WO2018096743A1 - Storage device module, and method for manufacturing said storage device module - Google Patents

Storage device module, and method for manufacturing said storage device module Download PDF

Info

Publication number
WO2018096743A1
WO2018096743A1 PCT/JP2017/030272 JP2017030272W WO2018096743A1 WO 2018096743 A1 WO2018096743 A1 WO 2018096743A1 JP 2017030272 W JP2017030272 W JP 2017030272W WO 2018096743 A1 WO2018096743 A1 WO 2018096743A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal foil
active material
electrode active
material layer
Prior art date
Application number
PCT/JP2017/030272
Other languages
French (fr)
Japanese (ja)
Inventor
畑 浩
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Publication of WO2018096743A1 publication Critical patent/WO2018096743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is used for electric tools, in-vehicle use, regenerative energy recovery, digital cameras, mini 4WD cars, etc., such as storage batteries (lithium ion secondary batteries, etc.), capacitors (capacitors), all solid state batteries, etc.
  • the present invention relates to an electricity storage device module and a manufacturing method thereof.
  • Batteries used for electric tools, in-vehicle use, and the like require high power (high voltage output), so conventionally, general cylindrical batteries have been connected in series.
  • the battery pack formed by connecting such general cylindrical batteries in series has a problem that the weight is large and there is a gap between the individual batteries, so that the space becomes large. .
  • a plurality of stacked batteries formed by sealing sheet-like electrodes laminated with an electrolyte layer sandwiched between sheet-like laminate sheets include a terminal that functions as a positive electrode and a terminal that functions as a negative electrode.
  • An assembled battery that is connected in series so as to be connected has been proposed (Patent Document 1). Since a sheet-like thin battery using a laminate sheet is used as an assembled battery, weight reduction and size reduction are achieved.
  • the battery is connected in series by connecting the terminal functioning as the positive electrode and the terminal functioning as the negative electrode, and the internal resistance increases at the contact portion between these terminals, It was difficult to extract energy sufficiently efficiently, and heat generation was likely to occur.
  • the present invention has been made in view of such a technical background, and is a light-weight, thin-type, and space-saving power storage that has low internal resistance, can efficiently extract energy, and can suppress heat generation.
  • An object of the present invention is to provide a device module and a manufacturing method thereof.
  • the present invention provides the following means.
  • a metal foil layer composed of a single-layer metal foil, a positive electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a part of the metal foil layer on the other surface
  • a plurality of negative electrode-containing sheet bodies comprising a negative electrode active material layer laminated in a region
  • the plurality of bipolar electrode-containing sheet bodies is a series laminated body in which the positive electrode active material layers and the negative electrode active material layers are alternately arranged in the thickness direction, and laminated in the thickness direction,
  • a separator is disposed between the positive electrode active material layer of one bipolar electrode containing sheet body and the negative electrode active material layer of the other bipolar electrode containing sheet body,
  • a peripheral region where the positive electrode active material layer is not formed on the one surface of the metal foil layer of one bipolar electrode-containing sheet body, and the other bipolar electrode-containing sheet body
  • a power storage device module characterized in that
  • a negative electrode-containing outer sheet body comprising: A positive electrode comprising: a metal foil layer disposed on the other side in the thickness direction of the series laminated body; and a positive electrode active material layer laminated in a partial region of the surface of the metal foil layer on the series laminated body side
  • a further outer sheet body A separator is disposed between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the series laminate, A separator is disposed between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate, The peripheral region where the negative electrode active material layer is not formed in the metal foil layer of the negative electrode-containing outer sheet body, and the positive electrode active material layer in the metal foil layer on the
  • a peripheral edge region not joined via a peripheral sealing layer containing a thermoplastic resin A peripheral region where no positive electrode active material layer is formed in the metal foil layer of the positive electrode-containing outer sheet body, and a negative electrode active material layer in the metal foil layer on the other end side in the thickness direction of the serial laminate are formed.
  • a first metal foil layer made of a single-layer metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the first metal foil layer
  • a second negative electrode active material layer laminated in a partial region on the other surface of
  • a second metal foil layer disposed on the one surface side of the first metal foil layer, and a first layer laminated on a partial region of the surface of the second metal foil layer on the first metal foil layer side.
  • a negative electrode-containing outer sheet body comprising a negative electrode active material layer;
  • a third metal foil layer disposed on the other surface side of the first metal foil layer, and a second layer laminated on a portion of the surface of the third metal foil layer on the first metal foil layer side.
  • a positive electrode-containing outer sheet body comprising a positive electrode active material layer; A first separator disposed between the first positive electrode active material layer and the first negative electrode active material layer; A second separator disposed between the second positive electrode active material layer and the second negative electrode active material layer, A peripheral region where the first positive electrode active material layer is not formed on the one surface of the first metal foil layer, and a first negative electrode active material on the surface of the second metal foil layer on the first metal foil layer side.
  • the peripheral region where the layer is not formed is joined via a first peripheral sealing layer containing a thermoplastic resin, A peripheral region in which the second negative electrode active material layer is not formed on the other surface of the first metal foil layer, and a second positive electrode active material on the surface of the third metal foil layer on the first metal foil layer side
  • a power storage device module wherein a peripheral region where no layer is formed is joined via a second peripheral sealing layer containing a thermoplastic resin.
  • a metal foil layer composed of a single-layer metal foil, a positive electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a positive electrode active material on the one surface of the metal foil layer
  • a thermoplastic resin layer provided at a peripheral portion where no material layer is formed; a negative electrode active material layer laminated in a partial region on the other surface of the metal foil layer; and the other of the metal foil layer.
  • the positive electrode active material layer in the one bipolar electrode-containing sheet body in a state where a separator is sandwiched between the positive electrode active material layer of one bipolar electrode-containing sheet body and the negative electrode active material layer of the other bipolar electrode-containing sheet body A step of heat-sealing the thermoplastic resin layer on the side and the thermoplastic resin layer on the negative electrode active material layer side in the other bipolar electrode-containing sheet body to obtain a serial laminate, Module manufacturing method.
  • the metal foil layer, the negative electrode active material layer laminated in a partial region on one surface of the metal foil layer, and the negative electrode active material layer on the one surface of the metal foil layer are not formed.
  • a step of preparing a positive electrode-containing outer sheet body provided with a provided thermoplastic resin layer A thermoplastic resin of the negative electrode-containing outer sheet body in a state where a separator is sandwiched between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the serial laminate. Heat sealing the layer and the thermoplastic resin layer on the positive electrode active material layer side in the bipolar electrode-containing sheet on the one end side in the thickness direction of the series laminate; Thermoplasticity of the positive electrode-containing outer sheet body with a separator sandwiched between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate.
  • the power storage device module according to item 4 further comprising a step of heat-sealing the resin layer and the thermoplastic resin layer on the negative electrode active material layer side in the bipolar electrode-containing sheet on the other end side in the thickness direction of the serial laminate. Manufacturing method.
  • a first metal foil layer made of a single-layer metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the first metal foil layer
  • a first thermoplastic resin layer provided on a peripheral edge of the one surface on which the positive electrode active material layer is not formed, and a second layer laminated on a partial region on the other surface of the first metal foil layer.
  • a bipolar electrode-containing sheet comprising: a negative electrode active material layer; and a second thermoplastic resin layer provided on a peripheral edge of the other surface of the first metal foil layer where the second negative electrode active material layer is not formed.
  • a second metal foil layer a first negative electrode active material layer laminated in a partial region on one surface of the second metal foil layer; and a first negative electrode active material on the one surface of the second metal foil layer.
  • the plastic resin layer and the first thermoplastic resin layer of the negative electrode-containing outer sheet body are heat-sealed, and the second negative electrode active material layer of the bipolar electrode-containing sheet body and the second positive electrode active material of the positive electrode-containing outer sheet body. Heat-sealing the second thermoplastic resin layer of the bipolar electrode-containing sheet body and the second thermoplastic resin layer of the negative electrode-containing outer sheet body with the second separator sandwiched between the material layers.
  • the power storage devices are stacked in series, but the metal foil layer corresponding to the terminal of the power storage device is formed of a single metal foil (lamination of a plurality of metal foils). Since it is not a thing), the movement of electrons between power storage devices (cells, etc.) is smooth, the internal resistance of the entire power storage devices (cells, etc.) is reduced, energy can be taken out efficiently, and heat generation can be suppressed.
  • the power storage devices are stacked in series. However, since the metal foil layer corresponding to the terminals of the power storage device is formed of a single layer metal foil, the power storage device module as a whole can be thinned. At the same time, weight saving and space saving can be realized.
  • a high voltage output power storage device module (such as an assembled battery) can be provided.
  • a tabbed structure or a tabless structure (a structure not including a tab) may be adopted.
  • the metal foil layer corresponding to the terminals of the power storage device is formed of a single metal foil (a plurality of metals).
  • the movement of electrons between electricity storage devices (cells, etc.) is smooth, the internal resistance of the entire electricity storage devices (cells, etc.) is reduced, energy can be taken out efficiently, and heat is also generated. Can be suppressed.
  • the metal foil layer corresponded to the terminal of an electrical storage device is formed with the single layer metal foil, it aims at thickness reduction as the whole electrical storage device module.
  • An electric storage device module (assembled battery or the like) can be manufactured.
  • a high-voltage output power storage device module (assembled battery or the like) that is thin, lightweight, and space-saving can be manufactured.
  • the power storage device module obtained by manufacturing may have a tabbed structure or a tabless structure.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is sectional drawing which shows other embodiment of the electrical storage device module which concerns on this invention. It is sectional drawing which shows other embodiment of the electrical storage device module which concerns on this invention. It is a perspective view which shows other embodiment of the electrical storage device module which concerns on this invention.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG. It is sectional drawing which shows an example of the manufacturing method of the electrical storage device module which concerns on this invention.
  • FIG. 1 It is a top view which shows the manufacturing method in an Example
  • (A) is a top view which shows the state in which the positive electrode active material layer was formed in three places of the surface of the binder layer laminated
  • (B) is a plan view showing a cutting position (two-dot chain line) for obtaining a positive electrode-containing outer sheet body
  • (C) shows three cut pieces (three pieces of positive electrode-containing outer sheet bodies) side by side. It is a top view.
  • the electricity storage device module 1 includes a first metal foil layer 11, a second metal foil layer 12, a third metal foil layer 13, a first separator 51, and a second separator 52 (FIG. 2). reference).
  • the first metal foil layer 11 is made of a single layer metal foil (not composed of a laminate of a plurality of metal foils).
  • the first positive electrode active material layer 21 is laminated on a part of one surface (upper surface) of the first metal foil layer 11, and a part of the other surface (lower surface) of the first metal foil layer 11.
  • the second negative electrode active material layer 32 is laminated to form a bipolar electrode containing sheet body 83.
  • the first positive electrode active material layer 21 is laminated on the central portion (region excluding the peripheral portion) on one surface (upper surface) of the first metal foil layer 11.
  • the first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the first metal foil layer 11. That is, in the present embodiment, the first positive electrode active material layer 21 is laminated on one surface (upper surface) of the first metal foil layer 11 via the first binder layer 71 (see FIG. 2).
  • the second negative electrode active material layer 32 is laminated on the central portion (region excluding the peripheral portion) of the other surface (lower surface) of the first metal foil layer 11.
  • the second binder layer 72 is laminated on the entire other surface (lower surface) of the first metal foil layer 11. That is, in the present embodiment, the second negative electrode active material layer 32 is laminated on the other surface (lower surface) of the first metal foil layer 11 via the second binder layer 72 (see FIG. 2).
  • a second metal foil layer 12 is disposed on the one surface (upper surface) side of the first metal foil layer 11, and the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side).
  • the first negative electrode active material layer 31 is laminated in a part of the region.
  • the second metal foil layer 12 and the first negative electrode active material layer 31 constitute a negative electrode-containing outer sheet body 84.
  • the first negative electrode active material layer 31 is laminated at the center (excluding the peripheral edge) of the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side).
  • the second binder layer 72 is laminated on the entire surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side).
  • the first negative electrode active material layer 31 is laminated on the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side) via the second binder layer 72. (See FIG. 2).
  • the said 2nd metal foil layer 12 consists of a single layer metal foil (it is not comprised with the laminated body of several metal foil).
  • a third metal foil layer 13 is disposed on the other surface (lower surface) side of the first metal foil layer 11, and the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side) is arranged.
  • the second positive electrode active material layer 22 is laminated in a part of the region.
  • the third metal foil layer 13 and the second positive electrode active material layer 22 constitute a positive electrode-containing outer sheet body 85.
  • the second positive electrode active material layer 22 is laminated at the center (excluding the peripheral edge) of the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side). ing.
  • the first binder layer 71 is laminated on the entire surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side).
  • the second negative electrode active material layer 22 is laminated on the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side) via the first binder layer 71. (See FIG. 2).
  • the said 3rd metal foil layer 13 consists of a single layer metal foil (it is not comprised by the laminated body of several metal foil).
  • a first separator 51 is disposed between the first positive electrode active material layer 21 and the first negative electrode active material layer 31, and between the second positive electrode active material layer 22 and the second negative electrode active material layer 32.
  • a second separator 52 is disposed (see FIG. 2).
  • the first peripheral sealing layer 41 (the first thermoplastic resin of the negative electrode-containing outer sheet body 84) containing a thermoplastic resin in the peripheral region where the first negative electrode active material layer 31 is not formed on the surface of the first negative electrode active material layer 31.
  • the resin layer 41X and the first thermoplastic resin layer 41Y of the bipolar electrode containing sheet body 83 are joined and sealed via a sealing part 41) (see FIG. 2).
  • the peripheral portion of the first separator 51 is in a state of entering and engaging with the intermediate portion in the height direction (thickness direction) of the inner peripheral surface of the first peripheral sealing layer 41 (see FIG. 2). ).
  • the first peripheral adhesive is formed in the peripheral region where the first positive electrode active material layer is not formed in the first binder layer 71 laminated on the one surface (upper surface) of the first metal foil layer 11.
  • the peripheral part where the layer 61 is laminated and the first negative electrode active material layer in the second binder layer 72 laminated on the surface of the second metal foil layer 12 on the first metal foil layer side (lower surface side) is not formed
  • a second peripheral adhesive layer 62 is laminated in the region, and is formed by fusing the first thermoplastic resin layer 41Y and the first thermoplastic resin layer 41X laminated via the peripheral adhesive layers 61 and 62. Further, a configuration sealed with the first peripheral sealing layer 41 is employed (see FIG. 2).
  • the second peripheral sealing layer 42 (second thermoplasticity of the positive electrode-containing outer sheet body 85) formed by containing a thermoplastic resin in the peripheral region where the second positive electrode active material layer 22 is not formed on the side of the side.
  • the resin layer 42 ⁇ / b> Y and the second thermoplastic resin layer 42 ⁇ / b> X of the bipolar electrode containing sheet body 83 are joined and sealed via a sealing part 42) (see FIG. 2).
  • the peripheral portion of the second separator 52 is in a state of entering and engaging the intermediate portion in the height direction (thickness direction) of the inner peripheral surface of the second peripheral sealing layer 42 (see FIG. 2). ).
  • the second peripheral edge region is formed in the peripheral region where the second negative electrode active material layer is not formed in the second binder layer 72 laminated on the other surface (lower surface) of the first metal foil layer 11.
  • the adhesive layer 62 is laminated, and the second positive electrode active material layer in the first binder layer 71 laminated on the first metal foil layer side (upper surface side) of the third metal foil layer 13 is not formed.
  • the first peripheral adhesive layer 62 is laminated in the peripheral area, and the second thermoplastic resin layer 42Y and the second thermoplastic resin layer 42X laminated through the peripheral adhesive layers 61 and 62 are fused.
  • the electrolyte solution 5 is sealed between the first separator 51 and the first negative electrode active material layer 31, and the electrolyte solution 5 is sealed between the first separator 51 and the first positive electrode active material layer 21. Further, the electrolyte solution 5 is sealed between the second separator 52 and the second negative electrode active material layer 32, and the electrolyte solution 5 is sealed between the second separator 52 and the second positive electrode active material layer 22. (See FIG. 2).
  • the electrolyte solution 5 leakage can be prevented.
  • the peripheral region in the first metal foil layer 11 and the peripheral region in the third metal foil layer 13 are joined and sealed via the second peripheral sealing layer 42. Therefore, leakage of the electrolyte solution 5 can be prevented.
  • the second metal foil layer 12 and the third metal foil layer 13 fulfill both functions of a terminal and an exterior material, and therefore no further exterior material is required for this configuration.
  • weight reduction, thickness reduction, and space saving can be achieved.
  • the power storage device module 1 having the above configuration corresponds to a configuration in which two power storage devices are connected in series, but the first metal foil layer 11 corresponding to the connection location is formed of a single layer metal foil. (Because it is not a laminate of multiple metal foils), the movement of electrons between electricity storage devices (cells, etc.) is smooth, the internal resistance of the entire electricity storage devices (cells, etc.) is reduced, and energy is efficiently consumed.
  • the power storage device module as a whole can be reduced in thickness, weight and space. Furthermore, in the present embodiment, since the second metal foil layer 12 and the third metal foil layer 13 are also formed of a single layer metal foil, it is possible to further reduce the thickness, weight, and space.
  • FIG. 3 shows a second embodiment of the electricity storage device module 1 according to the present invention.
  • This power storage device module 1 corresponds to a configuration in which three power storage devices are connected in series, and further includes the following configuration in addition to the configuration of the first embodiment described above. Since the configuration between the second metal foil layer 12 and the third metal foil layer 13 (including both the metal foil layers 12 and 13) is the same as that of the first embodiment, the same reference numerals are assigned to the same components. The description is omitted.
  • a fourth metal foil layer 14 is disposed on the opposite side (upper surface side) of the second metal foil layer (consisting of a single layer metal foil) 12 from the first metal foil layer 11. Yes.
  • a third positive electrode active material layer 23 is laminated in a partial region of the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side).
  • the third positive electrode active material layer 23 is laminated on the central portion (region excluding the peripheral portion) of the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side).
  • the first binder layer 71 is laminated on the entire surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side).
  • the third positive electrode active material layer 23 is laminated on the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side) via the first binder layer 71. (See FIG. 3).
  • the fourth metal foil layer 14 is composed of a single layer metal foil (not composed of a laminate of a plurality of metal foils).
  • the third negative electrode active material layer 33 is laminated in a partial region of the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side).
  • the fourth metal foil layer 14 and the third negative electrode active material layer 33 constitute a negative electrode-containing outer sheet body 84.
  • the third negative electrode active material layer 33 is laminated at the center (excluding the peripheral edge) of the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side).
  • the second binder layer 72 is laminated on the entire surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side). That is, in the present embodiment, the third negative electrode active material layer 33 is laminated on the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side) via the second binder layer 72. (See FIG. 3).
  • a third separator 53 is disposed between the second metal foil layer 12 and the fourth metal foil layer 14.
  • the electrolyte solution 5 is sealed between the third separator 53 and the third negative electrode active material layer 33, and the electrolyte solution 5 is sealed between the third separator 53 and the third positive electrode active material layer 23. (See FIG. 3).
  • peripheral region in the second metal foil layer 12 and the peripheral region in the fourth metal foil layer 14 are bonded and sealed via the third peripheral sealing layer 43, The leakage of the electrolyte 5 can be prevented.
  • the third metal foil layer 13 and the fourth metal foil layer 14 perform both functions of a terminal and an exterior material. Therefore, this configuration further requires an exterior material. Therefore, the power storage device module can be reduced in weight, thickness, and space.
  • the electricity storage device module 1 having the above configuration corresponds to a configuration in which three electricity storage devices are connected in series, but the first metal foil layer 11 and the second metal foil layer 12 corresponding to the connection locations are simply provided.
  • the entire power storage device module can be reduced in thickness, weight, and space. Furthermore, in this embodiment, since the 3rd metal foil layer 13 and the 4th metal foil layer 14 are also formed with the metal foil of a single layer, it can attain further thickness reduction, weight reduction, and space saving.
  • FIG. 4 shows a third embodiment of the electricity storage device module 1 according to the present invention.
  • This power storage device module 1 corresponds to a configuration in which four power storage devices are connected in series, and further includes the following configuration in addition to the configuration of the above-described second embodiment. Since the configuration between the third metal foil layer 13 and the fourth metal foil layer 14 (including both metal foil layers 13 and 14) is the same as that in the second embodiment, the same components are denoted by the same reference numerals. The description is omitted.
  • a fifth metal foil layer 15 is arranged on the opposite side (lower surface side) of the third metal foil layer (consisting of a single layer metal foil) 13 from the first metal foil layer 11. Yes.
  • a fourth negative electrode active material layer 34 is laminated in a partial region of the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side).
  • the fourth negative electrode active material layer 34 is laminated on the central portion (region excluding the peripheral portion) of the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side).
  • the second binder layer 72 is laminated on the entire surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side).
  • the fourth negative electrode active material layer 34 is laminated on the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side) via the second binder layer 72. (See FIG. 4).
  • the said 5th metal foil layer 15 consists of a single layer metal foil (it is not comprised by the laminated body of several metal foil).
  • the fourth positive electrode active material layer 24 is laminated in a partial region of the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side).
  • a positive electrode-containing outer sheet body 85 is constituted by the fifth metal foil layer 15 and the fourth positive electrode active material layer 24.
  • the fourth positive electrode active material layer 24 is laminated on the central portion (region excluding the peripheral portion) of the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side). ing.
  • the first binder layer 71 is laminated on the entire surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side). That is, in the present embodiment, the fourth positive electrode active material layer 24 is laminated on the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side) via the first binder layer 71. (See FIG. 4).
  • a fourth separator 54 is disposed between the third metal foil layer 13 and the fifth metal foil layer 15.
  • the electrolyte solution 5 is sealed between the fourth separator 54 and the fourth negative electrode active material layer 34, and the electrolyte solution 5 is sealed between the fourth separator 54 and the fourth positive electrode active material layer 24. (See FIG. 4).
  • peripheral region in the third metal foil layer 13 and the peripheral region in the fifth metal foil layer 15 are bonded and sealed via the fourth peripheral sealing layer 44, The leakage of the electrolyte 5 can be prevented (see FIG. 4).
  • the 4th metal foil layer 14 and the 5th metal foil layer 15 fulfill
  • the power storage device module 1 having the above configuration corresponds to a configuration in which four power storage devices are connected in series, and the first metal foil layer 11, the second metal foil layer 12, and the third corresponding to the connection locations.
  • the metal foil layer 13 is formed of a single-layer metal foil (since it is not a laminate of a plurality of metal foils), electrons move smoothly between power storage devices (cells, etc.), and the power storage device ( The overall internal resistance of the cell and the like can be reduced, energy can be extracted efficiently, heat generation can be suppressed, and the power storage device module as a whole can be reduced in thickness, weight and space. Furthermore, in the present embodiment, since the fourth metal foil layer 14 and the fifth metal foil layer 15 are also formed of a single layer metal foil, it is possible to further reduce the thickness, weight, and space.
  • both sides in the thickness direction of the electricity storage device module are metal foil layers (see FIGS. 2 to 4), electricity can be moved (taken out) without using a tab. In this way, the tabless power storage device module 1 can be configured.
  • the tabless power storage device module 1 may be configured by adopting the configuration shown in FIGS.
  • the tabless power storage device module 1 has the following configuration in addition to the configuration of the first embodiment described above. Since the configuration between the second metal foil layer 12 and the third metal foil layer 13 (including both the metal foil layers 12 and 13) is the same as that in the first embodiment (FIG. 2), the same components are the same. The description is omitted.
  • the tabless power storage device module 1 has the configuration of the first embodiment and is opposite to the first metal foil layer 11 in the second metal foil layer (consisting of a single layer metal foil) 12.
  • the 1st insulating resin film 8 is laminated
  • the first metal exposed portion 9 where the second metal foil layer is exposed is left on the surface (upper surface side) opposite to the first metal foil layer 11 in the second metal foil layer 12.
  • the first insulating resin film 8 is laminated via the third adhesive layer 81 (see FIG. 6).
  • the second metal foil layer is exposed on the surface (the lower surface side) opposite to the first metal foil layer 11 in the third metal foil layer (consisting of a single layer metal foil) 13.
  • the second insulating resin film 18 is laminated with the exposed portion 19 left.
  • the second metal exposed portion 19 where the third metal foil layer is exposed is left on the surface (the lower surface side) opposite to the first metal foil layer 11 in the third metal foil layer 13.
  • the second insulating resin film 18 is laminated via the fourth adhesive layer 82 (see FIG. 6).
  • the first metal exposed portion 9 is provided in a central region of the surface of the second metal foil layer 12 opposite to the first metal foil layer 11 (upper surface side).
  • the metal exposed portion 19 is provided in the central region of the surface of the third metal foil layer 13 opposite to the first metal foil layer 11 (lower surface side) (see FIGS. 5 and 6).
  • the insulating resin films 8 and 18 are laminated on both sides of the device module, Insulation can be sufficiently secured (excluding the exposed metal portion), and physical strength can be sufficiently secured. Therefore, the electricity storage device module can sufficiently cope with being mounted in a place where it is required to have insulating properties or a place with unevenness.
  • the metal exposed portions 9 and 19 are interposed therebetween. Therefore, there is an advantage that a tab lead can be dispensed with (no use).
  • the tab lead is not required, the phenomenon that the heat generated during charging / discharging of the power storage device is concentrated around the lead wire does not occur, so the life of the power storage device module 1 can be extended (that is, the long life power storage device). Module can be obtained).
  • the third metal of the positive electrode-containing outer sheet body 85 is connected to the second metal foil layer 12 of the negative electrode-containing outer sheet body 84 by electrodeposition or the like.
  • the tab is connected to the foil layer 13 by electrodeposition
  • electricity may be taken out through the tab.
  • the tabs are similarly connected to the metal foil layer of the negative electrode-containing outer sheet body 84 by electrodeposition or the like, and the tabs are electrically connected to the metal foil layer of the positive electrode-containing outer sheet body 85.
  • the second metal foil layer 12 of the negative electrode-containing outer sheet body 84 is extended outward in the horizontal direction (left direction or right direction in FIG. 2).
  • the extension portion may be used as a tab even in a configuration in which more power storage devices are connected in series.
  • the second metal foil layer 12, the second binder layer 72, the third metal foil layer 13, and the first binder layer 71 are not provided and exposed.
  • the tab is connected to the exposed first negative electrode active material layer 31 by electrodeposition or the like, and the tab is connected to the exposed second positive electrode active material layer 22 by electrodeposition or the like. You may make it take out electricity through.
  • the configuration shown in FIGS. 3 and 4 may be the same, or may be the same in a configuration in which more power storage devices are connected in series.
  • an insulating resin layer (which may be a film or a coat layer) without a metal exposed portion may be laminated on the outer side of the outer sheet bodies 84 and 85 on both outer sides in the thickness direction.
  • the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) is not particularly limited, but for example, other than nickel foil, aluminum foil, etc. Furthermore, a clad material or a plating foil in which various metals are bonded to one layer can be used. Among these, it is preferable to use a nickel foil. In this case, there is an advantage that the corrosion resistance against the electrolytic solution and the like can be further improved.
  • the thickness of the metal foil layer is preferably set to 7 ⁇ m to 150 ⁇ m. Particularly when used as a lithium secondary battery, the metal foil layer preferably has a thickness of 7 ⁇ m to 50 ⁇ m.
  • the positive electrode active material layer (the first to fourth positive electrode active material layers 21, 22, 23, 24, etc.) is not particularly limited.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • CMC Carboxymethylcellulose sodium salt, etc.
  • PAN Polyacrylonitrile
  • binders such as lithium cobaltate, lithium nickelate, lithium iron phosphate, lithium manganate, etc. It is formed.
  • the thickness of the positive electrode active material layer is preferably set to 2 ⁇ m to 300 ⁇ m.
  • the positive electrode active material layer may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).
  • a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).
  • the first binder layer 71 improves the adhesion between the metal foil layer and the positive electrode active material layer, thereby improving the conductivity between the metal foil layer and the positive electrode active material layer. The property can be further improved.
  • said 1st binder layer 71 Although it does not specifically limit as said 1st binder layer 71, for example, the layer formed with PVDF, SBR, CMC, PAN etc. is mentioned, For example, by apply
  • the first binder layer 71 may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the positive electrode active material layer.
  • a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the positive electrode active material layer.
  • the thickness of the first binder layer 71 is preferably set to 0.2 ⁇ m to 10 ⁇ m. By setting it as 10 micrometers or less, it can suppress that the binder itself increases the internal resistance of the electrical storage device module 1 as much as possible.
  • the first binder layer 71 may not be provided, but is provided between the metal foil layer and the positive electrode active material layer in order to improve the binding property between the metal foil layer and the positive electrode active material layer. Is preferred.
  • the first peripheral adhesive layer 61 is not particularly limited.
  • a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, and a fluorine adhesive An adhesive layer formed of an agent or the like can be mentioned. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the electrolytic solution resistance and the water vapor barrier property can be improved.
  • a layer formed of a two-component curable olefin adhesive is particularly preferable. In the case of using a two-component curable olefin adhesive, it is possible to sufficiently prevent the adhesiveness from being lowered due to swelling by the electrolytic solution.
  • the first peripheral adhesive layer 61 is preferably an acid-modified polypropylene adhesive or an acid-modified polyethylene adhesive.
  • the thickness of the first peripheral adhesive layer 61 is preferably set to 0.5 ⁇ m to 5 ⁇ m.
  • the negative electrode active material layer (the first to fourth negative electrode active material layers 31, 32, 33, 34, etc.) is not particularly limited.
  • a binder such as PVDF, SBR, CMC, PAN, It is formed of a mixed composition to which an additive (for example, graphite, lithium titanate, Si alloy, tin alloy, etc.) is added.
  • the thickness of the negative electrode active material layer is preferably set to 1 ⁇ m to 300 ⁇ m.
  • the negative electrode active material layer may further contain a conductive additive such as carbon black or CNT (carbon nanotube).
  • the negative electrode active material layer or the positive electrode active material layer is formed by application of the active material, it is applied after masking a portion (peripheral portion, etc.) where the active material is not applied with a masking tape in advance.
  • the active material layer can be formed in a predetermined region without attaching the active material to a portion (peripheral portion or the like) where the active material is not applied.
  • a masking tape what apply
  • the second binder layer 72 improves the adhesion between the metal foil layer and the negative electrode active material layer, thereby improving the conductivity between the metal foil layer and the negative electrode active material layer. The property can be further improved.
  • the second binder layer 72 is not particularly limited.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose sodium salt, etc.
  • PAN polyacrylonitrile
  • the formed layer is mentioned, For example, it can form by apply
  • the second binder layer 72 may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the negative electrode active material layer.
  • a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the negative electrode active material layer.
  • the thickness of the second binder layer 72 is preferably set to 0.2 ⁇ m to 10 ⁇ m. By setting it as 10 micrometers or less, it can suppress that the binder itself increases the internal resistance of the electrical storage device module 1 as much as possible.
  • the second binder layer 72 may not be provided, but is provided between the metal foil layer and the negative electrode active material layer in order to improve the binding property between the metal foil layer and the negative electrode active material layer. Is preferred.
  • the second peripheral adhesive layer 62 is not particularly limited.
  • a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, and a fluorine adhesive An adhesive layer formed of an agent or the like can be mentioned. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the electrolytic solution resistance and the water vapor barrier property can be improved.
  • a layer formed of a two-component curable olefin adhesive is particularly preferable. In the case of using a two-component curable olefin adhesive, it is possible to sufficiently prevent the adhesiveness from being lowered due to swelling by the electrolytic solution.
  • the second peripheral adhesive layer 62 In the case where a battery is configured as the electricity storage device module 1, it is preferable to use an acid-modified polypropylene adhesive or an acid-modified polyethylene adhesive for the second peripheral adhesive layer 62.
  • the thickness of the second peripheral adhesive layer 62 is preferably set to 0.5 ⁇ m to 5 ⁇ m.
  • the peripheral sealing layer (the first to fourth peripheral sealing layers 41, 42, 43, 44, etc. containing a thermoplastic resin) is formed of two metal foil layers adjacent in the thickness direction.
  • the thermoplastic resin layers 41X, 42X, 43X, and 44X laminated on the peripheral portion of the opposing surface in one metal foil layer, and the thermoplastic resin layer laminated on the peripheral portion of the opposing surface in the other metal foil layer 41Y, 42Y, 43Y, 44Y are superposed and fused by heat (see FIGS. 2 to 4 and 6).
  • the thermoplastic resin layers 41X, 42X, 43X, 44X, 41Y, 42Y, 43Y, and 44Y are preferably formed of unstretched thermoplastic resin films.
  • thermoplastic resin unstretched film is not particularly limited, but includes at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers. It is preferable to be constituted by an unstretched film.
  • the thicknesses of the thermoplastic resin layers 41X, 42X, 43X, 44X, 41Y, 42Y, 43Y, 44Y are preferably set to 20 ⁇ m to 150 ⁇ m, respectively.
  • the separator (the first to fourth separators 51, 52, 53, 54, etc.) is not particularly limited. ⁇ Separator made of polyethylene ⁇ Separator made of polypropylene ⁇ Separator formed of a multilayer film made of polyethylene film and polypropylene film ⁇ A wet or dry porous film in which a heat-resistant inorganic material such as ceramic is applied to any of the above Separators and the like.
  • the thickness of the separator is preferably set to 5 ⁇ m to 50 ⁇ m.
  • the electrolytic solution 5 is not particularly limited, but at least two types of electrolytic solutions selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and dimethoxyethane, and a lithium salt It is preferable to use a mixed non-aqueous electrolyte containing
  • the lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate and lithium tetrafluoroborate.
  • the electrolytic solution 5 the aforementioned mixed non-aqueous electrolytic solution gelled with PVDF, PEO (polyethylene oxide) or the like may be used.
  • the first insulating resin film 8 and the second insulating resin film 18 are not particularly limited, but it is preferable to use a stretched polyamide film (stretched nylon film or the like) or a stretched polyester film.
  • a biaxially stretched polyamide film such as a biaxially stretched nylon film
  • PBT biaxially stretched polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • PEN biaxially stretched polyethylene naphthalate
  • the first insulating resin film 8 and the second insulating resin film 18 may both be formed of a single layer, or may be a multilayer (stretched PET film) made of, for example, a stretched polyester film / stretched polyamide film. / Multi-layers made of stretched nylon film, etc.).
  • the first insulating resin film 8 is partially provided with an opening 8X for securing the first metal exposed portion 9 (see FIGS. 5 and 6).
  • the opening part 8X is provided in the center part of the 1st insulating resin film 8, it is not specifically limited to such a position.
  • the planar view shape of the opening 8X is not limited to a rectangular shape.
  • the second insulating resin film 18 is partially provided with an opening 18X for securing the second metal exposed portion 19 (see FIG. 6).
  • the opening part 18X is provided in the center part of the 2nd insulating resin film 18, it is not specifically limited to such a position.
  • the planar view shape of the opening 18X is not limited to a rectangular shape.
  • the thickness of the first insulating resin film 8 and the thickness of the first insulating resin film 18 are preferably set to 5 ⁇ m to 100 ⁇ m.
  • the adhesives 81 and 82 are not particularly limited, but are polyester urethane adhesives and polyether urethane adhesives. It is preferable to use at least one adhesive selected from the group consisting of:
  • the polyester urethane-based adhesive include a two-component curable polyester urethane-based resin adhesive using a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent.
  • the polyether urethane adhesive include a two-component curable polyether urethane resin adhesive comprising a polyether resin as a main agent and a polyfunctional isocyanate compound as a curing agent.
  • the thickness of the third adhesive layer 81 and the thickness of the fourth adhesive layer 82 are preferably set to 0.5 ⁇ m to 5 ⁇ m. After the third adhesive 81 is applied to the surface of the metal foil layer, the first insulating resin film 8 may be bonded together to bond them together. Similarly, after the fourth adhesive 82 is applied to the surface of the metal foil layer, the second insulating resin film 18 may be bonded together to bond them together.
  • the adhesive-unapplied portions (regions corresponding to the openings 8X and 18X) in the third adhesive layer 81 and the fourth adhesive layer 82 may be viewed through an insulating resin film (such as a heat-resistant resin stretched film). Since the glossiness is different from that of the adhesive application region, the position and shape of the adhesive-unapplied portion can be determined from the outside even when an insulating resin film having no opening is bonded. Thus, by removing the portion corresponding to the adhesive-uncoated portion in the bonded insulating resin film, the openings 8X and 18X are formed to expose the metal exposed portions 9 and 19. be able to.
  • an insulating resin film such as a heat-resistant resin stretched film
  • the openings 8X and 18X are formed by irradiating a laser to the periphery of the adhesive-unapplied portion in the bonded insulating resin film and cutting the insulating resin film corresponding to the adhesive-uncoated portion.
  • the metal exposed portions 9 and 19 can be exposed by being formed.
  • the third adhesive layer 81 and the fourth adhesive layer 82 are made of resin with a coloring agent such as an organic pigment, an inorganic pigment, or a dye added to the adhesive in order to make it easy to distinguish an uncoated portion. It may be added in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the component.
  • a coloring agent such as an organic pigment, an inorganic pigment, or a dye added to the adhesive in order to make it easy to distinguish an uncoated portion. It may be added in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the component.
  • the organic pigment include, but are not limited to, azo pigments such as lake red, naphthols, hansa yellow, disazo yellow, and benzimidazolone, quinophthalone, isoindoline, pyrrolopyrrole, dioxazine, and phthalocyanine blue.
  • polycyclic pigments such as phthalocyanine green, and lake pigments such as Lake Red C and Watchung Red.
  • the inorganic pigment is not particularly limited, and examples thereof include carbon black, titanium oxide, calcium carbonate, kaolin, iron oxide, and zinc oxide.
  • the dye is not particularly limited. For example, yellow dyes such as trisodium salt (yellow No. 4), red dyes such as disodium salt (red No. 3), disodium salt (blue) 1) and the like.
  • a colorant is added, by bonding a transparent insulating resin film (such as a heat-resistant resin stretched film), it is possible to easily determine an adhesive-unapplied portion. If the colorant is added to the adhesive of the third adhesive layer 81 or the fourth adhesive layer 82 and a transparent insulating resin film (such as a heat-resistant resin stretched film) is bonded, the adhesive Discrimination of the agent uncoated portion is extremely easy.
  • a transparent insulating resin film such as a heat-resistant resin stretched film
  • a chemical conversion film is formed on at least the surface of the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) on which the positive electrode active material layer is laminated. Is preferred. Similarly, a chemical conversion film is formed on at least the surface of the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) on which the negative electrode active material layer is laminated. It is preferable.
  • the chemical conversion film is a film formed by performing a chemical conversion treatment on the surface of the metal foil, and by performing such chemical conversion treatment, corrosion of the metal foil surface by the contents (electrolytic solution, etc.) is caused. Can be sufficiently prevented. For example, a chemical conversion treatment is performed on the metal foil by performing the following treatment.
  • the chemical conversion film preferably has a chromium adhesion amount (per one surface) of 0.1 mg / m 2 to 50 mg / m 2 , particularly preferably 2 mg / m 2 to 20 mg / m 2 .
  • a bipolar electrode-containing sheet body 83, a negative electrode-containing outer sheet body 84, a positive electrode-containing outer sheet body 85, and two separators 51 and 52 are prepared (see FIG. 7).
  • the first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the first metal foil layer 11, and the first positive electrode active material layer 21 is laminated on the central region of the surface of the binder layer 71, In the first binder layer 71 laminated on one surface (upper surface) of the first metal foil layer 11, the first heat is passed through the first peripheral adhesive layer 61 to the peripheral portion where the first positive electrode active material layer is not formed.
  • a plastic resin layer 41Y is laminated, a second binder layer 72 is laminated on the entire other surface (lower surface) of the first metal foil layer 11, and a second negative electrode is formed in the central region on the surface of the binder layer 72.
  • the active material layer 32 is laminated, and the second peripheral adhesive is attached to the peripheral portion of the second binder layer 72 laminated on the other surface (lower surface) of the first metal foil layer 11 where the second negative active material layer is not formed.
  • the second thermoplastic tree through the agent layer 62 Preparing a bipolar-containing sheet member 83 a layer 42X are stacked.
  • the second binder layer 72 is laminated on the entire surface of one surface (lower surface) of the second metal foil layer 12, and the first negative electrode active material layer 31 is laminated in the central region on the surface of the binder layer 72,
  • the first heat is passed through the second peripheral adhesive layer 62 to the peripheral portion of the second binder layer 72 laminated on one surface (lower surface) of the second metal foil layer 12 where the first negative electrode active material layer is not formed.
  • a negative electrode-containing outer sheet body 84 in which the plastic resin layer 41X is laminated is prepared.
  • first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the third metal foil layer 13, and the second positive electrode active material layer 22 is laminated on the central region of the surface of the binder layer 71, In the first binder layer 7 laminated on one surface (upper surface) of the third metal foil layer 13, the second heat is passed through the first peripheral adhesive layer 61 to the peripheral portion where the second positive electrode active material layer is not formed.
  • a positive electrode-containing outer sheet body 85 in which the plastic resin layer 42Y is laminated is prepared.
  • a first separator 51 and a second separator 52 are prepared.
  • the first separator 51 is sandwiched between the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body 83
  • the second separator 52 is sandwiched between the positive electrode-containing outer sheet body 85 and the bipolar electrode-containing sheet body 83.
  • the peripheral portions of the sheet bodies adjacent to each other above and below (in the thickness direction) of the superimposed negative electrode-containing outer sheet body 84, bipolar electrode-containing sheet body 83, and positive electrode-containing outer sheet body 85 are heated and pressed.
  • thermoplastic resin layer 41X of the negative electrode-containing outer sheet body 84 and the first thermoplastic resin layer 41Y of the bipolar electrode-containing sheet body 83 are heat-sealed to form the first peripheral sealing layer 41.
  • the second thermoplastic resin layer 42Y of the positive electrode-containing outer sheet body 85 and the second thermoplastic resin layer 42X of the bipolar electrode-containing sheet body 83 are heat-sealed and joined together. Allowed to form a peripheral sealing layer 42.
  • both end portions of the first separator 51 are connected to the inner side edge portion of the first thermoplastic resin layer 41X of the negative electrode-containing outer sheet body 84 and the first end of the bipolar electrode-containing sheet body 83.
  • the both ends of the second separator 52 are sandwiched between the inner side edge of the first thermoplastic resin layer 41Y and the inner side edge of the second thermoplastic resin layer 42Y of the positive electrode-containing outer sheet body 85.
  • Both separators 51 and 52 are arranged (sandwiched) so as to be sandwiched between the inner side edges of the second thermoplastic resin layer 42X of the bipolar electrode containing sheet body 83 (see FIG. 7).
  • the heat seal joining is performed first on three sides of the four peripheral edge portions of the superimposed negative electrode-containing outer sheet body 84, bipolar electrode-containing sheet body 83, and positive electrode-containing outer sheet body 85 to perform temporary sealing. Then, the electrolyte solution 5 is injected between the first separator 51 and the first negative electrode active material layer 31 from the remaining unsealed one side, and the first separator 51 and the first positive electrode active material layer 21 are The electrolytic solution 5 is injected between them, and the electrolytic solution 5 is injected between the second separator 52 and the second negative electrode active material layer 32, and electrolysis is performed between the second separator 52 and the second positive electrode active material layer 22.
  • the liquid 5 is injected, and then the remaining one side of the unsealed portion is clamped from above and below with a pair of hot plates or the like, so that the four sides are completely sealed and joined, as shown in FIGS.
  • the electrical storage device module 1 is obtained.
  • the electrical storage device module 1 shown to FIG. 3, 4, 6 can be manufactured by the method according to the said manufacturing method.
  • a bipolar electrode-containing sheet body 83 having the same structure as the bipolar electrode-containing sheet body 83 is further disposed under the second separator 52.
  • a third separator may be further disposed between the added bipolar-containing sheet 83 and the positive-containing outer sheet 85, and heat sealing may be performed in the same manner as described above.
  • the above manufacturing method is merely an example, and is not particularly limited to such a manufacturing method.
  • Example 1> (Preparation of positive electrode-containing outer sheet body 85) A binder in which PVDF as a binder is dissolved in dimethylformamide (DMF) as a binder on one surface of a nickel foil (JIS H4551-2000 NW2201) 13 having a length of 20 cm, a width of 30 cm, and a thickness of 20 ⁇ m. After applying the liquid, the binder layer 71 having a thickness after drying of 0.5 ⁇ m was formed by drying at 100 ° C. for 30 seconds.
  • DMF dimethylformamide
  • a positive electrode active material mainly composed of lithium cobalt oxide 10 parts by mass of PVDF as a binder and electrolyte solution holding agent, 5 parts by mass of acetylene black (conductive material), N-methyl-2-pyrrolidone (NMP) ( (Organic solvent)
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material layer 22 is masked by adhering a polyester adhesive tape of the same size on each of the three positive electrode active material layers 22, and then the masked side surface is applied to the masked side surface.
  • a two-component curable olefin-based adhesive (first peripheral adhesive layer) 61 is applied at a thickness of 2 ⁇ m, dried at 100 ° C. for 15 seconds, and then further coated on the first peripheral adhesive with a thickness of 25 ⁇ m. After the unstretched polypropylene film 40 is bonded and left in a constant temperature bath at 40 ° C.
  • the unstretched polypropylene film is positioned at the position aligned with the outer edge of the polyester adhesive tape (the outer edge of the positive electrode active material layer 3). Cut only in layer 40, then unstretched polypropylene film with polyester adhesive tape (only the inner part of the cut; area corresponding to adhesive tape) The surface of the positive electrode active material layer 22 was exposed (see FIG. 8B).
  • the width M of the second thermoplastic resin layer 42Y formed of the unstretched polypropylene film was 5 mm (see FIG. 8C).
  • a negative electrode active material mainly composed of carbon powder, 5 parts by mass of PVDF as a binder / electrolyte holding agent, 10 parts by mass of a copolymer of hexafluoropropylene and maleic anhydride, acetylene black (conductive material) And 3 parts by weight of N-methyl-2-pyrrolidone (NMP) (organic solvent) and 25 parts by weight of paste were kneaded and dispersed in a size of 75 mm ⁇ 44 mm at three locations on the surface of the binder layer 72;
  • NMP N-methyl-2-pyrrolidone
  • a two-component curing type olefin-based adhesive (second peripheral adhesive layer) 62 is applied at a thickness of 2 ⁇ m, dried at 100 ° C. for 15 seconds, and then further coated on the second peripheral adhesive with a thickness of 25 ⁇ m.
  • An unstretched polypropylene film is laminated and left to stand in a constant temperature bath at 40 ° C. for 3 days to cure, and then an unstretched polypropylene film layer at a position aligned with the outer edge of the polyester adhesive tape (the outer edge of the negative electrode active material layer 13). Cut only in, then unstretched polypropylene film with polyester adhesive tape (only the inner part of the cut; only the area corresponding to the adhesive tape) The surface of the negative electrode active material layer 31 was exposed by removing.
  • three pieces of the negative electrode side sheet body 84 (see FIG. 7) having a size of 85 mm ⁇ 54 mm are produced by cutting out the entire circumference from the outer edge of the exposed surface of the negative electrode active material layer 31 at a position of 5 mm. did.
  • the width of the first thermoplastic resin layer 41X formed of the unstretched polypropylene film was 5 mm.
  • a bipolar electrode-containing sheet body 83 is disposed between the positive electrode-containing outer sheet body 85 disposed below and the negative electrode-containing outer sheet body 84 disposed above, and the positive electrode-containing outer sheet body
  • a porous second wet separator 52 having a length of 85 mm ⁇ width of 54 mm ⁇ thickness of 8 ⁇ m is disposed between the sheet body 85 and the bipolar electrode-containing sheet body 83, and the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body.
  • a porous wet first separator 51 having a length of 85 mm, a width of 54 mm, and a thickness of 8 ⁇ m is disposed between the first and second electrodes.
  • the positive electrode-containing outer sheet body 85 is disposed so that the positive electrode active material layer 22 exists on the second separator 52 side, and the negative electrode-containing outer sheet body 84 has the negative electrode active material layer 31 on the first separator 51 side. Arranged so that the negative electrode active material layer 32 exists on the lower second separator 52 side (the positive electrode active material layer 21 exists on the upper first separator 51 side). (See FIG. 7).
  • the second separator 52 is sandwiched between the positive electrode-containing outer sheet body 85 and the bipolar electrode-containing sheet body 83, and the first separator 51 is sandwiched between the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body 83.
  • three of the four sides in plan view are sealed from the top and bottom with a pair of 200 ° C. hot plates at a pressure of 0.2 MPa for 3 seconds and heat sealed to seal and join the three sides. .
  • lithium hexafluorophosphate LiPF 6
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the same electrolyte solution is used between the first separator 51 and the positive electrode active material layer 21 and between the first separator 51 and the negative electrode active material layer 31 using a syringe from one side above the unsealed portion. After injecting 0.5 mL of each, it was temporarily sealed by vacuum-sealing.
  • the battery is charged until a battery voltage of 4.2 V is generated, gas is generated from an electrode, a separator, etc., and then the unsealed portion is discharged in a 3.0 V discharge state and a reduced pressure of 0.086 MPa.
  • the remaining one side is sandwiched from above and below by a pair of 200 ° C. hot plates at a pressure of 0.2 MPa and heat sealed for 3 seconds to completely seal and join the four sides, as shown in FIGS.
  • Example 2 As shown in FIGS. 5 and 6 except that the positive electrode-containing outer sheet body 85 and the negative electrode-containing outer sheet body 84 obtained in Example 1 are further provided with the following additional structure, respectively.
  • the other surface (surface opposite to the side on which the negative electrode active material layer 31 is formed) of the nickel foil (second metal foil layer) 12 of the negative electrode-containing outer sheet body 84 obtained in Example 1 is used.
  • a polyester urethane adhesive (third adhesive layer) 81 is thickened on the entire surface on the masked side. 2 ⁇ m thick and dried at 100 ° C. for 15 seconds, and then a 15 ⁇ m thick biaxially stretched polyamide film (first insulating resin film layer) 8 is bonded onto the third adhesive layer 81, and 40 ° C.
  • the biaxially stretched polyamide film is removed and an opening 8X is provided in the central portion of the biaxially stretched polyamide film 8, so that the central portion of the other surface (upper surface) of the nickel foil (second metal foil layer) 12 is provided.
  • the first metal exposed portion 9 having a size of 5 mm ⁇ 5 mm was exposed (see FIG. 6), and the negative electrode-containing outer sheet body 84 was obtained.
  • Example 2 By using the positive electrode-containing outer sheet body 85 and the negative electrode-containing outer sheet body 84 obtained in this manner, in the same manner as in Example 1, the manufacturing process of the power storage device module was performed, whereby the structures shown in FIGS. A simulated battery pack (storage device module) 1 having a battery capacity of 19.5 mAh was obtained.
  • the assembled batteries (storage device modules) of Examples 1 and 2 of the present invention have initial voltages of 8.2 V and 8.3 V, respectively, and have low internal resistance values. You can see that it is suppressed.
  • the power storage device module according to the present invention and the power storage device module obtained by the manufacturing method of the present invention can obtain a high output, for example, for power tools, for vehicles, for regenerative energy recovery, for digital cameras, mini 4WD Used for cars.
  • Examples of the electricity storage device module of the present invention include: electricity storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, electric double layer capacitors, all solid state batteries, etc. It is not limited to.
  • electricity storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, electric double layer capacitors, all solid state batteries, etc. It is not limited to.

