WO2018097023A1 - Radiation detection device, radiation image acquisition device, and radiation image acquisition method - Google Patents

Radiation detection device, radiation image acquisition device, and radiation image acquisition method Download PDF

Info

Publication number
WO2018097023A1
WO2018097023A1 PCT/JP2017/041255 JP2017041255W WO2018097023A1 WO 2018097023 A1 WO2018097023 A1 WO 2018097023A1 JP 2017041255 W JP2017041255 W JP 2017041255W WO 2018097023 A1 WO2018097023 A1 WO 2018097023A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image
line sensor
image data
pixels
Prior art date
Application number
PCT/JP2017/041255
Other languages
French (fr)
Japanese (ja)
Inventor
須山 敏康
達也 大西
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP17873854.8A priority Critical patent/EP3546930B1/en
Priority to US16/348,591 priority patent/US11079344B2/en
Priority to ES17873854T priority patent/ES2937308T3/en
Priority to FIEP17873854.8T priority patent/FI3546930T3/en
Priority to CN201780072473.4A priority patent/CN109983325B/en
Publication of WO2018097023A1 publication Critical patent/WO2018097023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/087Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/424Imaging energy substraction image processing (dual energy processing)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts

Definitions

  • the present disclosure relates to a dual energy type radiation detection apparatus, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method, and in particular, the number of pixels of each line sensor and the pixels constituting the radiation detection apparatus.
  • the present invention relates to a dual energy type radiation detection apparatus having the same pitch, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method.
  • Patent Documents 1 and 2 disclose a radiation detection apparatus that performs foreign object detection, component distribution measurement, weight measurement, or the like in in-line non-destructive inspection of an object to be inspected conveyed by a belt conveyor or the like.
  • This radiation detection apparatus includes a radiation detector having a scintillator and a line sensor, and generates radiation images by detecting radiation transmitted through an object to be inspected.
  • This radiation detection device is a dual energy type radiation detection device that reduces the pixel area for detecting the low energy range, thereby increasing the contrast difference of the radiation image, and detects the low energy range.
  • a configuration is employed in which the line sensor and the line sensor that detects the high energy range have different numbers of pixels and different pixel pitches.
  • Patent Document 3 discloses a radiation detector suitable for a CT scanner or the like, which is a dual energy type radiation detector having the same number of pixels and the same pixel pitch.
  • the dual energy type radiation detection apparatus is not limited to this, but real-time processing is desired particularly when acquiring a radiographic image of an object and confirming the presence or absence of a foreign object in in-line nondestructive inspection. For this reason, when each line sensor which comprises a radiation detection apparatus has many pixels, the problem that real-time processing is not in time will arise. On the other hand, if the image data acquired by the pixels of each line sensor is simply thinned out, the contrast difference in the inspection object is reduced, that is, the foreign matter information is removed, and as a result, appropriate radiation is obtained. There is also a possibility that an image cannot be acquired.
  • Embodiments are intended to provide a radiation detection apparatus, a radiation image acquisition apparatus, and a radiation image acquisition method capable of acquiring an appropriate radiological image and capable of real-time processing as one aspect thereof.
  • Embodiment of this invention is related with the radiation detection apparatus which detects the radiation which permeate
  • the radiation detection apparatus includes: a first scintillator that converts radiation in a low energy range out of radiation transmitted through an object into first scintillation light; and a plurality of second scintillators arranged along a detection direction that intersects a conveyance direction.
  • a first line sensor having one pixel, detecting first scintillation light by the first pixel and outputting first image data, and higher than a low energy range of radiation transmitted through the object
  • a second scintillator that converts radiation in a high energy range into second scintillation light; and a plurality of second pixels arranged along a detection direction that intersects the transport direction.
  • a second line sensor that detects the scintillation light and outputs second image data.
  • the first pixels of the first line sensor and the second pixels of the second line sensor have the same number of pixels and are arranged at the same pixel pitch.
  • a first thinning process including a minimum filter process is performed on the first image data output from the first line sensor, and a second image data output from the second line sensor is applied to the first image data output from the first line sensor.
  • a second thinning process including an averaging process or an addition process is performed.
  • a first thinning process including a minimum filter process is performed on the first image data output from the first line sensor that detects radiation in the low energy range, while the high energy range.
  • a second thinning process including an averaging process or an adding process is performed on the second image data output from the second line sensor that detects the radiation of the first line sensor.
  • a minimum process is performed on the image from the first line sensor for acquiring a radiation image in a low energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively large, and the number of pixels is halved.
  • by leaving low luminance data it is possible to leave foreign substance information in the image data after the thinning process.
  • an averaging process or an addition process is performed on the image from the second line sensor for acquiring a high-energy range radiation image in which the difference between the brightness of the foreign matter and the brightness of the background is relatively small. And the number of pixels can be halved while preventing foreign matter information from being removed from the thinned image data.
  • the “minimum filter process” is a thinning process in which pixel data having a lower luminance among signals from adjacent pixels is left and the remaining pixel data is removed.
  • the “averaging process” is a thinning process that reduces the amount of data by calculating the average value of the luminance of each signal from adjacent pixels.
  • the “addition process” is the process of calculating the average value of each signal from adjacent pixels. This is a thinning-out process that reduces the amount of data by adding luminance, and is substantially the same process as the averaging process.
  • the radiation detection apparatus performs a first thinning process including a minimum filter process on the first image data output from the first line sensor and a second output from the second line sensor.
  • An image processing unit that performs a second thinning process including an averaging process or an addition process on the image data may be further provided.
  • the image processing unit may be capable of switching between a first thinning process including a minimum filter process and a second thinning process including an averaging process or an addition process.
  • predetermined thinning processing can be sequentially performed on the image data output from the first line sensor and the image data output from the second line sensor, and real-time processing is more reliably performed. be able to.
  • the second scintillator may be arranged so as to convert the radiation transmitted through the first scintillator into second scintillation light.
  • the target detection can be performed without performing delay control of the radiation detection timing by both scintillators. Imaging of the same position in an object can be performed.
  • the first and second line sensors may be arranged in parallel with each other across a predetermined region. In this case, since the distance between the first and second line sensors and the radiation source that emits radiation to the inspection object is the same, without performing control in consideration of the expansion rate of the radiation from the radiation source, Imaging of the same position in the object can be performed.
  • Embodiment of this invention is related with the radiographic image acquisition apparatus provided with the radiation detection apparatus which has one of the structures mentioned above as another aspect.
  • the radiation image acquisition apparatus includes a radiation source that irradiates a target with radiation, a transport unit that moves the target in the transport direction, any of the radiation detection devices described above, and a first that has undergone minimum processing.
  • An image creating apparatus that creates a radiation image based on the converted image data and the second converted image data subjected to the averaging process or the addition process. Also in this case, as described above, it is possible to realize a real-time process by reducing the resolution of an appropriate radiographic image that is acquired while leaving information on foreign matters.
  • the embodiment of the present invention includes a first scintillator, a second scintillator, a first line sensor having a plurality of first pixels arranged along the detection direction, and a detection direction. And a second line sensor having a plurality of second pixels arranged along the image processing unit, and the first pixel and the second pixel have the same number of pixels and the same pixel pitch. It is related with the acquisition method of the radiographic image which detects the radiation which permeate
  • the first scintillator converts a low-energy range radiation out of the radiation transmitted through the object into the first scintillation light, and the first line sensor first
  • the detection step and the image processing unit perform a first thinning process, which is a minimum filter process, on the first image data, and output a first converted image A first image processing step, and a second image processing step of performing a second thinning process that is an averaging process or an addition process on the second image by the image processing unit and outputting a second converted image And.
  • a first thinning process which is a minimum filter process
  • a second image processing step of performing a second thinning process that is an averaging process or an addition process on the second image by the image processing unit and outputting a second converted image And.
  • the minimum processing is performed on the first image from the first line sensor for acquiring the radiation image in the low energy range in which the difference between the luminance of the foreign object and the luminance of the background is relatively large.
  • an averaging process or an addition process is performed on the second image from the second line sensor for acquiring a high-energy range radiation image in which the difference between the brightness of the foreign matter and the background brightness is relatively small. It is possible to reduce noise (improvement of S / N) and to reduce the number of pixels while preventing the removal of foreign matter information from the thinned image data. As described above, according to the radiological image acquisition method, it is possible to realize real-time processing by reducing the resolution of the radiographic image acquired while leaving the information of the foreign matter.
  • the radiation transmitted through the first scintillator may be converted into second scintillation light by the second scintillator.
  • the target detection can be performed without performing delay control of the radiation detection timing by both scintillators. Imaging of the same position in an object can be performed.
  • the first and second detection steps may be performed by first and second line sensors arranged in parallel across a predetermined region.
  • first and second line sensors since the distance between the first and second line sensors and the radiation source that emits radiation to the inspection object is the same, without performing control in consideration of the expansion rate of the radiation from the radiation source, Imaging of the same position in the object can be performed.
  • the radiation image acquisition method is based on an irradiation step of irradiating a target with radiation, a transport step of moving the target object along the transport direction, a first converted image, and a second converted image.
  • a generation step of generating a radiographic image it is possible to realize a real-time process by reducing the resolution of an appropriate radiographic image that is acquired while leaving information on foreign matters.
  • an appropriate radiation image can be acquired and real-time processing can be performed.
  • FIG. 1 is a perspective view of an X-ray foreign substance inspection apparatus according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of the X-ray particle inspection apparatus shown in FIG.
  • FIG. 3 is a schematic configuration diagram of an X-ray detection apparatus used in the X-ray foreign substance inspection apparatus shown in FIG.
  • FIG. 4A is an example of a pixel for detecting X-rays in a low energy range in the X-ray detection apparatus shown in FIG.
  • FIG. 4B is an example of a pixel for detecting X-rays in a high energy range in the X-ray detection apparatus shown in FIG.
  • FIG. 5A is a diagram showing an outline of a minimum filter process which is a data thinning process performed by the X-ray detection apparatus shown in FIG.
  • FIG. 5B is a diagram showing an overview of an averaging process which is another thinning process of data performed by the X-ray detection apparatus shown in FIG.
  • FIG. 6 is a schematic configuration diagram showing an outline of a modified example of the X-ray detection apparatus according to the present embodiment.
  • FIG. 1 is a perspective view of an X-ray foreign substance inspection apparatus according to an embodiment
  • FIG. 2 is a schematic configuration diagram of the X-ray foreign substance inspection apparatus shown in FIG.
  • the X-ray foreign substance inspection apparatus 1 irradiates an inspection object S with X-rays (radiation) from an X-ray source in an irradiation direction Z, and Among these, the X-ray detection apparatus 30 detects X-rays transmitted through the inspection object S in a plurality of energy ranges.
  • the X-ray foreign matter inspection apparatus 1 performs foreign matter inspection, baggage inspection, and the like included in the inspection object S using the transmitted X-ray image.
  • the X-ray foreign matter inspection apparatus 1 includes a belt conveyor 10, an X-ray irradiator 20 that is a radiation source, a dual energy type X-ray detection apparatus 30, and a computer 40.
  • the belt conveyor 10 includes a belt portion 12 on which the inspection object S is placed, and the inspection object S is conveyed in a predetermined manner by moving the belt portion 12 in the conveyance direction Y. Transport in the transport direction Y at a speed.
  • the conveyance speed of the inspection object S is, for example, between 10 m / min and 90 m / min.
  • the inspection object S conveyed by the belt conveyor 10 is, for example, food such as meat, rubber products such as tires, security baggage or cargo, resin products, metal products, minerals such as minerals, separation or resource recovery ( Waste for recycling) or electronic parts.
  • the X-ray irradiator 20 is an apparatus that irradiates the inspection object S with X-rays directed in the irradiation direction Z as an X-ray source.
  • the X-ray irradiator 20 is a point light source, and is configured so that, for example, its tube voltage can be set between 30 and 80 kV, and its tube current can be set between 0.4 and 3.3 mA.
  • the output can be 12 to 100 w.
  • the X-ray irradiator 20 irradiates by diffusing X-rays within a predetermined angle range in a detection direction X orthogonal (crossing) to the irradiation direction Z and the conveyance direction Y.
  • the X-ray irradiator 20 has a predetermined distance from the belt portion 12 so that the X-ray irradiation direction Z is directed toward the belt portion 12 and diffused X-rays extend over the entire width direction (detection direction X) of the inspection object S. It is arranged above the belt portion 12 at a distance.
