WO2018097180A1 - Coated sand, method for producing same, and method for producing casting mold using same - Google Patents

Coated sand, method for producing same, and method for producing casting mold using same Download PDF

Info

Publication number
WO2018097180A1
WO2018097180A1 PCT/JP2017/042008 JP2017042008W WO2018097180A1 WO 2018097180 A1 WO2018097180 A1 WO 2018097180A1 JP 2017042008 W JP2017042008 W JP 2017042008W WO 2018097180 A1 WO2018097180 A1 WO 2018097180A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated sand
mold
water glass
spherical particles
water
Prior art date
Application number
PCT/JP2017/042008
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 高間
哲也 浦
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to JP2018552617A priority Critical patent/JP7055753B2/en
Priority to CN201780072064.4A priority patent/CN109982786B/en
Publication of WO2018097180A1 publication Critical patent/WO2018097180A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a coated sand, a method for producing the same, and a method for producing a mold using the same, and in particular, a mold finally obtained exhibits excellent strength and is excellent in disintegration.
  • the present invention relates to a dry coated sand having fluidity.
  • Patent Document 1 a solid coating layer containing water glass on the surface of a refractory aggregate is used as a binder coated refractory using water glass as a binder.
  • a binder coated refractory with good flowability (coated sand) is disclosed. Therefore, such a binder-coated refractory having good fluidity (coated sand) is filled in a molding cavity of a mold for mold making, and then, when water vapor is allowed to pass therethrough, it is applied.
  • the method of obtaining the target mold has been clarified as the binder coated refractory (coated sand) is solidified.
  • the present invention has been made against the background of such circumstances, and the problem to be solved is that the finally obtained mold exhibits excellent strength and excellent disintegration.
  • Another object of the present invention is to provide a dry coated sand having room temperature fluidity.
  • Another object of the present invention is to provide a mold manufacturing method using such excellent coated sand.
  • the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is employed in any combination. Is possible. It should be noted that aspects or technical features of the present invention are not limited to those described below, and can be recognized based on the inventive concept that can be grasped from the description of the entire specification. Should be understood.
  • the surface of the refractory aggregate is covered with a coating layer containing water glass, which is a dry coated sand having room temperature fluidity, and spherical particles are contained in the coating layer.
  • a characteristic coated sand (2)
  • the spherical particles are one or more selected from spherical particles made of silicon dioxide, aluminum oxide, or titanium oxide.
  • the described coated sand. (6) The average particle diameter d1 of the spherical particles and the average particle diameter d2 of the refractory aggregate The coated sand according to any one of the aspects (1) to (5) satisfying the following formula (1). 4 ⁇ d1 ⁇ d2 ⁇ 5000 ⁇ d1 (1) (7)
  • a method for producing dry coated sand having room temperature fluidity in which the surface of the refractory aggregate is covered with a coating layer containing water glass.
  • a binder mainly composed of glass and spherical particles and evaporating water By mixing a binder mainly composed of glass and spherical particles and evaporating water, the surface of the refractory aggregate is covered with a coating layer containing water glass and spherical particles, and the moisture content is increased.
  • a method for producing a coated sand comprising producing a coated sand having a content of 5 to 55 mass% of the solid content of water glass in the covering layer. (9) After using the coated sand according to any one of the above aspects (1) to (7) and filling it into a mold cavity of a mold that gives a target mold, water vapor is added.
  • a method for producing a mold characterized in that a target mold is obtained by aeration, holding in such a mold, and solidifying or curing.
  • Water is added to the coated sand according to any one of the above aspects (1) to (7) to make it wet, and the wet coated sand is filled in a mold.
  • a method for producing a mold which is characterized in that a target mold is obtained by holding in the mold and then solidifying or curing.
  • (11) According to the aspect (9) or the aspect (10), during the holding of the mold, further, dry air, heated dry air, or nitrogen gas is vented into the molding cavity of the mold. Mold manufacturing method.
  • the coating layer covering the surface of the refractory aggregate contains spherical particles together with water glass as a binder, It is composed.
  • Such coated sand of the present invention is filled in the mold (more specifically, in the molding cavity of the mold), and moisture is supplied to the filled coated sand (filled phase) by aeration of water vapor or the like. Then, the spherical particles effectively flow between the refractory aggregates together with the water glass made into a solution by the supplied moisture, and as a result, the filling property of the coated sand in the molding die (in the molding cavity) is improved. It is advantageously improved. In a mold obtained by solidifying or hardening the water glass with such improved filling properties, spherical particles are effectively interposed in the gaps between adjacent refractory aggregates. As a result, excellent strength is exhibited.
  • a structure similar to a stone wall is formed by refractory aggregate, spherical particles, and solidified or hardened water glass.
  • a strength that can withstand the high pressure at the time of pouring the molten metal is exhibited.
  • the water glass that bonds between the refractory aggregates in the mold is decomposed, and spherical particles exist between the refractory aggregates.
  • the bonding action between the refractory aggregates by water glass is lost early after the injection of the molten metal compared to the conventional one, and therefore, the collapsibility It will be excellent.
  • the coated sand according to the present invention is generally prepared by mixing water glass in the state of an aqueous solution as a binder with the refractory aggregate and evaporating water from the mixture, in other words, an aqueous solution.
  • the surface of the refractory aggregate is produced by evaporating the water of the water glass in the state of It is formed in a dry state and has good room temperature fluidity.
  • the “dry coated sand having room temperature fluidity” in the present invention means a coated sand from which a measured value is obtained when the dynamic angle of repose is measured regardless of the moisture content.
  • This dynamic angle of repose means that the coated sand is accommodated in a cylinder whose one end in the axial direction is closed with a transparent plate (for example, in a container having a diameter of 7.2 cm and a height of 10 cm, its volume
  • the coated sand is flowing in the cylinder by holding the shaft center in the horizontal direction and rotating it around the horizontal axis at a constant speed (for example, 25 rpm).
  • the slope of the layer is flat and refers to the angle formed between the slope and the horizontal plane.
  • the dynamic repose angle of the coated sand according to the present invention is preferably 80 ° or less, more preferably 45 ° or less, and still more preferably 30 ° or less.
  • a coated sand having a dynamic angle of repose of 45 ° or less can be advantageously obtained by using a spherical refractory aggregate.
  • the slope of the coated sand layer is not formed as a flat surface, and as a result, the dynamic angle of repose cannot be measured, It will be referred to as wet coated sand.
  • the dry coated sand having room temperature fluidity according to the present invention has a moisture content of 5 to 55% by mass with respect to the solid content of water glass contained in the coating layer covering the surface of the refractory aggregate.
  • the corresponding amount is desirable, more desirably 10 to 50% by mass, and most desirably 20 to 50% by mass.
  • the moisture content in the coated sand is less than the amount corresponding to 5% by mass with respect to the solid content of the water glass in the coating layer, the water glass is vitrified and water is added again during the mold making. There is a possibility that it does not return to a solution state. On the other hand, if the amount exceeds 55% by mass, the coated sand may not be in a dry state.
  • the method according to types, such as water glass is employable suitably.
  • the measuring method described in the column of Examples described later can be exemplified.
  • an organic component containing moisture for example, a surfactant or a humectant
  • the moisture content is also taken into account with the moisture in the organic component. Must be measured (calculated).
  • the refractory aggregate constituting the coated sand of the present invention is a refractory substance that functions as a base material of a mold, and any of various refractory granular or powder materials conventionally used for molds. Specifically, silica sand, recycled silica sand, special sand such as alumina sand, olivine sand, zircon sand, chromite sand, ferrochrome slag, ferronickel slag, converter slag, etc. Slag-based particles; artificial particles such as alumina-based particles and mullite-based particles; and regenerated particles thereof; alumina balls, magnesia clinker, and the like.
  • refractory aggregates may be fresh sand, or reclaimed sand or recovered sand that has been used once or a plurality of times as casting sand for casting molds. Even mixed sand made by adding fresh sand to sand or recovered sand and mixing them can be used.
  • Such a refractory aggregate is generally used with a particle size of about 40 to 130, preferably about 50 to 110 in terms of AFS index.
  • the refractory aggregate is preferably spherical, and specifically, a refractory aggregate having a particle shape factor of 1.2 or less, more preferably 1.0 to 1.1 is desirable.
  • a fireproof aggregate with a particle shape factor of 1.2 or less the fluidity and filling properties during mold making are improved, and the number of contacts between aggregates increases, so that the same strength is expressed. It is possible to reduce the amount of binders and additives necessary for the treatment.
  • the particle size coefficient of the aggregate used here is generally adopted as one scale indicating the outer shape of the particle, and is also referred to as a particle shape index, and as the value approaches 1, This means approaching a sphere (true sphere).
  • a particle shape factor is represented by the value calculated using the surface area (sand surface area) of the aggregate measured by various well-known methods, for example, a sand surface area measuring device ( This means a value obtained by measuring the surface area of actual aggregate particles (granular sand) per gram using George Fischer) and dividing it by the theoretical surface area.
  • a theoretical surface area is a surface area when it is assumed that aggregate particles (sand particles) are all spherical.
  • a binder mainly composed of water glass is used as a binder for covering the fireproof aggregate as described above.
  • Water glass is a water-soluble silicate compound.
  • silicate compound include sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, and ammonium silicate.
  • sodium silicate (sodium silicate) is particularly advantageously used in the present invention.
  • various water-soluble binders such as thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers may be used in combination as long as water glass is used as a main component. Is possible.
  • the ratio of water glass in the whole binder is preferably 60% by mass or more, more preferably 80% by mass or more, and most preferably 90% by mass. That's it.
  • sodium silicate is usually classified and used as No. 1 to No. 5 depending on the molar ratio of SiO 2 / Na 2 O 2 .
  • sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3
  • sodium silicate No. 2 is SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6
  • sodium silicate No. 3 has a SiO 2 / Na 2 O molar ratio of 2.8 to 3.3
  • sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5
  • sodium silicate No. 5 has a SiO 2 / Na 2 O molar ratio. Is 3.6 to 3.8.
  • sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408.
  • these various sodium silicates may be used alone or in combination, and the molar ratio of SiO 2 / Na 2 O may be adjusted by mixing. Is possible.
  • the sodium silicate constituting the water glass used as the binder generally has a SiO 2 / Na 2 O molar ratio of 1.9 or more, preferably Is preferably 2.0 or more, more preferably 2.1 or more, and sodium silicate corresponding to No. 1 and No. 2 in the above-mentioned classification of sodium silicate is particularly advantageously used.
  • Such sodium silicates No. 1 and No. 2 provide dry coated sand having stable and good characteristics even when the sodium silicate concentration in the water glass is wide.
  • the upper limit of the SiO 2 / Na 2 O molar ratio in such sodium silicate is appropriately selected according to the characteristics of the water glass in the form of an aqueous solution, but generally 3.5 or less, It is preferably 3.2 or less, more preferably 2.7 or less.
  • the molar ratio of SiO 2 / Na 2 O is smaller than 1.9, the viscosity of the water glass is lowered, and it becomes difficult to make the coated sand dry unless the water content is considerably reduced.
  • it exceeds 3.5 the solubility in water decreases, the adhesion area cannot be gained, and the strength of the mold finally obtained may decrease.
  • the water glass used in the present invention means a solution of a silicate compound in a state dissolved in water.
  • water is added to such a stock solution as purchased in the market. It is added and used in a diluted state.
  • the non-volatile content water glass component
  • solid content which corresponds to the above-described soluble silicate compound such as sodium silicate.
  • the higher the proportion of such solid content (nonvolatile content) the higher the concentration of the silicate compound in the water glass.
  • the solid content of the water glass used in the present invention corresponds to the amount excluding the amount of water in the stock solution when it is composed only of the stock solution, while the stock solution is converted into water.
  • the amount excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the solid content of the water glass used. It becomes.
  • the solid content (nonvolatile content) in such water glass is set to an appropriate ratio depending on the type of the water glass component (soluble silicate compound), etc., but is preferably 20 to 50. It is desirable that it is contained in a proportion by mass.
  • the water glass component corresponding to the solid content appropriately present in the aqueous solution, the water glass component can be uniformly and uniformly applied to the fire resistant aggregate during mixing (kneading) with the fire resistant aggregate. So that the target mold can be advantageously formed. If the concentration of the water glass component in the water glass is too low and the total amount of solids is less than 20% by mass, the heating temperature is increased or the heating time is increased for drying the coated sand. For this reason, problems such as energy loss are caused.
  • the ratio of the solid content in the water glass becomes too high, it becomes difficult to uniformly coat the surface of the refractory aggregate with the water glass component, which causes a problem in improving the properties of the target mold. Therefore, it is desirable to prepare water glass in the form of an aqueous solution so that the solid content is 50% by mass or less, and thus the water content is 50% by mass or more.
  • Such water glass is preferably in a proportion of 0.1 to 5.0 parts by mass in terms of solid content when considered as only non-volatile content with respect to 100 parts by mass of the refractory aggregate. It is desirable to use at a ratio of 2.5 parts by mass, and among them, a ratio of 0.2 to 2.0 parts by mass is particularly advantageously employed to form a predetermined coating layer on the surface of the refractory aggregate.
  • the Rukoto Here, the measurement of solid content is implemented as follows. That is, 10 g of a sample was weighed and stored in an aluminum foil dish (length: 9 cm, width: 9 cm, height: 1.5 cm), placed on a heating plate maintained at 180 ⁇ 1 ° C., and left for 20 minutes.
  • Solid content (mass%) [mass after drying (g) / mass before drying (g)] ⁇ 100
  • the amount of water glass used is too small, it is difficult to form a coating layer on the surface of the refractory aggregate, and the solidification or hardening of the coated sand at the time of mold making may not proceed sufficiently. There is.
  • the amount of water glass used is excessive, an excessive amount of water glass adheres to the surface of the refractory aggregate, making it difficult to form a uniform coating layer, and the coated sand adheres to each other.
  • agglomeration composite particle formation
  • spherical particles are contained in the coating layer containing water glass that covers the surface of the refractory aggregate.
  • Coated sand containing spherical particles in such a coating layer containing water glass is filled in the molding die (in the molding cavity of the molding die), and water vapor is added to the filled coated sand (filled phase).
  • the spherical particles in the coating layer effectively flow between the refractory aggregates together with the water glass that has become a solution by the supplied moisture, and as a result, in the mold (
  • the filling property of the coated sand in the molding cavity) is advantageously improved.
  • a mold obtained by solidifying or hardening the water glass with such improved filling properties spherical particles are effectively interposed in the gaps between adjacent refractory aggregates. As a result, excellent strength is exhibited.
  • a structure similar to a stone wall is formed by refractory aggregate, spherical particles, and solidified or hardened water glass.
  • a strength that can withstand the high pressure at the time of pouring the molten metal is exhibited.
  • the water glass that bonds between the refractory aggregates in the mold is decomposed, and spherical particles exist between the refractory aggregates.
  • the bonding action between the refractory aggregates by water glass is lost early after the molten metal is injected as compared with the conventional one. It will be excellent.
  • the spherical particles contained in the coating layer have an average particle diameter of preferably 0.1 to 20.0 ⁇ m, more preferably. Those having a thickness of 0.1 to 10 ⁇ m, most preferably 0.5 to 5.0 ⁇ m are used.
  • the content of the spherical particles is 0.1 to 500 parts by mass, preferably 0.3 to 300 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer. More preferably, it is 0.5 to 200 parts by mass, still more preferably 0.75 to 100 parts by mass, and most preferably 1.0 to 50 parts by mass.
  • the average particle diameter of the spherical particles can be obtained from the particle size distribution measured by a laser diffraction type particle size distribution measuring device or the like.
  • the average particle diameter of the spherical particles: d1 and the average particle diameter of the refractory aggregate: d2 preferably satisfy the following formula (1), and the following formula ( It is more preferable to satisfy 2), and it is most preferable to satisfy the following formula (3).
  • the average particle size of the refractory aggregate can also be obtained from the particle size distribution measured by a laser diffraction type particle size distribution measuring device or the like. 4 ⁇ d1 ⁇ d2 ⁇ 5000 ⁇ d1 (1) 6 ⁇ d1 ⁇ d2 ⁇ 3000 ⁇ d1 (2) 7 ⁇ d1 ⁇ d2 ⁇ 2500 ⁇ d1 (3)
  • the spherical particles used in the present invention are not particularly limited as long as they have a spherical shape, and are not necessarily required to have a true spherical shape. Usually, those having a sphericity of 0.5 or more are preferably 0. Those of 0.7 or more, more preferably 0.9 or more, are advantageously used.
  • the sphericity is the average value of the aspect ratio (minor axis / major axis ratio) obtained from the projection shape of 10 single particles randomly selected in scanning electron microscope observation. I mean.
  • non-spherical particles since there are protrusions and depressions on the surface of non-spherical particles (non-spherical particles), for example, the non-spherical particles are refractory aggregate together with water glass that has become a solution by the supplied moisture.
  • non-slip action occurs due to the collision between the projections on the surface of the non-spherical particles and the refractory aggregate particles or other non-spherical particles, and water between the refractory aggregate particles The flow of glass and non-spherical particles is impeded. For this reason, when non-spherical particles are used in the present invention, there is a risk of reducing the filling properties and strength of the finally obtained mold.
  • the material constituting the spherical particles used in the present invention is not particularly limited, but is preferably an inorganic metal oxide.
  • particles composed of inorganic metal oxides particles composed of silicon dioxide, aluminum oxide, titanium oxide, etc. are advantageously used.
  • silicon dioxide particles are strongly alkaline water glass composed of silicon dioxide. It can react with silanol groups formed on the surface, and when water is evaporated, a strong bond is formed between silicon dioxide and solid water glass, which can improve the mold strength. ,preferable. Silicon dioxide has crystallinity and amorphousness, but amorphous is desirable.
  • Amorphous silicon dioxide includes precipitated silica, calcined silica produced in an electric arc or by flame hydrolysis, ZrSiO Examples include silica produced by pyrolysis of 4 , silicon dioxide produced by oxidation of metallic silicon with a gas containing oxygen, and quartz glass powder of spherical particles produced from crystalline quartz by melting and subsequent rapid cooling. . Of course, these can be used alone or in combination of two or more. In the present invention, silicon dioxide is treated as an inorganic metal oxide.
  • the coated sand of the present invention in addition to the spherical particles described above, various additives can be appropriately contained in the coating layer as necessary.
  • a surfactant can be exemplified as one of such additives.
  • a surfactant is contained in the coating layer of the coated sand of the present invention, the water permeability in the coated sand, in other words, the wettability of the coated sand with respect to water is effectively improved. Even when a small amount of moisture is supplied to the coated sand filled therein, the entire coated sand in the molding cavity is advantageously wetted and becomes wet. As described above, since the amount of moisture added to the coated sand can be suppressed to a small amount, the mold release property of the molded mold is further improved, and the obtained mold exhibits more excellent strength. It will be.