Abstract

Provided is a light, thin-type storage device module for which energy can be extracted efficiently. The present invention includes a plurality of dual-pole-containing sheet bodies 83, which are provided with: a metal foil layer 11 comprising a single layer of metal foil; positive electrode active material layers 21, 23 laminated on one surface of the metal foil layer; and negative electrode active material layers 32, 31 laminated on the other surface of the metal foil layer. The plurality of dual-pole-containing sheet bodies are laminated in the thickness direction such that the positive electrode active material layers 21, 23 and the negative electrode active material layers 32, 31 are alternatingly disposed in the thickness direction. A separator 51 is placed between the adjacent positive electrode active material layer 21 and negative electrode active material layer 31. A peripheral part region in which there has not been formed the positive electrode active material layer 21 on the one surface of the metal foil layer of one of the dual-pole-containing sheet bodies adjacent in the thickness direction, and the peripheral part in which there has not been formed the negative electrode active material layer 31 on the other surface of the metal foil layer of the other of the dual-pole-containing sheet bodies, are joined with a thermoplastic resin-containing peripheral sealing layer 41 interposed therebetween.

Description

蓄電デバイスモジュール及びその製造方法Electric storage device module and manufacturing method thereof
 本発明は、電動工具用、車載用、回生エネルギー回収用、デジタルカメラ用、ミニ四駆カー用等として用いられる、蓄電池(リチウムイオン2次電池等)、コンデンサ(キャパシタ)、全固体電池などの蓄電デバイスモジュール及びその製造方法に関する。 The present invention is used for electric tools, in-vehicle use, regenerative energy recovery, digital cameras, mini 4WD cars, etc., such as storage batteries (lithium ion secondary batteries, etc.), capacitors (capacitors), all solid state batteries, etc. The present invention relates to an electricity storage device module and a manufacturing method thereof.
  電動工具用、車載用等に用いられる電池は、ハイパワー(高電圧出力)を必要とするため、従来では、一般的な円筒型電池を直列接続して対応してきていた。しかしながら、このような一般的な円筒型電池を直列接続してなる電池パックでは、重量が大きいし、個々の電池間の隙間も存在するのでスペースをとる大きなものになってしまうという問題があった。 電池 Batteries used for electric tools, in-vehicle use, and the like require high power (high voltage output), so conventionally, general cylindrical batteries have been connected in series. However, the battery pack formed by connecting such general cylindrical batteries in series has a problem that the weight is large and there is a gap between the individual batteries, so that the space becomes large. .
  そこで、シート状の電極が電解質層を挟んで積層された積層物を、シート状のラミネートシートにより密閉してなる積層型電池を複数個含み、正極として機能する端子と負極として機能する端子とが接続されるように直列接続してなる組電池が提案されている(特許文献1)。ラミネートシートを用いたシート状の薄型電池を組電池にしているので、軽量化および小型化が図られている。 Therefore, a plurality of stacked batteries formed by sealing sheet-like electrodes laminated with an electrolyte layer sandwiched between sheet-like laminate sheets include a terminal that functions as a positive electrode and a terminal that functions as a negative electrode. An assembled battery that is connected in series so as to be connected has been proposed (Patent Document 1). Since a sheet-like thin battery using a laminate sheet is used as an assembled battery, weight reduction and size reduction are achieved.
特開2005-276486号公報JP 2005-276486 A
  ところで、上記直列接続の組電池では、正極として機能する端子と負極として機能する端子とが接続されることで電池が直列接続されており、これら端子同士の接触部で内部抵抗が大きくなるため、十分に効率よくエネルギーを取り出すことができ難いし、発熱が生じやすかった。 By the way, in the battery pack connected in series, the battery is connected in series by connecting the terminal functioning as the positive electrode and the terminal functioning as the negative electrode, and the internal resistance increases at the contact portion between these terminals, It was difficult to extract energy sufficiently efficiently, and heat generation was likely to occur.
 本発明は、かかる技術的背景に鑑みてなされたものであって、内部抵抗が小さくて効率よくエネルギーを取り出すことができる共に発熱も抑制できる、軽量化、薄型化、および省スペース化された蓄電デバイスモジュールおよびその製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and is a light-weight, thin-type, and space-saving power storage that has low internal resistance, can efficiently extract energy, and can suppress heat generation. An object of the present invention is to provide a device module and a manufacturing method thereof.
  前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
 [1]単層の金属箔からなる金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の他方の面における一部の領域に積層された負極活物質層と、を備えた両極含有シート体を複数枚含み、
  前記複数枚の両極含有シート体が、前記正極活物質層と前記負極活物質層とが厚さ方向に交互配置となる態様で、厚さ方向に積層された直列積層体であって、
  厚さ方向に隣り合う前記両極含有シート体において、一方の両極含有シート体の正極活物質層と、他方の両極含有シート体の負極活物質層との間にセパレーターが配置され、
  厚さ方向に隣り合う前記両極含有シート体において、一方の両極含有シート体の金属箔層の前記一方の面における正極活物質層が形成されていない周縁部領域と、他方の両極含有シート体の金属箔層の前記他方の面における負極活物質層が形成されていない周縁部とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合されていることを特徴とする蓄電デバイスモジュール。
[1] A metal foil layer composed of a single-layer metal foil, a positive electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a part of the metal foil layer on the other surface A plurality of negative electrode-containing sheet bodies comprising a negative electrode active material layer laminated in a region,
The plurality of bipolar electrode-containing sheet bodies is a series laminated body in which the positive electrode active material layers and the negative electrode active material layers are alternately arranged in the thickness direction, and laminated in the thickness direction,
In the bipolar electrode containing sheet body adjacent in the thickness direction, a separator is disposed between the positive electrode active material layer of one bipolar electrode containing sheet body and the negative electrode active material layer of the other bipolar electrode containing sheet body,
In the bipolar electrode-containing sheet body adjacent in the thickness direction, a peripheral region where the positive electrode active material layer is not formed on the one surface of the metal foil layer of one bipolar electrode-containing sheet body, and the other bipolar electrode-containing sheet body A power storage device module, characterized in that a peripheral edge portion on which the negative electrode active material layer is not formed on the other surface of the metal foil layer is bonded via a peripheral sealing layer containing a thermoplastic resin. .
 [2]前記直列積層体の厚さ方向の一方の側に配置された金属箔層と、該金属箔層における前記直列積層体側の面の一部の領域に積層された負極活物質層と、を含む負極含有外側シート体と、
  前記直列積層体の厚さ方向の他方の側に配置された金属箔層と、該金属箔層における前記直列積層体側の面の一部の領域に積層された正極活物質層と、を含む正極含有外側シート体と、をさらに備え、
  前記負極含有外側シート体の負極活物質層と、前記直列積層体の厚さ方向の一端側の正極活物質層との間にセパレーターが配置され、
 前記正極含有外側シート体の正極活物質層と、前記直列積層体の厚さ方向の他端側の負極活物質層との間にセパレーターが配置され、
  前記負極含有外側シート体の金属箔層における負極活物質層が形成されていない周縁部領域と、前記直列積層体の厚さ方向の前記一端側の金属箔層における正極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合され、
  前記正極含有外側シート体の金属箔層における正極活物質層が形成されていない周縁部領域と、前記直列積層体の厚さ方向の前記他端側の金属箔層における負極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合されている前項1に記載の蓄電デバイスモジュール。
[2] A metal foil layer disposed on one side in the thickness direction of the series laminated body, a negative electrode active material layer laminated on a partial region of the surface of the metal foil layer on the series laminated body side, A negative electrode-containing outer sheet body comprising:
A positive electrode comprising: a metal foil layer disposed on the other side in the thickness direction of the series laminated body; and a positive electrode active material layer laminated in a partial region of the surface of the metal foil layer on the series laminated body side A further outer sheet body,
A separator is disposed between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the series laminate,
A separator is disposed between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate,
The peripheral region where the negative electrode active material layer is not formed in the metal foil layer of the negative electrode-containing outer sheet body, and the positive electrode active material layer in the metal foil layer on the one end side in the thickness direction of the serial laminate are formed. And a peripheral edge region not joined via a peripheral sealing layer containing a thermoplastic resin,
A peripheral region where no positive electrode active material layer is formed in the metal foil layer of the positive electrode-containing outer sheet body, and a negative electrode active material layer in the metal foil layer on the other end side in the thickness direction of the serial laminate are formed. 2. The electricity storage device module according to item 1, wherein the peripheral region that is not bonded is bonded via a peripheral sealing layer containing a thermoplastic resin.
 [3]単層の金属箔からなる第1金属箔層と、該第1金属箔層の一方の面における一部の領域に積層された第1正極活物質層と、前記第1金属箔層の他方の面における一部の領域に積層された第2負極活物質層と、を備えた両極含有シート体と、
 前記第1金属箔層の前記一方の面側に配置された第2金属箔層と、該第2金属箔層における前記第1金属箔層側の面の一部の領域に積層された第1負極活物質層と、を含む負極含有外側シート体と、
 前記第1金属箔層の前記他方の面側に配置された第3金属箔層と、該第3金属箔層における前記第1金属箔層側の面の一部の領域に積層された第2正極活物質層と、を含む正極含有外側シート体と、
 前記第1正極活物質層と前記第1負極活物質層との間に配置された第1セパレーターと、
  前記第2正極活物質層と前記第2負極活物質層との間に配置された第2セパレーターと、を含み、
 前記第1金属箔層の前記一方の面における第1正極活物質層が形成されていない周縁部領域と、前記第2金属箔層における前記第1金属箔層側の面における第1負極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第1周縁封止層を介して接合され、
 前記第1金属箔層の前記他方の面における第2負極活物質層が形成されていない周縁部領域と、前記第3金属箔層における前記第1金属箔層側の面における第2正極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第2周縁封止層を介して接合されていることを特徴とする蓄電デバイスモジュール。
[3] A first metal foil layer made of a single-layer metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the first metal foil layer A second negative electrode active material layer laminated in a partial region on the other surface of
A second metal foil layer disposed on the one surface side of the first metal foil layer, and a first layer laminated on a partial region of the surface of the second metal foil layer on the first metal foil layer side. A negative electrode-containing outer sheet body comprising a negative electrode active material layer;
A third metal foil layer disposed on the other surface side of the first metal foil layer, and a second layer laminated on a portion of the surface of the third metal foil layer on the first metal foil layer side. A positive electrode-containing outer sheet body comprising a positive electrode active material layer;
A first separator disposed between the first positive electrode active material layer and the first negative electrode active material layer;
A second separator disposed between the second positive electrode active material layer and the second negative electrode active material layer,
A peripheral region where the first positive electrode active material layer is not formed on the one surface of the first metal foil layer, and a first negative electrode active material on the surface of the second metal foil layer on the first metal foil layer side. The peripheral region where the layer is not formed is joined via a first peripheral sealing layer containing a thermoplastic resin,
A peripheral region in which the second negative electrode active material layer is not formed on the other surface of the first metal foil layer, and a second positive electrode active material on the surface of the third metal foil layer on the first metal foil layer side A power storage device module, wherein a peripheral region where no layer is formed is joined via a second peripheral sealing layer containing a thermoplastic resin.
 [4]単層の金属箔からなる金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、前記金属箔層の他方の面における一部の領域に積層された負極活物質層と、前記金属箔層の前記他方の面における負極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた両極含有シート体を複数枚準備する工程と、
 複数枚のセパレーターを準備する工程と、
  前記複数枚の両極含有シート体を、前記正極活物質層と前記負極活物質層とが厚さ方向に交互配置となる態様で、厚さ方向に積層すると共に、厚さ方向に隣り合う両極含有シート体において一方の両極含有シート体の正極活物質層と他方の両極含有シート体の負極活物質層との間にセパレーターを挟み込んだ状態で、前記一方の両極含有シート体における前記正極活物質層側の熱可塑性樹脂層と前記他方の両極含有シート体における前記負極活物質層側の熱可塑性樹脂層とをヒートシールして直列積層体を得る接合工程と、を含むことを特徴とする蓄電デバイスモジュールの製造方法。
[4] A metal foil layer composed of a single-layer metal foil, a positive electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a positive electrode active material on the one surface of the metal foil layer A thermoplastic resin layer provided at a peripheral portion where no material layer is formed; a negative electrode active material layer laminated in a partial region on the other surface of the metal foil layer; and the other of the metal foil layer. A step of preparing a plurality of bipolar electrode-containing sheet bodies provided with a thermoplastic resin layer provided at a peripheral edge where no negative electrode active material layer is formed on the surface;
Preparing a plurality of separators;
The plurality of bipolar electrode-containing sheet bodies are laminated in the thickness direction in such a manner that the positive electrode active material layers and the negative electrode active material layers are alternately arranged in the thickness direction, and include the bipolar electrodes adjacent to each other in the thickness direction. In the sheet body, the positive electrode active material layer in the one bipolar electrode-containing sheet body in a state where a separator is sandwiched between the positive electrode active material layer of one bipolar electrode-containing sheet body and the negative electrode active material layer of the other bipolar electrode-containing sheet body A step of heat-sealing the thermoplastic resin layer on the side and the thermoplastic resin layer on the negative electrode active material layer side in the other bipolar electrode-containing sheet body to obtain a serial laminate, Module manufacturing method.
 [5]金属箔層と、該金属箔層の一方の面における一部の領域に積層された負極活物質層と、前記金属箔層の前記一方の面における負極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた負極含有外側シート体を準備する工程と、
 金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた正極含有外側シート体を準備する工程と、
  前記負極含有外側シート体の負極活物質層と、前記直列積層体の厚さ方向の一端側の正極活物質層との間にセパレーターを挟み込んだ状態で、前記負極含有外側シート体の熱可塑性樹脂層と前記直列積層体の厚さ方向の一端側の両極含有シート体における正極活物質層側の熱可塑性樹脂層とをヒートシールする工程と、
  前記正極含有外側シート体の正極活物質層と、前記直列積層体の厚さ方向の他端側の負極活物質層との間にセパレーターを挟み込んだ状態で、前記正極含有外側シート体の熱可塑性樹脂層と前記直列積層体の厚さ方向の他端側の両極含有シート体における負極活物質層側の熱可塑性樹脂層とをヒートシールする工程と、をさらに含む前項4に記載の蓄電デバイスモジュールの製造方法。
[5] The metal foil layer, the negative electrode active material layer laminated in a partial region on one surface of the metal foil layer, and the negative electrode active material layer on the one surface of the metal foil layer are not formed. A step of preparing a negative electrode-containing outer sheet body provided with a thermoplastic resin layer provided on the peripheral edge;
A metal foil layer, a positive electrode active material layer laminated on a part of a region on one surface of the metal foil layer, and a peripheral portion where the positive electrode active material layer on the one surface of the metal foil layer is not formed. A step of preparing a positive electrode-containing outer sheet body provided with a provided thermoplastic resin layer;
A thermoplastic resin of the negative electrode-containing outer sheet body in a state where a separator is sandwiched between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the serial laminate. Heat sealing the layer and the thermoplastic resin layer on the positive electrode active material layer side in the bipolar electrode-containing sheet on the one end side in the thickness direction of the series laminate;
Thermoplasticity of the positive electrode-containing outer sheet body with a separator sandwiched between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate. The power storage device module according to item 4, further comprising a step of heat-sealing the resin layer and the thermoplastic resin layer on the negative electrode active material layer side in the bipolar electrode-containing sheet on the other end side in the thickness direction of the serial laminate. Manufacturing method.
 [6]単層の金属箔からなる第1金属箔層と、該第1金属箔層の一方の面における一部の領域に積層された第1正極活物質層と、前記第1金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた第1熱可塑性樹脂層と、前記第1金属箔層の他方の面における一部の領域に積層された第2負極活物質層と、前記第1金属箔層の前記他方の面における第2負極活物質層が形成されていない周縁部に設けられた第2熱可塑性樹脂層と、を備えた両極含有シート体を準備する工程と、
 第2金属箔層と、該第2金属箔層の一方の面における一部の領域に積層された第1負極活物質層と、前記第2金属箔層の前記一方の面における第1負極活物質層が形成されていない周縁部に設けられた第1熱可塑性樹脂層と、を備えた負極含有外側シート体を準備する工程と、
 第3金属箔層と、該第3金属箔層の一方の面における一部の領域に積層された第2正極活物質層と、前記第3金属箔層の前記一方の面における第2正極活物質層が形成されていない周縁部に設けられた第2熱可塑性樹脂層と、を備えた正極含有外側シート体を準備する工程と、
 第1セパレーターおよび第2セパレーターを準備する工程と、
  前記両極含有シート体の前記第1正極活物質層と前記負極含有外側シート体の前記第1負極活物質層との間に前記第1セパレーターを挟み込んだ状態で前記両極含有シート体の第1熱可塑性樹脂層と前記負極含有外側シート体の第1熱可塑性樹脂層とをヒートシールすると共に、前記両極含有シート体の前記第2負極活物質層と前記正極含有外側シート体の前記第2正極活物質層との間に前記第2セパレーターを挟み込んだ状態で前記両極含有シート体の第2熱可塑性樹脂層と前記負極含有外側シート体の第2熱可塑性樹脂層とをヒートシールする工程と、を含むことを特徴とする蓄電デバイスモジュールの製造方法。
[6] A first metal foil layer made of a single-layer metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the first metal foil layer A first thermoplastic resin layer provided on a peripheral edge of the one surface on which the positive electrode active material layer is not formed, and a second layer laminated on a partial region on the other surface of the first metal foil layer. A bipolar electrode-containing sheet comprising: a negative electrode active material layer; and a second thermoplastic resin layer provided on a peripheral edge of the other surface of the first metal foil layer where the second negative electrode active material layer is not formed. The process of preparing
A second metal foil layer; a first negative electrode active material layer laminated in a partial region on one surface of the second metal foil layer; and a first negative electrode active material on the one surface of the second metal foil layer. A step of preparing a negative electrode-containing outer sheet body provided with a first thermoplastic resin layer provided at a peripheral edge where no material layer is formed;
A third metal foil layer; a second positive electrode active material layer laminated in a partial region on one surface of the third metal foil layer; and a second positive electrode active material on the one surface of the third metal foil layer. A step of preparing a positive electrode-containing outer sheet body provided with a second thermoplastic resin layer provided at the peripheral edge where the material layer is not formed;
Preparing a first separator and a second separator;
The first heat of the bipolar electrode-containing sheet body with the first separator sandwiched between the first positive electrode active material layer of the bipolar electrode-containing sheet body and the first negative electrode active material layer of the negative electrode-containing outer sheet body. The plastic resin layer and the first thermoplastic resin layer of the negative electrode-containing outer sheet body are heat-sealed, and the second negative electrode active material layer of the bipolar electrode-containing sheet body and the second positive electrode active material of the positive electrode-containing outer sheet body. Heat-sealing the second thermoplastic resin layer of the bipolar electrode-containing sheet body and the second thermoplastic resin layer of the negative electrode-containing outer sheet body with the second separator sandwiched between the material layers. A method of manufacturing an electricity storage device module, comprising:
 [1]の発明では、蓄電デバイスを直列に積層した構成であるが、蓄電デバイスの端子に相当する金属箔層が、単層の金属箔で形成されているので(複数枚の金属箔の積層物ではないので)、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できる。また、蓄電デバイスを直列に積層した構成であるが、蓄電デバイスの端子に相当する金属箔層が、単層の金属箔で形成されているので、蓄電デバイスモジュール全体として薄型化を図ることができると共に、軽量化及び省スペース化も実現できる。また、蓄電デバイスを直列に積層した構成であるので、高電圧出力の蓄電デバイスモジュール(組電池等)を提供できる。本発明では、タブ付き構造、タブレス構造(タブを備えていない構成)のいずれの構成を採用してもよい。 In the invention of [1], the power storage devices are stacked in series, but the metal foil layer corresponding to the terminal of the power storage device is formed of a single metal foil (lamination of a plurality of metal foils). Since it is not a thing), the movement of electrons between power storage devices (cells, etc.) is smooth, the internal resistance of the entire power storage devices (cells, etc.) is reduced, energy can be taken out efficiently, and heat generation can be suppressed. In addition, the power storage devices are stacked in series. However, since the metal foil layer corresponding to the terminals of the power storage device is formed of a single layer metal foil, the power storage device module as a whole can be thinned. At the same time, weight saving and space saving can be realized. In addition, since the power storage devices are stacked in series, a high voltage output power storage device module (such as an assembled battery) can be provided. In the present invention, either a tabbed structure or a tabless structure (a structure not including a tab) may be adopted.
 [2]の発明では、蓄電デバイスモジュールの厚さ方向の両側が金属箔層になっているので、タブを用いることなく電気の移動(取り出し等)を行うことができる。 In the invention of [2], since both sides in the thickness direction of the electricity storage device module are metal foil layers, electricity can be moved (taken out) without using a tab.
 [3]の発明では、2組の蓄電デバイスを直列に積層した構成であるが、蓄電デバイスの端子に相当する金属箔層が、単層の金属箔で形成されているので(複数枚の金属箔の積層物ではないので)、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できる。また、2組の蓄電デバイスを直列に積層した構成であるが、蓄電デバイスの端子に相当する金属箔層が、単層の金属箔で形成されているので、蓄電デバイスモジュール全体として薄型化を図ることができるとともに、軽量化及び省スペース化も実現できる。また、2組の蓄電デバイスを直列に積層した構成であるので、高電圧出力のものを提供できる。更に、蓄電デバイスモジュールの厚さ方向の両側が金属箔層になっているので、タブを用いることなく電気の移動(取り出し等)を行うことができる。 In the invention of [3], two sets of power storage devices are stacked in series, but the metal foil layer corresponding to the terminals of the power storage device is formed of a single metal foil (a plurality of metals). (Because it is not a foil laminate), the movement of electrons between electricity storage devices (cells, etc.) is smooth, the internal resistance of the entire electricity storage devices (cells, etc.) is reduced, energy can be taken out efficiently, and heat is also generated. Can be suppressed. Moreover, although it is the structure which laminated | stacked two sets of electrical storage devices in series, since the metal foil layer corresponded to the terminal of an electrical storage device is formed with the single layer metal foil, it aims at thickness reduction as the whole electrical storage device module. In addition, it is possible to reduce weight and space. Moreover, since it is the structure which laminated | stacked two sets of electrical storage devices in series, the thing of a high voltage output can be provided. Furthermore, since both sides in the thickness direction of the electricity storage device module are metal foil layers, electricity can be moved (taken out) without using a tab.
 [4]の発明では、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できる蓄電デバイスモジュール(組電池等)を製造できる。また、薄型化、軽量化、省スペース化が図られた高電圧出力の蓄電デバイスモジュール(組電池等)を製造することができる。製造して得られた蓄電デバイスモジュールは、タブ付き構造としてもよいし、タブレス構造としてもよい。 In the invention of [4], electrons move smoothly between power storage devices (cells, etc.), the internal resistance of the entire power storage devices (cells, etc.) is reduced, energy can be taken out efficiently, and heat generation can be suppressed. An electric storage device module (assembled battery or the like) can be manufactured. In addition, a high-voltage output power storage device module (assembled battery or the like) that is thin, lightweight, and space-saving can be manufactured. The power storage device module obtained by manufacturing may have a tabbed structure or a tabless structure.
