WO2018096818A1 - Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery - Google Patents

Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery Download PDF

Info

Publication number
WO2018096818A1
WO2018096818A1 PCT/JP2017/036837 JP2017036837W WO2018096818A1 WO 2018096818 A1 WO2018096818 A1 WO 2018096818A1 JP 2017036837 W JP2017036837 W JP 2017036837W WO 2018096818 A1 WO2018096818 A1 WO 2018096818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
laminated film
exposed
lithium ion
Prior art date
Application number
PCT/JP2017/036837
Other languages
French (fr)
Japanese (ja)
Inventor
坂脇 彰
安田 剛規
広治 南谷
Original Assignee
昭和電工株式会社
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017094348A external-priority patent/JP2018092886A/en
Application filed by 昭和電工株式会社, 昭和電工パッケージング株式会社 filed Critical 昭和電工株式会社
Priority to US16/461,067 priority Critical patent/US20190273225A1/en
Priority to CN201780070215.2A priority patent/CN109937503A/en
Publication of WO2018096818A1 publication Critical patent/WO2018096818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • a battery unit including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolyte having lithium ion conductivity and interposed between the positive electrode and the negative electrode;
  • Patent Document 1 describes that an exterior part is configured by heat-sealing heat-seal films using a laminate exterior material formed by laminating a metal foil layer and a heat-sealable resin layer. Yes.
  • Patent Document 2 describes that a solid electrolyte made of an inorganic material is used as an electrolyte, and that the negative electrode, the solid electrolyte, and the positive electrode are all formed of a thin film.
  • An object of the present invention is to simplify the configuration of a thin-film lithium ion secondary battery including a solid electrolyte.
  • the first metal layer and the first exposed portion where a part of the first metal layer is exposed are formed on one surface of the first metal layer.
  • a first laminated film comprising a first resin layer laminated on a metal layer, and a first laminated on the first metal layer exposed at the first exposed portion, and occludes and releases lithium ions with a first polarity.
  • An electrode layer a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity, stacked on the first electrode layer, and stacked on the solid electrolyte layer, with a second polarity opposite to the first polarity
  • a battery unit including a second electrode layer that occludes and releases lithium ions, a second metal layer, and a second exposed portion where a part of the second metal layer is exposed on one surface of the second metal layer.
  • the entire periphery of the second laminated film may be located outside or inside the entire periphery of the first laminated film.
  • the first metal layer constituting the first laminated film may be made of stainless steel, and the second metal layer constituting the second laminated film may be made of aluminum.
  • the first laminated film is laminated on the first metal layer such that another first exposed portion where a part of the first metal layer is exposed is formed on the other surface of the first metal layer.
  • the second laminated film is formed on the other surface of the second metal layer so that another second exposed portion from which a part of the second metal layer is exposed is formed.
  • the semiconductor device may further include a second insulating layer stacked on the second metal layer.
  • a plurality of the battery parts may be provided, and the plurality of battery parts may be arranged in a matrix between the first laminated film and the second laminated film.
  • the second electrode layer provided in the battery part and the second metal layer exposed at the second exposed part of the second laminated film are in direct contact with each other. Can do.
  • the first metal layer and the first exposed portion where a part of the first metal layer is exposed on one surface of the first metal layer are formed.
  • lithium ions with the first polarity are formed on the first metal layer exposed in the first exposed portion.
  • first electrode layer Depositing and releasing a first electrode layer; forming a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity on the first electrode layer; and A step of forming a second electrode layer that occludes and releases lithium ions with a second polarity opposite to the first polarity; a second metal layer; and a second metal layer on one surface of the second metal layer.
  • the second metal layer is stacked so as to form a second exposed portion where a part of the second metal layer is exposed.
  • the first resin layer in a state where the second laminated film provided with the second resin layer is disposed so that the second metal layer exposed to the second exposed portion faces the second electrode layer And a step of fusing the second resin layer.
  • the first electrode layer, the solid electrolyte layer, and the second electrode layer may be formed by sputtering, respectively. Further, in the film formation by the sputtering method, it is possible to repeatedly perform discharge and non-discharge in a short time.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. (A), (b) is a perspective view of the 1st laminated film seen from the front side and the back side. It is a flowchart for demonstrating the manufacturing method of a lithium ion secondary battery. It is a front view of the lithium ion secondary battery with which Embodiment 2 is applied.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. It is a figure for demonstrating the modification of Embodiment 1, Comprising: It is II-II sectional drawing of Fig.1 (a).
  • FIG. 6 is a diagram for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG. 5.
  • FIG. 1 is a diagram for explaining the overall configuration of a lithium ion secondary battery 1 to which Embodiment 1 is applied.
  • FIG. 1A is a diagram of the lithium ion secondary battery 1 viewed from the front
  • FIG. 1B is a diagram of the lithium ion secondary battery 1 viewed from the back.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1A, that is, a vertical cross section of the lithium ion secondary battery 1.
  • 1A is a diagram when FIG. 2 is viewed from the IA direction
  • FIG. 1B is a diagram when FIG. 2 is viewed from the IB direction.
  • the lithium ion secondary battery 1 of the present embodiment includes a battery unit 10 that performs charging and discharging using lithium ions, and an exterior unit that seals the battery unit 10 from outside air or the like by housing the battery unit 10 therein. 30.
  • the lithium ion secondary battery 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
  • the battery unit 10 includes a positive electrode layer 11, a solid electrolyte layer 12 stacked on the positive electrode layer 11, a negative electrode layer 13 stacked on the solid electrolyte layer 12, and a negative electrode current collector stacked on the negative electrode layer 13.
  • Layer 14 the positive electrode layer 11 located at one end (lower side in FIG. 2) of the battery unit 10 is in contact with a first metal layer 313 provided on a first laminated film 31 described later.
  • the negative electrode current collector layer 14 located at the other end (upper side in FIG. 2) of the battery unit 10 is in contact with a second metal layer 323 provided on the second laminated film 32 described later. Yes.
  • the positive electrode layer 11 as an example of the first electrode layer is a solid thin film, and is particularly limited as long as it includes a positive electrode active material that occludes and releases lithium ions with positive polarity as an example of the first polarity.
  • a positive electrode active material that occludes and releases lithium ions with positive polarity as an example of the first polarity.
  • Mn manganese
  • Co cobalt
  • Ni nickel
  • Fe iron
  • Mo molybdenum
  • V vanadium
  • Li 2 Mn 2 O 4 was used as the positive electrode layer 11.
  • the thickness of the positive electrode layer 11 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the positive electrode layer 11 is less than 10 nm, the capacity of the obtained battery unit 10 (lithium ion secondary battery 1) becomes too small and becomes impractical. On the other hand, when the thickness of the positive electrode layer 11 exceeds 40 ⁇ m, it takes too much time to form the layer, and the productivity is lowered. In the present embodiment, the thickness of the positive electrode layer 11 is 600 nm.
  • the positive electrode layer 11 may have a crystal structure or an amorphous material having no crystal structure, but the expansion and contraction associated with the insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, a DC sputtering method or an RF sputtering method may be employed depending on the sputtering target used when forming the positive electrode layer 11. However, when the above Li 2 Mn 2 O 4 is used as the positive electrode layer 11, it is preferable to employ an RF sputtering method.
  • the solid electrolyte layer 12 is not particularly limited as long as it is a solid thin film made of an inorganic material and exhibits lithium ion conductivity, and is made of various materials such as oxides, nitrides, and sulfides. The configured one can be used.
  • LiPON Li x PO y N z
  • a part of oxygen in Li 3 PO 4 is replaced with nitrogen is used as the solid electrolyte layer 12.
  • the thickness of the solid electrolyte layer 12 can be, for example, 10 nm or more and 10 ⁇ m or less. When the thickness of the solid electrolyte layer 12 is less than 10 nm, leakage between the positive electrode layer 11 and the negative electrode layer 13 is likely to occur in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the solid electrolyte layer 12 exceeds 10 ⁇ m, the moving distance of lithium ions becomes long and the charge / discharge rate becomes slow. In the present embodiment, the thickness of the solid electrolyte layer 12 is 200 nm.
  • the solid electrolyte layer 12 may have a crystal structure or an amorphous material having no crystal structure. However, the solid electrolyte layer 12 is amorphous in that the expansion and contraction due to heat becomes more isotropic. Preferably there is.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, sputtering is possible. It is desirable to use the method (sputtering). In this case, since there are many insulators in the sputtering target used when forming the solid electrolyte layer 12, it is preferable to employ the RF sputtering method.
  • the negative electrode layer 13 as an example of the second polarity is particularly limited as long as it is a solid thin film and includes a negative electrode active material that occludes and releases lithium ions with a negative polarity as an example of the second polarity.
  • a negative electrode active material that occludes and releases lithium ions with a negative polarity as an example of the second polarity.
  • carbon (C) or silicon (Si) can be used.
  • silicon (Si) to which boron (B) is added is used as the negative electrode layer 13.
  • the thickness of the negative electrode layer 13 can be, for example, 10 nm or more and 40 ⁇ m or less.
  • the thickness of the negative electrode layer 13 is less than 10 nm, the capacity of the obtained battery unit 10 (lithium ion secondary battery 1) becomes too small and becomes impractical.
  • the thickness of the negative electrode layer 13 exceeds 40 ⁇ m, it takes too much time to form the layer, and productivity is lowered.
  • the thickness of the negative electrode layer 13 is 100 nm.
  • the negative electrode layer 13 may have a crystal structure or may be an amorphous material having no crystal structure, but the expansion and contraction associated with insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, since there are many semiconductors in the sputtering target for forming the negative electrode layer 13, it is preferable to employ the DC sputtering method.
  • the negative electrode current collector layer 14 is not particularly limited as long as it is a solid thin film and has electron conductivity.
  • titanium (Ti), aluminum (Al), copper (Cu), platinum A conductive material containing a metal such as (Pt) or gold (Au) or an alloy thereof can be used.
  • titanium (Ti) is used as the negative electrode current collector layer 14.
  • the thickness of the negative electrode current collector layer 14 can be, for example, 5 nm or more and 50 ⁇ m or less. When the thickness of the negative electrode current collector layer 14 is less than 5 nm, the current collecting function is lowered, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 14 exceeds 50 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode current collector layer 14 is 200 nm.
  • the negative electrode collector layer 14 As a manufacturing method of the negative electrode collector layer 14, you may use well-known film-forming methods, such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition), but if it is from a viewpoint of production efficiency. It is desirable to use a sputtering method (sputtering). In this case, since the sputter target for forming the negative electrode current collector layer 14 is metal (Ti), it is preferable to employ a DC sputtering method.
  • the exterior part 30 has a first laminated film 31 and a second laminated film 32.
  • the first laminated film 31 and the second laminated film 32 are arranged to face each other across the battery unit 10, and the first laminated film 31 and the second laminated film 32 are heat-sealed over the entire circumference of the battery unit 10.
  • the battery unit 10 is sealed.
  • each layer (the positive electrode layer 11 to the negative electrode current collector layer 14) constituting the battery unit 10 is laminated on the surface side (the upper side in FIG. 2) which is the inside of the exterior part 30.
  • the battery unit 10 is integrated.
  • the negative electrode current collector layer 14 of the battery unit 10 is only in contact with the surface side (lower side in FIG. 2) that is the inside of the exterior unit 30. Therefore, although the battery part 10 is integrated with the second laminated film 32 via the first laminated film 31, the battery part 10 and the first laminated film 31 are in contact with each other and fixed. Although the part 10 and the 2nd laminated
  • FIG. 3A and 3B are diagrams for explaining the configuration of the first laminated film 31, wherein FIG. 3A is a perspective view seen from the front side (the upper side in FIG. 2), and FIG. 3B is the rear side (in FIG. 2). The perspective view seen from the lower side is shown respectively.
  • FIG. 3 the structure of the 1st laminated
  • the first laminated film 31 includes a first heat-resistant resin layer 311, a first outer adhesive layer 312, a first metal layer 313, a first inner adhesive layer 314, and a first heat-fusible resin layer 315. In this order, they are laminated in the form of a film. That is, the first laminated film 31 includes the first heat-resistant resin layer 311, the first metal layer 313, and the first heat-fusible resin layer 315 via the first outer adhesive layer 312 and the first inner adhesive layer 314. And pasting them together.
  • first heat-fusible resin layer 315 and the first inner adhesive layer 314 are not present on the side of the first laminated film 31 where the first heat-fusible resin layer 315 is formed (inside in the exterior part 30).
  • a first inner exposed portion 316 is provided in which one surface (inner surface) of the first metal layer 313 is partially exposed.
  • the 1st inner side exposed part 316 as an example of a 1st exposed part is provided in the center part side in the surface direction of the 1st laminated
  • the shape is a rectangular shape.
  • a sidewall is formed by the first inner adhesive layer 314 and the first heat-fusible resin layer 315 around the entire periphery of the first inner exposed portion 316.
  • first heat-resistant resin layer 311 and the first outer adhesive layer 312 are not present on the surface of the first laminated film 31 where the first heat-resistant resin layer 311 is formed (outside in the exterior portion 30).
  • a first outer exposed portion 317 that exposes the other surface (outer surface) of the metal layer 313 is provided.
  • the 1st outer side exposure part 317 is provided in the one end part side of the longitudinal direction of the 1st laminated
  • a sidewall is formed by the first outer adhesive layer 312 and the first heat-resistant resin layer 311 around the entire periphery of the first outer exposed portion 317.
  • the first heat-resistant resin layer 311 as an example of the first insulating layer is the outermost layer in the exterior portion 30, has high resistance to external piercing and wear, and has the first heat-fusible resin layer 315.
  • a heat resistant resin that does not melt at the fusing temperature at the time of heat fusing is used.
  • the first heat-resistant resin layer 311 it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the heat-fusible resin constituting the first heat-fusible resin layer 315.
  • the first heat-resistant resin layer 311 has a high electrical resistance value from the viewpoint of safety. Insulating resin is used.
  • the first heat resistant resin layer 311 is not particularly limited, and examples thereof include a polyamide film and a polyester film, and these stretched films are preferably used. Among them, in terms of moldability and strength, a biaxially stretched polyamide film or a biaxially stretched polyester film, or a multilayer film containing these is particularly preferable, and the biaxially stretched polyamide film and the biaxially stretched polyester film are bonded together. It is preferable to use a multilayer film.
  • the polyamide film is not particularly limited, and examples thereof include 6-polyamide film, 6,6-polyamide film, MXD polyamide film and the like.
  • biaxially stretched polyester film examples include a biaxially stretched polybutylene terephthalate (PBT) film and a biaxially stretched polyethylene terephthalate (PET) film.
  • PBT polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • a nylon film (melting point: 220 ° C.) is used as the first heat resistant resin layer 311.
  • the thickness of the first heat resistant resin layer 311 can be 9 ⁇ m or more and 50 ⁇ m. If the thickness of the first heat-resistant resin layer 311 is less than 9 ⁇ m, it is difficult to ensure sufficient strength as the exterior part 30 of the battery part 10. On the other hand, if the thickness of the first heat-resistant resin layer 311 exceeds 50 ⁇ m, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first heat resistant resin layer 311 is 25 ⁇ m.
  • the first outer adhesive layer 312 is a layer for bonding the first heat-resistant resin layer 311 and the first metal layer 313.
  • an adhesive containing a two-component curable polyester-urethane resin or a polyether-urethane resin with a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent is used. It is preferable to use it.
  • a two-component curable polyester-urethane adhesive is used as the first outer adhesive layer 312.
  • the first metal layer 313 prevents entry of oxygen, moisture, and the like from the exterior of the exterior part 30 into the battery part 10 disposed therein. It is a layer that plays the role of (barrier). Further, as will be described later, the first metal layer 313 serves as a substrate when the battery unit 10 is formed using a sputtering method, and a positive current collector that is electrically connected to the positive electrode layer 11 of the battery unit 10. It further plays a role as a body layer (positive internal electrode) and a role as a positive external electrode electrically connected to a load (not shown) provided outside. Therefore, a conductive metal foil is used for the first metal layer 313.
  • the 1st metal layer 313 For example, aluminum foil, copper foil, nickel foil, stainless steel foil, or this clad foil, these annealed foil, or unannealed foil etc. are used preferably. .
  • a stainless steel foil having high mechanical strength considering that the first metal layer 313 is used as a substrate in the formation of the battery unit 10 by sputtering, it is preferable to use a stainless steel foil having high mechanical strength.
  • a metal foil plated with a conductive metal such as nickel, tin, copper, or chromium may be used.
  • a stainless steel foil made of SUS304 is used as the first metal layer 313.
  • the thickness of the first metal layer 313 can be 20 ⁇ m or more and 200 ⁇ m or less. If the thickness of the first metal layer 313 is less than 20 ⁇ m, pinholes and tears are likely to occur during rolling and heat sealing when manufacturing a metal foil, and the electrical resistance value when used as an electrode increases. End up. On the other hand, if the thickness of the first metal layer 313 exceeds 200 ⁇ m, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first metal layer 313 is 30 ⁇ m.
  • the first inner adhesive layer 314 is a layer for bonding the first metal layer 313 and the first heat-fusible resin layer 315.
  • an adhesive formed by a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, or the like is used. Is preferred. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the barrier property of the first laminated film 31 against water vapor can be improved.
  • an acid-modified adhesive such as polypropylene or polyethylene. In the present embodiment, an acid-modified polypropylene adhesive is used as the first inner adhesive layer 314.
  • the first heat-fusible resin layer 315 as an example of the first resin layer is the innermost layer in the exterior part 30, has high resistance to the material constituting each layer of the battery part 10, and melts at the above-mentioned fusion temperature.
  • a thermoplastic resin that is fused with the second heat-fusible resin layer 325 (details will be described later) of the second laminated film 32 is used.
  • the electrical resistance value is set as the first heat-fusible resin layer 315. High insulating resin is used.
  • the first heat-fusible resin layer 315 is not particularly limited.
  • polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, ionomers, and the like are preferably used.
  • the olefin copolymer include EVA (ethylene / vinyl acetate copolymer), EAA (ethylene / acrylic acid copolymer), and EMAA (ethylene / methacrylic acid copolymer).
  • a polyamide film for example, 12 nylon
  • a polyimide film can also be used.
  • a non-axially stretched polypropylene film (melting point: 165 ° C.) is used as the first heat-fusible resin layer 315.
  • the thickness of the first heat-fusible resin layer 315 can be 20 ⁇ m or more and 80 ⁇ m or less. If the thickness of the first heat-fusible resin layer 315 is less than 20 ⁇ m, pinholes are likely to occur. On the other hand, when the thickness of the first heat-fusible resin layer 315 exceeds 80 ⁇ m, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first heat-fusible resin layer 315 is 30 ⁇ m.
  • the second laminated film 32 includes a second heat resistant resin layer 321, a second outer adhesive layer 322, a second metal layer 323, a second inner adhesive layer 324, and a second heat-fusible resin layer 325. In this order, they are laminated in the form of a film. That is, the second laminated film 32 includes the second heat-resistant resin layer 321, the second metal layer 323, and the second heat-fusible resin layer 325 via the second outer adhesive layer 322 and the second inner adhesive layer 324. And pasting them together.
  • the second heat-fusible resin layer 325 and the second inner adhesive layer 324 are not present on the surface of the second laminated film 32 where the second heat-fusible resin layer 325 is formed (inner side in the exterior portion 30).
  • a second inner exposed portion 326 is provided in which a part of one surface (inner surface) of the second metal layer 323 is exposed.