  • surfactants for example, cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, silicone surfactants and fluorine-based surfactants. Any surfactant or the like can be used as long as the object of the present invention is not impaired.
  • the silicone-based surfactant specifically indicates a surfactant having a siloxane structure as a nonpolar site, and the fluorine-based surfactant particularly indicates a surfactant having a perfluoroalkyl group.
  • the content of the surfactant in the present invention is desirably 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer, and more preferably 0.5 to 15 parts by mass. 0.0 parts by mass is preferable, and 0.75 to 12.5 parts by mass is particularly preferable. If the amount of the surfactant to be contained is too small, the above-mentioned effects may not be enjoyed advantageously. On the other hand, even if the amount of the surfactant is too large, the effect according to the amount used may be reduced.
  • the surfactant may not be solidified when the water glass is dried, and it may not be obtained even when trying to obtain a dry coated sand. Moreover, it is not a good idea from the viewpoint of cost effectiveness.
  • the coating layer of the coated sand of the present invention may further contain a moisturizing agent.
  • a moisturizing agent By incorporating a moisturizing agent into the coating layer containing water glass, the wettability of the coated sand wetted by moisture during mold casting is stably maintained until solidified or cured by heating. It becomes possible.
  • the content of the humectant in the present invention is preferably 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer, and more preferably 0.5 to 15.0 parts by mass. Part is more desirable, and most preferably 0.75 to 12.5 parts by mass.
  • polyhydric alcohol, water-soluble polymer, hydrocarbons, saccharides, protein, inorganic compounds, and the like can be used.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, dipropylene glycol, propylene glycol, butylene glycol, 1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2-octanediol, 1,2, Examples include 6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, and trimethylolpropane.
  • the water-soluble polymer compound particularly refers to a compound having 5 to 25 alcoholic hydroxyl groups per 1000 molecular weight.
  • water-soluble polymer compounds include vinyl alcohol polymers such as polyvinyl alcohol and various modified products thereof; celluloses such as alkyl cellulose, hydroxyalkyl cellulose, alkyl hydroxyalkyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose. Derivatives; starch derivatives such as alkyl starch, carboxymethyl starch, and oxidized starch; and water-absorbing polymers such as sodium polyacrylate.
  • hydrocarbons examples include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, petroleum ether, petroleum benzyl, tetralin, decalin, tertiary amylbenzene, dimethylnaphthalene and the like.
  • saccharide examples include monosaccharides, oligosaccharides, polysaccharides such as dextrin, among which monosaccharides are saccharides that cannot be decomposed into simpler saccharides by hydrolysis, preferably Tricarbon sugar (monosaccharide having 3 carbon atoms) to decacarbon sugar (monosaccharide having 10 carbon atoms), more preferably hexose sugar (monosaccharide having 6 carbon atoms).
  • gelatin etc. are mentioned as protein.
  • inorganic compounds include sodium chloride, sodium sulfate, calcium chloride, magnesium chloride, and silicate. These various humectants can be used alone or in admixture of two or more.
  • various conventionally known moisturizers include those that are water-soluble to those that are sparingly water-soluble.
  • the viscosity increases when poured into water at room temperature (25 ° C.).
  • a moisturizing agent with a low is advantageously used.
  • a water-soluble humectant an amount of humectant corresponding to 20% of the mass of water is added to water at room temperature, and the mixture is stirred for 1 hour.
  • a poorly water-soluble humectant exhibits an effect as a humectant when dispersed in water.
  • the humectant advantageously used in the present invention includes cellulose derivatives such as glycerin and hydroxypropylmethylcellulose, water-absorbing polymers such as sodium polyacrylate, vinyl alcohol polymers such as polyvinyl alcohol, and weight average molecular weight. 50,000 or more polyethylene glycol (polyethylene oxide) etc. can be mentioned.
  • a moisture resistance improver may be included in the coating layer.
  • Inclusion of a moisture resistance improver in the coating layer can improve the moisture resistance of the final mold.
  • any agent can be used as long as it is conventionally used in the coated sand as long as it does not impair the effects of the present invention.
  • carbonates such as zinc carbonate, basic zinc carbonate, iron carbonate, manganese carbonate, copper carbonate, aluminum carbonate, barium carbonate, magnesium carbonate, calcium carbonate, lithium carbonate, potassium carbonate, sodium carbonate, tetraboric acid Sodium, potassium tetraborate, lithium tetraborate, ammonium tetraborate, calcium tetraborate, strontium tetraborate, silver tetraborate, sodium metaborate, potassium metaborate, lithium metaborate, ammonium metaborate, metaborate Calcium, silver metaborate, borate salts such as copper metaborate, lead metaborate, magnesium metaborate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, titanium sulfate, aluminum sulfate, sulfuric acid Zinc, copper sulfate Sulfate S
  • basic zinc carbonate, sodium tetraborate, potassium metaborate, lithium sulfate, and lithium hydroxide can improve moisture resistance more advantageously.
  • the moisture resistance improvers including those described above can be used alone, and two or more kinds can be used in combination.
  • the amount of such moisture resistance improver used is preferably about 0.5 to 50 parts by mass with respect to 100 parts by mass of the solid content of water glass. Is more preferably 20 parts by mass, and particularly preferably 2-15 parts by mass. In order to advantageously enjoy the effect of adding the moisture resistance improver, it is desirable that the amount used is 0.5 parts by mass or more. On the other hand, if the amount added is too large, binding of water glass is inhibited, It is desirable that the amount be 50 parts by mass or less because there is a possibility of causing problems such as a decrease in the strength of the finally obtained mold.
  • a coupling agent that strengthens the bond between the refractory aggregate and water glass.
  • a silane coupling agent, a zircon coupling agent, a titanium coupling agent Etc. can be used.
  • waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax; stearic acid amide, oleic acid amide, erucic acid amide, etc.
  • Fatty acid amides such as methylene bis stearic acid amide and ethylene bis stearic acid amide; stearic acid, stearyl alcohol; stearic acid metal salts such as lead stearate, zinc stearate, calcium stearate, magnesium stearate; stearin Acid monoglycerides, stearyl stearate, hydrogenated oils and the like can be used.
  • release agents paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent An agent or the like can also be used.
  • Each of these other additives is generally 5% by mass or less, preferably 3% by mass or less with respect to the solid content of the water glass in the coated sand coating layer. It is contained in
  • water glass as a binder, spherical particles, and as necessary, are used for a refractory aggregate.
  • Additives are added, kneaded or mixed and mixed uniformly to cover the surface of the refractory aggregate with water glass containing spherical particles, and the water of such water glass is evaporated.
  • a technique of forming a coating layer containing water glass and spherical particles on the surface of the refractory aggregate is used.
  • water vaporization of the coating layer needs to be performed quickly before the water glass solidifies or hardens, so that the water glass in the form of an aqueous solution is used against the refractory aggregate.
  • the refractory aggregate is preheated and water in the form of an aqueous solution is added.
  • a technique is adopted in which glass and spherical particles are kneaded or mixed to be mixed.
  • the water in the water glass is very quickly heated by the heat of such refractory aggregate. This means that the moisture content of the resulting coated sand can be effectively reduced, and a dry powder having room temperature fluidity can be advantageously obtained. .
  • the preheating temperature of the refractory aggregate is appropriately selected depending on the water content of the water glass and the blending amount thereof, but generally a temperature of about 100 to 160 ° C. is preferable. A temperature of about 100 to 140 ° C. is employed. If this preheating temperature is too low, it is not possible to effectively evaporate water, and it takes time to dry. Therefore, it is desirable to employ a temperature of 100 ° C. or higher. If it is too high, hardening of the water glass component will proceed while cooling of the resulting coated sand, and in addition, the formation of composite particles will proceed, so the function as the coated sand, especially the strength of the final mold obtained. This causes problems in physical properties.
  • spherical particles to be contained in the coating layer containing water glass and other additives used as necessary, for example, surfactants and moisturizers, were previously mixed with water glass. It may be added to the refractory aggregate in a state and kneaded, or it may be added separately from the water glass at the time of kneading and further kneaded. It may be provided and charged and kneaded.
  • the coating layer in the coated sand of the present invention is, for example, in a state where water glass and spherical particles are integrally integrated, or from the surface of the refractory aggregate to the outside, While the concentration of (nonvolatile content) gradually decreases or increases, the concentration of spherical particles or the like is configured to increase or decrease gradually.
  • concentration of (nonvolatile content) gradually decreases or increases
  • concentration of spherical particles or the like is configured to increase or decrease gradually.
  • spherical particles are present near the surface of the coating layer on the surface of the obtained coated sand, so that a mold formed using such a coated sand has better filling properties. Will be demonstrated.
  • the viscosity of the kneaded product increases as the water contained in the water glass evaporates, and the motor load of the mixer increases.
  • the spherical particles can be effectively adhered to the soft water glass that covers the surface of the refractory aggregate by introducing the spherical particles before becoming, and the spherical particles fall off in the finally obtained coated sand.
  • the water glass as a binder can be used even if it is diluted with water in order to adjust the viscosity. It is also possible to add water glass and water separately during kneading or mixing with the material.
  • the dry coated sand having room temperature fluidity according to the present invention preferably has a moisture content of 5 with respect to the solid content of the water glass contained in the coating layer covering the surface of the refractory aggregate.
  • the following two methods can be exemplified as a method for forming a mold using the dry coated sand according to the present invention.
  • dry coated sand and water are kneaded at the molding site where the mold is manufactured to make the coated sand wet, and the wet coated While filling the sand into the mold cavity of the mold that gives the target mold, the mold is heated to a temperature of 90-200 ° C. until the filled coated sand is dried in the mold, Will be held.
  • the coated sand is filled into the mold cavity of the mold that gives the target mold, water vapor is blown, and the flow phase of the water vapor wets the filled phase of the coated sand, Thereafter, it is held in a mold heated to 90 to 200 ° C. until it is dried.
  • molds such as molds and wooden molds, which are filled with dry coated sand having room temperature fluidity, are preferably preliminarily kept warm by heating, thereby being wetted by water vapor.
  • the drying of the coated sand can proceed advantageously.
  • a temperature of about 90 to 200.degree. C., particularly about 100 to 140.degree. C. is desirable as the temperature for preheating. If the temperature is too high, it becomes difficult for steam to pass to the surface of the mold, while if the temperature is too low, it takes time to dry the molded mold.
  • the dry coated sand to be filled in such a mold is also preferably preheated.
  • the bending strength of the obtained mold can be increased more advantageously by filling the molding die with the coated sand heated to a temperature of 30 ° C. or higher.
  • the heating temperature of such coated sand is preferably about 30 to 100 ° C., and particularly, coated sand heated to a temperature of about 40 to 80 ° C. is advantageously used.
  • the step of adding water to the wet coated sand to make it wet simply puts the dry coated sand and a predetermined amount of water into an appropriate mixer and mixes them. Therefore, there is an advantage that it can be carried out by a very simple work and can be carried out very easily and easily even in a molding site where the working environment is bad. In addition, it is also possible to add another additive at the time of addition of water. Further, in the first method, instead of heating the mold, the coated sand is blown into the wet coated sand filled in the mold by blowing dry air, dry heated air, nitrogen gas, or the like. It is also possible to dry and solidify or harden the sand.
  • the mold is heated as described above, specifically, the mold cavity is filled with the dry coated sand according to the present invention, and then formed therein.
  • water vapor is passed under pressure through a vent provided in the mold, so that the coated sand constituting the filled phase is moistened (moistened) to coat the coated sand.
  • the coated sand is bonded and connected to each other by the water glass contained in the layer to form an integral mold-shaped coated sand aggregate (bonded product).
  • Water glass is usually solidified by evaporation to dryness of water if no additives are added, and is cured when oxides or salts as curing agents are added. It becomes. Practically, since the curing agent is added, the filling phase is hardened, but it can be simply solidified.
  • the temperature of water vapor that is blown through the vent of such a mold and allows the filled phase of the coated sand to be vented is generally about 80 to 150 ° C., more preferably about 95 to 120 ° C.
  • a steam temperature around 100 ° C. is particularly advantageously employed.
  • a gauge pressure value of about 0.01 to 0.3 MPa, more preferably about 0.01 to 0.1 MPa is advantageously employed.
  • the pressure for venting water vapor is about the above-mentioned gauge pressure
  • the water vapor can be evenly vented to the mold formed in the mold
  • the water vapor passage time and the mold drying time are short, and the molding speed can be reduced.
  • such a gauge pressure has an advantage that molding is possible even when the breathability of the coated sand is poor.
  • the gauge pressure is too high, there is a risk of squeezing near the vent, while if the gauge pressure is too low, the entire coated phase of the coated sand is not vented and the coated sand is sufficiently moistened. There is a fear that it cannot be done.
  • a method for venting water vapor as described above a method is adopted in which water vapor is blown from a vent provided in the mold, and the coated sand (phase) filled in the molding cavity of the mold is vented.
  • the ventilation time water vapor is supplied to the surface of the filled coated sand so that the water glass as a binder contained in the coating layer on the surface is sufficiently moistened, and the coated sand is bonded (bonded) to each other.
  • the possible time is appropriately selected depending on the size of the mold, the number of vents, and the like. Generally, a ventilation time of about 2 seconds to about 60 seconds is adopted. .
  • a curing agent may be added in the mold as an additive for promoting the hardening of the water glass during holding of the mold. It is possible to further promote the solidification by neutralizing the binder (water glass) with a curing agent. It should be noted that the curing agent may be vented at any timing as long as it is being held in the mold, and there is no problem even if it is performed simultaneously with the vaporization of water vapor or the ventilation of dry air or the like.
  • Curing agents include carbon dioxide (carbonated water), sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, carboxylic acid, paratoluenesulfonic acid and other organic acids, methyl formate, ethyl formate, propyl formate, ⁇ -butyrolactone, Examples include ⁇ -propionlactone, ethylene glycol diacetate, diethylene glycol diacetate, glycerol diacetate, triacetin, propylene carbonate, and other monovalent alcohols such as methanol, ethanol, butanol, hexanol, and octanol. .
  • curing agents can be used alone, or two or more of them can be mixed and used.
  • these hardeners are good to ventilate the gas mold or mist while holding the mold, into the mold, and when wetted by adding water to the dry coated sand, A curing agent may be added together with water.
  • Each CS is weighed and accommodated in a crucible that has been baked and weighed, and the amount of moisture (W1) in the CS is calculated using the mass loss (%) after heating at 900 ° C. for 1 hour. It calculates from the following formula (4). The weighing is measured to the fourth decimal place.
  • the solid content (B1) of the water glass with respect to CS is calculated using the following formula (5), and then the water content (W1) in CS and the solid content (B1) of the water glass with respect to CS,
  • the water content relative to the solid content of water glass (CS water content relative to the solid content of water glass in the coating layer: W2) is calculated using the following equation (6).
  • W2 calculated as described above is shown as “moisture content” in Tables 1 and 2 below.
  • W1 [(M1-M2) / M3] ⁇ 100 (4)
  • W1 Moisture content (%) in CS, M1: Total mass (g) of crucible and CS before firing, M2: Total mass (g) of crucible and CS after firing, M3 : Mass of CS before firing (g)]
  • B1 [B2 / (100 + B2)] ⁇ (100 ⁇ W1) (5)
  • B1 Solid content (%) of water glass with respect to CS, B2: 100 of sand Solid amount of water glass added to parts (part), W1: amount of water in CS (%)]
  • W2 (W1 / B1) ⁇ 100 (6)
  • W2 Moisture content of CS with respect to solid content of water glass in coating layer ( %), W1: moisture content in CS (%), B1: solid content of water glass with respect to CS (%)]
  • a molten metal injection port 2 formed in advance at room temperature self-hardening sand and a core base fixing portion 4 at a lower portion (this portion is a discharge port for a waste core from a casting).
  • this portion is a discharge port for a waste core from a casting.
  • the half-cracked hollow main mold 6 (cavity diameter: 6 cm, height: 6 cm) having circular baseless cores 10 (diameter: 5 cm, high 5 cm) is bonded and fixed by the skirting board fixing portion 4, and the opposite hollow main mold 6 is further bonded and fixed to produce a sand mold 12 for casting test.
  • molten aluminum alloy (temperature: 710 ⁇ 5 ° C.) is poured from the molten metal inlet 2 of the casting test sand mold 12 and solidified, and then the main mold 6 is broken to form a circular waste as shown in FIG.
  • an impact is applied to the obtained casting 16 at a pressure of 0.2 MPa for 3 seconds at a time by an air hammer and discharged from the discharge port 14. The impact by the air hammer was repeated until 100% of the core sand was discharged, and the number of times was indicated.
  • the particle size at an integrated value of 50% was measured as an average particle size (D 50 ) from the particle size distribution.
  • D 50 average particle size
  • the average particle diameter was measured using the above measuring apparatus, and the error between the published values of each manufacturer was within 10%. Below, the average particle diameter of a spherical particle and a non-spherical particle shows a manufacturer's published value.
  • the ratio is 1.21 parts (solid component: 0.50 parts) with respect to parts, and as spherical particles, Elchem microsilica (trade name, manufactured by Elchem Japan Ltd., average particle diameter) which is spherical silicon dioxide particles. : 0.15 ⁇ m, sphericity: 0.96) at a ratio of 0.05 parts (10 parts with respect to 100 parts of the solid content of water glass) and kneading for 3 minutes to evaporate the water On the other hand, the mixture is stirred and mixed until the sand lump breaks down, and 0.01 parts of calcium stearate (2 parts with respect to 100 parts of the solid content of water glass) is added and stirred and mixed. Coated of Inuitai with sand: Got a CS1. When the moisture content of CS1 after such kneading was measured, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
  • -Production example 2- of dry CS The above production example 1 except that the spherical particles to be added are HS311 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 2.2 ⁇ m, sphericity: 0.98) which is spherical silicon dioxide particles.
  • dry CS2 having room temperature fluidity was obtained.
  • the moisture content of the obtained CS2 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
  • Examples of mold making (Examples 1 to 13, Comparative Examples 1 to 4)- CS (temperature: 20 ° C.) produced according to each of the above procedures is blown into a molding die heated to 110 ° C. at a gauge pressure of 0.3 MPa, and further filled with 0.05 MPa. Under the gauge pressure, steam at a temperature of 99 ° C. was blown for 5 seconds, and the coated sand phase filled in the molding die was aerated. Then, after such a water vapor ventilation is completed, under a gauge pressure of 0.03 MPa, hot air at a temperature of 150 ° C. is blown for 2 minutes, and the CS filled in the molding die is cured, respectively.
  • the mold obtained using the dry coated sand has excellent strength (bending strength). And exhibiting excellent disintegration property.
  • CS2, CS6, CS9, and CS14 (temperature: 20 ° C.) manufactured according to the above-described procedures are charged at a normal temperature into a Shinagawa universal agitator (5DM-r type, manufactured by Dalton Co., Ltd.). Water was added into the stirrer at a ratio of 2.0 parts with respect to 100 parts of CS, and the wet CS was prepared by stirring. The wet CS taken out from the stirrer is filled in a molding die heated to 150 ° C., then held in the molding die, and hot air at a temperature of 150 ° C. under a gauge pressure of 0.03 MPa.
  • Shinagawa universal agitator 5DM-r type, manufactured by Dalton Co., Ltd.
  • the circular non-empty core shown in FIG. 1 is produced, and the collapsibility of the core is evaluated according to the test method described above. did.
  • Various conditions such as the heating temperature of the mold
  • the test results are shown in Table 4 below.