 [5]の発明では、蓄電デバイスモジュールの厚さ方向の両側が金属箔層になっているので、タブを用いることなく電気の移動(取り出し等)を行うことができる蓄電デバイスモジュールを製造することができる。 In the invention of [5], since both sides in the thickness direction of the electricity storage device module are metal foil layers, an electricity storage device module capable of moving electricity (eg taking out) without using a tab is manufactured. Can do.
 [6]の発明では、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できる蓄電デバイスモジュール(組電池等)を製造できる。また、薄型化、軽量化、省スペース化が図られた高電圧出力の蓄電デバイスモジュール(組電池等)を製造することができる。また、蓄電デバイスモジュールの厚さ方向の両側が金属箔層になっているので、タブを使用することなく電気の移動(取り出し等)を行うことができる。 In the invention of [6], electrons move smoothly between power storage devices (cells, etc.), the internal resistance of the entire power storage device (cells, etc.) is reduced, energy can be taken out efficiently, and heat generation can be suppressed. An electric storage device module (assembled battery or the like) can be manufactured. In addition, a high-voltage output power storage device module (assembled battery or the like) that is thin, lightweight, and space-saving can be manufactured. Moreover, since both sides in the thickness direction of the electricity storage device module are metal foil layers, electricity can be moved (taken out) without using a tab.
本発明に係る蓄電デバイスモジュールの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the electrical storage device module which concerns on this invention. 図1におけるA-A線での断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 本発明に係る蓄電デバイスモジュールの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the electrical storage device module which concerns on this invention. 本発明に係る蓄電デバイスモジュールのさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the electrical storage device module which concerns on this invention. 本発明に係る蓄電デバイスモジュールのさらに他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the electrical storage device module which concerns on this invention. 図5におけるB-B線での断面図である。FIG. 6 is a cross-sectional view taken along line BB in FIG. 本発明に係る蓄電デバイスモジュールの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the electrical storage device module which concerns on this invention. 実施例での製造方法を示す平面図であって、(A)は、ニッケル箔の一方の面に積層されたバインダー層の表面の3箇所に正極活物質層が形成された状態を示す平面図、(B)は、正極含有外側シート体を得るための切断位置(二点鎖線)を示した平面図、(C)は、切断した3片(3片の正極含有外側シート体)を並べて示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows the manufacturing method in an Example, (A) is a top view which shows the state in which the positive electrode active material layer was formed in three places of the surface of the binder layer laminated | stacked on one surface of nickel foil. , (B) is a plan view showing a cutting position (two-dot chain line) for obtaining a positive electrode-containing outer sheet body, and (C) shows three cut pieces (three pieces of positive electrode-containing outer sheet bodies) side by side. It is a top view.
 本発明に係る蓄電デバイスモジュールの第1実施形態を図1、2に示す。この蓄電デバイスモジュール1は、第1金属箔層11と、第2金属箔層12と、第3金属箔層13と、第1セパレーター51と、第2セパレーター52と、を備えてなる(図2参照)。 1 and 2 show a first embodiment of a power storage device module according to the present invention. The electricity storage device module 1 includes a first metal foil layer 11, a second metal foil layer 12, a third metal foil layer 13, a first separator 51, and a second separator 52 (FIG. 2). reference).
  前記第1金属箔層11は、単層の金属箔からなる(複数枚の金属箔の積層物で構成されたものではない)。前記第1金属箔層11の一方の面(上面)における一部の領域に第1正極活物質層21が積層され、前記第1金属箔層11の他方の面(下面)における一部の領域に第2負極活物質層32が積層されて、両極含有シート体83が構成されている。本実施形態では、前記第1金属箔層11の一方の面(上面)における中央部(周縁部を除いた領域)に第1正極活物質層21が積層されている。また、本実施形態では、前記第1金属箔層11の一方の面(上面)の全面に第1バインダー層71が積層されている。即ち、本実施形態では、前記第1金属箔層11の一方の面(上面)に前記第1バインダー層71を介して前記第1正極活物質層21が積層されている(図2参照)。 The first metal foil layer 11 is made of a single layer metal foil (not composed of a laminate of a plurality of metal foils). The first positive electrode active material layer 21 is laminated on a part of one surface (upper surface) of the first metal foil layer 11, and a part of the other surface (lower surface) of the first metal foil layer 11. The second negative electrode active material layer 32 is laminated to form a bipolar electrode containing sheet body 83. In the present embodiment, the first positive electrode active material layer 21 is laminated on the central portion (region excluding the peripheral portion) on one surface (upper surface) of the first metal foil layer 11. In the present embodiment, the first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the first metal foil layer 11. That is, in the present embodiment, the first positive electrode active material layer 21 is laminated on one surface (upper surface) of the first metal foil layer 11 via the first binder layer 71 (see FIG. 2).
 また、本実施形態では、前記第1金属箔層11の他方の面(下面)における中央部(周縁部を除いた領域)に第2負極活物質層32が積層されている。また、本実施形態では、前記第1金属箔層11の他方の面(下面)の全面に第2バインダー層72が積層されている。即ち、本実施形態では、前記第1金属箔層11の他方の面(下面)に前記第2バインダー層72を介して前記第2負極活物質層32が積層されている(図2参照)。 In the present embodiment, the second negative electrode active material layer 32 is laminated on the central portion (region excluding the peripheral portion) of the other surface (lower surface) of the first metal foil layer 11. In the present embodiment, the second binder layer 72 is laminated on the entire other surface (lower surface) of the first metal foil layer 11. That is, in the present embodiment, the second negative electrode active material layer 32 is laminated on the other surface (lower surface) of the first metal foil layer 11 via the second binder layer 72 (see FIG. 2).
 前記第1金属箔層11の前記一方の面(上面)側に第2金属箔層12が配置され、該第2金属箔層12における前記第1金属箔層11側(下面側)の面の一部の領域に第1負極活物質層31が積層されている。前記第2金属箔層12および前記第1負極活物質層31により負極含有外側シート体84が構成されている。本実施形態では、前記第2金属箔層12における前記第1金属箔層11側(下面側)の面の中央部(周縁部を除いた領域)に前記第1負極活物質層31が積層されている。また、本実施形態では、前記第2金属箔層12における前記第1金属箔層11側(下面側)の面の全面に第2バインダー層72が積層されている。即ち、本実施形態では、前記第2金属箔層12における前記第1金属箔層11側(下面側)の面に前記第2バインダー層72を介して前記第1負極活物質層31が積層されている(図2参照)。また、本実施形態では、前記第2金属箔層12は、単層の金属箔からなる(複数枚の金属箔の積層物で構成されたものではない)。 A second metal foil layer 12 is disposed on the one surface (upper surface) side of the first metal foil layer 11, and the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side). The first negative electrode active material layer 31 is laminated in a part of the region. The second metal foil layer 12 and the first negative electrode active material layer 31 constitute a negative electrode-containing outer sheet body 84. In the present embodiment, the first negative electrode active material layer 31 is laminated at the center (excluding the peripheral edge) of the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side). ing. In the present embodiment, the second binder layer 72 is laminated on the entire surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side). That is, in the present embodiment, the first negative electrode active material layer 31 is laminated on the surface of the second metal foil layer 12 on the first metal foil layer 11 side (lower surface side) via the second binder layer 72. (See FIG. 2). Moreover, in this embodiment, the said 2nd metal foil layer 12 consists of a single layer metal foil (it is not comprised with the laminated body of several metal foil).
  前記第1金属箔層11の前記他方の面(下面)側に第3金属箔層13が配置され、該第3金属箔層13における前記第1金属箔層11側(上面側)の面の一部の領域に第2正極活物質層22が積層されている。前記第3金属箔層13および前記第2正極活物質層22により正極含有外側シート体85が構成されている。本実施形態では、前記第3金属箔層13における前記第1金属箔層11側(上面側)の面の中央部(周縁部を除いた領域)に前記第2正極活物質層22が積層されている。また、本実施形態では、前記第3金属箔層13における前記第1金属箔層11側(上面側)の面の全面に第1バインダー層71が積層されている。即ち、本実施形態では、前記第3金属箔層13における前記第1金属箔層11側(上面側)の面に前記第1バインダー層71を介して前記第2負極活物質層22が積層されている(図2参照)。また、本実施形態では、前記第3金属箔層13は、単層の金属箔からなる(複数枚の金属箔の積層物で構成されたものではない)。 A third metal foil layer 13 is disposed on the other surface (lower surface) side of the first metal foil layer 11, and the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side) is arranged. The second positive electrode active material layer 22 is laminated in a part of the region. The third metal foil layer 13 and the second positive electrode active material layer 22 constitute a positive electrode-containing outer sheet body 85. In the present embodiment, the second positive electrode active material layer 22 is laminated at the center (excluding the peripheral edge) of the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side). ing. In the present embodiment, the first binder layer 71 is laminated on the entire surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side). That is, in the present embodiment, the second negative electrode active material layer 22 is laminated on the surface of the third metal foil layer 13 on the first metal foil layer 11 side (upper surface side) via the first binder layer 71. (See FIG. 2). Moreover, in this embodiment, the said 3rd metal foil layer 13 consists of a single layer metal foil (it is not comprised by the laminated body of several metal foil).
 前記第1正極活物質層21と前記第1負極活物質層31との間に第1セパレーター51が配置され、前記第2正極活物質層22と前記第2負極活物質層32との間に第2セパレーター52が配置されている(図2参照)。 A first separator 51 is disposed between the first positive electrode active material layer 21 and the first negative electrode active material layer 31, and between the second positive electrode active material layer 22 and the second negative electrode active material layer 32. A second separator 52 is disposed (see FIG. 2).
 前記第1金属箔層11の前記一方の面(上面)における第1正極活物質層21が形成されていない周縁部領域と、前記第2金属箔層12における前記第1金属箔層側(下面側)の面における第1負極活物質層31が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第1周縁封止層41(負極含有外側シート体84の第1熱可塑性樹脂層41Xと両極含有シート体83の第1熱可塑性樹脂層41Yとの融着で形成された封止部41)を介して接合されて封止されている(図2参照)。前記第1セパレーター51の周縁部は、前記第1周縁封止層41の内周面の高さ方向(厚さ方向)の中間部に侵入して係合した態様になっている(図2参照)。 A peripheral region where the first positive electrode active material layer 21 is not formed on the one surface (upper surface) of the first metal foil layer 11, and the first metal foil layer side (lower surface) of the second metal foil layer 12. The first peripheral sealing layer 41 (the first thermoplastic resin of the negative electrode-containing outer sheet body 84) containing a thermoplastic resin in the peripheral region where the first negative electrode active material layer 31 is not formed on the surface of the first negative electrode active material layer 31. The resin layer 41X and the first thermoplastic resin layer 41Y of the bipolar electrode containing sheet body 83 are joined and sealed via a sealing part 41) (see FIG. 2). The peripheral portion of the first separator 51 is in a state of entering and engaging with the intermediate portion in the height direction (thickness direction) of the inner peripheral surface of the first peripheral sealing layer 41 (see FIG. 2). ).
  本実施形態では、前記第1金属箔層11の前記一方の面(上面)に積層された第1バインダー層71における第1正極活物質層が形成されていない周縁部領域に第1周縁接着剤層61が積層され、前記第2金属箔層12における前記第1金属箔層側(下面側)の面に積層された第2バインダー層72における第1負極活物質層が形成されていない周縁部領域に第2周縁接着剤層62が積層され、これら両周縁接着剤層61、62を介して積層された第1熱可塑性樹脂層41Yと第1熱可塑性樹脂層41Xとの融着で形成された前記第1周縁封止層41により封止された構成が採用されている(図2参照)。 In the present embodiment, the first peripheral adhesive is formed in the peripheral region where the first positive electrode active material layer is not formed in the first binder layer 71 laminated on the one surface (upper surface) of the first metal foil layer 11. The peripheral part where the layer 61 is laminated and the first negative electrode active material layer in the second binder layer 72 laminated on the surface of the second metal foil layer 12 on the first metal foil layer side (lower surface side) is not formed A second peripheral adhesive layer 62 is laminated in the region, and is formed by fusing the first thermoplastic resin layer 41Y and the first thermoplastic resin layer 41X laminated via the peripheral adhesive layers 61 and 62. Further, a configuration sealed with the first peripheral sealing layer 41 is employed (see FIG. 2).
 前記第1金属箔層11の前記他方の面(下面)における第2負極活物質層32が形成されていない周縁部領域と、前記第3金属箔層13における前記第1金属箔層側(上面側)の面における第2正極活物質層22が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第2周縁封止層42(正極含有外側シート体85の第2熱可塑性樹脂層42Yと両極含有シート体83の第2熱可塑性樹脂層42Xとの融着で形成された封止部42)を介して接合されて封止されている(図2参照)。前記第2セパレーター52の周縁部は、前記第2周縁封止層42の内周面の高さ方向(厚さ方向)の中間部に侵入して係合した態様になっている(図2参照)。 A peripheral region where the second negative electrode active material layer 32 is not formed on the other surface (lower surface) of the first metal foil layer 11, and the first metal foil layer side (upper surface) of the third metal foil layer 13. The second peripheral sealing layer 42 (second thermoplasticity of the positive electrode-containing outer sheet body 85) formed by containing a thermoplastic resin in the peripheral region where the second positive electrode active material layer 22 is not formed on the side of the side. The resin layer 42 </ b> Y and the second thermoplastic resin layer 42 </ b> X of the bipolar electrode containing sheet body 83 are joined and sealed via a sealing part 42) (see FIG. 2). The peripheral portion of the second separator 52 is in a state of entering and engaging the intermediate portion in the height direction (thickness direction) of the inner peripheral surface of the second peripheral sealing layer 42 (see FIG. 2). ).
 また、本実施形態では、前記第1金属箔層11の前記他方の面(下面)に積層された第2バインダー層72における第2負極活物質層が形成されていない周縁部領域に第2周縁接着剤層62が積層され、前記第3金属箔層13における前記第1金属箔層側(上面側)の面に積層された第1バインダー層71における第2正極活物質層が形成されていない周縁部領域に第1周縁接着剤層62が積層され、これら両周縁接着剤層61、62を介して積層された第2熱可塑性樹脂層42Yと第2熱可塑性樹脂層42Xとの融着で形成された前記第2周縁封止層42により封止された構成が採用されている(図2参照)。 Further, in the present embodiment, the second peripheral edge region is formed in the peripheral region where the second negative electrode active material layer is not formed in the second binder layer 72 laminated on the other surface (lower surface) of the first metal foil layer 11. The adhesive layer 62 is laminated, and the second positive electrode active material layer in the first binder layer 71 laminated on the first metal foil layer side (upper surface side) of the third metal foil layer 13 is not formed. The first peripheral adhesive layer 62 is laminated in the peripheral area, and the second thermoplastic resin layer 42Y and the second thermoplastic resin layer 42X laminated through the peripheral adhesive layers 61 and 62 are fused. The structure sealed with the formed said 2nd peripheral sealing layer 42 is employ | adopted (refer FIG. 2).
 前記第1セパレーター51と前記第1負極活物質層31の間に電解液5が封入され、前記第1セパレーター51と前記第1正極活物質層21の間に電解液5が封入されている。また、前記第2セパレーター52と前記第2負極活物質層32の間に電解液5が封入され、前記第2セパレーター52と前記第2正極活物質層22の間に電解液5が封入されている(図2参照)。 The electrolyte solution 5 is sealed between the first separator 51 and the first negative electrode active material layer 31, and the electrolyte solution 5 is sealed between the first separator 51 and the first positive electrode active material layer 21. Further, the electrolyte solution 5 is sealed between the second separator 52 and the second negative electrode active material layer 32, and the electrolyte solution 5 is sealed between the second separator 52 and the second positive electrode active material layer 22. (See FIG. 2).
  前記第1金属箔層11における周縁部領域と、前記第2金属箔層12における周縁部領域とが、前記第1周縁封止層41を介して接合されて封止されているので、電解液5の漏出を防止できる。また、同様に、前記第1金属箔層11における周縁部領域と、前記第3金属箔層13における周縁部領域とが、前記第2周縁封止層42を介して接合されて封止されているので、電解液5の漏出を防止できる。 Since the peripheral edge region in the first metal foil layer 11 and the peripheral edge region in the second metal foil layer 12 are joined and sealed via the first peripheral sealing layer 41, the electrolyte solution 5 leakage can be prevented. Similarly, the peripheral region in the first metal foil layer 11 and the peripheral region in the third metal foil layer 13 are joined and sealed via the second peripheral sealing layer 42. Therefore, leakage of the electrolyte solution 5 can be prevented.
  上記構成の蓄電デバイスモジュール1では、第2金属箔層12および第3金属箔層13が、端子および外装材の両機能を果たすものであり、従って本構成にさらに外装材を要することはないから、蓄電デバイスモジュールとして、軽量化、薄型化、省スペース化を図ることができる。また、上記構成の蓄電デバイスモジュール1は、蓄電デバイスが2個直列接続された構成に相当するものであるが、接続箇所に相当する第1金属箔層11が、単層の金属箔で形成されているので(複数枚の金属箔の積層物ではないので)、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できると共に、蓄電デバイスモジュール全体として薄型化、軽量化及び省スペース化も実現できる。更に、本実施形態では、第2金属箔層12および第3金属箔層13も単層の金属箔で形成されているので、より一層薄型化、軽量化、省スペース化を図ることができる。 In the electricity storage device module 1 having the above configuration, the second metal foil layer 12 and the third metal foil layer 13 fulfill both functions of a terminal and an exterior material, and therefore no further exterior material is required for this configuration. As an electricity storage device module, weight reduction, thickness reduction, and space saving can be achieved. The power storage device module 1 having the above configuration corresponds to a configuration in which two power storage devices are connected in series, but the first metal foil layer 11 corresponding to the connection location is formed of a single layer metal foil. (Because it is not a laminate of multiple metal foils), the movement of electrons between electricity storage devices (cells, etc.) is smooth, the internal resistance of the entire electricity storage devices (cells, etc.) is reduced, and energy is efficiently consumed. It can be taken out and heat generation can be suppressed, and the power storage device module as a whole can be reduced in thickness, weight and space. Furthermore, in the present embodiment, since the second metal foil layer 12 and the third metal foil layer 13 are also formed of a single layer metal foil, it is possible to further reduce the thickness, weight, and space.
 本発明に係る蓄電デバイスモジュール1の第2実施形態を図3に示す。この蓄電デバイスモジュール1は、蓄電デバイスが3個直列接続された構成に相当するものであり、上述した第1実施形態の構成を具備した上で、更に次のような構成を備えている。第2金属箔層12と第3金属箔層13の間の構成(両金属箔層12、13も含む)は、前記第1実施形態と同一であるので、同一構成部について同一の符号を付してその説明は省略する。 FIG. 3 shows a second embodiment of the electricity storage device module 1 according to the present invention. This power storage device module 1 corresponds to a configuration in which three power storage devices are connected in series, and further includes the following configuration in addition to the configuration of the first embodiment described above. Since the configuration between the second metal foil layer 12 and the third metal foil layer 13 (including both the metal foil layers 12 and 13) is the same as that of the first embodiment, the same reference numerals are assigned to the same components. The description is omitted.
 この第2実施形態では、前記第2金属箔層(単層の金属箔からなる)12における前記第1金属箔層11とは反対側(上面側)に第4金属箔層14が配置されている。前記第2金属箔層12における第4金属箔層14側(上面側)の面の一部の領域に第3正極活物質層23が積層されている。本実施形態では、前記第2金属箔層12における第4金属箔層14側(上面側)の面の中央部(周縁部を除いた領域)に前記第3正極活物質層23が積層されている。また、本実施形態では、前記第2金属箔層12の第4金属箔層14側(上面側)の面の全面に第1バインダー層71が積層されている。即ち、本実施形態では、前記第2金属箔層12の第4金属箔層14側(上面側)の面に前記第1バインダー層71を介して前記第3正極活物質層23が積層されている(図3参照)。また、本実施形態では、前記第4金属箔層14は、単層の金属箔からなる(複数枚の金属箔の積層物で構成されたものではない)。 In the second embodiment, a fourth metal foil layer 14 is disposed on the opposite side (upper surface side) of the second metal foil layer (consisting of a single layer metal foil) 12 from the first metal foil layer 11. Yes. A third positive electrode active material layer 23 is laminated in a partial region of the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side). In the present embodiment, the third positive electrode active material layer 23 is laminated on the central portion (region excluding the peripheral portion) of the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side). Yes. In the present embodiment, the first binder layer 71 is laminated on the entire surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side). That is, in the present embodiment, the third positive electrode active material layer 23 is laminated on the surface of the second metal foil layer 12 on the fourth metal foil layer 14 side (upper surface side) via the first binder layer 71. (See FIG. 3). In the present embodiment, the fourth metal foil layer 14 is composed of a single layer metal foil (not composed of a laminate of a plurality of metal foils).
 前記第4金属箔層14における前記第2金属箔層12側(下面側)の面の一部の領域に第3負極活物質層33が積層されている。前記第4金属箔層14および前記第3負極活物質層33により負極含有外側シート体84が構成されている。本実施形態では、前記第4金属箔層14における前記第2金属箔層12側(下面側)の面の中央部(周縁部を除いた領域)に前記第3負極活物質層33が積層されている。また、本実施形態では、前記第4金属箔層14における前記第2金属箔層12側(下面側)の面の全面に第2バインダー層72が積層されている。即ち、本実施形態では、前記第4金属箔層14における前記第2金属箔層12側(下面側)の面に前記第2バインダー層72を介して前記第3負極活物質層33が積層されている(図3参照)。 The third negative electrode active material layer 33 is laminated in a partial region of the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side). The fourth metal foil layer 14 and the third negative electrode active material layer 33 constitute a negative electrode-containing outer sheet body 84. In the present embodiment, the third negative electrode active material layer 33 is laminated at the center (excluding the peripheral edge) of the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side). ing. In the present embodiment, the second binder layer 72 is laminated on the entire surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side). That is, in the present embodiment, the third negative electrode active material layer 33 is laminated on the surface of the fourth metal foil layer 14 on the second metal foil layer 12 side (lower surface side) via the second binder layer 72. (See FIG. 3).
 前記第2金属箔層12と前記第4金属箔層14の間に第3セパレーター53が配置されている。また、前記第3セパレーター53と前記第3負極活物質層33の間に電解液5が封入され、前記第3セパレーター53と前記第3正極活物質層23の間に電解液5が封入されている(図3参照)。 A third separator 53 is disposed between the second metal foil layer 12 and the fourth metal foil layer 14. In addition, the electrolyte solution 5 is sealed between the third separator 53 and the third negative electrode active material layer 33, and the electrolyte solution 5 is sealed between the third separator 53 and the third positive electrode active material layer 23. (See FIG. 3).
  更に、前記第2金属箔層12における周縁部領域と、前記第4金属箔層14における周縁部領域とが、前記第3周縁封止層43を介して接合されて封止されているので、電解液5の漏出を防止できる。 Furthermore, since the peripheral region in the second metal foil layer 12 and the peripheral region in the fourth metal foil layer 14 are bonded and sealed via the third peripheral sealing layer 43, The leakage of the electrolyte 5 can be prevented.
  上記第2実施形態の蓄電デバイスモジュール1では、第3金属箔層13および第4金属箔層14が、端子および外装材の両機能を果たすものであり、従って本構成にさらに外装材を要することはないから、蓄電デバイスモジュールとして、軽量化、薄型化、省スペース化を図ることができる。また、上記構成の蓄電デバイスモジュール1は、蓄電デバイスが3個直列接続された構成に相当するものであるが、接続箇所に相当する第1金属箔層11および第2金属箔層12が、単層の金属箔で形成されているので(複数枚の金属箔の積層物ではないので)、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できると共に、蓄電デバイスモジュール全体として薄型化、軽量化及び省スペース化も実現できる。更に、本実施形態では、第3金属箔層13および第4金属箔層14も単層の金属箔で形成されているので、より一層薄型化、軽量化、省スペース化を図ることができる。 In the electricity storage device module 1 of the second embodiment, the third metal foil layer 13 and the fourth metal foil layer 14 perform both functions of a terminal and an exterior material. Therefore, this configuration further requires an exterior material. Therefore, the power storage device module can be reduced in weight, thickness, and space. In addition, the electricity storage device module 1 having the above configuration corresponds to a configuration in which three electricity storage devices are connected in series, but the first metal foil layer 11 and the second metal foil layer 12 corresponding to the connection locations are simply provided. Since it is made of metal foil of layers (because it is not a laminate of multiple metal foils), the movement of electrons between electricity storage devices (cells, etc.) is smooth, and the internal resistance of the entire electricity storage device (cells, etc.) Thus, energy can be extracted efficiently, heat generation can be suppressed, and the entire power storage device module can be reduced in thickness, weight, and space. Furthermore, in this embodiment, since the 3rd metal foil layer 13 and the 4th metal foil layer 14 are also formed with the metal foil of a single layer, it can attain further thickness reduction, weight reduction, and space saving.