  • the 2nd inner side exposed part 326 as an example of a 2nd exposed part is provided in the center part side of the 2nd laminated
  • the shape is a rectangular shape.
  • a sidewall is formed by the second inner adhesive layer 324 and the second heat-fusible resin layer 325 around the entire periphery of the second inner exposed portion 326.
  • the second heat-resistant resin layer 321 and the second outer adhesive layer 322 are not present on the side of the second laminated film 32 where the second heat-resistant resin layer 321 is formed (outside in the exterior part 30).
  • a second outer exposed portion 327 is provided in which the other surface (outer surface) of the metal layer 323 is partially exposed.
  • the 2nd outer side exposure part 327 is provided in the one end part side of the longitudinal direction of the 2nd laminated film 32, and the shape is a rectangular shape.
  • a sidewall by the second outer adhesive layer 322 and the second heat resistant resin layer 321 is formed around the entire periphery of the second outer exposed portion 327.
  • the structure of the second laminated film 32 including each exposed portion is substantially the same as the structure of the first laminated film 31 shown in FIG.
  • the second heat-resistant resin layer 321 as an example of the second insulating layer is the outermost layer in the exterior portion 30, has high resistance to external piercing and wear, and has the second heat-fusible resin layer 325.
  • a heat resistant resin that does not melt at the fusing temperature at the time of heat fusing is used.
  • the second metal layer 323 also serves as the negative electrode of the battery unit 10
  • the second heat resistant resin layer 321 has a high electric resistance value from the viewpoint of safety. Insulating resin is used.
  • the material described in the first heat resistant resin layer 311 can be used as the second heat resistant resin layer 321.
  • the second heat-resistant resin layer 321 and the first heat-resistant resin layer 311 may be made of the same material or different materials.
  • the thickness of the second heat resistant resin layer 321 may be the same as that of the first heat resistant resin layer 311 or may be different. In the present embodiment, a 25 ⁇ m thick nylon film (melting point: 220 ° C.) is used as the second heat resistant resin layer 321.
  • the second outer adhesive layer 322 is a layer for bonding the second heat resistant resin layer 321 and the second metal layer 323.
  • the material described in the first outer adhesive layer 312 can be used.
  • the second outer adhesive layer 322 and the first outer adhesive layer 312 may be made of the same material or different materials.
  • a two-component curable polyester-urethane adhesive is used as the second outer adhesive layer 322.
  • the second metal layer 323 prevents entry of oxygen, moisture, etc. from the exterior of the exterior part 30 into the battery part 10 disposed therein. It is a layer that plays the role of (barrier).
  • the second metal layer 323 serves as a negative internal electrode that is electrically connected to the negative electrode current collector layer 14 of the battery unit 10 and a load (not shown) provided outside. ) And a role as a negative external electrode electrically connected. For this reason, a conductive metal foil is used for the second metal layer 323. Note that, unlike the first metal layer 313, the second metal layer 323 does not serve as a substrate when the battery unit 10 is formed using a sputtering method.
  • the materials described in the first metal layer 313 can be used.
  • the second metal layer 323 and the first metal layer 313 may be made of the same material or different materials.
  • the thickness of the second metal layer 323 may be the same as that of the first metal layer 313 or may be different.
  • an aluminum foil having a thickness of 40 ⁇ m made of an A8021H—O material defined by JIS H4160 was used as the second metal layer 323.
  • the second inner adhesive layer 324 is a layer for bonding the second metal layer 323 and the second heat-fusible resin layer 325.
  • the material described in the first inner adhesive layer 314 can be used.
  • the second inner adhesive layer 324 and the first inner adhesive layer 314 may be made of the same material or different materials.
  • an acid-modified polypropylene adhesive is used as the second inner adhesive layer 324.
  • the second heat-fusible resin layer 325 as an example of the second resin layer is the innermost layer in the exterior part 30, has high resistance to the material constituting each layer of the battery part 10, and melts at the above-mentioned fusion temperature.
  • a thermoplastic resin that is fused with the first heat-fusible resin layer 315 of the first laminated film 31 is used.
  • the electrical resistance value as the second heat-fusible resin layer 325 from the viewpoint of safety. High insulating resin is used.
  • the materials described in the first heat-fusible resin layer 315 can be used.
  • the second heat-fusible resin layer 325 and the first heat-fusible resin layer 315 may be made of the same material, and if the melting points of the two materials are close and dissolve, You may comprise with a different material.
  • the thickness of the second heat-fusible resin layer 325 may be the same as that of the first heat-fusible resin layer 315 or may be different.
  • a non-axially stretched polypropylene film (melting point: 165 ° C.) having a thickness of 30 ⁇ m is used as the second heat-fusible resin layer 325.
  • the 1st laminated film 31 and the 2nd laminated film 32 which comprise the exterior part 30 are exhibiting the rectangular shape, respectively, when it sees from the front or the back.
  • the short side of the first laminated film 31 and the short side of the second laminated film 32 are substantially parallel, and the long side of the first laminated film 31 and the second laminated film 32 and the long side are substantially parallel.
  • the first laminated film 31 and the second laminated film 32 are heat-sealed in a superposed state.
  • the length of the first laminated film 31 on the short side is larger than the length of the second laminated film 32 on the short side. Further, the length on the long side of the first laminated film 31 is larger than the length on the long side of the second laminated film 32. And in the exterior part 30, the 1st laminated film 31 and the 2nd laminated film 32 are piled up so that the whole periphery of the 2nd laminated film 32 may be located inside the whole periphery of the 1st laminated film 31. It is heat-sealed in the state.
  • the positive electrode layer 11 of the battery unit 10 is electrically connected to a portion exposed to the first inner exposed portion 316 in one surface (inner surface) of the first metal layer 313 provided in the first laminated film 31. Connected to. In addition, a part of the other surface (outer surface) of the first metal layer 313 provided in the first laminated film 31 is exposed to the outside at the first outer exposed portion 317, and the load provided outside. (Not shown) can be electrically connected.
  • the negative electrode current collector layer 14 of the battery unit 10 is exposed to the second inner exposed portion 326 of one surface (inner surface) of the second metal layer 323 provided on the second laminated film 32. It is electrically connected to the part that does.
  • a part of the other surface (outer surface) of the second metal layer 323 provided on the second laminated film 32 is exposed to the outside at the second outer exposed portion 327, and the load provided outside. (Not shown) can be electrically connected.
  • the 1st metal layer 313 provided in the 1st lamination film 31 and the 2nd metal layer 323 provided in the 2nd lamination film 32 are the 1st heat fusion nature provided in the 1st lamination film 31.
  • the resin layer 315 and the second heat-fusible resin layer 325 provided on the second laminated film 32 are electrically insulated.
  • the first heat fusion of the first laminated film 31 is such that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31.
  • the adhesive resin layer 315 and the second heat-fusible resin layer 325 of the second laminated film 32 are fused. Thereby, the short circuit of the battery part 10 resulting from the contact of the first metal layer 313 and the second metal layer 323 exposed on the side end face of the exterior part 30 is made difficult to occur.
  • FIG. 4 is a flowchart for explaining a method of manufacturing the lithium ion secondary battery 1 shown in FIG.
  • a first heat-resistant resin layer 311, a first metal layer 313, and a first heat-fusible resin layer 315 are bonded together via a first outer adhesive layer 312 and a first inner adhesive layer 314.
  • a part of the first heat-fusible resin layer 315 and a part of the first heat-resistant resin layer 311 are removed from the laminated film 31.
  • the 1st inner side exposed part 316 and the 1st outer side exposed part 317 are formed in the 1st laminated film 31 (step 10).
  • the battery portion 10 is formed on the first metal layer 313 exposed to the first inner exposed portion 316 by sputtering. Is formed (step 20).
  • the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 are laminated in this order on the first metal layer 313. Details of step 20 will be described later.
  • a second heat-resistant resin layer 321, a second metal layer 323, and a second heat-fusible resin layer 325 are bonded together via a second outer adhesive layer 322 and a second inner adhesive layer 324.
  • a part of the second heat-fusible resin layer 325 and a part of the second heat-resistant resin layer 321 are removed from the laminated film 32. Thereby, the 2nd inner side exposed part 326 and the 2nd outer side exposed part 327 are formed in the 2nd lamination
  • N in the working box inert gas-filled, such as 2 gas is introduced to the first laminated film 31 in which the battery unit 10 is formed and a second laminated film 32.
  • the second metal layer 323 exposed to the second inner exposed portion 326 is opposed.
  • the first heat-fusible resin layer 315 in the first laminated film 31 and the second heat-fusible resin layer 325 in the second laminated film 32 face each other over the entire outer periphery of the periphery of the battery unit 10. .
  • the first laminated film 31 and the second laminated film 32 are positioned so that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31.
  • the first heat-fusible resin layer 315 in the first laminated film 31 and the second heat-fusible resin layer 325 in the second laminated film 32 are connected to the battery.
  • the outer periphery of the periphery of the part 10 is fused while being pressurized and heated (step 40).
  • the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are heat-fused, so that lithium including the battery part 10 and the exterior part 30 that seals the battery part 10 is obtained.
  • An ion secondary battery 1 is obtained.
  • the first metal layer 313 of the first laminated film 31 and the positive electrode layer 11 of the battery unit 10 are joined (integrated) by film formation by a sputtering method.
  • the second metal layer 323 of the second laminated film 32 and the negative electrode current collector layer 14 of the battery unit 10 are formed of the first heat-fusible resin layer 315 of the first laminated film 31 and the second laminated film 32.
  • the second heat-fusible resin layer 325 is in close contact with the second heat-fusible resin layer 325 by heat fusing with a negative pressure.
  • the manufacturing procedure of the battery unit 10 in step 20 will be described with a specific example.
  • the 1st laminated film 31 in which the 1st inner side exposed part 316 and the 1st outer side exposed part 317 were formed was installed in the film-forming chamber (chamber) of the sputtering device which is not shown in figure.
  • the first inner exposed portion 316 of the first laminated film 31 faces the sputtering target, and a portion other than the first inner exposed portion 316 (a portion where the first heat-fusible resin layer 315 exists).
  • a mask was fitted with a mask.
  • the positive electrode layer 11 was formed (film formation) on the first metal layer 313 by RF sputtering using a sputtering target having a composition of Li 2 Mn 2 O 4 .
  • the temperature at the time of film formation is limited by the melting point of the material used for the first laminated film 31.
  • the temperature of the first laminated film 31 during film formation is preferably 300 ° C. or less, and more preferably 200 ° C. or less.
  • the temperature of the substrate, that is, the first metal layer 313 is prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge).
  • the film composition of the positive electrode layer 11 thus obtained was Li 2 Mn 2 O 4 , its thickness was 600 nm, and its crystal structure was amorphous.
  • the negative electrode layer 13 was formed (film formation) on the solid electrolyte layer 12 by DC sputtering using a sputtering target (P-type Si target) made of silicon (Si) doped with boron (B). .
  • P-type Si target silicon
  • Si silicon
  • B boron
  • the temperature of the substrate, that is, the first metal layer 313 was prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge).
  • the film composition of the negative electrode layer 13 thus obtained was Si doped with B, its thickness was 100 nm, and its crystal structure was amorphous.
  • the negative electrode current collector layer 14 is formed on the negative electrode layer 13 by DC sputtering using a sputtering target made of titanium (Ti) in a state where Ar gas is introduced and the pressure in the chamber is 0.8 Pa. (Film formation) was performed. At this time, as in the case of the positive electrode layer 11, the temperature of the substrate, that is, the first metal layer 313 was prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge). The negative electrode current collector layer 14 thus obtained had a film composition of Ti and a thickness of 200 nm.
  • the battery part 10 was formed on the first metal layer 313 exposed on the first inner exposed part 316 of the first laminated film 31 by the above procedure. Then, the first laminated film 31 on which the battery unit 10 was formed was taken out from the chamber.
  • the first laminated film 31 and the battery unit 10 are The first metal layer 313 and the positive electrode layer 11 are integrated.
  • the second metal layer 323 of the second laminated film 32 constituting the exterior part 30 has a function of sealing the battery part 10 and a function as a negative electrode of the battery part 10.
  • the configuration of the thin-film lithium ion secondary battery 1 including the solid electrolyte layer 12 can be simplified.
  • multilayer film 31 and the battery part 10 are integrated, the position shift with the exterior part 30 and the battery part 10 in the lithium ion secondary battery 1 can be suppressed. .
  • the lithium ion secondary battery 1 is configured by housing a single battery unit 10 in the exterior unit 30.
  • a plurality of battery units 10 are accommodated in the exterior unit 30 and the plurality of battery units 10 are connected in parallel using the exterior unit 30, so that lithium ions having a larger capacity can be obtained.
  • the secondary battery 1 is configured.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 5 is a diagram for explaining the overall configuration of the lithium ion secondary battery 1 to which the second embodiment is applied.
  • FIG. 5 is a view of the lithium ion secondary battery 1 as seen from the front.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5, that is, a vertical cross section of the lithium ion secondary battery 1.
  • FIG. 5 is a view of FIG. 6 viewed from the V direction.
  • the lithium ion secondary battery 1 includes a plurality (six in this case) of battery units 10 that perform charging and discharging using lithium ions, and a plurality of battery units 10 accommodated therein. And an exterior part 30 that seals the battery part 10 from outside air or the like.
  • the lithium ion secondary battery 1 of the present embodiment also has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
  • the six battery units 10 have the long sides of the exterior unit 30 as the long sides of the individual battery units 10, and the short sides of the exterior unit 30 as the short sides of the individual battery units 10.
  • the outer portion 30 is arranged in three rows on the short side and in two rows on the long side.
  • each battery unit 10 is stacked on the positive electrode layer 11, the solid electrolyte layer 12 stacked on the positive electrode layer 11, the negative electrode layer 13 stacked on the solid electrolyte layer 12, and the negative electrode layer 13. And a negative electrode current collector layer 14.
  • the exterior part 30 has a first laminated film 31 and a second laminated film 32.
  • the first laminated film 31 and the second laminated film 32 are arranged to face each other across the six battery units 10, and the first laminated film 31 and the second laminated film 32 are arranged around the six battery units 10.
  • the battery part 10 is sealed by heat-sealing over the entire circumference. Therefore, the basic configuration of the exterior part 30 is the same as that of the first embodiment.
  • the first heat-fusible resin layer 315 and the first inner adhesive layer 314 are not present on the surface of the first laminated film 31 on which the first heat-fusible resin layer 315 is formed (inner side in the exterior portion 30).
  • the first inner exposed portion 316 in which one surface (inner surface) of the first metal layer 313 is partially exposed is provided at six locations (3 ⁇ 2) corresponding to the six battery portions 10.
  • the second heat-fusible resin layer 325 and the second inner adhesive layer 324 are not present on the surface of the second laminated film 32 where the second heat-fusible resin layer 325 is formed (inner side in the exterior portion 30).
  • the second metal layer 323 one surface (inner surface) is partially exposed, and second inner exposed portions 326 are provided at six locations (3 ⁇ 2) corresponding to the six battery portions 10. This is different from the first embodiment.
  • each of the positive electrode layers 11 of the six battery units 10 has a first inner side of one surface (inner surface) of the first metal layer 313 provided in the first laminated film 31. It is electrically connected to a portion exposed to the exposed portion 316. In addition, a part of the other surface (outer surface) of the first metal layer 313 provided in the first laminated film 31 is exposed to the outside at the first outer exposed portion 317, and an external electrode (positive electrode) , Not shown).
  • each of the negative electrode current collector layers 14 of the six battery units 10 is the second of the two surfaces (inner surfaces) of the second metal layer 323 provided on the second laminated film 32. It is electrically connected to a portion exposed to the inner exposed portion 326. In addition, a part of the other surface (outer surface) of the second metal layer 323 provided on the second laminated film 32 is exposed to the outside at the second outer exposed portion 327, and an external negative electrode ( It is possible to make an electrical connection.
  • the plurality of battery units 10 are formed using the first metal layer 313 of the first laminated film 31 and the second laminated film 32. By connecting in parallel using the second metal layer 323, the capacity can be increased.
  • FIG. 7 is a view for explaining a modification of the first embodiment and is a cross-sectional view taken along the line II-II in FIG.
  • the battery unit 10 is stacked on the positive electrode layer 11 and the positive electrode layer 11 stacked on the first metal layer 313 exposed on the first inner exposed portion 316 of the first laminated film 31.
  • a solid electrolyte layer 12 and a negative electrode layer 13 laminated on the solid electrolyte layer 12 are provided.
  • the negative electrode layer 13 located at the other end (upper side in FIG. 7) of the battery unit 10 is in direct contact with the second metal layer 323 exposed at the second inner exposed portion 326 of the second laminated film 32. is doing.
  • the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the first embodiment.
  • each of the plurality of battery units 10 has the negative electrode current collector layer 14, but in these, the negative electrode current collector layer 14 is not essential.
  • FIG. 8 is a view for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG.
  • each battery unit 10 is laminated on the positive electrode layer 11 and the positive electrode layer 11 laminated on the first metal layer 313 exposed on the first inner exposed part 316 of the first laminated film 31.
  • each negative electrode layer 13 located in the other edge part (upper side in FIG. 8) of each battery part 10 is directly connected to the second metal layer 323 exposed to the second inner exposed part 326 of the second laminated film 32. Touching.
  • the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the second embodiment.
  • the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 are laminated on the first metal layer 313 of the first laminated film 31 in this order.
  • the stacking order is not limited to this.
  • the battery unit 10 may be formed by laminating the negative electrode layer 13, the solid electrolyte layer 12, and the positive electrode layer 11 in this order on the first metal layer 313 of the first laminated film 31.
  • a positive electrode current collector layer in contact with the second metal layer 323 of the second laminated film 32 may be provided on the positive electrode layer 11, but it is not essential.
  • the first laminated film 31 constituting the exterior portion 30 includes the first heat-resistant resin layer 311, but at least the first metal layer 313 and the first heat-fusible resin layer. 315, and the first heat-resistant resin layer 311 is not essential.
  • the second laminated film 32 constituting the exterior portion 30 includes the second heat-resistant resin layer 321, but at least the second metal layer 323 and the second heat-fusible resin layer. 325 and the second heat resistant resin layer 321 is not essential.
  • the first laminated film 31 and the second laminated film 32 are arranged so that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31. Although they are superposed, it is not limited to this. That is, the first laminated film 31 and the second laminated film 32 may be overlapped so that the entire peripheral edge of the second laminated film 32 is positioned outside the entire peripheral edge of the first laminated film 31. .
  • the battery unit 10 (the negative electrode current collector layer 14 or the negative electrode layer 13) and the second laminated film 32 (second metal layer 323) are not fixed.
  • the present invention is not limited to this.
  • a conductive adhesive or the like may be used to fix the positional relationship between the two.
  • SYMBOLS 1 Lithium ion secondary battery, 10 ... Battery part, 11 ... Positive electrode layer, 12 ... Solid electrolyte layer, 13 ... Negative electrode layer, 14 ... Negative electrode collector layer, 30 ... Exterior part, 31 ... 1st laminated film, 32 2nd laminated film, 311 ... 1st heat resistant resin layer, 312 ... 1st outside adhesive layer, 313 ... 1st metal layer, 314 ... 1st inside adhesive layer, 315 ... 1st heat-fusible resin layer, 316 ... first inner exposed portion, 317 ... first outer exposed portion, 321 ... second heat resistant resin layer, 322 ... second outer adhesive layer, 323 ... second metal layer, 324 ... second inner adhesive layer, 325 ... first 2 heat-fusible resin layers, 326... Second inner exposed portion, 327... Second outer exposed portion