Abstract

The present invention provides coated sand that is in a dry state, that is fluid at room temperature, and that makes it possible to obtain excellent strength and excellent disintegration properties in a casting mold obtained using the coated sand. The coated sand is in a dry state, is fluid at room temperature, and is coated by a coating layer in which the surface of a fire-resistant aggregate contains water glass as a binder. The coating layer includes spherical particles that are preferably spherical particles having an average particle size of 0.1-20 µm.

Description

コーテッドサンド及びその製造方法並びにこれを用いた鋳型の製造方法Coated sand, method for producing the same, and method for producing a mold using the same
 本発明は、コーテッドサンド及びその製造方法並びにこれを用いた鋳型の製造方法に係り、特に、最終的に得られる鋳型が、優れた強度を発揮すると共に崩壊性においても優れたものとなる、常温流動性を有する乾態のコーテッドサンドに関するものである。 The present invention relates to a coated sand, a method for producing the same, and a method for producing a mold using the same, and in particular, a mold finally obtained exhibits excellent strength and is excellent in disintegration. The present invention relates to a dry coated sand having fluidity.
 従来より、金属溶湯の鋳造に用いられる鋳型の一つとして、耐火性骨材からなる鋳型砂を所定の粘結材にて被覆してなるコーテッドサンドを用いて、目的とする形状に造型して得られたものが、用いられている。具体的には、日本鋳造工学会編の「鋳造工学便覧」第78~90頁には、そのようなコーテッドサンドにおける粘結剤として、水ガラスの如き無機系粘結剤の他、フェノール樹脂やフラン樹脂、ウレタン樹脂等の樹脂を用いた有機系粘結剤が明らかにされており、また、それら粘結剤を用いて自硬性鋳型を造型する手法も、明らかにされている。 Conventionally, as one of the molds used for casting molten metal, using a coated sand made of refractory aggregate coated with a predetermined caking additive, it is molded into the desired shape. What is obtained is used. Specifically, “Casting Engineering Handbook”, pages 78-90, edited by the Japan Foundry Engineering Society, as a binder in such coated sand, in addition to inorganic binders such as water glass, phenolic resins, Organic binders using resins such as furan resins and urethane resins have been clarified, and methods for molding self-hardening molds using these binders have also been clarified.
 例えば、特開2012-076115号公報(特許文献1)においては、粘結剤として水ガラスを用いた粘結剤コーテッド耐火物として、耐火骨材の表面に水ガラスを含有する固形のコーティング層が被覆されてなる、流動性が良好な粘結剤コーテッド耐火物(コーテッドサンド)が、明らかにされている。そこにおいて、そのような流動性が良好な粘結剤コーテッド耐火物(コーテッドサンド)は、鋳型造型のための成形型の成形キャビティ内に充填せしめられた後、水蒸気が通気せしめられることにより、かかる粘結剤コーテッド耐火物(コーテッドサンド)の固化が進行し、目的とする鋳型を得る手法が、明らかにされているのである。 For example, in Japanese Patent Application Laid-Open No. 2012-076115 (Patent Document 1), a solid coating layer containing water glass on the surface of a refractory aggregate is used as a binder coated refractory using water glass as a binder. A binder coated refractory with good flowability (coated sand) is disclosed. Therefore, such a binder-coated refractory having good fluidity (coated sand) is filled in a molding cavity of a mold for mold making, and then, when water vapor is allowed to pass therethrough, it is applied. The method of obtaining the target mold has been clarified as the binder coated refractory (coated sand) is solidified.
 しかしながら、特許文献1に開示の如き、従来の乾態のコーテッドサンドにあっては、そこに開示の手法、具体的には、成形キャビティ内に充填せしめた後、コーテッドサンドの充填相内に水蒸気を通気する手法に従って造型する場合、成形型内にコーテッドサンドを一旦、充填すると、かかる成形型内におけるコーテッドサンドの充填性が向上する余地がないという問題がある。その一方、得られる鋳型の崩壊性にあっても、未だ不十分であり、改善の余地が残されているのである。 However, in the conventional dry-type coated sand as disclosed in Patent Document 1, the method disclosed therein, specifically, after filling the molding cavity, water vapor is contained in the filled phase of the coated sand. In the case of molding according to the method of ventilating, there is a problem that once the coated sand is filled in the mold, there is no room for improving the filling property of the coated sand in the mold. On the other hand, even the disintegration property of the obtained mold is still insufficient, leaving room for improvement.
特開2012-76115号公報JP 2012-76115 A
 ここにおいて、本発明は、かかる事情を背景として為されたものであって、その解決すべき課題とするところは、最終的に得られる鋳型が、優れた強度を発揮すると共に崩壊性においても優れたものとなる、常温流動性を有する乾態のコーテッドサンドを提供することにある。また、本発明は、そのような優れたコーテッドサンドを用いた鋳型の製造方法を提供することをも、その解決課題とするものである。 Here, the present invention has been made against the background of such circumstances, and the problem to be solved is that the finally obtained mold exhibits excellent strength and excellent disintegration. Another object of the present invention is to provide a dry coated sand having room temperature fluidity. Another object of the present invention is to provide a mold manufacturing method using such excellent coated sand.
 そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものであるが、また、以下に記載の各態様は、任意の組合せにおいて採用可能である。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書全体の記載から把握され得る発明思想に基づいて、認識され得るものであることが、理解されるべきである。 In order to solve the above-described problems, the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is employed in any combination. Is possible. It should be noted that aspects or technical features of the present invention are not limited to those described below, and can be recognized based on the inventive concept that can be grasped from the description of the entire specification. Should be understood.
(1) 耐火性骨材の表面が水ガラスを含む被覆層にて覆われてなる、常温
   流動性を有する乾態のコーテッドサンドにして、該被覆層に球状粒子
   が含有せしめられていることを特徴とするコーテッドサンド。
(2) 含水分量が、前記被覆層における水ガラスの固形分量の5~55質
   量%である前記態様(1)に記載のコーテッドサンド。
(3) 前記球状粒子の含有量が、前記被覆層における水ガラスの固形分の
   100質量部に対して、0.1~500質量部である前記態様(1)
   又は前記態様(2)に記載のコーテッドサンド。
(4) 前記球状粒子の平均粒子径が0.1~20.0μmである前記態様
   (1)乃至前記態様(3)の何れか1つに記載のコーテッドサンド。
(5) 前記球状粒子が、二酸化ケイ素、酸化アルミニウム又は酸化チタン
   からなる球状粒子より選ばれる一種又は二種以上のものである前記態
   様(1)乃至前記態様(4)の何れか1つに記載のコーテッドサンド
   。
(6) 前記球状粒子の平均粒子径d1と前記耐火性骨材の平均粒子径d2
   とが、下記式(1)を満たす前記態様(1)乃至前記態様(5)の何
   れか1つに記載のコーテッドサンド。
     4×d1≦d2≦5000×d1 ・・・(1)
(7) 前記耐火性骨材が球状である前記態様(1)乃至前記態様(6)の
   何れか1項に記載のコーテッドサンド。
(8) 耐火性骨材の表面が水ガラスを含む被覆層にて覆われてなる、常温
   流動性を有する乾態のコーテッドサンドの製造方法にして、加熱した
   耐火性骨材に対して、水ガラスを主成分とする粘結剤及び球状粒子を
   混和せしめ、水分を蒸発させることにより、該耐火性骨材の表面が水
   ガラス及び球状粒子を含む被覆層にて覆われてなり、含水分量が該被
   覆層における水ガラスの固形分量の5~55質量%であるコーテッド
   サンドを製造することを特徴とするコーテッドサンドの製造方法。
(9) 前記態様(1)乃至前記態様(7)の何れか1つに記載のコーテッ
   ドサンドを用い、それを、目的とする鋳型を与える成形型の成形キャ
   ビティ内に充填した後、水蒸気を通気させて、かかる成形型内で保持
   し、固化乃至は硬化せしめることにより、目的とする鋳型を得ること
   を特徴とする鋳型の製造方法。
(10) 前記態様(1)乃至前記態様(7)の何れか1つに記載のコーテ
    ッドサンドに水を添加して湿態化させ、その湿態状のコーテッドサ
    ンドを成形型内に充填した後、かかる成形型内で保持し、固化乃至
    は硬化せしめることにより、目的とする鋳型を得ることを特徴とす
    る鋳型の製造方法。
(11) 前記成形型の保持中に、さらに、乾燥空気、加熱乾燥空気又は窒
    素ガスが、前記成形型の成形キャビティ内に通気せしめられる前記
    態様(9)又は前記態様(10)に記載の鋳型の製造方法。
(1) The surface of the refractory aggregate is covered with a coating layer containing water glass, which is a dry coated sand having room temperature fluidity, and spherical particles are contained in the coating layer. A characteristic coated sand.
(2) The coated sand according to the aspect (1), wherein the moisture content is 5 to 55% by mass of the solid content of water glass in the coating layer.
(3) The aspect (1), wherein the content of the spherical particles is 0.1 to 500 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer.
Or the coated sand as described in said aspect (2).
(4) The coated sand according to any one of aspects (1) to (3), wherein the spherical particles have an average particle diameter of 0.1 to 20.0 μm.
(5) In any one of the above aspects (1) to (4), the spherical particles are one or more selected from spherical particles made of silicon dioxide, aluminum oxide, or titanium oxide. The described coated sand.
(6) The average particle diameter d1 of the spherical particles and the average particle diameter d2 of the refractory aggregate
The coated sand according to any one of the aspects (1) to (5) satisfying the following formula (1).
4 × d1 ≦ d2 ≦ 5000 × d1 (1)
(7) The coated sand according to any one of the aspects (1) to (6), wherein the refractory aggregate is spherical.
(8) A method for producing dry coated sand having room temperature fluidity, in which the surface of the refractory aggregate is covered with a coating layer containing water glass. By mixing a binder mainly composed of glass and spherical particles and evaporating water, the surface of the refractory aggregate is covered with a coating layer containing water glass and spherical particles, and the moisture content is increased. A method for producing a coated sand, comprising producing a coated sand having a content of 5 to 55 mass% of the solid content of water glass in the covering layer.
(9) After using the coated sand according to any one of the above aspects (1) to (7) and filling it into a mold cavity of a mold that gives a target mold, water vapor is added. A method for producing a mold, characterized in that a target mold is obtained by aeration, holding in such a mold, and solidifying or curing.
(10) Water is added to the coated sand according to any one of the above aspects (1) to (7) to make it wet, and the wet coated sand is filled in a mold. A method for producing a mold, which is characterized in that a target mold is obtained by holding in the mold and then solidifying or curing.
(11) According to the aspect (9) or the aspect (10), during the holding of the mold, further, dry air, heated dry air, or nitrogen gas is vented into the molding cavity of the mold. Mold manufacturing method.
 このように、本発明に従う常温流動性を有する乾態のコーテッドサンドにあっては、耐火性骨材の表面を覆う被覆層に、粘結剤としての水ガラスと共に球状粒子が含有せしめられて、構成されるものである。このような本発明のコーテッドサンドが成形型内(より詳細には成形型の成形キャビティ内)に充填され、その充填されたコーテッドサンド(充填相)に対して水蒸気の通気等によって水分が供給されると、球状粒子は、供給された水分によって溶液状となった水ガラスと共に耐火性骨材間を効果的に流動し、その結果、成形型内(成形キャビティ内)におけるコーテッドサンドの充填性が有利に向上せしめられるのである。そして、そのような充填性がより向上した状態で、水ガラスが固化乃至は硬化することによって得られる鋳型にあっては、球状粒子が隣接する耐火性骨材間の隙間に効果的に介在することとなり、以て、優れた強度を発揮することとなるのである。 Thus, in the dry coated sand having room temperature fluidity according to the present invention, the coating layer covering the surface of the refractory aggregate contains spherical particles together with water glass as a binder, It is composed. Such coated sand of the present invention is filled in the mold (more specifically, in the molding cavity of the mold), and moisture is supplied to the filled coated sand (filled phase) by aeration of water vapor or the like. Then, the spherical particles effectively flow between the refractory aggregates together with the water glass made into a solution by the supplied moisture, and as a result, the filling property of the coated sand in the molding die (in the molding cavity) is improved. It is advantageously improved. In a mold obtained by solidifying or hardening the water glass with such improved filling properties, spherical particles are effectively interposed in the gaps between adjacent refractory aggregates. As a result, excellent strength is exhibited.
 また、本発明の常温流動性を有する乾態のコーテッドサンドを用いて得られる鋳型においては、耐火性骨材と、球状粒子と、固化乃至は硬化した水ガラスとによって、石垣に類似した構造を呈することとなり、これにより、溶湯注入時の高圧にも耐え得る強度を発揮する。更には、高温の溶湯が鋳型内に注入されると、鋳型において耐火性骨材間を結合している水ガラスが分解されるところ、耐火性骨材間に球状粒子が存在していることから、本発明のコーテッドサンドを用いて得られる鋳型においては、水ガラスによる耐火性骨材間の結合作用が、従来と比較すると、溶湯の注入後から早期に喪失することとなり、以て、崩壊性に優れたものとなるのである。 Further, in the mold obtained using the dry coated sand having room temperature fluidity of the present invention, a structure similar to a stone wall is formed by refractory aggregate, spherical particles, and solidified or hardened water glass. As a result, a strength that can withstand the high pressure at the time of pouring the molten metal is exhibited. Furthermore, when high-temperature molten metal is poured into the mold, the water glass that bonds between the refractory aggregates in the mold is decomposed, and spherical particles exist between the refractory aggregates. In the mold obtained using the coated sand of the present invention, the bonding action between the refractory aggregates by water glass is lost early after the injection of the molten metal compared to the conventional one, and therefore, the collapsibility It will be excellent.
実施例において中子の崩壊性を測定するために用いた鋳造試験用砂型の縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing of the sand mold for casting tests used in order to measure the collapsibility of a core in an Example. 実施例において廃中子を内包したアルミニウム合金鋳物の縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing of the aluminum alloy casting which included the waste core in the Example.
 ところで、本発明に従うコーテッドサンドは、一般に、耐火性骨材に対して、粘結剤として、水溶液の状態にある水ガラスを混合せしめ、そしてその混合物から水分を蒸発させることにより、換言すれば水溶液の状態にある水ガラスの水分を蒸発させることによって、製造されるものであり、粘結剤である水ガラスの固形分からなる乾燥した被覆層が、所定厚さにおいて、かかる耐火性骨材の表面に形成されてなる、乾態のものであって、良好な常温流動性を有しているものである。 By the way, the coated sand according to the present invention is generally prepared by mixing water glass in the state of an aqueous solution as a binder with the refractory aggregate and evaporating water from the mixture, in other words, an aqueous solution. The surface of the refractory aggregate is produced by evaporating the water of the water glass in the state of It is formed in a dry state and has good room temperature fluidity.
 ここで、本発明における「常温流動性を有する乾態のコーテッドサンド」とは、含水分量にかかわらず、動的安息角を測定した際に測定値が得られるコーテッドサンドを意味する。この動的安息角とは、軸方向の一方の端部が透明な板材で閉塞されてなる円筒内にコーテッドサンドを収容して(例えば、直径7.2cm×高さ10cmの容器に、その体積の半分まで、コーテッドサンドを入れる)、軸心が水平方向となるように保持し、一定速度(例えば、25rpm)で水平な軸心回りに回転させることにより、円筒内で流動しているコーテッドサンド層の斜面が平坦面状となり、かかる斜面と水平面との間に形成される角度をいう。本発明に従うコーテッドサンドの動的安息角は、80°以下であることが好ましく、45°以下であることがより好ましく、30°以下であることが更に好ましい。本発明においては、球状の耐火性骨材を用いることにより、動的安息角が45°以下のコーテッドサンドが有利に得られる。なお、例えばコーテッドサンドが湿ったような状態で、円筒内で流動せずに、コーテッドサンド層の斜面が平坦面として形成されず、その結果、動的安息角を測定することができないものは、湿態のコーテッドサンドと称することとする。 Here, the “dry coated sand having room temperature fluidity” in the present invention means a coated sand from which a measured value is obtained when the dynamic angle of repose is measured regardless of the moisture content. This dynamic angle of repose means that the coated sand is accommodated in a cylinder whose one end in the axial direction is closed with a transparent plate (for example, in a container having a diameter of 7.2 cm and a height of 10 cm, its volume The coated sand is flowing in the cylinder by holding the shaft center in the horizontal direction and rotating it around the horizontal axis at a constant speed (for example, 25 rpm). The slope of the layer is flat and refers to the angle formed between the slope and the horizontal plane. The dynamic repose angle of the coated sand according to the present invention is preferably 80 ° or less, more preferably 45 ° or less, and still more preferably 30 ° or less. In the present invention, a coated sand having a dynamic angle of repose of 45 ° or less can be advantageously obtained by using a spherical refractory aggregate. In addition, for example, when the coated sand is moist, it does not flow in the cylinder, the slope of the coated sand layer is not formed as a flat surface, and as a result, the dynamic angle of repose cannot be measured, It will be referred to as wet coated sand.
 本発明に従う常温流動性を有する乾態のコーテッドサンドは、その含水分量が、耐火性骨材の表面を覆う被覆層に含まれる水ガラスの固形分量に対して、5~55質量%の割合に相当する量であることが望ましく、10~50質量%であることがより望ましく、20~50質量%であることが最も望ましい。コーテッドサンドにおける含水分量が、被覆層中の水ガラスの固形分量に対して5質量%に相当する量よりも少なくなると、水ガラスがガラス化して、鋳型造型の際に再び水を添加しても、溶液状に戻らない恐れがあり、一方、55質量%に相当する量よりも多くなると、コーテッドサンドが乾態状態とはならない恐れがある。なお、コーテッドサンドにおける含水分量の測定方法としては、特に限定されるものではなく、水ガラス等の種類に応じた手法が適宜に採用可能である。具体的には、後掲の実施例の欄に記載の測定方法を、例示することが出来る。また、コーテッドサンドの被覆層中に、水分を含む有機分(例えば、界面活性剤や保湿剤等)を添加剤として含有せしめた場合には、かかる有機分中の水分も加味して、含水分量を測定(算出)する必要がある。 The dry coated sand having room temperature fluidity according to the present invention has a moisture content of 5 to 55% by mass with respect to the solid content of water glass contained in the coating layer covering the surface of the refractory aggregate. The corresponding amount is desirable, more desirably 10 to 50% by mass, and most desirably 20 to 50% by mass. When the moisture content in the coated sand is less than the amount corresponding to 5% by mass with respect to the solid content of the water glass in the coating layer, the water glass is vitrified and water is added again during the mold making. There is a possibility that it does not return to a solution state. On the other hand, if the amount exceeds 55% by mass, the coated sand may not be in a dry state. In addition, it does not specifically limit as a measuring method of the moisture content in a coated sand, The method according to types, such as water glass, is employable suitably. Specifically, the measuring method described in the column of Examples described later can be exemplified. In addition, when an organic component containing moisture (for example, a surfactant or a humectant) is added as an additive to the coated layer of the coated sand, the moisture content is also taken into account with the moisture in the organic component. Must be measured (calculated).
 本発明のコーテッドサンドを構成する耐火性骨材としては、鋳型の基材として機能する耐火性物質であって、従来から鋳型用として利用されている各種の耐火性粒状乃至は粉状材料が何れも用いられ得、具体的には、ケイ砂、再生ケイ砂をはじめとして、アルミナサンド、オリビンサンド、ジルコンサンド、クロマイトサンド等の特殊砂や、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ等のスラグ系粒子;アルミナ系粒子、ムライト系粒子等の人工粒子及びこれらの再生粒子;アルミナボール、マグネシアクリンカー等を、挙げることが出来る。なお、これらの耐火性骨材は、新砂であっても、或いは、鋳物砂として鋳型の造型に一回或いは複数回使用された再生砂または回収砂であっても、更には、そのような再生砂や回収砂に新砂を加えて混合せしめてなる混合砂であっても、何ら差支えない。そして、そのような耐火性骨材は、一般に、AFS指数で40~130程度の粒度のものとして、好ましくは、50~110程度の粒度のものとして、用いられることとなる。 The refractory aggregate constituting the coated sand of the present invention is a refractory substance that functions as a base material of a mold, and any of various refractory granular or powder materials conventionally used for molds. Specifically, silica sand, recycled silica sand, special sand such as alumina sand, olivine sand, zircon sand, chromite sand, ferrochrome slag, ferronickel slag, converter slag, etc. Slag-based particles; artificial particles such as alumina-based particles and mullite-based particles; and regenerated particles thereof; alumina balls, magnesia clinker, and the like. These refractory aggregates may be fresh sand, or reclaimed sand or recovered sand that has been used once or a plurality of times as casting sand for casting molds. Even mixed sand made by adding fresh sand to sand or recovered sand and mixing them can be used. Such a refractory aggregate is generally used with a particle size of about 40 to 130, preferably about 50 to 110 in terms of AFS index.
 また、耐火性骨材は球状のものが好ましく、具体的には粒形係数が1.2以下、より好ましくは1.0~1.1である耐火性骨材が望ましい。粒形係数が1.2以下である耐火性骨材を用いることにより、鋳型造型時の流動性や充填性が向上し、骨材同士の接点数が多くなるところから、同じ強度を発現するために必要な粘結剤や添加物の量を少なくすることが出来る。なお、ここで用いられる骨材の粒形係数は、一般に、粒子の外形形状を示す一つの尺度として採用され、粒形指数とも称されているものであって、その値が1に近付く程、球形(真球)に近付くことを意味するものである。そして、そのような粒形係数は、公知の各種の手法で測定された骨材の表面積(砂表面積)を用いて算出された値にて表わされるものであって、例えば、砂表面積測定器(ジョージ・フィッシャー社製)を用いて、1gあたりの実際の骨材粒子(砂粒)の表面積を測定し、それを、理論的表面積で除した値を意味するものである。なお、理論的表面積とは、骨材粒子(砂粒)が全て球形であると仮定した場合の表面積である。 Also, the refractory aggregate is preferably spherical, and specifically, a refractory aggregate having a particle shape factor of 1.2 or less, more preferably 1.0 to 1.1 is desirable. By using a fireproof aggregate with a particle shape factor of 1.2 or less, the fluidity and filling properties during mold making are improved, and the number of contacts between aggregates increases, so that the same strength is expressed. It is possible to reduce the amount of binders and additives necessary for the treatment. In addition, the particle size coefficient of the aggregate used here is generally adopted as one scale indicating the outer shape of the particle, and is also referred to as a particle shape index, and as the value approaches 1, This means approaching a sphere (true sphere). And such a particle shape factor is represented by the value calculated using the surface area (sand surface area) of the aggregate measured by various well-known methods, for example, a sand surface area measuring device ( This means a value obtained by measuring the surface area of actual aggregate particles (granular sand) per gram using George Fischer) and dividing it by the theoretical surface area. In addition, a theoretical surface area is a surface area when it is assumed that aggregate particles (sand particles) are all spherical.