  • the X-ray irradiator 20 sets a predetermined division range in the length direction as an irradiation range, and the inspection object S is conveyed in the conveyance direction Y by the belt conveyor 10. As a result, the entire length direction of the inspection object S is configured to be irradiated with X-rays.
  • the X-ray detection device 30 detects dual X-ray X-rays transmitted from the X-ray irradiator 20 through the inspection object S in two regions, a low energy range and a high energy range. It is a line detection device. Although a more detailed configuration and function of the X-ray detection device 30 will be described later, the X-ray detection device 30 detects transmitted X-rays in respective high and low energy ranges, and generates image data in each energy range. The X-ray detection apparatus 30 may amplify the generated image data or perform a predetermined correction process. The X-ray detection apparatus 30 outputs these image data to the computer 40.
  • the computer 40 controls the conveyance and conveyance speed of the belt conveyor 10, the X-ray irradiation by the X-ray irradiator 20, the tube voltage and the tube current, the X-ray detection operation by the X-ray detection device 30, and the like.
  • the computer 40 includes a control unit 41 that mainly performs such control, an image processing unit 42 that processes image data input from the X-ray detection device 30 to generate a subtraction image, and conditions for X-ray detection. And an input device 43 for inputting image processing conditions and the like, and a display device 44 for displaying the acquired X-ray image (radiation image).
  • the computer 40 includes an arithmetic processing circuit for realizing each function and a memory for storing information as a hardware configuration, and is configured by a smart device such as a personal computer or a smartphone and a tablet terminal.
  • the input device 43 is, for example, a touch panel, a mouse, or a keyboard
  • the display device 44 is, for example, a display such as a touch panel, a liquid crystal display, or an organic EL display.
  • FIG. 3 is a schematic configuration diagram of an X-ray detection apparatus used in the X-ray foreign substance inspection apparatus shown in FIG.
  • the X-ray detection device 30 includes a low energy scintillator 31, a low energy line sensor 32, a high energy scintillator 33, a high energy line sensor 34, and a minimum filter processing circuit 35.
  • An averaging processing circuit 36 and a control circuit 37 are provided.
  • the X-ray detection device 30 is a so-called vertical dual energy type radiation line sensor camera in which a low energy line sensor 32 is disposed on a high energy line sensor 34.
  • the control circuit 37 controls operations of the low energy line sensor 32, the high energy line sensor 34, and the like.
  • the low energy scintillator 31 extends along a detection direction X (a direction orthogonal to the paper surface in the figure) to detect an image of the object S, and X of the low energy range among the X-rays transmitted through the object S. It is a member that converts a line into scintillation light, and is adhered on the light receiving surface of the low energy line sensor 32. As shown in FIG. 4, the low energy line sensor 32 has a plurality of pixels L arranged along the detection direction X on the light receiving surface 32 a and is converted by the low energy scintillator 31 by these pixels L. The scintillation light is detected to acquire low energy image data.
  • the number of pixels L is, for example, 1024 pixels (partially omitted in the figure). In this way, the low energy line sensor 32 detects X-rays in the low energy range.
  • the high energy scintillator 33 is a member that extends along the detection direction X to detect an image of the object S, and converts X-rays in a high energy range among X-rays transmitted through the object S into scintillation light. Therefore, it is adhered on the light receiving surface of the high energy line sensor 34.
  • the high energy line sensor 34 has a plurality of pixels H arranged along the detection direction X on the light receiving surface 34 a and is converted by the high energy scintillator 33 by these pixels H. High energy image data is acquired by detecting the scintillation light.
  • the number of pixels H is, for example, 1024 pixels as in the case of the number of pixels L (partially omitted in the figure).
  • the high energy line sensor 34 detects X-rays in the high energy range.
  • the high energy range detected by the high energy line sensor 34 is higher than the low energy range detected by the low energy line sensor 32, but the high energy range detected by the high energy line sensor 34 is The low energy range detected by the low energy line sensor 32 is not clearly distinguished, and the energy ranges may overlap to some extent.
  • the pixels L of the low energy line sensor 32 and the pixels H of the high energy line sensor 34 have the same number of pixels, and the light receiving surfaces 32a and 34a have the same pixel pitch P. Arranged above. As described above, since the pixels L and H have the same number of pixels and are arranged at the same pixel pitch, it becomes easy to match the correspondence relationship of the image data output from the line sensors 32 and 34, and the subtraction processing or the like. This makes it easier to perform control and makes real-time processing even easier.
  • the low energy scintillator 31 and the high energy scintillator 33 may be made of the same material, but may be made of different materials.
  • the thicknesses of the low energy scintillator 31 and the high energy scintillator 33 may be the same or different.
  • the minimum filter processing circuit 35 When the minimum filter processing circuit 35 receives the image data output from the low energy line sensor 32, the minimum filter processing circuit 35 performs a first decimation process including a minimum filter process on the image data. For example, as shown in FIG. 5 (a), the minimum filter processing circuit 35 has three sets of image data 100, 110, 90, 80, 70, 100 corresponding to the pixels 1 to 6, in each set. A thinning process is performed to leave the image data with the lower luminance among the signals from the adjacent pixels and remove the other image data. Then, the minimum filter processing circuit 35 performs processing for leaving the luminance 100 as the image data of the pixel 1-2, the luminance 80 as the image data of the pixel 3-4, and the luminance 70 as the image data of the pixel 5-6.
  • the minimum filter processing circuit performs the thinning process for leaving the pixel data having the lower luminance among the signals from the adjacent pixels and removing the remaining pixel data.
  • the minimum filter processing circuit 35 outputs the converted image data (first converted image data) subjected to the thinning process to the computer 40 as a detection signal.
  • the averaging process circuit 36 When the averaging process circuit 36 receives the image data output from the high energy line sensor 34, the averaging process circuit 36 performs a second thinning process including an averaging process on the image data. For example, when there are three sets of image data 100, 110, 90, 80, 70, 100 corresponding to the pixels 1 to 6, as shown in FIG. A thinning process is performed to reduce the amount of data by calculating an average value of the luminance of each signal from adjacent pixels, and luminance 105 is used as image data for pixel 1-2, luminance 85 is used as image data for pixel 3-4, Processing for setting the luminance to 85 as the image data 5-6 is performed.
  • the averaging processing circuit 36 performs the thinning process for reducing the data amount by calculating the average value of the luminance of each signal from the adjacent pixels.
  • the averaging processing circuit 36 outputs the converted image data subjected to the thinning process to the computer 40 as a detection signal.
  • the minimum filter processing circuit 35 and the averaging processing circuit 36 constitute an image processing unit that processes an image.
  • difference data between the converted image data for low energy thinned by the minimum filter processing circuit 35 and the converted image data for high energy thinned by the averaging processing circuit 36 is obtained.
  • a calculation process (subtraction process) is performed to generate a subtraction image that is a composite image.
  • the computer 40 outputs and displays the subtraction image generated by the arithmetic processing on a display device 44 such as a display. By this output display, foreign matter or the like contained in the inspection object S can be visually confirmed. Instead of outputting and displaying the subtraction image, only data output may be performed, and foreign matter contained in the inspection object S may be detected directly from the image data by detection processing on the image data. In this way, real-time processing is realized.
  • the X-ray irradiator 20 irradiates the inspection object S conveyed by the belt conveyor 10 with X-rays. Then, X-rays in the low energy range among the X-rays irradiated and transmitted to the object S are converted into scintillation light by the low-energy scintillator 31, and the X-rays irradiated and transmitted to the object S are high. X-rays in the energy range are converted into scintillation light by the high energy scintillator 33.
  • the scintillation light from the low energy scintillator 31 is detected by the plurality of pixels L of the low energy line sensor 32, and the low energy image data is output to the minimum filter processing circuit 35.
  • the scintillation light from the high energy scintillator 33 is detected by the plurality of pixels H of the high energy line sensor 34, and the low energy image data is output to the averaging processing circuit 36.
  • the minimum filter processing circuit 35 performs a first thinning process (see FIG. 5A) that is a minimum filter process on the input low energy image data, and outputs the first converted image to the computer 40.
  • the averaging processing circuit 36 performs a second thinning process (see FIG.
  • a minimum filter is used for image data output from the low energy line sensor 32 that detects X-rays in a low energy range. While the first thinning process including the process is performed, the second thinning process including the averaging process is performed on the image data output from the high energy line sensor 34 that detects the X-rays in the high energy range. It has come to be. For this reason, a minimum filter process is performed on the image from the low energy line sensor 32 for acquiring an X-ray image in a low energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively large.
  • the image from the high energy line sensor 34 for acquiring an X-ray image in the high energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively small is averaged to reduce noise.
  • the number of pixels can be halved while reducing (improving S / N) and preventing the removal of foreign matter information from the thinned image data.
  • the X-ray foreign substance inspection apparatus 1 it is possible to realize real-time processing by reducing the resolution of an X-ray image acquired while leaving foreign substance information.
  • the high energy scintillator 33 is disposed so as to convert the X-rays transmitted through the low energy scintillator 31 into low energy scintillation light. For this reason, since each scintillator 31,33 is arrange
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • a so-called vertical dual energy type X-ray detection apparatus is used in the above-described embodiment.
  • the present invention is not limited to this.
  • the low-energy scintillator 31 and the low-energy line sensor 32 and the high-energy scintillator 33 and the high-energy line sensor 34 are arranged in parallel with each other across a predetermined area.
  • the present invention may be applied to a so-called horizontal dual energy type X-ray detection apparatus 30a.
  • the thinning-out processing (minimum filter processing and averaging processing) of the low-energy image data and high-energy image data of the X-ray detection device 30a is the same as described above, but in the X-ray detection device 30a, each of the arranged in parallel Since the distances between the line sensors 32 and 34 and the X-ray irradiator 20 that emits X-rays to the inspection object S are the same, control is performed in consideration of the magnification rate of the X-rays from the X-ray irradiator 20 and the like. The image of the same position on the object S can be taken without any problem.
  • the low energy line sensor 32 and the high energy line sensor 34 may be formed on the same substrate.
  • the column of pixels L of the low energy line sensor and the column of pixels H of the high energy line sensor can be more easily formed in parallel across the dead zone region (predetermined region).
  • the minimum filter processing circuit 35 and the averaging processing circuit 36 for performing the thinning process of the low energy image data and the high energy image data are provided in the X-ray detection apparatus 30 .
  • the minimum filter processing by the processing circuit 35 and the averaging processing by the averaging processing circuit 36 may be performed by the image processing unit 42 of the computer 40.
  • the low energy detection signal from the line sensor 32 and the high energy detection signal from the line sensor 34 are input to the computer 40, and the computer 40 performs thinning processing such as minimum filter processing and averaging processing.
  • a part of the image processing unit 42 that performs these image processes may constitute a part of the radiation detection apparatus.
  • the detection signal from the high energy line sensor 34 is averaged by the averaging processing circuit 36 and thinned out.
  • the detection from the high energy line sensor 34 is performed.
  • An addition process may be performed on the signal. In this case as well, foreign matter information is not removed from the thinned image data, and noise can be reduced (S / N improvement).
  • the “addition process” here is a thinning process that adds the luminance of each signal from adjacent pixels to reduce the data amount, and is substantially the same process as the averaging process described above.
  • the minimum filter processing circuit 35 that performs the thinning process on the detection signal from the low energy line sensor 32 and the averaging process that performs the averaging process on the detection signal from the high energy line sensor 34.
  • the processing circuit 36 is configured in parallel.
  • one image processing unit to which a detection signal from the low energy line sensor 32 and a detection signal from the high energy line sensor 34 are continuously input In this image processing unit, the image data is counted, and a thinning process (for example, a minimum filter process) is first performed on detection signals for a predetermined number of pixels (for example, the first 1024 pixels).
  • decimation processing for example, averaging processing
  • decimation processing for example, averaging processing
  • detection signals for the next predetermined pixel for example, the next 1024 pixels.
  • addition processing may be performed.
  • Such a switching process may be performed by the image processing unit 42 of the computer 40.
  • the embodiment can be applied to, for example, a dual energy type radiation detection apparatus, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method.
  • SYMBOLS 1 ... X-ray foreign material inspection apparatus, 10 ... Belt conveyor, 20 ... X-ray irradiator, 30, 30a ... X-ray detection apparatus, 31 ... Low energy scintillator, 32 ... Low energy line sensor, 33 ... High energy scintillator 34 ... High energy line sensor, 35 ... Minimum filter processing circuit, 36 ... Averaging processing circuit, 40 ... Computer, 42 ... Image processing unit, L, H ... Pixel, P ... Pixel pitch, S ... Inspection object.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This X-ray detection device 30 is provided with a low-energy scintillator 31 for converting X-rays in a low energy range into scintillation, a low-energy line sensor 32 for detecting the scintillation and outputting image data, a high-energy scintillator 33 for converting X-rays in a high energy range into scintillation, and a high-energy line sensor 34 for detecting the scintillation and outputting image data. The pixels L of the low-energy line sensor 32 and the pixels H of the high-energy line sensor 34 are equal in number and are arranged at the same pixel pitch. Minimum filtering is carried out on the image data from the low-energy line sensor 32, and averaging is carried out on the image data from the high-energy line sensor 34.