Abstract

This lithium-ion rechargeable battery 1 comprises a battery part 10 which performs charging and discharging using lithium ions, and a shell 30 for housing the battery part 10 in the interior thereof. The shell 30 is constituted by thermo-adhering a first laminated film 31 which includes a first metal layer 313 and a first thermo-adhesive resin layer 315, a second laminated film 32 which includes a second metal layer 323 and a second thermo-adhesive resin layer 325, by thermo-adhering the first thermo-adhesive resin layer 315 and the second thermo-adhesive layer 325. Moreover, the positive electrode side of the battery part 10 is electrically connected with the first metal layer 313 of the first laminated film 31, and the negative electrode side of the battery part 10 is electrically connected to the second metal layer 323 of the second laminated film 32.

Description

リチウムイオン二次電池、リチウムイオン二次電池の製造方法Lithium ion secondary battery and method for producing lithium ion secondary battery
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池の製造方法に関する。 The present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
 正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有し且つ正極と負極との間に介在する電解質とを含み、充放電が可能な電池部と、電池部を内部に収容することで電池部を外気等から封止する外装部とを備えたリチウムイオン二次電池が知られている。 A battery unit including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolyte having lithium ion conductivity and interposed between the positive electrode and the negative electrode; 2. Description of the Related Art Lithium ion secondary batteries that include an exterior portion that seals a battery portion from outside air or the like by being housed inside are known.
 ここで、外装部には、気体、液体および固体に対する高いバリア性が要求される。特許文献1には、金属箔層と熱融着性樹脂層とを積層してなるラミネート外装材を用い、熱融着フィルム同士を熱融着することで外装部を構成することが記載されている。 Here, the exterior portion is required to have a high barrier property against gas, liquid and solid. Patent Document 1 describes that an exterior part is configured by heat-sealing heat-seal films using a laminate exterior material formed by laminating a metal foil layer and a heat-sealable resin layer. Yes.
 また、電池部を構成する電解質としては、従来から有機電解液等が用いられてきた。これに対し、特許文献2には、電解質として無機材料からなる固体電解質を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成することが記載されている。 In addition, organic electrolytes and the like have been conventionally used as the electrolyte constituting the battery part. On the other hand, Patent Document 2 describes that a solid electrolyte made of an inorganic material is used as an electrolyte, and that the negative electrode, the solid electrolyte, and the positive electrode are all formed of a thin film.
特開2016-129091号公報Japanese Unexamined Patent Publication No. 2016-129091 特開2013-73846号公報JP 2013-73846 A
 ここで、薄膜型の電池部と、電池部を内部に収容する外装部とを用いてリチウムイオン二次電池を構成する場合、外装部とは別に、電池部を積層するための基板が必要となっていた。
 本発明は、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることを目的とする。
Here, when a lithium ion secondary battery is configured using a thin-film battery unit and an exterior part that accommodates the battery part, a substrate for stacking the battery part is required separately from the exterior part. It was.
An object of the present invention is to simplify the configuration of a thin-film lithium ion secondary battery including a solid electrolyte.
 本発明のリチウムイオン二次電池は、第1金属層と、当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部が形成されるように当該第1金属層に積層される第1樹脂層とを備える第1積層フィルムと、前記第1露出部に露出する前記第1金属層に積層され、第1極性にてリチウムイオンを吸蔵および放出する第1極層と、当該第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該固体電解質層に積層され、当該第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層とを備える電池部と、第2金属層と、当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部が形成されるように当該第2金属層に積層される第2樹脂層とを備え、当該第2露出部にて当該第2金属層が前記第2極層と電気的に接続された状態で、前記第1積層フィルムとの間で前記電池部を封止する第2積層フィルムとを含んでいる。
 このようなリチウムイオン二次電池において、前記第2積層フィルムの全周縁は、前記第1積層フィルムの全周縁よりも外側または内側に位置することを特徴とすることができる。
 また、前記第1積層フィルムを構成する前記第1金属層はステンレスで構成され、前記第2積層フィルムを構成する前記第2金属層はアルミニウムで構成されることを特徴とすることができる。
 さらに、前記第1積層フィルムは、前記第1金属層の他方の面に当該第1金属層の一部が露出する他の第1露出部が形成されるように当該第1金属層に積層される第1絶縁層をさらに備え、前記第2積層フィルムは、前記第2金属層の他方の面に当該第2金属層の一部が露出する他の第2露出部が形成されるように当該第2金属層に積層される第2絶縁層をさらに備えることを特徴とすることができる。
 さらにまた、前記電池部を複数備えるとともに、複数の当該電池部が前記第1積層フィルムと前記第2積層フィルムとの間にマトリクス状に配置されることを特徴とすることができる。
 そして、前記電池部に設けられた前記第2極層と、前記第2積層フィルムの前記第2露出部に露出する前記第2金属層とが、直接に接触していることを特徴とすることができる。
 また、本発明のリチウムイオン二次電池の製造方法は、第1金属層と、当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部が形成されるように当該第1金属層に積層される第1樹脂層とを備える第1積層フィルムに対し、当該第1露出部に露出する当該第1金属層の上に、第1極性にてリチウムイオンを吸蔵および放出する第1極層を成膜する工程と、前記第1極層の上に、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層を成膜する工程と、前記固体電解質層の上に、前記第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層を成膜する工程と、第2金属層と、当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部が形成されるように当該第2金属層に積層される第2樹脂層とを備えた第2積層フィルムを、当該第2露出部に露出する当該第2金属層が前記第2極層と対峙するように配置した状態で、前記第1樹脂層と当該第2樹脂層とを融着する工程とを含んでいる。
 このようなリチウムイオン二次電池の製造方法において、前記第1極層、前記固体電解質層および前記第2極層を、それぞれスパッタ法によって成膜することを特徴とすることができる。
 また、前記スパッタ法による成膜において、短時間での放電と非放電とを繰り返し行うことを特徴とすることができる。
In the lithium ion secondary battery of the present invention, the first metal layer and the first exposed portion where a part of the first metal layer is exposed are formed on one surface of the first metal layer. A first laminated film comprising a first resin layer laminated on a metal layer, and a first laminated on the first metal layer exposed at the first exposed portion, and occludes and releases lithium ions with a first polarity. An electrode layer, a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity, stacked on the first electrode layer, and stacked on the solid electrolyte layer, with a second polarity opposite to the first polarity A battery unit including a second electrode layer that occludes and releases lithium ions, a second metal layer, and a second exposed portion where a part of the second metal layer is exposed on one surface of the second metal layer. A second resin layer laminated on the second metal layer so as to be formed, A second laminated film that seals the battery unit between the first laminated film and the second metal layer electrically connected to the second electrode layer at the exposed portion. .
In such a lithium ion secondary battery, the entire periphery of the second laminated film may be located outside or inside the entire periphery of the first laminated film.
The first metal layer constituting the first laminated film may be made of stainless steel, and the second metal layer constituting the second laminated film may be made of aluminum.
Furthermore, the first laminated film is laminated on the first metal layer such that another first exposed portion where a part of the first metal layer is exposed is formed on the other surface of the first metal layer. The second laminated film is formed on the other surface of the second metal layer so that another second exposed portion from which a part of the second metal layer is exposed is formed. The semiconductor device may further include a second insulating layer stacked on the second metal layer.
Furthermore, a plurality of the battery parts may be provided, and the plurality of battery parts may be arranged in a matrix between the first laminated film and the second laminated film.
The second electrode layer provided in the battery part and the second metal layer exposed at the second exposed part of the second laminated film are in direct contact with each other. Can do.
In the method of manufacturing a lithium ion secondary battery according to the present invention, the first metal layer and the first exposed portion where a part of the first metal layer is exposed on one surface of the first metal layer are formed. For the first laminated film including the first resin layer laminated on the first metal layer, lithium ions with the first polarity are formed on the first metal layer exposed in the first exposed portion. Depositing and releasing a first electrode layer; forming a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity on the first electrode layer; and A step of forming a second electrode layer that occludes and releases lithium ions with a second polarity opposite to the first polarity; a second metal layer; and a second metal layer on one surface of the second metal layer. The second metal layer is stacked so as to form a second exposed portion where a part of the second metal layer is exposed. The first resin layer in a state where the second laminated film provided with the second resin layer is disposed so that the second metal layer exposed to the second exposed portion faces the second electrode layer And a step of fusing the second resin layer.
In such a method of manufacturing a lithium ion secondary battery, the first electrode layer, the solid electrolyte layer, and the second electrode layer may be formed by sputtering, respectively.
Further, in the film formation by the sputtering method, it is possible to repeatedly perform discharge and non-discharge in a short time.
 本発明によれば、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることができる。 According to the present invention, it is possible to simplify the configuration of a thin film type lithium ion secondary battery including a solid electrolyte.
(a)、(b)は、実施の形態1が適用されるリチウムイオン二次電池の全体構成を説明するための図である。(A), (b) is a figure for demonstrating the whole structure of the lithium ion secondary battery with which Embodiment 1 is applied. 図1(a)のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. (a)、(b)は、正面側、背面側からみた第1積層フィルムの斜視図である。(A), (b) is a perspective view of the 1st laminated film seen from the front side and the back side. リチウムイオン二次電池の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of a lithium ion secondary battery. 実施の形態2が適用されるリチウムイオン二次電池の正面図である。It is a front view of the lithium ion secondary battery with which Embodiment 2 is applied. 図5のVI-VI断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. 実施の形態1の変形例を説明するための図であって、図1(a)のII-II断面図である。It is a figure for demonstrating the modification of Embodiment 1, Comprising: It is II-II sectional drawing of Fig.1 (a). 実施の形態2の変形例を説明するための図であって、図5のVI-VI断面図である。FIG. 6 is a diagram for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG. 5.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the size, thickness, and the like of each part in the drawings referred to in the following description may differ from actual dimensions.
<実施の形態1>
[リチウムイオン二次電池の構成]
 図1は、実施の形態1が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図1(a)はリチウムイオン二次電池1を正面からみた図であり、図1(b)はリチウムイオン二次電池1を背面からみた図である。
 また、図2は、図1(a)のII-II断面図、すなわち、リチウムイオン二次電池1の縦断面を示している。なお、図1(a)は、図2をIA方向からみた図であり、図1(b)は、図2をIB方向からみた図である。
<Embodiment 1>
[Configuration of lithium ion secondary battery]
FIG. 1 is a diagram for explaining the overall configuration of a lithium ion secondary battery 1 to which Embodiment 1 is applied. Here, FIG. 1A is a diagram of the lithium ion secondary battery 1 viewed from the front, and FIG. 1B is a diagram of the lithium ion secondary battery 1 viewed from the back.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1A, that is, a vertical cross section of the lithium ion secondary battery 1. 1A is a diagram when FIG. 2 is viewed from the IA direction, and FIG. 1B is a diagram when FIG. 2 is viewed from the IB direction.
 本実施の形態のリチウムイオン二次電池1は、リチウムイオンを用いた充電および放電を行う電池部10と、電池部10を内部に収容することで電池部10を外気等から封止する外装部30とを備えている。本実施の形態のリチウムイオン二次電池1は、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。 The lithium ion secondary battery 1 of the present embodiment includes a battery unit 10 that performs charging and discharging using lithium ions, and an exterior unit that seals the battery unit 10 from outside air or the like by housing the battery unit 10 therein. 30. The lithium ion secondary battery 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
[電池部の構成]
 まず、電池部10の構成について説明を行う。
 電池部10は、正極層11と、正極層11上に積層される固体電解質層12と、固体電解質層12上に積層される負極層13と、負極層13上に積層される負極集電体層14とを有している。ここで、電池部10の一方の端部(図2においては下側)に位置する正極層11は、後述する第1積層フィルム31に設けられた第1金属層313と接触している。これに対し、電池部10の他方の端部(図2においては上側)に位置する負極集電体層14は、後述する第2積層フィルム32に設けられた第2金属層323と接触している。
[Battery configuration]
First, the configuration of the battery unit 10 will be described.
The battery unit 10 includes a positive electrode layer 11, a solid electrolyte layer 12 stacked on the positive electrode layer 11, a negative electrode layer 13 stacked on the solid electrolyte layer 12, and a negative electrode current collector stacked on the negative electrode layer 13. Layer 14. Here, the positive electrode layer 11 located at one end (lower side in FIG. 2) of the battery unit 10 is in contact with a first metal layer 313 provided on a first laminated film 31 described later. On the other hand, the negative electrode current collector layer 14 located at the other end (upper side in FIG. 2) of the battery unit 10 is in contact with a second metal layer 323 provided on the second laminated film 32 described later. Yes.
 次に、電池部10の各構成要素について、より詳細な説明を行う。
(正極層)
 第1極層の一例としての正極層11は、固体薄膜であって、第1極性の一例としての正極性にてリチウムイオンを吸蔵および放出する正極活物質を含むものであれば、特に限定されるものではなく、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。本実施の形態では、正極層11としてLiMnを用いた。
Next, a more detailed description will be given of each component of the battery unit 10.
(Positive electrode layer)
The positive electrode layer 11 as an example of the first electrode layer is a solid thin film, and is particularly limited as long as it includes a positive electrode active material that occludes and releases lithium ions with positive polarity as an example of the first polarity. For example, an oxide or sulfide containing at least one metal selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V) A material or a material composed of various materials such as phosphorus oxides can be used. In the present embodiment, Li 2 Mn 2 O 4 was used as the positive electrode layer 11.
 正極層11の厚さは、例えば10nm以上40μm以下とすることができる。正極層11の厚さが10nm未満であると、得られる電池部10(リチウムイオン二次電池1)の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層11の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、正極層11の厚さを600nmとした。 The thickness of the positive electrode layer 11 can be, for example, 10 nm or more and 40 μm or less. When the thickness of the positive electrode layer 11 is less than 10 nm, the capacity of the obtained battery unit 10 (lithium ion secondary battery 1) becomes too small and becomes impractical. On the other hand, when the thickness of the positive electrode layer 11 exceeds 40 μm, it takes too much time to form the layer, and the productivity is lowered. In the present embodiment, the thickness of the positive electrode layer 11 is 600 nm.
 また、正極層11は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。 The positive electrode layer 11 may have a crystal structure or an amorphous material having no crystal structure, but the expansion and contraction associated with the insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
 さらに、正極層11の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、正極層11を形成する際に使用するスパッタターゲットに応じて、DCスパッタ法を採用してもよいし、RFスパッタ法を採用してもよい。ただし、正極層11として上記LiMnを用いる場合にあっては、RFスパッタ法を採用することが好ましい。 Furthermore, as a manufacturing method of the positive electrode layer 11, a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, a DC sputtering method or an RF sputtering method may be employed depending on the sputtering target used when forming the positive electrode layer 11. However, when the above Li 2 Mn 2 O 4 is used as the positive electrode layer 11, it is preferable to employ an RF sputtering method.
(固体電解質層)
 固体電解質層12は、無機材料で構成された固体薄膜であって、リチウムイオン伝導性を示すものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。本実施の形態では、固体電解質層12として、LiPOにおける酸素の一部を窒素に置き換えたLiPON(LiPO)を用いた。
(Solid electrolyte layer)
The solid electrolyte layer 12 is not particularly limited as long as it is a solid thin film made of an inorganic material and exhibits lithium ion conductivity, and is made of various materials such as oxides, nitrides, and sulfides. The configured one can be used. In the present embodiment, LiPON (Li x PO y N z ) in which a part of oxygen in Li 3 PO 4 is replaced with nitrogen is used as the solid electrolyte layer 12.
 固体電解質層12の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層12の厚さが10nm未満であると、得られたリチウムイオン二次電池1において、正極層11と負極層13との間でのリークが生じやすくなる。一方、固体電解質層12の厚さが10μmを超えると、リチウムイオンの移動距離が長くなり、充放電速度が遅くなる。本実施の形態では、固体電解質層12の厚さを200nmとした。 The thickness of the solid electrolyte layer 12 can be, for example, 10 nm or more and 10 μm or less. When the thickness of the solid electrolyte layer 12 is less than 10 nm, leakage between the positive electrode layer 11 and the negative electrode layer 13 is likely to occur in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the solid electrolyte layer 12 exceeds 10 μm, the moving distance of lithium ions becomes long and the charge / discharge rate becomes slow. In the present embodiment, the thickness of the solid electrolyte layer 12 is 200 nm.
 また、固体電解質層12は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、熱による膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。 The solid electrolyte layer 12 may have a crystal structure or an amorphous material having no crystal structure. However, the solid electrolyte layer 12 is amorphous in that the expansion and contraction due to heat becomes more isotropic. Preferably there is.
 さらに、固体電解質層12の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、固体電解質層12を形成する際に使用するスパッタターゲットには絶縁体が多いことから、RFスパッタ法を採用することが好ましい。 Furthermore, as a manufacturing method of the solid electrolyte layer 12, a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, sputtering is possible. It is desirable to use the method (sputtering). In this case, since there are many insulators in the sputtering target used when forming the solid electrolyte layer 12, it is preferable to employ the RF sputtering method.
(負極層)
 第2極性の一例としての負極層13は、固体薄膜であって、第2極性の一例としての負極性にてリチウムイオンを吸蔵および放出する負極活物質を含むものであれば、特に限定されるものではなく、例えば、炭素(C)やシリコン(Si)を用いることができる。本実施の形態では、負極層13として、ホウ素(B)が添加されたシリコン(Si)を用いた。
(Negative electrode layer)
The negative electrode layer 13 as an example of the second polarity is particularly limited as long as it is a solid thin film and includes a negative electrode active material that occludes and releases lithium ions with a negative polarity as an example of the second polarity. For example, carbon (C) or silicon (Si) can be used. In the present embodiment, silicon (Si) to which boron (B) is added is used as the negative electrode layer 13.
 負極層13の厚さは、例えば10nm以上40μm以下とすることができる。負極層13の厚さが10nm未満であると、得られる電池部10(リチウムイオン二次電池1)の容量が小さくなりすぎ、実用的ではなくなる。一方、負極層13の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極層13の厚さを100nmとした。 The thickness of the negative electrode layer 13 can be, for example, 10 nm or more and 40 μm or less. When the thickness of the negative electrode layer 13 is less than 10 nm, the capacity of the obtained battery unit 10 (lithium ion secondary battery 1) becomes too small and becomes impractical. On the other hand, when the thickness of the negative electrode layer 13 exceeds 40 μm, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode layer 13 is 100 nm.
 また、負極層13は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。 Further, the negative electrode layer 13 may have a crystal structure or may be an amorphous material having no crystal structure, but the expansion and contraction associated with insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
 さらに、負極層13の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、負極層13を形成するためのスパッタターゲットには半導体が多いことから、DCスパッタ法を採用することが好ましい。 Furthermore, as a manufacturing method of the negative electrode layer 13, a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, since there are many semiconductors in the sputtering target for forming the negative electrode layer 13, it is preferable to employ the DC sputtering method.
(負極集電体層)
 負極集電体層14は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)などの金属や、これらの合金を含む導電性材料を用いることができる。本実施の形態では、負極集電体層14としてチタン(Ti)を用いた。
(Negative electrode current collector layer)