 本発明に係るコーテッドサンドにおいては、上述の如き耐火性骨材を被覆する粘結剤として、水ガラスを主成分とするものが用いられることとなる。水ガラスとは、水溶性のケイ酸化合物であり、そのようなケイ酸化合物としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、ケイ酸リチウム、ケイ酸アンモニウム等を挙げることが出来るが、それらの中でも、特に、ケイ酸ナトリウム(ケイ酸ソーダ)が本発明では有利に用いられることとなる。また、粘結剤としては、水ガラスを主成分として用いる限りにおいて、種々の水溶性バインダ、例えば、熱硬化性樹脂、糖類、タンパク質、合成高分子、塩類や無機高分子等を併用することが可能である。なお、他の水溶性バインダを水ガラスと併用する場合、粘結剤全体における水ガラスの割合は、60質量%以上であることが好ましく、より好ましくは80質量%以上、最も好ましくは90%質量以上である。 In the coated sand according to the present invention, a binder mainly composed of water glass is used as a binder for covering the fireproof aggregate as described above. Water glass is a water-soluble silicate compound. Examples of such a silicate compound include sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, and ammonium silicate. Among them, sodium silicate (sodium silicate) is particularly advantageously used in the present invention. As a binder, various water-soluble binders such as thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers may be used in combination as long as water glass is used as a main component. Is possible. When other water-soluble binder is used in combination with water glass, the ratio of water glass in the whole binder is preferably 60% by mass or more, more preferably 80% by mass or more, and most preferably 90% by mass. That's it.
 ここで、ケイ酸ナトリウムは、通常、SiO2 /Na2O のモル比により、1号~5号の種類に分類されて、用いられている。具体的には、ケイ酸ナトリウム1号は、SiO2 /Na2O のモル比が2.0~2.3であるものであり、またケイ酸ナトリウム2号は、SiO2 /Na2O のモル比が2.4~2.6であるものであり、更にケイ酸ナトリウム3号は、SiO2 /Na2O のモル比が2.8~3.3であるものである。加えて、ケイ酸ナトリウム4号は、SiO2 /Na2O のモル比が3.3~3.5であるものであり、またケイ酸ナトリウム5号は、SiO2 /Na2O のモル比が3.6~3.8であるものである。これらの中で、ケイ酸ナトリウム1号~3号は、JIS-K-1408にても規定されている。そして、これら各種のケイ酸ナトリウムは、本発明において、単独での使用の他、混合して用いられても良く、また混合することで、SiO2 /Na2O のモル比を調製することも可能である。 Here, sodium silicate is usually classified and used as No. 1 to No. 5 depending on the molar ratio of SiO 2 / Na 2 O 2 . Specifically, sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3, and sodium silicate No. 2 is SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6, and sodium silicate No. 3 has a SiO 2 / Na 2 O molar ratio of 2.8 to 3.3. In addition, sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5, and sodium silicate No. 5 has a SiO 2 / Na 2 O molar ratio. Is 3.6 to 3.8. Among these, sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408. In the present invention, these various sodium silicates may be used alone or in combination, and the molar ratio of SiO 2 / Na 2 O may be adjusted by mixing. Is possible.
 本発明においては、乾態のコーテッドサンドを有利に得るべく、粘結剤として用いられる水ガラスを構成するケイ酸ナトリウムは、SiO2 /Na2O のモル比が、一般に1.9以上、好ましくは2.0以上、より好ましくは2.1以上であることが望ましく、上記したケイ酸ナトリウムの分類において、1号及び2号に相当するケイ酸ナトリウムが、特に有利に用いられることとなる。かかるケイ酸ナトリウム1号及び2号は、それぞれ、水ガラス中のケイ酸ナトリウム濃度が広い範囲においても、安定して、特性の良好な乾態のコーテッドサンドを与えるものである。また、そのようなケイ酸ナトリウムにおけるSiO2 /Na2O のモル比の上限は、水溶液の形態にある水ガラスの特性に応じて適宜に選定されることとなるが、一般に3.5以下、好ましくは3.2以下、より好ましくは2.7以下とされることとなる。ここで、SiO2 /Na2O のモル比が1.9よりも小さくなると、水ガラスの粘性が低くなり、水分量をかなり低くしなければ、コーテッドサンドを乾態とすることが困難となる恐れがあり、その一方、3.5よりも大きくなると、水への溶解度が低下して、接着面積が稼げず、最終的に得られる鋳型の強度が低下する恐れがある。 In the present invention, in order to advantageously obtain a dry coated sand, the sodium silicate constituting the water glass used as the binder generally has a SiO 2 / Na 2 O molar ratio of 1.9 or more, preferably Is preferably 2.0 or more, more preferably 2.1 or more, and sodium silicate corresponding to No. 1 and No. 2 in the above-mentioned classification of sodium silicate is particularly advantageously used. Such sodium silicates No. 1 and No. 2 provide dry coated sand having stable and good characteristics even when the sodium silicate concentration in the water glass is wide. Further, the upper limit of the SiO 2 / Na 2 O molar ratio in such sodium silicate is appropriately selected according to the characteristics of the water glass in the form of an aqueous solution, but generally 3.5 or less, It is preferably 3.2 or less, more preferably 2.7 or less. Here, when the molar ratio of SiO 2 / Na 2 O is smaller than 1.9, the viscosity of the water glass is lowered, and it becomes difficult to make the coated sand dry unless the water content is considerably reduced. On the other hand, if it exceeds 3.5, the solubility in water decreases, the adhesion area cannot be gained, and the strength of the mold finally obtained may decrease.
 また、本発明において用いられる水ガラスは、水に溶けた状態のケイ酸化合物の溶液のことを意味し、市場において購入されたままの原液の状態において用いられる他、そのような原液に水を添加して、希釈した状態において用いられることとなる。そして、そのような水ガラスから、水や溶剤等の、揮発する物質を除いた不揮発分(水ガラス成分)を固形分と言い、これが、上記したケイ酸ナトリウム等の可溶性のケイ酸化合物に相当するものである。また、そのような固形分(不揮発分)の割合が高い程、水ガラス中のケイ酸化合物濃度は、高くなるものである。従って、本発明において用いられる水ガラスの固形分とは、それが原液のみにて構成される場合においては、かかる原液中の水分量を除いた量に相当することとなり、一方、原液を水にて希釈して得られる希釈液が用いられる場合にあっては、原液中の水分量と希釈に用いられた水の量とを除いた量が、使用される水ガラスの固形分に相当することとなる。 The water glass used in the present invention means a solution of a silicate compound in a state dissolved in water. In addition to being used in a stock solution as purchased in the market, water is added to such a stock solution. It is added and used in a diluted state. And, from such water glass, the non-volatile content (water glass component) excluding volatile substances such as water and solvent is called solid content, which corresponds to the above-described soluble silicate compound such as sodium silicate. To do. Moreover, the higher the proportion of such solid content (nonvolatile content), the higher the concentration of the silicate compound in the water glass. Therefore, the solid content of the water glass used in the present invention corresponds to the amount excluding the amount of water in the stock solution when it is composed only of the stock solution, while the stock solution is converted into water. When the diluted solution obtained by dilution is used, the amount excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the solid content of the water glass used. It becomes.
 そして、そのような水ガラス中の固形分(不揮発分)は、水ガラス成分(可溶性ケイ酸化合物)の種類等に応じて適宜の割合とされることとなるが、有利には、20~50質量%の割合において含有せしめられていることが望ましい。この固形分に相当する水ガラス成分を適度に水溶液中に存在せしめることによって、耐火性骨材との混合(混練)時に、かかる耐火性骨材に対して、ムラなく、均一に、水ガラス成分を被覆させることが出来、それによって、目的とする鋳型を有利に造型することが可能となる。なお、水ガラス中における水ガラス成分の濃度が低くなり過ぎて、固形分の合計量が20質量%未満となると、コーテッドサンドの乾燥のために、加熱温度を高くしたり、加熱時間を長くしたりする必要があり、そのために、エネルギーロス等の問題が惹起されるようになる。また、水ガラス中における固形分の割合が高くなり過ぎると、耐火性骨材の表面を、水ガラス成分にて均一に被覆することが困難となり、目的とする鋳型の特性の向上にも問題を惹起するところから、かかる固形分は50質量%以下、従って水分量が50質量%以上の割合となるように、水溶液の形態にある水ガラスを調製することが望ましい。 The solid content (nonvolatile content) in such water glass is set to an appropriate ratio depending on the type of the water glass component (soluble silicate compound), etc., but is preferably 20 to 50. It is desirable that it is contained in a proportion by mass. By making the water glass component corresponding to the solid content appropriately present in the aqueous solution, the water glass component can be uniformly and uniformly applied to the fire resistant aggregate during mixing (kneading) with the fire resistant aggregate. So that the target mold can be advantageously formed. If the concentration of the water glass component in the water glass is too low and the total amount of solids is less than 20% by mass, the heating temperature is increased or the heating time is increased for drying the coated sand. For this reason, problems such as energy loss are caused. In addition, if the ratio of the solid content in the water glass becomes too high, it becomes difficult to uniformly coat the surface of the refractory aggregate with the water glass component, which causes a problem in improving the properties of the target mold. Therefore, it is desirable to prepare water glass in the form of an aqueous solution so that the solid content is 50% by mass or less, and thus the water content is 50% by mass or more.
 そして、かかる水ガラスは、耐火性骨材の100質量部に対して、不揮発分のみとして考えた場合の固形分換算で0.1~5.0質量部の割合において、好ましくは0.1~2.5質量部の割合において用いられることが望ましく、中でも、0.2~2.0質量部の割合が特に有利に採用されて、耐火性骨材の表面に、所定の被覆層が形成されることとなる。ここで、固形分の測定は、以下のようにして実施される。即ち、アルミ箔製皿(縦:9cm、横:9cm、高さ:1.5cm)内に、試料10gを秤量して収容し、180±1℃に保持した加熱板上に置き、20分間放置した後、かかる試料皿を反転させて、更に20分間、上記加熱板上に放置する。その後、試料皿を加熱板上から取り出して、デシケータ中で放冷した後、秤量を行って、次式により、固形分(質量%)が算出される。
  固形分(質量%)=[乾燥後の質量(g)/乾燥前の質量(g)]
           ×100
Such water glass is preferably in a proportion of 0.1 to 5.0 parts by mass in terms of solid content when considered as only non-volatile content with respect to 100 parts by mass of the refractory aggregate. It is desirable to use at a ratio of 2.5 parts by mass, and among them, a ratio of 0.2 to 2.0 parts by mass is particularly advantageously employed to form a predetermined coating layer on the surface of the refractory aggregate. The Rukoto. Here, the measurement of solid content is implemented as follows. That is, 10 g of a sample was weighed and stored in an aluminum foil dish (length: 9 cm, width: 9 cm, height: 1.5 cm), placed on a heating plate maintained at 180 ± 1 ° C., and left for 20 minutes. After that, the sample pan is inverted and left on the heating plate for another 20 minutes. Thereafter, the sample dish is taken out from the heating plate, allowed to cool in a desiccator, weighed, and the solid content (% by mass) is calculated by the following formula.
Solid content (mass%) = [mass after drying (g) / mass before drying (g)]
× 100
 なお、本発明において水ガラスの使用量が少なくなり過ぎると、耐火性骨材の表面に被覆層が形成され難くなり、鋳型造型時のコーテッドサンドの固化乃至は硬化が充分に進行し難くなる恐れがある。また、水ガラスの使用量が多くなり過ぎても、耐火性骨材の表面に、余分な量の水ガラスが付着して、均一な被覆層が形成され難くなると共に、コーテッドサンドが相互に固着して団塊化(複合粒子化)する恐れもあり、そのために、最終的に得られる鋳型の物性に悪影響をもたらし、加えて、金属を鋳込んだ後の中子の砂落としを難しくする問題も惹起する恐れがある。 In the present invention, if the amount of water glass used is too small, it is difficult to form a coating layer on the surface of the refractory aggregate, and the solidification or hardening of the coated sand at the time of mold making may not proceed sufficiently. There is. In addition, even if the amount of water glass used is excessive, an excessive amount of water glass adheres to the surface of the refractory aggregate, making it difficult to form a uniform coating layer, and the coated sand adheres to each other. There is also a risk of agglomeration (composite particle formation), which adversely affects the physical properties of the final mold, and also makes it difficult to remove the sand from the core after casting the metal. There is a risk of triggering.
 そして、本発明に従うコーテッドサンドにおいては、耐火性骨材の表面を覆う、水ガラスを含む被覆層中に、球状粒子が含有せしめられているところに、大きな技術的特徴が存しているのである。このような、水ガラスを含む被覆層中に球状粒子を含むコーテッドサンドが成形型内(成形型の成形キャビティ内)に充填され、その充填されたコーテッドサンド(充填相)に対して、水蒸気の通気等によって水分が供給されると、被覆層中の球状粒子は、供給された水分によって溶液状となった水ガラスと共に耐火性骨材間を効果的に流動し、その結果、成形型内(成形キャビティ内)におけるコーテッドサンドの充填性が有利に向上せしめられることとなる。そして、そのような充填性がより向上した状態で、水ガラスが固化乃至は硬化することによって得られる鋳型にあっては、球状粒子が隣接する耐火性骨材間の隙間に効果的に介在することとなり、以て、優れた強度を発揮することとなるのである。 And, in the coated sand according to the present invention, there is a great technical feature in that spherical particles are contained in the coating layer containing water glass that covers the surface of the refractory aggregate. . Coated sand containing spherical particles in such a coating layer containing water glass is filled in the molding die (in the molding cavity of the molding die), and water vapor is added to the filled coated sand (filled phase). When moisture is supplied by ventilation or the like, the spherical particles in the coating layer effectively flow between the refractory aggregates together with the water glass that has become a solution by the supplied moisture, and as a result, in the mold ( The filling property of the coated sand in the molding cavity) is advantageously improved. In a mold obtained by solidifying or hardening the water glass with such improved filling properties, spherical particles are effectively interposed in the gaps between adjacent refractory aggregates. As a result, excellent strength is exhibited.
 また、本発明の常温流動性を有する乾態のコーテッドサンドを用いて得られる鋳型においては、耐火性骨材と、球状粒子と、固化乃至は硬化した水ガラスとによって、石垣に類似した構造を呈することとなり、これにより、溶湯注入時の高圧にも耐え得る強度を発揮する。更には、高温の溶湯が鋳型内に注入されると、鋳型において耐火性骨材間を結合している水ガラスが分解されるところ、耐火性骨材間に球状粒子が存在していることから、本発明のコーテッドサンドを用いて得られる鋳型においては、水ガラスによる耐火性骨材間の結合作用が、従来と比較すると、溶湯注入後から早期に喪失することとなり、以て、崩壊性も優れたものとなるのである。 Further, in the mold obtained using the dry coated sand having room temperature fluidity of the present invention, a structure similar to a stone wall is formed by refractory aggregate, spherical particles, and solidified or hardened water glass. As a result, a strength that can withstand the high pressure at the time of pouring the molten metal is exhibited. Furthermore, when high-temperature molten metal is poured into the mold, the water glass that bonds between the refractory aggregates in the mold is decomposed, and spherical particles exist between the refractory aggregates. In the mold obtained by using the coated sand of the present invention, the bonding action between the refractory aggregates by water glass is lost early after the molten metal is injected as compared with the conventional one. It will be excellent.
 ここで、本発明の常温流動性を有する乾態のコーテッドサンドにおいて、その被覆層に含有せしめられる球状粒子は、その平均粒子径が、好ましくは0.1~20.0μmのもの、より好ましくは0.1~10μmのもの、最も好ましくは0.5~5.0μmのものが、用いられる。また、本発明において、球状粒子の含有量は、被覆層における水ガラスの固形分の100質量部に対して、0.1~500質量部であり、好ましくは0.3~300質量部であり、より好ましくは0.5~200質量部であり、さらに好ましくは0.75~100質量部であり、最も好ましくは1.0~50質量部である。このように、所定の平均粒子径を有する球状粒子を、所定の割合において被覆層に含有せしめることにより、上記した効果をより有利に享受することが可能である。なお、球状粒子の平均粒子径は、レーザ回折式の粒度分布測定装置等によって測定される粒度分布より、求めることが可能である。 Here, in the dry coated sand having room temperature fluidity of the present invention, the spherical particles contained in the coating layer have an average particle diameter of preferably 0.1 to 20.0 μm, more preferably. Those having a thickness of 0.1 to 10 μm, most preferably 0.5 to 5.0 μm are used. In the present invention, the content of the spherical particles is 0.1 to 500 parts by mass, preferably 0.3 to 300 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer. More preferably, it is 0.5 to 200 parts by mass, still more preferably 0.75 to 100 parts by mass, and most preferably 1.0 to 50 parts by mass. As described above, it is possible to more advantageously enjoy the above-described effect by including spherical particles having a predetermined average particle diameter in the coating layer in a predetermined ratio. The average particle diameter of the spherical particles can be obtained from the particle size distribution measured by a laser diffraction type particle size distribution measuring device or the like.
 また、本発明にあっては、鋳型造型に当たり水分が供給された際に、隣接する耐火性骨材間の隙間において、溶液状となった水ガラスと共に球状粒子が有利に流動し、耐火性骨材間に効果的に介在するようにすべく、球状粒子の平均粒子径:d1と耐火性骨材の平均粒子径:d2とは、下記式(1)を満たすことが好ましく、また下記式(2)を満たすことがより好ましく、更に下記式(3)を満たすことが最も好ましい。なお、耐火性骨材の平均粒子径についても、レーザ回折式の粒度分布測定装置等によって測定される粒度分布より、求めることが可能である。
  4×d1≦d2≦5000×d1 ・・・(1)
  6×d1≦d2≦3000×d1 ・・・(2)
  7×d1≦d2≦2500×d1 ・・・(3)
Further, in the present invention, when moisture is supplied to mold making, spherical particles advantageously flow together with water glass in a solution state in the gap between adjacent refractory aggregates, and the refractory bone In order to effectively interpose between the materials, the average particle diameter of the spherical particles: d1 and the average particle diameter of the refractory aggregate: d2 preferably satisfy the following formula (1), and the following formula ( It is more preferable to satisfy 2), and it is most preferable to satisfy the following formula (3). The average particle size of the refractory aggregate can also be obtained from the particle size distribution measured by a laser diffraction type particle size distribution measuring device or the like.
4 × d1 ≦ d2 ≦ 5000 × d1 (1)
6 × d1 ≦ d2 ≦ 3000 × d1 (2)
7 × d1 ≦ d2 ≦ 2500 × d1 (3)
 なお、本発明において用いられる球状粒子は、球状を呈するものであれば良く、必ずしも真球状を呈することは必要とされないところ、通常、真球度が0.5以上であるものが、好ましくは0.7以上であるものが、更に好ましくは0.9以上であるものが、有利に用いられることとなる。ここで、真球度とは、走査型電子顕微鏡観察において、単粒子のものを無作為に10個選択し、その投影形状から得られたアスペクト比(短径/長径の比)の平均値を意味している。なお、球状ではない粒子(非球状粒子)の表面には突起や窪みが存在していることから、例えば、非球状粒子が、供給された水分によって溶液状となった水ガラスと共に耐火性骨材の粒子間を流動しようとすると、非球状粒子表面の突起等と耐火性骨材粒子や他の非球状粒子との衝突により、滑り止め作用が生じてしまい、耐火性骨材粒子間への水ガラス及び非球状粒子の流動が妨げられる。このため、本発明において非球状粒子を用いると、最終的に得られる鋳型の充填性や、その強度を低下させる恐れがある。 The spherical particles used in the present invention are not particularly limited as long as they have a spherical shape, and are not necessarily required to have a true spherical shape. Usually, those having a sphericity of 0.5 or more are preferably 0. Those of 0.7 or more, more preferably 0.9 or more, are advantageously used. Here, the sphericity is the average value of the aspect ratio (minor axis / major axis ratio) obtained from the projection shape of 10 single particles randomly selected in scanning electron microscope observation. I mean. In addition, since there are protrusions and depressions on the surface of non-spherical particles (non-spherical particles), for example, the non-spherical particles are refractory aggregate together with water glass that has become a solution by the supplied moisture. When trying to flow between the particles, non-slip action occurs due to the collision between the projections on the surface of the non-spherical particles and the refractory aggregate particles or other non-spherical particles, and water between the refractory aggregate particles The flow of glass and non-spherical particles is impeded. For this reason, when non-spherical particles are used in the present invention, there is a risk of reducing the filling properties and strength of the finally obtained mold.
 また、本発明において用いられる球状粒子を構成する材質については、特に限定されるものではないが、無機金属酸化物であることが好ましい。無機金属酸化物からなる粒子としては、二酸化珪素、酸化アルミニウム、酸化チタン等からなる粒子が有利に用いられるのであり、それらの中でも、特に、二酸化珪素粒子は、強アルカリ性の水ガラスが二酸化珪素の表面上に形成されたシラノール基と反応することが出来、また水の蒸発に際して、二酸化珪素と固形となった水ガラスとの間に強固な結合が形成されて、鋳型強度を向上させ得る点において、好ましい。なお、二酸化珪素には晶質と非晶質とがあるが、非晶質の方が望ましく、非晶質二酸化珪素としては、沈殿シリカ、電気アーク中又は火炎加水分解で生成した焼成シリカ、ZrSiO4 の熱分解により生成したシリカ、酸素を含むガスで金属珪素の酸化により生成した二酸化珪素、溶融及びその後の急冷により結晶石英から生成された球状粒子の石英ガラス粉末等を、例示することが出来る。これらは、単独で用いられ得ることは勿論のこと、2種以上のものを混合して用いることも可能である。なお、本発明において、二酸化珪素は無機金属酸化物として扱うものとする。 The material constituting the spherical particles used in the present invention is not particularly limited, but is preferably an inorganic metal oxide. As particles composed of inorganic metal oxides, particles composed of silicon dioxide, aluminum oxide, titanium oxide, etc. are advantageously used. Among them, particularly, silicon dioxide particles are strongly alkaline water glass composed of silicon dioxide. It can react with silanol groups formed on the surface, and when water is evaporated, a strong bond is formed between silicon dioxide and solid water glass, which can improve the mold strength. ,preferable. Silicon dioxide has crystallinity and amorphousness, but amorphous is desirable. Amorphous silicon dioxide includes precipitated silica, calcined silica produced in an electric arc or by flame hydrolysis, ZrSiO Examples include silica produced by pyrolysis of 4 , silicon dioxide produced by oxidation of metallic silicon with a gas containing oxygen, and quartz glass powder of spherical particles produced from crystalline quartz by melting and subsequent rapid cooling. . Of course, these can be used alone or in combination of two or more. In the present invention, silicon dioxide is treated as an inorganic metal oxide.