Description

放射線検出装置、放射線画像取得装置、及び放射線画像の取得方法Radiation detection apparatus, radiological image acquisition apparatus, and radiological image acquisition method
 本開示は、デュアルエナジータイプの放射線検出装置、当該放射線検出装置を備えた放射線画像取得装置、及び、放射線画像の取得方法に関し、特に放射線検出装置を構成する各ラインセンサの画素の画素数及び画素ピッチが同じであるデュアルエナジータイプの放射線検出装置、当該放射線検出装置を備えた放射線画像取得装置、及び、放射線画像の取得方法に関する。 The present disclosure relates to a dual energy type radiation detection apparatus, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method, and in particular, the number of pixels of each line sensor and the pixels constituting the radiation detection apparatus. The present invention relates to a dual energy type radiation detection apparatus having the same pitch, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method.
 特許文献1及び2は、ベルトコンベア等で搬送される被検査物のインラインでの非破壊検査において、異物の検出、成分分布の計測、又は重量の計測等を行う放射線検出装置を開示する。この放射線検出装置は、シンチレータとラインセンサとを有する放射線検出器を備え、被検査物を透過した放射線を検出して放射線像を生成する。この放射線検出装置は、デュアルエナジータイプの放射線検出装置であり、低エネルギ範囲を検出するための画素面積を小さくし、それにより、放射線画像のコントラスト差を大きくしており、低エネルギ範囲を検出するラインセンサと高エネルギ範囲を検出するラインセンサとが異なる画素数及び異なる画素ピッチとなる構成を採用している。特許文献3は、CTスキャナ等に好適な放射線検出器であって、同画素数及び同画素ピッチのデュアルエナジータイプの放射線検出装置を開示する。 Patent Documents 1 and 2 disclose a radiation detection apparatus that performs foreign object detection, component distribution measurement, weight measurement, or the like in in-line non-destructive inspection of an object to be inspected conveyed by a belt conveyor or the like. This radiation detection apparatus includes a radiation detector having a scintillator and a line sensor, and generates radiation images by detecting radiation transmitted through an object to be inspected. This radiation detection device is a dual energy type radiation detection device that reduces the pixel area for detecting the low energy range, thereby increasing the contrast difference of the radiation image, and detects the low energy range. A configuration is employed in which the line sensor and the line sensor that detects the high energy range have different numbers of pixels and different pixel pitches. Patent Document 3 discloses a radiation detector suitable for a CT scanner or the like, which is a dual energy type radiation detector having the same number of pixels and the same pixel pitch.
特開2011-064642号公報JP 2011-066442 A 特開2011-064643号公報JP 2011-066443 A 特開昭60-200189号公報JP-A-60-200179
 デュアルエナジータイプの放射線検出装置では、これに限定されないが、特にインラインでの非破壊検査において対象物の放射線画像を取得して異物の有無を確認する場合、リアルタイム処理が望まれている。このため、放射線検出装置を構成する各ラインセンサが有する画素数が多い場合、リアルタイム処理が間に合わないといった問題が生じてしまう。その一方、各ラインセンサの画素で取得した画像データを単純に間引いてしまうと、検査対象物におけるコントラスト差が小さくなってしまい、即ち、異物の情報を除去してしまい、その結果、適正な放射線画像を取得できない虞もある。 The dual energy type radiation detection apparatus is not limited to this, but real-time processing is desired particularly when acquiring a radiographic image of an object and confirming the presence or absence of a foreign object in in-line nondestructive inspection. For this reason, when each line sensor which comprises a radiation detection apparatus has many pixels, the problem that real-time processing is not in time will arise. On the other hand, if the image data acquired by the pixels of each line sensor is simply thinned out, the contrast difference in the inspection object is reduced, that is, the foreign matter information is removed, and as a result, appropriate radiation is obtained. There is also a possibility that an image cannot be acquired.
 実施形態は、その一態様として、適正な放射線画像を取得でき且つリアルタイム処理を可能とする放射線検出装置、放射線画像取得装置、及び、放射線画像の取得方法を提供することを目的とする。 Embodiments are intended to provide a radiation detection apparatus, a radiation image acquisition apparatus, and a radiation image acquisition method capable of acquiring an appropriate radiological image and capable of real-time processing as one aspect thereof.
 本発明の実施形態は、その一側面として、搬送方向に搬送される対象物を透過した放射線を検出する放射線検出装置に関する。この放射線検出装置は、対象物を透過した放射線のうち低エネルギ範囲の放射線を第1のシンチレーション光に変換する第1のシンチレータと、搬送方向と交差する検出方向に沿って配列される複数の第1の画素を有し、第1の画素により第1のシンチレーション光を検出して第1の画像データを出力する第1のラインセンサと、対象物を透過した放射線のうち低エネルギ範囲よりも高い高エネルギ範囲の放射線を第2のシンチレーション光に変換する第2のシンチレータと、搬送方向と交差する検出方向に沿って配列される複数の第2の画素を有し、第2の画素により第2のシンチレーション光を検出して第2の画像データを出力する第2のラインセンサと、を備える。第1のラインセンサの第1の画素と第2のラインセンサの第2の画素とは互いに同じ画素数であり且つ同じ画素ピッチで配列されている。第1のラインセンサから出力される第1の画像データに対してはミニマムフィルタ処理を含む第1の間引き処理が行われ、第2のラインセンサから出力される第2の画像データに対しては平均化処理又は加算処理を含む第2の間引き処理が行われる。 Embodiment of this invention is related with the radiation detection apparatus which detects the radiation which permeate | transmitted the target object conveyed in the conveyance direction as one side surface. The radiation detection apparatus includes: a first scintillator that converts radiation in a low energy range out of radiation transmitted through an object into first scintillation light; and a plurality of second scintillators arranged along a detection direction that intersects a conveyance direction. A first line sensor having one pixel, detecting first scintillation light by the first pixel and outputting first image data, and higher than a low energy range of radiation transmitted through the object A second scintillator that converts radiation in a high energy range into second scintillation light; and a plurality of second pixels arranged along a detection direction that intersects the transport direction. And a second line sensor that detects the scintillation light and outputs second image data. The first pixels of the first line sensor and the second pixels of the second line sensor have the same number of pixels and are arranged at the same pixel pitch. A first thinning process including a minimum filter process is performed on the first image data output from the first line sensor, and a second image data output from the second line sensor is applied to the first image data output from the first line sensor. A second thinning process including an averaging process or an addition process is performed.
 この放射線検出装置では、低エネルギ範囲の放射線を検出する第1のラインセンサから出力される第1の画像データに対してはミニマムフィルタ処理を含む第1の間引き処理が行われる一方、高エネルギ範囲の放射線を検出する第2のラインセンサから出力される第2の画像データに対しては平均化処理又は加算処理を含む第2の間引き処理が行われる。この場合、異物の輝度と背景の輝度との差が相対的に大きい低エネルギ範囲の放射線画像を取得するための第1のラインセンサからの画像に対してはミニマム処理を行って画素数を半分にすると共に、低い輝度のデータを残すことにより間引き処理後の画像データに異物の情報を残すことができる。一方、異物の輝度と背景の輝度との差が相対的に小さい高エネルギ範囲の放射線画像を取得するための第2のラインセンサからの画像に対しては平均化処理又は加算処理を行ってノイズを低減する(S/Nの向上)すると共に間引き処理後の画像データから異物の情報を除去してしまうことがないようにしつつ、画素数を半分にすることができる。以上により、この放射線検出装置によれば、異物の情報は残しつつ取得される放射線画像の低解像度化を行ってリアルタイム処理を実現することが可能となる。ここでいう「ミニマムフィルタ処理」とは、隣接する画素からの信号のうち輝度が低い方の画素データを残し、残りの画素データを除去する間引き処理である。また、「平均化処理」とは、隣接する画素からの各信号の輝度の平均値を算出してデータ量を減らす間引き処理であり、「加算処理」とは、隣接する画素からの各信号の輝度を加算して、データ量を減らす間引き処理であり、実質的には平均化処理と同様の処理である。 In this radiation detection apparatus, a first thinning process including a minimum filter process is performed on the first image data output from the first line sensor that detects radiation in the low energy range, while the high energy range. A second thinning process including an averaging process or an adding process is performed on the second image data output from the second line sensor that detects the radiation of the first line sensor. In this case, a minimum process is performed on the image from the first line sensor for acquiring a radiation image in a low energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively large, and the number of pixels is halved. In addition, by leaving low luminance data, it is possible to leave foreign substance information in the image data after the thinning process. On the other hand, an averaging process or an addition process is performed on the image from the second line sensor for acquiring a high-energy range radiation image in which the difference between the brightness of the foreign matter and the brightness of the background is relatively small. And the number of pixels can be halved while preventing foreign matter information from being removed from the thinned image data. As described above, according to this radiation detection apparatus, it is possible to realize real-time processing by reducing the resolution of the acquired radiation image while leaving the information on the foreign matter. Here, the “minimum filter process” is a thinning process in which pixel data having a lower luminance among signals from adjacent pixels is left and the remaining pixel data is removed. The “averaging process” is a thinning process that reduces the amount of data by calculating the average value of the luminance of each signal from adjacent pixels. The “addition process” is the process of calculating the average value of each signal from adjacent pixels. This is a thinning-out process that reduces the amount of data by adding luminance, and is substantially the same process as the averaging process.
 上記の放射線検出装置は、第1のラインセンサから出力される第1の画像データに対してミニマムフィルタ処理を含む第1の間引き処理を行うと共に、第2のラインセンサから出力される第2の画像データに対して平均化処理又は加算処理を含む第2の間引き処理を行う画像処理部を更に備えていてもよい。 The radiation detection apparatus performs a first thinning process including a minimum filter process on the first image data output from the first line sensor and a second output from the second line sensor. An image processing unit that performs a second thinning process including an averaging process or an addition process on the image data may be further provided.
 上記の放射線検出装置において、画像処理部は、ミニマムフィルタ処理を含む第1の間引き処理と平均化処理又は加算処理を含む第2の間引き処理とを切り替え可能であってもよい。この場合、第1のラインセンサから出力される画像データと第2のラインセンサから出力される画像データとに対して順次、所定の間引き処理を行うことができ、リアルタイム処理をより確実に実行することができる。 In the radiation detection apparatus, the image processing unit may be capable of switching between a first thinning process including a minimum filter process and a second thinning process including an averaging process or an addition process. In this case, predetermined thinning processing can be sequentially performed on the image data output from the first line sensor and the image data output from the second line sensor, and real-time processing is more reliably performed. be able to.
 上記の放射線検出装置において、第2のシンチレータは、第1のシンチレータを透過した放射線を第2のシンチレーション光に変換するように配置されていてもよい。この場合、第1及び第2のシンチレータが放射線の入射方向に対して順に配置される(例えば縦に重ねて配置される)ので、両シンチレータによる放射線の検出タイミングの遅延制御を行うことなく、対象物における同一の位置の撮像を行うことができる。 In the above-described radiation detection apparatus, the second scintillator may be arranged so as to convert the radiation transmitted through the first scintillator into second scintillation light. In this case, since the first and second scintillators are arranged in order with respect to the radiation incident direction (for example, vertically arranged), the target detection can be performed without performing delay control of the radiation detection timing by both scintillators. Imaging of the same position in an object can be performed.
 上記の放射線検出装置において、第1及び第2のラインセンサは所定領域を挟んで互いに並列に配置されていてもよい。この場合、第1及び第2のラインセンサと検査対象物に放射線を放射する放射線源との距離が同一となることから、放射線源からの放射線の拡大率等を考慮した制御を行うことなく、対象物における同一の位置の撮像を行うことができる。 In the above-described radiation detection apparatus, the first and second line sensors may be arranged in parallel with each other across a predetermined region. In this case, since the distance between the first and second line sensors and the radiation source that emits radiation to the inspection object is the same, without performing control in consideration of the expansion rate of the radiation from the radiation source, Imaging of the same position in the object can be performed.
 本発明の実施形態は、別の側面として、上述した何れかの構成を有する放射線検出装置を備えた放射線画像取得装置に関する。この放射線画像取得装置は、対象物に対して放射線を照射する放射線源と、対象物を搬送方向に移動させる搬送部と、上述した何れかの放射線検出装置と、ミニマム処理がされた第1の変換画像データと平均化処理又は加算処理が施された第2の変換画像データとに基づいて放射線画像を作成する画像作成装置と、を備えている。この場合も、上記同様、異物の情報は残しつつ取得される適正な放射線画像を低解像度化して、リアルタイム処理を実現することが可能となる。 Embodiment of this invention is related with the radiographic image acquisition apparatus provided with the radiation detection apparatus which has one of the structures mentioned above as another aspect. The radiation image acquisition apparatus includes a radiation source that irradiates a target with radiation, a transport unit that moves the target in the transport direction, any of the radiation detection devices described above, and a first that has undergone minimum processing. An image creating apparatus that creates a radiation image based on the converted image data and the second converted image data subjected to the averaging process or the addition process. Also in this case, as described above, it is possible to realize a real-time process by reducing the resolution of an appropriate radiographic image that is acquired while leaving information on foreign matters.