 本発明に係る蓄電デバイスモジュール1の第3実施形態を図4に示す。この蓄電デバイスモジュール1は、蓄電デバイスが4個直列接続された構成に相当するものであり、上述した第2実施形態の構成を具備した上で、更に次のような構成を備えている。第3金属箔層13と第4金属箔層14の間の構成(両金属箔層13、14も含む)は、前記第2実施形態と同一であるので、同一構成部について同一の符号を付してその説明は省略する。 FIG. 4 shows a third embodiment of the electricity storage device module 1 according to the present invention. This power storage device module 1 corresponds to a configuration in which four power storage devices are connected in series, and further includes the following configuration in addition to the configuration of the above-described second embodiment. Since the configuration between the third metal foil layer 13 and the fourth metal foil layer 14 (including both metal foil layers 13 and 14) is the same as that in the second embodiment, the same components are denoted by the same reference numerals. The description is omitted.
 この第3実施形態では、前記第3金属箔層(単層の金属箔からなる)13における前記第1金属箔層11とは反対側(下面側)に第5金属箔層15が配置されている。前記第3金属箔層13における第5金属箔層15側(下面側)の面の一部の領域に第4負極活物質層34が積層されている。本実施形態では、前記第3金属箔層13における第5金属箔層15側(下面側)の面の中央部(周縁部を除いた領域)に前記第4負極活物質層34が積層されている。また、本実施形態では、前記第3金属箔層13の第5金属箔層15側(下面側)の面の全面に第2バインダー層72が積層されている。即ち、本実施形態では、前記第3金属箔層13の第5金属箔層15側(下面側)の面に前記第2バインダー層72を介して前記第4負極活物質層34が積層されている(図4参照)。また、本実施形態では、前記第5金属箔層15は、単層の金属箔からなる(複数枚の金属箔の積層物で構成されたものではない)。 In the third embodiment, a fifth metal foil layer 15 is arranged on the opposite side (lower surface side) of the third metal foil layer (consisting of a single layer metal foil) 13 from the first metal foil layer 11. Yes. A fourth negative electrode active material layer 34 is laminated in a partial region of the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side). In the present embodiment, the fourth negative electrode active material layer 34 is laminated on the central portion (region excluding the peripheral portion) of the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side). Yes. In the present embodiment, the second binder layer 72 is laminated on the entire surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side). That is, in the present embodiment, the fourth negative electrode active material layer 34 is laminated on the surface of the third metal foil layer 13 on the fifth metal foil layer 15 side (lower surface side) via the second binder layer 72. (See FIG. 4). Moreover, in this embodiment, the said 5th metal foil layer 15 consists of a single layer metal foil (it is not comprised by the laminated body of several metal foil).
 前記第5金属箔層15における前記第3金属箔層13側(上面側)の面の一部の領域に第4正極活物質層24が積層されている。前記第5金属箔層15および前記第4正極活物質層24により正極含有外側シート体85が構成されている。本実施形態では、前記第5金属箔層15における前記第3金属箔層13側(上面側)の面の中央部(周縁部を除いた領域)に前記第4正極活物質層24が積層されている。また、本実施形態では、前記第5金属箔層15における前記第3金属箔層13側(上面側)の面の全面に第1バインダー層71が積層されている。即ち、本実施形態では、前記第5金属箔層15における前記第3金属箔層13側(上面側)の面に前記第1バインダー層71を介して前記第4正極活物質層24が積層されている(図4参照)。 The fourth positive electrode active material layer 24 is laminated in a partial region of the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side). A positive electrode-containing outer sheet body 85 is constituted by the fifth metal foil layer 15 and the fourth positive electrode active material layer 24. In the present embodiment, the fourth positive electrode active material layer 24 is laminated on the central portion (region excluding the peripheral portion) of the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side). ing. In the present embodiment, the first binder layer 71 is laminated on the entire surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side). That is, in the present embodiment, the fourth positive electrode active material layer 24 is laminated on the surface of the fifth metal foil layer 15 on the third metal foil layer 13 side (upper surface side) via the first binder layer 71. (See FIG. 4).
 前記第3金属箔層13と前記第5金属箔層15の間に第4セパレーター54が配置されている。また、前記第4セパレーター54と前記第4負極活物質層34の間に電解液5が封入され、前記第4セパレーター54と前記第4正極活物質層24の間に電解液5が封入されている(図4参照)。 A fourth separator 54 is disposed between the third metal foil layer 13 and the fifth metal foil layer 15. In addition, the electrolyte solution 5 is sealed between the fourth separator 54 and the fourth negative electrode active material layer 34, and the electrolyte solution 5 is sealed between the fourth separator 54 and the fourth positive electrode active material layer 24. (See FIG. 4).
  更に、前記第3金属箔層13における周縁部領域と、前記第5金属箔層15における周縁部領域とが、前記第4周縁封止層44を介して接合されて封止されているので、電解液5の漏出を防止できる(図4参照)。 Furthermore, since the peripheral region in the third metal foil layer 13 and the peripheral region in the fifth metal foil layer 15 are bonded and sealed via the fourth peripheral sealing layer 44, The leakage of the electrolyte 5 can be prevented (see FIG. 4).
  上記第3実施形態の蓄電デバイスモジュール1では、第4金属箔層14および第5金属箔層15が、端子および外装材の両機能を果たすものであり、従って本構成にさらに外装材を要することはないから、蓄電デバイスモジュールとして、軽量化、薄型化、省スペース化を図ることができる。また、上記構成の蓄電デバイスモジュール1は、蓄電デバイスが4個直列接続された構成に相当するものであるが、接続箇所に相当する第1金属箔層11、第2金属箔層12および第3金属箔層13が、単層の金属箔で形成されているので(複数枚の金属箔の積層物ではないので)、蓄電デバイス(セル等)間の電子の移動がスムーズになり、蓄電デバイス(セル等)全体の内部抵抗が小さくなり効率よくエネルギーを取り出すことができるし、発熱も抑制できると共に、蓄電デバイスモジュール全体として薄型化、軽量化及び省スペース化も実現できる。更に、本実施形態では、第4金属箔層14および第5金属箔層15も単層の金属箔で形成されているので、より一層薄型化、軽量化、省スペース化を図ることができる。 In the electrical storage device module 1 of the said 3rd Embodiment, the 4th metal foil layer 14 and the 5th metal foil layer 15 fulfill | perform both the function of a terminal and an exterior material, Therefore Therefore an exterior material is further required for this structure. Therefore, the power storage device module can be reduced in weight, thickness, and space. The power storage device module 1 having the above configuration corresponds to a configuration in which four power storage devices are connected in series, and the first metal foil layer 11, the second metal foil layer 12, and the third corresponding to the connection locations. Since the metal foil layer 13 is formed of a single-layer metal foil (since it is not a laminate of a plurality of metal foils), electrons move smoothly between power storage devices (cells, etc.), and the power storage device ( The overall internal resistance of the cell and the like can be reduced, energy can be extracted efficiently, heat generation can be suppressed, and the power storage device module as a whole can be reduced in thickness, weight and space. Furthermore, in the present embodiment, since the fourth metal foil layer 14 and the fifth metal foil layer 15 are also formed of a single layer metal foil, it is possible to further reduce the thickness, weight, and space.
  本発明では、例えば、図2に示す構成(蓄電デバイスが2個直列接続された構成に相当するもの)を基本にして、第2金属箔層12(単層の金属箔からなる)の外側にさらに1ないし複数の同様の蓄電デバイスが直列接続された構成、又は/及び、第3金属箔層13(単層の金属箔からなる)の外側にさらに1ないし複数の同様の蓄電デバイスが直列接続された構成を採用してもよい。例えば、上記態様で5個以上の蓄電デバイスが直列接続された構成を採用することも可能であり、必要に応じて高電圧出力の蓄電デバイスモジュール(組電池等)を提供できる。 In the present invention, for example, on the basis of the configuration shown in FIG. 2 (corresponding to a configuration in which two power storage devices are connected in series), outside the second metal foil layer 12 (consisting of a single layer metal foil). Further, one or more similar power storage devices are connected in series, and / or one or more similar power storage devices are connected in series outside the third metal foil layer 13 (consisting of a single layer metal foil). You may employ | adopt the structure made. For example, it is possible to adopt a configuration in which five or more power storage devices are connected in series in the above-described aspect, and a high-voltage output power storage device module (assembled battery or the like) can be provided as necessary.
 上記第1~3実施形態では、蓄電デバイスモジュールの厚さ方向の両側が金属箔層になっているので(図2~4参照)、タブを用いることなく電気の移動(取り出し等)を行うことができるものであり、このようにタブレスの蓄電デバイスモジュール1を構成することができる。 In the above first to third embodiments, since both sides in the thickness direction of the electricity storage device module are metal foil layers (see FIGS. 2 to 4), electricity can be moved (taken out) without using a tab. In this way, the tabless power storage device module 1 can be configured.
 或いは、図5、6に示すような構成を採用することによってタブレス型の蓄電デバイスモジュール1を構成してもよい。このタブレス型の蓄電デバイスモジュール1は、上述した第1実施形態の構成を具備した上で、更に次のような構成を備えている。第2金属箔層12と第3金属箔層13の間の構成(両金属箔層12、13も含む)は、前記第1実施形態(図2)と同一であるので、同一構成部について同一の符号を付してその説明は省略する。 Alternatively, the tabless power storage device module 1 may be configured by adopting the configuration shown in FIGS. The tabless power storage device module 1 has the following configuration in addition to the configuration of the first embodiment described above. Since the configuration between the second metal foil layer 12 and the third metal foil layer 13 (including both the metal foil layers 12 and 13) is the same as that in the first embodiment (FIG. 2), the same components are the same. The description is omitted.
  このタブレス型の蓄電デバイスモジュール1は、前記第1実施形態の構成を具備すると共に、前記第2金属箔層(単層の金属箔からなる)12における前記第1金属箔層11とは反対側(上面側)の面に、該第2金属箔層が露出した第1金属露出部9を残した態様で、第1絶縁樹脂フィルム8が積層されている。本実施形態では、前記第2金属箔層12における前記第1金属箔層11とは反対側(上面側)の面に、該第2金属箔層が露出した第1金属露出部9を残した態様で、第3接着剤層81を介して第1絶縁樹脂フィルム8が積層されている(図6参照)。 The tabless power storage device module 1 has the configuration of the first embodiment and is opposite to the first metal foil layer 11 in the second metal foil layer (consisting of a single layer metal foil) 12. The 1st insulating resin film 8 is laminated | stacked on the surface of the (upper surface side) in the aspect which left the 1st metal exposed part 9 which this 2nd metal foil layer exposed. In the present embodiment, the first metal exposed portion 9 where the second metal foil layer is exposed is left on the surface (upper surface side) opposite to the first metal foil layer 11 in the second metal foil layer 12. In the embodiment, the first insulating resin film 8 is laminated via the third adhesive layer 81 (see FIG. 6).
 更に、前記第3金属箔層(単層の金属箔からなる)13における前記第1金属箔層11とは反対側(下面側)の面に、該第3金属箔層が露出した第2金属露出部19を残した態様で、第2絶縁樹脂フィルム18が積層されている。本実施形態では、前記第3金属箔層13における前記第1金属箔層11とは反対側(下面側)の面に、該第3金属箔層が露出した第2金属露出部19を残した態様で、第4接着剤層82を介して第2絶縁樹脂フィルム18が積層されている(図6参照)。 Further, the second metal foil layer is exposed on the surface (the lower surface side) opposite to the first metal foil layer 11 in the third metal foil layer (consisting of a single layer metal foil) 13. The second insulating resin film 18 is laminated with the exposed portion 19 left. In the present embodiment, the second metal exposed portion 19 where the third metal foil layer is exposed is left on the surface (the lower surface side) opposite to the first metal foil layer 11 in the third metal foil layer 13. In the embodiment, the second insulating resin film 18 is laminated via the fourth adhesive layer 82 (see FIG. 6).
 また、本実施形態では、前記第1金属露出部9は、第2金属箔層12における前記第1金属箔層11とは反対側(上面側)の面の中央領域に設けられ、前記第2金属露出部19は、前記第3金属箔層13における前記第1金属箔層11とは反対側(下面側)の面の中央領域に設けられている(図5、6参照)。 In the present embodiment, the first metal exposed portion 9 is provided in a central region of the surface of the second metal foil layer 12 opposite to the first metal foil layer 11 (upper surface side). The metal exposed portion 19 is provided in the central region of the surface of the third metal foil layer 13 opposite to the first metal foil layer 11 (lower surface side) (see FIGS. 5 and 6).
 この図5、6に示す蓄電デバイスモジュールでは、前記第一実施形態のものと同様の効果が得られることに加えて、絶縁樹脂フィルム8、18がデバイスモジュールの両側に積層されていることにより、(金属露出部を除いて)絶縁性を十分に確保できると共に、物理的強度も十分に確保できる。従って、この蓄電デバイスモジュールは、絶縁性を備えていることが要求される箇所や凹凸のある箇所へ搭載することにも十分に対応できる。また、負極と電気的に導通している第1金属露出部9および正極と電気的に導通している第2金属露出部19が存在していることで、これら金属露出部9、19を介して電気の授受を行うことができるので、タブリードを不要とできる(使用しないで済む)利点がある。更に、タブリードが不要となるので、蓄電デバイスの充放電時の発熱がリード線周りに集中するような現象が生じないので、蓄電デバイスモジュール1の寿命を延ばすことができる(即ち長寿命の蓄電デバイスモジュールを得ることができる)。 In the electricity storage device module shown in FIGS. 5 and 6, in addition to obtaining the same effect as that of the first embodiment, the insulating resin films 8 and 18 are laminated on both sides of the device module, Insulation can be sufficiently secured (excluding the exposed metal portion), and physical strength can be sufficiently secured. Therefore, the electricity storage device module can sufficiently cope with being mounted in a place where it is required to have insulating properties or a place with unevenness. In addition, since the first metal exposed portion 9 electrically connected to the negative electrode and the second metal exposed portion 19 electrically connected to the positive electrode are present, the metal exposed portions 9 and 19 are interposed therebetween. Therefore, there is an advantage that a tab lead can be dispensed with (no use). Further, since the tab lead is not required, the phenomenon that the heat generated during charging / discharging of the power storage device is concentrated around the lead wire does not occur, so the life of the power storage device module 1 can be extended (that is, the long life power storage device). Module can be obtained).
  なお、本発明では、例えば図2で示す構成のものにおいて負極含有外側シート体84の第2金属箔層12にタブを電着する等して接続すると共に正極含有外側シート体85の第3金属箔層13にタブを電着する等して接続した構成として、タブを介して電気を取り出すようにしてもよい。図3、4で示す構成のものにおいても同様に、負極含有外側シート体84の金属箔層にタブを電着する等して接続すると共に正極含有外側シート体85の金属箔層にタブを電着する等して接続した構成として、タブを介して電気を取り出すようにしてもよい。さらに多くの蓄電デバイスが直列接続された構成においても同様にしてタブを介して電気を取り出すようにしてもよい。 In the present invention, for example, in the structure shown in FIG. 2, the third metal of the positive electrode-containing outer sheet body 85 is connected to the second metal foil layer 12 of the negative electrode-containing outer sheet body 84 by electrodeposition or the like. As a configuration in which the tab is connected to the foil layer 13 by electrodeposition, electricity may be taken out through the tab. 3 and 4, the tabs are similarly connected to the metal foil layer of the negative electrode-containing outer sheet body 84 by electrodeposition or the like, and the tabs are electrically connected to the metal foil layer of the positive electrode-containing outer sheet body 85. You may make it take out electricity through a tab as a structure connected by wearing. Even in a configuration in which more power storage devices are connected in series, electricity may be taken out through a tab in the same manner.
 また、本発明では、例えば図2で示す構成のものにおいて負極含有外側シート体84の第2金属箔層12を水平方向の外方(図2で左方向又は右方向)に延ばした構成とすると共に正極含有外側シート体85の第3金属箔層13を水平方向の外方(図2で左方向又は右方向)に延ばした構成としてこれら延長部をタブとして利用するようにしてもよい。図3、4で示す構成のものにおいても同様である。また、さらに多くの蓄電デバイスが直列接続された構成においても前記延長部をタブとして利用するようにしてもよい。 Further, in the present invention, for example, in the configuration shown in FIG. 2, the second metal foil layer 12 of the negative electrode-containing outer sheet body 84 is extended outward in the horizontal direction (left direction or right direction in FIG. 2). Moreover, you may make it utilize these extension parts as a tab as a structure which extended the 3rd metal foil layer 13 of the positive electrode containing outer side sheet | seat body 85 to the horizontal direction outward (left direction or right direction in FIG. 2). The same applies to the configuration shown in FIGS. Further, the extension portion may be used as a tab even in a configuration in which more power storage devices are connected in series.
 また、本発明では、例えば図2で示す構成のものにおいて、第2金属箔層12、第2バインダー層72、第3金属箔層13、第1バインダー層71が設けられていない構成とし、露出している第1負極活物質層31にタブを電着する等して接続すると共に、露出している第2正極活物質層22にタブを電着する等して接続した構成として、タブを介して電気を取り出すようにしてもよい。図3、4で示す構成のものにおいても同様の構成としてもよく、さらに多くの蓄電デバイスが直列接続された構成においても同様の構成としてもよい。このとき、厚さ方向の両外側の外側シート体84、85のさらに外側に、金属露出部のない絶縁樹脂層(フィルムでもよいし、コート層等でもよい)が積層されていてもよい。 In the present invention, for example, in the configuration shown in FIG. 2, the second metal foil layer 12, the second binder layer 72, the third metal foil layer 13, and the first binder layer 71 are not provided and exposed. The tab is connected to the exposed first negative electrode active material layer 31 by electrodeposition or the like, and the tab is connected to the exposed second positive electrode active material layer 22 by electrodeposition or the like. You may make it take out electricity through. The configuration shown in FIGS. 3 and 4 may be the same, or may be the same in a configuration in which more power storage devices are connected in series. At this time, an insulating resin layer (which may be a film or a coat layer) without a metal exposed portion may be laminated on the outer side of the outer sheet bodies 84 and 85 on both outer sides in the thickness direction.
  本発明において、前記金属箔層(前記第1~5金属箔層11、12、13、14、15等)としては、特に限定されるものではないが、例えば、ニッケル箔、アルミニウム箔等の他、さらに多種金属を1層に貼り合わせたクラッド材やメッキ箔等が挙げられる。中でも、ニッケル箔を用いるのが好ましく、この場合には電解液等に対する耐食性等をさらに向上できる利点がある。前記金属箔層の厚さは7μm~150μmに設定されるのが好ましい。特にリチウム2次電池として使用される場合には、前記金属箔層は、厚さが7μm~50μmであるのが好ましい。 In the present invention, the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) is not particularly limited, but for example, other than nickel foil, aluminum foil, etc. Furthermore, a clad material or a plating foil in which various metals are bonded to one layer can be used. Among these, it is preferable to use a nickel foil. In this case, there is an advantage that the corrosion resistance against the electrolytic solution and the like can be further improved. The thickness of the metal foil layer is preferably set to 7 μm to 150 μm. Particularly when used as a lithium secondary battery, the metal foil layer preferably has a thickness of 7 μm to 50 μm.
  前記正極活物質層(前記第1~4正極活物質層21、22、23、24等)は、特に限定されるものではないが、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、CMC(カルボキシメチルセルロースナトリウム塩など)、PAN(ポリアクリロニトリル)等のバインダーに、塩(例えば、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、マンガン酸リチウム等)を添加した混合組成物などで形成される。前記正極活物質層の厚さは、2μm~300μmに設定されるのが好ましい。 The positive electrode active material layer (the first to fourth positive electrode active material layers 21, 22, 23, 24, etc.) is not particularly limited. For example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber) , CMC (Carboxymethylcellulose sodium salt, etc.), PAN (Polyacrylonitrile), etc. binders such as lithium cobaltate, lithium nickelate, lithium iron phosphate, lithium manganate, etc. It is formed. The thickness of the positive electrode active material layer is preferably set to 2 μm to 300 μm.
  前記正極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。 導電 The positive electrode active material layer may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).
  前記第1バインダー層71を設けた場合には、この第1バインダー層71によって金属箔層と正極活物質層との密着性をより良くすることで金属箔層と正極活物質層の間の導電性をさらに向上させることができる。 When the first binder layer 71 is provided, the first binder layer 71 improves the adhesion between the metal foil layer and the positive electrode active material layer, thereby improving the conductivity between the metal foil layer and the positive electrode active material layer. The property can be further improved.
  前記第1バインダー層71としては、特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN等で形成された層が挙げられ、例えば、前記金属箔層の表面に塗布することにより形成できる。 Although it does not specifically limit as said 1st binder layer 71, For example, the layer formed with PVDF, SBR, CMC, PAN etc. is mentioned, For example, by apply | coating to the surface of the said metal foil layer, for example. Can be formed.
  前記第1バインダー層71には、金属箔層と正極活物質層の間の導電性を向上させるために、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤がさらに添加されていてもよい。 The first binder layer 71 may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the positive electrode active material layer.
 前記第1バインダー層71の厚さは、0.2μm~10μmに設定されるのが好ましい。10μm以下とすることで、バインダー自体が蓄電デバイスモジュール1の内部抵抗を増大させることを極力抑制することができる。 The thickness of the first binder layer 71 is preferably set to 0.2 μm to 10 μm. By setting it as 10 micrometers or less, it can suppress that the binder itself increases the internal resistance of the electrical storage device module 1 as much as possible.
 前記第1バインダー層71は、設けられていなくても良いが、金属箔層と正極活物質層の結着性を向上させるために、金属箔層と正極活物質層の間に設けられているのが好ましい。 The first binder layer 71 may not be provided, but is provided between the metal foil layer and the positive electrode active material layer in order to improve the binding property between the metal foil layer and the positive electrode active material layer. Is preferred.
  前記第1周縁接着剤層61としては、特に限定されるものではないが、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤層が挙げられる。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、耐電解液性および水蒸気バリア性を向上させることができる。また、2液硬化型のオレフィン系接着剤により形成された層であるのが特に好ましい。2液硬化型のオレフィン系接着剤を用いた場合には、電解液による膨潤で接着性が低下するのを十分に防止できる。なお、蓄電デバイスモジュール1として電池を構成する場合には、前記第1周縁接着剤層61は、酸変性ポリプロピレン接着剤、酸変性ポリエチレン接着剤を用いるのが好ましい。前記第1周縁接着剤層61の厚さは、0.5μm~5μmに設定されるのが好ましい。 The first peripheral adhesive layer 61 is not particularly limited. For example, a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, and a fluorine adhesive. An adhesive layer formed of an agent or the like can be mentioned. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the electrolytic solution resistance and the water vapor barrier property can be improved. A layer formed of a two-component curable olefin adhesive is particularly preferable. In the case of using a two-component curable olefin adhesive, it is possible to sufficiently prevent the adhesiveness from being lowered due to swelling by the electrolytic solution. In the case where a battery is configured as the electricity storage device module 1, the first peripheral adhesive layer 61 is preferably an acid-modified polypropylene adhesive or an acid-modified polyethylene adhesive. The thickness of the first peripheral adhesive layer 61 is preferably set to 0.5 μm to 5 μm.
  前記負極活物質層(前記第1~4負極活物質層31、32、33、34等)としては、特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN等のバインダーに、添加物(例えば、黒鉛、チタン酸リチウム、Si系合金、スズ系合金等)を添加した混合組成物等で形成される。前記負極活物質層の厚さは、1μm~300μmに設定されるのが好ましい。 The negative electrode active material layer (the first to fourth negative electrode active material layers 31, 32, 33, 34, etc.) is not particularly limited. For example, a binder such as PVDF, SBR, CMC, PAN, It is formed of a mixed composition to which an additive (for example, graphite, lithium titanate, Si alloy, tin alloy, etc.) is added. The thickness of the negative electrode active material layer is preferably set to 1 μm to 300 μm.
  前記負極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。 導電 The negative electrode active material layer may further contain a conductive additive such as carbon black or CNT (carbon nanotube).
 前記負極活物質層や前記正極活物質層を当該活物質の塗工により形成する場合には、活物質を塗工しない部分(周縁部等)に予めマスキングテープでマスキングを行ってから塗工することにより、活物質を塗工しない部分(周縁部等)に活物質を付着させることなく、所定領域に活物質層を形成することができる。前記マスキングテープとしては、ポリエステル樹脂フィルム、ポリエチレン樹脂フィルム、ポリプロピレン樹脂フィルム等のフィルムに粘着剤を塗布したものを使用できる。 When the negative electrode active material layer or the positive electrode active material layer is formed by application of the active material, it is applied after masking a portion (peripheral portion, etc.) where the active material is not applied with a masking tape in advance. Thus, the active material layer can be formed in a predetermined region without attaching the active material to a portion (peripheral portion or the like) where the active material is not applied. As said masking tape, what apply | coated the adhesive to films, such as a polyester resin film, a polyethylene resin film, a polypropylene resin film, can be used.