 さらに、本発明のコーテッドサンドにおいては、その被覆層中に、上述した球状粒子の他にも、必要に応じて、各種の添加剤を適宜に含有せしめることも可能である。 Furthermore, in the coated sand of the present invention, in addition to the spherical particles described above, various additives can be appropriately contained in the coating layer as necessary.
 そのような添加剤の一つとして、界面活性剤を例示することが出来る。本発明のコーテッドサンドにおける被覆層に界面活性剤を含有せしめると、コーテッドサンドにおける水の浸透性、換言すればコーテッドサンドの水に対する濡れ性が、効果的に向上するところから、成形型の成形キャビティ内に充填されたコーテッドサンドに対して、従来より少量の水分を供給した場合であっても、成形キャビティ内のコーテッドサンドの全体が有利に湿態化して湿潤状態となる。このように、コーテッドサンドへ添加する水分の量が少量に抑えられることから、造型された鋳型の成形型からの離型性が更に向上すると共に、得られる鋳型は、より優れた強度を発揮することとなるのである。 A surfactant can be exemplified as one of such additives. When a surfactant is contained in the coating layer of the coated sand of the present invention, the water permeability in the coated sand, in other words, the wettability of the coated sand with respect to water is effectively improved. Even when a small amount of moisture is supplied to the coated sand filled therein, the entire coated sand in the molding cavity is advantageously wetted and becomes wet. As described above, since the amount of moisture added to the coated sand can be suppressed to a small amount, the mold release property of the molded mold is further improved, and the obtained mold exhibits more excellent strength. It will be.
 本発明においては、従来より公知の各種界面活性剤、例えば、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、シリコーン系界面活性剤やフッ素系界面活性剤等の何れにあっても、本発明の目的を阻害しない限りにおいて、使用することが可能である。なお、シリコーン系界面活性剤とは、非極性部位としてシロキサン構造を有する界面活性剤を、また、フッ素系界面活性剤とは、パーフルオロアルキル基を有する界面活性剤を、特に示すものである。また、本発明における界面活性剤の含有量は、被覆層における水ガラスの固形分量の100質量部に対して、0.1~20.0質量部であることが望ましく、中でも0.5~15.0質量部が好ましく、特に0.75~12.5質量部であることが好ましい。含有せしめられる界面活性剤の量が少なすぎると、上記した効果を有利に享受することが出来ない恐れがあり、その一方、界面活性剤の量が多すぎても、使用量に応じた効果の向上が認められず、また、界面活性剤の沸点によっては水ガラスが乾態化する際に界面活性剤が固体化せずに、乾態のコーテッドサンドを得ようとしても得られない恐れがあり、更には、費用対効果の観点より得策ではない。 In the present invention, conventionally known various surfactants, for example, cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, silicone surfactants and fluorine-based surfactants. Any surfactant or the like can be used as long as the object of the present invention is not impaired. The silicone-based surfactant specifically indicates a surfactant having a siloxane structure as a nonpolar site, and the fluorine-based surfactant particularly indicates a surfactant having a perfluoroalkyl group. In addition, the content of the surfactant in the present invention is desirably 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer, and more preferably 0.5 to 15 parts by mass. 0.0 parts by mass is preferable, and 0.75 to 12.5 parts by mass is particularly preferable. If the amount of the surfactant to be contained is too small, the above-mentioned effects may not be enjoyed advantageously. On the other hand, even if the amount of the surfactant is too large, the effect according to the amount used may be reduced. There is no improvement, and depending on the boiling point of the surfactant, the surfactant may not be solidified when the water glass is dried, and it may not be obtained even when trying to obtain a dry coated sand. Moreover, it is not a good idea from the viewpoint of cost effectiveness.
 また、本発明のコーテッドサンドにおける被覆層には、保湿剤を更に含有せしめても良い。水ガラスを含む被覆層に保湿剤を含有せしめることにより、鋳型造型の際に、水分に濡れて湿態化したコーテッドサンドの湿潤性を、加熱によって固化又は硬化されるまで、安定して維持することが可能となる。本発明における保湿剤の含有量は、被覆層における水ガラスの固形分の100質量部に対して、0.1~20.0質量部であることが望ましく、中でも0.5~15.0質量部がより望ましく、0.75~12.5質量部であることが最も望ましい。また、そのような保湿剤としては、多価アルコール、水溶性高分子、炭化水素類、糖類、タンパク質、無機化合物等を用いることが出来る。 Further, the coating layer of the coated sand of the present invention may further contain a moisturizing agent. By incorporating a moisturizing agent into the coating layer containing water glass, the wettability of the coated sand wetted by moisture during mold casting is stably maintained until solidified or cured by heating. It becomes possible. The content of the humectant in the present invention is preferably 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer, and more preferably 0.5 to 15.0 parts by mass. Part is more desirable, and most preferably 0.75 to 12.5 parts by mass. Moreover, as such a humectant, polyhydric alcohol, water-soluble polymer, hydrocarbons, saccharides, protein, inorganic compounds, and the like can be used.
 具体的には、多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ジプロピレングリコール、プロピレングリコール、ブチレングリコール、1,2-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,6-ヘキサンジオール、1,2-ヘプタンジオール、1,2-オクタンジオール、1,2,6-ヘキサントリオール、チオグリコール、ヘキシレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン等が挙げられる。水溶性高分子化合物としては、特に分子量1000当り、アルコール性水酸基を5~25個有している化合物を指すものである。このような水溶性高分子化合物としては、ポリビニルアルコール及びその各種変性物等のビニルアルコール系重合体;アルキルセルロース、ヒドロキシアルキルセルロース、アルキルヒドロキシアルキルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体;アルキル澱粉、カルボキシルメチル澱粉、酸化澱粉などの澱粉誘導体;ポリアクリル酸ナトリウム等の吸水性高分子等が挙げられる。炭化水素類としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、石油エーテル、石油ベンジル、テトラリン、デカリン、ターシャリーアミルベンゼン、ジメチルナフタリン等が挙げられる。糖類としては、単糖類、オリゴ糖、デキストリン等の多糖類等を挙げることが出来、その中で、単糖類は、加水分解によって更に簡単な糖類に分解することの出来ない糖類であり、好ましくは三炭糖(炭素原子3個を持つ単糖類)~十炭糖(炭素原子10個を持つ単糖類)、より好ましくは六炭糖(炭素原子6個を持つ単糖類)である。また、タンパク質としては、ゼラチン等が挙げられる。加えて、無機化合物としては、食塩、硫酸ソーダ、塩化カルシウム、塩化マグネシウム、ケイ酸塩等が挙げられる。これら各種の保湿剤を、単独で、又は2種類以上を混合して、用いることが出来る。 Specific examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, dipropylene glycol, propylene glycol, butylene glycol, 1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2-octanediol, 1,2, Examples include 6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, and trimethylolpropane. The water-soluble polymer compound particularly refers to a compound having 5 to 25 alcoholic hydroxyl groups per 1000 molecular weight. Examples of such water-soluble polymer compounds include vinyl alcohol polymers such as polyvinyl alcohol and various modified products thereof; celluloses such as alkyl cellulose, hydroxyalkyl cellulose, alkyl hydroxyalkyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose. Derivatives; starch derivatives such as alkyl starch, carboxymethyl starch, and oxidized starch; and water-absorbing polymers such as sodium polyacrylate. Examples of the hydrocarbons include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, petroleum ether, petroleum benzyl, tetralin, decalin, tertiary amylbenzene, dimethylnaphthalene and the like. Examples of the saccharide include monosaccharides, oligosaccharides, polysaccharides such as dextrin, among which monosaccharides are saccharides that cannot be decomposed into simpler saccharides by hydrolysis, preferably Tricarbon sugar (monosaccharide having 3 carbon atoms) to decacarbon sugar (monosaccharide having 10 carbon atoms), more preferably hexose sugar (monosaccharide having 6 carbon atoms). Moreover, gelatin etc. are mentioned as protein. In addition, examples of inorganic compounds include sodium chloride, sodium sulfate, calcium chloride, magnesium chloride, and silicate. These various humectants can be used alone or in admixture of two or more.
 なお、従来より公知の各種保湿剤には、水溶性のものから難水溶性のものまで含まれているが、本発明においては、常温(25℃)の水に投入した際に、粘度の上昇が低い保湿剤が有利に用いられる。具体的には、水溶性の保湿剤の場合、常温の水に、水の質量の20%に相当する量の保湿剤を投入し、1時間撹拌し、かかる撹拌後の溶液の粘度が0.8~10cP、好ましくは0.8~5cPの保湿剤が、有利に用いられる。一方、難水溶性の保湿剤は、水中に分散すれば保湿剤としての効果を発揮するものであるところ、難水溶性の保湿剤であっても、常温の水に、水の質量の20%に相当する量の保湿剤を投入し、1時間撹拌し、かかる撹拌後の溶液(水と保湿剤の混合物)をろ過し、得られるろ液の粘度が上記範囲内にあるものが、有利に用いられる。以上より、本発明において有利に用いられる保湿剤としては、グリセリン、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、ポリアクリル酸ナトリウム等の吸水性高分子、ポリビニルアルコール等のビニルアルコール系重合体、重量平均分子量が50000以上のポリエチレングリコール(ポリエチレンオキサイド)等を、挙げることが出来る。 In addition, various conventionally known moisturizers include those that are water-soluble to those that are sparingly water-soluble. In the present invention, the viscosity increases when poured into water at room temperature (25 ° C.). A moisturizing agent with a low is advantageously used. Specifically, in the case of a water-soluble humectant, an amount of humectant corresponding to 20% of the mass of water is added to water at room temperature, and the mixture is stirred for 1 hour. A humectant of 8 to 10 cP, preferably 0.8 to 5 cP, is advantageously used. On the other hand, a poorly water-soluble humectant exhibits an effect as a humectant when dispersed in water. Even if it is a poorly water-soluble humectant, it is 20% of the mass of water in normal temperature water. It is preferable that a moisturizing agent in an amount corresponding to 1 is added, stirred for 1 hour, the solution after stirring (a mixture of water and moisturizing agent) is filtered, and the viscosity of the obtained filtrate is within the above range. Used. As described above, the humectant advantageously used in the present invention includes cellulose derivatives such as glycerin and hydroxypropylmethylcellulose, water-absorbing polymers such as sodium polyacrylate, vinyl alcohol polymers such as polyvinyl alcohol, and weight average molecular weight. 50,000 or more polyethylene glycol (polyethylene oxide) etc. can be mentioned.
 さらに、本発明においては、被覆層中に耐湿性向上剤を含有せしめても良い。被覆層中に耐湿性向上剤を含有せしめることにより、最終的に得られる鋳型の耐湿性の向上を図ることが出来る。本発明において用いられる耐湿性向上剤としては、コーテッドサンドにおいて従来より用いられているものであれば、本発明の効果を阻害しないものである限り、如何なるものであっても使用可能である。具体的には、炭酸亜鉛、塩基性炭酸亜鉛、炭酸鉄、炭酸マンガン、炭酸銅、炭酸アルミニウム、炭酸バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等の炭酸塩、四ホウ酸ナトリウム、四ホウ酸カリウム、四ホウ酸リチウム、四ホウ酸アンモニウム、四ホウ酸カルシウム、四ホウ酸ストロンチウム、四ホウ酸銀、メタホウ酸ナトリウム、メタホウ酸カリウム、メタホウ酸リチウム、メタホウ酸アンモニウム、メタホウ酸カルシウム、メタホウ酸銀 メタホウ酸銅、メタホウ酸鉛、メタホウ酸マグネシウム等のホウ酸塩、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、硫酸チタン、硫酸アルミニウム、硫酸亜鉛、硫酸銅等の硫酸塩、リン酸ナトリウム、リン酸水素ナトリウム、リン酸カリウム、リン酸水素カリウム、リン酸リチウム、リン酸水素リチウム、リン酸マグネシウム、リン酸カルシウム、リン酸チタン、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化アルミニウム、水酸化亜鉛等の水酸化物、珪素、亜鉛、マグネシウム、アルミニウム、カルシウム、リチウム、銅、鉄、ホウ素、ジルコニウム等の酸化物等を、例示することが出来る。それらの中でも、特に塩基性炭酸亜鉛、四ホウ酸ナトリウム、メタホウ酸カリウム、硫酸リチウム、水酸化リチウムは、より有利に耐湿性を向上させることが可能である。上記したものを始めとする耐湿性向上剤は、単独で用いられ得ることは勿論のこと、2種以上のものを併用することも可能である。 Furthermore, in the present invention, a moisture resistance improver may be included in the coating layer. Inclusion of a moisture resistance improver in the coating layer can improve the moisture resistance of the final mold. As the moisture resistance improver used in the present invention, any agent can be used as long as it is conventionally used in the coated sand as long as it does not impair the effects of the present invention. Specifically, carbonates such as zinc carbonate, basic zinc carbonate, iron carbonate, manganese carbonate, copper carbonate, aluminum carbonate, barium carbonate, magnesium carbonate, calcium carbonate, lithium carbonate, potassium carbonate, sodium carbonate, tetraboric acid Sodium, potassium tetraborate, lithium tetraborate, ammonium tetraborate, calcium tetraborate, strontium tetraborate, silver tetraborate, sodium metaborate, potassium metaborate, lithium metaborate, ammonium metaborate, metaborate Calcium, silver metaborate, borate salts such as copper metaborate, lead metaborate, magnesium metaborate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, titanium sulfate, aluminum sulfate, sulfuric acid Zinc, copper sulfate Sulfate, sodium phosphate, sodium hydrogen phosphate, potassium phosphate, potassium hydrogen phosphate, lithium phosphate, lithium hydrogen phosphate, magnesium phosphate, calcium phosphate, titanium phosphate, aluminum phosphate, zinc phosphate, etc. Phosphate, lithium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, aluminum hydroxide, zinc hydroxide and other hydroxides, silicon, zinc, magnesium, aluminum, calcium, lithium, copper Examples thereof include oxides such as iron, boron and zirconium. Among these, basic zinc carbonate, sodium tetraborate, potassium metaborate, lithium sulfate, and lithium hydroxide can improve moisture resistance more advantageously. The moisture resistance improvers including those described above can be used alone, and two or more kinds can be used in combination.
 なお、そのような耐湿性向上剤の使用量としては、その総量において、水ガラスの固形分100質量部に対して、一般に、0.5~50質量部程度であることが好ましく、中でも、1~20質量部がより好ましく、特に、2~15質量部が更に好ましい。耐湿性向上剤の添加効果を有利に享受するために、0.5質量部以上の使用量であることが望ましいのであり、一方、その添加量が多すぎると、水ガラスの結合を阻害し、最終的に得られる鋳型の強度が低下する等の問題を惹起する恐れがあるところから、50質量部以下とされることが望ましいのである。 In general, the amount of such moisture resistance improver used is preferably about 0.5 to 50 parts by mass with respect to 100 parts by mass of the solid content of water glass. Is more preferably 20 parts by mass, and particularly preferably 2-15 parts by mass. In order to advantageously enjoy the effect of adding the moisture resistance improver, it is desirable that the amount used is 0.5 parts by mass or more. On the other hand, if the amount added is too large, binding of water glass is inhibited, It is desirable that the amount be 50 parts by mass or less because there is a possibility of causing problems such as a decrease in the strength of the finally obtained mold.
 加えて、その他の添加剤として、耐火性骨材と水ガラスとの結合を強化するカップリング剤を含有せしめることも有効であり、例えば、シランカップリング剤、ジルコンカップリング剤、チタンカップリング剤等を用いることが出来る。また、コーテッドサンドの流動性の向上に寄与する滑剤の含有も有効であり、例えば、パラフィンワックス、合成ポリエチレンワックス、モンタン酸ワックス等のワックス類;ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド等の脂肪酸アマイド類;メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等のアルキレン脂肪酸アマイド類;ステアリン酸、ステアリルアルコール;ステアリン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等のステアリン酸金属塩;ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等を使用することが可能である。更に、離型剤として、パラフィン、ワックス、軽油、マシン油、スピンドル油、絶縁油、廃油、植物油、脂肪酸エステル、有機酸、黒鉛微粒子、雲母、蛭石、フッ素系離型剤、シリコーン系離型剤等も使用可能である。そして、これらその他の添加剤は、それぞれ、コーテッドサンドの被覆層における水ガラスの固形分に対して、一般に、5質量%以下、好ましくは3質量%以下の割合となるような量において、被覆層に含有せしめられる。 In addition, as another additive, it is also effective to include a coupling agent that strengthens the bond between the refractory aggregate and water glass. For example, a silane coupling agent, a zircon coupling agent, a titanium coupling agent Etc. can be used. It is also effective to contain a lubricant that contributes to improving the flowability of the coated sand. For example, waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax; stearic acid amide, oleic acid amide, erucic acid amide, etc. Fatty acid amides; alkylene fatty acid amides such as methylene bis stearic acid amide and ethylene bis stearic acid amide; stearic acid, stearyl alcohol; stearic acid metal salts such as lead stearate, zinc stearate, calcium stearate, magnesium stearate; stearin Acid monoglycerides, stearyl stearate, hydrogenated oils and the like can be used. Furthermore, as release agents, paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent An agent or the like can also be used. Each of these other additives is generally 5% by mass or less, preferably 3% by mass or less with respect to the solid content of the water glass in the coated sand coating layer. It is contained in
 ところで、本発明に従う常温流動性を有する乾態のコーテッドサンドを製造するに際しては、一般に、耐火性骨材に対して、粘結剤としての水ガラスと、球状粒子と、必要に応じて用いられる添加剤とを添加し、混練乃至は混合せしめて均一に混和し、かかる耐火性骨材の表面を球状粒子を含む水ガラスにて被覆するようにすると共に、そのような水ガラスの水分を蒸散せしめることによって、耐火性骨材の表面に、水ガラス及び球状粒子を含む被覆層を形成せしめる手法が採用される。そのような手法において、被覆層の水分の蒸散は、水ガラスの固化乃至は硬化が進む前に迅速に行なわれる必要があるところから、耐火性骨材に対して、水溶液の形態にある水ガラスを投入(混合)してから、一般には5分以内に、より好ましくは3分以内に、含有水分を飛ばして、乾態の粉末状コーテッドサンドとすることが望ましい。かかる蒸散の時間が長くなると、混和(混練)サイクルが長くなり、コーテッドサンドの生産性が低下する他、水ガラスが空気中のCO2 に触れる時間が長くなって、失活する等の問題を生じる恐れが高くなるからである。 By the way, when producing a dry coated sand having room temperature fluidity according to the present invention, generally, water glass as a binder, spherical particles, and as necessary, are used for a refractory aggregate. Additives are added, kneaded or mixed and mixed uniformly to cover the surface of the refractory aggregate with water glass containing spherical particles, and the water of such water glass is evaporated. A technique of forming a coating layer containing water glass and spherical particles on the surface of the refractory aggregate is used. In such a technique, water vaporization of the coating layer needs to be performed quickly before the water glass solidifies or hardens, so that the water glass in the form of an aqueous solution is used against the refractory aggregate. In general, it is desirable to remove the water content within 5 minutes, and more preferably within 3 minutes, after the addition (mixing) of the powder to obtain a dry powdered coated sand. If the transpiration time becomes longer, the mixing (kneading) cycle becomes longer, the productivity of the coated sand is lowered, and the time that the water glass is in contact with CO 2 in the air becomes longer, resulting in inactivation. This is because there is a high risk of occurrence.
 また、上述したコーテッドサンドの製造工程において、水ガラス中の水分を迅速に蒸散せしめるための有効な手段の一つとして、耐火性骨材を予め加熱しておき、それに、水溶液の形態にある水ガラス及び球状粒子を混練乃至は混合して、混和せしめるようにする手法が、採用される。この予め加熱された耐火性骨材に、水ガラス及び球状粒子を混練乃至は混合せしめるようにすることによって、水ガラス中の水分は、そのような耐火性骨材の熱にて、極めて迅速に蒸散せしめられ得ることとなるのであり、以て、得られるコーテッドサンドの水分量を効果的に低下せしめ得て、常温流動性を有する乾態の粉体が、有利に得られることとなるのである。ここで、耐火性骨材の予熱温度としては、水ガラスの含有水分量やその配合量等に応じて、適宜に選定されることとなるが、一般には100~160℃程度の温度が、好ましくは100~140℃程度の温度が、採用される。この予熱温度が低すぎると、水分の蒸散を効果的に行うことが出来ず、乾燥に時間がかかるようになるところから、100℃以上の温度を採用することが望ましいのであり、また予熱温度が高すぎると、得られるコーテッドサンドの冷却時に、水ガラス成分の硬化が進み、加えて複合粒子化が進行するようになるところから、コーテッドサンドとしての機能、特に、最終的に得られる鋳型の強度等の物性に問題を生じるようになる。 Moreover, in the manufacturing process of the above-mentioned coated sand, as one of effective means for rapidly evaporating the water in the water glass, the refractory aggregate is preheated and water in the form of an aqueous solution is added. A technique is adopted in which glass and spherical particles are kneaded or mixed to be mixed. By mixing or mixing water glass and spherical particles with this preheated refractory aggregate, the water in the water glass is very quickly heated by the heat of such refractory aggregate. This means that the moisture content of the resulting coated sand can be effectively reduced, and a dry powder having room temperature fluidity can be advantageously obtained. . Here, the preheating temperature of the refractory aggregate is appropriately selected depending on the water content of the water glass and the blending amount thereof, but generally a temperature of about 100 to 160 ° C. is preferable. A temperature of about 100 to 140 ° C. is employed. If this preheating temperature is too low, it is not possible to effectively evaporate water, and it takes time to dry. Therefore, it is desirable to employ a temperature of 100 ° C. or higher. If it is too high, hardening of the water glass component will proceed while cooling of the resulting coated sand, and in addition, the formation of composite particles will proceed, so the function as the coated sand, especially the strength of the final mold obtained. This causes problems in physical properties.