 本発明の実施形態は、更に別の側面として、第1のシンチレータと、第2のシンチレータと、検出方向に沿って配列された複数の第1の画素を有する第1のラインセンサと、検出方向に沿って配列された複数の第2の画素を有する第2のラインセンサと、画像処理部とを有し、第1の画素と第2の画素とが互いに同じ画素数であり且つ同じ画素ピッチで配列されている放射線検出装置を用いて、搬送方向に搬送される対象物を透過した放射線を検出する放射線画像の取得方法に関する。この放射線画像の取得方法は、第1のシンチレータにより、対象物を透過した放射線のうち低エネルギ範囲の放射線を第1のシンチレーション光に変換する第1の変換ステップと、第1のラインセンサの第1の画素により第1のシンチレーション光を検出して第1の画像データを出力する第1の検出ステップと、第2のシンチレータにより、対象物を透過した放射線のうち低エネルギ範囲よりも高い高エネルギ範囲の放射線を第2のシンチレーション光に変換する第2の変換ステップと、第2のラインセンサの第2の画素により第2のシンチレーション光を検出して第2の画像データを出力する第2の検出ステップと、画像処理部により第1の画像データに対してミニマムフィルタ処理である第1の間引き処理を行い、第1の変換画像を出力する第1の画像処理ステップと、画像処理部により第2の画像に対して平均化処理又は加算処理である第2の間引き処理を行い、第2の変換画像を出力する第2の画像処理ステップと、を備えている。 The embodiment of the present invention, as yet another aspect, includes a first scintillator, a second scintillator, a first line sensor having a plurality of first pixels arranged along the detection direction, and a detection direction. And a second line sensor having a plurality of second pixels arranged along the image processing unit, and the first pixel and the second pixel have the same number of pixels and the same pixel pitch. It is related with the acquisition method of the radiographic image which detects the radiation which permeate | transmitted the target object conveyed in the conveyance direction using the radiation detection apparatus arranged in (4). In this radiographic image acquisition method, the first scintillator converts a low-energy range radiation out of the radiation transmitted through the object into the first scintillation light, and the first line sensor first The first detection step of detecting the first scintillation light by one pixel and outputting the first image data, and the second scintillator, the high energy higher than the low energy range among the radiation transmitted through the object A second conversion step for converting the radiation in the range into the second scintillation light, and a second pixel for detecting the second scintillation light by the second pixel of the second line sensor and outputting the second image data. The detection step and the image processing unit perform a first thinning process, which is a minimum filter process, on the first image data, and output a first converted image A first image processing step, and a second image processing step of performing a second thinning process that is an averaging process or an addition process on the second image by the image processing unit and outputting a second converted image And.
 この放射線画像の取得方法は、第1の画像データに対してミニマムフィルタ処理である第1の間引き処理を行い、第1の変換画像を出力する第1の画像処理ステップと、第2の画像に対して平均化処理又は加算処理である第2の間引き処理を行い、第2の変換画像を出力する第2の画像処理ステップと、を備えている。この場合、上記同様に、異物の輝度と背景の輝度との差が相対的に大きい低エネルギ範囲の放射線画像を取得するための第1のラインセンサからの第1の画像に対してはミニマム処理を行って画素数を半分にすると共に、低い輝度のデータを残すことにより間引き処理後の画像データに異物の情報を残すことができる。一方、異物の輝度と背景の輝度との差が相対的に小さい高エネルギ範囲の放射線画像を取得するための第2のラインセンサからの第2の画像に対しては平均化処理又は加算処理を行ってノイズを低減する(S/Nの向上)と共に間引き処理後の画像データから異物の情報を除去してしまうことがないようにしつつ、画素数を半分にすることができる。以上により、この放射線画像の取得方法によれば、異物の情報は残しつつ取得される放射線画像の低解像度化を行ってリアルタイム処理を実現することが可能となる。 In this radiographic image acquisition method, a first image processing step of performing a first thinning process which is a minimum filter process on the first image data and outputting a first converted image, and a second image And a second image processing step of performing a second thinning process, which is an averaging process or an addition process, and outputting a second converted image. In this case, similarly to the above, the minimum processing is performed on the first image from the first line sensor for acquiring the radiation image in the low energy range in which the difference between the luminance of the foreign object and the luminance of the background is relatively large. To reduce the number of pixels to half and leave low-luminance data, so that foreign matter information can be left in the image data after the thinning process. On the other hand, an averaging process or an addition process is performed on the second image from the second line sensor for acquiring a high-energy range radiation image in which the difference between the brightness of the foreign matter and the background brightness is relatively small. It is possible to reduce noise (improvement of S / N) and to reduce the number of pixels while preventing the removal of foreign matter information from the thinned image data. As described above, according to the radiological image acquisition method, it is possible to realize real-time processing by reducing the resolution of the radiographic image acquired while leaving the information of the foreign matter.
 上記の放射線画像の取得方法では、第2の変換ステップにおいて、第1のシンチレータを透過した放射線を第2のシンチレータによって第2のシンチレーション光に変換するようにしてもよい。この場合、第1及び第2のシンチレータが放射線の入射方向に対して順に配置される(例えば縦に重ねて配置される)ので、両シンチレータによる放射線の検出タイミングの遅延制御を行うことなく、対象物における同一の位置の撮像を行うことができる。 In the radiation image acquisition method described above, in the second conversion step, the radiation transmitted through the first scintillator may be converted into second scintillation light by the second scintillator. In this case, since the first and second scintillators are arranged in order with respect to the radiation incident direction (for example, vertically arranged), the target detection can be performed without performing delay control of the radiation detection timing by both scintillators. Imaging of the same position in an object can be performed.
 上記の放射線画像の取得方法では、第1及び第2の検出ステップは、所定領域を挟んで並列に配置されている第1及び第2のラインセンサによって行われてもよい。この場合、第1及び第2のラインセンサと検査対象物に放射線を放射する放射線源との距離が同一となることから、放射線源からの放射線の拡大率等を考慮した制御を行うことなく、対象物における同一の位置の撮像を行うことができる。 In the above radiographic image acquisition method, the first and second detection steps may be performed by first and second line sensors arranged in parallel across a predetermined region. In this case, since the distance between the first and second line sensors and the radiation source that emits radiation to the inspection object is the same, without performing control in consideration of the expansion rate of the radiation from the radiation source, Imaging of the same position in the object can be performed.
 上記の放射線画像の取得方法は、対象物に対して放射線を照射する照射ステップと、対象物を搬送方向に沿って移動させる搬送ステップと、第1の変換画像及び第2の変換画像に基づいて放射線画像を生成する生成ステップと、を更に備えていてもよい。この場合、上記同様、異物の情報は残しつつ取得される適正な放射線画像を低解像度化して、リアルタイム処理を実現することが可能となる。 The radiation image acquisition method is based on an irradiation step of irradiating a target with radiation, a transport step of moving the target object along the transport direction, a first converted image, and a second converted image. A generation step of generating a radiographic image. In this case, as described above, it is possible to realize a real-time process by reducing the resolution of an appropriate radiographic image that is acquired while leaving information on foreign matters.
 実施形態による放射線検出装置、放射線画像取得装置、及び、放射線画像の取得方法によれば、適正な放射線画像を取得でき且つリアルタイム処理を可能とすることができる。 According to the radiation detection device, the radiation image acquisition device, and the radiation image acquisition method according to the embodiment, an appropriate radiation image can be acquired and real-time processing can be performed.
図1は、一実施形態に係るX線異物検査装置の斜視図である。FIG. 1 is a perspective view of an X-ray foreign substance inspection apparatus according to an embodiment. 図2は、図1に示すX線異物検査装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the X-ray particle inspection apparatus shown in FIG. 図3は、図2に示すX線異物検査装置に用いるX線検出装置の概略構成図である。FIG. 3 is a schematic configuration diagram of an X-ray detection apparatus used in the X-ray foreign substance inspection apparatus shown in FIG. 図4(a)は、図3に示すX線検出装置での低エネルギ範囲のX線を検出するための画素の例である。図4(b)は、図3に示すX線検出装置での高エネルギ範囲のX線を検出するための画素の例である。FIG. 4A is an example of a pixel for detecting X-rays in a low energy range in the X-ray detection apparatus shown in FIG. FIG. 4B is an example of a pixel for detecting X-rays in a high energy range in the X-ray detection apparatus shown in FIG. 図5(a)は、図3に示すX線検出装置で行われるデータの間引き処理であるミニマムフィルタ処理の概要を示す図である。図5(b)は、図3に示すX線検出装置で行われるデータの別の間引き処理である平均化処理の概要を示す図である。FIG. 5A is a diagram showing an outline of a minimum filter process which is a data thinning process performed by the X-ray detection apparatus shown in FIG. FIG. 5B is a diagram showing an overview of an averaging process which is another thinning process of data performed by the X-ray detection apparatus shown in FIG. 図6は、本実施形態に係るX線検出装置の変形例の概略を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing an outline of a modified example of the X-ray detection apparatus according to the present embodiment.
 以下、図面を参照して、放射線検出装置、放射線画像取得装置、及び、放射線画像の取得方法の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。 Hereinafter, embodiments of a radiation detection apparatus, a radiation image acquisition apparatus, and a radiation image acquisition method will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 図1は、一実施形態に係るX線異物検査装置の斜視図であり、図2は、図1に示すX線異物検査装置の概略構成図である。図1及び図2に示されるように、X線異物検査装置1は、X線源からのX線(放射線)を照射方向Zへ向けて検査対象物Sに照射し、照射されたX線のうち検査対象物Sを透過した透過X線をX線検出装置30により複数のエネルギ範囲で検出する放射線画像取得装置である。X線異物検査装置1は、透過X線画像を用いて検査対象物Sに含まれる異物検査や手荷物検査等を行う。X線異物検査装置1は、ベルトコンベア10、放射線源であるX線照射器20、デュアルエナジータイプのX線検出装置30、及びコンピュータ40を備えている。 FIG. 1 is a perspective view of an X-ray foreign substance inspection apparatus according to an embodiment, and FIG. 2 is a schematic configuration diagram of the X-ray foreign substance inspection apparatus shown in FIG. As shown in FIG. 1 and FIG. 2, the X-ray foreign substance inspection apparatus 1 irradiates an inspection object S with X-rays (radiation) from an X-ray source in an irradiation direction Z, and Among these, the X-ray detection apparatus 30 detects X-rays transmitted through the inspection object S in a plurality of energy ranges. The X-ray foreign matter inspection apparatus 1 performs foreign matter inspection, baggage inspection, and the like included in the inspection object S using the transmitted X-ray image. The X-ray foreign matter inspection apparatus 1 includes a belt conveyor 10, an X-ray irradiator 20 that is a radiation source, a dual energy type X-ray detection apparatus 30, and a computer 40.
 ベルトコンベア10は、図1に示すように、検査対象物Sが載置されるベルト部12を備えており、ベルト部12を搬送方向Yに移動させることで、検査対象物Sを所定の搬送速度で搬送方向Yに搬送する。検査対象物Sの搬送速度は、例えば10m/分~90m/分の間の何れかである。ベルトコンベア10で搬送される検査対象物Sは、例えば、食肉等の食品、タイヤなどのゴム製品、セキュリティのための手荷物又は貨物、樹脂製品、金属製品、鉱物など資源材料、分別又は資源回収(リサイクル)のための廃棄物、若しくは、電子部品等などである。 As shown in FIG. 1, the belt conveyor 10 includes a belt portion 12 on which the inspection object S is placed, and the inspection object S is conveyed in a predetermined manner by moving the belt portion 12 in the conveyance direction Y. Transport in the transport direction Y at a speed. The conveyance speed of the inspection object S is, for example, between 10 m / min and 90 m / min. The inspection object S conveyed by the belt conveyor 10 is, for example, food such as meat, rubber products such as tires, security baggage or cargo, resin products, metal products, minerals such as minerals, separation or resource recovery ( Waste for recycling) or electronic parts.
 X線照射器20は、X線源としてX線を照射方向Zへ向けて検査対象物Sに照射する装置である。X線照射器20は、点光源であり、例えばその管電圧を30~80kV、且つ、その管電流を0.4~3.3mAの間で設定することができるように構成され、そのX線出力を12~100wとすることができる。X線照射器20は、照射方向Z及び搬送方向Yに直交(交差)する検出方向Xに所定の角度範囲でX線を拡散させて照射する。X線照射器20は、X線の照射方向Zがベルト部12に向けられると共に拡散するX線が検査対象物Sの幅方向(検出方向X)全体に及ぶように、ベルト部12から所定の距離を離れてベルト部12の上方に配置される。X線照射器20は、検査対象物Sの長さ方向(搬送方向Y)においては、長さ方向における所定の分割範囲を照射範囲とし、検査対象物Sがベルトコンベア10で搬送方向Yへ搬送されることにより、検査対象物Sの長さ方向全体に対してX線が照射されるように構成される。 The X-ray irradiator 20 is an apparatus that irradiates the inspection object S with X-rays directed in the irradiation direction Z as an X-ray source. The X-ray irradiator 20 is a point light source, and is configured so that, for example, its tube voltage can be set between 30 and 80 kV, and its tube current can be set between 0.4 and 3.3 mA. The output can be 12 to 100 w. The X-ray irradiator 20 irradiates by diffusing X-rays within a predetermined angle range in a detection direction X orthogonal (crossing) to the irradiation direction Z and the conveyance direction Y. The X-ray irradiator 20 has a predetermined distance from the belt portion 12 so that the X-ray irradiation direction Z is directed toward the belt portion 12 and diffused X-rays extend over the entire width direction (detection direction X) of the inspection object S. It is arranged above the belt portion 12 at a distance. In the length direction (conveying direction Y) of the inspection object S, the X-ray irradiator 20 sets a predetermined division range in the length direction as an irradiation range, and the inspection object S is conveyed in the conveyance direction Y by the belt conveyor 10. As a result, the entire length direction of the inspection object S is configured to be irradiated with X-rays.
