference or paging, may be detected. Furthermore, implementation and determination accuracy may be secured through two-step determination in consideration of the change amount and order of the measurement values. Moreover, due to the introduction of the pattern change counter, accuracy can be ensured even when the transmission beam of the base station is small.
이때, 빔 불일치의 잘못된 판단을 방지하기 위해, 측정 값들의 순서를 결정함에 있어서, 측정 오차를 고려할 필요성이 있다. 단말의 움직임이나 회전이 발생하지 아니하였지만, 송신 빔들 간 측정 값의 차이가 미미한 경우, 작은 측정 오차 또는 랜덤성(randomness)에 의해 순서가 뒤바뀔 수 있다. 따라서, 측정 오차 등으로 인한 잘못된 빔 불일치 선언을 방지하기 위해, 측정 값들의 그룹화를 도입한 실시 예가 이하 도 8d 및 도 8e를 참고하여 설명된다.In this case, in order to prevent an incorrect determination of the beam mismatch, it is necessary to consider the measurement error in determining the order of the measurement values. Although the movement or rotation of the terminal does not occur, if the difference in the measured value between the transmission beams is small, the order may be reversed by a small measurement error or randomness (randomness). Accordingly, in order to prevent false beam mismatch declaration due to measurement error or the like, an embodiment in which grouping of measurement values is introduced is described below with reference to FIGS. 8D and 8E.
도 8d는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값의 그룹화를 위한 동작 방법을 도시한다. 도 8d는 단말 120의 동작 방법을 예시한다.8D illustrates a method of operation for grouping measured values in a wireless communication system according to various embodiments of the present disclosure. 8D illustrates an operation method of the terminal 120.
도 8d를 참고하면, 851 단계에서, 단말은 빔포밍된 기준 신호들을 수신한다. 이때, 단말은 적어도 하나의 수신 빔을 이용하여 수신 빔포밍을 수행한다. 수신되는 기준 신호들을 이용하여, 단말은 적어도 하나의 수신 빔에 대한 다른 측정 값 집합을 획득한다. 이하 설명의 편의를 위해, 본 개시는 하나의 수신 빔에 대한 측정 값 집합들을 기준으로 설명한다.Referring to FIG. 8D, in step 851, the terminal receives beamformed reference signals. In this case, the terminal performs reception beamforming using at least one reception beam. Using the received reference signals, the terminal obtains another set of measurement values for at least one receive beam. For convenience of description below, the present disclosure will be described based on measurement value sets for one receive beam.
이어, 853 단계에서, 단말은 측정 값을 기준으로 송신 빔들을 정렬한다. 즉, 단말은 가장 큰 측정 값에 대응하는 송신 빔, 두 번째로 큰 측정 값에 대응하는 송신 빔 등을 확인한다. 이에 따라, 송신 빔들이 측정 값의 크기 순서로 정렬된다.In operation 853, the terminal arranges the transmission beams based on the measured value. That is, the terminal identifies a transmission beam corresponding to the largest measured value, a transmission beam corresponding to the second largest measured value, and the like. Accordingly, the transmission beams are arranged in the order of magnitude of the measured values.
이후, 855 단계에서, 단말은 측정 값들의 차이가 임계치보다 작은지 확인한다. 즉, 단말은, 정렬된 송신 빔들 중, 서로 인접한 순서를 가지는 송신 빔 쌍들 각각에 대하여, 측정 값들의 차이가 임계치보다 작은지 확인한다. 여기서, 임계치는 기준 신호에 대한 측정 오차 또는 랜덤성에 기초하여 조절(tunning)될 수 있다.Then, in step 855, the terminal checks whether the difference between the measured values is less than the threshold. That is, the terminal determines whether the difference between the measurement values is smaller than the threshold value for each of the beam beam pairs having the adjacent order among the aligned transmission beams. Here, the threshold may be adjusted based on a measurement error or randomness with respect to the reference signal.
만일, 측정 값들의 차이가 임계치보다 작으면, 857 단계에서, 단말은 해당 송신 빔 쌍을 그룹화함으로써 동일 순위로 설정한다. 이때, 다음 순위의 송신 빔의 측정 값과의 차이에 따라, 셋 이상의 송신 빔들이 동일한 순위로 설정될 수 있다.If the difference between the measured values is smaller than the threshold, in step 857, the UE sets the same rank by grouping the corresponding transmission beam pairs. At this time, three or more transmission beams may be set to the same rank according to a difference from the measured value of the next transmission beam.
만일, 측정 값들의 차이가 임계치보다 크거나 같으면, 859 단계에서, 단말은 차 하위 순위를 설정한다. 즉, 단말은 해당 송신 빔 쌍 내의 2개의 송신 빔들을 서로 다른 순위로 설정한다.If the difference between the measured values is greater than or equal to the threshold, in step 859, the terminal sets a lower order of priority. That is, the terminal sets two transmission beams in the corresponding transmission beam pair to different ranks.
도 8d를 참고하여 설명한 실시 예를 적용한 빔 불일치 판단의 구체적인 예가 이하 도 8e를 참고하여 설명된다. 도 8e는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 측정 값 그룹의 순서에 기초한 빔 불일치 탐지의 예를 도시한다.A specific example of the beam mismatch determination applying the embodiment described with reference to FIG. 8D will now be described with reference to FIG. 8E. 8E illustrates an example of beam mismatch detection based on an order of a group of measurement values in a wireless communication system according to various embodiments of the present disclosure.
도 8d를 참고하면, n번째 풀 스윕 기간 810 동안, 기지국 110은 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 다수의 수신 빔들을 이용하여 기준 신호들을 수신한다. 기간 810 동안, 단말 120은 측정 값 집합 816를 획득한다. 이후, n+1 번째 풀 스윕 기간 820 동안, 기지국 110은 다시 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 측정 값 집합 826를 획득한다. 측정 값 집합 816 및 측정 값 집합 826는 변화량에서 차이를 보인다. 그리고, 측정 값 집합 816 내의 측정 값들의 순서는 '2-1-3-5-6-4'이고, 측정 값 집합 826 내의 측정 값들의 순서는 '2-3-1-5-6-4'로서, 순서들이 상이하다. 그러나, 송신 빔#1 및 송신 빔#3의 측정 값들이 차이가 임계치보다 작기 때문에, 송신 빔#1 및 송신 빔#3는 그룹화됨으로써, 동일 순위를 가진다. 이 경우, '1-3' 및 '3-1'의 순서 차이는 측정 패턴 변경의 판단에 영향을 주지 아니한다. 따라서, 빔 불일치가 선언되지 아니한다. 이로 인해, 측정 오차 또는 랜덤성을 원인으로 뒤바뀐 순서로 인한 빔 불일치의 잘못된 판단이 방지될 수 있다. Referring to FIG. 8D, during the nth full sweep period 810, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 receives reference signals using a plurality of receive beams. During the period 810, the terminal 120 acquires the measurement value set 816. Thereafter, during the n + 1 th full sweep period 820, the base station 110 transmits repeatedly beamformed reference signals. At this time, the terminal 120 obtains the measured value set 826. The measured value set 816 and the measured value set 826 show a difference in the amount of change. The order of the measured values in the measured value set 816 is '2-1-3-5-6-4', and the order of the measured values in the measured value set 826 is '2-3-1-5-6-4' As such, the orders are different. However, since the difference between the measured values of the transmission beam # 1 and the transmission beam # 3 is smaller than the threshold value, the transmission beam # 1 and the transmission beam # 3 are grouped to have the same rank. In this case, the order difference between '1-3' and '3-1' does not affect the determination of the measurement pattern change. Thus, no beam mismatch is declared. This can prevent erroneous determination of beam mismatch due to the reversed order due to measurement error or randomness.
도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치와 관련된 상태 천이도를 도시한다. 도 9는 변화량 및 순서를 고려한 2단계의 측정 패턴 변경을 도입한 빔 불일치 판단 절차의 상태 천이도를 예시한다.9 illustrates a state transition diagram related to beam mismatch in a wireless communication system according to various embodiments of the present disclosure. 9 illustrates a state transition diagram of a beam mismatch determination procedure incorporating a two-step measurement pattern change in consideration of the amount of change and the order of change.
도 9를 참고하면, 최초, 상태는 빔 정렬(beam aligned) 상태 910에 있다. 측정 값들의 변화량이 임계치를 초과하면, 상태는 측정 값 변경(measurement value changed) 상태 920로 천이한다. 측정 값 변경 상태 920에서, 순서 변경이 판단되면, 상태는 측정 패턴 변경(measurement pattern changed) 상태 930로 천이한다. 이때, 임계 개수 미만의 연속적 기간들에서 측정 패턴 변경이 발생되더라도, 측정 패턴 변경 상태 930가 유지된다. 임계 개수 미만의 연속적 기간들 내에, 순서 미변경이 판단되면, 상태는 측정 값 변경 920으로 천이한다. 또한, 임계 개수 미만의 연속적 기간들 내에, 변화량이 임계치 이하이거나 순서 미변경이 판단되면, 상태는 빔 정렬 상태 910로 천이한다. 측정 패턴 변경 상태 930에서 임계 개수 이상의 연속적 기간들에서 측정 패턴 변경이 발생하면, 상태는 빔 불일치(beam misaligned) 상태 940로 천이한다. 빔 불일치 상태 940에서, 빔 불일치가 회복(recovery)되면, 상태는 빔 정렬 상태 910로 되돌아간다.Referring to FIG. 9, initially, the state is in beam aligned state 910. If the amount of change in the measurement values exceeds the threshold, the state transitions to a measurement value changed state 920. In the measurement value change state 920, if the sequence change is determined, the state transitions to the measurement pattern changed state 930. At this time, even if the measurement pattern change occurs in consecutive periods below the threshold number, the measurement pattern change state 930 is maintained. Within successive periods below the threshold number, if no order change is determined, the state transitions to measurement value change 920. Also, within successive periods below the threshold number, if the amount of change is below the threshold or if out of order is determined, the state transitions to beam alignment state 910. If the measurement pattern change occurs in successive periods above the threshold number in the measurement pattern change state 930, the state transitions to a beam misaligned state 940. In the beam mismatch state 940, if the beam mismatch is recovered, the state returns to the beam alignment state 910.