  前記第2バインダー層72を設けた場合には、この第2バインダー層72によって金属箔層と負極活物質層との密着性をより良くすることで金属箔層と負極活物質層の間の導電性をさらに向上させることができる。 When the second binder layer 72 is provided, the second binder layer 72 improves the adhesion between the metal foil layer and the negative electrode active material layer, thereby improving the conductivity between the metal foil layer and the negative electrode active material layer. The property can be further improved.
  前記第2バインダー層72としては、特に限定されるものではないが、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、CMC(カルボキシメチルセルロースナトリウム塩など)、PAN(ポリアクリロニトリル)等で形成された層が挙げられ、例えば、金属箔層の表面に塗布することにより形成できる。 The second binder layer 72 is not particularly limited. For example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), CMC (carboxymethyl cellulose sodium salt, etc.), PAN (polyacrylonitrile), etc. The formed layer is mentioned, For example, it can form by apply | coating to the surface of a metal foil layer.
  前記第2バインダー層72には、金属箔層と負極活物質層の間の導電性を向上させるために、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤がさらに添加されていてもよい。 The second binder layer 72 may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube) in order to improve the conductivity between the metal foil layer and the negative electrode active material layer.
 前記第2バインダー層72の厚さは、0.2μm~10μmに設定されるのが好ましい。10μm以下とすることで、バインダー自体が蓄電デバイスモジュール1の内部抵抗を増大させることを極力抑制することができる。 The thickness of the second binder layer 72 is preferably set to 0.2 μm to 10 μm. By setting it as 10 micrometers or less, it can suppress that the binder itself increases the internal resistance of the electrical storage device module 1 as much as possible.
 前記第2バインダー層72は、設けられていなくても良いが、金属箔層と負極活物質層の結着性を向上させるために、金属箔層と負極活物質層の間に設けられているのが好ましい。 The second binder layer 72 may not be provided, but is provided between the metal foil layer and the negative electrode active material layer in order to improve the binding property between the metal foil layer and the negative electrode active material layer. Is preferred.
  前記第2周縁接着剤層62としては、特に限定されるものではないが、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤層が挙げられる。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、耐電解液性および水蒸気バリア性を向上させることができる。また、2液硬化型のオレフィン系接着剤により形成された層であるのが特に好ましい。2液硬化型のオレフィン系接着剤を用いた場合には、電解液による膨潤で接着性が低下するのを十分に防止できる。なお、蓄電デバイスモジュール1として電池を構成する場合には、前記第2周縁接着剤層62は、酸変性ポリプロピレン接着剤、酸変性ポリエチレン接着剤を用いるのが好ましい。前記第2周縁接着剤層62の厚さは、0.5μm~5μmに設定されるのが好ましい。 The second peripheral adhesive layer 62 is not particularly limited. For example, a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, and a fluorine adhesive. An adhesive layer formed of an agent or the like can be mentioned. Among them, it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the electrolytic solution resistance and the water vapor barrier property can be improved. A layer formed of a two-component curable olefin adhesive is particularly preferable. In the case of using a two-component curable olefin adhesive, it is possible to sufficiently prevent the adhesiveness from being lowered due to swelling by the electrolytic solution. In the case where a battery is configured as the electricity storage device module 1, it is preferable to use an acid-modified polypropylene adhesive or an acid-modified polyethylene adhesive for the second peripheral adhesive layer 62. The thickness of the second peripheral adhesive layer 62 is preferably set to 0.5 μm to 5 μm.
 上記実施形態では、前記周縁封止層(熱可塑性樹脂を含有してなる第1~4周縁封止層41、42、43、44等)は、厚さ方向に隣り合う2つの金属箔層のうち、一方の金属箔層における対向面の周縁部に積層された熱可塑性樹脂層41X、42X、43X、44Xと、もう一方の金属箔層における対向面の周縁部に積層された熱可塑性樹脂層41Y、42Y、43Y、44Yとが重ね合わされて熱により融着されて形成されたものである(図2~4、6参照)。前記熱可塑性樹脂層41X、42X、43X、44X、41Y、42Y、43Y、44Yとしては、熱可塑性樹脂未延伸フィルムで形成されるのが好ましい。前記熱可塑性樹脂未延伸フィルムは、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムにより構成されるのが好ましい。前記熱可塑性樹脂層41X、42X、43X、44X、41Y、42Y、43Y、44Yの厚さは、それぞれ20μm~150μmに設定されるのが好ましい。 In the above embodiment, the peripheral sealing layer (the first to fourth peripheral sealing layers 41, 42, 43, 44, etc. containing a thermoplastic resin) is formed of two metal foil layers adjacent in the thickness direction. Among them, the thermoplastic resin layers 41X, 42X, 43X, and 44X laminated on the peripheral portion of the opposing surface in one metal foil layer, and the thermoplastic resin layer laminated on the peripheral portion of the opposing surface in the other metal foil layer 41Y, 42Y, 43Y, 44Y are superposed and fused by heat (see FIGS. 2 to 4 and 6). The thermoplastic resin layers 41X, 42X, 43X, 44X, 41Y, 42Y, 43Y, and 44Y are preferably formed of unstretched thermoplastic resin films. The thermoplastic resin unstretched film is not particularly limited, but includes at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers. It is preferable to be constituted by an unstretched film. The thicknesses of the thermoplastic resin layers 41X, 42X, 43X, 44X, 41Y, 42Y, 43Y, 44Y are preferably set to 20 μm to 150 μm, respectively.
 前記セパレーター(前記第1~4セパレーター51、52、53、54等)としては、特に限定されるものではないが、例えば、
・ポリエチレン製セパレーター
・ポリプロピレン製セパレーター
・ポリエチレンフィルムとポリプロピレンフィルムとからなる複層フィルムで形成されるセパレーター
・上記のいずれかにセラミック等の耐熱無機物を塗布した湿式又は乾式の多孔質フィルムで構成されるセパレーター
 等が挙げられる。前記セパレーターの厚さは、5μm~50μmに設定されるのが好ましい。
The separator (the first to fourth separators 51, 52, 53, 54, etc.) is not particularly limited.
・ Separator made of polyethylene ・ Separator made of polypropylene ・ Separator formed of a multilayer film made of polyethylene film and polypropylene film ・ A wet or dry porous film in which a heat-resistant inorganic material such as ceramic is applied to any of the above Separators and the like. The thickness of the separator is preferably set to 5 μm to 50 μm.
  前記電解液5としては、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートおよびジメトキシエタンからなる群より選ばれる少なくとも2種の電解液と、リチウム塩と、を含む混合非水系電解液を用いるのが好ましい。前記リチウム塩としては、特に限定されるものではないが、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム等が挙げられる。前記電解液5としては、前述の混合非水系電解液が、PVDF、PEO(ポリエチレンオキサイド)等とゲル化したものを用いてもよい。 The electrolytic solution 5 is not particularly limited, but at least two types of electrolytic solutions selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and dimethoxyethane, and a lithium salt It is preferable to use a mixed non-aqueous electrolyte containing The lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate and lithium tetrafluoroborate. As the electrolytic solution 5, the aforementioned mixed non-aqueous electrolytic solution gelled with PVDF, PEO (polyethylene oxide) or the like may be used.
  前記第1絶縁樹脂フィルム8および第2絶縁樹脂フィルム18としては、特に限定されるものではないが、延伸ポリアミドフィルム(延伸ナイロンフィルム等)または延伸ポリエステルフィルムを用いるのが好ましい。中でも、二軸延伸ポリアミドフィルム(二軸延伸ナイロンフィルム等)、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルムまたは二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。なお、前記第1絶縁樹脂フィルム8および第2絶縁樹脂フィルム18は、いずれも、単層で形成されていても良いし、或いは、例えば延伸ポリエステルフィルム/延伸ポリアミドフィルムからなる複層(延伸PETフィルム/延伸ナイロンフィルムからなる複層等)で形成されていても良い。 The first insulating resin film 8 and the second insulating resin film 18 are not particularly limited, but it is preferable to use a stretched polyamide film (stretched nylon film or the like) or a stretched polyester film. Among them, a biaxially stretched polyamide film (such as a biaxially stretched nylon film), a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film, or a biaxially stretched polyethylene naphthalate (PEN) film is used. Is particularly preferred. The first insulating resin film 8 and the second insulating resin film 18 may both be formed of a single layer, or may be a multilayer (stretched PET film) made of, for example, a stretched polyester film / stretched polyamide film. / Multi-layers made of stretched nylon film, etc.).
 前記第1絶縁樹脂フィルム8には、第1金属露出部9を確保するための開口部8Xが一部に設けられる(図5、6参照)。上記実施形態では、開口部8Xは、第1絶縁樹脂フィルム8の中央部に設けられているが、特にこのような位置に限定されるものではない。前記開口部8Xの平面視形状も矩形状に限定されない。 The first insulating resin film 8 is partially provided with an opening 8X for securing the first metal exposed portion 9 (see FIGS. 5 and 6). In the said embodiment, although the opening part 8X is provided in the center part of the 1st insulating resin film 8, it is not specifically limited to such a position. The planar view shape of the opening 8X is not limited to a rectangular shape.
 同様に、前記第2絶縁樹脂フィルム18には、第2金属露出部19を確保するための開口部18Xが一部に設けられる(図6参照)。上記実施形態では、開口部18Xは、第2絶縁樹脂フィルム18の中央部に設けられているが、特にこのような位置に限定されるものではない。前記開口部18Xの平面視形状も矩形状に限定されない。 Similarly, the second insulating resin film 18 is partially provided with an opening 18X for securing the second metal exposed portion 19 (see FIG. 6). In the said embodiment, although the opening part 18X is provided in the center part of the 2nd insulating resin film 18, it is not specifically limited to such a position. The planar view shape of the opening 18X is not limited to a rectangular shape.
 前記第1絶縁樹脂フィルム8の厚さおよび前記第1絶縁樹脂フィルム18の厚さは、いずれも、5μm~100μmに設定されるのが好ましい。 The thickness of the first insulating resin film 8 and the thickness of the first insulating resin film 18 are preferably set to 5 μm to 100 μm.
  前記第3接着剤層81、前記第4接着剤層82を設ける場合において、これら接着剤81、82としては、特に限定されるものではないが、ポリエステルウレタン系接着剤およびポリエーテルウレタン系接着剤からなる群より選ばれる少なくとも1種の接着剤を用いるのが好ましい。前記ポリエステルウレタン系接着剤としては、例えば、主剤としてのポリエステル樹脂と、硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエステルウレタン系樹脂接着剤が挙げられる。前記ポリエーテルウレタン系接着剤としては、例えば、主剤としてのポリエーテル樹脂と、硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエーテルウレタン系樹脂接着剤が挙げられる。前記第3接着剤層81の厚さ、前記第4接着剤層82の厚さは、いずれも、0.5μm~5μmに設定されるのが好ましい。前記金属箔層の表面に上記第3接着剤81を塗布した後、第1絶縁樹脂フィルム8を貼り合わせて両者を接着一体化するのがよい。同様に、前記金属箔層の表面に上記第4接着剤82を塗布した後、第2絶縁樹脂フィルム18を貼り合わせて両者を接着一体化するのがよい。 In the case where the third adhesive layer 81 and the fourth adhesive layer 82 are provided, the adhesives 81 and 82 are not particularly limited, but are polyester urethane adhesives and polyether urethane adhesives. It is preferable to use at least one adhesive selected from the group consisting of: Examples of the polyester urethane-based adhesive include a two-component curable polyester urethane-based resin adhesive using a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent. Examples of the polyether urethane adhesive include a two-component curable polyether urethane resin adhesive comprising a polyether resin as a main agent and a polyfunctional isocyanate compound as a curing agent. The thickness of the third adhesive layer 81 and the thickness of the fourth adhesive layer 82 are preferably set to 0.5 μm to 5 μm. After the third adhesive 81 is applied to the surface of the metal foil layer, the first insulating resin film 8 may be bonded together to bond them together. Similarly, after the fourth adhesive 82 is applied to the surface of the metal foil layer, the second insulating resin film 18 may be bonded together to bond them together.
 前記第3接着剤層81および前記第4接着剤層82における接着剤未塗布部(開口部8X、18Xに対応する領域)は、絶縁樹脂フィルム(耐熱性樹脂延伸フィルム等)を通して外観しても接着剤塗布領域とは光沢度が異なるので、開口部のない絶縁樹脂フィルムを貼り合わせた状態でも外側から接着剤未塗布部の位置および形状を判別することができる。しかして、前記貼り合わせた絶縁樹脂フィルムにおける接着剤未塗布部に対応する部分を除去することによって、前記開口部8X、18Xを形成せしめて前記金属露出部9、19を露出させた構成とすることができる。例えば、前記貼り合わせた絶縁樹脂フィルムにおける接着剤未塗布部の周縁にレーザーを照射して、接着剤未塗布部に対応する部分の絶縁樹脂フィルムを切断することにより、前記開口部8X、18Xを形成せしめて前記金属露出部9、19を露出させた構成とすることができる。 The adhesive-unapplied portions (regions corresponding to the openings 8X and 18X) in the third adhesive layer 81 and the fourth adhesive layer 82 may be viewed through an insulating resin film (such as a heat-resistant resin stretched film). Since the glossiness is different from that of the adhesive application region, the position and shape of the adhesive-unapplied portion can be determined from the outside even when an insulating resin film having no opening is bonded. Thus, by removing the portion corresponding to the adhesive-uncoated portion in the bonded insulating resin film, the openings 8X and 18X are formed to expose the metal exposed portions 9 and 19. be able to. For example, the openings 8X and 18X are formed by irradiating a laser to the periphery of the adhesive-unapplied portion in the bonded insulating resin film and cutting the insulating resin film corresponding to the adhesive-uncoated portion. The metal exposed portions 9 and 19 can be exposed by being formed.
 また、前記第3接着剤層81および前記第4接着剤層82は、接着剤未塗布部を判別し易くするために上記接着剤に有機系顔料、無機系顔料、色素等の着色剤を樹脂成分100質量部に対し0.1質量部~5質量部の範囲で添加しても良い。前記有機系顔料としては、特に限定されるものではないが、例えばレーキレッド、ナフトール類、ハンザイエロー、ジスアゾイエロー、ベンズイミダゾロン等のアゾ系顔料、キノフタロン、イソインドリン、ピロロピロール、ジオキサジン、フタロシアニンブルー、フタロシアニングリーン等の多環式系顔料、レーキレッドC、ウォチュングレッド等のレーキ顔料などが挙げられる。また、前記無機系顔料としては、特に限定されるものではないが、例えばカーボンブラック、酸化チタン、炭酸カルシウム、カオリン、酸化鉄、酸化亜鉛等が挙げられる。また、前記色素としては、特に限定されるものではないが、例えばトリナトリウム塩(黄色4号)等の黄色色素類、ジナトリウム塩(赤色3号)等の赤色色素類、ジナトリウム塩(青色1号)等の青色色素類などが挙げられる。 In addition, the third adhesive layer 81 and the fourth adhesive layer 82 are made of resin with a coloring agent such as an organic pigment, an inorganic pigment, or a dye added to the adhesive in order to make it easy to distinguish an uncoated portion. It may be added in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the component. Examples of the organic pigment include, but are not limited to, azo pigments such as lake red, naphthols, hansa yellow, disazo yellow, and benzimidazolone, quinophthalone, isoindoline, pyrrolopyrrole, dioxazine, and phthalocyanine blue. And polycyclic pigments such as phthalocyanine green, and lake pigments such as Lake Red C and Watchung Red. The inorganic pigment is not particularly limited, and examples thereof include carbon black, titanium oxide, calcium carbonate, kaolin, iron oxide, and zinc oxide. Further, the dye is not particularly limited. For example, yellow dyes such as trisodium salt (yellow No. 4), red dyes such as disodium salt (red No. 3), disodium salt (blue) 1) and the like.
  また、着色剤の添加の有無にかかわらず、透明の絶縁樹脂フィルム(耐熱性樹脂延伸フィルム等)を貼り合わせることで、接着剤未塗布部を判別し易くできる。前記第3接着剤層81や前記第4接着剤層82の接着剤に前記着色剤を添加し、かつ透明の絶縁樹脂フィルム(耐熱性樹脂延伸フィルム等)を貼り合わせた構成とすれば、接着剤未塗布部の判別は極めて容易なものとなる。 か か わ ら ず Regardless of whether or not a colorant is added, by bonding a transparent insulating resin film (such as a heat-resistant resin stretched film), it is possible to easily determine an adhesive-unapplied portion. If the colorant is added to the adhesive of the third adhesive layer 81 or the fourth adhesive layer 82 and a transparent insulating resin film (such as a heat-resistant resin stretched film) is bonded, the adhesive Discrimination of the agent uncoated portion is extremely easy.
 本発明において、前記金属箔層(前記第1~5金属箔層11、12、13、14、15等)における少なくとも前記正極活物質層が積層される側の面に化成皮膜が形成されているのが好ましい。また、同様に、前記前記金属箔層(前記第1~5金属箔層11、12、13、14、15等)における少なくとも前記負極活物質層が積層される側の面に化成皮膜が形成されているのが好ましい。前記化成皮膜は、金属箔の表面に化成処理を施すことによって形成される皮膜であり、このような化成処理が施されていることによって、内容物(電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理を行うことによって、金属箔に化成処理を施す。即ち、脱脂処理を行った金属箔の表面に、
1)リン酸と、
 クロム酸と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
 上記1)~3)のうちのいずれかの水溶液を金属箔の表面に塗工した後、乾燥することにより、化成処理を施す。
In the present invention, a chemical conversion film is formed on at least the surface of the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) on which the positive electrode active material layer is laminated. Is preferred. Similarly, a chemical conversion film is formed on at least the surface of the metal foil layer (the first to fifth metal foil layers 11, 12, 13, 14, 15, etc.) on which the negative electrode active material layer is laminated. It is preferable. The chemical conversion film is a film formed by performing a chemical conversion treatment on the surface of the metal foil, and by performing such chemical conversion treatment, corrosion of the metal foil surface by the contents (electrolytic solution, etc.) is caused. Can be sufficiently prevented. For example, a chemical conversion treatment is performed on the metal foil by performing the following treatment. That is, on the surface of the metal foil that has been degreased,
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a fluoride metal salt and a fluoride non-metal salt, and coating the surface of the metal foil with an aqueous solution of any one of the above 1) to 3) After the process, chemical conversion treatment is performed by drying.
 前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2~50mg/m2が好ましく、特に2mg/m2~20mg/m2が好ましい。 The chemical conversion film preferably has a chromium adhesion amount (per one surface) of 0.1 mg / m 2 to 50 mg / m 2 , particularly preferably 2 mg / m 2 to 20 mg / m 2 .
 次に、本発明の蓄電デバイスモジュールの製造方法の一例を説明する。まず、両極含有シート体83、負極含有外側シート体84、正極含有外側シート体85および2枚のセパレーター51、52をそれぞれ準備する(図7参照)。 Next, an example of a method for manufacturing the electricity storage device module of the present invention will be described. First, a bipolar electrode-containing sheet body 83, a negative electrode-containing outer sheet body 84, a positive electrode-containing outer sheet body 85, and two separators 51 and 52 are prepared (see FIG. 7).
 即ち、第1金属箔層11の一方の面(上面)の全面に第1バインダー層71が積層され、該バインダー層71の表面における中央部領域に第1正極活物質層21が積層され、前記第1金属箔層11の一方の面(上面)に積層された第1バインダー層71における第1正極活物質層が形成されていない周縁部に第1周縁接着剤層61を介して第1熱可塑性樹脂層41Yが積層されると共に、前記第1金属箔層11の他方の面(下面)の全面に第2バインダー層72が積層され、該バインダー層72の表面における中央部領域に第2負極活物質層32が積層され、前記第1金属箔層11の他方の面(下面)に積層された第2バインダー層72における第2負極活物質層が形成されていない周縁部に第2周縁接着剤層62を介して第2熱可塑性樹脂層42Xが積層されてなる両極含有シート体83を準備する。 That is, the first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the first metal foil layer 11, and the first positive electrode active material layer 21 is laminated on the central region of the surface of the binder layer 71, In the first binder layer 71 laminated on one surface (upper surface) of the first metal foil layer 11, the first heat is passed through the first peripheral adhesive layer 61 to the peripheral portion where the first positive electrode active material layer is not formed. A plastic resin layer 41Y is laminated, a second binder layer 72 is laminated on the entire other surface (lower surface) of the first metal foil layer 11, and a second negative electrode is formed in the central region on the surface of the binder layer 72. The active material layer 32 is laminated, and the second peripheral adhesive is attached to the peripheral portion of the second binder layer 72 laminated on the other surface (lower surface) of the first metal foil layer 11 where the second negative active material layer is not formed. The second thermoplastic tree through the agent layer 62 Preparing a bipolar-containing sheet member 83 a layer 42X are stacked.
 また、第2金属箔層12の一方の面(下面)の全面に第2バインダー層72が積層され、該バインダー層72の表面における中央部領域に第1負極活物質層31が積層され、前記第2金属箔層12の一方の面(下面)に積層された第2バインダー層72における第1負極活物質層が形成されていない周縁部に第2周縁接着剤層62を介して第1熱可塑性樹脂層41Xが積層されてなる負極含有外側シート体84を準備する。 Further, the second binder layer 72 is laminated on the entire surface of one surface (lower surface) of the second metal foil layer 12, and the first negative electrode active material layer 31 is laminated in the central region on the surface of the binder layer 72, The first heat is passed through the second peripheral adhesive layer 62 to the peripheral portion of the second binder layer 72 laminated on one surface (lower surface) of the second metal foil layer 12 where the first negative electrode active material layer is not formed. A negative electrode-containing outer sheet body 84 in which the plastic resin layer 41X is laminated is prepared.
 また、第3金属箔層13の一方の面(上面)の全面に第1バインダー層71が積層され、該バインダー層71の表面における中央部領域に第2正極活物質層22が積層され、前記第3金属箔層13の一方の面(上面)に積層された第1バインダー層7における第2正極活物質層が形成されていない周縁部に第1周縁接着剤層61を介して第2熱可塑性樹脂層42Yが積層されてなる正極含有外側シート体85を準備する。 Further, the first binder layer 71 is laminated on the entire surface of one surface (upper surface) of the third metal foil layer 13, and the second positive electrode active material layer 22 is laminated on the central region of the surface of the binder layer 71, In the first binder layer 7 laminated on one surface (upper surface) of the third metal foil layer 13, the second heat is passed through the first peripheral adhesive layer 61 to the peripheral portion where the second positive electrode active material layer is not formed. A positive electrode-containing outer sheet body 85 in which the plastic resin layer 42Y is laminated is prepared.
  また、第1セパレーター51および第2セパレーター52を準備する。しかして、負極含有外側シート体84と両極含有シート体83との間に第1セパレーター51を挟み付けると共に、正極含有外側シート体85と両極含有シート体83との間に第2セパレーター52を挟み付けた状態で、これら重ね合わされた負極含有外側シート体84、両極含有シート体83、正極含有外側シート体85のそれぞれ上下に(厚さ方向に)隣り合うシート体の周縁部同士を加熱挟圧することによって、負極含有外側シート体84の第1熱可塑性樹脂層41Xと、両極含有シート体83の第1熱可塑性樹脂層41Yとをヒートシール接合して第1周縁封止層41を形成せしめると共に、正極含有外側シート体85の第2熱可塑性樹脂層42Yと、両極含有シート体83の第2熱可塑性樹脂層42Xとをヒートシール接合して第2周縁封止層42を形成せしめる。 Also, a first separator 51 and a second separator 52 are prepared. Thus, the first separator 51 is sandwiched between the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body 83, and the second separator 52 is sandwiched between the positive electrode-containing outer sheet body 85 and the bipolar electrode-containing sheet body 83. In the attached state, the peripheral portions of the sheet bodies adjacent to each other above and below (in the thickness direction) of the superimposed negative electrode-containing outer sheet body 84, bipolar electrode-containing sheet body 83, and positive electrode-containing outer sheet body 85 are heated and pressed. As a result, the first thermoplastic resin layer 41X of the negative electrode-containing outer sheet body 84 and the first thermoplastic resin layer 41Y of the bipolar electrode-containing sheet body 83 are heat-sealed to form the first peripheral sealing layer 41. The second thermoplastic resin layer 42Y of the positive electrode-containing outer sheet body 85 and the second thermoplastic resin layer 42X of the bipolar electrode-containing sheet body 83 are heat-sealed and joined together. Allowed to form a peripheral sealing layer 42.
 なお、前記挟み付け操作を行う際には、第1セパレーター51の両端部が、負極含有外側シート体84の第1熱可塑性樹脂層41Xの内方側縁部と、両極含有シート体83の第1熱可塑性樹脂層41Yの内方側縁部との間に挟み込まれると共に、第2セパレーター52の両端部が、正極含有外側シート体85の第2熱可塑性樹脂層42Yの内方側縁部と、両極含有シート体83の第2熱可塑性樹脂層42Xの内方側縁部との間に挟み込まれるように、両セパレーター51、52を配置する(挟み込む)(図7参照)。 When performing the sandwiching operation, both end portions of the first separator 51 are connected to the inner side edge portion of the first thermoplastic resin layer 41X of the negative electrode-containing outer sheet body 84 and the first end of the bipolar electrode-containing sheet body 83. The both ends of the second separator 52 are sandwiched between the inner side edge of the first thermoplastic resin layer 41Y and the inner side edge of the second thermoplastic resin layer 42Y of the positive electrode-containing outer sheet body 85. Both separators 51 and 52 are arranged (sandwiched) so as to be sandwiched between the inner side edges of the second thermoplastic resin layer 42X of the bipolar electrode containing sheet body 83 (see FIG. 7).
  前記ヒートシール接合は、重ね合わされた負極含有外側シート体84、両極含有シート体83、正極含有外側シート体85の周縁部の4辺のうち3辺について先に行って仮封止を行うようにし、次いで残りの未封止の1辺部から、第1セパレーター51と第1負極活物質層31との間に電解液5を注入し、第1セパレーター51と第1正極活物質層21との間に電解液5を注入すると共に、第2セパレーター52と第2負極活物質層32との間に電解液5を注入し、第2セパレーター52と第2正極活物質層22との間に電解液5を注入し、しかる後、未シール箇所の残りの1辺を上下から一対の熱板等で挟圧することによって、4辺を完全に封止接合して、図1、2に示す本発明の蓄電デバイスモジュール1を得る。 The heat seal joining is performed first on three sides of the four peripheral edge portions of the superimposed negative electrode-containing outer sheet body 84, bipolar electrode-containing sheet body 83, and positive electrode-containing outer sheet body 85 to perform temporary sealing. Then, the electrolyte solution 5 is injected between the first separator 51 and the first negative electrode active material layer 31 from the remaining unsealed one side, and the first separator 51 and the first positive electrode active material layer 21 are The electrolytic solution 5 is injected between them, and the electrolytic solution 5 is injected between the second separator 52 and the second negative electrode active material layer 32, and electrolysis is performed between the second separator 52 and the second positive electrode active material layer 22. The liquid 5 is injected, and then the remaining one side of the unsealed portion is clamped from above and below with a pair of hot plates or the like, so that the four sides are completely sealed and joined, as shown in FIGS. The electrical storage device module 1 is obtained.