The negative electrode current collector layer 14 is not particularly limited as long as it is a solid thin film and has electron conductivity. For example, titanium (Ti), aluminum (Al), copper (Cu), platinum A conductive material containing a metal such as (Pt) or gold (Au) or an alloy thereof can be used. In the present embodiment, titanium (Ti) is used as the negative electrode current collector layer 14.
 負極集電体層14の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層14の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、負極集電体層14の厚さが50μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極集電体層14の厚さを200nmとした。 The thickness of the negative electrode current collector layer 14 can be, for example, 5 nm or more and 50 μm or less. When the thickness of the negative electrode current collector layer 14 is less than 5 nm, the current collecting function is lowered, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 14 exceeds 50 μm, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode current collector layer 14 is 200 nm.
 また、負極集電体層14の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、負極集電体層14を形成するためのスパッタターゲットは金属(Ti)であることから、DCスパッタ法を採用することが好ましい。 Moreover, as a manufacturing method of the negative electrode collector layer 14, you may use well-known film-forming methods, such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition), but if it is from a viewpoint of production efficiency. It is desirable to use a sputtering method (sputtering). In this case, since the sputter target for forming the negative electrode current collector layer 14 is metal (Ti), it is preferable to employ a DC sputtering method.
[外装部の構成]
 続いて、外装部30の構成について説明を行う。
 外装部30は、第1積層フィルム31と、第2積層フィルム32とを有している。第1積層フィルム31および第2積層フィルム32は、電池部10を挟んで対向して配置され、第1積層フィルム31と第2積層フィルム32とが電池部10の周囲の全周にわたって熱融着されることにより、電池部10を封止する。これらのうち、第1積層フィルム31は、外装部30の内側となる面側(図2においては上側)に、電池部10を構成する各層(正極層11~負極集電体層14)が積層されることによって、電池部10と一体化している。これに対し、第2積層フィルム32は、外装部30の内側となる面側(図2においては下側)に、電池部10の負極集電体層14が接触しているだけである。したがって、電池部10は、第1積層フィルム31を介して第2積層フィルム32と一体化しているが、電池部10および第1積層フィルム31は、接触するとともに固定された状態にある一方、電池部10および第2積層フィルム32は、接触するものの固定されない状態にある。
[Configuration of exterior part]
Then, the structure of the exterior part 30 is demonstrated.
The exterior part 30 has a first laminated film 31 and a second laminated film 32. The first laminated film 31 and the second laminated film 32 are arranged to face each other across the battery unit 10, and the first laminated film 31 and the second laminated film 32 are heat-sealed over the entire circumference of the battery unit 10. As a result, the battery unit 10 is sealed. Among these, in the first laminated film 31, each layer (the positive electrode layer 11 to the negative electrode current collector layer 14) constituting the battery unit 10 is laminated on the surface side (the upper side in FIG. 2) which is the inside of the exterior part 30. As a result, the battery unit 10 is integrated. On the other hand, in the second laminated film 32, the negative electrode current collector layer 14 of the battery unit 10 is only in contact with the surface side (lower side in FIG. 2) that is the inside of the exterior unit 30. Therefore, although the battery part 10 is integrated with the second laminated film 32 via the first laminated film 31, the battery part 10 and the first laminated film 31 are in contact with each other and fixed. Although the part 10 and the 2nd laminated | multilayer film 32 contact, they are in the state which is not fixed.
[第1積層フィルム]
 最初に、第1積層フィルム31について説明を行う。
 図3は、第1積層フィルム31の構成を説明するための図であり、(a)は正面側(図2においては上側)からみた斜視図を、(b)は背面側(図2においては下側)からみた斜視図を、それぞれ示している。以下では、図1および図2に加えて図3も参照しながら、第1積層フィルム31の構成を説明する。
[First laminated film]
First, the first laminated film 31 will be described.
3A and 3B are diagrams for explaining the configuration of the first laminated film 31, wherein FIG. 3A is a perspective view seen from the front side (the upper side in FIG. 2), and FIG. 3B is the rear side (in FIG. 2). The perspective view seen from the lower side is shown respectively. Below, the structure of the 1st laminated | multilayer film 31 is demonstrated, referring FIG. 3 in addition to FIG. 1 and FIG.
 第1積層フィルム31は、第1耐熱性樹脂層311と、第1外側接着層312と、第1金属層313と、第1内側接着層314と、第1熱融着性樹脂層315とを、この順でフィルム状に積層して構成されている。すなわち、第1積層フィルム31は、第1耐熱性樹脂層311と第1金属層313と第1熱融着性樹脂層315とを、第1外側接着層312および第1内側接着層314を介して貼り合わせることで構成されている。 The first laminated film 31 includes a first heat-resistant resin layer 311, a first outer adhesive layer 312, a first metal layer 313, a first inner adhesive layer 314, and a first heat-fusible resin layer 315. In this order, they are laminated in the form of a film. That is, the first laminated film 31 includes the first heat-resistant resin layer 311, the first metal layer 313, and the first heat-fusible resin layer 315 via the first outer adhesive layer 312 and the first inner adhesive layer 314. And pasting them together.
 また、第1積層フィルム31における第1熱融着性樹脂層315の形成面側(外装部30において内側)には、第1熱融着性樹脂層315および第1内側接着層314が存在しないことで第1金属層313の一方の面(内側の面)が一部露出する、第1内側露出部316が設けられている。ここで、第1露出部の一例としての第1内側露出部316は、第1積層フィルム31の面方向における中央部側に設けられており、その形状は長方形状である。そして、第1内側露出部316の全周囲には、第1内側接着層314および第1熱融着性樹脂層315による側壁が形成されている。 Further, the first heat-fusible resin layer 315 and the first inner adhesive layer 314 are not present on the side of the first laminated film 31 where the first heat-fusible resin layer 315 is formed (inside in the exterior part 30). Thus, a first inner exposed portion 316 is provided in which one surface (inner surface) of the first metal layer 313 is partially exposed. Here, the 1st inner side exposed part 316 as an example of a 1st exposed part is provided in the center part side in the surface direction of the 1st laminated | multilayer film 31, The shape is a rectangular shape. A sidewall is formed by the first inner adhesive layer 314 and the first heat-fusible resin layer 315 around the entire periphery of the first inner exposed portion 316.
 さらに、第1積層フィルム31における第1耐熱性樹脂層311の形成面側(外装部30において外側)には、第1耐熱性樹脂層311および第1外側接着層312が存在しないことで第1金属層313の他方の面(外側の面)が露出する、第1外側露出部317が設けられている。ここで、第1外側露出部317は、第1積層フィルム31の長手方向の一端部側に設けられており、その形状は長方形状である。そして、第1外側露出部317の全周囲には、第1外側接着層312および第1耐熱性樹脂層311による側壁が形成されている。 Furthermore, the first heat-resistant resin layer 311 and the first outer adhesive layer 312 are not present on the surface of the first laminated film 31 where the first heat-resistant resin layer 311 is formed (outside in the exterior portion 30). A first outer exposed portion 317 that exposes the other surface (outer surface) of the metal layer 313 is provided. Here, the 1st outer side exposure part 317 is provided in the one end part side of the longitudinal direction of the 1st laminated | multilayer film 31, and the shape is a rectangular shape. A sidewall is formed by the first outer adhesive layer 312 and the first heat-resistant resin layer 311 around the entire periphery of the first outer exposed portion 317.
 次に、第1積層フィルム31の各構成要素について、より詳細な説明を行う。
(第1耐熱性樹脂層)
 第1絶縁層の一例としての第1耐熱性樹脂層311は、外装部30における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、第1熱融着性樹脂層315を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。ここで、第1耐熱性樹脂層311としては、第1熱融着性樹脂層315を構成する熱融着性樹脂の融点より10℃以上融点が高い耐熱性樹脂を用いるのが好ましく、この熱融着性樹脂の融点より20℃以上融点が高い耐熱性樹脂を用いるのが特に好ましい。また、本実施の形態では、後述するように、第1金属層313が電池部10の正の電極を兼ねることから、安全性の観点より、第1耐熱性樹脂層311として電気抵抗値の高い絶縁性樹脂が用いられる。
Next, more detailed description will be given for each component of the first laminated film 31.
(First heat resistant resin layer)
The first heat-resistant resin layer 311 as an example of the first insulating layer is the outermost layer in the exterior portion 30, has high resistance to external piercing and wear, and has the first heat-fusible resin layer 315. A heat resistant resin that does not melt at the fusing temperature at the time of heat fusing is used. Here, as the first heat-resistant resin layer 311, it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the heat-fusible resin constituting the first heat-fusible resin layer 315. It is particularly preferable to use a heat resistant resin having a melting point of 20 ° C. or higher than the melting point of the fusible resin. In the present embodiment, as will be described later, since the first metal layer 313 also serves as the positive electrode of the battery unit 10, the first heat-resistant resin layer 311 has a high electrical resistance value from the viewpoint of safety. Insulating resin is used.
 第1耐熱性樹脂層311としては、特に限定されるものではないが、例えば、ポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、成形性および強度の点で、二軸延伸ポリアミドフィルムまたは二軸延伸ポリエステルフィルム、あるいはこれらを含む複層フィルムが特に好ましく、さらに二軸延伸ポリアミドフィルムと二軸延伸ポリエステルフィルムとが貼り合わされた複層フィルムを用いることが好ましい。ポリアミドフィルムとしては、特に限定されるものではないが、例えば、6-ポリアミドフィルム、6,6-ポリアミドフィルム、MXDポリアミドフィルム等が挙げられる。また、二軸延伸ポリエステルフィルムとしては、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム等が挙げられる。本実施の形態では、第1耐熱性樹脂層311としてナイロンフィルム(融点:220℃)を用いた。 The first heat resistant resin layer 311 is not particularly limited, and examples thereof include a polyamide film and a polyester film, and these stretched films are preferably used. Among them, in terms of moldability and strength, a biaxially stretched polyamide film or a biaxially stretched polyester film, or a multilayer film containing these is particularly preferable, and the biaxially stretched polyamide film and the biaxially stretched polyester film are bonded together. It is preferable to use a multilayer film. The polyamide film is not particularly limited, and examples thereof include 6-polyamide film, 6,6-polyamide film, MXD polyamide film and the like. Examples of the biaxially stretched polyester film include a biaxially stretched polybutylene terephthalate (PBT) film and a biaxially stretched polyethylene terephthalate (PET) film. In the present embodiment, a nylon film (melting point: 220 ° C.) is used as the first heat resistant resin layer 311.
 第1耐熱性樹脂層311の厚さは、9μm以上50μmとすることができる。第1耐熱性樹脂層311の厚さが9μm未満であると、電池部10の外装部30として十分な強度を確保することが困難となる。一方、第1耐熱性樹脂層311の厚さが50μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。本実施の形態では、第1耐熱性樹脂層311の厚さを25μmとした。 The thickness of the first heat resistant resin layer 311 can be 9 μm or more and 50 μm. If the thickness of the first heat-resistant resin layer 311 is less than 9 μm, it is difficult to ensure sufficient strength as the exterior part 30 of the battery part 10. On the other hand, if the thickness of the first heat-resistant resin layer 311 exceeds 50 μm, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first heat resistant resin layer 311 is 25 μm.
(第1外側接着層)
 第1外側接着層312は、第1耐熱性樹脂層311と第1金属層313とを接着するための層である。第1外側接着層312としては、例えば、主剤としてのポリエステル樹脂と硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエステル-ウレタン系樹脂、あるいは、ポリエーテル-ウレタン系樹脂を含む接着剤を用いることが好ましい。本実施の形態では、第1外側接着層312として二液硬化型ポリエステル-ウレタン系接着剤を用いた。
(First outer adhesive layer)
The first outer adhesive layer 312 is a layer for bonding the first heat-resistant resin layer 311 and the first metal layer 313. As the first outer adhesive layer 312, for example, an adhesive containing a two-component curable polyester-urethane resin or a polyether-urethane resin with a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent is used. It is preferable to use it. In the present embodiment, a two-component curable polyester-urethane adhesive is used as the first outer adhesive layer 312.
(第1金属層)
 第1金属層313は、第1積層フィルム31を用いて外装部30を構成した場合に、外装部30の外部から、その内部に配置された電池部10に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、第1金属層313は、後述するように、スパッタ法を用いて電池部10を形成する際の基板としての役割と、電池部10の正極層11と電気的に接続される正極集電体層(正の内部電極)としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される正の外部電極としての役割とをさらに担う。このため、第1金属層313には、導電性を有する金属箔を用いる。
(First metal layer)
When the exterior part 30 is configured using the first laminated film 31, the first metal layer 313 prevents entry of oxygen, moisture, and the like from the exterior of the exterior part 30 into the battery part 10 disposed therein. It is a layer that plays the role of (barrier). Further, as will be described later, the first metal layer 313 serves as a substrate when the battery unit 10 is formed using a sputtering method, and a positive current collector that is electrically connected to the positive electrode layer 11 of the battery unit 10. It further plays a role as a body layer (positive internal electrode) and a role as a positive external electrode electrically connected to a load (not shown) provided outside. Therefore, a conductive metal foil is used for the first metal layer 313.
 第1金属層313としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔、あるいはこれのクラッド箔、これらの焼鈍箔または未焼鈍箔等が好ましく用いられる。ただし、第1金属層313がスパッタ法による電池部10の形成における基板として用いられることを考慮すると、機械的強度が高いステンレス箔を用いることが好ましい。また、ニッケル、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。本実施の形態では、第1金属層313として、SUS304からなるステンレス箔を用いた。 Although it does not specifically limit as the 1st metal layer 313, For example, aluminum foil, copper foil, nickel foil, stainless steel foil, or this clad foil, these annealed foil, or unannealed foil etc. are used preferably. . However, considering that the first metal layer 313 is used as a substrate in the formation of the battery unit 10 by sputtering, it is preferable to use a stainless steel foil having high mechanical strength. Alternatively, a metal foil plated with a conductive metal such as nickel, tin, copper, or chromium may be used. In the present embodiment, a stainless steel foil made of SUS304 is used as the first metal layer 313.
 第1金属層313の厚さは、20μm以上200μm以下とすることができる。第1金属層313の厚さが20μm未満であると、金属箔を製造する際の圧延時や熱封止時にピンホールや破れが生じやすく、また、電極として用いる場合の電気抵抗値が高くなってしまう。一方、第1金属層313の厚さが200μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。本実施の形態では、第1金属層313の厚さを30μmとした。 The thickness of the first metal layer 313 can be 20 μm or more and 200 μm or less. If the thickness of the first metal layer 313 is less than 20 μm, pinholes and tears are likely to occur during rolling and heat sealing when manufacturing a metal foil, and the electrical resistance value when used as an electrode increases. End up. On the other hand, if the thickness of the first metal layer 313 exceeds 200 μm, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first metal layer 313 is 30 μm.
(第1内側接着層)
 第1内側接着層314は、第1金属層313と第1熱融着性樹脂層315とを接着するための層である。第1内側接着層314としては、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤を用いることが好ましい。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、水蒸気に対する第1積層フィルム31のバリア性を向上させることができる。また、酸変成したポリプロピレンやポリエチレン等の接着剤を使用することが好ましい。本実施の形態では、第1内側接着層314として、酸変性ポリプロピレン系接着剤を用いた。
(First inner adhesive layer)
The first inner adhesive layer 314 is a layer for bonding the first metal layer 313 and the first heat-fusible resin layer 315. As the first inner adhesive layer 314, for example, an adhesive formed by a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, or the like is used. Is preferred. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the barrier property of the first laminated film 31 against water vapor can be improved. In addition, it is preferable to use an acid-modified adhesive such as polypropylene or polyethylene. In the present embodiment, an acid-modified polypropylene adhesive is used as the first inner adhesive layer 314.
(第1熱融着性樹脂層)
 第1樹脂層の一例としての第1熱融着性樹脂層315は、外装部30における最内層であり、電池部10の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、第2積層フィルム32の第2熱融着性樹脂層325(詳細は後述する)と融着する熱可塑性樹脂が用いられる。また、本実施の形態では、上述したように、第1金属層313が電池部10の正の電極を兼ねることから、安全性の観点より、第1熱融着性樹脂層315として電気抵抗値の高い絶縁性樹脂が用いられる。
(First heat-fusible resin layer)
The first heat-fusible resin layer 315 as an example of the first resin layer is the innermost layer in the exterior part 30, has high resistance to the material constituting each layer of the battery part 10, and melts at the above-mentioned fusion temperature. A thermoplastic resin that is fused with the second heat-fusible resin layer 325 (details will be described later) of the second laminated film 32 is used. Further, in the present embodiment, as described above, since the first metal layer 313 also serves as the positive electrode of the battery unit 10, from the viewpoint of safety, the electrical resistance value is set as the first heat-fusible resin layer 315. High insulating resin is used.
 第1熱融着性樹脂層315としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマー等が好ましく用いられる。ここで、オレフィン系共重合体としては、EVA(エチレン・酢酸ビニル共重合体)、EAA(エチレン・アクリル酸共重合体)、EMAA(エチレン・メタアクリル酸共重合体)を例示できる。また、第1耐熱性樹脂層311との融点の関係を満足できるのであれば、ポリアミドフィルム(例えば12ナイロン)やポリイミドフィルムを使用することもできる。本実施の形態では、第1熱融着性樹脂層315として無軸延伸ポリプロピレンフィルム(融点:165℃)を用いた。 The first heat-fusible resin layer 315 is not particularly limited. For example, polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, ionomers, and the like are preferably used. Examples of the olefin copolymer include EVA (ethylene / vinyl acetate copolymer), EAA (ethylene / acrylic acid copolymer), and EMAA (ethylene / methacrylic acid copolymer). If the melting point relationship with the first heat-resistant resin layer 311 can be satisfied, a polyamide film (for example, 12 nylon) or a polyimide film can also be used. In the present embodiment, a non-axially stretched polypropylene film (melting point: 165 ° C.) is used as the first heat-fusible resin layer 315.
 第1熱融着性樹脂層315の厚さは、20μm以上80μm以下とすることができる。第1熱融着性樹脂層315の厚さが20μm未満であると、ピンホールが生じやすくなる。一方、第1熱融着性樹脂層315の厚さが80μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。本実施の形態では、第1熱融着性樹脂層315の厚さを30μmとした。 The thickness of the first heat-fusible resin layer 315 can be 20 μm or more and 80 μm or less. If the thickness of the first heat-fusible resin layer 315 is less than 20 μm, pinholes are likely to occur. On the other hand, when the thickness of the first heat-fusible resin layer 315 exceeds 80 μm, the battery becomes thick, which is not preferable, and the manufacturing cost increases. In the present embodiment, the thickness of the first heat-fusible resin layer 315 is 30 μm.
[第2積層フィルム]
 続いて、第2積層フィルム32について説明を行う。
 第2積層フィルム32は、第2耐熱性樹脂層321と、第2外側接着層322と、第2金属層323と、第2内側接着層324と、第2熱融着性樹脂層325とを、この順でフィルム状に積層して構成されている。すなわち、第2積層フィルム32は、第2耐熱性樹脂層321と第2金属層323と第2熱融着性樹脂層325とを、第2外側接着層322および第2内側接着層324を介して貼り合わせることで構成されている。
[Second laminated film]
Subsequently, the second laminated film 32 will be described.
The second laminated film 32 includes a second heat resistant resin layer 321, a second outer adhesive layer 322, a second metal layer 323, a second inner adhesive layer 324, and a second heat-fusible resin layer 325. In this order, they are laminated in the form of a film. That is, the second laminated film 32 includes the second heat-resistant resin layer 321, the second metal layer 323, and the second heat-fusible resin layer 325 via the second outer adhesive layer 322 and the second inner adhesive layer 324. And pasting them together.
 また、第2積層フィルム32における第2熱融着性樹脂層325の形成面側(外装部30において内側)には、第2熱融着性樹脂層325および第2内側接着層324が存在しないことで第2金属層323の一方の面(内側の面)が一部露出する、第2内側露出部326が設けられている。ここで、第2露出部の一例としての第2内側露出部326は、第2積層フィルム32の中央部側に設けられており、その形状は長方形状である。そして、第2内側露出部326の全周囲には、第2内側接着層324および第2熱融着性樹脂層325による側壁が形成されている。 In addition, the second heat-fusible resin layer 325 and the second inner adhesive layer 324 are not present on the surface of the second laminated film 32 where the second heat-fusible resin layer 325 is formed (inner side in the exterior portion 30). Thus, a second inner exposed portion 326 is provided in which a part of one surface (inner surface) of the second metal layer 323 is exposed. Here, the 2nd inner side exposed part 326 as an example of a 2nd exposed part is provided in the center part side of the 2nd laminated | multilayer film 32, The shape is a rectangular shape. A sidewall is formed by the second inner adhesive layer 324 and the second heat-fusible resin layer 325 around the entire periphery of the second inner exposed portion 326.