 なお、本発明のコーテッドサンドにおいて、水ガラスを含む被覆層に含有せしめられる球状粒子や、必要に応じて用いられる他の添加剤、例えば界面活性剤や保湿剤等は、予め水ガラスを混合した状態で耐火性骨材に添加し、混練しても良く、また、混練時に水ガラスとは別個に添加して混練しても良く、更には混練時に、水ガラスの投入との間に時間差を設けて投入し、混練しても良い。そのため、本発明のコーテッドサンドにおける被覆層は、例えば、水ガラスと球状粒子等とが渾然一体となった状態において、或いは、耐火性骨材の表面から外方に向かって、水ガラスの固形分(不揮発分)の濃度が漸次減少又は増加する一方で、球状粒子等の濃度は漸次増加又は減少するような状態において、構成されることとなる。混練等に際して、水ガラス及び球状粒子を耐火性骨材に対して投入するタイミングとしては、先ずは水ガラスを投入して混練し、その後に(時間差を設けて)球状粒子を投入することが望ましい。このような順序に従うことにより、得られるコーテッドサンドの表面において、被覆層の表面近くに球状粒子が存在せしめられるところから、そのようなコーテッドサンドを用いて造型された鋳型は、より優れた充填性を発揮することとなる。また、混練機(ミキサ)内に水ガラスを投入すると、水ガラスに含まれる水分が蒸散するに従って混練物の粘性が増加し、ミキサのモーター負荷が上昇するところ、かかるミキサのモーター負荷が最大となる前に球状粒子を投入することにより、耐火性骨材の表面を覆う軟化状態の水ガラスに球状粒子を効果的に付着させることが出来、最終的に得られるコーテッドサンドにおいて、球状粒子の脱落が有利に防止されると共に、表面に球状粒子が均一に分布しているコーテッドサンドが有利に得られるという効果も享受することが出来る。なお、本発明のコーテッドサンドを製造するに際して、粘結剤としての水ガラスは、粘度を調節するために水で希釈されたものであっても用いることが可能であり、更には、耐火性骨材との混練乃至は混合時に、水ガラスと水とを個別に添加することも可能である。 In the coated sand of the present invention, spherical particles to be contained in the coating layer containing water glass and other additives used as necessary, for example, surfactants and moisturizers, were previously mixed with water glass. It may be added to the refractory aggregate in a state and kneaded, or it may be added separately from the water glass at the time of kneading and further kneaded. It may be provided and charged and kneaded. Therefore, the coating layer in the coated sand of the present invention is, for example, in a state where water glass and spherical particles are integrally integrated, or from the surface of the refractory aggregate to the outside, While the concentration of (nonvolatile content) gradually decreases or increases, the concentration of spherical particles or the like is configured to increase or decrease gradually. In kneading and the like, it is desirable that the water glass and the spherical particles are added to the refractory aggregate first by adding the water glass and kneading, and then adding the spherical particles (with a time difference). . By following such an order, spherical particles are present near the surface of the coating layer on the surface of the obtained coated sand, so that a mold formed using such a coated sand has better filling properties. Will be demonstrated. In addition, when water glass is introduced into the kneader (mixer), the viscosity of the kneaded product increases as the water contained in the water glass evaporates, and the motor load of the mixer increases. The spherical particles can be effectively adhered to the soft water glass that covers the surface of the refractory aggregate by introducing the spherical particles before becoming, and the spherical particles fall off in the finally obtained coated sand. Is advantageously prevented, and it is also possible to enjoy the effect that a coated sand in which spherical particles are uniformly distributed on the surface is advantageously obtained. In the production of the coated sand of the present invention, the water glass as a binder can be used even if it is diluted with water in order to adjust the viscosity. It is also possible to add water glass and water separately during kneading or mixing with the material.
 上述の如き製法に従って、本発明に従う常温流動性を有する乾態のコーテッドサンドは、含水分量が、耐火性骨材の表面を覆う被覆層に含まれる水ガラスの固形分量に対して、好ましくは5~55質量%の割合に相当する量となるように、より好ましくは10~50質量%の割合に相当する量となるように、最も好ましくは20~50質量%の割合に相当する量となるように、製造されるのである。 According to the production method as described above, the dry coated sand having room temperature fluidity according to the present invention preferably has a moisture content of 5 with respect to the solid content of the water glass contained in the coating layer covering the surface of the refractory aggregate. An amount corresponding to a proportion of ˜55 mass%, more preferably an amount corresponding to a proportion of 10 to 50 mass%, most preferably an amount corresponding to a proportion of 20 to 50 mass%. Thus, it is manufactured.
 ところで、本発明に従う乾態のコーテッドサンドを用いて鋳型を造型する際の方法としては、以下の二つの方法を例示することが出来る。第一の方法においては、鋳型の製造場所たる造型現場にて、乾態のコーテッドサンドと水とを混練することにより、コーテッドサンドを湿態化させて湿潤状態とし、その湿潤状態とされたコーテッドサンドを、目的とする鋳型を与える成形型の成形キャビティ内に充填する一方、かかる成形型を90~200℃の温度に加熱して、充填されたコーテッドサンドが成形型内で乾燥されるまで、保持されることとなる。第二の方法においては、目的とする鋳型を与える成形型の成形キャビティ内にコーテッドサンドを充填した後に、水蒸気を吹き込み、この水蒸気の通気によって、コーテッドサンドの充填相が湿らされて湿潤状態となり、その後、90~200℃に加熱された成形型内で乾燥するまで保持されることとなる。 Incidentally, the following two methods can be exemplified as a method for forming a mold using the dry coated sand according to the present invention. In the first method, dry coated sand and water are kneaded at the molding site where the mold is manufactured to make the coated sand wet, and the wet coated While filling the sand into the mold cavity of the mold that gives the target mold, the mold is heated to a temperature of 90-200 ° C. until the filled coated sand is dried in the mold, Will be held. In the second method, after the coated sand is filled into the mold cavity of the mold that gives the target mold, water vapor is blown, and the flow phase of the water vapor wets the filled phase of the coated sand, Thereafter, it is held in a mold heated to 90 to 200 ° C. until it is dried.
 その際、常温流動性を有する乾態のコーテッドサンドが充填せしめられる、金型や木型等の成形型は、予め加熱により保温されていることが望ましく、それによって、水蒸気によって湿態化されたコーテッドサンドの乾燥が、有利に進行せしめられ得るのである。なお、その予熱による保温温度としては、一般に、90~200℃程度、特に100~140℃程度の温度が、望ましい。この保温温度が高すぎると、成形型の表面にまで蒸気が通り難くなるのであり、一方、温度が低すぎると、造型された鋳型の乾燥に時間を要するようになる。加えて、かかる成形型内に充填せしめられる乾態のコーテッドサンドも、有利には、予熱されていることが望ましい。一般に、30℃以上の温度に加温されたコーテッドサンドを、成形型に充填せしめるようにすることによって、得られる鋳型の抗折強度がより有利に高められ得ることとなるのである。このようなコーテッドサンドの加温温度としては、好ましくは30~100℃程度とされ、特に、40~80℃程度の温度に加温されたコーテッドサンドが、有利に用いられることとなる。 At that time, molds such as molds and wooden molds, which are filled with dry coated sand having room temperature fluidity, are preferably preliminarily kept warm by heating, thereby being wetted by water vapor. The drying of the coated sand can proceed advantageously. In general, a temperature of about 90 to 200.degree. C., particularly about 100 to 140.degree. C. is desirable as the temperature for preheating. If the temperature is too high, it becomes difficult for steam to pass to the surface of the mold, while if the temperature is too low, it takes time to dry the molded mold. In addition, the dry coated sand to be filled in such a mold is also preferably preheated. Generally, the bending strength of the obtained mold can be increased more advantageously by filling the molding die with the coated sand heated to a temperature of 30 ° C. or higher. The heating temperature of such coated sand is preferably about 30 to 100 ° C., and particularly, coated sand heated to a temperature of about 40 to 80 ° C. is advantageously used.
 上記した第一の方法において、乾態のコーテッドサンドに水を加えて湿態化する工程は、単に、乾態のコーテッドサンドと所定量の水とを適当なミキサに投入して、混合せしめることにより、実施することが可能であるところから、極めて単純な作業にて実施され得て、作業環境の悪い造型現場においても、極めて簡単に且つ容易に行い得るという利点がある。なお、水の添加時には、他の添加剤を添加することも可能である。また、上記第一の方法においては、成形型の加熱に代えて、成形型内に充填された湿潤状態のコーテッドサンドに対して、乾燥空気や乾燥加熱空気、窒素ガス等を吹き込むことにより、コーテッドサンドを乾燥させ、固化乃至は硬化させることも可能である。 In the first method described above, the step of adding water to the wet coated sand to make it wet simply puts the dry coated sand and a predetermined amount of water into an appropriate mixer and mixes them. Therefore, there is an advantage that it can be carried out by a very simple work and can be carried out very easily and easily even in a molding site where the working environment is bad. In addition, it is also possible to add another additive at the time of addition of water. Further, in the first method, instead of heating the mold, the coated sand is blown into the wet coated sand filled in the mold by blowing dry air, dry heated air, nitrogen gas, or the like. It is also possible to dry and solidify or harden the sand.
 一方、上記した第二の方法においては、上記の如く加熱された成形型内に、具体的には、その成形キャビティ内に、本発明に従う乾態のコーテッドサンドを充填せしめた後、そこに形成される充填相内に、成形型に設けられた通気口を通じて、水蒸気を加圧下に通気させて、かかる充填相を構成するコーテッドサンドを湿態化させて(湿らせて)、コーテッドサンドの被覆層に含まれる水ガラスによってコーテッドサンドを相互に結合させて連結せしめ、一体的な鋳型形状のコーテッドサンド集合体(結合物)が形成されるのである。なお、水ガラスは、通常、何の添加剤も加えられていなければ、水の蒸発乾固により固化し、また硬化剤としての酸化物や塩が加えられている場合には、硬化することとなるのである。実用的には、硬化剤が添加されることとなるところから、充填相は硬化されたものとなるが、単に、固化されたものであっても、何等差支えない。 On the other hand, in the second method described above, the mold is heated as described above, specifically, the mold cavity is filled with the dry coated sand according to the present invention, and then formed therein. In the filled phase, water vapor is passed under pressure through a vent provided in the mold, so that the coated sand constituting the filled phase is moistened (moistened) to coat the coated sand. The coated sand is bonded and connected to each other by the water glass contained in the layer to form an integral mold-shaped coated sand aggregate (bonded product). Water glass is usually solidified by evaporation to dryness of water if no additives are added, and is cured when oxides or salts as curing agents are added. It becomes. Practically, since the curing agent is added, the filling phase is hardened, but it can be simply solidified.
 ここで、そのような成形型の通気口を通じて吹き込まれて、コーテッドサンドの充填相内を通気せしめられる水蒸気の温度としては、一般に、80~150℃程度、より望ましくは95~120℃程度とされる。高温の水蒸気温度を採用すると、その生産のために多量のエネルギーが必要となるところから、特に100℃付近の水蒸気温度が有利に採用されることとなる。また、通気せしめられる水蒸気の圧力としては、ゲージ圧で、0.01~0.3MPa程度、より好ましくは0.01~0.1MPa程度の値が有利に採用されるのである。コーテッドサンドの通気性が良い場合において、水蒸気を通気させるための圧力が、前記したゲージ圧程度であれば、成形型内に形成される鋳型に、満遍なく、水蒸気を通気させることが出来るのであり、しかも水蒸気の通気時間及び鋳型の乾燥時間が短時間で済み、造型速度を短縮することが出来る特徴がある。また、そのようなゲージ圧であれば、コーテッドサンドの通気性が悪い場合においても、造型が可能となる利点がある。なお、ゲージ圧が高すぎると、通気口付近でしみつきが発生する恐れがあり、一方、ゲージ圧が低すぎると、コーテッドサンドの充填相の全体に通気せず、コーテッドサンドを充分に湿らせることが出来ない恐れがある。 Here, the temperature of water vapor that is blown through the vent of such a mold and allows the filled phase of the coated sand to be vented is generally about 80 to 150 ° C., more preferably about 95 to 120 ° C. The When a high steam temperature is employed, a large amount of energy is required for production thereof, and therefore, a steam temperature around 100 ° C. is particularly advantageously employed. As the pressure of the water vapor to be aerated, a gauge pressure value of about 0.01 to 0.3 MPa, more preferably about 0.01 to 0.1 MPa is advantageously employed. In the case where the breathability of the coated sand is good, if the pressure for venting water vapor is about the above-mentioned gauge pressure, the water vapor can be evenly vented to the mold formed in the mold, In addition, the water vapor passage time and the mold drying time are short, and the molding speed can be reduced. In addition, such a gauge pressure has an advantage that molding is possible even when the breathability of the coated sand is poor. In addition, if the gauge pressure is too high, there is a risk of squeezing near the vent, while if the gauge pressure is too low, the entire coated phase of the coated sand is not vented and the coated sand is sufficiently moistened. There is a fear that it cannot be done.
 また、かくの如く水蒸気を通気させる方法としては、成形型に設けた通気口から水蒸気を吹き込み、成形型の成形キャビティ内に充填されたコーテッドサンド(相)内を通気せしめる手法が採用され、更にその通気時間としては、かかる充填されたコーテッドサンドの表面に水蒸気を供給して、その表面の被覆層に含まれる粘結剤たる水ガラスを充分に湿らせ、コーテッドサンドを相互に結合(接合)し得るような時間が、成形型の大きさや通気口の数等によって、適宜に選定されることとなるが、一般に、2秒程度から60秒程度までの通気時間が、採用されることとなる。この水蒸気の通気時間が短すぎると、コーテッドサンド表面を充分に湿らせることが困難となるからであり、また通気時間が長すぎると、コーテッドサンド表面の粘結剤(水ガラス)が溶解乃至流出する恐れ等が生じるからである。また、この成形型内に充填されたコーテッドサンド内における水蒸気の通気性は、かかる成形型の排気口から型内の雰囲気を吸引しつつ、水蒸気の通気を行なうことによって、より向上させることが可能である。 In addition, as a method for venting water vapor as described above, a method is adopted in which water vapor is blown from a vent provided in the mold, and the coated sand (phase) filled in the molding cavity of the mold is vented. As the ventilation time, water vapor is supplied to the surface of the filled coated sand so that the water glass as a binder contained in the coating layer on the surface is sufficiently moistened, and the coated sand is bonded (bonded) to each other. The possible time is appropriately selected depending on the size of the mold, the number of vents, and the like. Generally, a ventilation time of about 2 seconds to about 60 seconds is adopted. . This is because if the water vapor passage time is too short, it becomes difficult to sufficiently wet the surface of the coated sand. If the air passage time is too long, the binder (water glass) on the coated sand surface dissolves or flows out. This is because there is a fear of doing so. The breathability of water vapor in the coated sand filled in the mold can be further improved by venting the water vapor while sucking the atmosphere in the mold from the exhaust port of the mold. It is.
 さらに、本発明のコーテッドサンドを用いて鋳型を製造するに際して、上述した第一の方法及び第二の方法においては、湿ったコーテッドサンドの充填相を積極的に乾燥させるべく、乾燥空気、加熱乾燥空気又は窒素ガスを吹き込み、かかる充填相に通気せしめるようにする手法が、好適に採用される。このような乾燥空気、加熱乾燥空気又は窒素ガスの通気によって、コーテッドサンドの充填相の内部に至るまで十分に且つ迅速に乾燥させて、かかる充填相の固化乃至は硬化をより一層有利に促進せしめ、以て、硬化速度を有利に高めると共に、得られる鋳型の抗折強度等の特性をも有利に高め得ることとなる他、鋳型の造型時間の短縮にも、有利に寄与し得るのである。 Furthermore, when producing a mold using the coated sand of the present invention, in the first method and the second method described above, in order to actively dry the filling phase of the wet coated sand, dry air, heat drying A method in which air or nitrogen gas is blown into the filling phase is preferably employed. By aeration of such dry air, heated dry air or nitrogen gas, it is possible to sufficiently and quickly dry the inside of the coated sand filling phase, thereby further advantageously promoting the solidification or curing of the filling phase. Thus, the curing rate can be advantageously increased, and the properties such as the bending strength of the obtained mold can be advantageously enhanced, and it can also contribute to shortening the molding time of the mold.
 また、成形型の保持中に、水ガラスの硬化を促進させるための添加剤として、成形型内に硬化剤を添加しても良い。硬化剤で粘結剤(水ガラス)を中和することで、その固化をより促進させることが可能である。なお、硬化剤の通気は、成形型での保持中であれば、いずれのタイミングで行っても良く、水蒸気の通気と同時に、又は乾燥空気等の通気と同時に行なっても、何等差支えない。 Further, a curing agent may be added in the mold as an additive for promoting the hardening of the water glass during holding of the mold. It is possible to further promote the solidification by neutralizing the binder (water glass) with a curing agent. It should be noted that the curing agent may be vented at any timing as long as it is being held in the mold, and there is no problem even if it is performed simultaneously with the vaporization of water vapor or the ventilation of dry air or the like.
 硬化剤としては、二酸化炭素(炭酸水)、硫酸、塩酸、硝酸、リン酸、シュウ酸、カルボン酸、パラトルエンスルホン酸等の有機酸や、ギ酸メチル、ギ酸エチル、ギ酸プロピル、γ-ブチロラクトン、γ-プロピオンラクトン、エチレングリコールジアセテート、ジエチレングリコールジアセテート、グリセリンジアセテート、トリアセチン、プロピレンカーボネート等のエステルや、メタノール、エタノール、ブタノール、ヘキサノール、オクタノール等の一価のアルコール等を、例示することが出来る。これら硬化剤は、単独で用いられ得ることは勿論のこと、2種以上のものを混合して、使用することも可能である。なお、これらの硬化剤は、成形型の保持中にガス状又は霧状にしたものを、成形型内に通気すると良く、乾態のコーテッドサンドに水を加えて湿態化する場合には、水と共に硬化剤を加えても良い。 Curing agents include carbon dioxide (carbonated water), sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, carboxylic acid, paratoluenesulfonic acid and other organic acids, methyl formate, ethyl formate, propyl formate, γ-butyrolactone, Examples include γ-propionlactone, ethylene glycol diacetate, diethylene glycol diacetate, glycerol diacetate, triacetin, propylene carbonate, and other monovalent alcohols such as methanol, ethanol, butanol, hexanol, and octanol. . These curing agents can be used alone, or two or more of them can be mixed and used. In addition, these hardeners are good to ventilate the gas mold or mist while holding the mold, into the mold, and when wetted by adding water to the dry coated sand, A curing agent may be added together with water.
 さらにまた、本発明のコーテッドサンドを用いて鋳型を製造するに際しては、上述した、成形型内にコーテッドサンドを充填して成形する手法の他、公知の各種の造型手法が適宜に採用され得ることは、言うまでもないところである。 Furthermore, when producing a mold using the coated sand of the present invention, various known molding techniques can be appropriately employed in addition to the above-described technique of filling the molded mold with the coated sand. Needless to say.
 以下に、幾つかの実施例を用いて、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等限定的に解釈されるものでないことが理解されるべきである。なお、以下の実施例や比較例において、「%」及び「部」は、特に断りのない限りにおいて、何れも、質量基準にて示されている。また、実施例や比較例で得られたコーテッドサンド(CS)の水分量、充填性、充填流動性、強度の評価は、それぞれ、以下のようにして行った。 Hereinafter, the present invention will be more specifically clarified by using some examples, but the present invention is not construed as being limited in any way by the description of such examples. Should be understood. In the following examples and comparative examples, “%” and “parts” are shown on a mass basis unless otherwise specified. Moreover, the water content, filling property, filling fluidity, and strength of the coated sand (CS) obtained in Examples and Comparative Examples were evaluated as follows.
-水ガラスの固形分に対する水分量の測定-
 空焼して秤量したるつぼに、各CSを10g秤量して収容し、900℃にて1時間曝熱した後の質量減少量(%)を用いて、CS中の水分量(W1)を、下記の式(4)より算出する。なお、秤量は、小数点以下第4位まで計測する。次に、CSに対する水ガラスの固形分量(B1)を、下記の式(5)を用いて算出し、その後、CS中の水分量(W1)及びCSに対する水ガラスの固形分量(B1)より、水ガラスの固形分量に対する水分量(被覆層における水ガラスの固形分量に対するCSの水分量:W2)を、下記の式(6)を用いて算出する。以上の如くして算出されたW2を、下記表1及び表2において「含水分量」として示す。
  W1=[(M1-M2)/M3]×100 ・・・(4)
   [W1:CS中の水分量(%)、M1:焼成前のるつぼとCSの合計
    質量(g)、M2:焼成後のるつぼとCSの合計質量(g)、M3
    :焼成前のCSの質量(g)]
  B1=[B2/(100+B2)]×(100-W1) ・・・(5)
   [B1:CSに対する水ガラスの固形分量(%)、B2:砂の100
    部に対して添加した水ガラスの固形分量(部)、W1:CS中の水
    分量(%)]
  W2=(W1/B1)×100 ・・・(6)
   [W2:被覆層における水ガラスの固形分量に対するCSの水分量(
    %)、W1:CS中の水分量(%)、B1:CSに対する水ガラス
    の固形分量(%)]
-Measurement of water content relative to solid content of water glass-
Each CS is weighed and accommodated in a crucible that has been baked and weighed, and the amount of moisture (W1) in the CS is calculated using the mass loss (%) after heating at 900 ° C. for 1 hour. It calculates from the following formula (4). The weighing is measured to the fourth decimal place. Next, the solid content (B1) of the water glass with respect to CS is calculated using the following formula (5), and then the water content (W1) in CS and the solid content (B1) of the water glass with respect to CS, The water content relative to the solid content of water glass (CS water content relative to the solid content of water glass in the coating layer: W2) is calculated using the following equation (6). W2 calculated as described above is shown as “moisture content” in Tables 1 and 2 below.
W1 = [(M1-M2) / M3] × 100 (4)
[W1: Moisture content (%) in CS, M1: Total mass (g) of crucible and CS before firing, M2: Total mass (g) of crucible and CS after firing, M3
: Mass of CS before firing (g)]
B1 = [B2 / (100 + B2)] × (100−W1) (5)
[B1: Solid content (%) of water glass with respect to CS, B2: 100 of sand
Solid amount of water glass added to parts (part), W1: amount of water in CS (%)]
W2 = (W1 / B1) × 100 (6)
[W2: Moisture content of CS with respect to solid content of water glass in coating layer (
%), W1: moisture content in CS (%), B1: solid content of water glass with respect to CS (%)]
-抗折強度の測定-
 各CSを用いて得られた、幅:2.54cm×高さ:2.54cm×長さ:20cmの大きさの試験片について、その破壊荷重を、測定器(高千穂精機株式会社製:デジタル鋳物砂強度試験機)を用いて、測定する。そして、この測定された破壊荷重を用いて、抗折強度を、下記の式(7)により、算出する。
  抗折強度(N/cm2 )=1.5×(L×W)/(a×b2 )
  ・・・(7)
   [L:支点間距離(cm)、W:破壊荷重(N)、a:試験片の幅(
    cm)、b:試験片の厚み(cm)]
-Measurement of bending strength-
About the test piece of width: 2.54cmxheight: 2.54cmxlength: 20cm obtained using each CS, the breaking load was measured with a measuring instrument (manufactured by Takachiho Seiki Co., Ltd .: digital casting Measure using a sand strength tester). Then, the bending strength is calculated by the following formula (7) using the measured breaking load.
Bending strength (N / cm 2 ) = 1.5 × (L × W) / (a × b 2 )
... (7)
[L: distance between fulcrums (cm), W: breaking load (N), a: width of test piece (
cm), b: thickness of specimen (cm)]
-充填率(%)の測定-
 各実施例又は各比較例において造型して得られた、幅:2.54cm×高さ:2.54cm×長さ:20cmの大きさの鋳型を、それぞれ試験片として用いて、骨材の真比重に対する各試験片の比重(質量を試験片の体積で除して算出する)の割合を、百分率で算出する。
  充填率(%)={[各試験片の質量(g)/体積(cm3 )]
          /骨材の真比重(g/cm3 )}×100
-Measurement of filling rate (%)-
The molds of width: 2.54 cm × height: 2.54 cm × length: 20 cm obtained by molding in each example or each comparative example were used as test pieces, respectively. The ratio of the specific gravity of each test piece to the specific gravity (calculated by dividing the mass by the volume of the test piece) is calculated as a percentage.
Filling rate (%) = {[mass (g) / volume (cm 3 ) of each test piece]
/ True specific gravity of aggregate (g / cm 3 )} × 100
-中子崩壊性試験-