 なお、図3、4、6に示す蓄電デバイスモジュール1は、上記製造方法に準じた方法で製造することができる。例えば、図3の蓄電デバイスモジュール1を製造するには、図7に示す製造方法において、前記第2セパレーター52の下に更に前記両極含有シート体83と同一構造の両極含有シート体83を配置し、さらに該追加した両極含有シート体83と前記正極含有外側シート体85の間に更に第3セパレーターを配置して前記同様にヒートシールを行えばよい。 In addition, the electrical storage device module 1 shown to FIG. 3, 4, 6 can be manufactured by the method according to the said manufacturing method. For example, in order to manufacture the electricity storage device module 1 of FIG. 3, in the manufacturing method shown in FIG. 7, a bipolar electrode-containing sheet body 83 having the same structure as the bipolar electrode-containing sheet body 83 is further disposed under the second separator 52. Further, a third separator may be further disposed between the added bipolar-containing sheet 83 and the positive-containing outer sheet 85, and heat sealing may be performed in the same manner as described above.
 上記製造方法は、その一例を挙げたものに過ぎず、特にこのような製造方法に限定されるものではない。 The above manufacturing method is merely an example, and is not particularly limited to such a manufacturing method.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
 <実施例1>
 (正極含有外側シート体85の作成)
 縦20cm、横30cm、厚さ20μmの1枚のニッケル箔(JIS H4551-2000 NW2201)13の一方の面(の全面)に、バインダーとしてのPVDFを溶媒のジメチルホルムアミド(DMF)に溶解させたバインダー液を塗布した後、100℃で30秒間乾燥せしめることによって、乾燥後の厚さが0.5μmのバインダー層71を形成した。
<Example 1>
(Preparation of positive electrode-containing outer sheet body 85)
A binder in which PVDF as a binder is dissolved in dimethylformamide (DMF) as a binder on one surface of a nickel foil (JIS H4551-2000 NW2201) 13 having a length of 20 cm, a width of 30 cm, and a thickness of 20 μm. After applying the liquid, the binder layer 71 having a thickness after drying of 0.5 μm was formed by drying at 100 ° C. for 30 seconds.
  コバルト酸リチウムを主成分とする正極活物質60質量部、結着剤兼電解液保持剤としてのPVDF10質量部、アセチレンブラック(導電材)5質量部、N-メチル-2-ピロリドン(NMP)(有機溶媒)25質量部が混練分散されてなるペーストを75mm×44mmのサイズで前記バインダー層71の表面の3箇所に塗布した後、100℃で30分間乾燥させて、次いで熱プレスを行うことによって、密度4.8g/cm3、乾燥後の厚さが30.2μmの正極活物質層22を形成した(図8(A)参照)。 60 parts by mass of a positive electrode active material mainly composed of lithium cobalt oxide, 10 parts by mass of PVDF as a binder and electrolyte solution holding agent, 5 parts by mass of acetylene black (conductive material), N-methyl-2-pyrrolidone (NMP) ( (Organic solvent) After applying a paste in which 25 parts by mass is kneaded and dispersed to three locations on the surface of the binder layer 71 in a size of 75 mm × 44 mm, it is dried at 100 ° C. for 30 minutes, and then hot pressed. A positive electrode active material layer 22 having a density of 4.8 g / cm 3 and a thickness after drying of 30.2 μm was formed (see FIG. 8A).
 次に、3箇所の正極活物質層22のそれぞれの上に、同一サイズのポリエステル粘着テープを貼着することによって正極活物質層22のマスキングを行った後、このマスキングを行った側の面に、2液硬化型のオレフィン系接着剤(第1周縁接着剤層)61を厚さ2μmで塗布して100℃で15秒間乾燥せしめ、次いでさらにこの第1周縁接着剤の上に厚さ25μmの未延伸ポリプロピレンフィルム40を貼り合わせ、40℃の恒温槽に3日間放置して養生を行った後、前記ポリエステル粘着テープの外縁(正極活物質層3の外縁)に合わせた位置で未延伸ポリプロピレンフィルム層40のみに切り込みを入れ、次いでポリエステル粘着テープと一緒に未延伸ポリプロピレンフィルム(切り込みの内側部分のみ;粘着テープに対応する領域のみ)を除去することによって、正極活物質層22の表面を露出させた(図8(B)参照)。 Next, the positive electrode active material layer 22 is masked by adhering a polyester adhesive tape of the same size on each of the three positive electrode active material layers 22, and then the masked side surface is applied to the masked side surface. A two-component curable olefin-based adhesive (first peripheral adhesive layer) 61 is applied at a thickness of 2 μm, dried at 100 ° C. for 15 seconds, and then further coated on the first peripheral adhesive with a thickness of 25 μm. After the unstretched polypropylene film 40 is bonded and left in a constant temperature bath at 40 ° C. for 3 days to cure, the unstretched polypropylene film is positioned at the position aligned with the outer edge of the polyester adhesive tape (the outer edge of the positive electrode active material layer 3). Cut only in layer 40, then unstretched polypropylene film with polyester adhesive tape (only the inner part of the cut; area corresponding to adhesive tape) The surface of the positive electrode active material layer 22 was exposed (see FIG. 8B).
 次に、正極活物質層22の露出面の外縁から外方に向けて5mmの位置(図8(B)で二点鎖線の位置)で全周にわたって切り出すことによって、85mm×54mmのサイズの正極含有外側シート体85を3片作成した(図8(C)参照、図7)。 Next, by cutting out from the outer edge of the exposed surface of the positive electrode active material layer 22 to the outside at a position of 5 mm (a position indicated by a two-dot chain line in FIG. 8B), a positive electrode having a size of 85 mm × 54 mm. Three pieces of containing outer sheet bodies 85 were created (see FIG. 8C, FIG. 7).
 前記未延伸ポリプロピレンフィルムによって形成された第2熱可塑性樹脂層42Yの幅Mは5mmであった(図8(C)参照)。 The width M of the second thermoplastic resin layer 42Y formed of the unstretched polypropylene film was 5 mm (see FIG. 8C).
 (負極含有外側シート体84の作成)
 縦20cm、横30cm、厚さ20μmの1枚のニッケル箔(JIS H4551-2000 NW2201)12の一方の面(の全面)に、バインダーとしてのPVDFを溶媒のジメチルホルムアミド(DMF)に溶解させたバインダー液を塗布した後、100℃で30秒間乾燥せしめることによって、乾燥後の厚さが0.5μmのバインダー層72を形成した。
(Preparation of negative electrode-containing outer sheet body 84)
A binder in which PVDF as a binder is dissolved in dimethylformamide (DMF) as a binder on one surface of a nickel foil (JIS H4551-2000 NW2201) 12 having a length of 20 cm, a width of 30 cm, and a thickness of 20 μm. After applying the liquid, the binder layer 72 having a thickness of 0.5 μm after drying was formed by drying at 100 ° C. for 30 seconds.
  カーボン粉末を主成分とする負極活物質57質量部、結着剤兼電解液保持剤としてのPVDFを5質量部、ヘキサフルオロプロピレンと無水マレイン酸の共重合体10質量部、アセチレンブラック(導電材)3質量部、N-メチル-2-ピロリドン(NMP)(有機溶媒)25質量部が混練分散されてなるペーストを75mm×44mmのサイズで前記バインダー層72の表面の3箇所に塗布した後、100℃で30分間乾燥させて、次いで熱プレスを行うことによって、密度1.5g/cm3、乾燥後の厚さが20.1μmの負極活物質層31を形成した。 57 parts by mass of a negative electrode active material mainly composed of carbon powder, 5 parts by mass of PVDF as a binder / electrolyte holding agent, 10 parts by mass of a copolymer of hexafluoropropylene and maleic anhydride, acetylene black (conductive material) And 3 parts by weight of N-methyl-2-pyrrolidone (NMP) (organic solvent) and 25 parts by weight of paste were kneaded and dispersed in a size of 75 mm × 44 mm at three locations on the surface of the binder layer 72; The negative electrode active material layer 31 having a density of 1.5 g / cm 3 and a thickness after drying of 20.1 μm was formed by drying at 100 ° C. for 30 minutes and then performing hot pressing.
 次に、3箇所の負極活物質層31のそれぞれの上に、同一サイズのポリエステル粘着テープを貼着することによって負極活物質層31のマスキングを行った後、このマスキングを行った側の面に、2液硬化型のオレフィン系接着剤(第二周縁接着剤層)62を厚さ2μmで塗布して100℃で15秒間乾燥せしめ、次いでさらにこの第二周縁接着剤の上に厚さ25μmの未延伸ポリプロピレンフィルムを貼り合わせ、40℃の恒温槽に3日間放置して養生を行った後、前記ポリエステル粘着テープの外縁(負極活物質層13の外縁)に合わせた位置で未延伸ポリプロピレンフィルム層のみに切り込みを入れ、次いでポリエステル粘着テープと一緒に未延伸ポリプロピレンフィルム(切り込みの内側部分のみ;粘着テープに対応する領域のみ)を除去することによって、負極活物質層31の表面を露出させた。 Next, after masking the negative electrode active material layer 31 by adhering a polyester adhesive tape of the same size on each of the three negative electrode active material layers 31, A two-component curing type olefin-based adhesive (second peripheral adhesive layer) 62 is applied at a thickness of 2 μm, dried at 100 ° C. for 15 seconds, and then further coated on the second peripheral adhesive with a thickness of 25 μm. An unstretched polypropylene film is laminated and left to stand in a constant temperature bath at 40 ° C. for 3 days to cure, and then an unstretched polypropylene film layer at a position aligned with the outer edge of the polyester adhesive tape (the outer edge of the negative electrode active material layer 13). Cut only in, then unstretched polypropylene film with polyester adhesive tape (only the inner part of the cut; only the area corresponding to the adhesive tape) The surface of the negative electrode active material layer 31 was exposed by removing.
 次に、負極活物質層31の露出面の外縁から外方に向けて5mmの位置で全周にわたって切り出すことによって、85mm×54mmのサイズの負極側シート体84(図7参照)を3片作成した。 Next, three pieces of the negative electrode side sheet body 84 (see FIG. 7) having a size of 85 mm × 54 mm are produced by cutting out the entire circumference from the outer edge of the exposed surface of the negative electrode active material layer 31 at a position of 5 mm. did.
 前記未延伸ポリプロピレンフィルムによって形成された第1熱可塑性樹脂層41Xの幅は5mmであった。 The width of the first thermoplastic resin layer 41X formed of the unstretched polypropylene film was 5 mm.
 (両極含有シート体83の作成)
  上述した正極含有外側シート体85の作成と同様にして、厚さ20μmの1枚のニッケル箔11と、該ニッケル箔11の一方の面(上面)の全面に形成されたバインダー層71と、該バインダー層71の表面における中央部領域に積層された正極活物質層21と、前記ニッケル箔11の一方の面(上面)における正極活物質層が形成されていない周縁部にオレフィン系接着剤(第1周縁接着剤層)61を介して積層された第1熱可塑性樹脂層41Yとを備えたもの(図7参照)を形成すると共に、上述した負極含有外側シート体84の作成と同様にして、前記1枚のニッケル箔11の他方の面(下面)の全面に形成されたバインダー層72と、該バインダー層72の表面における中央部領域に積層された負極活物質層32と、前記ニッケル箔11の他方の面(下面)における負極活物質層が形成されていない周縁部にオレフィン系接着剤(第2周縁接着剤層)62を介して積層された第2熱可塑性樹脂層42Yとを備えたもの(図7参照)を形成して、図7に示す両極含有シート体83を得た。
(Creation of a bipolar electrode containing sheet 83)
In the same manner as the production of the positive electrode-containing outer sheet 85 described above, one nickel foil 11 having a thickness of 20 μm, a binder layer 71 formed on the entire surface of one surface (upper surface) of the nickel foil 11, The positive electrode active material layer 21 laminated in the central region on the surface of the binder layer 71, and the olefin-based adhesive (first adhesive) on the peripheral portion of the one surface (upper surface) of the nickel foil 11 where the positive electrode active material layer is not formed. (1 peripheral adhesive layer) and a first thermoplastic resin layer 41Y laminated via 61 (see FIG. 7) and forming the negative electrode-containing outer sheet body 84, as described above, A binder layer 72 formed on the entire other surface (lower surface) of the one nickel foil 11, a negative electrode active material layer 32 laminated in a central region on the surface of the binder layer 72, and the nickel foil And a second thermoplastic resin layer 42Y laminated on the other surface (lower surface) of the other surface (lower surface) where the negative electrode active material layer is not formed via an olefin-based adhesive (second peripheral adhesive layer) 62. 7 (see FIG. 7) was formed to obtain the bipolar electrode containing sheet body 83 shown in FIG.
 (蓄電デバイスモジュール1の作成)
  次に、図7に示すように、下方に配置された正極含有外側シート体85と上方に配置された負極含有外側シート体84の間に両極含有シート体83を配置すると共に、前記正極含有外側シート体85と前記両極含有シート体83との間に、縦85mm×横54mm×厚さ8μmの多孔質の第2湿式セパレーター52を配置し、前記負極含有外側シート体84と前記両極含有シート体83との間に、縦85mm×横54mm×厚さ8μmの多孔質の湿式第1セパレーター51を配置した。この時、正極含有外側シート体85は、第2セパレーター52側に正極活物質層22が存在するように配置し、負極含有外側シート体84は、第1セパレーター51側に負極活物質層31が存在するように配置し、両極含有シート体83は、下の第2セパレーター52側に負極活物質層32が存在するように配置した(上の第1セパレーター51側に正極活物質層21が存在するように配置した)(図7参照)。
(Creation of power storage device module 1)
Next, as shown in FIG. 7, a bipolar electrode-containing sheet body 83 is disposed between the positive electrode-containing outer sheet body 85 disposed below and the negative electrode-containing outer sheet body 84 disposed above, and the positive electrode-containing outer sheet body A porous second wet separator 52 having a length of 85 mm × width of 54 mm × thickness of 8 μm is disposed between the sheet body 85 and the bipolar electrode-containing sheet body 83, and the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body. A porous wet first separator 51 having a length of 85 mm, a width of 54 mm, and a thickness of 8 μm is disposed between the first and second electrodes. At this time, the positive electrode-containing outer sheet body 85 is disposed so that the positive electrode active material layer 22 exists on the second separator 52 side, and the negative electrode-containing outer sheet body 84 has the negative electrode active material layer 31 on the first separator 51 side. Arranged so that the negative electrode active material layer 32 exists on the lower second separator 52 side (the positive electrode active material layer 21 exists on the upper first separator 51 side). (See FIG. 7).
 次いで、正極含有外側シート体85と両極含有シート体83との間に第2セパレーター52を挟み付けると共に、負極含有外側シート体84と両極含有シート体83との間に第1セパレーター51を挟み付けた状態で、平面視における4辺のうちの3辺を上下から一対の200℃の熱板で0.2MPaの圧力で3秒間挟圧して熱シールを行うことによって、3辺を封止接合した。 Next, the second separator 52 is sandwiched between the positive electrode-containing outer sheet body 85 and the bipolar electrode-containing sheet body 83, and the first separator 51 is sandwiched between the negative electrode-containing outer sheet body 84 and the bipolar electrode-containing sheet body 83. In this state, three of the four sides in plan view are sealed from the top and bottom with a pair of 200 ° C. hot plates at a pressure of 0.2 MPa for 3 seconds and heat sealed to seal and join the three sides. .
 次に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)が等量体積比で配合された混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)が濃度1モル/Lで溶解された電解液を、未シール箇所の下方側の1辺からシリンジを用いて、第2セパレーター52と正極活物質層22との間および第2セパレーター52と負極活物質層32との間にそれぞれ0.5mL注入した後、真空シールすることにより、仮封止を行った。また、同じ電解液を、未シール箇所の上方側の1辺からシリンジを用いて、第1セパレーター51と正極活物質層21との間および第1セパレーター51と負極活物質層31との間にそれぞれ0.5mL注入した後、真空シールすることにより、仮封止を行った。 Next, lithium hexafluorophosphate (LiPF 6 ) is added at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed in an equal volume ratio. Using a syringe from one side of the lower side of the unsealed portion, the dissolved electrolyte solution is placed between the second separator 52 and the positive electrode active material layer 22 and between the second separator 52 and the negative electrode active material layer 32. After injecting 0.5 mL of each, it was temporarily sealed by vacuum-sealing. Moreover, the same electrolyte solution is used between the first separator 51 and the positive electrode active material layer 21 and between the first separator 51 and the negative electrode active material layer 31 using a syringe from one side above the unsealed portion. After injecting 0.5 mL of each, it was temporarily sealed by vacuum-sealing.
  しかる後、4.2Vの電池電圧が発生するまで充電を行い、電極やセパレーター等からのガスを発生させた後、3.0Vの放電状態で且つ0.086MPaの減圧下で、未シール箇所の残りの1辺を上下から一対の200℃の熱板で0.2MPaの圧力で挟圧して3秒間熱シールを行うことによって、4辺を完全に封止接合して、図1、2に示す構成の電池容量19.6mAhの模擬の組電池(蓄電デバイスモジュール)1を得た。 Thereafter, the battery is charged until a battery voltage of 4.2 V is generated, gas is generated from an electrode, a separator, etc., and then the unsealed portion is discharged in a 3.0 V discharge state and a reduced pressure of 0.086 MPa. The remaining one side is sandwiched from above and below by a pair of 200 ° C. hot plates at a pressure of 0.2 MPa and heat sealed for 3 seconds to completely seal and join the four sides, as shown in FIGS. A simulated assembled battery (storage device module) 1 having a battery capacity of 19.6 mAh was obtained.
 <実施例2>
  実施例1で得た正極含有外側シート体85および負極含有外側シート体84のそれぞれに更に次のような付加構成を設けたこと以外は、実施例1と同様にして、図5、6に示す構成の電池容量19.5mAhの模擬の組電池(蓄電デバイスモジュール)1を得た。
<Example 2>
As shown in FIGS. 5 and 6 except that the positive electrode-containing outer sheet body 85 and the negative electrode-containing outer sheet body 84 obtained in Example 1 are further provided with the following additional structure, respectively. A simulated assembled battery (storage device module) 1 having a battery capacity of 19.5 mAh was obtained.
  次のようにして付加構成を設けた。即ち、実施例1で得た正極含有外側シート体85のニッケル箔(第3金属箔層)13の他方の面(正極活物質層22が形成された側と反対側の面)の中央部に、5mm×5mmのサイズのポリエステル粘着テープを貼り付けてマスキングを行った後、このマスキングを行った側の面の全面に、ポリエステルウレタン系接着剤(第4接着剤層)82を厚さ2μmで塗布して100℃で15秒間乾燥せしめ、次いでこの第4接着剤層82の上に厚さ15μmの二軸延伸ポリアミドフィルム(第2絶縁樹脂フィルム層)18を貼り合わせ、40℃の恒温槽に3日間放置して養生を行った後、前記ポリエステル粘着テープの外縁に合わせた位置で二軸延伸ポリアミドフィルムのみに切り込みを入れ、次いでポリエステル粘着テープと一緒に当該部分の二軸延伸ポリアミドフィルムを除去して二軸延伸ポリアミドフィルム18の中央部に開口部18Xを設けることによって、ニッケル箔(第3金属箔層)13の他方の面(下面)の中央部に5mm×5mmのサイズの第2金属露出部19を露出させて(図6参照)、正極含有外側シート体85を得た。 付 加 Additional configurations were provided as follows. That is, in the central part of the other surface (surface opposite to the side on which the positive electrode active material layer 22 is formed) of the nickel foil (third metal foil layer) 13 of the positive electrode-containing outer sheet body 85 obtained in Example 1. After a 5 mm × 5 mm size polyester adhesive tape is applied and masked, a polyester urethane adhesive (fourth adhesive layer) 82 is formed with a thickness of 2 μm on the entire surface on the masked side. After coating and drying at 100 ° C. for 15 seconds, a 15 μm-thick biaxially stretched polyamide film (second insulating resin film layer) 18 is bonded onto the fourth adhesive layer 82 and placed in a constant temperature bath at 40 ° C. After curing for 3 days, cut only the biaxially stretched polyamide film at the position aligned with the outer edge of the polyester pressure-sensitive adhesive tape. By removing the stretched polyamide film and providing an opening 18X at the center of the biaxially stretched polyamide film 18, the central portion of the other surface (lower surface) of the nickel foil (third metal foil layer) 13 is 5 mm × 5 mm. The size-exposed second metal exposed portion 19 was exposed (see FIG. 6) to obtain a positive electrode-containing outer sheet body 85.
 また、同様に、実施例1で得た負極含有外側シート体84のニッケル箔(第2金属箔層)12の他方の面(負極活物質層31が形成された側と反対側の面)の中央部に、5mm×5mmのサイズのポリエステル粘着テープを貼り付けてマスキングを行った後、このマスキングを行った側の面の全面に、ポリエステルウレタン系接着剤(第3接着剤層)81を厚さ2μmで塗布して100℃で15秒間乾燥せしめ、次いでこの第3接着剤層81の上に厚さ15μmの二軸延伸ポリアミドフィルム(第1絶縁樹脂フィルム層)8を貼り合わせ、40℃の恒温槽に3日間放置して養生を行った後、前記ポリエステル粘着テープの外縁に合わせた位置で二軸延伸ポリアミドフィルムのみに切り込みを入れ、次いでポリエステル粘着テープと一緒に当該部分の二軸延伸ポリアミドフィルムを除去して二軸延伸ポリアミドフィルム8の中央部に開口部8Xを設けることによって、ニッケル箔(第2金属箔層)12の他方の面(上面)の中央部に5mm×5mmのサイズの第1金属露出部9を露出させて(図6参照)、負極含有外側シート体84を得た。 Similarly, the other surface (surface opposite to the side on which the negative electrode active material layer 31 is formed) of the nickel foil (second metal foil layer) 12 of the negative electrode-containing outer sheet body 84 obtained in Example 1 is used. After a 5 mm x 5 mm size polyester adhesive tape is applied to the center and masked, a polyester urethane adhesive (third adhesive layer) 81 is thickened on the entire surface on the masked side. 2 μm thick and dried at 100 ° C. for 15 seconds, and then a 15 μm thick biaxially stretched polyamide film (first insulating resin film layer) 8 is bonded onto the third adhesive layer 81, and 40 ° C. After standing for 3 days in a thermostat and curing, cut only the biaxially stretched polyamide film at the position aligned with the outer edge of the polyester adhesive tape, then along with the polyester adhesive tape The biaxially stretched polyamide film is removed and an opening 8X is provided in the central portion of the biaxially stretched polyamide film 8, so that the central portion of the other surface (upper surface) of the nickel foil (second metal foil layer) 12 is provided. The first metal exposed portion 9 having a size of 5 mm × 5 mm was exposed (see FIG. 6), and the negative electrode-containing outer sheet body 84 was obtained.
  こうして得られた正極含有外側シート体85、負極含有外側シート体84を使用して、実施例1と同様にして、蓄電デバイスモジュールの作成工程を実施することによって、図5、6に示す構成の電池容量19.5mAhの模擬の組電池(蓄電デバイスモジュール)1を得た。 By using the positive electrode-containing outer sheet body 85 and the negative electrode-containing outer sheet body 84 obtained in this manner, in the same manner as in Example 1, the manufacturing process of the power storage device module was performed, whereby the structures shown in FIGS. A simulated battery pack (storage device module) 1 having a battery capacity of 19.5 mAh was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得られた実施例1、2の各組電池について初期電圧(V)および内部抵抗値(mΩ)を測定した。その結果を表1に示す。 The initial voltage (V) and the internal resistance value (mΩ) were measured for each of the assembled batteries of Examples 1 and 2 obtained as described above. The results are shown in Table 1.
 表1から明らかなように、本発明の実施例1、2の組電池(蓄電デバイスモジュール)は、それぞれ順に8.2V、8.3Vの初期電圧が得られており、また内部抵抗値も低く抑えられていることがわかる。 As is apparent from Table 1, the assembled batteries (storage device modules) of Examples 1 and 2 of the present invention have initial voltages of 8.2 V and 8.3 V, respectively, and have low internal resistance values. You can see that it is suppressed.
 本発明に係る蓄電デバイスモジュールおよび本発明の製造方法で得られた蓄電デバイスモジュールは、高出力が得られるので、例えば、電動工具用、車載用、回生エネルギー回収用、デジタルカメラ用、ミニ四駆カー用等に用いられる。 Since the power storage device module according to the present invention and the power storage device module obtained by the manufacturing method of the present invention can obtain a high output, for example, for power tools, for vehicles, for regenerative energy recovery, for digital cameras, mini 4WD Used for cars.
  本発明の蓄電デバイスモジュールとしては、例えば
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
・全固体電池
などが挙げられるが、特にこれらに限定されるものではない。
Examples of the electricity storage device module of the present invention include: electricity storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, electric double layer capacitors, all solid state batteries, etc. It is not limited to.
 本出願は、2016年11月25日付で出願された日本国特許出願特願2016-228682号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application is accompanied by the priority claim of Japanese Patent Application No. 2016-228682 filed on Nov. 25, 2016, the disclosure of which constitutes part of this application as is. .
 ここで用いられた用語及び説明は、本発明に係る実施形態を説明するために用いられたものであって、本発明はこれに限定されるものではない。本発明は、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。 The terms and explanations used here are used to describe the embodiments according to the present invention, and the present invention is not limited thereto. The present invention allows any design changes within the scope of the claims without departing from the spirit thereof.
1…蓄電デバイスモジュール
11…第1金属箔層
12…第2金属箔層
13…第3金属箔層
14…第4金属箔層
15…第5金属箔層
21…第1正極活物質層
22…第2正極活物質層
23…第3正極活物質層
24…第4正極活物質層
31…第1負極活物質層
32…第2負極活物質層
33…第3負極活物質層
34…第4負極活物質層
41…第1周縁封止層
41X、41Y…第1熱可塑性樹脂層
42…第2周縁封止層
42X、42Y…第2熱可塑性樹脂層
43…第3周縁封止層
44…第4周縁封止層
51…第1セパレーター
52…第2セパレーター
53…第3セパレーター
54…第4セパレーター
83…両極含有シート体
84…負極含有外側シート体
85…正極含有外側シート体
DESCRIPTION OF SYMBOLS 1 ... Power storage device module 11 ... 1st metal foil layer 12 ... 2nd metal foil layer 13 ... 3rd metal foil layer 14 ... 4th metal foil layer 15 ... 5th metal foil layer 21 ... 1st positive electrode active material layer 22 ... Second positive electrode active material layer 23 ... third positive electrode active material layer 24 ... fourth positive electrode active material layer 31 ... first negative electrode active material layer 32 ... second negative electrode active material layer 33 ... third negative electrode active material layer 34 ... fourth Negative electrode active material layer 41 ... first peripheral sealing layer 41X, 41Y ... first thermoplastic resin layer 42 ... second peripheral sealing layer 42X, 42Y ... second thermoplastic resin layer 43 ... third peripheral sealing layer 44 ... 4th peripheral sealing layer 51 ... 1st separator 52 ... 2nd separator 53 ... 3rd separator 54 ... 4th separator 83 ... Bipolar containing sheet body 84 ... Negative electrode containing outer sheet body 85 ... Positive electrode containing outer sheet body