 X線検出装置30は、X線照射器20から照射されたX線のうち検査対象物Sを透過したX線を低エネルギ範囲と高エネルギ範囲の2つの領域で検出するデュアルエナジ-タイプのX線検出装置である。X線検出装置30のより詳細な構成や機能については後述するが、X線検出装置30は、透過X線を高低の各エネルギ範囲でそれぞれ検出して、各エネルギ範囲の画像データを生成する。X線検出装置30は、生成する画像データを増幅したり、又は所定の補正処理を行ったりしてもよい。X線検出装置30は、これらの画像データをコンピュータ40に出力する。 The X-ray detection device 30 detects dual X-ray X-rays transmitted from the X-ray irradiator 20 through the inspection object S in two regions, a low energy range and a high energy range. It is a line detection device. Although a more detailed configuration and function of the X-ray detection device 30 will be described later, the X-ray detection device 30 detects transmitted X-rays in respective high and low energy ranges, and generates image data in each energy range. The X-ray detection apparatus 30 may amplify the generated image data or perform a predetermined correction process. The X-ray detection apparatus 30 outputs these image data to the computer 40.
 コンピュータ40は、ベルトコンベア10の搬送及び搬送速度、X線照射器20によるX線の照射、管電圧及び管電流、並びに、X線検出装置30によるX線の検出動作等を制御する。コンピュータ40は、このような制御を主に担う制御部41と、X線検出装置30から入力される画像データを処理してサブトラクション像を生成する画像処理部42と、X線検出のための条件や画像処理の条件等を入力するための入力装置43と、取得されたX線画像(放射線画像)を表示するための表示装置44とを有する。コンピュータ40は、ハードウェア構成として各機能を実現するための演算処理回路及び情報を記憶するメモリを有しており、例えばパーソナル・コンピュータ、又は、スマートフォン及びタブレット端末などのスマートデバイスから構成される。入力装置43は、例えば、タッチパネル、マウス、又はキーボードであり、表示装置44は、例えば、タッチパネル、液晶ディスプレイ、又は有機ELディスプレイなどのディスプレイである。 The computer 40 controls the conveyance and conveyance speed of the belt conveyor 10, the X-ray irradiation by the X-ray irradiator 20, the tube voltage and the tube current, the X-ray detection operation by the X-ray detection device 30, and the like. The computer 40 includes a control unit 41 that mainly performs such control, an image processing unit 42 that processes image data input from the X-ray detection device 30 to generate a subtraction image, and conditions for X-ray detection. And an input device 43 for inputting image processing conditions and the like, and a display device 44 for displaying the acquired X-ray image (radiation image). The computer 40 includes an arithmetic processing circuit for realizing each function and a memory for storing information as a hardware configuration, and is configured by a smart device such as a personal computer or a smartphone and a tablet terminal. The input device 43 is, for example, a touch panel, a mouse, or a keyboard, and the display device 44 is, for example, a display such as a touch panel, a liquid crystal display, or an organic EL display.
 次に、図3を参照して、本実施形態に係るX線検出装置30についてより詳細に説明する。図3は、図2に示すX線異物検査装置に用いられるX線検出装置の概略構成図である。X線検出装置30は、図3に示すように、低エネルギ用シンチレータ31と、低エネルギ用ラインセンサ32と、高エネルギ用シンチレータ33と、高エネルギ用ラインセンサ34と、ミニマムフィルタ処理回路35と、平均化処理回路36と、制御回路37とを備えている。X線検出装置30は、高エネルギ用ラインセンサ34の上に低エネルギ用ラインセンサ32が配置された、いわゆる縦型デュアルエナジータイプの放射線ラインセンサカメラである。制御回路37は、低エネルギ用ラインセンサ32及び高エネルギ用ラインセンサ34等の動作を制御する。 Next, the X-ray detection apparatus 30 according to the present embodiment will be described in more detail with reference to FIG. FIG. 3 is a schematic configuration diagram of an X-ray detection apparatus used in the X-ray foreign substance inspection apparatus shown in FIG. As shown in FIG. 3, the X-ray detection device 30 includes a low energy scintillator 31, a low energy line sensor 32, a high energy scintillator 33, a high energy line sensor 34, and a minimum filter processing circuit 35. An averaging processing circuit 36 and a control circuit 37 are provided. The X-ray detection device 30 is a so-called vertical dual energy type radiation line sensor camera in which a low energy line sensor 32 is disposed on a high energy line sensor 34. The control circuit 37 controls operations of the low energy line sensor 32, the high energy line sensor 34, and the like.
 低エネルギ用シンチレータ31は、対象物Sの像を検出するため検出方向X(図示の紙面に直交する方向)に沿って延在し、対象物Sを透過したX線のうち低エネルギ範囲のX線をシンチレーション光に変換する部材であって、低エネルギ用ラインセンサ32の受光面上に接着されている。低エネルギ用ラインセンサ32は、図4に示すように、検出方向Xに沿って配列された複数の画素Lを受光面32a上に有し、これらの画素Lにより低エネルギ用シンチレータ31で変換されたシンチレーション光を検出して低エネルギ画像データを取得する。画素Lの画素数としては、例えば1024画素である(図では一部省略)。このようにして、低エネルギ用ラインセンサ32は、低エネルギ範囲のX線を検出する。 The low energy scintillator 31 extends along a detection direction X (a direction orthogonal to the paper surface in the figure) to detect an image of the object S, and X of the low energy range among the X-rays transmitted through the object S. It is a member that converts a line into scintillation light, and is adhered on the light receiving surface of the low energy line sensor 32. As shown in FIG. 4, the low energy line sensor 32 has a plurality of pixels L arranged along the detection direction X on the light receiving surface 32 a and is converted by the low energy scintillator 31 by these pixels L. The scintillation light is detected to acquire low energy image data. The number of pixels L is, for example, 1024 pixels (partially omitted in the figure). In this way, the low energy line sensor 32 detects X-rays in the low energy range.
 高エネルギ用シンチレータ33は、対象物Sの像を検出するため検出方向Xに沿って延在し、対象物Sを透過したX線のうち高エネルギ範囲のX線をシンチレーション光に変換する部材であって、高エネルギ用ラインセンサ34の受光面上に接着されている。高エネルギ用ラインセンサ34は、図4に示すように、検出方向Xに沿って配列された複数の画素Hを受光面34a上に有し、これらの画素Hにより高エネルギ用シンチレータ33で変換されたシンチレーション光を検出して高エネルギ画像データを取得する。画素Hの画素数としては、画素数Lと同様に、例えば1024画素である(図では一部省略)。このようにして、高エネルギ用ラインセンサ34は、高エネルギ範囲のX線を検出する。高エネルギ用ラインセンサ34で検出される高エネルギ範囲は、低エネルギ用ラインセンサ32で検出される低エネルギ範囲よりも高くなっているが、高エネルギ用ラインセンサ34で検出される高エネルギ範囲と低エネルギ用ラインセンサ32で検出される低エネルギ範囲とは、明確に区別されるものではなく、エネルギ範囲がある程度、重なっていてもよい。 The high energy scintillator 33 is a member that extends along the detection direction X to detect an image of the object S, and converts X-rays in a high energy range among X-rays transmitted through the object S into scintillation light. Therefore, it is adhered on the light receiving surface of the high energy line sensor 34. As shown in FIG. 4, the high energy line sensor 34 has a plurality of pixels H arranged along the detection direction X on the light receiving surface 34 a and is converted by the high energy scintillator 33 by these pixels H. High energy image data is acquired by detecting the scintillation light. The number of pixels H is, for example, 1024 pixels as in the case of the number of pixels L (partially omitted in the figure). In this way, the high energy line sensor 34 detects X-rays in the high energy range. The high energy range detected by the high energy line sensor 34 is higher than the low energy range detected by the low energy line sensor 32, but the high energy range detected by the high energy line sensor 34 is The low energy range detected by the low energy line sensor 32 is not clearly distinguished, and the energy ranges may overlap to some extent.
 また、X線検出装置30では、低エネルギ用ラインセンサ32の画素Lと高エネルギ用ラインセンサ34の画素Hとは互いに同じ画素数であり、且つ、同じ画素ピッチPで各受光面32a,34a上に配列されている。このように、各画素L,Hが同じ画素数であり且つ同じ画素ピッチで配列されることにより、各ラインセンサ32,34から出力される画像データの対応関係をマッチングしやすくなり、サブトラクション処理等を行う際の制御が容易になり、リアルタイム処理をより一層行いやすくなっている。 Further, in the X-ray detection device 30, the pixels L of the low energy line sensor 32 and the pixels H of the high energy line sensor 34 have the same number of pixels, and the light receiving surfaces 32a and 34a have the same pixel pitch P. Arranged above. As described above, since the pixels L and H have the same number of pixels and are arranged at the same pixel pitch, it becomes easy to match the correspondence relationship of the image data output from the line sensors 32 and 34, and the subtraction processing or the like. This makes it easier to perform control and makes real-time processing even easier.
 低エネルギ用シンチレータ31と高エネルギ用シンチレータ33とは同一の材料から構成されていてもよいが、異なる材料から構成されていてもよい。また、低エネルギ用シンチレータ31と高エネルギ用シンチレータ33との厚みは同じでも、異なっていてもよい。 The low energy scintillator 31 and the high energy scintillator 33 may be made of the same material, but may be made of different materials. The thicknesses of the low energy scintillator 31 and the high energy scintillator 33 may be the same or different.
 ミニマムフィルタ処理回路35は、低エネルギ用ラインセンサ32から出力される画像データを受け付けると、その画像データに対してミニマムフィルタ処理を含む第1の間引き処理を行う。ミニマムフィルタ処理回路35は、例えば、図5(a)に示すように、画素1~6に対応する3組の画像データ100,110、90,80、70,100があった場合、各組における隣接する画素からの信号のうち輝度の低い方の画像データを残し、他方の画像データを除去する間引き処理を行う。そして、ミニマムフィルタ処理回路35は、画素1-2の画像データとして輝度100を、画素3-4の画像データとして輝度80を、画素5-6の画像データとして輝度70を残す処理を行う。このように、ミニマムフィルタ処理回路では、隣接する画素からの信号のうち輝度が低い方の画素データを残し、残りの画素データを除去する間引き処理を行う。ミニマムフィルタ処理回路35は、間引き処理がされた変換画像データ(第1の変換画像データ)を検出信号としてコンピュータ40に出力する。 When the minimum filter processing circuit 35 receives the image data output from the low energy line sensor 32, the minimum filter processing circuit 35 performs a first decimation process including a minimum filter process on the image data. For example, as shown in FIG. 5 (a), the minimum filter processing circuit 35 has three sets of image data 100, 110, 90, 80, 70, 100 corresponding to the pixels 1 to 6, in each set. A thinning process is performed to leave the image data with the lower luminance among the signals from the adjacent pixels and remove the other image data. Then, the minimum filter processing circuit 35 performs processing for leaving the luminance 100 as the image data of the pixel 1-2, the luminance 80 as the image data of the pixel 3-4, and the luminance 70 as the image data of the pixel 5-6. As described above, the minimum filter processing circuit performs the thinning process for leaving the pixel data having the lower luminance among the signals from the adjacent pixels and removing the remaining pixel data. The minimum filter processing circuit 35 outputs the converted image data (first converted image data) subjected to the thinning process to the computer 40 as a detection signal.
 平均化処理回路36は、高エネルギ用ラインセンサ34から出力される画像データを受け付けると、その画像データに対して平均化処理を含む第2の間引き処理を行う。平均化処理回路36は、例えば、図5(b)に示すように、画素1~6に対応する3組の画像データ100,110、90,80、70,100があった場合、各組における隣接する画素からの各信号の輝度の平均値を算出してデータ量を減らす間引き処理を行い、画素1-2の画像データとして輝度105を、画素3-4の画像データとして輝度85を、画素5-6の画像データとして輝度85とする処理を行う。このように、平均化処理回路36では、隣接する画素からの各信号の輝度の平均値を算出してデータ量を減らす間引き処理を行う。平均化処理回路36は、間引き処理がされた変換画像データを検出信号としてコンピュータ40に出力する。このようなミニマムフィルタ処理回路35と平均化処理回路36とは、画像を処理する画像処理部を構成する。 When the averaging process circuit 36 receives the image data output from the high energy line sensor 34, the averaging process circuit 36 performs a second thinning process including an averaging process on the image data. For example, when there are three sets of image data 100, 110, 90, 80, 70, 100 corresponding to the pixels 1 to 6, as shown in FIG. A thinning process is performed to reduce the amount of data by calculating an average value of the luminance of each signal from adjacent pixels, and luminance 105 is used as image data for pixel 1-2, luminance 85 is used as image data for pixel 3-4, Processing for setting the luminance to 85 as the image data 5-6 is performed. As described above, the averaging processing circuit 36 performs the thinning process for reducing the data amount by calculating the average value of the luminance of each signal from the adjacent pixels. The averaging processing circuit 36 outputs the converted image data subjected to the thinning process to the computer 40 as a detection signal. The minimum filter processing circuit 35 and the averaging processing circuit 36 constitute an image processing unit that processes an image.
 コンピュータ40の画像処理部42では、ミニマムフィルタ処理回路35で間引き処理された低エネルギ用の変換画像データと、平均化処理回路36で間引き処理された高エネルギ用の変換画像データとの差分データを求める演算処理(サブトラクション処理)を行い、合成画像であるサブトラクション像を生成する。そして、コンピュータ40は、演算処理により生成したサブトラクション像をディスプレイ等の表示装置44に出力表示する。この出力表示により、検査対象物Sに含まれる異物等を目視で確認することができる。サブトラクション像を出力表示せずに、データ出力のみを行って画像データ上での検出処理により画像データから直接、検査対象物Sに含まれる異物等を検出するようにしてもよい。このようにして、リアルタイム処理が実現される。 In the image processing unit 42 of the computer 40, difference data between the converted image data for low energy thinned by the minimum filter processing circuit 35 and the converted image data for high energy thinned by the averaging processing circuit 36 is obtained. A calculation process (subtraction process) is performed to generate a subtraction image that is a composite image. Then, the computer 40 outputs and displays the subtraction image generated by the arithmetic processing on a display device 44 such as a display. By this output display, foreign matter or the like contained in the inspection object S can be visually confirmed. Instead of outputting and displaying the subtraction image, only data output may be performed, and foreign matter contained in the inspection object S may be detected directly from the image data by detection processing on the image data. In this way, real-time processing is realized.