상술한 다양한 실시 예들에 따라, 빔 불일치가 탐지될 수 있다. 빔 불일치의 판단 결과는 다양하게 활용될 수 있다. 일 실시 예에 따라, 빔 불일치의 판단은 단말 120의 수신부의 전력 제어를 위해 활용될 수 있다. 구체적으로, 빔 불일치의 판단은 DRX(discontinuous reception) 모드로 동작 시 전력 제어를 위해 사용될 수 있다. 여기서, DRX 모드는 상위 계층(예: RRC(radio resoure control) 계층)에서는 연결된 상태(connected state), 즉, 활성(active) 상태를 유지하면서, 물리 계층의 하드웨어를 턴 오프(turn off), 슬립(sleep) 등의 방식으로 제어함으로써 일시적으로 수신 회로의 전부 또는 일부를 불활성(deactivation)하는 동작 모드이다.According to the various embodiments described above, the beam mismatch can be detected. The determination result of the beam mismatch can be used in various ways. According to an embodiment, the determination of the beam mismatch may be utilized for power control of the receiver of the terminal 120. In detail, the determination of the beam mismatch may be used for power control when operating in a discontinuous reception (DRX) mode. In this case, the DRX mode may turn off and sleep hardware of a physical layer while maintaining a connected state, that is, an active state, in a higher layer (eg, a radio resoure control (RRC) layer). It is an operation mode which temporarily deactivates all or part of the receiving circuit by controlling in a manner such as (sleep).
DRX 모드로 동작하는 경우, DRX 사이클(cycle) 또는 DRX 구간(period)에 따라 온 구간(on duration) 및 슬립 구간(sleep duration)이 반복된다. 이때, 단말 120은 온 구간에서 수신 회로를 활성화시킴으로써 기지국 110에서 송신되는 신호를 수신하고, 슬립 구간에서 수신 회로를 불활성화한다. 여기서, 활성화는 웨이크 업(wake up)으로, 불활성화는 슬립(sleep)으로 지칭될 수 있다. 빔포밍을 전제로 통신을 수행하는 시스템의 경우, DRX 구간 내에서, 단말 120은 선호하는 빔에 대한 피드백을 기지국 110으로 적어도 1회 송신한다. 그리고, 온 구간에서, 기지국 110은 하향링크 스케줄링 정보를 송신할 수 있다.When operating in the DRX mode, the on duration and the sleep duration are repeated according to a DRX cycle or a DRX period. In this case, the terminal 120 receives a signal transmitted from the base station 110 by activating the receiving circuit in the on period, and deactivates the receiving circuit in the sleep period. Here, activation may be referred to as wake up and inactivation may be referred to as sleep. In the case of a system performing communication on the premise of beamforming, within a DRX period, the terminal 120 transmits feedback on a preferred beam to the base station 110 at least once. In addition, in the on period, the base station 110 may transmit downlink scheduling information.
이때, 온 구간에서 활성화되더라도, 빔이 정렬되어 있지 아니하면, 단말은 신호를 수신할 수 없다. 따라서, 온 구간이 도래하기 충분한 시간(예: 빔 탐색에 소요되는 시간) 전에, 단말은 수신 회로를 활성화한 후, 빔 탐색을 수행해야 한다. 하지만, 이전 온 구간에서 사용하던 빔이 반드시 유효하지 아니한 것은 아니다. 따라서, 온 구간이 도래하기 충분한 시간 전에 수신 회로를 활성화한 단말은, 빔 불일치 여부의 판단에 따라 이후 동작 상태를 제어할 수 있다. 이에, 본 개시는 DRX 모드로 동작 중 빔 불일치 탐지의 결과에 따른 수신 회로 제어에 대한 실시 예를 도 10a, 도 10b, 도 10c를 참고하여 설명한다.At this time, even if activated in the on period, if the beam is not aligned, the terminal cannot receive a signal. Therefore, before the on period is sufficient (eg, time required for beam searching), the terminal should activate the receiving circuit and then perform beam searching. However, the beam used in the previous on interval is not necessarily invalid. Accordingly, the terminal that activates the receiving circuit before a sufficient time for the on period to arrive, may control the subsequent operation state according to the determination of whether there is a beam mismatch. Accordingly, the present disclosure will be described with reference to FIGS. 10A, 10B, and 10C according to an embodiment of control of a reception circuit according to a result of beam mismatch detection while operating in the DRX mode.
도 10a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치 탐지에 기초한 전력 제어를 위한 동작 방법을 도시한다. 도 10a는 단말 120의 동작 방법을 예시한다.10A illustrates an operation method for power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure. 10A illustrates an operation method of the terminal 120.
도 10a를 참고하면, 1001 단계에서, 단말은 불연속 동작 모드(예: DRX 모드)로 진입한다. DRX 모드는 기지국의 제어에 따라 진입된다. 즉, 단말은 기지국으로부터 DRX 모드로 진입할 것을 지시하는 메시지를 수신한다. 이에 따라, 단말은 DRX 사이클에 따라 온 구간 및 슬립 구간을 운영한다. 슬립 구간 동안, 단말은 수신 회로의 전부 또는 일부를 불활성화할 수 있다.Referring to FIG. 10A, in step 1001, the terminal enters a discontinuous operation mode (eg, a DRX mode). The DRX mode is entered under the control of the base station. That is, the terminal receives a message instructing to enter the DRX mode from the base station. Accordingly, the terminal operates the on period and the sleep period according to the DRX cycle. During the sleep period, the terminal may deactivate all or part of the receiving circuit.
1003 단계에서, 단말은 슬립 구간 중 빔 불일치 여부를 판단한다. 일 실시 예에 따라, 단말은 빔 측정을 수행할 수 있다. 즉, 단말은 슬립 구간 중 일시적으로 수신 회로를 활성화하고, 기지국에서 송신되는 빔포밍된 기준 신호들을 수신한다. 즉, 단말은 새로이 측정 값들을 이전 온 구간 또는 DRX 모드 진입 전에 획득한 측정 값들과 비교함으로써, 빔 불일치의 발생 여부를 판단한다. 예를 들어, 단말은 상술한 다양한 실시 예들 중 하나에 따라 빔 불일치 여부를 판단할 수 있다. 다른 실시 예에 따라, 단말은 단말에 구비된 센서를 이용하여 빔 불일치 여부를 판단할 수 있다. 센서를 이용한 빔 불일치 여부의 판단을 위해, 단말은 이전 빔 탐색 후 단말이 회전하거나 또는 이동하였는지를 확인한다. 이때, 빔 불일치 여부를 판단하는 시점은, 온 구간으로부터 일정 시간 전이며, 일정 시간은 빔 회복을 수행하기 위해 소요되는 시간, 즉, 빔 재정렬을 위해 필요한 시간보다 크거나 같다.In step 1003, the UE determines whether there is a beam mismatch during the sleep period. According to an embodiment, the terminal may perform beam measurement. That is, the terminal temporarily activates the receiving circuit during the sleep period and receives beamformed reference signals transmitted from the base station. That is, the terminal determines whether the beam mismatch occurs by comparing the newly measured values with the measured values obtained before entering the previous on interval or the DRX mode. For example, the terminal may determine whether there is a beam mismatch according to one of the various embodiments described above. According to another embodiment, the terminal may determine whether there is a beam mismatch using a sensor provided in the terminal. In order to determine whether there is a beam mismatch using the sensor, the terminal checks whether the terminal has rotated or moved after the previous beam search. In this case, the timing of determining whether there is a beam mismatch is a predetermined time from the on interval, and the predetermined time is greater than or equal to a time required for performing beam recovery, that is, a time required for beam realignment.
이어, 1005 단계에서, 단말은 빔 불일치가 발생하였는지 확인한다. 만일, 빔 불일치가 발생함이 판단되면, 1007 단계에서, 단말은 빔 회복 절차를 수행한다. 빔 회복 절차는 구체적인 실시 예에 따라 다양한 방식으로 수행될 수 있다. 예를 들어, 빔 회복 절차로서, 단말은 빔 탐색 절차를 수행할 수 있다. 또는, 단말은 이하 설명되는 다양한 실시 예들에 따라 빔 회복 절차를 수행할 수 있다.Subsequently, in step 1005, the terminal checks whether a beam mismatch occurs. If it is determined that a beam mismatch occurs, in step 1007, the terminal performs a beam recovery procedure. The beam recovery procedure may be performed in various ways according to a specific embodiment. For example, as a beam recovery procedure, the terminal may perform a beam search procedure. Alternatively, the terminal may perform a beam recovery procedure according to various embodiments described below.