 さらに、第2積層フィルム32における第2耐熱性樹脂層321の形成面側(外装部30において外側)には、第2耐熱性樹脂層321および第2外側接着層322が存在しないことで第2金属層323の他方の面(外側の面)が一部露出する、第2外側露出部327が設けられている。ここで、第2外側露出部327は、第2積層フィルム32の長手方向の一端部側に設けられており、その形状は長方形状である。そして、第2外側露出部327の全周囲には、第2外側接着層322および第2耐熱性樹脂層321による側壁が形成されている。 Furthermore, the second heat-resistant resin layer 321 and the second outer adhesive layer 322 are not present on the side of the second laminated film 32 where the second heat-resistant resin layer 321 is formed (outside in the exterior part 30). A second outer exposed portion 327 is provided in which the other surface (outer surface) of the metal layer 323 is partially exposed. Here, the 2nd outer side exposure part 327 is provided in the one end part side of the longitudinal direction of the 2nd laminated film 32, and the shape is a rectangular shape. In addition, a sidewall by the second outer adhesive layer 322 and the second heat resistant resin layer 321 is formed around the entire periphery of the second outer exposed portion 327.
 このように、各露出部を含む第2積層フィルム32の構造は、図3に示す第1積層フィルム31の構造とほぼ同じである。 Thus, the structure of the second laminated film 32 including each exposed portion is substantially the same as the structure of the first laminated film 31 shown in FIG.
 次に、第2積層フィルム32の各構成要素について、より詳細な説明を行う。
(第2耐熱性樹脂層)
 第2絶縁層の一例としての第2耐熱性樹脂層321は、外装部30における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、第2熱融着性樹脂層325を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。また、本実施の形態では、後述するように、第2金属層323が電池部10の負の電極を兼ねることから、安全性の観点より、第2耐熱性樹脂層321として電気抵抗値の高い絶縁性樹脂が用いられる。
Next, each component of the second laminated film 32 will be described in more detail.
(Second heat resistant resin layer)
The second heat-resistant resin layer 321 as an example of the second insulating layer is the outermost layer in the exterior portion 30, has high resistance to external piercing and wear, and has the second heat-fusible resin layer 325. A heat resistant resin that does not melt at the fusing temperature at the time of heat fusing is used. In the present embodiment, as will be described later, since the second metal layer 323 also serves as the negative electrode of the battery unit 10, the second heat resistant resin layer 321 has a high electric resistance value from the viewpoint of safety. Insulating resin is used.
 そして、第2耐熱性樹脂層321としては、上記第1耐熱性樹脂層311のところで説明した材料を用いることができる。このとき、第2耐熱性樹脂層321と第1耐熱性樹脂層311とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2耐熱性樹脂層321の厚さも、第1耐熱性樹脂層311と同じ厚さとしてもよいし、異なる厚さとしてもよい。本実施の形態では、第2耐熱性樹脂層321として厚さ25μmのナイロンフィルム(融点:220℃)を用いた。 And, as the second heat resistant resin layer 321, the material described in the first heat resistant resin layer 311 can be used. At this time, the second heat-resistant resin layer 321 and the first heat-resistant resin layer 311 may be made of the same material or different materials. The thickness of the second heat resistant resin layer 321 may be the same as that of the first heat resistant resin layer 311 or may be different. In the present embodiment, a 25 μm thick nylon film (melting point: 220 ° C.) is used as the second heat resistant resin layer 321.
(第2外側接着層)
 第2外側接着層322は、第2耐熱性樹脂層321と第2金属層323とを接着するための層である。
 そして、第2外側接着層322としては、上記第1外側接着層312のところで説明した材料を用いることができる。このとき、第2外側接着層322と第1外側接着層312とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。本実施の形態では、第2外側接着層322として二液硬化型ポリエステル-ウレタン系接着剤を用いた。
(Second outer adhesive layer)
The second outer adhesive layer 322 is a layer for bonding the second heat resistant resin layer 321 and the second metal layer 323.
As the second outer adhesive layer 322, the material described in the first outer adhesive layer 312 can be used. At this time, the second outer adhesive layer 322 and the first outer adhesive layer 312 may be made of the same material or different materials. In the present embodiment, a two-component curable polyester-urethane adhesive is used as the second outer adhesive layer 322.
(第2金属層)
 第2金属層323は、第2積層フィルム32を用いて外装部30を形成した場合に、外装部30の外部から、その内部に配置された電池部10に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、第2金属層323は、後述するように、電池部10の負極集電体層14と電気的に接続される負の内部電極としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される負の外部電極としての役割とをさらに担う。このため、第2金属層323には、導電性を有する金属箔を用いる。なお、第2金属層323は、上記第1金属層313とは異なり、スパッタ法を用いて電池部10を形成する際の基板としての役割は担わない。
(Second metal layer)
When the exterior part 30 is formed using the second laminated film 32, the second metal layer 323 prevents entry of oxygen, moisture, etc. from the exterior of the exterior part 30 into the battery part 10 disposed therein. It is a layer that plays the role of (barrier). In addition, as described later, the second metal layer 323 serves as a negative internal electrode that is electrically connected to the negative electrode current collector layer 14 of the battery unit 10 and a load (not shown) provided outside. ) And a role as a negative external electrode electrically connected. For this reason, a conductive metal foil is used for the second metal layer 323. Note that, unlike the first metal layer 313, the second metal layer 323 does not serve as a substrate when the battery unit 10 is formed using a sputtering method.
 そして、第2金属層323としては、上記第1金属層313のところで説明した材料を用いることができる。このとき、第2金属層323と第1金属層313とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2金属層323の厚さも、第1金属層313と同じ厚さとしてもよいし、異なる厚さとしてもよい。本実施の形態では、第2金属層323として、JIS H4160で規定されたA8021H-O材からなる、厚さ40μmのアルミニウム箔を用いた。 For the second metal layer 323, the materials described in the first metal layer 313 can be used. At this time, the second metal layer 323 and the first metal layer 313 may be made of the same material or different materials. The thickness of the second metal layer 323 may be the same as that of the first metal layer 313 or may be different. In this embodiment, as the second metal layer 323, an aluminum foil having a thickness of 40 μm made of an A8021H—O material defined by JIS H4160 was used.
(第2内側接着層)
 第2内側接着層324は、第2金属層323と第2熱融着性樹脂層325とを接着するための層である。
 そして、第2内側接着層324としては、上記第1内側接着層314のところで説明した材料を用いることができる。このとき、第2内側接着層324と第1内側接着層314とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。本実施の形態では、第2内側接着層324として酸変性ポリプロピレン系接着剤を用いた。
(Second inner adhesive layer)
The second inner adhesive layer 324 is a layer for bonding the second metal layer 323 and the second heat-fusible resin layer 325.
As the second inner adhesive layer 324, the material described in the first inner adhesive layer 314 can be used. At this time, the second inner adhesive layer 324 and the first inner adhesive layer 314 may be made of the same material or different materials. In the present embodiment, an acid-modified polypropylene adhesive is used as the second inner adhesive layer 324.
(第2熱融着性樹脂層)
 第2樹脂層の一例としての第2熱融着性樹脂層325は、外装部30における最内層であり、電池部10の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、第1積層フィルム31の第1熱融着性樹脂層315と融着する熱可塑性樹脂が用いられる。また、本実施の形態では、上述したように、第2金属層323が電池部10の負の電極を兼ねることから、安全性の観点より、第2熱融着性樹脂層325として電気抵抗値の高い絶縁性樹脂が用いられる。
(Second heat-fusible resin layer)
The second heat-fusible resin layer 325 as an example of the second resin layer is the innermost layer in the exterior part 30, has high resistance to the material constituting each layer of the battery part 10, and melts at the above-mentioned fusion temperature. A thermoplastic resin that is fused with the first heat-fusible resin layer 315 of the first laminated film 31 is used. In the present embodiment, as described above, since the second metal layer 323 also serves as the negative electrode of the battery unit 10, the electrical resistance value as the second heat-fusible resin layer 325 from the viewpoint of safety. High insulating resin is used.
 そして、第2熱融着性樹脂層325としては、上記第1熱融着性樹脂層315のところで説明した材料を用いることができる。このとき、第2熱融着性樹脂層325と第1熱融着性樹脂層315とは、同じ材料で構成してもよいし、2つの材料の融点が近く、溶解するものであれば、異なる材料で構成してもよい。また、第2熱融着性樹脂層325の厚さも、第1熱融着性樹脂層315と同じ厚さとしてもよいし、異なる厚さとしてもよい。本実施の形態では、第2熱融着性樹脂層325として厚さ30μmの無軸延伸ポリプロピレンフィルム(融点:165℃)を用いた。 And as the second heat-fusible resin layer 325, the materials described in the first heat-fusible resin layer 315 can be used. At this time, the second heat-fusible resin layer 325 and the first heat-fusible resin layer 315 may be made of the same material, and if the melting points of the two materials are close and dissolve, You may comprise with a different material. The thickness of the second heat-fusible resin layer 325 may be the same as that of the first heat-fusible resin layer 315 or may be different. In the present embodiment, a non-axially stretched polypropylene film (melting point: 165 ° C.) having a thickness of 30 μm is used as the second heat-fusible resin layer 325.
[第1積層フィルムおよび第2積層フィルムの寸法および位置関係]
 図1に示すように、外装部30を構成する第1積層フィルム31および第2積層フィルム32は、正面または背面からみた場合に、それぞれ長方形状を呈している。そして、第1積層フィルム31の短辺側と第2積層フィルム32の短辺側とがほぼ平行となり、第1積層フィルム31の長辺側と第2積層フィルム32と長辺側とがほぼ平行となるように、第1積層フィルム31と第2積層フィルム32とが、重ね合わされた状態で熱融着されている。
[Dimensions and positional relationship of the first laminated film and the second laminated film]
As shown in FIG. 1, the 1st laminated film 31 and the 2nd laminated film 32 which comprise the exterior part 30 are exhibiting the rectangular shape, respectively, when it sees from the front or the back. The short side of the first laminated film 31 and the short side of the second laminated film 32 are substantially parallel, and the long side of the first laminated film 31 and the second laminated film 32 and the long side are substantially parallel. Thus, the first laminated film 31 and the second laminated film 32 are heat-sealed in a superposed state.
 ここで、第1積層フィルム31の短辺側の長さは、第2積層フィルム32の短辺側の長さよりも大きい。また、第1積層フィルム31の長辺側の長さは、第2積層フィルム32の長辺側の長さよりも大きい。そして、外装部30では、第1積層フィルム31の全周縁よりも内側に、第2積層フィルム32の全周縁が位置するように、第1積層フィルム31と第2積層フィルム32とが、重ね合わされた状態で熱融着されている。 Here, the length of the first laminated film 31 on the short side is larger than the length of the second laminated film 32 on the short side. Further, the length on the long side of the first laminated film 31 is larger than the length on the long side of the second laminated film 32. And in the exterior part 30, the 1st laminated film 31 and the 2nd laminated film 32 are piled up so that the whole periphery of the 2nd laminated film 32 may be located inside the whole periphery of the 1st laminated film 31. It is heat-sealed in the state.
[リチウムイオン二次電池における電気的な接続構造]
 次に、上述したリチウムイオン二次電池1における電気的な接続構造を説明する。
 まず、電池部10では、正極層11と固体電解質層12と負極層13と負極集電体層14とが、この順番で電気的に接続される。
[Electrical connection structure in lithium ion secondary battery]
Next, an electrical connection structure in the above-described lithium ion secondary battery 1 will be described.
First, in the battery part 10, the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode collector layer 14 are electrically connected in this order.
 また、電池部10の正極層11は、第1積層フィルム31に設けられた第1金属層313の一方の面(内側の面)のうち、第1内側露出部316に露出する部位と電気的に接続される。また、第1積層フィルム31に設けられた第1金属層313の他方の面(外側の面)の一部は、第1外側露出部317において外部に露出しており、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。 Further, the positive electrode layer 11 of the battery unit 10 is electrically connected to a portion exposed to the first inner exposed portion 316 in one surface (inner surface) of the first metal layer 313 provided in the first laminated film 31. Connected to. In addition, a part of the other surface (outer surface) of the first metal layer 313 provided in the first laminated film 31 is exposed to the outside at the first outer exposed portion 317, and the load provided outside. (Not shown) can be electrically connected.
 これに対し、電池部10の負極集電体層14は、第2積層フィルム32に設けられた第2金属層323の一方の面(内側の面)のうち、第2内側露出部326に露出する部位と電気的に接続される。また、第2積層フィルム32に設けられた第2金属層323の他方の面(外側の面)の一部は、第2外側露出部327において外部に露出しており、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。 On the other hand, the negative electrode current collector layer 14 of the battery unit 10 is exposed to the second inner exposed portion 326 of one surface (inner surface) of the second metal layer 323 provided on the second laminated film 32. It is electrically connected to the part that does. In addition, a part of the other surface (outer surface) of the second metal layer 323 provided on the second laminated film 32 is exposed to the outside at the second outer exposed portion 327, and the load provided outside. (Not shown) can be electrically connected.
 そして、第1積層フィルム31に設けられた第1金属層313と、第2積層フィルム32に設けられた第2金属層323とは、第1積層フィルム31に設けられた第1熱融着性樹脂層315と第2積層フィルム32に設けられた第2熱融着性樹脂層325とによって、電気的に絶縁されている。このとき、外装部30では、上述したように、第1積層フィルム31の全周縁よりも内側に、第2積層フィルム32の全周縁が位置するように、第1積層フィルム31の第1熱融着性樹脂層315と第2積層フィルム32の第2熱融着性樹脂層325とが融着されている。これにより、外装部30の側部端面に露出する第1金属層313と第2金属層323とが接触することに起因する、電池部10の短絡を生じ難くしている。 And the 1st metal layer 313 provided in the 1st lamination film 31 and the 2nd metal layer 323 provided in the 2nd lamination film 32 are the 1st heat fusion nature provided in the 1st lamination film 31. The resin layer 315 and the second heat-fusible resin layer 325 provided on the second laminated film 32 are electrically insulated. At this time, in the exterior part 30, as described above, the first heat fusion of the first laminated film 31 is such that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31. The adhesive resin layer 315 and the second heat-fusible resin layer 325 of the second laminated film 32 are fused. Thereby, the short circuit of the battery part 10 resulting from the contact of the first metal layer 313 and the second metal layer 323 exposed on the side end face of the exterior part 30 is made difficult to occur.
[リチウムイオン二次電池の製造方法]
 図4は、図1等に示すリチウムイオン二次電池1の製造方法を説明するためのフローチャートである。
[Method for producing lithium ion secondary battery]
FIG. 4 is a flowchart for explaining a method of manufacturing the lithium ion secondary battery 1 shown in FIG.
(第1積層フィルム露出部形成工程)
 まず、第1耐熱性樹脂層311と第1金属層313と第1熱融着性樹脂層315とを、第1外側接着層312および第1内側接着層314を介して貼り合わせてなる第1積層フィルム31から、第1熱融着性樹脂層315の一部および第1耐熱性樹脂層311の一部を除去する。これにより、第1積層フィルム31に、第1内側露出部316および第1外側露出部317を形成する(ステップ10)。
(First laminated film exposed portion forming step)
First, a first heat-resistant resin layer 311, a first metal layer 313, and a first heat-fusible resin layer 315 are bonded together via a first outer adhesive layer 312 and a first inner adhesive layer 314. A part of the first heat-fusible resin layer 315 and a part of the first heat-resistant resin layer 311 are removed from the laminated film 31. Thereby, the 1st inner side exposed part 316 and the 1st outer side exposed part 317 are formed in the 1st laminated film 31 (step 10).
(電池部形成工程)
 次に、第1内側露出部316および第1外側露出部317が形成された第1積層フィルム31において、第1内側露出部316に露出する第1金属層313上に、スパッタ法によって電池部10を形成する(ステップ20)。ここで、ステップ20では、第1金属層313上に、正極層11、固体電解質層12、負極層13および負極集電体層14を、この順で積層する。なお、ステップ20の詳細については後述する。
(Battery part forming process)
Next, in the first laminated film 31 in which the first inner exposed portion 316 and the first outer exposed portion 317 are formed, the battery portion 10 is formed on the first metal layer 313 exposed to the first inner exposed portion 316 by sputtering. Is formed (step 20). Here, in Step 20, the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 are laminated in this order on the first metal layer 313. Details of step 20 will be described later.
(第2積層フィルム露出部形成工程)
 また、第2耐熱性樹脂層321と第2金属層323と第2熱融着性樹脂層325とを、第2外側接着層322および第2内側接着層324を介して貼り合わせてなる第2積層フィルム32から、第2熱融着性樹脂層325の一部および第2耐熱性樹脂層321の一部を除去する。これにより、第2積層フィルム32に、第2内側露出部326および第2外側露出部327を形成する(ステップ30)。
(Second laminated film exposed portion forming step)
A second heat-resistant resin layer 321, a second metal layer 323, and a second heat-fusible resin layer 325 are bonded together via a second outer adhesive layer 322 and a second inner adhesive layer 324. A part of the second heat-fusible resin layer 325 and a part of the second heat-resistant resin layer 321 are removed from the laminated film 32. Thereby, the 2nd inner side exposed part 326 and the 2nd outer side exposed part 327 are formed in the 2nd lamination | stacking film 32 (step 30).
(融着工程)
 続いて、例えばNガス等の不活性ガスが充填された作業ボックス内に、電池部10が形成された第1積層フィルム31と、第2積層フィルム32とを導入する。そして、作業ボックス内で、第1積層フィルム31において第1内側露出部316に露出する第1金属層313上に形成された電池部10の負極集電体層14と、第2積層フィルム32において第2内側露出部326に露出する第2金属層323とを対峙させる。このとき、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とが、電池部10の周縁の外側全周にわたって対峙する。また、このとき、第1積層フィルム31の全周縁よりも内側に、第2積層フィルム32の全周縁が位置するように、第1積層フィルム31と第2積層フィルム32との位置決めがなされる。
(Fusion process)
Then, for example, N in the working box inert gas-filled, such as 2 gas is introduced to the first laminated film 31 in which the battery unit 10 is formed and a second laminated film 32. In the work box, in the second laminated film 32 and the negative electrode current collector layer 14 of the battery unit 10 formed on the first metal layer 313 exposed to the first inner exposed part 316 in the first laminated film 31. The second metal layer 323 exposed to the second inner exposed portion 326 is opposed. At this time, the first heat-fusible resin layer 315 in the first laminated film 31 and the second heat-fusible resin layer 325 in the second laminated film 32 face each other over the entire outer periphery of the periphery of the battery unit 10. . At this time, the first laminated film 31 and the second laminated film 32 are positioned so that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31.
 その後、作業ボックス内を負圧に設定した状態で、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを、電池部10の周縁の外側全周にわたって、加圧および加熱しながら融着する(ステップ40)。そして、第1熱融着性樹脂層315と第2熱融着性樹脂層325とが熱融着されることにより、電池部10と、電池部10を封止する外装部30とを含むリチウムイオン二次電池1が得られる。 Thereafter, with the inside of the work box set to a negative pressure, the first heat-fusible resin layer 315 in the first laminated film 31 and the second heat-fusible resin layer 325 in the second laminated film 32 are connected to the battery. The outer periphery of the periphery of the part 10 is fused while being pressurized and heated (step 40). Then, the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are heat-fused, so that lithium including the battery part 10 and the exterior part 30 that seals the battery part 10 is obtained. An ion secondary battery 1 is obtained.
 このとき、第1積層フィルム31の第1金属層313と、電池部10の正極層11とは、スパッタ法による成膜により接合(一体化)した状態となっている。また、第2積層フィルム32の第2金属層323と、電池部10の負極集電体層14とは、第1積層フィルム31の第1熱融着性樹脂層315と第2積層フィルム32の第2熱融着性樹脂層325とを負圧で熱融着することにより、密着した状態となっている。 At this time, the first metal layer 313 of the first laminated film 31 and the positive electrode layer 11 of the battery unit 10 are joined (integrated) by film formation by a sputtering method. In addition, the second metal layer 323 of the second laminated film 32 and the negative electrode current collector layer 14 of the battery unit 10 are formed of the first heat-fusible resin layer 315 of the first laminated film 31 and the second laminated film 32. The second heat-fusible resin layer 325 is in close contact with the second heat-fusible resin layer 325 by heat fusing with a negative pressure.
[電池部の製造方法]
 では、上記ステップ20における電池部10の製造手順について、具体例を挙げて説明を行う。
(正極層の形成)
 まず、第1内側露出部316および第1外側露出部317が形成された第1積層フィルム31を、図示しないスパッタ装置の成膜室(チャンバ)内に設置した。このとき、第1積層フィルム31の第1内側露出部316がスパッタリングターゲットに対向するようにし、且つ、第1内側露出部316以外の部位(第1熱融着性樹脂層315が存在する部位)には、マスクを装着した。チャンバ内に第1積層フィルム31を設置した後、5%のOガスを含むArガスを導入してチャンバ内の圧力を0.8Paとした。それから、LiMnなる組成を有するスパッタターゲットを用い、RFスパッタ法により、第1金属層313上に正極層11の形成(成膜)を行った。
[Battery part manufacturing method]
Now, the manufacturing procedure of the battery unit 10 in step 20 will be described with a specific example.
(Formation of positive electrode layer)
First, the 1st laminated film 31 in which the 1st inner side exposed part 316 and the 1st outer side exposed part 317 were formed was installed in the film-forming chamber (chamber) of the sputtering device which is not shown in figure. At this time, the first inner exposed portion 316 of the first laminated film 31 faces the sputtering target, and a portion other than the first inner exposed portion 316 (a portion where the first heat-fusible resin layer 315 exists). Was fitted with a mask. After the first laminated film 31 was installed in the chamber, Ar gas containing 5% O 2 gas was introduced to adjust the pressure in the chamber to 0.8 Pa. Then, the positive electrode layer 11 was formed (film formation) on the first metal layer 313 by RF sputtering using a sputtering target having a composition of Li 2 Mn 2 O 4 .