 次に、このX線異物検査装置1を用いて、搬送方向Yに搬送される検査対象物Sを透過したX線を検出するX線画像の取得方法について説明する。 Next, an X-ray image acquisition method for detecting X-rays transmitted through the inspection object S transported in the transport direction Y using the X-ray foreign matter inspection apparatus 1 will be described.
 この取得方法では、まず、ベルトコンベア10によって搬送される検査対象物Sに対して、X線照射器20によりX線を照射する。そして、この対象物Sに照射されて透過したX線のうち低エネルギ範囲のX線を低エネルギ用シンチレータ31でシンチレーション光に変換すると共に、対象物Sに照射されて透過したX線のうち高エネルギ範囲のX線を高エネルギ用シンチレータ33でシンチレーション光に変換する。 In this acquisition method, first, the X-ray irradiator 20 irradiates the inspection object S conveyed by the belt conveyor 10 with X-rays. Then, X-rays in the low energy range among the X-rays irradiated and transmitted to the object S are converted into scintillation light by the low-energy scintillator 31, and the X-rays irradiated and transmitted to the object S are high. X-rays in the energy range are converted into scintillation light by the high energy scintillator 33.
 続いて、低エネルギ用シンチレータ31からのシンチレーション光を低エネルギ用ラインセンサ32の複数の画素Lにより検出して低エネルギ用の画像データをミニマムフィルタ処理回路35に出力する。また、高エネルギ用シンチレータ33からのシンチレーション光を高エネルギ用ラインセンサ34の複数の画素Hにより検出して低エネルギ用の画像データを平均化処理回路36に出力する。ミニマムフィルタ処理回路35では、入力された低エネルギ用の画像データに対してミニマムフィルタ処理である第1の間引き処理(図5(a)参照)を行い、第1の変換画像をコンピュータ40に出力し、平均化処理回路36では、入力された高エネルギ用の画像データに対して平均化処理である第2の間引き処理(図5(b)参照)を行い、第2の変換画像をコンピュータ40に出力する。そして、コンピュータ40では、これらの変換画像を用いて、サブトラクション法に基づいて、サブトラクション像(放射線画像)を生成する。 Subsequently, the scintillation light from the low energy scintillator 31 is detected by the plurality of pixels L of the low energy line sensor 32, and the low energy image data is output to the minimum filter processing circuit 35. Further, the scintillation light from the high energy scintillator 33 is detected by the plurality of pixels H of the high energy line sensor 34, and the low energy image data is output to the averaging processing circuit 36. The minimum filter processing circuit 35 performs a first thinning process (see FIG. 5A) that is a minimum filter process on the input low energy image data, and outputs the first converted image to the computer 40. Then, the averaging processing circuit 36 performs a second thinning process (see FIG. 5B), which is an averaging process, on the input high energy image data, and converts the second converted image into the computer 40. Output to. Then, the computer 40 uses these converted images to generate a subtraction image (radiation image) based on the subtraction method.
 以上、本実施形態に係るX線検出装置30を備えたX線異物検査装置1では、低エネルギ範囲のX線を検出する低エネルギ用ラインセンサ32から出力される画像データに対してはミニマムフィルタ処理を含む第1の間引き処理が行われる一方、高エネルギ範囲のX線を検出する高エネルギ用ラインセンサ34から出力される画像データに対しては平均化処理を含む第2の間引き処理が行われるようになっている。このため、異物の輝度と背景の輝度との差が相対的に大きい低エネルギ範囲のX線画像を取得するための低エネルギ用ラインセンサ32からの画像に対してはミニマムフィルタ処理を行って画素数を半分にすると共に、低い輝度のデータを残すことにより間引き処理後の画像データに異物の情報を残すことができる。一方、異物の輝度と背景の輝度との差が相対的に小さい高エネルギ範囲のX線画像を取得するための高エネルギ用ラインセンサ34からの画像に対しては平均化処理を行ってノイズを低減する(S/Nの向上)すると共に間引き処理後の画像データから異物の情報を除去してしまうことがないようにしつつ、画素数を半分にすることができる。以上により、このX線異物検査装置1によれば、異物の情報は残しつつ取得されるX線画像の低解像度化を行ってリアルタイム処理を実現することが可能となる。 As described above, in the X-ray foreign substance inspection apparatus 1 including the X-ray detection apparatus 30 according to the present embodiment, a minimum filter is used for image data output from the low energy line sensor 32 that detects X-rays in a low energy range. While the first thinning process including the process is performed, the second thinning process including the averaging process is performed on the image data output from the high energy line sensor 34 that detects the X-rays in the high energy range. It has come to be. For this reason, a minimum filter process is performed on the image from the low energy line sensor 32 for acquiring an X-ray image in a low energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively large. By halving the number and leaving low luminance data, it is possible to leave foreign matter information in the image data after the thinning process. On the other hand, the image from the high energy line sensor 34 for acquiring an X-ray image in the high energy range in which the difference between the luminance of the foreign matter and the luminance of the background is relatively small is averaged to reduce noise. The number of pixels can be halved while reducing (improving S / N) and preventing the removal of foreign matter information from the thinned image data. As described above, according to the X-ray foreign substance inspection apparatus 1, it is possible to realize real-time processing by reducing the resolution of an X-ray image acquired while leaving foreign substance information.
 また、本実施形態に係るX線検出装置30では、高エネルギ用シンチレータ33は、低エネルギ用シンチレータ31を透過したX線を低エネルギ用シンチレーション光に変換するように配置されている。このため、各シンチレータ31,33がX線の入射方向に対して順に配置される(例えば縦に重ねて配置される)ので、両シンチレータ31,33によるX線の検出タイミングの遅延制御を行うことなく、対象物Sにおける同一の位置の撮像を行うことができる。 Further, in the X-ray detection device 30 according to the present embodiment, the high energy scintillator 33 is disposed so as to convert the X-rays transmitted through the low energy scintillator 31 into low energy scintillation light. For this reason, since each scintillator 31,33 is arrange | positioned in order with respect to the incident direction of X-ray (for example, arrange | positions vertically), delay control of the X-ray detection timing by both scintillators 31,33 is performed. In addition, the same position on the object S can be imaged.
 以上、好適な実施形態について詳細に説明したが、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態では、いわゆる縦型のデュアルエナジータイプのX線検出装置を用いた例について説明したが、これに限定されるわけではない。例えば,図6に示すように、低エネルギ用シンチレータ31及び低エネルギ用ラインセンサ32と、高エネルギ用シンチレータ33及び高エネルギ用ラインセンサ34とが所定領域を挟んで互いに並列となるように配置される、いわゆる横型のデュアルエナジータイプのX線検出装置30aに適用してもよい。このX線検出装置30aの低エネルギ画像データ及び高エネルギ画像データの間引き処理(ミニマムフィルタ処理及び平均化処理)は上記と同様であるが、このX線検出装置30aでは、並列に配置された各ラインセンサ32,34と検査対象物SにX線を放射するX線照射器20との距離が同一となることから、X線照射器20からのX線の拡大率等を考慮した制御を行うことなく、対象物Sにおける同一の位置の撮像を行うことができる。この横型のデュアルエナジータイプのX線検出装置30aでは、低エネルギ用ラインセンサ32と高エネルギ用ラインセンサ34とが同一基板上に形成されていてもよい。この場合、不感帯領域(所定の領域)を挟んで低エネルギ用ラインセンサの画素Lの列と高エネルギ用ラインセンサの画素Hの列とをより容易に並列に形成することができる。 The preferred embodiments have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the above-described embodiment, an example in which a so-called vertical dual energy type X-ray detection apparatus is used has been described. However, the present invention is not limited to this. For example, as shown in FIG. 6, the low-energy scintillator 31 and the low-energy line sensor 32 and the high-energy scintillator 33 and the high-energy line sensor 34 are arranged in parallel with each other across a predetermined area. The present invention may be applied to a so-called horizontal dual energy type X-ray detection apparatus 30a. The thinning-out processing (minimum filter processing and averaging processing) of the low-energy image data and high-energy image data of the X-ray detection device 30a is the same as described above, but in the X-ray detection device 30a, each of the arranged in parallel Since the distances between the line sensors 32 and 34 and the X-ray irradiator 20 that emits X-rays to the inspection object S are the same, control is performed in consideration of the magnification rate of the X-rays from the X-ray irradiator 20 and the like. The image of the same position on the object S can be taken without any problem. In the horizontal dual energy type X-ray detection apparatus 30a, the low energy line sensor 32 and the high energy line sensor 34 may be formed on the same substrate. In this case, the column of pixels L of the low energy line sensor and the column of pixels H of the high energy line sensor can be more easily formed in parallel across the dead zone region (predetermined region).
 上記の実施形態では、低エネルギ画像データ及び高エネルギ画像データの間引き処理を行うミニマムフィルタ処理回路35と平均化処理回路36とをX線検出装置30内に設けた例について説明したが、ミニマムフィルタ処理回路35によるミニマムフィルタ処理及び平均化処理回路36による平均化処理を、コンピュータ40の画像処理部42で行ってもよい。この場合、ラインセンサ32からの低エネルギ検出信号とラインセンサ34からの高エネルギ検出信号とがコンピュータ40に入力され、コンピュータ40によりミニマムフィルタ処理及び平均化処理といった間引き処理が行われる。この場合において、これらの画像処理を行う画像処理部42の一部は、放射線検出装置の一部を構成するものとすることができる。 In the above-described embodiment, the example in which the minimum filter processing circuit 35 and the averaging processing circuit 36 for performing the thinning process of the low energy image data and the high energy image data are provided in the X-ray detection apparatus 30 has been described. The minimum filter processing by the processing circuit 35 and the averaging processing by the averaging processing circuit 36 may be performed by the image processing unit 42 of the computer 40. In this case, the low energy detection signal from the line sensor 32 and the high energy detection signal from the line sensor 34 are input to the computer 40, and the computer 40 performs thinning processing such as minimum filter processing and averaging processing. In this case, a part of the image processing unit 42 that performs these image processes may constitute a part of the radiation detection apparatus.
 上記の実施形態では、高エネルギ用ラインセンサ34からの検出信号を平均化処理回路36により平均化処理をして間引き処理を行ったが、これに代えて、高エネルギ用ラインセンサ34からの検出信号に対して加算処理を行ってもよい。この場合も、間引き処理後の画像データから異物の情報を除去してしまうことがなく、またノイズを低減する(S/Nの向上)ことができる。ここでいう「加算処理」とは、隣接する画素からの各信号の輝度を加算して、データ量を減らす間引き処理であり、実質的には上述した平均化処理と同様の処理である。 In the above embodiment, the detection signal from the high energy line sensor 34 is averaged by the averaging processing circuit 36 and thinned out. However, instead of this, the detection from the high energy line sensor 34 is performed. An addition process may be performed on the signal. In this case as well, foreign matter information is not removed from the thinned image data, and noise can be reduced (S / N improvement). The “addition process” here is a thinning process that adds the luminance of each signal from adjacent pixels to reduce the data amount, and is substantially the same process as the averaging process described above.
 上記の実施形態では、低エネルギ用ラインセンサ32からの検出信号に対して間引き処理を行うミニマムフィルタ処理回路35と、高エネルギ用ラインセンサ34からの検出信号に対して平均化処理を行う平均化処理回路36とが並列に構成される例を示したが、低エネルギ用ラインセンサ32からの検出信号と高エネルギ用ラインセンサ34からの検出信号とが連続して入力される1つの画像処理部を設け、この画像処理部では、画像データをカウントして、所定画素分(例えば最初の1024画素分)の検出信号に対して間引き処理(例えばミニマムフィルタ処理)をまずは行い、その処理が終了したら、間引き処理の種類を切り替えて、次の所定画素分(例えば次の1024画素分)の検出信号に対して間引き処理(例えば平均化処理又は加算処理)を行うようにしてもよい。なお、このような切替え処理は、コンピュータ40の画像処理部42で行ってもよい。 In the above embodiment, the minimum filter processing circuit 35 that performs the thinning process on the detection signal from the low energy line sensor 32 and the averaging process that performs the averaging process on the detection signal from the high energy line sensor 34. Although an example in which the processing circuit 36 is configured in parallel has been shown, one image processing unit to which a detection signal from the low energy line sensor 32 and a detection signal from the high energy line sensor 34 are continuously input In this image processing unit, the image data is counted, and a thinning process (for example, a minimum filter process) is first performed on detection signals for a predetermined number of pixels (for example, the first 1024 pixels). The type of decimation processing is switched, and decimation processing (for example, averaging processing) is performed on detection signals for the next predetermined pixel (for example, the next 1024 pixels). Or addition processing) may be performed. Such a switching process may be performed by the image processing unit 42 of the computer 40.
 実施形態は、例えば、デュアルエナジータイプの放射線検出装置、当該放射線検出装置を備えた放射線画像取得装置、及び、放射線画像の取得方法に適用することが可能である。 The embodiment can be applied to, for example, a dual energy type radiation detection apparatus, a radiation image acquisition apparatus including the radiation detection apparatus, and a radiation image acquisition method.
 1…X線異物検査装置、10…ベルトコンベア、20…X線照射器、30,30a…X線検出装置、31…低エネルギ用シンチレータ、32…低エネルギ用ラインセンサ、33…高エネルギ用シンチレータ、34…高エネルギ用ラインセンサ、35…ミニマムフィルタ処理回路、36…平均化処理回路、40…コンピュータ、42…画像処理部、L,H…画素、P…画素ピッチ、S…検査対象物。 DESCRIPTION OF SYMBOLS 1 ... X-ray foreign material inspection apparatus, 10 ... Belt conveyor, 20 ... X-ray irradiator, 30, 30a ... X-ray detection apparatus, 31 ... Low energy scintillator, 32 ... Low energy line sensor, 33 ... High energy scintillator 34 ... High energy line sensor, 35 ... Minimum filter processing circuit, 36 ... Averaging processing circuit, 40 ... Computer, 42 ... Image processing unit, L, H ... Pixel, P ... Pixel pitch, S ... Inspection object.