  先ず、図1に示されるように、予め常温自硬性砂で作製された、上部に溶湯注入口2と下部に中子の幅木固定部4(この部分は鋳物からの廃中子の排出口となる)を有する半割れ中空主型6(キャビティ直径:6cm、高さ:6cm)内に、各々のCSを用いて作製した幅木部8を有する円形無空中子10(直径:5cm、高さ:5cm)を、幅木固定部4で接着固定した後、更に相方中空主型6を接着固定して、鋳造試験用砂型12を作製する。次に、この鋳造試験用砂型12の溶湯注入口2からアルミニウム合金溶湯(温度:710±5℃)を注湯し、凝固せしめた後、主型6を壊して、図2に示す円形の廃中子排出口14(直径:1.6cm)を有する鋳物16を取り出す。そして、所定の温度となったところで、かかる得られた鋳物16に対して、圧力:0.2MPaにて、エアーハンマーにより1回に3秒間の衝撃を与え、排出口14から排出する。中子砂が100%排出されるまでエアーハンマーによる衝撃を繰り返し、その回数を表記した。
-Core disintegration test-
First, as shown in FIG. 1, a molten metal injection port 2 formed in advance at room temperature self-hardening sand and a core base fixing portion 4 at a lower portion (this portion is a discharge port for a waste core from a casting). In the half-cracked hollow main mold 6 (cavity diameter: 6 cm, height: 6 cm) having circular baseless cores 10 (diameter: 5 cm, high 5 cm) is bonded and fixed by the skirting board fixing portion 4, and the opposite hollow main mold 6 is further bonded and fixed to produce a sand mold 12 for casting test. Next, molten aluminum alloy (temperature: 710 ± 5 ° C.) is poured from the molten metal inlet 2 of the casting test sand mold 12 and solidified, and then the main mold 6 is broken to form a circular waste as shown in FIG. A casting 16 having a core outlet 14 (diameter: 1.6 cm) is taken out. When the temperature reaches a predetermined temperature, an impact is applied to the obtained casting 16 at a pressure of 0.2 MPa for 3 seconds at a time by an air hammer and discharged from the discharge port 14. The impact by the air hammer was repeated until 100% of the core sand was discharged, and the number of times was indicated.
-平均粒子径-
 日機装株式会社製のマイクロトラック粒度分布測定装置(製品名:MT3200II)を用いて、粒度分布から、積算値50%の粒子径を平均粒子径(D50)として測定した。なお、実施例及び比較例で用いた球状粒子及び非球状粒子について、上記測定装置を用いて平均粒子径を測定したところ、各メーカーの公表値との間の誤差が10%以内であったため、以下において、球状粒子及び非球状粒子の平均粒子径はメーカーの公表値を示す。
-Average particle size-
Using a Microtrac particle size distribution measuring device (product name: MT3200II) manufactured by Nikkiso Co., Ltd., the particle size at an integrated value of 50% was measured as an average particle size (D 50 ) from the particle size distribution. In addition, for the spherical particles and non-spherical particles used in the examples and comparative examples, the average particle diameter was measured using the above measuring apparatus, and the error between the published values of each manufacturer was within 10%. Below, the average particle diameter of a spherical particle and a non-spherical particle shows a manufacturer's published value.
-乾態CSの製造例1-
 耐火性骨材として、市販の鋳造用人工砂であるルナモス#50(商品名、花王クエーカー株式会社製、平均粒子径:292.1μm、粒径係数:1.01)を準備すると共に、粘結剤たる水ガラスとして、市販品である2号ケイ酸ナトリウム(商品名、富士化学株式会社製、SiO2 /Na2O のモル比:2.5、固形成分:41.3%)を準備した。そして、上記のルナモス#50を約120℃の温度に加熱した後、品川式万能攪拌機(5DM-r型)(株式会社ダルトン製)に投入し、更に、前記水ガラスを、ルナモス#50の100部に対して、1.21部(固形成分:0.50部)の割合で、また球状粒子として、球状二酸化ケイ素粒子であるエルケムマイクロシリカ(商品名、エルケム・ジャパン株式会社製、平均粒子径:0.15μm、真球度:0.96)を0.05部(水ガラスの固形分100部に対して10部)の割合で添加して、3分間の混練を行ない、水分を蒸発せしめる一方、砂粒塊が崩壊するまで攪拌混合せしめ、更にステアリン酸カルシウムの0.01部(水ガラスの固形分100部に対して2部)を加えて攪拌混合せしめた後に取り出すことにより、常温流動性を有する乾態のコーテッドサンド:CS1を得た。かかる混練後のCS1の含水分量を測定したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 1 of dry CS
As refractory aggregate, Lunamos # 50 (trade name, manufactured by Kao Quaker Co., Ltd., average particle size: 292.1 μm, particle size coefficient: 1.01), which is a commercially available artificial sand for casting, is prepared and caking is performed. No. 2 sodium silicate (trade name, manufactured by Fuji Chemical Co., Ltd., SiO 2 / Na 2 O molar ratio: 2.5, solid component: 41.3%) was prepared as the water glass as the agent. . Then, the lunamos # 50 is heated to a temperature of about 120 ° C. and then put into a Shinagawa universal stirrer (5DM-r type) (manufactured by Dalton Co., Ltd.). The ratio is 1.21 parts (solid component: 0.50 parts) with respect to parts, and as spherical particles, Elchem microsilica (trade name, manufactured by Elchem Japan Ltd., average particle diameter) which is spherical silicon dioxide particles. : 0.15 μm, sphericity: 0.96) at a ratio of 0.05 parts (10 parts with respect to 100 parts of the solid content of water glass) and kneading for 3 minutes to evaporate the water On the other hand, the mixture is stirred and mixed until the sand lump breaks down, and 0.01 parts of calcium stearate (2 parts with respect to 100 parts of the solid content of water glass) is added and stirred and mixed. Coated of Inuitai with sand: Got a CS1. When the moisture content of CS1 after such kneading was measured, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例2-
 添加する球状粒子を、球状二酸化ケイ素粒子であるHS311(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:2.2μm、真球度:0.98)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS2を得た。得られたCS2の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 2- of dry CS
The above production example 1 except that the spherical particles to be added are HS311 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 2.2 μm, sphericity: 0.98) which is spherical silicon dioxide particles. According to the same procedure as above, dry CS2 having room temperature fluidity was obtained. When the moisture content of the obtained CS2 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例3-
 添加する球状粒子を、球状二酸化ケイ素粒子であるHS312(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:9.5μm、真球度:0.96)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS3を得た。得られたCS3の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example of dry CS 3-
The above production example 1 except that the spherical particles to be added are HS312 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 9.5 μm, sphericity: 0.96) which are spherical silicon dioxide particles. According to the same procedure as above, dry CS3 having room temperature fluidity was obtained. When the moisture content of the obtained CS3 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例4-
 添加する球状粒子を、球状二酸化ケイ素粒子であるHS206(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:12.0μm、真球度:0.97)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS4を得た。得られたCS4の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 4 of dry CS
The above production example 1 except that spherical particles to be added are HS206 which is spherical silicon dioxide particles (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 12.0 μm, sphericity: 0.97). According to the same procedure as above, dry CS4 having room temperature fluidity was obtained. When the moisture content of the obtained CS4 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例5-
 添加する球状粒子を、球状二酸化ケイ素粒子であるサンスフェアNP-200(商品名、AGCエスアイテック株式会社製、平均粒子径:18.2μm、真球度:0.97)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS5を得た。得られたCS5の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example of dry CS 5-
Except that the spherical particles to be added were Sunsphere NP-200 (trade name, manufactured by AGC S-Tech Co., Ltd., average particle size: 18.2 μm, sphericity: 0.97), which are spherical silicon dioxide particles. According to the same procedure as in Production Example 1, dry CS5 having room temperature fluidity was obtained. When the moisture content of the obtained CS5 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例6-
 添加する球状粒子を、球状酸化アルミニウム粒子であるAZ2-75(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:2.5μm、真球度:0.95)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS6を得た。得られたCS6の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 6 of dry CS-
Except that the spherical particles to be added are AZ2-75 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 2.5 μm, sphericity: 0.95) which are spherical aluminum oxide particles. According to the same procedure as in Example 1, dry CS6 having room temperature fluidity was obtained. When the moisture content of the obtained CS6 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例7-
 添加する球状粒子を、球状酸化アルミニウム粒子であるAZ4-75(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:4.5μm、真球度:0.96)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS7を得た。得られたCS7の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 7 of dry CS-
Except that the spherical particles to be added were AZ4-75 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 4.5 μm, sphericity: 0.96), which are spherical aluminum oxide particles. According to the same procedure as in Example 1, dry CS7 having room temperature fluidity was obtained. When the moisture content of the obtained CS7 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例8-
 添加する球状粒子を、球状酸化アルミニウム粒子であるAZ10-75(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:10.5μm、真球度:0.94)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS8を得た。得られたCS8の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 8 of dry CS-
Except that the spherical particles to be added are AZ10-75 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 10.5 μm, sphericity: 0.94) which are spherical aluminum oxide particles. According to the same procedure as in Example 1, dry CS8 having room temperature fluidity was obtained. When the moisture content of the obtained CS8 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例9-
 添加する球状粒子を、球状酸化チタン粒子であるSG-TO200(商品名、Sukgyung AT Co.,Ltd.製、平均粒子径:0.2μm、真球度:0.93)とした以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS9を得た。得られたCS9の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 9 of dry CS-
Except that the spherical particles to be added were SG-TO200 (trade name, manufactured by Sukkyung AT Co., Ltd., average particle size: 0.2 μm, sphericity: 0.93) which are spherical titanium oxide particles. According to the same procedure as in Production Example 1, dry CS9 having room temperature fluidity was obtained. When the moisture content of the obtained CS9 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例10-
 粘結剤たる水ガラスとして、市販品の1号ケイ酸ナトリウム(商品名、富士化学株式会社製、SiO2 /Na2O のモル比:2.1、固形成分:48.5%)を用い、その添加量を、耐火性骨材(ルナモス#50)の100部に対して1.03部(固形成分0.50部)としたこと以外は、上記製造例2と同様の手順に従って、常温流動性を有する乾態のCS10を得た。得られたCS10の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 10 of dry CS-
As water glass as a binder, commercially available No. 1 sodium silicate (trade name, manufactured by Fuji Chemical Co., Ltd., molar ratio of SiO 2 / Na 2 O: 2.1, solid component: 48.5%) was used. The addition amount was 1.03 parts (solid component 0.50 part) with respect to 100 parts of the refractory aggregate (Lunamos # 50) according to the same procedure as in Production Example 2 above. A dry CS10 having fluidity was obtained. When the moisture content of the obtained CS10 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例11-
 粘結剤たる水ガラスとして、市販品の3号ケイ酸ナトリウム(商品名、富士化学株式会社製、SiO2 /Na2O のモル比:3.2、固形成分:38%)を用い、その添加量を、耐火性骨材(ルナモス#50)の100部に対して1.32部(固形成分0.50部)としたこと以外は、上記製造例2と同様の手順に従って、常温流動性を有する乾態のCS11を得た。得られたCS11の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 11 of dry CS-
As binder serving water glass No. 3 sodium silicate commercially available (trade name, manufactured by Fuji Chemical Co., Ltd., SiO 2 / Na 2 O molar ratio of: 3.2, solid content: 38%) was used, its According to the same procedure as in Production Example 2, except that the addition amount was 1.32 parts (0.50 parts of solid component) with respect to 100 parts of the refractory aggregate (Lunamos # 50), room temperature fluidity A dry CS11 was obtained. When the moisture content of the obtained CS11 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例12-
 球状粒子の添加量を0.5部としたこと以外は、上記製造例2と同様の手順に従って、常温流動性を有する乾態のCS12を得た。得られたCS12の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 12 of dry CS-
A dry CS12 having room temperature fluidity was obtained according to the same procedure as in Production Example 2 except that the amount of spherical particles added was 0.5 parts. When the moisture content of the obtained CS12 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例13-
 球状粒子の添加量を1.0部としたこと以外は、上記製造例2と同様の手順に従って、常温流動性を有する乾態のCS13を得た。得られたCS13の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 13 of dry CS-
A dry CS13 having room temperature fluidity was obtained according to the same procedure as in Production Example 2 except that the amount of spherical particles added was 1.0 part. When the moisture content of the obtained CS13 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例14-
 球状粒子を添加しないこと以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS14を得た。得られたCS14の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 14 of dry CS-
A dry CS14 having room temperature fluidity was obtained according to the same procedure as in Production Example 1 except that spherical particles were not added. When the moisture content of the obtained CS14 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例15-
 球状粒子に代えて、非球状二酸化ケイ素粒子であるサンラブリー(商品名、AGCエスアイテック株式会社製、平均粒子径:4.1μm)を用いた以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS15を得た。得られたCS15の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 15 of dry CS-
Instead of spherical particles, Sunlably (trade name, manufactured by AGC S-Tech Co., Ltd., average particle size: 4.1 μm), which is non-spherical silicon dioxide particles, was used according to the same procedure as in Production Example 1 above. A dry CS15 having room temperature fluidity was obtained. When the moisture content of the obtained CS15 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例16-
 球状粒子に代えて、非球状酸化チタン粒子であるKA-10(商品名、チタン工業株式会社製、平均粒子径:0.4μm)を用いた以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS16を得た。得られたCS16の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 16 of dry CS-
Instead of spherical particles, KA-10 (trade name, manufactured by Titanium Industry Co., Ltd., average particle size: 0.4 μm), which is non-spherical titanium oxide particles, was used, and the same procedure as in Production Example 1 was followed. A dry CS16 having room temperature fluidity was obtained. When the moisture content of the obtained CS16 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-乾態CSの製造例17-
 球状粒子に代えて、非球状酸化チタン粒子であるSTT-65C-S(商品名、チタン工業株式会社製、平均粒子径:0.04μm)を用いた以外は、上記製造例1と同様の手順に従って、常温流動性を有する乾態のCS17を得た。得られたCS17の含水分量を算出したところ、被覆層における水ガラスの固形分量の40質量%に相当する量であった。
-Production example 17 of dry CS-
A procedure similar to that in Production Example 1 except that STT-65C-S (trade name, manufactured by Titanium Industry Co., Ltd., average particle size: 0.04 μm), which is a non-spherical titanium oxide particle, was used in place of the spherical particles. As a result, dry CS17 having room temperature fluidity was obtained. When the moisture content of the obtained CS17 was calculated, it was an amount corresponding to 40% by mass of the solid content of water glass in the coating layer.
-鋳型の造型例(実施例1~13、比較例1~4)-
 上記した各手順に従って製造されたCS(温度:20℃)を、110℃に加熱された成形金型内に、圧力:0.3MPaのゲージ圧にて吹き込んで、充填した後、更に0.05MPaのゲージ圧力の下で、温度:99℃の水蒸気を5秒間吹き込み、成形金型内に充填したコーテッドサンド相に通気せしめた。次いで、そのような水蒸気の通気が終了した後、0.03MPaのゲージ圧力の下で、温度150℃の熱風を2分間吹き込み、成形金型内に充填されたCSをそれぞれ硬化させることにより、試験片[2.54cm×2.54cm×20.0cm]として用いられる鋳型を、それぞれ作製した。なお、実施例及び比較例の各々に係る鋳型(試験片)を作製する際に使用したCSは、下記表1乃至表3に示す通りである。
-Examples of mold making (Examples 1 to 13, Comparative Examples 1 to 4)-
CS (temperature: 20 ° C.) produced according to each of the above procedures is blown into a molding die heated to 110 ° C. at a gauge pressure of 0.3 MPa, and further filled with 0.05 MPa. Under the gauge pressure, steam at a temperature of 99 ° C. was blown for 5 seconds, and the coated sand phase filled in the molding die was aerated. Then, after such a water vapor ventilation is completed, under a gauge pressure of 0.03 MPa, hot air at a temperature of 150 ° C. is blown for 2 minutes, and the CS filled in the molding die is cured, respectively. Each mold used as a piece [2.54 cm × 2.54 cm × 20.0 cm] was prepared. In addition, CS used when producing the casting_mold | template (test piece) which concerns on each of an Example and a comparative example is as showing in following Table 1 thru | or Table 3. FIG.
 上記の実施例1~13及び比較例1~4で得られた各々の鋳型(試験片)について、前述の試験法に従って、充填性の測定及び強度の測定を実施した。また、CS1~17を用いて、図1に示す鋳造試験用砂型を作製し、その中子の崩壊性を前述の試験法に従って評価した。それらの結果を、下記表1乃至表3に示した。 For each of the molds (test pieces) obtained in Examples 1 to 13 and Comparative Examples 1 to 4, the filling property and the strength were measured according to the test method described above. Further, a casting test sand mold shown in FIG. 1 was prepared using CS1 to 17, and the core disintegration property was evaluated according to the test method described above. The results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 かかる表1乃至表3の結果から明らかなように、本発明に従う、常温流動性を有する乾態のコーテッドサンドにあっては、これを用いて得られる鋳型が、優れた強度(抗折強度)を発揮すると共に、優れた崩壊性をも有することが、認められる。 As is apparent from the results of Tables 1 to 3, in the dry coated sand having room temperature fluidity according to the present invention, the mold obtained using the dry coated sand has excellent strength (bending strength). And exhibiting excellent disintegration property.
 次に、上記した各手順に従って製造されたCS2、CS6、CS9、CS14(温度:20℃)を常温のまま、品川式万能撹拌機(5DM-r型、株式会社ダルトン製)に投入し、更に、水を、CSの100部に対して2.0部の割合にて、撹拌機内に添加し、撹拌することにより、湿態化させたCSを準備した。撹拌機内より取り出した湿態状のCSを、150℃に加熱された成形金型内に充填した後、成形金型内で保持し、0.03MPaのゲージ圧力の下で、温度150℃の熱風を90秒間吹き込み、かかる成形型内に充填されたCSを各々、固化(硬化)させることにより、試験片[2.54cm×2.54cm×20.0cm]として用いられる鋳型を、それぞれ作製した。なお、実施例14~16、比較例5の各々に係る鋳型(試験片)を作製する際に使用したCSは、下記表4に示す通りである。 Next, CS2, CS6, CS9, and CS14 (temperature: 20 ° C.) manufactured according to the above-described procedures are charged at a normal temperature into a Shinagawa universal agitator (5DM-r type, manufactured by Dalton Co., Ltd.). Water was added into the stirrer at a ratio of 2.0 parts with respect to 100 parts of CS, and the wet CS was prepared by stirring. The wet CS taken out from the stirrer is filled in a molding die heated to 150 ° C., then held in the molding die, and hot air at a temperature of 150 ° C. under a gauge pressure of 0.03 MPa. Were blown for 90 seconds, and each CS filled in the mold was solidified (cured), thereby producing respective molds used as test pieces [2.54 cm × 2.54 cm × 20.0 cm]. The CS used in producing the mold (test piece) according to each of Examples 14 to 16 and Comparative Example 5 is as shown in Table 4 below.
 また、上述のように所定量の水を添加することによって湿態化させたCSを用いて、図1に示す円形無空中子を作製し、かかる中子の崩壊性を前述の試験法に従って評価した。なお、中子作製の際の各種条件(成形型の加熱温度等)については、上述した鋳型(試験片)作製の際の条件と同一とした。試験結果を、下記表4に示した。 Further, using the CS moistened by adding a predetermined amount of water as described above, the circular non-empty core shown in FIG. 1 is produced, and the collapsibility of the core is evaluated according to the test method described above. did. Various conditions (such as the heating temperature of the mold) during core production were the same as those for the above-described mold (test piece) production. The test results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 かかる表4の結果からも明らかなように、本発明に従うコーテッドサンドに水を添加して湿態化させたものを用いて、鋳型を成形した場合、それによって得られる鋳型は、水蒸気の通気によって得られる鋳型と比較して、より高い強度を発揮し、同程度の充填性や崩壊性を発揮するものであることが、認められるのである。 As is apparent from the results in Table 4, when a mold is formed using a wet-coated material obtained by adding water to the coated sand according to the present invention, the resulting mold is obtained by aeration of water vapor. It is recognized that it exhibits higher strength and exhibits the same degree of filling and disintegrating properties as compared with the obtained mold.
  2    溶湯注入口                      4    幅木固定部
  6    主型                            8    幅木部
  10  中子                            12  砂型
  14  廃中子排出口                    16  鋳物
                                                                                