Claims (6)

  1.  単層の金属箔からなる金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の他方の面における一部の領域に積層された負極活物質層と、を備えた両極含有シート体を複数枚含み、
      前記複数枚の両極含有シート体が、前記正極活物質層と前記負極活物質層とが厚さ方向に交互配置となる態様で、厚さ方向に積層された直列積層体であって、
      厚さ方向に隣り合う前記両極含有シート体において、一方の両極含有シート体の正極活物質層と、他方の両極含有シート体の負極活物質層との間にセパレーターが配置され、
      厚さ方向に隣り合う前記両極含有シート体において、一方の両極含有シート体の金属箔層の前記一方の面における正極活物質層が形成されていない周縁部領域と、他方の両極含有シート体の金属箔層の前記他方の面における負極活物質層が形成されていない周縁部とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合されていることを特徴とする蓄電デバイスモジュール。
    A metal foil layer made of a single layer metal foil, a positive electrode active material layer laminated on a part of one surface of the metal foil layer, and a part of a region of the other side of the metal foil layer. A negative electrode active material layer, comprising a plurality of bipolar electrode containing sheet bodies,
    The plurality of bipolar electrode-containing sheet bodies is a series laminated body in which the positive electrode active material layers and the negative electrode active material layers are alternately arranged in the thickness direction, and laminated in the thickness direction,
    In the bipolar electrode containing sheet body adjacent in the thickness direction, a separator is disposed between the positive electrode active material layer of one bipolar electrode containing sheet body and the negative electrode active material layer of the other bipolar electrode containing sheet body,
    In the bipolar electrode-containing sheet body adjacent in the thickness direction, a peripheral region where the positive electrode active material layer is not formed on the one surface of the metal foil layer of one bipolar electrode-containing sheet body, and the other bipolar electrode-containing sheet body A power storage device module, characterized in that a peripheral edge portion on which the negative electrode active material layer is not formed on the other surface of the metal foil layer is bonded via a peripheral sealing layer containing a thermoplastic resin. .
  2.   前記直列積層体の厚さ方向の一方の側に配置された金属箔層と、該金属箔層における前記直列積層体側の面の一部の領域に積層された負極活物質層と、を含む負極含有外側シート体と、
      前記直列積層体の厚さ方向の他方の側に配置された金属箔層と、該金属箔層における前記直列積層体側の面の一部の領域に積層された正極活物質層と、を含む正極含有外側シート体と、をさらに備え、
      前記負極含有外側シート体の負極活物質層と、前記直列積層体の厚さ方向の一端側の正極活物質層との間にセパレーターが配置され、
     前記正極含有外側シート体の正極活物質層と、前記直列積層体の厚さ方向の他端側の負極活物質層との間にセパレーターが配置され、
      前記負極含有外側シート体の金属箔層における負極活物質層が形成されていない周縁部領域と、前記直列積層体の厚さ方向の前記一端側の金属箔層における正極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合され、
      前記正極含有外側シート体の金属箔層における正極活物質層が形成されていない周縁部領域と、前記直列積層体の厚さ方向の前記他端側の金属箔層における負極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる周縁封止層を介して接合されている請求項1に記載の蓄電デバイスモジュール。
    A negative electrode comprising: a metal foil layer disposed on one side in the thickness direction of the series laminated body; and a negative electrode active material layer laminated in a partial region of the surface of the metal foil layer on the series laminated body side Containing outer sheet body;
    A positive electrode comprising: a metal foil layer disposed on the other side in the thickness direction of the series laminated body; and a positive electrode active material layer laminated in a partial region of the surface of the metal foil layer on the series laminated body side A further outer sheet body,
    A separator is disposed between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the series laminate,
    A separator is disposed between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate,
    The peripheral region where the negative electrode active material layer is not formed in the metal foil layer of the negative electrode-containing outer sheet body, and the positive electrode active material layer in the metal foil layer on the one end side in the thickness direction of the serial laminate are formed. And a peripheral edge region not joined via a peripheral sealing layer containing a thermoplastic resin,
    A peripheral region where no positive electrode active material layer is formed in the metal foil layer of the positive electrode-containing outer sheet body, and a negative electrode active material layer in the metal foil layer on the other end side in the thickness direction of the serial laminate are formed. The power storage device module according to claim 1, wherein the peripheral edge region that is not bonded is bonded via a peripheral sealing layer containing a thermoplastic resin.
  3.  単層の金属箔からなる第1金属箔層と、該第1金属箔層の一方の面における一部の領域に積層された第1正極活物質層と、前記第1金属箔層の他方の面における一部の領域に積層された第2負極活物質層と、を備えた両極含有シート体と、
     前記第1金属箔層の前記一方の面側に配置された第2金属箔層と、該第2金属箔層における前記第1金属箔層側の面の一部の領域に積層された第1負極活物質層と、を含む負極含有外側シート体と、
     前記第1金属箔層の前記他方の面側に配置された第3金属箔層と、該第3金属箔層における前記第1金属箔層側の面の一部の領域に積層された第2正極活物質層と、を含む正極含有外側シート体と、
     前記第1正極活物質層と前記第1負極活物質層との間に配置された第1セパレーターと、
      前記第2正極活物質層と前記第2負極活物質層との間に配置された第2セパレーターと、を含み、
     前記第1金属箔層の前記一方の面における第1正極活物質層が形成されていない周縁部領域と、前記第2金属箔層における前記第1金属箔層側の面における第1負極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第1周縁封止層を介して接合され、
     前記第1金属箔層の前記他方の面における第2負極活物質層が形成されていない周縁部領域と、前記第3金属箔層における前記第1金属箔層側の面における第2正極活物質層が形成されていない周縁部領域とが、熱可塑性樹脂を含有してなる第2周縁封止層を介して接合されていることを特徴とする蓄電デバイスモジュール。
    A first metal foil layer made of a single metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the other of the first metal foil layers A second negative electrode active material layer laminated in a partial region of the surface, a bipolar electrode containing sheet body,
    A second metal foil layer disposed on the one surface side of the first metal foil layer, and a first layer laminated on a partial region of the surface of the second metal foil layer on the first metal foil layer side. A negative electrode-containing outer sheet body comprising a negative electrode active material layer;
    A third metal foil layer disposed on the other surface side of the first metal foil layer, and a second layer laminated on a portion of the surface of the third metal foil layer on the first metal foil layer side. A positive electrode-containing outer sheet body comprising a positive electrode active material layer;
    A first separator disposed between the first positive electrode active material layer and the first negative electrode active material layer;
    A second separator disposed between the second positive electrode active material layer and the second negative electrode active material layer,
    A peripheral region where the first positive electrode active material layer is not formed on the one surface of the first metal foil layer, and a first negative electrode active material on the surface of the second metal foil layer on the first metal foil layer side. The peripheral region where the layer is not formed is joined via a first peripheral sealing layer containing a thermoplastic resin,
    A peripheral region in which the second negative electrode active material layer is not formed on the other surface of the first metal foil layer, and a second positive electrode active material on the surface of the third metal foil layer on the first metal foil layer side A power storage device module, wherein a peripheral region where no layer is formed is joined via a second peripheral sealing layer containing a thermoplastic resin.
  4.  単層の金属箔からなる金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、前記金属箔層の他方の面における一部の領域に積層された負極活物質層と、前記金属箔層の前記他方の面における負極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた両極含有シート体を複数枚準備する工程と、
     複数枚のセパレーターを準備する工程と、
      前記複数枚の両極含有シート体を、前記正極活物質層と前記負極活物質層とが厚さ方向に交互配置となる態様で、厚さ方向に積層すると共に、厚さ方向に隣り合う両極含有シート体において一方の両極含有シート体の正極活物質層と他方の両極含有シート体の負極活物質層との間にセパレーターを挟み込んだ状態で、前記一方の両極含有シート体における前記正極活物質層側の熱可塑性樹脂層と前記他方の両極含有シート体における前記負極活物質層側の熱可塑性樹脂層とをヒートシールして直列積層体を得る接合工程と、を含むことを特徴とする蓄電デバイスモジュールの製造方法。
    A metal foil layer made of a single layer metal foil, a positive electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a positive electrode active material layer on the one surface of the metal foil layer. A thermoplastic resin layer provided at a peripheral edge that is not formed, a negative electrode active material layer laminated in a partial region on the other surface of the metal foil layer, and a negative electrode on the other surface of the metal foil layer A step of preparing a plurality of bipolar-containing sheet bodies provided with a thermoplastic resin layer provided at the peripheral edge where the active material layer is not formed;
    Preparing a plurality of separators;
    The plurality of bipolar electrode-containing sheet bodies are laminated in the thickness direction in such a manner that the positive electrode active material layers and the negative electrode active material layers are alternately arranged in the thickness direction, and include the bipolar electrodes adjacent to each other in the thickness direction. In the sheet body, the positive electrode active material layer in the one bipolar electrode-containing sheet body in a state where a separator is sandwiched between the positive electrode active material layer of one bipolar electrode-containing sheet body and the negative electrode active material layer of the other bipolar electrode-containing sheet body A step of heat-sealing the thermoplastic resin layer on the side and the thermoplastic resin layer on the negative electrode active material layer side in the other bipolar electrode-containing sheet body to obtain a serial laminate, Module manufacturing method.
  5.  金属箔層と、該金属箔層の一方の面における一部の領域に積層された負極活物質層と、前記金属箔層の前記一方の面における負極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた負極含有外側シート体を準備する工程と、
     金属箔層と、該金属箔層の一方の面における一部の領域に積層された正極活物質層と、前記金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた熱可塑性樹脂層と、を備えた正極含有外側シート体を準備する工程と、
      前記負極含有外側シート体の負極活物質層と、前記直列積層体の厚さ方向の一端側の正極活物質層との間にセパレーターを挟み込んだ状態で、前記負極含有外側シート体の熱可塑性樹脂層と前記直列積層体の厚さ方向の一端側の両極含有シート体における正極活物質層側の熱可塑性樹脂層とをヒートシールする工程と、
      前記正極含有外側シート体の正極活物質層と、前記直列積層体の厚さ方向の他端側の負極活物質層との間にセパレーターを挟み込んだ状態で、前記正極含有外側シート体の熱可塑性樹脂層と前記直列積層体の厚さ方向の他端側の両極含有シート体における負極活物質層側の熱可塑性樹脂層とをヒートシールする工程と、をさらに含む請求項4に記載の蓄電デバイスモジュールの製造方法。
    A metal foil layer, a negative electrode active material layer laminated in a partial region on one surface of the metal foil layer, and a peripheral portion where the negative electrode active material layer on the one surface of the metal foil layer is not formed. A step of preparing a negative electrode-containing outer sheet body provided with a provided thermoplastic resin layer;
    A metal foil layer, a positive electrode active material layer laminated on a part of a region on one surface of the metal foil layer, and a peripheral portion where the positive electrode active material layer on the one surface of the metal foil layer is not formed. A step of preparing a positive electrode-containing outer sheet body provided with a provided thermoplastic resin layer;
    A thermoplastic resin of the negative electrode-containing outer sheet body in a state where a separator is sandwiched between the negative electrode active material layer of the negative electrode-containing outer sheet body and the positive electrode active material layer on one end side in the thickness direction of the serial laminate. Heat sealing the layer and the thermoplastic resin layer on the positive electrode active material layer side in the bipolar electrode-containing sheet on the one end side in the thickness direction of the series laminate;
    Thermoplasticity of the positive electrode-containing outer sheet body with a separator sandwiched between the positive electrode active material layer of the positive electrode-containing outer sheet body and the negative electrode active material layer on the other end side in the thickness direction of the serial laminate. The heat storage device according to claim 4, further comprising a step of heat-sealing the resin layer and the thermoplastic resin layer on the negative electrode active material layer side in the bipolar electrode-containing sheet on the other end side in the thickness direction of the serial laminate. Module manufacturing method.
  6.  単層の金属箔からなる第1金属箔層と、該第1金属箔層の一方の面における一部の領域に積層された第1正極活物質層と、前記第1金属箔層の前記一方の面における正極活物質層が形成されていない周縁部に設けられた第1熱可塑性樹脂層と、前記第1金属箔層の他方の面における一部の領域に積層された第2負極活物質層と、前記第1金属箔層の前記他方の面における第2負極活物質層が形成されていない周縁部に設けられた第2熱可塑性樹脂層と、を備えた両極含有シート体を準備する工程と、
     第2金属箔層と、該第2金属箔層の一方の面における一部の領域に積層された第1負極活物質層と、前記第2金属箔層の前記一方の面における第1負極活物質層が形成されていない周縁部に設けられた第1熱可塑性樹脂層と、を備えた負極含有外側シート体を準備する工程と、
     第3金属箔層と、該第3金属箔層の一方の面における一部の領域に積層された第2正極活物質層と、前記第3金属箔層の前記一方の面における第2正極活物質層が形成されていない周縁部に設けられた第2熱可塑性樹脂層と、を備えた正極含有外側シート体を準備する工程と、
     第1セパレーターおよび第2セパレーターを準備する工程と、
      前記両極含有シート体の前記第1正極活物質層と前記負極含有外側シート体の前記第1負極活物質層との間に前記第1セパレーターを挟み込んだ状態で前記両極含有シート体の第1熱可塑性樹脂層と前記負極含有外側シート体の第1熱可塑性樹脂層とをヒートシールすると共に、前記両極含有シート体の前記第2負極活物質層と前記正極含有外側シート体の前記第2正極活物質層との間に前記第2セパレーターを挟み込んだ状態で前記両極含有シート体の第2熱可塑性樹脂層と前記負極含有外側シート体の第2熱可塑性樹脂層とをヒートシールする工程と、を含むことを特徴とする蓄電デバイスモジュールの製造方法。
    A first metal foil layer made of a single metal foil, a first positive electrode active material layer laminated in a partial region on one surface of the first metal foil layer, and the one of the first metal foil layers A first thermoplastic resin layer provided on a peripheral edge of the first surface where no positive electrode active material layer is formed, and a second negative electrode active material laminated in a partial region on the other surface of the first metal foil layer A bipolar electrode-containing sheet body comprising a layer and a second thermoplastic resin layer provided on a peripheral edge of the other surface of the first metal foil layer where the second negative electrode active material layer is not formed is prepared. Process,
    A second metal foil layer; a first negative electrode active material layer laminated in a partial region on one surface of the second metal foil layer; and a first negative electrode active material on the one surface of the second metal foil layer. A step of preparing a negative electrode-containing outer sheet body provided with a first thermoplastic resin layer provided at a peripheral edge where no material layer is formed;
    A third metal foil layer; a second positive electrode active material layer laminated in a partial region on one surface of the third metal foil layer; and a second positive electrode active material on the one surface of the third metal foil layer. A step of preparing a positive electrode-containing outer sheet body provided with a second thermoplastic resin layer provided at the peripheral edge where the material layer is not formed;
    Preparing a first separator and a second separator;
    The first heat of the bipolar electrode-containing sheet body with the first separator sandwiched between the first positive electrode active material layer of the bipolar electrode-containing sheet body and the first negative electrode active material layer of the negative electrode-containing outer sheet body. The plastic resin layer and the first thermoplastic resin layer of the negative electrode-containing outer sheet body are heat-sealed, and the second negative electrode active material layer of the bipolar electrode-containing sheet body and the second positive electrode active material of the positive electrode-containing outer sheet body. Heat-sealing the second thermoplastic resin layer of the bipolar electrode-containing sheet body and the second thermoplastic resin layer of the negative electrode-containing outer sheet body with the second separator sandwiched between the material layers. A method of manufacturing an electricity storage device module, comprising:
PCT/JP2017/030272 2016-11-25 2017-08-24 Storage device module, and method for manufacturing said storage device module WO2018096743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228682 2016-11-25
JP2016228682A JP2018085270A (en) 2016-11-25 2016-11-25 Power storage device module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018096743A1 true WO2018096743A1 (en) 2018-05-31