반면, 빔 불일치가 발생하지 아니함이 판단되면, 1009 단계에서, 단말은 온 구간 도래 전까지 슬립 상태를 유지한다. 여기서, 온 구간의 도래 전은, 수신 회로의 정상화에 필요한 시간을 고려한 시점을 의미한다. 즉, 빔의 불일치 없이 빔이 정렬된 상태이므로, 추가적인 빔 회복 절차가 요구되지 아니한다. 따라서, 단말은 남은 슬립 구간 동안 수신 회로를 불활성 상태로 유지함으로써, 전력 소비를 감소시킬 수 있다.On the other hand, if it is determined that no beam mismatch occurs, in step 1009, the terminal maintains a sleep state until the on-interval arrives. Here, before the arrival of the on period means a time point considering the time required for normalization of the receiving circuit. That is, since the beams are aligned without mismatching of the beams, no additional beam recovery procedure is required. Therefore, the terminal can reduce power consumption by keeping the receiving circuit in an inactive state for the remaining sleep period.
도 10a를 참고하여 설명한 실시 예의 구체적인 예가 이하 도 7b를 참고하여 설명된다. 도 10b 및 도 10c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 빔 불일치 탐지에 기초한 전력 제어의 예를 도시한다.A detailed example of the embodiment described with reference to FIG. 10A is described below with reference to FIG. 7B. 10B and 10C illustrate examples of power control based on beam mismatch detection in a wireless communication system according to various embodiments of the present disclosure.
도 10b는 빔 측정에 기반하여 빔 불일치 여부를 판단하는 경우를 예시한다. 도 10b를 참고하면, 단말 120은 온 구간이 종료되면, 슬립 구간에 진입하고, 수신 회로를 불활성화한다. 이때, 다음 온 구간으로부터 △t 만큼의 시간 1002 전에, 단말은 일시적으로 수신 회로를 활성화하고, 빔 불일치를 탐지한다. 빔 불일치의 탐지 결과에 따라, 시간 1002 만큼의 구간 동안의 수신 회로의 동작 상태가 달라질 수 있다.10B illustrates a case of determining whether there is a beam mismatch based on beam measurement. Referring to FIG. 10B, when the on period ends, the terminal 120 enters a sleep period and deactivates the receiving circuit. At this time, the terminal temporarily activates the receiving circuit and detects the beam mismatch before time 1002 by Δt from the next on period. Depending on the detection result of the beam mismatch, the operating state of the receiving circuit for a period of time 1002 may vary.
도 10c는 센서 값에 기반하여 빔 불일치 여부를 판단하는 경우를 예시한다. 도 10c를 참고하면, 단말 120은 온 구간이 종료되면, 슬립 구간에 진입하고, 수신 회로를 불활성화한다. 이때, 다음 온 구간으로부터 △t 만큼의 시간 1002 전에, 단말은 센서 값을 이용하여 빔 불일치를 탐지한다. 빔 불일치의 탐지 결과에 따라, 시간 1002 만큼의 구간 동안의 수신 회로의 동작 상태가 달라질 수 있다. 도 10c와 같이 센서를 이용하는 경우, 일시적인 수신 회로의 활성화가 요구되지 아니하므로, 슬립 상태가 더 길게 유지될 수 있다.10C illustrates a case of determining whether a beam mismatches based on a sensor value. Referring to FIG. 10C, when the on period ends, the terminal 120 enters a sleep period and deactivates the receiving circuit. At this time, the terminal detects the beam mismatch by using the sensor value before time 1002 by Δt from the next on interval. Depending on the detection result of the beam mismatch, the operating state of the receiving circuit for a period of time 1002 may vary. In the case of using the sensor as shown in FIG. 10C, since the temporary activation of the receiving circuit is not required, the sleep state can be kept longer.
도 10b 및 도 10c의 예에서, 빔 불일치가 발생하면, 단말 120은 빔 회복 절차를 수행한다. 후술하는 바와 같이, 빔 회복 절차는 빔들에 대한 측정을 포함할 수 있다. 그러나, 일부 실시 예들의 경우, 빔들에 대한 측정 없이, 과거의 빔 측정 결과 또는 센서 값에 기초하여 빔이 회복될 수 있다. 빔 측정 없이 빔이 회복 가능한 경우, 빔 불일치를 탐지한 단말 120은 빔을 회복한 후, 슬립 상태를 유지할 수 있다. 또 다른 실시 예에 따라, 빔 측정에 기반한 빔 회복 절차가 수행된 경우, 온 구간이 도래하기 전에 빔 회복이 완료되면, 단말 120은 나머지 슬립 구간 동안 슬립 상태를 유지할 수 있다.10B and 10C, when beam mismatch occurs, the terminal 120 performs a beam recovery procedure. As described below, the beam recovery procedure may include measurements for the beams. However, in some embodiments, the beam may be recovered based on past beam measurement results or sensor values, without measuring the beams. When the beam is recoverable without the beam measurement, the terminal 120 detecting the beam mismatch may maintain the sleep state after recovering the beam. According to another embodiment, when a beam recovery procedure based on beam measurement is performed, if beam recovery is completed before the on-interval arrives, the terminal 120 may maintain a sleep state for the remaining sleep period.
도 10a 및 도 10b를 참고하여 설명한 실시 예에 따라, DRX 모드 동안 수신 회로를 불활성할 수 있는 슬립 구간이 보다 효과적으로 사용될 수 있다. 즉, 신속한 빔 불일치 여부 판단에 따라, 단말은 슬립 구간을 보다 길게 확보할 수 있다. 이때, 빔 불일치가 발생함이 판단된 경우, 단말은 슬립 구간의 나머지 기간 동안 빔 회복 절차를 수행한다. 이하, 본 개시는 빔 회복을 위한 다양한 실시 예들을 설명한다. According to the exemplary embodiment described with reference to FIGS. 10A and 10B, a sleep period capable of inactivating the receiving circuit during the DRX mode may be used more effectively. That is, according to the quick beam mismatch determination, the terminal may secure a longer sleep period. In this case, when it is determined that the beam mismatch occurs, the terminal performs a beam recovery procedure for the remaining period of the sleep period. Hereinafter, the present disclosure describes various embodiments for beam recovery.
다양한 실시 예들에 따른 기지국 110은 단말 120의 빔 탐색을 위해 주기적 또는 이벤트 기반으로 기준 신호들을 스윕한다. 이때, 기지국 110은 적어도 둘 이상의 기준 신호 전송 방식들을 지원할 수 있다. 예를 들어, 기준 신호 전송 방식들은 도 11a 및 도 11b와 같다. 도 11a 및 도 11b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 지원되는 기준 신호의 전송 방식들을 도시한다.The base station 110 according to various embodiments sweeps reference signals on a periodic or event basis for beam searching of the terminal 120. In this case, the base station 110 may support at least two reference signal transmission schemes. For example, reference signal transmission schemes are the same as those of FIGS. 11A and 11B. 11A and 11B illustrate transmission schemes of reference signals supported in a wireless communication system according to various embodiments of the present disclosure.
도 11a는 단말 120을 포함한 다수의 단말들의 빔 탐색을 위한 기준 신호 전송 방식을 예시한다. 도 11a를 참고하면, 기지국 110은 기지국 110의 모든 송신 빔들을 스윕하며, 모든 송신 빔들의 스윕이 반복적으로 수행된다. 이 경우, 기준 신호는 'BRS(beam reference signal)'로 지칭될 수 있다. 이에 따라, 단말 120은 각 스윕에 대하여, 서로 다른 수신 빔을 이용하여 기준 신호들을 수신함으로써, 송신 빔 및 수신 빔의 모든 조합에 대하여 측정을 수행할 수 있다. 도 11a와 같은 방식의 기준 신호 전송은 주기적으로 수행될 수 있다.11A illustrates a reference signal transmission scheme for beam searching of a plurality of terminals including the terminal 120. Referring to FIG. 11A, the base station 110 sweeps all transmission beams of the base station 110, and the sweep of all transmission beams is repeatedly performed. In this case, the reference signal may be referred to as 'beam reference signal (BRS)'. Accordingly, the terminal 120 may receive the reference signals using different reception beams for each sweep, thereby performing measurement on all combinations of the transmission beam and the reception beam. Reference signal transmission in the same manner as in FIG. 11A may be performed periodically.
도 11b는 특정 단말(예: 단말 120)의 빔 탐색을 위한 기준 신호 전송 방식을 예시한다. 도 11b를 참고하면, 기지국 110은 특정 시간 구간(예: 서브프레임) 동안 단말 120을 위해 기준 신호들을 송신한다. 이 경우, 기준 신호는 'BRRS(beam refinement reference signal)'로 지칭될 수 있다. 시간 구간 내의 하향링크 구간은 제어 채널(예: PDCCH(physical downlink control channel)) 외 모두 기준 신호(예: BRRS)를 위해 할당된다. 여기서, 기준 신호는 하나의 심벌 내에서 다수 회(예: 4회) 반복될 수 있다. 이때, 기지국 110은 모든 송신 빔들을 스윕하거나, 또는 일부 송신 빔들만을 스윕할 수 있다. 도 11b와 같은 방식의 기준 신호 전송은 단말 120의 요청에 의해 수행될 수 있다.11b illustrates a reference signal transmission scheme for beam searching of a specific terminal (eg, terminal 120). Referring to FIG. 11B, the base station 110 transmits reference signals for the terminal 120 during a specific time period (eg, a subframe). In this case, the reference signal may be referred to as a beam refinement reference signal (BRRS). The downlink period in the time interval is allocated for the reference signal (eg, BRRS) in addition to the control channel (eg, a physical downlink control channel (PDCCH)). Here, the reference signal may be repeated many times (for example, four times) within one symbol. At this time, the base station 110 may sweep all the transmission beams, or only some of the transmission beams. Reference signal transmission in the same manner as in FIG. 11B may be performed by a request of the terminal 120.