2 Molten metal injection port 4 Baseboard fixing part 6 Main mold 8 Baseboard part 10 Core 12 Sand mold 14 Waste core outlet 16 Casting

Claims (11)

  1.  耐火性骨材の表面が水ガラスを含む被覆層にて覆われてなる、常温流動性を有する乾態のコーテッドサンドにして、該被覆層に球状粒子が含有せしめられていることを特徴とするコーテッドサンド。 It is characterized in that the surface of the refractory aggregate is covered with a coating layer containing water glass, is a dry coated sand having room temperature fluidity, and spherical particles are contained in the coating layer. Coated sand.
  2.  含水分量が、前記被覆層における水ガラスの固形分量の5~55質量%である請求項1に記載のコーテッドサンド。 The coated sand according to claim 1, wherein the moisture content is 5 to 55 mass% of the solid content of water glass in the coating layer.
  3.  前記球状粒子の含有量が、前記被覆層における水ガラスの固形分の100質量部に対して、0.1~500質量部である請求項1又は請求項2に記載のコーテッドサンド。 The coated sand according to claim 1 or 2, wherein the content of the spherical particles is 0.1 to 500 parts by mass with respect to 100 parts by mass of the solid content of water glass in the coating layer.
  4.  前記球状粒子の平均粒子径が0.1~20.0μmである請求項1乃至請求項3の何れか1項に記載のコーテッドサンド。 The coated sand according to any one of claims 1 to 3, wherein the spherical particles have an average particle size of 0.1 to 20.0 µm.
  5.  前記球状粒子が、二酸化ケイ素、酸化アルミニウム又は酸化チタンからなる球状粒子より選ばれる一種又は二種以上のものである請求項1乃至請求項4の何れか1項に記載のコーテッドサンド。 The coated sand according to any one of claims 1 to 4, wherein the spherical particles are one or more selected from spherical particles made of silicon dioxide, aluminum oxide, or titanium oxide.
  6.  前記球状粒子の平均粒子径d1と前記耐火性骨材の平均粒子径d2とが、下記式(1)を満たす請求項1乃至請求項5の何れか1項に記載のコーテッドサンド。
      4×d1≦d2≦5000×d1 ・・・(1)
    The coated sand according to any one of claims 1 to 5, wherein an average particle diameter d1 of the spherical particles and an average particle diameter d2 of the refractory aggregate satisfy the following formula (1).
    4 × d1 ≦ d2 ≦ 5000 × d1 (1)
  7.  前記耐火性骨材が球状である請求項1乃至請求項6の何れか1項に記載のコーテッドサンド。 The coated sand according to any one of claims 1 to 6, wherein the refractory aggregate is spherical.
  8.  耐火性骨材の表面が水ガラスを含む被覆層にて覆われてなる、常温流動性を有する乾態のコーテッドサンドの製造方法にして、
     加熱した耐火性骨材に対して、水ガラスを主成分とする粘結剤及び球状粒子を混和せしめ、水分を蒸発させることにより、該耐火性骨材の表面が水ガラス及び球状粒子を含む被覆層にて覆われてなり、含水分量が該被覆層における水ガラスの固形分量の5~55質量%であるコーテッドサンドを製造することを特徴とするコーテッドサンドの製造方法。
    In the method for producing dry coated sand having room temperature fluidity, the surface of the refractory aggregate is covered with a coating layer containing water glass,
    The heated refractory aggregate is mixed with a binder mainly composed of water glass and spherical particles, and the water is evaporated to coat the surface of the refractory aggregate containing water glass and spherical particles. A method for producing a coated sand, characterized by producing a coated sand having a moisture content of 5 to 55% by mass of the solid content of water glass in the coating layer.
  9.  請求項1乃至請求項7の何れか1項に記載のコーテッドサンドを用い、それを、目的とする鋳型を与える成形型の成形キャビティ内に充填した後、水蒸気を通気させて、かかる成形型内で保持し、固化乃至は硬化せしめることにより、目的とする鋳型を得ることを特徴とする鋳型の製造方法。 The coated sand according to any one of claims 1 to 7, wherein the coated sand is filled into a molding cavity of a molding mold that gives a target mold, and then water is passed through the mold to provide the inside of the molding mold. A method for producing a mold, characterized in that a target mold is obtained by holding and solidifying or curing.
  10.  請求項1乃至請求項7の何れか1項に記載のコーテッドサンドに水を添加して湿態化させ、その湿態状のコーテッドサンドを成形型内に充填した後、かかる成形型内で保持し、固化乃至は硬化せしめることにより、目的とする鋳型を得ることを特徴とする鋳型の製造方法。 A water is added to the coated sand according to any one of claims 1 to 7 to make it wet, and the wet coated sand is filled in the mold and then held in the mold. And obtaining a target mold by solidifying or curing the mold.
  11.  前記成形型の保持中に、さらに、乾燥空気、加熱乾燥空気又は窒素ガスが、前記成形型の成形キャビティ内に通気せしめられる請求項9又は請求項10に記載の鋳型の製造方法。 The method for producing a mold according to claim 9 or 10, wherein during the holding of the mold, dry air, heated dry air, or nitrogen gas is further aerated in the molding cavity of the mold.
PCT/JP2017/042008 2016-11-22 2017-11-22 Coated sand, method for producing same, and method for producing casting mold using same WO2018097180A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018552617A JP7055753B2 (en) 2016-11-22 2017-11-22 Coated sand and its manufacturing method and mold manufacturing method using it
CN201780072064.4A CN109982786B (en) 2016-11-22 2017-11-22 Precoated sand, method for producing same, and method for producing mold using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016226986 2016-11-22
JP2016-226986 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097180A1 true WO2018097180A1 (en) 2018-05-31

Family

ID=62196245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042008 WO2018097180A1 (en) 2016-11-22 2017-11-22 Coated sand, method for producing same, and method for producing casting mold using same

Country Status (3)

Country Link
JP (1) JP7055753B2 (en)
CN (1) CN109982786B (en)
WO (1) WO2018097180A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773117A (en) * 2019-03-04 2019-05-21 厦门美益绿建科技有限公司 A kind of precoated sand and damp sand room temperature film covering method
WO2020012934A1 (en) 2018-07-09 2020-01-16 花王株式会社 Inorganic coated sand
WO2021140725A1 (en) 2020-01-07 2021-07-15 花王株式会社 Inorganic coated sand
WO2021221089A1 (en) * 2020-04-30 2021-11-04 旭有機材株式会社 Process for production of molds
KR102425765B1 (en) * 2022-01-27 2022-07-28 주식회사 정우콘크리트 Sidewalk and road block with non-slip and antibacterial for pedestrian safty of peopoe who are weak in walking
WO2022244280A1 (en) 2021-05-19 2022-11-24 花王株式会社 Inorganic coated sand
JP7418279B2 (en) 2020-04-30 2024-01-19 旭有機材株式会社 Mold manufacturing method
JP7467221B2 (en) 2020-04-30 2024-04-15 旭有機材株式会社 Mold making method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113510217B (en) * 2021-09-15 2021-12-24 中车戚墅堰机车车辆工艺研究所有限公司 Inorganic dry precoated sand for warm core box molding and core making method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036712A (en) * 2006-08-02 2008-02-21 Minelco Gmbh Molding material or molding part and process of producing the same
JP2012076113A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold
JP2013094834A (en) * 2011-11-02 2013-05-20 Tsuchiyoshi Industry Co Ltd Mold material, mold and method for manufacturing the same
WO2015194550A1 (en) * 2014-06-20 2015-12-23 旭有機材工業株式会社 Mold manufacturing method and mold
JP2016147284A (en) * 2015-02-12 2016-08-18 マツダ株式会社 Method for molding casting mold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087204A (en) * 2010-10-19 2012-05-10 Panasonic Corp Resin cured product, curable composition, and method for manufacturing resin cured product
CN102993391B (en) * 2012-10-08 2014-04-02 山东莱芜润达新材料有限公司 Preparation method of phenolic resin for precoated sand
CN103341587B (en) * 2013-07-09 2015-02-04 临沂市铸宝水表有限公司 Precoated sand and burn-free regeneration technology thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036712A (en) * 2006-08-02 2008-02-21 Minelco Gmbh Molding material or molding part and process of producing the same
JP2012076113A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold
JP2013094834A (en) * 2011-11-02 2013-05-20 Tsuchiyoshi Industry Co Ltd Mold material, mold and method for manufacturing the same
WO2015194550A1 (en) * 2014-06-20 2015-12-23 旭有機材工業株式会社 Mold manufacturing method and mold
JP2016147284A (en) * 2015-02-12 2016-08-18 マツダ株式会社 Method for molding casting mold

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012934A1 (en) 2018-07-09 2020-01-16 花王株式会社 Inorganic coated sand
KR20210022715A (en) 2018-07-09 2021-03-03 카오카부시키가이샤 Inorganic Coated Sand
US11958103B2 (en) 2018-07-09 2024-04-16 Kao Corporation Inorganic coated sand
CN109773117A (en) * 2019-03-04 2019-05-21 厦门美益绿建科技有限公司 A kind of precoated sand and damp sand room temperature film covering method
WO2021140725A1 (en) 2020-01-07 2021-07-15 花王株式会社 Inorganic coated sand
WO2021221089A1 (en) * 2020-04-30 2021-11-04 旭有機材株式会社 Process for production of molds
JP7418279B2 (en) 2020-04-30 2024-01-19 旭有機材株式会社 Mold manufacturing method
JP7467221B2 (en) 2020-04-30 2024-04-15 旭有機材株式会社 Mold making method
WO2022244280A1 (en) 2021-05-19 2022-11-24 花王株式会社 Inorganic coated sand
KR102425765B1 (en) * 2022-01-27 2022-07-28 주식회사 정우콘크리트 Sidewalk and road block with non-slip and antibacterial for pedestrian safty of peopoe who are weak in walking

Also Published As

Publication number Publication date
CN109982786B (en) 2021-04-20
JPWO2018097180A1 (en) 2019-10-17
JP7055753B2 (en) 2022-04-18
CN109982786A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2018097180A1 (en) Coated sand, method for producing same, and method for producing casting mold using same
WO2018097179A1 (en) Coated sand, manufacturing method for same, and manufacturing method for mold using same
JP7345596B2 (en) Mold material composition and mold manufacturing method using the same
JP6604944B2 (en) Mold manufacturing method and mold
JP6193884B2 (en) Coated sand, method for producing the same, and method for producing a mold
JP6978366B2 (en) Method of manufacturing coated sand and mold using it, and method of recycling cast sand
JP7177089B2 (en) Coated sand, its manufacturing method, and mold manufacturing method
JP7055752B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JP5986498B2 (en) Coated sand manufacturing method and mold manufacturing method
JPWO2018043412A1 (en) Method of manufacturing mold
JP7252897B2 (en) Mold material and method for manufacturing the same, mold and method for manufacturing the same, and method for regenerating foundry sand
JP2018153822A (en) Improved manufacturing method of laminated mold
JP7418279B2 (en) Mold manufacturing method
JP6841694B2 (en) Laminated mold manufacturing method
JP7467221B2 (en) Mold making method
WO2022244280A1 (en) Inorganic coated sand
JP7223098B2 (en) How to make coated sand
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
JP2022179288A (en) inorganic coated sand
WO2021221089A1 (en) Process for production of molds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873673

Country of ref document: EP

Kind code of ref document: A1