 成膜時の温度は、第1積層フィルム31に使われる材料の融点により制限される。このため、成膜中の第1積層フィルム31の温度は300℃以下とすることが好ましく、200℃以下とするのがさらに好ましい。本実施の形態では、短時間での放電と待機(非放電)とを繰り返すことで、基板すなわち第1金属層313の温度が150℃を超えないようにした。このようにして得られた正極層11の膜組成はLiMnであり、その厚さは600nmであり、その結晶構造はアモルファスであった。 The temperature at the time of film formation is limited by the melting point of the material used for the first laminated film 31. For this reason, the temperature of the first laminated film 31 during film formation is preferably 300 ° C. or less, and more preferably 200 ° C. or less. In the present embodiment, the temperature of the substrate, that is, the first metal layer 313 is prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge). The film composition of the positive electrode layer 11 thus obtained was Li 2 Mn 2 O 4 , its thickness was 600 nm, and its crystal structure was amorphous.
(固体電解質層の形成)
 次に、Nガスを導入してチャンバ内の圧力を0.8Paとした。それから、LiPOなる組成を有するスパッタターゲットを用い、RFスパッタ法により、正極層11上に固体電解質層12の形成(成膜)を行った。このとき、正極層11の形成と同じく、短時間での放電と待機(非放電)とを繰り返すことで、基板すなわち第1金属層313の温度が150℃を超えないようにした。このようにして得られた固体電解質層12の膜組成はLiPONであり、その厚さは200nmであり、その結晶構造はアモルファスであった。
(Formation of solid electrolyte layer)
Next, N 2 gas was introduced to adjust the pressure in the chamber to 0.8 Pa. Then, the solid electrolyte layer 12 was formed (film formation) on the positive electrode layer 11 by RF sputtering using a sputtering target having a composition of Li 3 PO 4 . At this time, similarly to the formation of the positive electrode layer 11, the temperature of the substrate, that is, the first metal layer 313 was prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge). The film composition of the solid electrolyte layer 12 thus obtained was LiPON, its thickness was 200 nm, and its crystal structure was amorphous.
(負極層の形成)
 続いて、Arガスを導入してチャンバ内の圧力を0.8Paとした。それから、ホウ素(B)をドープしたシリコン(Si)からなるスパッタターゲット(P型のSiターゲット)を用い、DCスパッタ法により、固体電解質層12上に負極層13の形成(成膜)を行った。このとき、正極層11の場合と同じく、短時間での放電と待機(非放電)とを繰り返すことで、基板すなわち第1金属層313の温度が150℃を超えないようにした。このようにして得られた負極層13の膜組成はBがドープされたSiであり、その厚さは100nmであり、その結晶構造はアモルファスであった。
(Formation of negative electrode layer)
Subsequently, Ar gas was introduced to adjust the pressure in the chamber to 0.8 Pa. Then, the negative electrode layer 13 was formed (film formation) on the solid electrolyte layer 12 by DC sputtering using a sputtering target (P-type Si target) made of silicon (Si) doped with boron (B). . At this time, as in the case of the positive electrode layer 11, the temperature of the substrate, that is, the first metal layer 313 was prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge). The film composition of the negative electrode layer 13 thus obtained was Si doped with B, its thickness was 100 nm, and its crystal structure was amorphous.
(負極集電体層の形成)
 さらに、Arガスを導入してチャンバ内の圧力を0.8Paとした状態で、チタン(Ti)からなるスパッタターゲットを用い、DCスパッタ法により、負極層13上に負極集電体層14の形成(成膜)を行った。このとき、正極層11の場合と同じく、短時間での放電と待機(非放電)とを繰り返すことで、基板すなわち第1金属層313の温度が150℃を超えないようにした。このようにして得られた負極集電体層14の膜組成はTiであり、その厚さは200nmであった。
(Formation of negative electrode current collector layer)
Further, the negative electrode current collector layer 14 is formed on the negative electrode layer 13 by DC sputtering using a sputtering target made of titanium (Ti) in a state where Ar gas is introduced and the pressure in the chamber is 0.8 Pa. (Film formation) was performed. At this time, as in the case of the positive electrode layer 11, the temperature of the substrate, that is, the first metal layer 313 was prevented from exceeding 150 ° C. by repeating discharge in a short time and standby (non-discharge). The negative electrode current collector layer 14 thus obtained had a film composition of Ti and a thickness of 200 nm.
 以上の手順にて、第1積層フィルム31の第1内側露出部316上に露出する第1金属層313上に、電池部10を形成した。そして、電池部10が形成された第1積層フィルム31を、チャンバ内から外部に取り出した。ここで、本実施の形態では、第1積層フィルム31の第1金属層313上に電池部10を構成する各層をスパッタ法で形成しているため、第1積層フィルム31および電池部10は、第1金属層313と正極層11とによって一体化している。 The battery part 10 was formed on the first metal layer 313 exposed on the first inner exposed part 316 of the first laminated film 31 by the above procedure. Then, the first laminated film 31 on which the battery unit 10 was formed was taken out from the chamber. Here, in the present embodiment, since each layer constituting the battery unit 10 is formed by sputtering on the first metal layer 313 of the first laminated film 31, the first laminated film 31 and the battery unit 10 are The first metal layer 313 and the positive electrode layer 11 are integrated.
[実施の形態1のまとめ]
 以上説明したように、本実施の形態によれば、外装部30を構成する第1積層フィルム31の第1金属層313に、電池部10を封止する機能および電池部10の正極としての機能を持たせ、且つ、外装部30を構成する第2積層フィルム32の第2金属層323に、電池部10を封止する機能および電池部10の負極としての機能を持たせるようにしたので、固体電解質層12を備える薄膜型のリチウムイオン二次電池1の構成の簡易化を図ることができる。ここで、本実施の形態では、第1積層フィルム31と電池部10とを一体化しているため、リチウムイオン二次電池1における外装部30と電池部10との位置ずれを抑制することができる。
[Summary of Embodiment 1]
As described above, according to the present embodiment, the function of sealing the battery unit 10 on the first metal layer 313 of the first laminated film 31 constituting the exterior unit 30 and the function of the battery unit 10 as the positive electrode. And the second metal layer 323 of the second laminated film 32 constituting the exterior part 30 has a function of sealing the battery part 10 and a function as a negative electrode of the battery part 10, The configuration of the thin-film lithium ion secondary battery 1 including the solid electrolyte layer 12 can be simplified. Here, in this Embodiment, since the 1st laminated | multilayer film 31 and the battery part 10 are integrated, the position shift with the exterior part 30 and the battery part 10 in the lithium ion secondary battery 1 can be suppressed. .
<実施の形態2>
 実施の形態1では、外装部30内に単数(1個)の電池部10を収容することで、リチウムイオン二次電池1を構成していた。これに対し、本実施の形態では、外装部30内に複数の電池部10を収容するとともに、外装部30を用いてこれら複数の電池部10を並列接続することで、より容量が大きいリチウムイオン二次電池1を構成するようにしたものである。なお、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
<Embodiment 2>
In the first embodiment, the lithium ion secondary battery 1 is configured by housing a single battery unit 10 in the exterior unit 30. On the other hand, in the present embodiment, a plurality of battery units 10 are accommodated in the exterior unit 30 and the plurality of battery units 10 are connected in parallel using the exterior unit 30, so that lithium ions having a larger capacity can be obtained. The secondary battery 1 is configured. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[リチウムイオン二次電池の構成]
 図5は、実施の形態2が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図5はリチウムイオン二次電池1を正面からみた図である。
 また、図6は、図5のVI-VI断面図、すなわちリチウムイオン二次電池1の縦断面を示している。なお、図5は、図6をV方向からみた図である。
[Configuration of lithium ion secondary battery]
FIG. 5 is a diagram for explaining the overall configuration of the lithium ion secondary battery 1 to which the second embodiment is applied. Here, FIG. 5 is a view of the lithium ion secondary battery 1 as seen from the front.
FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5, that is, a vertical cross section of the lithium ion secondary battery 1. FIG. 5 is a view of FIG. 6 viewed from the V direction.
 本実施の形態のリチウムイオン二次電池1は、リチウムイオンを用いた充電および放電を行う複数(ここでは6個)の電池部10と、複数の電池部10を内部に収容することで複数の電池部10を外気等から封止する外装部30とを備えている。本実施の形態のリチウムイオン二次電池1も、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。 The lithium ion secondary battery 1 according to the present embodiment includes a plurality (six in this case) of battery units 10 that perform charging and discharging using lithium ions, and a plurality of battery units 10 accommodated therein. And an exterior part 30 that seals the battery part 10 from outside air or the like. The lithium ion secondary battery 1 of the present embodiment also has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
 そして、6個の電池部10は、図5に示すように、外装部30の長辺側が個々の電池部10の長辺側となり、外装部30の短辺側が個々の電池部10の短辺側となるように、マトリクス状に、外装部30の短辺側に3列且つ長辺側に2列に配置されている。 As shown in FIG. 5, the six battery units 10 have the long sides of the exterior unit 30 as the long sides of the individual battery units 10, and the short sides of the exterior unit 30 as the short sides of the individual battery units 10. In a matrix, the outer portion 30 is arranged in three rows on the short side and in two rows on the long side.
[電池部の構成]
 6個の電池部10の構成は、実施の形態1で説明したものと同じである。すなわち、それぞれの電池部10は、正極層11と、正極層11上に積層される固体電解質層12と、固体電解質層12上に積層される負極層13と、負極層13上に積層される負極集電体層14とを有している。
[Battery configuration]
The configuration of the six battery units 10 is the same as that described in the first embodiment. That is, each battery unit 10 is stacked on the positive electrode layer 11, the solid electrolyte layer 12 stacked on the positive electrode layer 11, the negative electrode layer 13 stacked on the solid electrolyte layer 12, and the negative electrode layer 13. And a negative electrode current collector layer 14.
[外装部の構成]
 続いて、外装部30の構成について説明を行う。
 外装部30は、第1積層フィルム31と、第2積層フィルム32とを有している。第1積層フィルム31および第2積層フィルム32は、6個の電池部10を挟んで対向して配置され、第1積層フィルム31と第2積層フィルム32とが6個の電池部10の周囲の全周にわたって熱融着されることにより、電池部10を封止する。したがって、外装部30の基本構成も、実施の形態1と同じである。
[Configuration of exterior part]
Then, the structure of the exterior part 30 is demonstrated.
The exterior part 30 has a first laminated film 31 and a second laminated film 32. The first laminated film 31 and the second laminated film 32 are arranged to face each other across the six battery units 10, and the first laminated film 31 and the second laminated film 32 are arranged around the six battery units 10. The battery part 10 is sealed by heat-sealing over the entire circumference. Therefore, the basic configuration of the exterior part 30 is the same as that of the first embodiment.
 ただし、第1積層フィルム31における第1熱融着性樹脂層315の形成面側(外装部30において内側)には、第1熱融着性樹脂層315および第1内側接着層314が存在しないことで第1金属層313の一方の面(内側の面)が一部露出する、第1内側露出部316が、6個の電池部10に対応して6箇所(3×2)に設けられている点が、実施の形態1とは異なる。また第2積層フィルム32における第2熱融着性樹脂層325の形成面側(外装部30において内側)には、第2熱融着性樹脂層325および第2内側接着層324が存在しないことで第2金属層323の一方の面(内側の面)が一部露出する、第2内側露出部326が、6個の電池部10に対応して6箇所(3×2)に設けられている点が、実施の形態1とは異なる。 However, the first heat-fusible resin layer 315 and the first inner adhesive layer 314 are not present on the surface of the first laminated film 31 on which the first heat-fusible resin layer 315 is formed (inner side in the exterior portion 30). Thus, the first inner exposed portion 316 in which one surface (inner surface) of the first metal layer 313 is partially exposed is provided at six locations (3 × 2) corresponding to the six battery portions 10. This is different from the first embodiment. Further, the second heat-fusible resin layer 325 and the second inner adhesive layer 324 are not present on the surface of the second laminated film 32 where the second heat-fusible resin layer 325 is formed (inner side in the exterior portion 30). In the second metal layer 323, one surface (inner surface) is partially exposed, and second inner exposed portions 326 are provided at six locations (3 × 2) corresponding to the six battery portions 10. This is different from the first embodiment.
[リチウムイオン二次電池における電気的な接続構造]
 本実施の形態において、6個の電池部10の各正極層11のそれぞれは、第1積層フィルム31に設けられた第1金属層313の一方の面(内側の面)のうち、第1内側露出部316に露出する部位と電気的に接続される。また、第1積層フィルム31に設けられた第1金属層313の他方の面(外側の面)の一部は、第1外側露出部317において外部に露出しており、外部電極(正の電極、図示せず)と電気的に接続することが可能である。
[Electrical connection structure in lithium ion secondary battery]
In the present embodiment, each of the positive electrode layers 11 of the six battery units 10 has a first inner side of one surface (inner surface) of the first metal layer 313 provided in the first laminated film 31. It is electrically connected to a portion exposed to the exposed portion 316. In addition, a part of the other surface (outer surface) of the first metal layer 313 provided in the first laminated film 31 is exposed to the outside at the first outer exposed portion 317, and an external electrode (positive electrode) , Not shown).
 これに対し、6個の電池部10の各負極集電体層14のそれぞれは、第2積層フィルム32に設けられた第2金属層323の一方の面(内側の面)のうち、第2内側露出部326に露出する部位と電気的に接続される。また、第2積層フィルム32に設けられた第2金属層323の他方の面(外側の面)の一部は、第2外側露出部327において外部に露出しており、外部の負の電極(図示せず)と電気的に接続することが可能である。 On the other hand, each of the negative electrode current collector layers 14 of the six battery units 10 is the second of the two surfaces (inner surfaces) of the second metal layer 323 provided on the second laminated film 32. It is electrically connected to a portion exposed to the inner exposed portion 326. In addition, a part of the other surface (outer surface) of the second metal layer 323 provided on the second laminated film 32 is exposed to the outside at the second outer exposed portion 327, and an external negative electrode ( It is possible to make an electrical connection.
[実施の形態2のまとめ]
 以上説明したように、本実施の形態では、実施の形態1で説明した効果に加えて、複数の電池部10を、第1積層フィルム31の第1金属層313と、第2積層フィルム32の第2金属層323とを用いて並列接続することにより、その容量を増大させることができる。
[Summary of Embodiment 2]
As described above, in the present embodiment, in addition to the effects described in the first embodiment, the plurality of battery units 10 are formed using the first metal layer 313 of the first laminated film 31 and the second laminated film 32. By connecting in parallel using the second metal layer 323, the capacity can be increased.
<実施の形態1の変形例>
 実施の形態1のリチウムイオン二次電池1では、電池部10が負極集電体層14を有していたが、負極集電体層14は必須ではない。
 図7は、実施の形態1の変形例を説明するための図であって、図1(a)のII-II断面図である。
<Modification of Embodiment 1>
In the lithium ion secondary battery 1 of Embodiment 1, the battery unit 10 has the negative electrode current collector layer 14, but the negative electrode current collector layer 14 is not essential.
FIG. 7 is a view for explaining a modification of the first embodiment and is a cross-sectional view taken along the line II-II in FIG.
 実施の形態1の変形例において、電池部10は、第1積層フィルム31の第1内側露出部316に露出する第1金属層313に積層される正極層11と、正極層11に積層される固体電解質層12と、固体電解質層12に積層される負極層13とを備えている。そして、電池部10の他方の端部(図7においては上側)に位置する負極層13は、第2積層フィルム32の第2内側露出部326に露出する第2金属層323と、直接に接触している。 In the modification of Embodiment 1, the battery unit 10 is stacked on the positive electrode layer 11 and the positive electrode layer 11 stacked on the first metal layer 313 exposed on the first inner exposed portion 316 of the first laminated film 31. A solid electrolyte layer 12 and a negative electrode layer 13 laminated on the solid electrolyte layer 12 are provided. The negative electrode layer 13 located at the other end (upper side in FIG. 7) of the battery unit 10 is in direct contact with the second metal layer 323 exposed at the second inner exposed portion 326 of the second laminated film 32. is doing.
 このような構成を採用することにより、実施の形態1で説明した構成と比較して、リチウムイオン二次電池1の構造を簡易にすることができる。 By adopting such a configuration, the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the first embodiment.
<実施の形態2の変形例>
 実施の形態2のリチウムイオン二次電池1では、複数の電池部10のそれぞれが負極集電体層14を有していたが、これらにおいて負極集電体層14は必須ではない。
 図8は、実施の形態2の変形例を説明するための図であって、図5のVI-VI断面図である。
<Modification of Embodiment 2>
In the lithium ion secondary battery 1 of Embodiment 2, each of the plurality of battery units 10 has the negative electrode current collector layer 14, but in these, the negative electrode current collector layer 14 is not essential.
FIG. 8 is a view for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG.
 実施の形態2の変形例において、各電池部10は、第1積層フィルム31の第1内側露出部316に露出する第1金属層313に積層される正極層11と、正極層11に積層される固体電解質層12と、固体電解質層12に積層される負極層13とを備えている。そして、各電池部10の他方の端部(図8においては上側)に位置する各負極層13は、第2積層フィルム32の第2内側露出部326に露出する第2金属層323と、直接に接触している。 In the modification of the second embodiment, each battery unit 10 is laminated on the positive electrode layer 11 and the positive electrode layer 11 laminated on the first metal layer 313 exposed on the first inner exposed part 316 of the first laminated film 31. A solid electrolyte layer 12 and a negative electrode layer 13 laminated on the solid electrolyte layer 12. And each negative electrode layer 13 located in the other edge part (upper side in FIG. 8) of each battery part 10 is directly connected to the second metal layer 323 exposed to the second inner exposed part 326 of the second laminated film 32. Touching.
 このような構成を採用することにより、実施の形態2で説明した構成と比較して、リチウムイオン二次電池1の構造を簡易にすることができる。 By adopting such a configuration, the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the second embodiment.
<その他>
 なお、実施の形態1、2では、第1積層フィルム31の第1金属層313上に、正極層11、固体電解質層12、負極層13および負極集電体層14の順で積層を行うことで電池部10を形成していたが、積層順はこれに限られない。例えば第1積層フィルム31の第1金属層313上に、負極層13、固体電解質層12および正極層11の順で積層を行うことで電池部10を形成してもよい。この場合は、正極層11上に、第2積層フィルム32の第2金属層323と接触する正極集電体層を設けてもよいが必須ではない。
<Others>
In the first and second embodiments, the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 are laminated on the first metal layer 313 of the first laminated film 31 in this order. However, the stacking order is not limited to this. For example, the battery unit 10 may be formed by laminating the negative electrode layer 13, the solid electrolyte layer 12, and the positive electrode layer 11 in this order on the first metal layer 313 of the first laminated film 31. In this case, a positive electrode current collector layer in contact with the second metal layer 323 of the second laminated film 32 may be provided on the positive electrode layer 11, but it is not essential.
 また、実施の形態1、2では、外装部30を構成する第1積層フィルム31が第1耐熱性樹脂層311を備えていたが、少なくとも第1金属層313と第1熱融着性樹脂層315とを備えていればよく、第1耐熱性樹脂層311は必須ではない。また、実施の形態1、2では、外装部30を構成する第2積層フィルム32が第2耐熱性樹脂層321を備えていたが、少なくとも第2金属層323と第2熱融着性樹脂層325とを備えていればよく、第2耐熱性樹脂層321は必須ではない。 In the first and second embodiments, the first laminated film 31 constituting the exterior portion 30 includes the first heat-resistant resin layer 311, but at least the first metal layer 313 and the first heat-fusible resin layer. 315, and the first heat-resistant resin layer 311 is not essential. In the first and second embodiments, the second laminated film 32 constituting the exterior portion 30 includes the second heat-resistant resin layer 321, but at least the second metal layer 323 and the second heat-fusible resin layer. 325 and the second heat resistant resin layer 321 is not essential.
 さらに、実施の形態1、2では、第1積層フィルム31の全周縁よりも内側に、第2積層フィルム32の全周縁が位置するように、第1積層フィルム31と第2積層フィルム32とを重ね合わせていたが、これに限られるものではない。すなわち、第1積層フィルム31の全周縁よりも外側に、第2積層フィルム32の全周縁が位置するように、第1積層フィルム31と第2積層フィルム32とを重ね合わせるようにしてもかまわない。 Further, in the first and second embodiments, the first laminated film 31 and the second laminated film 32 are arranged so that the entire peripheral edge of the second laminated film 32 is located inside the entire peripheral edge of the first laminated film 31. Although they are superposed, it is not limited to this. That is, the first laminated film 31 and the second laminated film 32 may be overlapped so that the entire peripheral edge of the second laminated film 32 is positioned outside the entire peripheral edge of the first laminated film 31. .
 さらにまた、実施の形態1、2およびこれらの変形例では、電池部10(負極集電体層14あるいは負極層13)と第2積層フィルム32(第2金属層323)とを、固定しない状態で接触させていたが、これに限られるものではなく、例えば導電性接着剤等を用いて、両者の位置関係を固定するようにしてもかまわない。 Furthermore, in the first and second embodiments and the modifications thereof, the battery unit 10 (the negative electrode current collector layer 14 or the negative electrode layer 13) and the second laminated film 32 (second metal layer 323) are not fixed. However, the present invention is not limited to this. For example, a conductive adhesive or the like may be used to fix the positional relationship between the two.
1…リチウムイオン二次電池、10…電池部、11…正極層、12…固体電解質層、13…負極層、14…負極集電体層、30…外装部、31…第1積層フィルム、32…第2積層フィルム、311…第1耐熱性樹脂層、312…第1外側接着層、313…第1金属層、314…第1内側接着層、315…第1熱融着性樹脂層、316…第1内側露出部、317…第1外側露出部、321…第2耐熱性樹脂層、322…第2外側接着層、323…第2金属層、324…第2内側接着層、325…第2熱融着性樹脂層、326…第2内側露出部、327…第2外側露出部 DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 10 ... Battery part, 11 ... Positive electrode layer, 12 ... Solid electrolyte layer, 13 ... Negative electrode layer, 14 ... Negative electrode collector layer, 30 ... Exterior part, 31 ... 1st laminated film, 32 2nd laminated film, 311 ... 1st heat resistant resin layer, 312 ... 1st outside adhesive layer, 313 ... 1st metal layer, 314 ... 1st inside adhesive layer, 315 ... 1st heat-fusible resin layer, 316 ... first inner exposed portion, 317 ... first outer exposed portion, 321 ... second heat resistant resin layer, 322 ... second outer adhesive layer, 323 ... second metal layer, 324 ... second inner adhesive layer, 325 ... first 2 heat-fusible resin layers, 326... Second inner exposed portion, 327... Second outer exposed portion