도 11a 및 도 11b를 참고하여 설명한 바와 같이, 둘 이상의 기준 신호 전송 방식이 지원될 수 있다. 도 11a와 같은 방식은 다수의 단말들에 대하여 수행될 수 있으나, 소요 시간이 길다. 반면, 도 11b와 같은 방식은 짧은 시간 내에 수행될 수 있으나, 해당 시간 구간 동안 데이터가 송신될 수 없다. 따라서, 빔 불일치의 탐지를 이용하여, 상술한 두 가지 기준 신호 전송 기법들이 도 11c와 같이 운용될 수 있다.As described with reference to FIGS. 11A and 11B, two or more reference signal transmission schemes may be supported. 11A may be performed for a plurality of terminals, but the time required is long. On the other hand, the method as shown in FIG. 11B may be performed within a short time, but data may not be transmitted during the corresponding time period. Therefore, using the detection of the beam mismatch, the two reference signal transmission techniques described above may be operated as shown in FIG. 11C.
도 11c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 집중적인 기준 신호 전송을 이용한 빔 회복 절차를 위한 신호 교환을 도시한다. 도 11c는 기지국 110 및 단말 120 간 신호 교환을 예시한다.11C illustrates signal exchange for a beam recovery procedure using intensive reference signal transmission in a wireless communication system according to various embodiments of the present disclosure. 11C illustrates a signal exchange between the base station 110 and the terminal 120.
도 11c를 참고하면, 1101-1 단계 내지 1101-N 단계에서, 기지국 110은 기준 신호들을 송신한다. 기준 신호들은 N회 스윕되며, 적어도 하나의 서브프레임들을 통해 송신된다. 이때, 단말 120은 각 스윕에 대하여 적어도 하나의 수신 빔을 이용한 수신 빔포밍을 수행한다. 이에 따라, 단말 120은 최적의 빔을 서빙 빔으로 선택할 수 있다. 여기서, 서빙 빔은 기지국 110의 서빙 송신 빔 및 단말 120의 서빙 수신 빔을 포함한다.Referring to FIG. 11C, in steps 1101-1 to 1101-N, the base station 110 transmits reference signals. Reference signals are swept N times and transmitted on at least one subframe. In this case, the terminal 120 performs reception beamforming using at least one reception beam for each sweep. Accordingly, the terminal 120 may select the optimal beam as the serving beam. Here, the serving beam includes a serving transmission beam of the base station 110 and a serving receiving beam of the terminal 120.
1103 단계에서, 단말 120은 기지국 110으로 서빙 빔을 알리는 빔 피드백을 송신한다. 여기서, 빔 피드백은 기지국 110의 서빙 송신 빔을 지시할 수 있다. 빔 피드백은 서빙 송신 빔의 식별 정보를 포함하며, 식별 정보는 'BSI(beam selection index)'라 지칭될 수 있다.In step 1103, the terminal 120 transmits beam feedback indicating the serving beam to the base station 110. Here, the beam feedback may indicate the serving transmission beam of the base station 110. The beam feedback includes identification information of the serving transmission beam, and the identification information may be referred to as a 'beam selection index (BSI)'.
1105 단계에서, 단말 120은 빔 불일치를 탐지한다. 단말 120은 적어도 하나의 수신 빔에 대한 측정을 수행하고, 측정 값들을 이전 획득된 측정 값들과 비교한 후, 비교 결과에 기초하여 빔 불일치를 탐지할 수 있다. 예를 들어, 단말 120은 상술한 다양한 실시 예들 중 하나에 따라 빔 불일치를 탐지할 수 있다. 이에 따라, 아래와 같이 빔 회복 절차가 진행된다.In step 1105, the terminal 120 detects a beam mismatch. The terminal 120 performs measurement on at least one reception beam, compares the measured values with previously obtained measured values, and detects a beam mismatch based on a comparison result. For example, the terminal 120 may detect a beam mismatch according to one of the various embodiments described above. Accordingly, the beam recovery procedure proceeds as follows.
1107 단계에서, 단말 120은 기지국 110으로 BRRS 요청을 송신한다. 다시 말해, 상기 빔 불일치가 발생함이 판단됨에 따라, 단말 120은 기지국 110으로 상기 단말 120에 특정한 기준 신호들의 송신을 요청하는 메시지를 송신한다. 즉, 단말 120은 빔 회복 절차를 트리거링(triggering)한다. 이에 따라, 1109 단계에서, 기지국 110은 BRRS 할당 정보를 송신한다. 이어, 1111 단계에서, 기지국 110은 기준 신호들, 즉, BRRS들을 반복적으로 송신한다. 이에 따라, 단말 120은 최적의 빔을 다시 판단할 수 있다. 이후, 1113 단계에서, 단말 120은 기지국 110으로 서빙 빔을 알리는 BRRS 피드백을 송신한다.In step 1107, the terminal 120 transmits a BRRS request to the base station 110. In other words, when it is determined that the beam mismatch occurs, the terminal 120 transmits a message requesting transmission of reference signals specific to the terminal 120 to the base station 110. That is, the terminal 120 triggers a beam recovery procedure. Accordingly, in step 1109, the base station 110 transmits BRRS allocation information. Subsequently, in step 1111, the base station 110 repeatedly transmits reference signals, that is, BRRSs. Accordingly, the terminal 120 may determine the optimal beam again. Thereafter, in step 1113, the terminal 120 transmits a BRRS feedback for notifying the serving beam to the base station 110.
도 11a 내지 도 11c를 참고하여 설명한 실시 예에 따라, 빔 불일치 상황이 해소될 수 있다. 구체적으로, 빔 불일치 시, 단말 특정의 집중적인 기준 신호 전송에 의해, 빔 회복이 수행될 수 있다. 즉, 빔 불일치의 탐지는 BRRS와 같은 집중적인 기준 신호 전송의 조건으로서 사용될 수 있다. According to the exemplary embodiment described with reference to FIGS. 11A through 11C, the beam mismatch situation may be eliminated. Specifically, in the case of beam mismatch, beam recovery may be performed by the terminal-specific intensive reference signal transmission. That is, detection of beam mismatch can be used as a condition of intensive reference signal transmission such as BRRS.
도 11b와 같은 기준 신호 전송 방식이 도 11a의 방식에 비하여 짧은 소요 시간을 요구하지만, 측정을 위해 반복적인 기준 신호들을 송신하는 시간은 여전히 소요된다. 따라서, 보다 짧은 시간으로 빔을 회복하기 위한 절차가 이하 도 12a 내지 도 12c를 참고하여 설명된다.Although the reference signal transmission scheme such as FIG. 11B requires a shorter time than the scheme of FIG. 11A, the time for transmitting repetitive reference signals for measurement is still required. Thus, the procedure for recovering the beam in a shorter time is described below with reference to FIGS. 12A-12C.
도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용하여 빔을 회복하기 위한 동작 방법을 도시한다. 도 12a는 단말 120의 동작 방법을 예시한다.12A illustrates an operation method for recovering a beam using previous measurement results in a wireless communication system according to various embodiments of the present disclosure. 12A illustrates a method of operating the terminal 120.
도 12a를 참고하면, 1201 단계에서, 단말은 빔 불일치를 탐지한다. 단말은 적어도 하나의 수신 빔에 대한 측정을 수행하고, 측정 값들을 이전 획득된 측정 값들과 비교한 후, 비교 결과에 기초하여 빔 불일치를 탐지할 수 있다. 예를 들어, 단말은 상술한 다양한 실시 예들 중 하나에 따라 빔 불일치를 탐지할 수 있다. 12A, in step 1201, the UE detects a beam mismatch. The terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result. For example, the terminal may detect a beam mismatch according to one of the various embodiments described above.
이어, 1203 단계에서, 단말은 현재의 측정 패턴과 유사한 이전 측정 패턴을 확인한다. 즉, 단말은 1201 단계의 빔 불일치 판단 시 획득한 측정 패턴과 유사한, 다시 말해, 현재의 측정 패턴과 비교되었을 경우 빔 불일치가 선언되지 아니할 과거의 측정 패턴을 확인한다. 즉, 단말은 과거의 측정 패턴들에 대한 정보를 저장하고 있으며, 검색할 수 있다.Subsequently, in step 1203, the terminal identifies a previous measurement pattern similar to the current measurement pattern. That is, the terminal checks the past measurement pattern that is similar to the measurement pattern obtained when determining the beam mismatch in step 1201, that is, the beam mismatch will not be declared when compared with the current measurement pattern. That is, the terminal stores information about past measurement patterns and can search for it.