Family

ID=62194860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030272 WO2018096743A1 (en) 2016-11-25 2017-08-24 Storage device module, and method for manufacturing said storage device module

Country Status (3)

Country Link
JP (1) JP2018085270A (en)
CN (1) CN207800773U (en)
WO (1) WO2018096743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563579A (en) * 2019-09-25 2021-03-26 北京卫国创芯科技有限公司 High-safety high-capacity lithium ion battery laminated cell and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524712A (en) * 2018-09-21 2019-03-26 东莞市伟升机械设备科技有限公司 Slimline battery and preparation method thereof
JP7447792B2 (en) 2018-09-27 2024-03-12 日本ゼオン株式会社 Slurry for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery with adhesive layer, method for manufacturing laminate for non-aqueous secondary battery, and method for manufacturing non-aqueous secondary battery
KR102396438B1 (en) * 2019-02-21 2022-05-10 주식회사 엘지에너지솔루션 Battery module and method of manufacturing the same
CN114450842A (en) * 2019-10-31 2022-05-06 株式会社村田制作所 Secondary battery and battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164782A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Bipolar battery, battery pack, composite battery, and vehicle mounting them
JP2007095653A (en) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd Bipolar battery and method of manufacturing bipolar battery
WO2010010717A1 (en) * 2008-07-25 2010-01-28 パナソニック株式会社 Bipolar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164782A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Bipolar battery, battery pack, composite battery, and vehicle mounting them
JP2007095653A (en) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd Bipolar battery and method of manufacturing bipolar battery
WO2010010717A1 (en) * 2008-07-25 2010-01-28 パナソニック株式会社 Bipolar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563579A (en) * 2019-09-25 2021-03-26 北京卫国创芯科技有限公司 High-safety high-capacity lithium ion battery laminated cell and preparation method thereof
CN112563579B (en) * 2019-09-25 2023-05-12 北京卫蓝新能源科技有限公司 High-safety high-capacity lithium ion battery lamination cell and preparation method thereof

Also Published As

Publication number Publication date
JP2018085270A (en) 2018-05-31
CN207800773U (en) 2018-08-31

Similar Documents

Publication Publication Date Title
KR102303986B1 (en) Thin type power storage device and method of manufacturing therof
WO2018096743A1 (en) Storage device module, and method for manufacturing said storage device module
JP6487712B2 (en) Power storage device
JP5261961B2 (en) Secondary battery positive electrode, secondary battery negative electrode, secondary battery, and vehicle
US8691431B2 (en) Method of producing sealing structure of bipolar battery, method of manufacturing bipolar battery, sealing structure of bipolar battery, and bipolar battery
JP6487669B2 (en) Power storage device
US10559809B2 (en) Power storage device
TW201637264A (en) Battery pack
TW201703310A (en) Housing of electricity storage device and electricity storage device including a metal layer that is formed by a metal foil and a thermoplastic resin layer laminated on one side of the metal layer
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
US20190348644A1 (en) High power battery and battery case
JP5387062B2 (en) Secondary battery
KR102537627B1 (en) Storage device
JP6454504B2 (en) Electric storage device and stacked electric storage device
JP4956777B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP2021096910A (en) Manufacturing method for power storage device, and power storage device
JP2019021636A (en) Power storage device
TWI719050B (en) Power storage device
JP5522222B2 (en) Bipolar battery manufacturing method
JP2011096504A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP6637675B2 (en) Storage module and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873977

Country of ref document: EP

Kind code of ref document: A1