Claims (9)

  1.  第1金属層と、当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部が形成されるように当該第1金属層に積層される第1樹脂層とを備える第1積層フィルムと、
     前記第1露出部に露出する前記第1金属層に積層され、第1極性にてリチウムイオンを吸蔵および放出する第1極層と、当該第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該固体電解質層に積層され、当該第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層とを備える電池部と、
     第2金属層と、当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部が形成されるように当該第2金属層に積層される第2樹脂層とを備え、当該第2露出部にて当該第2金属層が前記第2極層と電気的に接続された状態で、前記第1積層フィルムとの間で前記電池部を封止する第2積層フィルムと
    を含むリチウムイオン二次電池。
    The first metal layer and the first resin layer laminated on the first metal layer such that a first exposed portion where a part of the first metal layer is exposed is formed on one surface of the first metal layer. A first laminated film comprising:
    A first electrode layer that is stacked on the first metal layer exposed at the first exposed portion and that absorbs and releases lithium ions with a first polarity, and is stacked on the first electrode layer and exhibits lithium ion conductivity. A battery unit comprising: a solid electrolyte layer having an inorganic solid electrolyte; and a second electrode layer laminated on the solid electrolyte layer and having a second polarity opposite to the first polarity to occlude and release lithium ions;
    A second metal layer and a second resin layer laminated on the second metal layer such that a second exposed portion where a part of the second metal layer is exposed is formed on one surface of the second metal layer. And the second exposed metal is sealed between the first laminated film and the second metal layer in a state where the second metal layer is electrically connected to the second electrode layer. A lithium ion secondary battery comprising a laminated film.
  2.  前記第2積層フィルムの全周縁は、前記第1積層フィルムの全周縁よりも外側または内側に位置することを特徴とする請求項1記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the entire peripheral edge of the second laminated film is located outside or inside the entire peripheral edge of the first laminated film.
  3.  前記第1積層フィルムを構成する前記第1金属層はステンレスで構成され、前記第2積層フィルムを構成する前記第2金属層はアルミニウムで構成されることを特徴とする請求項1または2記載のリチウムイオン二次電池。 The first metal layer constituting the first laminated film is made of stainless steel, and the second metal layer constituting the second laminated film is made of aluminum. Lithium ion secondary battery.
  4.  前記第1積層フィルムは、前記第1金属層の他方の面に当該第1金属層の一部が露出する他の第1露出部が形成されるように当該第1金属層に積層される第1絶縁層をさらに備え、
     前記第2積層フィルムは、前記第2金属層の他方の面に当該第2金属層の一部が露出する他の第2露出部が形成されるように当該第2金属層に積層される第2絶縁層をさらに備えること
    を特徴とする請求項1乃至3のいずれか1項記載のリチウムイオン二次電池。
    The first laminated film is laminated on the first metal layer such that another first exposed portion where a part of the first metal layer is exposed is formed on the other surface of the first metal layer. 1 further comprising an insulating layer;
    The second laminated film is laminated on the second metal layer such that another second exposed portion where a part of the second metal layer is exposed is formed on the other surface of the second metal layer. The lithium ion secondary battery according to any one of claims 1 to 3, further comprising two insulating layers.
  5.  前記電池部を複数備えるとともに、複数の当該電池部が前記第1積層フィルムと前記第2積層フィルムとの間にマトリクス状に配置されることを特徴とする請求項1乃至4のいずれか1項記載のリチウムイオン二次電池。 5. The battery unit according to claim 1, wherein the battery unit includes a plurality of battery units, and the plurality of battery units are arranged in a matrix between the first laminated film and the second laminated film. The lithium ion secondary battery as described.
  6.  前記電池部に設けられた前記第2極層と、前記第2積層フィルムの前記第2露出部に露出する前記第2金属層とが、直接に接触していることを特徴とする請求項1乃至5のいずれか1項記載のリチウムイオン二次電池。 2. The second electrode layer provided in the battery part and the second metal layer exposed at the second exposed part of the second laminated film are in direct contact with each other. The lithium ion secondary battery of any one of thru | or 5.
  7.  第1金属層と、当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部が形成されるように当該第1金属層に積層される第1樹脂層とを備える第1積層フィルムに対し、当該第1露出部に露出する当該第1金属層の上に、第1極性にてリチウムイオンを吸蔵および放出する第1極層を成膜する工程と、
     前記第1極層の上に、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層を成膜する工程と、
     前記固体電解質層の上に、前記第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層を成膜する工程と、
     第2金属層と、当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部が形成されるように当該第2金属層に積層される第2樹脂層とを備えた第2積層フィルムを、当該第2露出部に露出する当該第2金属層が前記第2極層と対峙するように配置した状態で、前記第1樹脂層と当該第2樹脂層とを融着する工程と
    を含むリチウムイオン二次電池の製造方法。
    The first metal layer and the first resin layer laminated on the first metal layer such that a first exposed portion where a part of the first metal layer is exposed is formed on one surface of the first metal layer. Forming a first polar layer that occludes and releases lithium ions with a first polarity on the first metal layer exposed at the first exposed portion, for the first laminated film comprising:
    Forming a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity on the first electrode layer;
    Forming a second electrode layer on the solid electrolyte layer that occludes and releases lithium ions with a second polarity opposite to the first polarity;
    A second metal layer and a second resin layer laminated on the second metal layer such that a second exposed portion where a part of the second metal layer is exposed is formed on one surface of the second metal layer. The first resin layer and the second resin layer in a state where the second metal film exposed to the second exposed portion is disposed so that the second metal layer is opposed to the second electrode layer. A method of manufacturing a lithium ion secondary battery.
  8.  前記第1極層、前記固体電解質層および前記第2極層を、それぞれスパッタ法によって成膜することを特徴とする請求項7記載のリチウムイオン二次電池の製造方法。 The method for manufacturing a lithium ion secondary battery according to claim 7, wherein the first electrode layer, the solid electrolyte layer, and the second electrode layer are formed by sputtering.
  9.  前記スパッタ法による成膜において、短時間での放電と非放電とを繰り返し行うことを特徴とする請求項8記載のリチウムイオン二次電池の製造方法。 9. The method of manufacturing a lithium ion secondary battery according to claim 8, wherein in the film formation by the sputtering method, discharge and non-discharge are repeatedly performed in a short time.
PCT/JP2017/036837 2016-11-25 2017-10-11 Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery WO2018096818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/461,067 US20190273225A1 (en) 2016-11-25 2017-10-11 Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery
CN201780070215.2A CN109937503A (en) 2016-11-25 2017-10-11 Lithium ion secondary battery, the manufacturing method of lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-228631 2016-11-25
JP2016228631 2016-11-25
JP2017-094348 2017-05-11
JP2017094348A JP2018092886A (en) 2016-11-25 2017-05-11 Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2018096818A1 true WO2018096818A1 (en) 2018-05-31