이후, 1205 단계에서, 단말은 확인된 이전 측정 패턴의 획득 시의 서빙 빔을 다시 사용한다. 측정 패턴이 유사하다면, 최적의 빔이 동일할 것이 예측될 수 있다. 따라서, 단말은 현재 측정 패턴과 유사한 측정 패턴을 보였던 시점의 서빙 빔을 현재의 서빙 빔으로 설정한다. 여기서, 이전 측정 패턴의 획득 시의 서빙 빔은 이전 측정 패턴에 대응하는 측정 결과에 기초하여 선택된 빔이거나, 또는 이전 측정 패턴에 의해 빔 불일치가 판단된 후 빔 회복을 통해 선택된 빔일 수 있다. 이때, 다른 실시 예에 따라, 단말은 이전 서빙 빔의 사용이 현재에도 유효한지 여부를 판단할 수 있다. 예를 들어, 단말은 이전 측정 패턴의 획득 시점으로부터 경과한 시간에 기초하여 유효성을 판단할 수 있다.Then, in step 1205, the terminal uses the serving beam at the time of acquiring the confirmed previous measurement pattern. If the measurement patterns are similar, it can be expected that the optimal beam will be the same. Accordingly, the terminal sets the serving beam at the time when the measurement pattern similar to the current measurement pattern is present as the current serving beam. Here, the serving beam when acquiring the previous measurement pattern may be a beam selected based on a measurement result corresponding to the previous measurement pattern, or may be a beam selected through beam recovery after the beam mismatch is determined by the previous measurement pattern. In this case, according to another embodiment, the terminal may determine whether the use of the previous serving beam is still valid. For example, the terminal may determine the validity based on the time elapsed from the acquisition time of the previous measurement pattern.
도 12a를 참고하여 설명한 실시 예에 따라, 추가적인 빔 탐색 없이 빔이 회복될 수 있다. 그러나, 현재 측정 패턴과 유사한 이전 측정 패턴이 존재하지 아니하는 경우가 있을 수 있다. 따라서, 다른 실시 예에 따라, 이하 도 12b와 같이, 추가적인 빔 탐색이 함께 고려될 수 있다.According to the embodiment described with reference to FIG. 12A, the beam may be recovered without additional beam searching. However, there may be cases where there is no previous measurement pattern similar to the current measurement pattern. Therefore, according to another embodiment, as shown in FIG. 12B, additional beam search may be considered together.
도 12b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용하거나 새로운 측정을 이용하여 빔을 회복하기 위한 동작 방법을 도시한다. 도 12b는 단말 120의 동작 방법을 예시한다.12B illustrates an operation method for recovering a beam using a previous measurement or using a new measurement in a wireless communication system according to various embodiments of the present disclosure. 12B illustrates an operation method of the terminal 120.
도 12b를 참고하면, 1251 단계에서, 단말은 빔 불일치를 탐지한다. 단말은 적어도 하나의 수신 빔에 대한 측정을 수행하고, 측정 값들을 이전 획득된 측정 값들과 비교한 후, 비교 결과에 기초하여 빔 불일치를 탐지할 수 있다. 예를 들어, 단말은 상술한 다양한 실시 예들 중 하나에 따라 빔 불일치를 탐지할 수 있다.12B, in step 1251, the UE detects a beam mismatch. The terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result. For example, the terminal may detect a beam mismatch according to one of the various embodiments described above.
1253 단계에서, 단말은 현재 측정 패턴과 유사한 이전 측정 패턴이 존재하는지 확인한다. 즉, 단말은 빔 불일치 판단 시 획득한 측정 패턴과 유사한, 다시 말해, 현재의 측정 패턴과 비교되었을 경우 빔 불일치가 선언되지 아니할 과거의 측정 패턴을 확인한다. 즉, 단말은 과거의 측정 패턴들 및 대응하는 빔에 대한 정보를 저장하고 있으며, 측정 패턴을 이용하여 검색할 수 있다.In step 1253, the terminal checks whether a previous measurement pattern similar to the current measurement pattern exists. That is, the terminal checks the past measurement pattern similar to the measurement pattern obtained when determining the beam mismatch, that is, the beam mismatch will not be declared when compared with the current measurement pattern. That is, the terminal stores information about past measurement patterns and corresponding beams, and may search for them using the measurement pattern.
만일, 현재 측정 패턴과 유사한 이전 측정 패턴이 존재하면, 1255 단계에서, 단말은 이전 측정 패턴에 대응하는 빔을 서빙 빔으로 설정한다. 측정 패턴이 유사하다면, 최적의 빔이 동일할 것이 예측될 수 있다. 따라서, 추가적인 빔 탐색 없이, 단말은 현재 측정 패턴과 유사한 측정 패턴을 보였던 시점의 서빙 빔을 다시 사용한다. 다시 말해, 단말은 이전 측정 패턴 획득시 결정되었던 서빙 빔을 현재의 서빙 빔으로 설정한다.If there is a previous measurement pattern similar to the current measurement pattern, in step 1255, the terminal sets the beam corresponding to the previous measurement pattern as the serving beam. If the measurement patterns are similar, it can be expected that the optimal beam will be the same. Accordingly, without additional beam searching, the terminal reuses the serving beam at the time when the measurement pattern similar to the current measurement pattern was shown. In other words, the terminal sets the serving beam determined when acquiring the previous measurement pattern as the current serving beam.
만일, 현재 측정 패턴과 유사한 이전 측정 패턴이 존재하지 아니하면, 1257 단계에서, 단말은 빔 탐색에 기반한 빔 회복 절차를 수행한다. 이를 위해, 단말은 기지국으로 기준 신호들의 송신을 요청할 수 있다. 예를 들어, 단말은 도 11c를 참고하여 설명한 실시 예에 따라 빔 회복 절차를 수행할 수 있다.If there is no previous measurement pattern similar to the current measurement pattern, in step 1257, the terminal performs a beam recovery procedure based on the beam search. To this end, the terminal may request transmission of reference signals to the base station. For example, the UE may perform a beam recovery procedure according to the embodiment described with reference to FIG. 11C.
1259 단계에서, 단말은 측정 패턴 정보 및 빔 정보를 저장한다. 즉, 단말은 1257 단계를 통해 획득된 측정 결과를 저장한다. 저장된 측정 결과는 이후 빔 불일치의 탐지를 위해 사용될 수 있다. 또한, 저장된 측정 결과는 이후 빔 불일치 발생 시 빔 회복을 위해 사용될 수 있다.In step 1259, the terminal stores measurement pattern information and beam information. That is, the terminal stores the measurement result obtained in step 1257. The stored measurement results can then be used for detection of beam mismatch. The stored measurement results can also be used for beam recovery in the event of beam mismatch later.
1261 단계에서, 단말은 유효 시간 윈도우(valid time window)를 설정한다. 측정 패턴의 유사성에 의해 서빙 빔을 선택하는 것은, 단말의 위치의 유사성을 전제로 가능하다. 따라서, 단말이 이동함으로 인해 기지국에 대한 상대적 위치가 변경되면, 동일 또는 유사한 측정 패턴에 대응하는 빔이라도, 최적의 빔이 아닐 수 있다. 그러므로, 과거의 측정 기록의 유효성은 제한적이며, 유효성의 기한은 유효 시간 윈도우를 통해 관리된다. 이때, 유효 시간 윈도우는 고정된 값으로 정의되거나, 또는 단말의 환경(예: 이동 속도)에 기초하여 동적으로 조절될 수 있다.In step 1261, the terminal establishes a valid time window. Selecting the serving beam by the similarity of the measurement pattern is possible on the premise of the similarity of the position of the terminal. Therefore, if the relative position with respect to the base station is changed as the terminal moves, even a beam corresponding to the same or similar measurement pattern may not be an optimal beam. Therefore, the validity of past measurement records is limited and the validity period is managed through the valid time window. In this case, the valid time window may be defined as a fixed value or dynamically adjusted based on an environment (eg, a moving speed) of the terminal.
이어, 1263 단계에서, 단말은 빔 회복 절차를 통해 결정된 빔을 서빙 빔으로 설정한다. 즉, 단말은 1257 단계에서 선택된 최적 빔을 서빙 빔으로 설정한다. 추가적으로, 단말은 기지국의 서빙 송신 빔을 지시하는 피드백 정보를 송신할 수 있다.Subsequently, in step 1263, the terminal sets the beam determined through the beam recovery procedure as the serving beam. That is, the terminal sets the optimal beam selected in step 1257 as the serving beam. In addition, the terminal may transmit feedback information indicating the serving transmission beam of the base station.
1265 단계에서, 단말은 서빙 빔을 이용하여 통신을 수행한다. 구체적으로, 단말은 기지국에서 송신된 데이터 신호를 서빙 수신 빔을 이용하여 수신한다. 여기서, 데이터 신호의 수신은, 복호 및 디코딩을 포함한다.In step 1265, the terminal communicates using the serving beam. Specifically, the terminal receives the data signal transmitted from the base station using the serving reception beam. Here, the reception of the data signal includes decoding and decoding.