Claims (10)

  1.  搬送方向に搬送される対象物を透過した放射線を検出する放射線検出装置であって、
     前記対象物を透過した放射線のうち低エネルギ範囲の放射線を第1のシンチレーション光に変換する第1のシンチレータと、
     前記搬送方向と交差する検出方向に沿って配列される複数の第1の画素を有し、前記第1の画素により前記第1のシンチレーション光を検出して第1の画像データを出力する第1のラインセンサと、
     前記対象物を透過した放射線のうち前記低エネルギ範囲よりも高い高エネルギ範囲の放射線を第2のシンチレーション光に変換する第2のシンチレータと、
     前記搬送方向と交差する検出方向に沿って配列される複数の第2の画素を有し、前記第2の画素により前記第2のシンチレーション光を検出して第2の画像データを出力する第2のラインセンサと、を備え、
     前記第1のラインセンサの前記第1の画素と前記第2のラインセンサの前記第2の画素とは互いに同じ画素数であり且つ同じ画素ピッチで配列されており、
     前記第1のラインセンサから出力される前記第1の画像データに対してはミニマムフィルタ処理を含む第1の間引き処理が行われ、前記第2のラインセンサから出力される前記第2の画像データに対しては平均化処理又は加算処理を含む第2の間引き処理が行われる、放射線検出装置。
    A radiation detection device for detecting radiation transmitted through an object conveyed in a conveyance direction,
    A first scintillator that converts low-energy range radiation out of radiation transmitted through the object into first scintillation light;
    A first pixel that has a plurality of first pixels arranged along a detection direction that intersects the transport direction, detects the first scintillation light by the first pixel, and outputs first image data. Line sensor,
    A second scintillator that converts radiation in a high energy range higher than the low energy range out of radiation transmitted through the object into second scintillation light;
    A second pixel having a plurality of second pixels arranged along a detection direction intersecting with the transport direction, detecting the second scintillation light by the second pixel, and outputting second image data; A line sensor,
    The first pixels of the first line sensor and the second pixels of the second line sensor have the same number of pixels and are arranged at the same pixel pitch.
    The first image data output from the first line sensor is subjected to a first thinning process including a minimum filter process, and the second image data output from the second line sensor. A radiation detection apparatus in which a second thinning process including an averaging process or an adding process is performed.
  2.  前記第1のラインセンサから出力される前記第1の画像データに対してミニマムフィルタ処理を含む第1の間引き処理を行うと共に、前記第2のラインセンサから出力される前記第2の画像データに対して平均化処理又は加算処理を含む第2の間引き処理を行う画像処理部を更に備える、
    請求項1に記載の放射線検出装置。
    The first image data output from the first line sensor is subjected to a first decimation process including a minimum filter process, and the second image data output from the second line sensor is applied to the second image data. An image processing unit that performs a second thinning process including an averaging process or an addition process on the image processing unit;
    The radiation detection apparatus according to claim 1.
  3.  前記画像処理部は、前記ミニマムフィルタ処理を含む第1の間引き処理と前記平均化処理又は加算処理を含む第2の間引き処理とを切替え可能である、
    請求項2に記載の放射線検出装置。
    The image processing unit can switch between a first decimation process including the minimum filter process and a second decimation process including the averaging process or the addition process.
    The radiation detection apparatus according to claim 2.
  4.  前記第2のシンチレータは、前記第1のシンチレータを透過した放射線を前記第2のシンチレーション光に変換するように配置される、
    請求項1~3の何れか一項に記載の放射線検出装置。
    The second scintillator is arranged to convert the radiation transmitted through the first scintillator into the second scintillation light.
    The radiation detection apparatus according to any one of claims 1 to 3.
  5.  前記第1及び第2のラインセンサは所定領域を挟んで互いに並列に配置される、
    請求項1~3の何れか一項に記載の放射線検出装置。
    The first and second line sensors are arranged in parallel with each other across a predetermined area.
    The radiation detection apparatus according to any one of claims 1 to 3.
  6.  前記対象物に対して放射線を照射する放射線源と、
     前記対象物を前記搬送方向に移動させる搬送部と、
     請求項1~5の何れか一項に記載の放射線検出装置と、
     前記ミニマムフィルタ処理が施された第1の変換画像データと、前記平均化処理又は加算処理が施された第2の変換画像データとに基づいて放射線画像を作成する画像作成装置と、
    を備える放射線画像取得装置。
    A radiation source for irradiating the object with radiation;
    A transport unit that moves the object in the transport direction;
    The radiation detection apparatus according to any one of claims 1 to 5,
    An image creation device that creates a radiation image based on the first converted image data subjected to the minimum filter processing and the second converted image data subjected to the averaging processing or the addition processing;
    A radiographic image acquisition apparatus comprising:
  7.  第1のシンチレータと、第2のシンチレータと、検出方向に沿って配列された複数の第1の画素を有する第1のラインセンサと、検出方向に沿って配列された複数の第2の画素を有する第2のラインセンサと、画像処理部とを有し、前記第1の画素と前記第2の画素とが互いに同じ画素数であり且つ同じ画素ピッチで配列されている放射線検出装置を用いて、搬送方向に搬送される対象物を透過した放射線を検出する放射線画像の取得方法であって、
     前記第1のシンチレータにより、前記対象物を透過した放射線のうち低エネルギ範囲の放射線を第1のシンチレーション光に変換する第1の変換ステップと、
     前記第1のラインセンサの前記第1の画素により前記第1のシンチレーション光を検出して第1の画像データを出力する第1の検出ステップと、
     前記第2のシンチレータにより、前記対象物を透過した放射線のうち前記低エネルギ範囲よりも高い高エネルギ範囲の放射線を第2のシンチレーション光に変換する第2の変換ステップと、
     前記第2のラインセンサの前記第2の画素により前記第2のシンチレーション光を検出して第2の画像データを出力する第2の検出ステップと、
     前記画像処理部により前記第1の画像データに対してミニマムフィルタ処理である第1の間引き処理を行い、第1の変換画像を出力する第1の画像処理ステップと、
     前記画像処理部により前記第2の画像データに対して平均化処理又は加算処理である第2の間引き処理を行い、第2の変換画像を出力する第2の画像処理ステップと、
    を備える、放射線画像の取得方法。
    A first scintillator, a second scintillator, a first line sensor having a plurality of first pixels arranged along the detection direction, and a plurality of second pixels arranged along the detection direction. A radiation detection apparatus having a second line sensor and an image processing unit, wherein the first pixels and the second pixels have the same number of pixels and are arranged at the same pixel pitch. A method for acquiring a radiation image for detecting radiation transmitted through an object conveyed in a conveyance direction,
    A first conversion step of converting low-energy range radiation out of radiation transmitted through the object into first scintillation light by the first scintillator;
    A first detection step of detecting the first scintillation light by the first pixels of the first line sensor and outputting first image data;
    A second conversion step of converting radiation in a high energy range higher than the low energy range out of radiation transmitted through the object into second scintillation light by the second scintillator;
    A second detection step of detecting the second scintillation light by the second pixels of the second line sensor and outputting second image data;
    A first image processing step of performing a first thinning process, which is a minimum filter process, on the first image data by the image processing unit, and outputting a first converted image;
    A second image processing step of performing a second thinning process which is an averaging process or an addition process on the second image data by the image processing unit and outputting a second converted image;
    A method for acquiring a radiation image.
  8.  前記第2の変換ステップにおいて、前記第1のシンチレータを透過した放射線を前記第2のシンチレータによって前記第2のシンチレーション光に変換する、
    請求項7に記載の放射線画像の取得方法。
    In the second conversion step, the radiation transmitted through the first scintillator is converted into the second scintillation light by the second scintillator.
    The radiographic image acquisition method according to claim 7.
  9.  前記第1及び第2の検出ステップは、所定領域を挟んで互いに並列に配置されている前記第1及び第2のラインセンサによって行われる、
    請求項7に記載の放射線画像の取得方法。
    The first and second detection steps are performed by the first and second line sensors arranged in parallel with each other across a predetermined region.
    The radiographic image acquisition method according to claim 7.
  10.  前記対象物に対して放射線を照射する照射ステップと、
     前記対象物を搬送方向に沿って移動させる搬送ステップと、
     前記第1の変換画像及び前記第2の変換画像に基づいて放射線画像を生成する生成ステップと、
    を更に備える請求項7~9の何れか一項に記載の放射線画像の取得方法。
    An irradiation step of irradiating the object with radiation;
    A transport step of moving the object along a transport direction;
    A generating step for generating a radiation image based on the first converted image and the second converted image;
    The radiographic image acquisition method according to any one of claims 7 to 9, further comprising:
PCT/JP2017/041255 2016-11-25 2017-11-16 Radiation detection device, radiation image acquisition device, and radiation image acquisition method WO2018097023A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17873854.8A EP3546930B1 (en) 2016-11-25 2017-11-16 Radiation detection device, radiation image acquisition device, and radiation image acquisition method
US16/348,591 US11079344B2 (en) 2016-11-25 2017-11-16 Radiation detection device, radiation image acquisition device, and radiation image acquisition method
ES17873854T ES2937308T3 (en) 2016-11-25 2017-11-16 Radiation detection device, radiation imaging device, and radiation imaging method
FIEP17873854.8T FI3546930T3 (en) 2016-11-25 2017-11-16 Radiation detection device, radiation image acquisition device, and radiation image acquisition method
CN201780072473.4A CN109983325B (en) 2016-11-25 2017-11-16 Radiation detection apparatus, radiation image acquisition apparatus, and radiation image acquisition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-229359 2016-11-25
JP2016229359A JP6747948B2 (en) 2016-11-25 2016-11-25 Radiation detection apparatus, radiation image acquisition apparatus, and radiation image acquisition method.