Family

ID=62195000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036837 WO2018096818A1 (en) 2016-11-25 2017-10-11 Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery

Country Status (1)

Country Link
WO (1) WO2018096818A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (en) * 1995-08-24 1997-03-07 Sony Corp Battery
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2003077529A (en) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd Lithium battery and lithium secondary battery
JP2016143520A (en) * 2015-01-30 2016-08-08 古河機械金属株式会社 All-solid type lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (en) * 1995-08-24 1997-03-07 Sony Corp Battery
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2003077529A (en) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd Lithium battery and lithium secondary battery
JP2016143520A (en) * 2015-01-30 2016-08-08 古河機械金属株式会社 All-solid type lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5395749B2 (en) Secondary battery
EP2434564B1 (en) Rechargeable lithium battery in pouch form
US11545707B2 (en) Battery case comprising various kinds of metal barrier layers and battery cell including the same
JP5363444B2 (en) Secondary battery and manufacturing method thereof
JP5194059B2 (en) Secondary battery
JP6879230B2 (en) All solid state battery
KR101375398B1 (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
KR101175057B1 (en) lithium polymer secondary battery
JP2018092885A (en) Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
KR20100016719A (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
JP2015153694A (en) electrochemical cell
WO2018198461A1 (en) Lithium ion secondary battery
JP7014294B2 (en) Secondary battery
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
KR101495948B1 (en) Pouched type secondary battery
JP2018092886A (en) Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2018098168A (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
WO2018110130A1 (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for producing lithium ion secondary battery
WO2018096817A1 (en) Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery
WO2021230206A1 (en) Secondary battery
WO2018096818A1 (en) Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery
JP6736264B2 (en) Secondary battery
JP2018098167A (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
WO2018110129A1 (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2020064742A (en) Battery charger pack and manufacturing method of battery charger pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873175

Country of ref document: EP

Kind code of ref document: A1