1267 단계에서, 단말은 빔 불일치가 회복되었는지 판단한다. 다시 말해, 단말은 1255 단계 또는 1261 단계에 설정된 서빙 빔이 최적 빔인지, 다시 말해, 통신을 수행하기에 충분한 채널 품질을 제공하는지 판단한다. 빔 불일치의 회복 여부는 다양하게 판단될 수 있다. 일 예로, 단말은 수신되는 데이터 신호의 디코딩 성공 여부에 기초하여 빔 불일치의 회복 여부를 판단할 수 있다. 만일, 빔 불일치가 회복되었으면, 단말은 1251 단계로 되돌아간다.In step 1267, the terminal determines whether the beam mismatch is recovered. In other words, the terminal determines whether the serving beam set in step 1255 or step 1261 is an optimal beam, that is, provides sufficient channel quality to perform communication. Recovery of beam mismatch can be determined in various ways. For example, the terminal may determine whether the beam mismatch is recovered based on whether the decoding of the received data signal is successful. If the beam mismatch is recovered, the terminal returns to step 1251.
반면, 빔 불일치가 회복되지 아니하였으면, 1269 단계에서, 단말은 해당 측정 패턴 정보 및 빔 정보를 삭제한다. 즉, 1255 단계 또는 1261 단계에 설정된 서빙 빔을 설정했음에도 불구하고 빔 불일치가 회복되지 아니함은, 해당 측정 결과를 신뢰할 수 없음을 의미한다. 따라서, 해당 측정 결과는 이후 빔 불일치 판단 또는 회복을 위해 사용할 수 없으므로, 단말은 해당 측정 결과를 폐기(discard)한다.On the other hand, if the beam mismatch is not recovered, in step 1269, the terminal deletes the corresponding measurement pattern information and beam information. That is, even though the serving beam set in step 1255 or step 1261 is not set, the beam mismatch is not recovered, which means that the measurement result is unreliable. Therefore, since the measurement result cannot be used for later beam mismatch determination or recovery, the terminal discards the measurement result.
도 12a 또는 도 12b를 참고하여 설명한 실시 예의 구체적인 예가 이하 도 12c를 참고하여 설명된다. 도 12c는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 이전 측정 결과를 이용한 빔 회복의 예를 도시한다.A detailed example of the embodiment described with reference to FIG. 12A or 12B will now be described with reference to FIG. 12C. 12C illustrates an example of beam recovery using previous measurement results in a wireless communication system according to various embodiments of the present disclosure.
도 12c를 참고하면, n번째 풀 스윕 기간 1210 동안, 기지국 110은 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 다수의 수신 빔들을 이용하여 기준 신호들을 수신한다. 기간 1210 동안, 단말 120은 수신 빔 1262에 대응하는 측정 결과 1212을 포함하는 다수의 측정 결과들을 획득한다. 이때, 빔 불일치가 판단되고, 빔 회복 절차를 통해, 단말 120은 빔#k를 서빙 빔으로 선택한다.Referring to FIG. 12C, during the nth full sweep period 1210, the base station 110 repeatedly transmits beamformed reference signals. In this case, the terminal 120 receives reference signals using a plurality of receive beams. During the period 1210, the terminal 120 obtains a plurality of measurement results including the measurement result 1212 corresponding to the reception beam 1262. At this time, the beam mismatch is determined, and through the beam recovery procedure, the terminal 120 selects the beam # k as the serving beam.
이후, n+x 번째 풀 스윕 기간 1220 동안, 기지국 110은 다시 반복적으로 빔포밍된 기준 신호들을 송신한다. 이때, 단말 120은 적어도 하나의 수신 빔에 대한 측정 패턴 1222를 획득한다. 그리고, 단말 120은 빔 불일치의 발생을 판단하고, 측정 패턴 1222과 유사한 이전 측정 패턴을 확인한다. 도 12c의 경우, 기간 1210에서 획득된 측정 패턴 1212이 측정 패턴 1222와 유사하다. 이에 따라, 단말 120은, 빔 탐색 없이, 기간 1210에서의 빔 불일치 선언에 의한 회복 절차를 통해 선택되었던 빔#k를 서빙 빔으로 설정한다.Thereafter, during the n + x th full sweep period 1220, the base station 110 transmits repeatedly beamformed reference signals. In this case, the terminal 120 acquires the measurement pattern 1222 for at least one reception beam. In addition, the terminal 120 determines occurrence of a beam mismatch and confirms a previous measurement pattern similar to the measurement pattern 1222. In the case of FIG. 12C, the measurement pattern 1212 acquired in the period 1210 is similar to the measurement pattern 1222. Accordingly, the terminal 120 sets the beam #k, which has been selected through the recovery procedure by the beam mismatch declaration in the period 1210, as the serving beam without the beam search.
도 12a 내지 도 12c를 참고하여 설명한 실시 예에 따라, 이전의 측정 결과를 이용함으로써, 빔 탐색 절차 없이 빔 회복이 가능하다. 이에 더하여, 본 개시는 빔 탐색 없이 빔을 회복할 수 있는 다른 실시 예를 이하 도 13a 내지 도 13d를 참고하여 설명한다.According to the exemplary embodiment described with reference to FIGS. 12A to 12C, by using previous measurement results, beam recovery may be performed without a beam searching procedure. In addition, the present disclosure will be described below with reference to FIGS. 13A to 13D to describe another embodiment of recovering a beam without beam searching.
도 13a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 센서 값을 이용하여 빔을 회복하기 위한 동작 방법을 도시한다. 도 13a는 단말 120의 동작 방법을 예시한다.13A illustrates an operation method for recovering a beam using sensor values in a wireless communication system according to various embodiments of the present disclosure. 13A illustrates an operation method of the terminal 120.
도 13a를 참고하면, 1301 단계에서, 단말은 빔 불일치 탐지를 탐지한다. 단말은 적어도 하나의 수신 빔에 대한 측정을 수행하고, 측정 값들을 이전 획득된 측정 값들과 비교한 후, 비교 결과에 기초하여 빔 불일치를 탐지할 수 있다. 예를 들어, 단말은 상술한 다양한 실시 예들 중 하나에 따라 빔 불일치를 탐지할 수 있다.Referring to FIG. 13A, in step 1301, the UE detects beam mismatch detection. The terminal may perform measurement on at least one receiving beam, compare the measured values with previously obtained measured values, and then detect the beam mismatch based on the comparison result. For example, the terminal may detect a beam mismatch according to one of the various embodiments described above.
1303 단계에서, 단말은 센서 값 이용하여 움직임 정도(movement amount)를 결정한다. 여기서, 센서 값은 단말의 회전(rotation) 및 이동(displacement)을 측정할 수 있는 적어도 하나의 센서에 의해 얻어진 물리적 변화를 나타내는 값이다. 예를 들어, 움직임 정도를 결정하기 위해, 자이로(gyro) 센서, 가속도 센서, 나침반 센서(Campus), 중력센서(G-sensor) 중 적어도 하나가 사용될 수 있다.In step 1303, the terminal determines a movement amount using a sensor value. Here, the sensor value is a value representing a physical change obtained by at least one sensor capable of measuring rotation and displacement of the terminal. For example, at least one of a gyro sensor, an acceleration sensor, a compass sensor, a gravity sensor, and a G-sensor may be used to determine the degree of movement.
1305 단계에서, 단말은 움직임 정도에 기초하여 새로운 서빙 빔을 결정한다. 단말은 움직임 정도, 즉, 단말이 얼마나 회전하였는지, 얼마나 이동하였는지에 기초하여, 안테나의 회전/이동을 판단하고, 안테나의 회전량/이동량을 보상할 수 있는 새로운 서빙 빔을 선택한다. 예를 들어, 도 13b를 참고하면, 현재의 서빙 빔의 주 이득(main gain) 방향의 좌표 1302 (X1, Y1, Z1)에서, 센서를 통해 측정된 움직임 정도 (dX, dY, dZ)를 반영함으로써, 단말은 새로운 주 이득 방향의 좌표 1304 (X2, Y2, Z2)=(X1+dx, Y1+dy, Z1+dz)를 결정할 수 있다. 그리고, 단말은 새로운 주 이득 방향과 가장 유사한 방향을 가지는 빔을 서빙 빔으로 선택할 수 있다.In step 1305, the terminal determines a new serving beam based on the degree of movement. The terminal determines the rotation / movement of the antenna based on the degree of movement, that is, how much the terminal rotates and how much the terminal moves, and selects a new serving beam capable of compensating the amount of rotation / movement of the antenna. For example, referring to FIG. 13B, the coordinates 1302 (X1, Y1, Z1) in the main gain direction of the current serving beam reflect the degree of movement (dX, dY, dZ) measured by the sensor. Accordingly, the terminal may determine coordinates 1304 (X2, Y2, Z2) = (X1 + dx, Y1 + dy, Z1 + dz) of the new main gain direction. The terminal may select a beam having a direction most similar to the new main gain direction as the serving beam.
도 13a의 실시 예에서, 1301 단계의 빔 불일치 탐지는 상술한 다양한 실시 예들에 따라 기준 신호들에 대한 측정 값들을 이용하여 수행된다. 그러나, 다른 실시 예에 따라, 빔 불일치의 탐지 역시 센서 값에 기초하여 수행될 수 있다. 구체적으로, 임계치를 초과하는 움직임 정도가 센서 값을 통해 측정되는 경우, 단말은 빔 불일치를 선언할 수 있다. 또 다른 실시 예에 따라, 보다 정확한 빔 불일치 탐지를 위해, 센서 값은 물론 기준 신호들에 대한 측정 값에 기초하여 빔 불일치가 탐지될 수 있다. 이 경우, 센서의 활동 레벨(activity level)이 정확히 측정되지 아니하는 상황에서도, 측정 패턴의 변화 여부가 함께 사용되면, 보다 정확하게 빔 불일치가 탐지될 수 있다.In the embodiment of FIG. 13A, beam mismatch detection in step 1301 is performed using measured values for reference signals according to the various embodiments described above. However, according to another embodiment, detection of the beam mismatch may also be performed based on the sensor value. In detail, when a movement degree exceeding a threshold is measured through a sensor value, the terminal may declare a beam mismatch. According to another embodiment, for more accurate beam mismatch detection, the beam mismatch may be detected based on the sensor value as well as the measured value for the reference signals. In this case, even when the activity level of the sensor is not accurately measured, if the change of the measurement pattern is used together, the beam mismatch can be detected more accurately.