Publications (1)

Publication Number Publication Date
WO2018097023A1 true WO2018097023A1 (en) 2018-05-31

Family

ID=62195073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041255 WO2018097023A1 (en) 2016-11-25 2017-11-16 Radiation detection device, radiation image acquisition device, and radiation image acquisition method

Country Status (7)

Country Link
US (1) US11079344B2 (en)
EP (1) EP3546930B1 (en)
JP (1) JP6747948B2 (en)
CN (1) CN109983325B (en)
ES (1) ES2937308T3 (en)
FI (1) FI3546930T3 (en)
WO (1) WO2018097023A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563006B (en) * 2017-05-23 2021-03-31 Cheyney Design & Dev Ltd Improvements in or relating to detectors
JP7250331B2 (en) * 2019-07-05 2023-04-03 株式会社イシダ Image generation device, inspection device and learning device
CN115425035A (en) * 2021-05-14 2022-12-02 梅特勒-托利多(常州)测量技术有限公司 Dual-energy detector, dual-energy X-ray imaging system thereof and food detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200189A (en) 1984-03-23 1985-10-09 Toshiba Corp Radiation detector
JP2002216106A (en) * 2001-01-16 2002-08-02 Fuji Photo Film Co Ltd Method and device for generating energy subtraction image
US7453980B1 (en) * 2007-06-25 2008-11-18 Gilevich Alexander I Apparatus and method for acquiring an image of an object
JP2010117172A (en) * 2008-11-11 2010-05-27 Hamamatsu Photonics Kk Radiation detector, radiation image acquiring system, and radiation detecting method
JP2011064643A (en) 2009-09-18 2011-03-31 Hamamatsu Photonics Kk Radiation detection device
JP2011064642A (en) 2009-09-18 2011-03-31 Hamamatsu Photonics Kk Radiation detection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864146A (en) * 1996-11-13 1999-01-26 University Of Massachusetts Medical Center System for quantitative radiographic imaging
EP0914060A1 (en) 1996-05-13 1999-05-12 University Of Massachusetts Medical Center A system for quantitative radiographic imaging
JP4291123B2 (en) * 2003-12-09 2009-07-08 株式会社イシダ Radiation foreign matter inspection apparatus and radiation foreign matter inspection method
EP1882449A4 (en) * 2005-05-18 2010-05-05 Hitachi Medical Corp Radiograph and image processing program
JP5467830B2 (en) * 2009-09-18 2014-04-09 浜松ホトニクス株式会社 Radiation detector
JP5852415B2 (en) 2011-11-08 2016-02-03 浜松ホトニクス株式会社 Non-destructive inspection apparatus and luminance data correction method in the apparatus
JP5912427B2 (en) * 2011-11-08 2016-04-27 浜松ホトニクス株式会社 Non-destructive inspection apparatus and misalignment detection method using the apparatus
JP6384588B2 (en) * 2015-03-10 2018-09-05 株式会社島津製作所 X-ray detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200189A (en) 1984-03-23 1985-10-09 Toshiba Corp Radiation detector
JP2002216106A (en) * 2001-01-16 2002-08-02 Fuji Photo Film Co Ltd Method and device for generating energy subtraction image
US7453980B1 (en) * 2007-06-25 2008-11-18 Gilevich Alexander I Apparatus and method for acquiring an image of an object
JP2010117172A (en) * 2008-11-11 2010-05-27 Hamamatsu Photonics Kk Radiation detector, radiation image acquiring system, and radiation detecting method
JP2011064643A (en) 2009-09-18 2011-03-31 Hamamatsu Photonics Kk Radiation detection device
JP2011064642A (en) 2009-09-18 2011-03-31 Hamamatsu Photonics Kk Radiation detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546930A4

Also Published As

Publication number Publication date
EP3546930A1 (en) 2019-10-02
EP3546930A4 (en) 2020-07-29
CN109983325B (en) 2021-12-17
EP3546930B1 (en) 2022-12-28
JP2018084556A (en) 2018-05-31
US11079344B2 (en) 2021-08-03
FI3546930T3 (en) 2023-03-21
ES2937308T3 (en) 2023-03-27
US20200057008A1 (en) 2020-02-20
JP6747948B2 (en) 2020-08-26
CN109983325A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
JP5295915B2 (en) Radiation detector
US8981310B2 (en) Radiation detecting device
JP5559471B2 (en) Radiation detection apparatus, radiation image acquisition system, radiation inspection system, and radiation detection method
JP5467830B2 (en) Radiation detector
JP5852415B2 (en) Non-destructive inspection apparatus and luminance data correction method in the apparatus
WO2018097023A1 (en) Radiation detection device, radiation image acquisition device, and radiation image acquisition method
JP5912427B2 (en) Non-destructive inspection apparatus and misalignment detection method using the apparatus
JP2007127611A (en) Foreign matter detection apparatus
JP2011043474A (en) X-ray detector and x-ray inspection device
JP2011089965A (en) Article inspection device
JP5596820B2 (en) Radiation detector
JP2009080028A (en) X-ray inspection device
JP6161773B2 (en) Radiation detection apparatus, radiation image acquisition system, radiation inspection system, and radiation detection method
JP2015121563A (en) Radiation detection device, radiation image acquisition system, radiation inspection system and radiation detection method
JP2009192266A (en) X-ray inspection apparatus
WO2017159851A1 (en) Optical inspecting device
JP5947674B2 (en) X-ray inspection equipment
JP2011089964A (en) Article inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873854

Country of ref document: EP

Effective date: 20190625