도 13a를 참고하여 설명한 실시 예에 따라, 센서 값을 이용함으로써, 빔 탐색 절차 없이 빔 회복이 가능하다. 도 13a와 같이 센서 값을 이용하여 빔 불일치 탐지 또는 밤 회복을 수행하는 경우, 센서의 설치 위치가 정확도에 영향을 줄 수 있다. 예를 들어, 센서 및 안테나가 일정 거리 이상 이격된 경우, 센서 값을 통해 얻어진 움직임 정도는 안테나의 움직임 정도와 다를 수 있다. 센서의 설치 위치에 따른 움직임 정도의 차이를 극복하기 위해, 이하 도 13c 또는 도 13d와 같은 구조가 적용될 수 있다. 도 13c 및 도 13d는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 센서의 설치 예들을 도시한다. According to the embodiment described with reference to FIG. 13A, by using a sensor value, beam recovery is possible without a beam searching procedure. When beam mismatch detection or night recovery is performed using the sensor value as shown in FIG. 13A, the installation position of the sensor may affect accuracy. For example, when the sensor and the antenna are separated by a predetermined distance or more, the degree of movement obtained through the sensor value may be different from that of the antenna. In order to overcome the difference in the degree of movement according to the installation position of the sensor, the structure as shown in Figure 13c or 13d may be applied. 13C and 13D illustrate examples of installation of a sensor in a wireless communication system according to various embodiments of the present disclosure.
도 13c를 참고하면, 단말은 AP 1310, BB(baseband) 회로 1320, RFIC 1330, 안테나 1340를 포함하고, RFIC 1330 내에 센서 1350가 설치된다. 밀리미터 파의 특성 상, 경로 손실이 크므로, RFIC 1330는 안테나 1340에 근접하도록 배치될 수 있다. 따라서, RFIC 1330 내에 센서 1350를 설치하면, 센서 1350는 안테나 1340와 물리적으로 가까이 설치된다. 이 경우, 센서 1350에 의해 측정된 측정 값들에 기초하여 판단되는 움직임 정도는, 안테나 1340의 움직임 정도로 취급될 수 있다. 이때, 센서 1350는, 다른 목적으로 사용되는 센서와 별도의, 안테나 1340의 움직임 측정을 위한 추가적인 구성요소일 수 있다.Referring to FIG. 13C, the terminal includes an AP 1310, a baseband (BB) circuit 1320, an RFIC 1330, and an antenna 1340, and a sensor 1350 is installed in the RFIC 1330. Due to the millimeter wave characteristics, the path loss is large, so that the RFIC 1330 may be disposed to approach the antenna 1340. Therefore, when the sensor 1350 is installed in the RFIC 1330, the sensor 1350 is physically installed close to the antenna 1340. In this case, the degree of movement determined based on the measured values measured by the sensor 1350 may be treated as the degree of movement of the antenna 1340. In this case, the sensor 1350 may be an additional component for measuring the movement of the antenna 1340, which is separate from the sensor used for other purposes.
도 13d를 참고하면, 단말은 AP 1310, BB 회로 1320, RFIC 1330, 안테나 1340를 포함하고, 센서 1350 및 센서 허브(sensor hub) 1360를 포함한다. 도 13c의 실시 예와 달리, 도 13d의 구조는 센서 1350의 위치를 특정하지 아니한다. 단, AP 1310 또는 다른 프로세서는 센서 1350의 설치 위치 및 안테나 1340의 설치 위치에 대한 정보를 이용하여 움직임 정도에 대한 켈리브레이션(calibration)을 수행하고, 보상값을 설정한다. 따라서, 단말은 센서 1350에 의해 측정된 센서 값 또는 센서 값으로부터 결정된 새로운 방향 좌표를 보상 값에 기초하여 보상한 후, 안테나에 대한 값으로 사용할 수 있다.Referring to FIG. 13D, the terminal includes an AP 1310, a BB circuit 1320, an RFIC 1330, and an antenna 1340, and includes a sensor 1350 and a sensor hub 1360. Unlike the embodiment of FIG. 13C, the structure of FIG. 13D does not specify the position of the sensor 1350. However, the AP 1310 or another processor performs calibration on the degree of movement by using information on the installation position of the sensor 1350 and the installation position of the antenna 1340, and sets a compensation value. Therefore, the terminal may compensate for the sensor value measured by the sensor 1350 or the new direction coordinate determined from the sensor value based on the compensation value, and then use the value for the antenna.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. Methods according to the embodiments described in the claims or the specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented in software, a computer-readable storage medium for storing one or more programs (software modules) may be provided. One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in an electronic device. One or more programs include instructions that cause an electronic device to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(read only memory, ROM), 전기적 삭제가능 프로그램가능 롬(electrically erasable programmable read only memory, EEPROM), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(compact disc-ROM, CD-ROM), 디지털 다목적 디스크(digital versatile discs, DVDs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. Such programs (software modules, software) may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory (EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs) or other forms It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations. In addition, each configuration memory may be included in plural.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(local area network), WAN(wide area network), 또는 SAN(storage area network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program may be configured through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the above-described specific embodiments of the present disclosure, the components included in the disclosure are expressed in the singular or plural according to the specific embodiments presented. However, the singular or plural expressions are selected to suit the circumstances presented for convenience of description, and the present disclosure is not limited to the singular or plural elements, and the singular or plural elements may be used in the singular or the singular. Even expressed components may be composed of a plurality.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present disclosure, specific embodiments have been described. However, various modifications may be possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the following claims, but also by the equivalents of the claims.

Claims (14)

  1. 무선 통신 시스템에서 단말의 동작 방법에 있어서,In the method of operation of a terminal in a wireless communication system,
    제1 기간 동안 다수의 기준 신호들을 수신하는 과정과,Receiving a plurality of reference signals during a first period of time;
    제2 기간 동안 다수의 기준 신호들을 수신하는 과정과,Receiving a plurality of reference signals during a second period of time,
    상기 제1 기간 동안 수신된 다수의 기준 신호들에 대한 제1 측정 값 집합 및 제2 기간 동안 수신된 다수의 기준 신호들에 대한 제2 측정 값 집합에 기초하여 빔 불일치 여부를 판단하는 과정을 포함하는 방법.Determining whether there is a beam mismatch based on a first set of measurement values for the plurality of reference signals received during the first period and a second set of measurement values for the plurality of reference signals received during the second period. How to.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 측정 값 집합 및 상기 제2 측정 값 집합은, 적어도 하나의 동일한 빔에 대한 둘 이상의 측정 값들을 포함하는 방법.Wherein the first set of measurement values and the second set of measurement values comprise two or more measurement values for at least one same beam.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치 여부를 판단하는 과정은,The process of determining whether the beam mismatch,
    상기 제1 측정 값 집합에 포함된 측정 값들의 제1 패턴 및 상기 제2 측정 값 집합에 포함된 측정 값들의 제2 패턴을 비교하는 과정과,Comparing a first pattern of measured values included in the first set of measured values and a second pattern of measured values included in the second set of measured values;
    상기 제1 패턴 및 상기 제2 패턴의 유사도가 임계치보다 작으면, 상기 빔 불일치를 선언하는 과정을 포함하며,If the similarity between the first pattern and the second pattern is less than a threshold, declaring the beam mismatch;
    상기 제1 패턴 및 상기 제2 패턴은, 상기 측정 값들의 상대적 크기 관계, 상기 측정 값들의 오름차순 또는 내림차순으로 정렬된 빔들의 순서 중 적어도 하나에 기초하여 정의되는 방법.Wherein the first pattern and the second pattern are defined based on at least one of a relative magnitude relationship of the measured values, an order of beams arranged in ascending or descending order of the measured values.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치 여부를 판단하는 과정은,The process of determining whether the beam mismatch,
    상기 제1 측정 값 집합 및 상기 제2 측정 값 집합 간 측정 값들의 변화량이 제1 임계치를 초과하면, 상기 제1 측정 값 집합 및 상기 제2 측정 값 집합의 측정 값들에 따른 빔들의 순서를 비교하는 과정과,When the amount of change in the measured values between the first set of measured values and the second set of measured values exceeds a first threshold, comparing the order of the beams according to the measured values of the first set of measured values and the second set of measured values. Process,
    상기 순서가 제2 임계치 이상 횟수 연속적으로 변경되면, 상기 빔 불일치를 선언하는 과정을 포함하는 방법.If the order has changed consecutively more than a second threshold, declaring the beam mismatch.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 빔들의 순서는, 제3 임계치 이하의 차이를 가지는 측정 값들에 대응하는 빔들이 동일한 순위를 가지도록 결정되는 방법.The order of the beams is determined such that the beams corresponding to the measured values having a difference below the third threshold have the same rank.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치의 발생 여부는, 주기적으로 수신 회로를 불활성화하는 불연속 동작 모드로 동작 중, 슬립(sleep) 구간(duration)에서 판단되며,The occurrence of the beam mismatch is determined in a sleep duration during operation in a discontinuous operation mode in which the receiving circuit is periodically inactivated.
    상기 빔 불일치가 발생되지 아니함이 판단됨에 따라, 온(on) 구간 도래 전까지 상기 수신 회로를 불활성화하는 과정을 더 포함하는 방법.And determining that the beam mismatch does not occur, deactivating the receiving circuit until an on-interval arrives.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치가 발생함이 판단됨에 따라, 기지국으로 상기 단말에 특정한 기준 신호들의 송신을 요청하는 메시지를 송신하는 과정과,As the beam mismatch occurs, transmitting a message requesting transmission of reference signals specific to the terminal to a base station;
    상기 기준 신호들을 이용하여 새로운 서빙 빔을 결정하는 과정을 더 포함하는 방법.Determining a new serving beam using the reference signals.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치가 발생함이 판단됨에 따라, 상기 제2 측정 값 집합의 측정 값들의 패턴과 유사한 패턴을 가지는 이전 측정 값들을 확인하는 과정과,Ascertaining that the beam mismatch occurs, identifying previous measurement values having a pattern similar to the pattern of the measurement values of the second set of measurement values;
    상기 이전 측정 값들을 획득 시 결정된 서빙 빔을 새로운 서빙 빔으로 결정하는 과정을 더 포함하는 방법.Determining the serving beam determined upon obtaining the previous measurement values as a new serving beam.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 빔 불일치가 발생함이 판단됨에 따라, 현재 서빙 빔의 주 이득의 방향 좌표 및 적어도 하나의 센서에 의해 측정되는 회전량 또는 이동량에 기초하여, 새로운 서빙 빔을 결정하는 과정을 더 포함하는 방법.Determining that the new serving beam is based on the direction coordinate of the main gain of the current serving beam and the amount of rotation or movement measured by the at least one sensor as it is determined that the beam mismatch occurs.
  10. 무선 통신 시스템에서 단말의 동작 방법에 있어서,In the method of operation of a terminal in a wireless communication system,
    불연속 동작 모드의 온(on) 구간(duration) 동안, 신호를 수신하기 위해, 수신 회로를 활성화하는 과정과,Activating a receiving circuit to receive a signal during an on duration of the discontinuous mode of operation;
    슬립(sleep) 구간이 도래하면, 상기 수신 회로를 불활성화하는 과정과,Deactivating the receiving circuit when a sleep period arrives;
    상기 슬립 구간의 제1 부분 경과 후, 빔 불일치의 발생 여부를 판단하는 과정과,Determining whether a beam mismatch occurs after a first partial elapse of the sleep period;
    상기 빔 불일치가 발생하면, 상기 슬립 구간의 제2 부분 동안 빔을 회복하기 위해 상기 수신 회로를 활성화하는 과정을 포함하는 방법.If the beam mismatch occurs, activating the receiving circuit to recover the beam during the second portion of the sleep period.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 빔 불일치가 발생하지 아니하면, 상기 제2 부분 동안 상기 수신 회로를 불활성화하는 과정을 더 포함하는 방법.If the beam mismatch does not occur, further comprising deactivating the receiving circuit during the second portion.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 제2 부분은, 상기 빔을 회복하기 위한 절차를 수행하기 위해 요구되는 시간 이상의 길이를 가지는 방법.The second portion has a length greater than the time required to perform a procedure for recovering the beam.
  13. 무선 통신 시스템의 단말의 장치에 있어서, 상기 장치는 청구항 1 내지 9의 방법을 수행하도록 구성되는 장치.An apparatus of a terminal of a wireless communication system, wherein the apparatus is configured to perform the method of claims 1 to 9.
  14. 무선 통신 시스템의 단말의 장치에 있어서, 상기 장치는 청구항 10 내지 12의 방법을 수행하도록 구성되는 장치.An apparatus of a terminal of a wireless communication system, wherein the apparatus is configured to perform the method of claims 10-12.
PCT/KR2017/002758 2016-11-28 2017-03-14 Device and method for detecting beam misalignment in wireless communication system WO2018097416A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202310334549.3A CN116346186A (en) 2016-11-28 2017-03-14 Apparatus and method for detecting beam misalignment in a wireless communication system
US16/464,509 US11171705B2 (en) 2016-11-28 2017-03-14 Device and method for detecting beam misalignment in wireless communication system
CN201780073642.6A CN110235387B (en) 2016-11-28 2017-03-14 Apparatus and method for detecting beam misalignment in wireless communication system
EP17874835.6A EP3537625B1 (en) 2016-11-28 2017-03-14 Device and method for detecting beam misalignment in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160159169 2016-11-28
KR10-2016-0159169 2016-11-28
KR1020170018714A KR102588492B1 (en) 2016-11-28 2017-02-10 Apparatus and method for detecting beam misalignment in wireless communication system
KR10-2017-0018714 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018097416A1 true WO2018097416A1 (en) 2018-05-31

Family

ID=62195474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002758 WO2018097416A1 (en) 2016-11-28 2017-03-14 Device and method for detecting beam misalignment in wireless communication system

Country Status (2)

Country Link
CN (1) CN116346186A (en)
WO (1) WO2018097416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032554A1 (en) * 2018-08-09 2020-02-13 삼성전자 주식회사 Method and device for measuring beam in wireless communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210058131A1 (en) * 2019-08-21 2021-02-25 Samsung Electronics Co., Ltd. Method and apparatus of beam selection at terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130017932A (en) * 2011-08-12 2013-02-20 삼성전자주식회사 Apparatus and method for adaptively beam-forming in wireless communication system
US20130244647A1 (en) * 2012-03-14 2013-09-19 Qualcomm Incorporated Method and apparatus of measuring and reselecting cells
KR20130125903A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Apparatus and method for performing beamforming in communication system
US20150222345A1 (en) * 2014-02-06 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Methods for Signaling and Using Beam Forming Quality Indicators
US20160095102A1 (en) * 2014-09-26 2016-03-31 Mediatek Inc. Beam Misalignment Detection for Wireless Communication System with Beamforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130017932A (en) * 2011-08-12 2013-02-20 삼성전자주식회사 Apparatus and method for adaptively beam-forming in wireless communication system
US20130244647A1 (en) * 2012-03-14 2013-09-19 Qualcomm Incorporated Method and apparatus of measuring and reselecting cells
KR20130125903A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Apparatus and method for performing beamforming in communication system
US20150222345A1 (en) * 2014-02-06 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Methods for Signaling and Using Beam Forming Quality Indicators
US20160095102A1 (en) * 2014-09-26 2016-03-31 Mediatek Inc. Beam Misalignment Detection for Wireless Communication System with Beamforming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032554A1 (en) * 2018-08-09 2020-02-13 삼성전자 주식회사 Method and device for measuring beam in wireless communication system

Also Published As

Publication number Publication date
CN116346186A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2018147665A1 (en) Method and apparatus for beam management
WO2021006618A1 (en) Monitoring of downlink control channels for communication with multiple transmission-reception points
WO2019083344A1 (en) Method for transmitting positioning information by terminal in wireless communication system supporting sidelink, and device therefor
WO2022075699A1 (en) Method and apparatus for beam failure recovery in a wireless communication system
WO2018155977A1 (en) Apparatus and method for transmitting reference signal in wireless communication system
KR102588492B1 (en) Apparatus and method for detecting beam misalignment in wireless communication system
WO2019031816A1 (en) Method and apparatus for data communicating in a wireless communication system
WO2019039669A1 (en) Device and method for beam management in wireless communication system
EP3646475A1 (en) Apparatus and method for controlling directivity in wireless communication system
WO2018155884A1 (en) Apparatus and method for generating security key in wireless communication system
EP2898646A1 (en) Method and apparatus for transmitting and receiving broadcast channel in cellular communication system
WO2019098654A1 (en) Device and method for performing measurement related to handover in wireless communication system
WO2020060143A1 (en) Method and device for controlling transmission power in wireless communication system
WO2016163790A1 (en) Interference cancellation method and base station apparatus therefor
WO2016148384A1 (en) Doppler distribution measurement method in wireless lan system
WO2020256516A2 (en) Method and apparatus for aperiodic reference signal transmission and reception
WO2019172682A1 (en) Apparatus and method for recovery of synchronization in wireless communication system
WO2021137658A1 (en) Method and apparatus for reciprocity based csi-rs transmission and reception
WO2021154050A1 (en) Method and apparatus for nr ue-based relative positioning scheme
WO2019124957A1 (en) Apparatus and method for measurement configuration in wireless communication system
EP4026259A1 (en) Method and apparatus for port selection in wireless communication systems
WO2019083345A1 (en) Method for performing otdoa-related operation by terminal in wireless communication system, and apparatus therefor
WO2018097416A1 (en) Device and method for detecting beam misalignment in wireless communication system
EP3949632A1 (en) Method and apparatus of receiving downlink control information
WO2022139503A1 (en) Method and apparatus for robust mimo transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017874835

Country of ref document: EP

Effective date: 20190606